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Abstract: Pseudomonas aeruginosa is an opportunistic pathogen that predominates during the 

later stages of cystic fibrosis (CF) lung infections. Over many years of chronic lung colonization, 

P. aeruginosa undergoes extensive adaptation to the lung environment, evolving both toward a 

persistent, low virulence state and simultaneously diversifying to produce a number of pheno-

typically distinct morphs. These lung-adapted P. aeruginosa strains include the small colony 

variants (SCVs), small, autoaggregative isolates that show enhanced biofilm formation, strong 

attachment to surfaces, and increased production of exopolysaccharides. Their appearance in 

the sputum of CF patients correlates with increased resistance to antibiotics, poor lung func-

tion, and prolonged persistence of infection, increasing their relevance as a subject for clinical 

investigation. The evolution of SCVs in the CF lung is associated with overproduction of the 

ubiquitous bacterial signaling molecule cyclic-di-GMP, with increased cyclic-di-GMP levels 

shown to be responsible for the SCV phenotype in a number of different CF lung isolates. Here, 

we review the current state of research in clinical P. aeruginosa SCVs. We will discuss the 

phenotypic characteristics underpinning the SCV morphotype, the clinical implications of lung 

colonization with SCVs, and the molecular basis and clinical evolution of the SCV phenotype 

in the CF lung environment.

Keywords: small colony variants, cystic fibrosis, cyclic-di-GMP, Pseudomonas aeruginosa, 
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Introduction
Cystic fibrosis (CF) is a recessively inherited genetic disease in which the cystic fibro-

sis transmembrane conductance regulator (CFTR) gene is mutated, leading either to 

partial or complete loss-of-function. CFTR encodes a chloride ion channel, and the 

loss of ion transport across epithelial cell membranes leads to osmotic imbalance, and 

consequently to the buildup of sticky mucus in the lower respiratory tract.1 CF lungs 

are highly prone to microbial infection, with chronic infection beginning in infancy 

for the overwhelming majority of cases and continuing throughout the patient’s life. 

Pseudomonas aeruginosa is an opportunistic Gram-negative pathogen and the predomi-

nant infective species isolated from late-stage CF lung infections.2,3 Once established in 

the lungs of CF patients, P. aeruginosa infections are extremely difficult to completely 

eradicate, and the aggravation and progressive tissue degradation associated with 

repeated infectious relapses lead to morbidity and eventually death.3 P. aeruginosa 

lung infections typically progress clonally from infection with a single environmentally 

acquired genotype4,5 and, over the course of long-term chronic CF infections, undergo 

extensive genetic and phenotypic adaptation to the lung environment.6,7
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There are two main consequences of this adaptation: 

first, the progressive transition toward a persistent, low 

virulence state, and second, a related diversification into a 

number of different phenotypes.6,7 These include mucoid 

cells, which overproduce alginate and form distinc-

tive slimy colonies,8 and small colony variants (SCVs, 

Figure 1), which are typically slow-growing isolates that 

show strong attachment to surfaces, autoaggregation, 

enhanced exopolysaccharide production, and biof ilm 

formation.9,10 In recent years, several studies have estab-

lished a causal link between P. aeruginosa SCVs and 

persistence of infection in animal models,11–13 supporting 

the hypothesis that the SCV phenotype confers a fitness 

advantage under chronic infection conditions, and thus 

plays an important role in the pathogenesis of P. aeruginosa 

lung infections. P. aeruginosa SCVs also emerge in other 

situations that favor chronic infections, including in 

mechanically ventilated patients or in those suffering from 

chronic obstructive pulmonary disease.14,15 These studies 

suggest that persistent P. aeruginosa morphotypes such 

as SCV represent genetic adaptations to the hostile milieu 

in the patient, with characteristics including resistance to 

phagocytosis,12 antimicrobial resistance due to slow growth 

or increased persister cell populations,16,17 and reduced 

virulence18 potentially contributing to selection.

