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Temporal difference learningmodels propose phasic dopamine signaling encodes reward

prediction errors that drive learning. This is supported by studies where optogenetic

stimulation of dopamine neurons can stand in lieu of actual reward. Nevertheless, a

large body of data also shows that dopamine is not necessary for learning, and that

dopamine depletion primarily affects task performance. We offer a resolution to this

paradox based on an hypothesis that dopamine encodes the precision of beliefs about

alternative actions, and thus controls the outcome-sensitivity of behavior. We extend

an active inference scheme for solving Markov decision processes to include learning,

and show that simulated dopamine dynamics strongly resemble those actually observed

during instrumental conditioning. Furthermore, simulated dopamine depletion impairs

performance but spares learning, while simulated excitation of dopamine neurons drives

reward learning, through aberrant inference about outcome states. Our formal approach

provides a novel and parsimonious reconciliation of apparently divergent experimental

findings.

Keywords: reward, reward learning, variational inference, dopamine, active inference, instrumental conditioning,

incentive salience, learning

INTRODUCTION

Flexible and adaptive behavior requires, in many situations, that agents use explicit models of their
environment to perform inference about the causes of incoming sensory information (Tenenbaum
et al., 2006; Friston, 2010; Clark, 2012; Dolan and Dayan, 2013). When the structure of the
environment is unknown, adaptive behavior requires agents address an additional challenge of
learning the parameters of the models that they use. We consider learning in the particular context
of active inference, an influential theory of decision-making, and action control. Active inference
is based on a premise that agents choose actions using the same inferential mechanisms deployed
in perception, with desired outcomes being simply those that an agent believes, a priori, that it will
obtain (Friston et al., 2013).

Although, existing treatments of active inference largely assume that a model has already been
learned (see Adams et al., 2012; Friston et al., 2012a,b; FitzGerald et al., 2015 for example), it is
straightforward to incorporate learning within the same framework. We explore the consequences
of learning under active inference, using a proposed framework for Markov decision processes
(MDPs) and variational Bayes (Friston et al., 2013; Figure 1). This approach can elegantly simulate
behavior on a number of tasks (Moutoussis et al., 2014; FitzGerald et al., 2015; Friston et al., 2015;
Schwartenbeck et al., 2015a). Here it allows us to derive simple, generic, and biologically plausible
learning rules for the parameters governing transitions between different hidden states of the world
(see Equations 26–31 below), including linking hidden states with the observations they generate.
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FIGURE 1 | Active inference model. This illustrates dependencies between the variables in the augmented generative model of behavior (for further details see

Friston et al., 2013). Left: these equations specify the generative model in terms of the joint probability over observations õ, hidden states s̃, control states ũ, the

precision of beliefs about control states γ̃ , and the parameters encoded by the matrices that determine the mapping between hidden states A and the transition

probabilities between hidden states B(u). The form of these equations rests upon Markovian assumptions about controlled state transitions. Right: Bayesian graph

showing the dependencies among hidden states and how they depend upon past and future control states. Sequences of future control states (policies) depend upon

the current state, because policy selection depends upon the divergence between distributions over the final state that are, and are not, conditioned on the current

state, together with the precision of beliefs about control states. Observed outcomes depend only on the hidden states at any given time. Given this generative model,

an agent can make inferences about observed outcomes using variational Bayes (Beal, 2003). The same variational scheme can also learn the model parameters

encoded by the A and B matrices. States and parameters are treated identically, except for the key distinction that because parameters are time-invariant, information

about them can be accumulated over time. (States that are inferred upon are indicated in blue, parameters that are learnt in green).

We apply our augmented scheme to model instrumental
conditioning (Figure 2), and show that it enables rapid and
efficient learning. We then use this to test the plausibility
of an hypothesis that dopamine encodes expected precision
over control states (Friston et al., 2014; FitzGerald et al.,
2015; Schwartenbeck et al., 2015a). Dopamine is a natural
candidate for encoding expected precision for three reasons.
First, because it exerts a modulatory (multiplicative) rather than
driving effect on neuronal processing, in line with the role
played by expected precision in our model. Second, because
dopamine is the neuromodulator most closely linked to action
and motivation, both in terms of the regions it innervates and
what is known about its role in cognition. Third, because the
dynamics of expected precision in response to rewards that
naturally emerge from the model strongly resemble those of the
phasic dopaminergic response.

To test this hypothesis, we reproduce three widely replicated
empirical phenomena that, to our knowledge, are not adequately
explained within any single extant normative theory (that is, one
based on a presumed computational role for dopamine;
Figure 3). The first concerns the acquisition of reward

contingencies, known to induce characteristic changes in
phasic activity in the dopaminergic system such that, over
the course of learning, responses to rewarding outcomes are
transferred to the stimuli which predict them (Schultz et al., 1997;
Schultz, 1998; Day et al., 2007; D’Ardenne et al., 2008; Flagel
et al., 2011; Cohen et al., 2012). This has led to the influential
hypothesis that dopamine encodes reward prediction errors that
underpin a form of temporal difference (TD) learning (Schultz
et al., 1997). The second phenomenon we consider is the fact
that although dopaminergic activity during learning is consistent
with a reward learning prediction error (RPE), this disguises
a puzzling fact that dopamine depletion primarily affects task
performance rather than learning itself (Berridge and Robinson,
1998; Cannon and Palmiter, 2003; Robinson et al., 2005; Robbins
and Everitt, 2007; Flagel et al., 2011; Berridge, 2012; Saunders
and Robinson, 2012; Shiner et al., 2012; Smittenaar et al., 2012)
[though see (Darvas and Palmiter, 2010)]. Here we acknowledge
that although dopamine does not seem necessary for reward
learning to occur, transient stimulation of dopaminergic
midbrain neurons is sufficient to establish behavioral preference
(Tsai et al., 2009; Adamantidis et al., 2011; Witten et al., 2011;
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FIGURE 2 | Structure of instrumental conditioning task. In each trial the agent first proceeds through two initial pre-cue states. One of two cues is then

presented with equal probability, and the agent takes one of two actions. The agent then waits for two epochs or delayed periods, where each pair of hidden states

corresponds to a particular cue-outcome combination. Finally, the agent moves probabilistically either to a win or no win outcome. Agents had strong and accurate

beliefs about all transition probabilities except for the transitions to the final outcomes outcome, which had to be learnt.