In this review, we will summarize the current state of 

research into clinical P. aeruginosa SCVs. We will discuss 

the initial discovery and characterization of SCVs in the spu-

tum of CF patients, the phenotypic characteristics associated 

with the SCV morphotype, and the clinical implications of 

lung colonization with SCVs. Finally, we will address the 

molecular basis of the SCV phenotype and possible evolu-

tionary routes to SCV generation, with an emphasis on SCV 

evolution in the lung environment.

Discovery and initial 
characterization of SCVs  
in the CF lung
Phenotypic variation between different P. aeruginosa isolates 

in CF sputum has been recognized for many years. While the 

alginate-overproducing mucoid phenotype8 has until recently 

garnered the most attention, it has long been recognized that 

SCVs (previously known as dwarf colonies) also arise in the 

chronically infected respiratory tract of CF patients.19 For 

example, Thomassen et al20 examined P. aeruginosa isolates 

from 286 CF patients over a 3-month period in 1976–1977 

and determined the frequency and distribution of different 

morphotypes. In this study, dwarf colonies were identified in 

the sputum of 14% of patients, although these colonies were 

always found in conjunction with other morphotypes.20 The 

first clinical study to specifically focus on the distribution 

and phenotypic characteristics of P. aeruginosa SCV iso-

lates from CF patients took place in Germany from 1996 to 

1998. Häussler et al17 tested the sputum of 86 CF patients for 

P. aeruginosa SCVs, identifying them in 33 patients. Over the 

course of this study, around 3.0% of the total P. aeruginosa 

isolates collected were classed as SCVs. These colonies were 

characterized as small (1–3 mm in diameter), slow growing, 

and more resistant to several different classes of antibiotics 

than subsequent planktonic revertants.17 Häussler et al17 went 

on to characterize some of their SCV isolates, reporting 

that these strains were hyperpiliated and autoaggregative. 

The SCV morphs tested showed increased twitching motil-

ity and a marked ability to form biofilms and to attach to 

human pneumocytes.10 Simultaneously with these clinical 

SCV studies, the molecular biology of SCV formation was 

being investigated by two independent groups. Drenkard 

and Ausubel21 showed that P. aeruginosa SCV formation 

could be induced under laboratory conditions by the addi-

tion of kanamycin and linked this phenotype to the putative 

cyclic-di-GMP (cdG) phosphodiesterase gene pvrR. At the 

same time, D’Argenio et al22 identified the WspR diguanylate 

cyclase (DGC) and showed that it was responsible for SCV 

formation in the laboratory strain PA01.

Phenotypic characteristics of the 
SCV morphotype
In agreement with the early clinical research, clinical and 

laboratory-derived SCVs generally display increased resis-

tance to a broad range of antibiotics.17,21,23 Exposure to subin-

hibitory antibiotic concentrations has been shown to induce 

attachment and SCV formation in vitro, possibly as part of 

Figure 1 The Pseudomonas aeruginosa SCv phenotype.
Notes: Photographs of P. aeruginosa strains grown on LB agar containing 0.004% 
Congo Red dye for 24 hours at 37°C. (A) wild-type P. aeruginosa PA01 forms flat, 
slightly wrinkled colonies. (B) The SCV strain ∆yfiR12 forms small, rugose colonies 
that adhere strongly to surfaces and bind tightly to Congo Red. Photographs 
courtesy of Sebastian Pfeilmeier.
Abbreviations: LB, Lysogenic broth; SCV, small colony variant.
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a defense response.21,24 SCVs are also usually nonmotile, 

with flagellar motility absent in most SCVs characterized to 

date.12,23,25 Hyperpiliation has been reported for some strains, 

with these isolates displaying increased twitching motility 

as a result,10 although the distribution of this phenotype is 

unknown. Probably the most prominent phenotype associ-

ated with SCV formation is the significantly enhanced pro-

duction of one or more exopolysaccharide molecules.9,12,25 

P. aeruginosa produces at least three exopolysaccharides. 

The most noticeable of these in clinical CF isolates is 

alginate, the overproduction of which produces the slimy, 

mucoid phenotype.8 The role of alginate in SCV formation 

is unclear, although SCV strains have been identified that 

overproduce this molecule.26 Also produced are the glucose-

rich exopolysaccharide Pel, and Psl, which contains glucose, 

mannose, and rhamnose.27 Both Pel and Psl overproduction 

have been explicitly linked to SCV formation, and deletion 

of both pel and psl operons reverts an SCV to a smooth 

phenotype.12,25 Many of the other phenotypes associated with 

SCV, including their enhanced biofilm formation and surface 

attachment,10 small size (stemming from autoaggregation),17 

resistance to phagocytosis,12 and infectious persistence,11–13 

have been linked to exopolysaccharide overproduction in 

these morphs.

A striking characteristic of P. aeruginosa in the CF 

lung is its extraordinary degree of phenotypic diversity. For 

example, based on a year-long study of sputum samples from 

ten CF patients infected with the same initial P. aeruginosa 

strain, Mowat et al28 examined the phenotypic charac-

teristics of 1,720 individual isolates. The P. aeruginosa 

populations in each individual sputum sample in this study 

showed extensive phenotypic diversity, with the majority 

of diversity occurring within sputum samples rather than 

between patients. In agreement with this, Workentine et al29 

examined a more extensive series of phenotypes for 169 

clonal isolates from a single chronically colonized patient. 

Once again, the researchers observed a very high degree 

of phenotypic variation. Interestingly, every isolate in this 

study presented a different phenotypic profile from the oth-

ers, with very little correlation seen between the majority of 

tested phenotypes.29

The implications of these findings for SCVs in the 

lung environment are that apart from the core phenotypic 

characteristics by which SCVs are identified in the clinic, 

a high degree of variation might be expected for every other 

phenotype. Examination of the phenotypes of clinical SCVs 

has largely confirmed this hypothesis. For example, Häussler 

et al17 reported reduced growth rates for their clinical SCV 

isolates, an observation that has since been repeated for other 

SCV genotypes growing in liquid media.23 However, work 

from other researchers has shown that this does not apply to 

all strains or under all growth conditions.30 Similarly, sidero-

phore production has been reported as being downregulated 

in some SCVs,30 but as being upregulated in others.12,23,31 

Cytotoxicity/virulence is another potentially plastic phe-

notype in SCVs. Long-term lung colonization is generally 

associated with a loss of cytotoxicity, and downregulation of 

the type III secretion system (T3SS).32 Reduced cytotoxicity 

is a recognized characteristic of rsmA- strains,13 which form 

SCVs under laboratory conditions.33 However, a transcrip-

tional analysis of the well-studied strain SCV20265 showed 

significant upregulation of T3SS genes compared to its clonal 

predecessor.31 This increased expression agreed with the 

results of an earlier proteomic analysis of the same strain34 

and corresponded to significantly increased cytotoxicity in 

a murine infection model.31 Given that SCVs generally arise 

after significant periods of lung colonization, many of the 

phenotypes associated with long-term, chronic lung infection 

(loss of virulence, reduced quorum sensing, hypermutability, 

etc18,23,35–37) might be expected to correlate with SCV. How-

ever, as the studies above indicate, many exceptions exist, 

and phenotypic variation between SCV morphotypes is likely 

to be extensive.28,29

The clinical implications of SCV 
lung infection
At least two independent reports have identified a strong 

relationship between the presence of SCVs in the CF lung 

and poor clinical outcomes. The 1999 Häussler et al17 study 

of SCVs in CF sputum examined a total of 86 patients with 

chronic P. aeruginosa lung infections. While only 3% of all 

colonies recovered during the study were classed as SCVs, 

those patients from whom SCVs were isolated (33 out of 86) 