FIGURE 3 | Schematic depicting the relationships among temporal difference learning, incentive salience, and precision hypotheses; in terms of

explaining the phenomena we consider in this paper. The temporal difference learning hypothesis correctly predicts both reward prediction error-like phasic

dopamine responses and the fact that dopaminergic stimulation is sufficient to establish preference learning. However, it does not predict either a direct effect of

dopamine on action selection or the fact that dopamine is not necessary for preference learning. The incentive salience hypothesis, by contrast, predicts the effect of

dopamine on action selection, and that it is not needed for learning, but struggles to explain the other two phenomena. The precision hypothesis, by contrast,

accounts for all four. (This figure is intended to be illustrative rather than comprehensive, and we acknowledge that there are a number of key phenomena that are

currently not well-explained by the precision hypothesis, as described in the Discussion).

Rossi et al., 2013; Steinberg et al., 2013; Stopper et al., 2014). This
latter observation is our third explanandum.

We have highlighted a number of puzzling findings that
are difficult to account for on either of the best established

theories regarding the role of dopamine in motivated behavior. If
dopamine encodes RPEs that drive learning (Schultz et al., 1997)
then, prima facie, learning should be impaired in its near-absence.
If on the other hand, dopamine encodes incentive salience
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(or “wanting”; Berridge, 2007), it is not clear why dopamine
dynamics should so closely resemble RPEs on the one hand and
why midbrain stimulation is sufficient to establish behavioral
preference on the other, rather than just transiently motivating
approach or consumption behavior. As such, explaining these
three key findings within a unified framework would establish
the precision hypothesis as a more parsimonious account of
dopamine function.

MATERIALS AND METHODS

An Active Inference Model for Markov
Decision-processes
We first reprise our generic active inference scheme for
solving MDPs (for details Friston et al., 2013). Briefly, the
model considers series of observations {o0, . . . , oT} = õ
that depend only upon hidden states {s0, . . . , sT} = s̃.
Transitions among hidden states are governed by sequences
of control states {ut, . . . , uT} = ũ from the current time.
These sequences constitute allowable policies π . Finally, actions
are sampled from posterior beliefs over current control states.
These beliefs are parameterized in terms of their confidence
or precision {γ0, . . . , γT} = γ̃ . Expectations about all states,
including precision, are optimized to maximize model evidence
or marginal likelihood (which is the same as minimizing
surprise and variational free energy). In this setting, precision
governs the stochasticity of behavior in a fashion analogous to
the inverse temperature parameter of softmax decision rules,
with the crucial difference that rather than being fixed, it
is optimized in a context-sensitive fashion from moment to
moment.

In this model, future control states or policies depend
upon the current hidden state, because the probability that the
agent assigns to different policies rests upon their value or
quality Q (ũ) = −DKL[P(sT | st, ũ) || P(sT |m)]. This corresponds
to the (negative) Kullback-Leibler (KL) divergence between
distributions over the final state that are, and are not, informed by
the current state. (Here,m indicates the agent’s generative model)
In other words, policies are considered more likely when they
minimize the difference between the predictive distribution over
final states, given the current and preferred states encoded by
prior beliefs. This provides a fairly generic form of risk sensitive
or KL control.

Under this scheme, a generative model is specified completely
with three matrices, (and hyperparameters governing precision):
the observation matrix A constitutes the parameters of the
likelihood model and encodes the probability of an outcome,
given a hidden state. The second set of matrixes, B(u) specify
probabilistic transitions between hidden states that depend on
the current control state. Lastly, the vector C encodes the
prior probability of—or preference for—different terminal states
C(sT) = ln P(sT |m), where the logarithm of this probability
corresponds to the utility of each final (hidden) state. Previously,
we have considered inference problems where these matrices are
assumed to be known (Friston et al., 2013; FitzGerald et al.,

2015). However, by treating the A and B matrices as encoding
unknown parameters, exactly the same scheme can be augmented
to include learning, as described below.

Variational Learning in Active Inference
A key plank of the active inference scheme described above (and
variational methods more generally) is a mean field assumption.
This approximates the joint distribution over a set of variables
by assuming conditional independence among subsets to render
Bayesian model inversion analytically tractable (Bishop, 2006).
With a careful choice of prior distributions, it is possible
to perform (approximately) optimal inference by iteratively
evaluating the variables in each subset in terms of the sufficient
statistics of the other subsets, a procedure known as variational
Bayes (Beal, 2003). This scheme is fast and depends only upon
simple message passing between different subsets of unknown
variables. It thus, constitutes a plausible metaphor for neuronal
implementations of Bayesian inference (Friston et al., 2013).

To include learning within our variational scheme we simply
add extra variables, corresponding to the model parameters to be
learnt. The important difference between states and parameters
is that parameters are time-invariant, whereas states are not. This
means that information about parameters is accumulated across
trials leading to a progressive minimization of (average) surprise
as the structure of the environment is learned. In this setting,
inference corresponds to optimizing expectations about hidden
states of the world generating outcomes, while learning refers to
the optimization of the parameters of the underlying generative
model. In short, simply by including parameters in a variational
update scheme, we can seamlessly incorporate learning within
active inference.

Many different realizations of variational learning are
conceivable, which will vary in their efficacy and biological
plausibility. In particular, a key difference is whether learning
takes place only “online” using currently available information,
or whether additional “offline” learning occurs using information
gathered during some extended period of time as, for example,
when complete experimental trial or run through a maze also
occurs. This corresponds to the difference between Bayesian
filtering and smoothing, and the possibility of forward and
backward sweeps during approximate Bayesian inference (see
Penny et al., 2013). Here, we consider online learning, which,
as will be seen below, has a natural resemblance to Hebbian
learning schemes (Abbott and Nelson, 2000), and thus prima
facie embodies a neurobiological plausibility.

Augmenting the Generative Model
In this paper, we consider learning the parameters of the
observation matrix A that maps from hidden states to
observations, and the state transition matrices B(u) that map
from the current hidden state to the next state. The A matrix
comprises a set of multinomial probability distributions in each
column. This means the j-th column of the observation matrix
A•j encodes the likelihood of different observations, given the
current hidden state. Since the conjugate prior of themultinomial
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distribution is the Dirichlet distribution, it is convenient to place
a Dirichlet prior over each of these multinomial distributions,
with concentration parameters α such that:

P (ot = i | st = j,m) = Aij (1)

P (A•j |α) = Dir(α•j) (2)

lnEP[Aij] = ln(αij)− ln(α0
j ) (3)

EP[lnAij] = ψ(αij)− ψ(α
0
j ) (4)

α0
j =

∑

i
αij (5)

Here, we have included expressions for the log of the expected
probability and the expected log probability, where ψ(·) is the
digamma or psi function. These expressions will be important
later, when we examine the corresponding posterior distributions
(which are also Dirichlet distributions, because the priors are
conjugate to the likelihood). Similarly, each B(u) matrix encodes
a set of multinomial probability distributions mapping from
current states to immediate future states.

P (st+1 = i | st = j, u,B) = B(u)ij (6)

P (B(u)•j | β(u)) = Dir(β(u)•j) (7)

With these priors in place, we now consider how the parameters
are learnt.

Learning and Free Energy
From a purely formal standpoint, learning should progressively
reduce average surprise or maximize the accumulated evidence
for a generative model. In the context of variational learning,
surprise is conveniently approximated by the variational free
energy which is minimized during learning and inference. The
free energy can be expressed as a function of observations
and the sufficient statistics (e.g., expectations) of an approximate
posterior distribution defined by the mean field assumption.

Let, x̃ = s̃, ũ, γ̃ ,A,B denote the hidden variables and
⌢
x=

⌢
s ,

⌢
π,

⌢
γ ,

⌢
α,

⌢

β the sufficient statistics of an approximate posterior

distribution Q (x̃ |
⌢
x ) we want to optimize with respect to free

energy, which can be written as (with a slight abuse of notation):

Ft = EQ[lnP(ot | x̃)]− DKL[Q(x̃ |
⌢
x ) || P(x̃ |m)] (8)

P (ot, x̃ |m) = P(ot | s̃,A)P (s̃, ũ | γ̃ ,B)

P(γ | α, β)P(A |α)P(B | β) (9)

P (γ̃ | α, β) = Ŵ(α, β) (10)

P (A |α) = Dir(α) (11)

P(B | β) = Dir(β) (12)

Q
(

x̃ |
⌢
x
)

= Q(st |
⌢
s t)Q(ũ |

⌢
π )

Q(γ̃ |
⌢
γ )Q(A |

⌢
α)Q(B |

⌢

β) (13)

Q
(

γ̃ |
⌢
γ

)

= Ŵ(α,
⌢

β= α

/ ⌢
γ ) (14)

Q
(

A |
⌢
α
)

= Dir(
⌢
α) (15)

Q

(

B |
⌢

β

)

= Dir(
⌢

β) (16)

The first equality (8) expresses free energy in terms of the
accuracy or expected log likelihood of the current observation
and a complexity term. This complexity term is the KL divergence
between the approximate posterior and prior distributions. The
second set of equalities (9–12) includes our Dirichlet priors over
the unknown parameters, while the third set of equalities (13–
16) specifies our mean field assumption and the form of its
marginal distributions (induced by our use of conjugate priors).
One can now express inference and learning as a minimization
of accumulated free energy, which can be nicely expressed in

terms of Action S(õ,
⌢
x ) or the path integral of free energy, so that

inference and learning conform to Hamilton’s principle of least
action:

S(õ,
⌢
x ) =

∑

t
Ft(ot,

⌢
x ) (17)

⌢
s
∗

t = argmin⌢
s t
S(õ,

⌢
x ) = argmin⌢

s t
Ft(ot,

⌢
x ) (18)

⌢
π
∗
= argmin⌢

π
S(õ,

⌢
x ) = argmin⌢

π
Ft(ot,

⌢
x ) (19)

⌢
γ
∗

= argmin⌢
γ
S(õ,

⌢
x ) = argmin⌢

γ
Ft(ot,

⌢
x ) (20)

⌢
α
∗
= argmin⌢

α
S(õ,

⌢
x ) (21)

⌢

β (u)∗ = argmin⌢
β (u)

S(õ,
⌢
x ) (22)

Note that inference Equations (18–20) only needs to minimize
free energy at the current time point, while learning Equations
(21, 22) accumulates information over time. With the generative
model and mean field assumption above, it is straightforward
to solve for the sufficient statistics that minimize free energy,
leading to the following variational updates (see Appendix and
Beal, 2003)

⌢
s t = σ

(⌢

A ·ot+
⌢

B (at−1)
⌢
s t−1 +

⌢
γ ·Q·

⌢
π

)

(23)

⌢
π = σ

(⌢
γ Q

⌢
s t

)

(24)

⌢
γ =

α

β−
⌢
π ·Q

⌢
s t

(25)

⌢

Aij = ψ(
⌢
αij)− ψ(

⌢
α
0

j ) (26)

⌢
αij = αij +

∑

t
oti

⌢
s tj (27)

⌢
α
0

j =
∑

i

⌢
αij (28)

⌢

B (u)ij = ψ(
⌢

β (u)ij)− ψ(
⌢

β (u)0j ) (29)

⌢

β (u)ij = β(u)ij +
∑

t
[u = at−1]·

⌢
s ti
⌢
s t−1j (30)

⌢

β
0

j =
∑

i

⌢

β ij (31)

Here, the Iverson brackets [·] returns one if the expression is
true and zero otherwise, and here it ensures the appropriate
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state-transition matrix is updated following a particular action.
Iterating these updates provides Bayesian estimates of the
unknown variables. This means that the sufficient statistics
change over two timescales: a fast timescale that updates posterior
beliefs between observations and a slow timescale that updates
posterior beliefs as new observations are sampled. We now
consider each update in turn:

The first Equation (23) updates expectations about hidden
states and corresponds to perceptual inference or state estimation.
This is essentially a Bayesian filter that combines predictions
based upon expectations about the previous state with the
likelihood of the current observation. The last term in the
first equality represents an optimism bias that biases perception
toward those hidden states that have the greatest value, those
expected under beliefs about the policy. This will play an
important role later when we simulate false inference by fixing
expected precision at higher levels.

The second update Equation (24) is just a softmax function
of the expected value of each policy under the inferred current
state. Here, the sensitivity parameter or expected precision is
an increasing function of expected value. This means that the
sensitivity or inverse temperature, that determines the precision
with which a policy selected, increases with the expected value
of those policies. The third update Equation (25) optimizes
the expected precision of beliefs over policies, such that if an
observation increases the expected value of the policies, then
expected precision increases and the agent is more confident
in selecting the next action. This may explain why dopamine
discharges have been interpreted in terms of changes in expected
value (e.g., reward prediction errors). The role of dopamine in
encoding precision is motivated easily by noting that precision
enters the belief updates in a multiplicative or modulatory
fashion.