displayed poorer lung function than those who did not dis-

play SCV colonization. The forced expiratory volume in the 

first second (FEV
1
) score for these patients was 56%, which 

was significantly lower than the FEV
1
 of SCV-negative 

patients (80%). More recently, Schneider et al38 looked for 

P. aeruginosa and Staphylococcus aureus SCVs in sputum 

samples from 98 CF patients. Over a 3-month period, 9.2% 

of patients in this study were colonized with P. aeruginosa 

SCVs.38 In agreement with the findings of Häussler et al,17 

patients having SCVs had poorer lung function, with lower 

blood oxygen levels and a significantly lower FEV
1
 score 

(39%) than the non-SCV patients (65.5%). The body mass 

of SCV-colonized patients was also significantly lower 
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(mean 14.0% underweight compared with 2.7% for non-

SCV patients).38

While it is difficult to confidently infer a causal relation-

ship between the SCV phenotype and poor clinical prognosis 

based on correlation studies alone, there is substantial evi-

dence supporting a role for SCVs in persistence in a clinical 

setting. Three independent research groups, using different 

animal infection models and genetically distinct SCV strains, 

have established causal relationships between the SCV phe-

notype and persistence of infection.11–13 Furthermore, many of 

the phenotypes associated with SCV have been directly linked 

to advantageous survival traits during chronic infection. For 

example, Malone et al12 showed that extracellular polysac-

charides (EPS) overproduction rendered P. aeruginosa SCVs 

highly resistant to macrophage phagocytosis. As mentioned 

previously, SCVs generally show enhanced antibiotic resis-

tance compared to wild-type P. aeruginosa.17,21,23 While 

a causal relationship again remains to be established, this 

antibiotic resistance may contribute to SCV survival in the 

CF lung during antibiotic chemotherapy.

Fully defining the relationship between SCVs and per-

sistence in the CF lung is likely to remain a challenge for 

the foreseeable future. While correlations between clinical 

SCV colonization and poor lung function are clear, and SCVs 

contribute to infectious persistence in laboratory and animal 

studies, it is currently unknown whether SCVs trigger poor 

clinical outcomes or just preferentially associate with deterio-

rating lungs. Short of invasive or postmortem investigations 

of CF lungs, an interesting recent advance that may provide 

an answer is the ex vivo porcine lung model developed by 

Harrison et al.39 This system has been successfully tested 

with P. aeruginosa quorum sensing mutants and promises 

to shed further light onto microbial colonization of the lung 

environment.

The molecular bases of the SCV 
phenotype: cyclic-di-GMP and the 
GacAS/RsmAZY pathway
Following early indications from two independent research 

labs,21,22 strong evidence has accumulated for a causal 

link between the SCV phenotype and the bacterial sec-

ond messenger cdG.12,25,40–42 cdG is a ubiquitous bacterial 

signaling molecule that controls a wide range of cellular 

processes involved in the transition between motile, viru-

lent, and sessile biofilm forming lifestyles.43,44 The cyclic 

dinucleotide is produced from two molecules of GTP 

(guanosine triphosphate) by DGCs and degraded to pGpG 

(5′-phosphoguanylyl-(3′-5′)-guanosineguanosine) by 

 phosphodiesterases;45 enzymes containing the conserved 

GGDEF and EAL/HD-GYP domains, respectively.46–49 In 

general, cdG production is associated with community 

behavior phenotypes such as EPS production and biofilm 

formation, while low cdG levels lead to enhanced motility, 

virulence, and a single-celled lifestyle43 (Figure 2). cdG sig-

nal transduction is a highly complex process, with many bac-

terial species containing dozens of different cdG-signaling 

proteins.43 P. aeruginosa is no exception, with 33 predicted 

GGDEF and 17 EAL domain-containing proteins.50,51 These 

cdG metabolic enzymes control the intracellular level of cdG 

and hence regulate the expression of various phenotypic 

outputs. In P. aeruginosa, this includes exopolysaccharide 

production,52–54 production and deployment of proteina-

ceous adhesins,55,56 siderophore production,12 rhamnolipid 

biosynthesis,57 and virulence and cytotoxicity systems,51,58–60 

as well as the assembly, function, and control of type IV 

pili61,62 and the bacterial flagellum.54,63–65

cdG affects cell behavior by controlling phenotypic out-

puts at every regulatory level, from gene expression through 

to allosteric modulation of phenotypic outputs.43 These effects 
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occur through binding to specific effector proteins, whose 