The last two update rules Equations (26–31) for the
parameters differ markedly in form from the inference and bear
a marked resemblance to classical Hebbian plasticity (Abbott
and Nelson, 2000). Each comprises two terms: an associative
term that is a digamma function of the accumulated product
of expected (postsynaptic) outcomes and their (presynaptic)
causes and a decay term that reduces each connection as
the total input connectivity increases. The associative and
decay terms are strictly increasing but saturating (digamma)
functions of the concentration parameters. Note that the ensuing
updates do not have an explicit learning rate: the learning
rate is implicitly determined by the sum of the concentration
parameters (see Equations 1–5). This sum depends upon the
number of observations on which the agent’s beliefs are based.
Thus, reassuringly, the larger the number of observations, the
less they will be altered by new information. Intuitively, learning
about the observation matrix depends upon coincident firing
of presynaptic neurons encoding st and postsynaptic neurons
encoding ot . In a similar fashion, learning about the state
transition matrices depends upon firing in neurons encoding the
previous state st−1 that coincides with firing in neurons encoding
the current state st .

Neurobiologically, it seems plausible to distinguish between
rapidly changing neuronal activity that encodes states, and the

(slower) process of synaptic plasticity, which is likely to mediate
learning. From a formal perspective, an interesting feature of this
(Bayes-optimal) variational learning is that expected precision
acts vicariously through its modulatory effects on the expected
states. Mathematically, this is because the sufficient statistics of
the parameters and the precision are separated by a Markov
blanket (see Figure 1). This means the parameter updates
are not a function of expected precision. Neurobiologically,
one would interpret this conditional independence as an
effect of dopamine on learning that is mediated entirely
through its neuromodulatory effects on postsynaptic responses.
If we associate precision with dopamine, one would have
to conclude that dopamine does not play the role of a
teaching signal that enables associative plasticity—it simply
modulates postsynaptic responses that drive activity-dependent
learning. An unavoidable prediction here is that it should
be impossible to induce reinforcement learning or synaptic
plasticity by stimulating dopaminergic firing in the absence of
any postsynaptic depolarization. Conversely, in the absence of
dopamine both state estimation and learning should proceed,
with the only difference being a loss of optimism bias and
confident (precise) action selection. This contrasts with extant
(dopamine as a teaching signal or reward prediction error)
formulations, which predict that no learning should occur in the
absence of dopamine.

In principle, this scheme could be further augmented
to encode learning about other parameters, including the
hyperparameters encoding prior beliefs about precision which
might be used, for example, to explain the relationship between
average reward rate and vigor (Beierholm et al., 2013). For
simplicity, we do not deal with this here, but will treat it in future
work.

Simulations of Learning and Instrumental
Conditioning
We applied the generic scheme described above to model
behavior during a simple instrumental conditioning task in
which the agent is presented with one of two cues and can
make one of two responses. Each cue-response combination
led to a reward with some fixed probability. To examine the
transfer of precision from rewards to cues, we used a trace
conditioning paradigm and included states corresponding to
delay periods. This resulted in 14 hidden states, with two initial
waiting (pre-cue) states, two cue states, four pairs of delay period
states (one pair each of the four cue-response combinations),
and two outcome states (“win” and “no win”; Figure 2). The
three control states entail doing nothing or taking one of two
actions after cue presentation on the third epoch of each trial
(these might correspond, for example, to pressing one of two
levers).

The generative process governing transitions between states
is illustrated in Figure 2. Briefly, the agent always begins
in the first pre-cue state and moves deterministically to
the second. One of two cues (i.e., conditioned stimuli) are
then presented with equal probability, and the agent then
progresses through delay period states, corresponding to
each cue-response combination, before making a stochastic
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transition to one of the two outcome states. Because there
are separate delay periods for each cue-response combination,
the agent effectively remembers what has happened and what
it has done. However, it does not know the consequences
of its choices until the final (outcome) state. It is these
consequences the agent has to learn, solving the temporal
credit assignment problem through implicit memory (i.e., with
perceptual inference).

All transition probabilities were known to a high degree of
certainty by the agent (with large concentration parameter values
for deterministic transitions) apart from the final transition to
the outcome states (Figure 2). These were given weak initial
priors with concentration parameters of 1 on the transition to
the no-win outcome state, 0.4 on the transition to a win outcome
state, and negligible values for other transitions. Intuitively, this
corresponds to a weak prior that each cue-response combination
is unlikely to lead to reward. Learning corresponds to updating
these prior beliefs by accumulating evidence for the actual reward
contingencies.

The mapping between hidden states and observations
allowed for five possible observations, a single observation
generated deterministically in the initial and delay period states
(corresponding to nothing happening, indicated by blue boxes
in Figure 2), two observations corresponding to the two possible
cues (indicated by green boxes), and two outcome observations
(indicated by red boxes). Unless otherwise specified, we assume
that agents have strong and accurate prior beliefs about the
parameters of the observation matrix, enabling us to focus
on learning of the (choice dependent) transitions to the final
outcome.

To test the performance of our learning scheme we simulated
256 repetitions of 128 trials (each comprising six epochs or
state transitions), and tracked how well, on average, the agent
learnt the transition probabilities to the outcome states (and
thus the correct instrumental contingencies; Figure 4). We also
calculated the average free energy, which should progressively

decrease over the course of learning. To simulate dopamine
before and after learning, we simulated responses to four
fixed trial types. These corresponded to the agent observing
both possible cues and getting both possible outcomes, using
both the “naïve” (pre-learning) parameters, and those from a
randomly selected learning session (Figure 5). To make these
exactly comparable, we only consider trials when the agent
chose the rewarded option. To characterize the evolution of
dopaminergic responses, we simulated responses to a single trial
type (where the high reward cue was presented, the correct
action was selected, and reward was received), using the model
parameters for the first 64 trials, averaged across all sessions
(Figure 6A).

Dopamine responses themselves were simulated by de-
convolving the variational updates for expected precision by
an exponentially decaying kernel with a time constant of 16
iterations. In other words, we assume that dopamine increases
expected precision, which subsequently decays the time constant
of 16 updates. To illustrate the sort of empirical responses
one might see, we also simulated histograms by assuming a
Poisson discharge rate of four spikes per bin corresponds to an
expected precision of unity, with a background firing rate of four
spikes per bin. Histograms were averaged across 64 simulated
trials.

Simulating Dopamine Depletion
To model the effects of dopamine deletion on task performance

and learning we fixed precision to a low value (
⌢
γ = 0.1)

throughout all six epochs or updates and simulated 256
repetitions of 32 trials (Figure 6B). We compared the average
number of correct decisions (defined as selecting the action
objectively most likely to lead to reward on each trial) made
by the “dopamine depleted” agent, with that made by a normal
agent (one in which precision was updated normally as described
above). To simulate the effects of dopamine restoration after

FIGURE 4 | Learning performance. Left: the agent rapidly and accurately learns the unknown transition probabilities. (Dotted lines: actual values, continuous lines:

estimated values) Right: this is accompanied by a progressive reduction in the variational free energy, confirming the agent has improved its model of the task. (Data

are averaged across 256 repetitions of 128 simulated trials).
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FIGURE 5 | Learning induced changes in the dynamics of the dopamine signal. The panels on the left hand side of the figure (A–D) show simulated

dopaminergic dynamics at a population level, whilst those on the right hand side (E–H) show simulated activity in dopaminergic neurons assuming that an expected

precision of one is encoded by four spikes per bin with a background firing rate of four spikes per bin. (Firing rates are simulated using a Poisson process, averaged

over 64 simulated trials) Here we illustrate simulated dopamine responses for four trial types, those on which a cue predicting a high likelihood of reward is presented

and a reward is received (“expected reward,” A,E), or omitted (“unexpected omission,” D,H), and those on which a cue predicting a low likelihood of reward is

presented, and a reward is received (“unexpected reward,” B,F) or omitted (“expected omission,” C,G). (For details of the simulations, see main text) Before learning

(blue), no expectations have been established, and dopamine responses to reward-predicting stimuli are absent (time point three), but clear responses are shown to

rewarding outcomes (time point six, top two rows). (The small dip when reward is omitted (bottom two rows) reflects the agent’s initial belief that it will receive reward

with a small but non-zero probability at the end of each trial). After learning (red), by contrast, clear positive responses are seen to the high reward cue (top and bottom

rows) with a dip accompanying the presentation of the low-reward cue (middle rows). Learning also induces changes in the responses to outcomes, such that when

reward is strongly expected responses to rewarding outcomes are strongly attenuated (A,E), and those to reward omissions increased (D,H). This mirrors the “reward

prediction error” pattern of responding widely reported to occur in dopamine neurons during conditioning.

learning, we restored normal precision updates to the previously
dopamine-depleted agent and simulated 256 repetitions of a
further 16 trials.

Simulating Midbrain Stimulation
We simulated the effect of artificially stimulating midbrain
dopaminergic neurons at outcome presentation by fixing
expected precision at the final epoch of each trial. To demonstrate

the effect of artificially increased precision on inference we
simulated two trials, using agents with naïve (pre-learning)
beliefs as described above (Figure 7). In both cases the same cue
(cue one) was presented, the same action (response one) selected,
and a no win outcome received. In one simulation, precision
was estimated as normal, but in the other it was artificially

fixed to a high value at the last state transition (
⌢
γ 6= 16). To

further quantify how inference about hidden states varied with
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FIGURE 6 | Evolution of dopamine responses and effects of dopamine on behavior. (A) Transfer of simulated dopamine responses from outcome to cue

during learning. Responses to rewarding outcomes (epoch or update six) diminish over the course of learning, whilst those to the reward-predicting cue (epoch three)

increase in magnitude. Unlike in many temporal difference learning models, the transfer of responses is direct (i.e., not mediated by dopamine responses at

intervening time points). This constitutes a clear and testable prediction of our model, when compared with temporal difference learning accounts of phasic dopamine

responses. (B) The effects of simulated dopamine depletion on task performance. Fixing expected precision to a low value (0.1) appears to prevent learning, as

indexed by the proportion of correct responses selected by the agent (blue line, first 32 trials). However, learning does in fact occur, but is simply masked by the

effects of reduced precision on choice behavior. This is revealed after restoration of normal function (trial 33 onwards), at which point performance becomes

comparable to that of a non-lesioned agent. (Figure shows choice behavior averaged across 256 simulated sessions). (C) Parameter learning during dopamine

depletion. The agent is able to accurately learn unknown transition probabilities as during normal function (Figure 4), even though this is masked by the effects of

dopamine on action selection as shown in (B) (Dotted lines: actual values, continuous lines: estimated values).

expected precision, we then simulated trials in which precision
at the last epoch varied between 8 and 16 in 0.1 intervals
(Figure 7).

Having shown that artificially high precision is sufficient
to produce aberrant inference, we then explored the effects
of this perturbation on learning. To do this, we presented

the agent with a single cue, with contingencies such that

response two led to reward on fifty percent of occasions,
and response one never led to reward, but was reinforced

with midbrain stimulation (
⌢
γ 6= 16). This allowed us to ask

whether dopamine-mediated failures of inference are sufficient
to explain behavioral capture, even when the alternative behavior
is associated with greater reward. We simulated 256 repetitions
of a single 48 trial session, and compared choice behavior with
that of an agent that was allowed to infer precision normally
(Figure 8).

RESULTS

Instrumental Learning Performance
As expected, given its approximate optimality, the agent
quickly and accurately learns the experimental contingencies
(Figure 4). This learning is accompanied by a progressive
minimization of the free energy, indicating a progressive
improvement in (the evidence for) its model of the environment.
Taken together, this shows that our approximate Bayesian
inference scheme is sufficient to enable the agent to
learn and behave adaptively (Figure 3) in an uncertain
environment.

Phasic Dopamine and the Dynamics of
Expected Precision
In keeping with an hypothesis that dopamine encodes expected
precision (Friston et al., 2014; Schwartenbeck et al., 2015a),
the simulated dopamine dynamics from our model closely
resemble classical observations of phasic dopaminergic firing
during conditioning (Schultz et al., 1997; Schultz, 1998; Day
et al., 2007; D’Ardenne et al., 2008; Flagel et al., 2011; Cohen
et al., 2012). More specifically, prior to learning, simulated
dopamine responses show no effect at the time of cue or
conditioned stimulus (CS) presentation, but a strong modulation
at presentation of the outcome or unconditional stimulus (US;
Figure 5). After learning however, responses are observed to
reward-predicting cues, with responses to the outcome reflecting
the difference between expected and observed reward, thus
resembling an RPE (Schultz et al., 1997; Figure 5), even though
prediction errors are not used for reward learning per se(when
plotting simulated dopamine time courses here and elsewhere,
we remove the simulated responses from the first epoch at time
step one, as this shows a boundary artifact as a result of the
deconvolution used to transform the expected precision into a
simulated dopamine response).