activity is altered upon interaction with cdG. Consistent 

with the high complexity of cdG signal transduction, bind-

ing is highly promiscuous and occurs with a wide range of 

different protein folds.66,67 For example, the PilZ domain is a 

dedicated cdG binding protein, with examples like Alg44 in 

P. aeruginosa, which is a regulator of alginate biosynthesis.52 

Furthermore, not all GGDEF, HD-GYP, and EAL domain 

proteins have cdG metabolic activity. A substantial minority 

have degenerate active sites and instead function by bind-

ing cdG, via protein–protein interactions or through other 

alternative mechanisms.66,67 For example, the P. aeruginosa 

EPS synthase component PelD binds to cdG, at a conserved 

site on its degenerate GGDEF domain, and induces a confor-

mational change in the Pel synthase machinery that leads to 

activation and EPS production.68 cdG also binds to a number 

of different transcriptional regulators. In P. aeruginosa, this 

includes the flagellar and EPS-gene master regulator FleQ, 

which controls pel and psl EPS operon transcription.54,69 The 

metabolism of cdG is under extensive spatial and temporal 

control in P. aeruginosa. Expression and translation of cdG 

genes is regulated by various cellular inputs, including sigma 

factors, cell cycle control, quorum sensing, and translational 

regulation.43,60,70 A further, significant level of control exists 

at the posttranslational level, with the majority of GGDEF, 

EAL, and HD-GYP domain proteins also containing diverse 

sensory inputs, including PAS, GAF, and response-regulator 

receiver domains.43

The role of cdG in P. aeruginosa SCV formation is now 

well-established. For example, a strong SCV phenotype can 

be triggered under laboratory conditions by overexpressing a 

DGC gene in trans,44 a phenotype that can be reversed by dis-

rupting the pel and psl EPS synthase operons (Figure 3).12 The 

intracellular level of cdG has been shown to be elevated in sev-

eral clinical and laboratory-derived SCVs.12,25,42 Furthermore, 

mutations in several P. aeruginosa cdG signaling pathways 

have been shown to induce SCV phenotypes in vitro. In each 

case, elevated intracellular levels of cdG have been linked to 

overproduction of either exopolysaccharides9,25,41 or fimbrial 

adhesins,40,71 and consequently to SCV formation.

As well as cdG signaling pathways, other genetic loci 

have been implicated in persistence of infection and/or SCV 

formation in P. aeruginosa. A prominent example is the 

GacAS/RsmAZY signaling system (Figure 4), an important 

regulator of the switch between chronic and acute infectious 

lifestyles in many Gram-negative bacterial species, including 

P. aeruginosa.70,72 RsmA is a small, translational regulator that 

specifically recognizes and binds to GGA sequences in the 5′ 

leader region of target mRNAs. RsmA reciprocally controls 

the translation of mRNAs associated with Type III/Type VI 

secretion and Psl exopolysaccharide synthesis,33,70 leading 

to the suppression of biofilm-associated phenotypes and 

promoting secondary metabolism, motility, and virulence. 

Figure 3 cdG and EPS define the SCV phenotype.
Notes: Photographs of Pseudomonas aeruginosa strains grown on LB agar for 24 hours 
at 37°C. (A) Overexpression of the DGC gene wspR induces the SCv phenotype 
in P. aeruginosa PA01. This phenotype is dependent on the presence of intact ePS 
operons. (B) Overexpression of wspR in a pel/psl- mutant still leads to alterations in 
colony morphology, but the distinctive small, rugose SCV phenotype is abolished. 
Photographs courtesy of Sebastian Pfeilmeier.
Abbreviations: cdG, cyclic-di-GMP; EPS, extracellular polysaccharides; SCV, small 
colony variant; LB, Lysogenic broth; DGC, diguanylate cyclase; WT, wild-type.
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EPS pathway. GacS activity is controlled in turn by the hybrid TCS proteins LadA 
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Deletion of the rsmA gene in P. aeruginosa PA01 induces an 

SCV phenotype as a consequence of increased psl mRNA 

translation,33 and has been shown to increase infectious per-

sistence in a murine lung model.13

In Pseudomonas spp. the activity of RsmA is con-

trolled by the GacAS two-component signal transduction 

system. GacS is a transmembrane histidine protein kinase 

and activates its cognate response regulator GacA by 

phosphotransfer. Phosphorylated GacA promotes transcrip-

tion of the antagonistic sRNAs, RsmY and RsmZ.73 RsmY/

RsmZ contain multiple GGA trinucleotides in the exposed 

stem-loops of their predicted secondary structures and 

inhibit RsmA activity by competing for RsmA binding, 

thus titrating the translational regulator away from its target 

mRNAs (Figure 4). The GacAS system is itself controlled 

by the two-component signal hybrid proteins LadS and RetS. 

RetS is an antagonist of GacS activity, and thus suppresses 

RsmZ/Y levels. Rather than operating via a conventional 

histidine protein kinase phosphotransfer mechanism, RetS 

forms heterodimers with GacS, and thus blocks GacS auto-

phosphorylation phosphotransfer to GacA.74 The LadS pro-

tein positively controls rsmZ/Y expression, and thus works 

to suppress RsmA activity. Although the mechanism of 

LadS function is currently uncharacterized, it may work by 

counteracting RetS activity (Figure 4).72 Signal transduction 

through the Gac/Rsm pathway is highly complex, and affects 

the production of dozens of different proteins.70 In addition 

to direct RsmA translational regulation, the Gac/Rsm system 

indirectly affects numerous additional cellular behaviors via 

the regulation of signaling pathways, including both cdG 

metabolism and quorum sensing.60,70 Similar to cdG, muta-

tions in quorum sensing genes are strongly associated with 

persistence during chronic CF lung infections.6,75

Evolution of SCVs in the CF lung
Having colonized the respiratory passage and lungs of a 

CF patient, in most cases, a P. aeruginosa infection persists 

throughout the patient’s lifetime. Patients are typically 

colonized by a single environmentally acquired genotype4,5 

(although some genotypes such as the Liverpool epidemic 

strain are infectious and can be transmitted from patient 

to patient76). P. aeruginosa CF lung infections generally 

alternate between periods of chronic, largely asymptom-

atic colonization and relapses into aggravated infection.1 

Over several years, the progressive tissue degradation that 

accompanies these repeated infectious relapses leads to lung 

failure and premature death.3 As stated above, P. aeruginosa 

strains undergo extensive adaptation to the lung  environment 

throughout the period of chronic lung infection,6,7 with 

multiple distinct phenotypes including SCVs arising in the 

lung population.7,10,77 Despite generally originating from a 

single clonal genotype, significant genetic variation exists 

between individual sputum isolates sampled at any one 

time,28,29 providing an explanation for the long-observed 

phenotypic heterogeneity in CF P. aeruginosa isolates.19,20

Perhaps unsurprisingly, the most commonly identified 

SCV-inducing mutations are loss-of-function mutations in 

repressor proteins that control the activity of DGCs (Table 1). 