We next examined the evolution of simulated dopaminergic
responses during learning. In real data, responses transfer
directly from outcomes to cues (Hollerman and Schultz, 1998;
Pan et al., 2005) rather than shifting progressively backwards
in time as predicted by classical TD models (Schultz et al.,
1997; although see discussion) Direct transfer is replicated in our
simulated data (Figure 6A), thus resembling dopamine dynamics
even at this fine-grained (epoch by epoch) scale.
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FIGURE 7 | The effect of simulated stimulation of the dopaminergic midbrain at outcome presentation. On both trials, the agent was presented with an

identical series of observations (A), corresponding to observing cue one and a no win outcome. In one case (left column) the agent was allowed to infer precision as

usual, leading to a small dip in precision at outcome time (B) and the correct inference that it had reached a no win outcome state (C). In the other trial (right panel),

midbrain stimulation was simulated by fixing expected precision at a high value at outcome time
(

γ6 = 16
)

(B). This leads, via the effect of precision on state estimation

(see update Equation 23 and Friston et al., 2013) to an incorrect inference that it has reached a win outcome state (C). (D) shows the effect on inference of stimulation

with values varying between 8 and 16. The posterior probability of being in a win outcome state (green) increases as stimulation strength increases, whilst the

posterior probability of being in a no win outcome state (blue) falls correspondingly.

Simulating Dopamine Depletion
Simulating dopamine depletion by fixing precision to an

extremely low value (
⌢
γ= 0.1) appears to impair learning,

assessed on the commonly used metric of proportion of correct
choices (Figure 6B). However, learning of task contingencies
does occur, but this is masked by the effect of low precision
on action selection, which becomes largely outcome-insensitive.
This is immediately revealed when normal dopamine function
(normal precision estimation) is restored (Figure 6B). This

effect of dopamine on performance, as opposed to learning, is
consistent with findings of a number of studies in both humans
(Frydman et al., 2011; Shiner et al., 2012; Smittenaar et al., 2012)
and other animals (Berridge and Robinson, 1998; Cannon and
Palmiter, 2003; Flagel et al., 2011; Berridge, 2012; Saunders and
Robinson, 2012). It is also consistent with the recent finding
that transient inhibition of dopaminergic neurons via direct
optogenetic stimulation of the lateral habenula reduced rats’
tendency to choose preferred options (Stopper et al., 2014).
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FIGURE 8 | The effect of simulated stimulation of the dopaminergic

midbrain on learning. The agent was presented with a single cue, with task

contingencies such that making response one (blue) never led to reward,

whilst response two (green) led to reward with probability 0.5. In the

stimulation condition (bold lines), selection of response one was always

followed by simulated stimulation at outcome time
(

γ6 = 16
)

. In the control

condition (dashed lines), no stimulation occurred. Stimulation was sufficient to

induce a reversal in preference, with response one selected more often, even

though it was never rewarded. This replicates the findings of recent

optogenetic stimulation studies, even though stimulation only affects inference

directly, rather than learning. (Choice behavior averaged over 256 repetitions of

a 48 trial session).

Simulating Midbrain Stimulation
Stimulation of the dopaminergic midbrain, simulated by fixing
expected precision at the final time step to 16, was sufficient to
induce incorrect (optimistic) inference about the final outcome
state (Figure 7). Specifically, despite being exposed to identical
observations, the agent inferred that the outcome was a “win,”
rather than a “no win” (Figure 7C). This reflects the effect of
estimated precision on state estimation (Equation 23). Intuitively,
aberrant inference about hidden states occurs because in order
to perform optimal inference, the agent has to explain why its
estimated precision is so high. The only way to do this, given
that precision has been artificially fixed, is to infer that it is
actually in a win state, despite sensory evidence to the contrary.
In other words, dopaminergic stimulation creates the illusion
(or delusion) of a reward that subsequently drives learning.
In keeping with this account, we note that administration
of dihydroxy-L-phenylalanine (L-DOPA) has been shown to
increase optimism (Sharot et al., 2012). This is a nice illustration
of the circular dependency among Bayesian estimators that is
a necessary feature of variational inference. In this instance, it
demonstrates that state estimation (perceptual inference) can be
biased by estimated precision, in the same way that expected
precision depends upon estimated states.

We next tested whether, as expected, the effects of stimulation
on inference also affected learning such that stimulation, even
in the absence of reward, is sufficient to capture behavioral
responses (Tsai et al., 2009; Rossi et al., 2013). Simulated choice

behavior unambiguously demonstrates this. Stimulation induces
a reversal in responding such that the agent actually preferred
to select an option that never led to reward, over one which
led to reward on half the trials (Figure 8). Thus, even though in
our model dopaminergic activity does not directly affect learning
itself (Schultz et al., 1997), stimulating dopamine neurons is
sufficient to drive learning, as observed empirically (Tsai et al.,
2009; Adamantidis et al., 2011; Witten et al., 2011; Rossi et al.,
2013; Steinberg et al., 2013), via effects of dopamine on inference.

DISCUSSION

We show that by extending a generic variational scheme
for active inference to include learning, it is possible to
derive simple and neurobiologically plausible learning rules.
These updates enable an agent to optimize its model of
response contingencies and behave effectively in the context
of a simple instrumental conditioning task. However, in
addition to being a model of behavior, our variational
scheme constitutes an hypothesis about brain function allowing
predictions about neuronal activity that can be compared with
empirical data. These predictions can span single unit studies
through to functional neuroimaging data (Schwartenbeck et al.,
2015a).

We used an implicit process theory to show that changes
in predicted dopamine responses, over the course of learning,
closely resemble those reported during conditioning (Schultz
et al., 1997; Schultz, 1998; Day et al., 2007; D’Ardenne et al.,
2008; Flagel et al., 2011; Cohen et al., 2012). Our model
also explains the apparently puzzling observation that while
dopamine does not seem to be necessary for reward learning
(Berridge and Robinson, 1998; Cannon and Palmiter, 2003;
Robinson et al., 2005; Robbins and Everitt, 2007; Flagel et al.,
2011; Berridge, 2012; Saunders and Robinson, 2012; Shiner et al.,
2012; Smittenaar et al., 2012), direct excitation of midbrain
dopaminergic cells can substitute for the reinforcing effects of
rewards (Tsai et al., 2009; Adamantidis et al., 2011; Witten et al.,
2011; Rossi et al., 2013; Steinberg et al., 2013). This establishes it
as a plausible account of the role of dopamine in reward learning
and action selection, thoughmuch development needs to be done
to explain a broader range of the multiplicity phenomena in
which dopamine is known to play a key role (Collins and Frank,
2014).