A well-studied example is the Wsp pathway,41 which contains 

a methyl-accepting chemotaxis receptor (WspA) and a DGC 

response regulator (WspR). WspR overproduction/activation 

induces an SCV phenotype,22,41 displaying strong attachment 

and increased expression of the pel and psl exopolysaccharide 

operons. Under laboratory conditions, the principle route to 

SCV evolution is via loss-of-function mutations in the methyl-

esterase gene wspF.25,41 Without WspF, WspA and hence WspR 

are constitutively activated, leading to cdG synthesis and SCV 

Table 1 Mutational targets for Pseudomonas aeruginosa SCv 
formation

Gene Protein  
function

Notes Reference

yfiN DGC Constitutively active  
mutants isolated from  
the CF lung

Malone et al26

yfiR YfiN repressor  
protein

Putative loss-of-function  
mutants isolated from  
CF lung

Malone et al26

wspF Methylesterase Loss-of-function leads  
to activation of wspR  
DGC. Mutants identified  
in CF sputum isolates

Smith et al,6 
Blanka et al42

fleQ Transcriptional  
regulator of pel  
and psl ePS loci

Mutation leads to SCV  
phenotype in vitro  
Mutants identified in CF  
sputum isolates

Smith et al6

accBC Fatty acid  
biosynthesis  
operon

Upstream mutation  
stabilizes accBC mRNA,  
modifying plasma  
membrane and triggering  
WspR DGC activation

Blanka et al42

mutS Mismatch repair  
system

Mutations arise with  
high frequency in CF  
lungs. Associated with  
persistence, chronic  
lifestyles, and SCv  
formation

Mena et al,35 
Oliver et al,37 
Hogardt et al79

rsmA Translational  
regulator of  
chronic lifestyle  
switch

Mutation leads to SCV  
phenotype in vitro,  
possibly mutS associated?

Irie et al33

Abbreviations: SCV, small colony variant; DGC, diguanylate cyclase; CF, cystic 
fibrosis; EPS, extracellular polysaccharides.
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formation through EPS overproduction (Figure 5).41,78 There 

is evidence that wspF loss-of-function also represents a route 

to clinical SCV evolution. In 2006, Smith et al6 carried out 

a longitudinal study of lung-adapted P. aeruginosa isolates 

and identified several different backgrounds in which the 

wspF gene was mutated. This study also identified a number 

of mutations in the transcriptional regulator fleQ. Deletion 

of fleQ induces an autoaggregative phenotype in PA01, with 

many of the characteristics of SCV colonies.54 While the mor-

phologies of the lung isolates in the Smith et al6 study were 

not characterized in detail, these data nonetheless implicate 

both wspF and fleQ as potential mutagenic targets for SCV 

generation in the CF lung (Figure 5).

Blanka et al42 recently identified an interesting addi-

tional mechanism for SCV evolution in the CF lung isolate 

SCV20265. Comparison of the SCV20265 genome with 

those of several laboratory-derived revertants identified a 

causal mutation for the SCV20265 aggregative phenotype. 

This study showed that a point mutation in the 5′ untrans-

lated region of accBC, a gene cluster responsible for fatty 

acid biosynthesis, leads to mRNA stabilization and a con-

sequent increase in the proportion of short-chain fatty acids 

in the plasma membrane. In turn, this change in membrane 

composition triggered activation of the Wsp system and 

cdG overproduction via WspR.42 Intriguingly, the genome 

of SCV20265 was also shown to contain a second, additive 

mutation in the methylesterase gene wspF, shown in previ-

ous studies to induce an SCV phenotype.6,25 These findings 

suggest that both regulatory and genetic inputs combine to 

control cdG production, and hence SCV evolution, in the 

CF lung.42

The yfiBNR signaling operon12 represents a further, well-

characterized genetic target for clinically-arising SCVs. YfiN 

is a membrane-bound DGC whose activity is normally allos-

terically repressed by the soluble periplasmic repressor YfiR. 