In our model, RPE-like dopaminergic responses emerge as
a result of learning (Figure 4), rather than being a causal
mechanism that drives learning. This provides an explanation for
the puzzling fact that while phasic dopamine responses resemble
an RPE signal, reward learning can proceed in the absence of
dopamine (Figure 6). It also explains why, in some situations
at least, dopaminergic manipulations have their greatest impact
on task performance rather than reward learning (Shiner et al.,
2012; Smittenaar et al., 2012; Eisenegger et al., 2014), as well as
for the fact that transient inhibition of dopamine neurons via
stimulation of the lateral habenula has been shown to reduce
the influence of subjective preferences on action (Stopper et al.,
2014). Indeed, given the striking effect of dopamine depletion
on performance in our simulated instrumental conditioning
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task (Figure 6), it is possible that studies that do not explicitly
separate the effects of dopamine on performance and learning
(Frank et al., 2004; Pessiglione et al., 2006; Moustafa et al.,
2008; Rutledge et al., 2009; Voon et al., 2010; Nagy et al., 2012;
Chowdhury et al., 2013) may in fact reflect the consequences
of changes in expected precision. Additionally, our model
can explain putative dopaminergic reward prediction error
responses in tasks that involve the deployment of “model-
based” schemes that do not depend upon temporal difference
learning (Daw et al., 2011; Schwartenbeck et al., 2015a), where
task contingencies are explicitly described (and hence must
be generated on a trial-by-trial basis) rather than acquired
as a product of extensive learning (Rutledge et al., 2010), or
when physiological states are manipulated between learning
and task performance (Berridge, 2012; Robinson and Berridge,
2013).

Our simulations offer an explanation for the fact that,
while not necessary for learning, dopaminergic responses seem
sufficient to support learning. This is attested by several recent
studies that have used direct optogenetic manipulation of
dopaminergic activity to demonstrate effects on conditioned
place preference (Tsai et al., 2009), and the acquisition and
extinction of reward contingencies (Adamantidis et al., 2011;
Witten et al., 2011; Rossi et al., 2013; Steinberg et al., 2013;
Stopper et al., 2014). Interestingly, in our model these effects
occur due to dopamine’s role in optimistically biasing inference
(Sharot et al., 2012), rather than reflecting a direct effect on
learning (i.e., dopamine stimulation effects learning vicariously
through aberrant inference or incentive salience, leading to
aberrant associative plasticity). [This does not though rule out
an additional effect of dopamine on learning, as predicted
by “three-factor” Hebbian learning rules (Reynolds et al.,
2001; Collins and Frank, 2014)] Our simulations do, however,
highlight the potential pitfalls when interpreting behavioral
findings, even those from sophisticated and precisely controlled
experiments and the importance of using explicit computational
models to understand cognition. It also demonstrates the far-
reaching consequences of the simple truism that disturbances in
inference lead inexorably to disturbances in learning, something
that is likely to be of key importance for understanding
psychiatric disorders such as psychosis (Fletcher and Frith, 2008;
Montague et al., 2012; Adams et al., 2013; Schwartenbeck et al.,
2015b).

Our model makes clear predictions about the evolution
of dopaminergic responses during learning. Specifically, it
predicts that rather than shifting progressively backwards in
time across intervening epochs, responses will transfer directly
from outcome to cue (Figure 6A), in keeping with what
is observed empirically (Hollerman and Schultz, 1998; Pan
et al., 2005). This contrasts with the predictions of classic
temporal difference learning accounts of dopamine function
(Schultz et al., 1997). It can however, be accommodated
within a TD framework by augmenting the basic TD model
with eligibility traces (Sutton and Barto, 1998; Pan et al.,
2005).

A possible approach to reconciling sufficiency-without-
necessity of dopamine for reward learning with the TD account

appeals to a distinction between a “model-based” system that
employs explicit models of the environment and a “model-free”
system that uses simple TD learning (Gläscher et al., 2009;
Daw et al., 2011; Dolan and Dayan, 2013; Dayan and Berridge,
2014). On this account, learning still occurs under dopamine
depletion as a result of the “model-based” system (Dayan and
Berridge, 2014). However, if dopamine is only relevant for a
model-free learner, it is difficult to explain why performance is
severely impaired in its absence, since an intact model-based
system should still be available to guide behavior. The “model-
free” vs. “model-based” account is also difficult to square with
data from tasks where the use of TD learning is implausible
(Rutledge et al., 2010; Schwartenbeck et al., 2015a), or where
outcome signals seem to reflect a mixture of “model-free” and
“model-based” prediction error signals (Daw et al., 2011). Instead
we contend that behavior on these and similar tasks can be
understood purely in terms of “model-based” processing implicit
in active inference, albeit with hierarchical models of varying
complexity (FitzGerald et al., 2014), and that there is little
need to suppose the existence of a “model-free” TD learner at
all. However, we acknowledge that positing separate “model-
based” and “model-free” systems has considerable explanatory
power, and that this is a widely influential view within the
decision neurosciences (Wunderlich et al., 2012; Lee et al.,
2014) and beyond (Gillan and Robbins, 2014; Huys et al.,
2015).

The hypothesis that dopamine encodes expected precision has
clear affinities with the incentive salience hypothesis of dopamine
function (Berridge, 2007) as well as more general ideas relating
it to behavioral “activation” (Robbins and Everitt, 2007). In
each case, dopamine plays a fundamentally modulatory role, and
mediates a sensitivity of behavior to potential reward (Stopper
et al., 2014). From this perspective, the main contribution of
this and related work (Friston et al., 2014; FitzGerald et al.,
2015; Schwartenbeck et al., 2015a) is to formulate key insights
from these theories within a formal framework derived under
the broader notion of active inference (Mumford, 1992; Dayan
et al., 1995; Fletcher and Frith, 2008; Friston, 2010; Clark,
2012).

Our approach to understanding dopaminergic function is
primarily “top-down,” in the sense that we seek to understand
it in terms of normative theories of brain function. This
coexists quite happily with alternative “bottom-up” approaches
based on what is known about striatal anatomy and physiology
(Frank, 2011; Humphries et al., 2012; Collins and Frank,
2014; Fiore et al., 2014). In future we hope to develop
this framework further to bring it more closely in to line
with the underlying neurobiology, and at the same time that
these ideas prove helpful for interpreting the findings of
more biologically grounded modeling approaches. Generally,
dopamine has been implicated in an enormous range of
behavioral phenomena, and it seems unlikely that any single
computational theory will be sufficient to explain them all,
particularly given recent findings suggesting greater diversity
between midbrain dopaminergic neurons than had previously
been believed (Roeper, 2013). Our aim here is to develop one
such theory, based on increasingly popular normative approaches
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to cognition (Tenenbaum et al., 2006; Friston et al., 2013;
Pouget et al., 2013; Schwartenbeck et al., 2013), rather than
to attribute a single, definitive, function to the dopaminergic
system.

In our relatively minimal model, the only free parameters
are those governing the gamma distributions over the expected
precision parameter, the Dirichlet distributions over the values
in the A and B matrices, and the values in the C matrix that
determines the agent’s preferences (the states it expects to be
in). Altering the parameters that govern expected precision
will have the consequence of increasing expected precision
when the ratio increases, and decreasing it when the ratio
decreases. Although we do not explore it here, these parameters
can also be learnt, and this provides an attractive way to
understand the link between dopamine, average reward and
response vigor (Beierholm et al., 2013), since learning will
result in larger values of expected precision (which might
plausibly translate into speed of responding), when preferred
outcomes are more common. Altering the relative sizes of
the concentration parameters of the Dirichlet priors over
the A and B matrices changes the agent’s beliefs about the
mapping from hidden states to observations, and transitions
between hidden states respectively. These parameters can
be thought of, effectively, as the number of outcomes and
transitions that have been previously encountered. Changing
these parameters nuances learning rates, where larger values,
which correspond to beliefs based on a greater number
of observations, produce slower learning (because the agent
requires more evidence to update beliefs based upon more
experience).

In this paper, we have largely effaced the difference
between Pavlovian and instrumental conditioning (Dickinson
and Balleine, 1994). In part, this reflects the fact that
many of the canonical findings we sought to replicate have
been reported in the context of instrumental conditioning
(Mirenowicz and Schultz, 1996; Schultz et al., 1997; Tsai
et al., 2009; Shiner et al., 2012). However, it is also the
case that Pavlovian learning tasks require action, at least in
the minimal form of consummatory behavior. [In fact overt
conditioned behavioral responses is typically a precondition
for recording meaningful data (Fiorillo et al., 2003)]. As such,
within the framework presented here, the distinction between
Pavlovian and instrumental conditioning paradigms can be
thought of as reflecting the number and quality of the policies
available for selection, rather than anything deeper. However, we
acknowledge that the cognitive processes mediating Pavlovian
and instrumental learning may be more distinct than this
(Dickinson and Balleine, 1994; Dickinson et al., 2000), for
example they might depend upon different types of generative
model (Dolan and Dayan, 2013; FitzGerald et al., 2014).
Under the precision hypothesis, dopaminergic activity is directly
linked to action selection rather than learning (Figure 6), this
raises the possibility that under appropriate circumstances—
those where there truly is no action to perform—dopaminergic
responses will cease to track reward, a possibility for which
there is some evidence (Guitart-Masip et al., 2011, 2012,
2014).

In formulating our scheme, we make a clear distinction
between inference about hidden states and learning about
model parameters. In one sense this is arbitrary, as can be
seen from the fact that we use exactly the same principles to
perform both. However, the fact that parameters are treated
as fixed, at least at the time scale of interest, allows evidence
to be accumulated across trials, which is crucial for adaptive
performance here. Neurobiologically, this is likely to correspond
to a distinction between states which are encoded by neuronal
firing, and parameters which are encoded by synaptic weights.
The consequences of allowing model parameters to vary slowly
have been considered in compelling ways elsewhere (Behrens
et al., 2007; Mathys et al., 2011; Diaconescu et al., 2014), and
it would be interesting to include this within our scheme (by
treating parameters as slowly fluctuating states). In general, it
seems likely that learning and inference occur at a hierarchy
of time scales (Kiebel et al., 2009), and any comprehensive
account of cognitive function will need to accommodate
this.

The learning rules we derive are simple, and could plausibly
be implemented by neuronal circuits (Abbott and Nelson, 2000).
This is important as our intention here is to provide a (necessarily
simplified) process theory that specifies how inference and
learning might be performed by embodied agents. We restrict
ourselves however to considering only online learning, and
ignore for the present the question of whether additional
retrospective offline learning also occurs. We intend to return to
this question in future work.

Although our modeling results speak to several well-
established findings, there are also a number of phenomena
that they fail to explain. One of these is dopamine’s key role in
modulating the amount of effort that an animal will expend in
order to attain a reward (Salamone et al., 2007; Kurniawan, 2011),
as well as its (very likely related) role in mediating the vigor
of responding (Beierholm et al., 2013). In addition, dopamine
seems to be closely linked to action (as opposed to inaction;
Guitart-Masip et al., 2014), an asymmetry is not explained by
our framework, since doing nothing is simply treated as an extra
type of action. To address these issues, future developments
of this computational framework are needed, which are likely
to involve bringing it more closely in line with anatomically-
motivated models that (for example) clearly separate action from
inhibition (Frank, 2011). Another key issue that remains to be
addressed is the finding that inhibition of dopaminergic neurons
can result in aversive conditioning (Tan et al., 2012; Danjo
et al., 2014), a phenomenon not presently accounted for by our
model.

In conclusion, we have described a theoretical framework for
simulating planning and decision-making using active inference
and learning. We use this to test an hypothesis that dopamine
encodes expected precision over control states by modeling
a simple instrumental conditioning paradigm. Strikingly, our
model was able to replicate not just observed neuronal dynamics,
but also the apparently paradoxical effects of dopamine depletion
and midbrain stimulation on learning and task performance.
Whilst our proposal has clear kinship with other accounts
of the role dopamine plays in learning and motivation [in
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particular the incentive salience hypothesis (Berridge, 2007)],
to our knowledge no other “top-down” theory based on a
hypothesized computational role played by dopamine currently
accounts for all of the phenomena reproduced here. As such, we
believe that this work represents a novel integrative approach
to value learning and the role of dopamine in motivated
behavior.
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