Release of YfiR repression, either through a loss-of-function 

mutation in yfiR or an “escape” mutation in yfiN, leads to 

DGC activation, cdG overproduction, and SCV formation 

under laboratory conditions.12,26 As with wspF and fleQ, acti-

vating mutations arise in the yfi locus (in both yfiR and yfiN) 

during long-term CF lung infections, driving SCV formation 

in vivo (Figure 5).26 Interestingly, further examination of 

the CF isolates included in this study identified mutational 

“scars” in the yfi genes of two independent clinical CF lines. 
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These strains contained both activating and loss-of-function 

mutations in the yfiN DGC gene, supporting the idea that 

YfiN activity is under both positive and negative selection 

in vivo, with Yfi-SCVs acting as an environmental pool for 

the generation of new smooth morphotypes in the complex 

and heterogeneous fitness landscape of the CF lung.26

Another class of mutations associated with the clinical 

emergence of the SCV phenotype are those in mutS and 

other mismatch repair genes. These hypermutatable strains 

arise with high frequency in the course of chronic CF lung 

infection.37,79 Mena et al35 showed that a P. aeruginosa 

mismatch-repair mutation increased the long-term persis-

tence of oropharyngeal colonization in CF mice, and that 

SCV mutants readily emerged over time in this background. 

The phenomenon of SCV morphotypes arising in hypermu-

tatable P. aeruginosa backgrounds has been independently 

observed for another ∆mutS mutant strain,80 which was also 

shown to produce a large number of mutations in the lasR 

quorum sensing locus.36 The work of Mena et al35 strongly 

suggests that mismatch repair mutants are selected in chronic 

P. aeruginosa lungs due to their increased persistence. As 

a possible explanation for this, hypermutatable strains have 

been linked to the RsmA signaling network in Erwinia 

carotovora,81 placing RsmA downstream of mutS and sug-

gesting that the persistence of these strains may result (at least 

in part) from reduced levels of RsmA (Figure 5). Another 

possibility is simply that the increased rate of mutation in 

these strains facilitates the emergence of mutations in the 

Gac/Rsm or cdG signaling pathways. Genetic adaptation to 

the CF lung has been shown to be catalyzed by the initial 

acquisition of mismatch repair mutations, with subsequent 

mutations arising much more rapidly than in nonmutator 

lines.82 Mutants in the cdG signaling genes fleQ and wspF 

were identified in this study, although the isolate library 

used was the same as described in the earlier work of Smith 

et al,6 where the wspF and fleQ mutations were initially 

identified.

Large-scale DNA inversions have also been associated 

with the generation of morphological diversity, and hence 

potentially SCV generation, in the lung environment. In a 

study of CF lung isolates, Römling et al83 showed that 50% of 

tested P. aeruginosa genomes contained large chromosomal 

inversions. These inversions were exclusively detected in CF 

lung isolates, suggesting that they are selected during adapta-

tion to chronic lung infection.83 Chromosomal inversions have 

been linked to the mobile element IS6100 and are proposed 

to represent a source of phenotypic variation,84 similar to that 

emerging from the loss of mismatch repair described above.80 

Furthermore, reversible genomic inversion has been shown 

to induce an SCV phenotype in S. aureus.85

Recently, the advent of next-generation sequencing has 

enabled the molecular basis of SCV formation to be exam-

ined much more closely. The complete genome sequences 

of at least two clinically-evolved SCVs have been published, 

allowing candidate causal mutations for generation of the 

SCV phenotype to be investigated. For SCV20265,86 the 

mutational routes to SCV are known,42 while for the urethral 

catheter SCV MH27,87 the underlying genetics of the SCV 

phenotype has yet to be established. As sequencing technol-

ogy continues to improve and becomes ever more accessible, 

it is likely that the coming years will see a much more com-

plete examination of the mutational and regulatory routes to 

SCV generation in the CF lung environment.

Summary
P. aeruginosa SCVs are frequently isolated from the lungs 

of CF patients. The appearance of these distinctive, small, 

autoaggregative colonies strongly correlates with both dete-

riorating lung function and associated poor clinical prognosis. 

Whether this connection is causal or simply correlative is not 

yet clear. Nonetheless, the importance of the SCV phenotype 

in persistence of P. aeruginosa infection is beyond doubt, 

with SCVs conferring both increased antibiotic tolerance and 

resistance to immune phagocytosis. Hopefully, an increased 

awareness of the importance of SCVs in chronic CF infec-

tion, alongside recent improvements in both diagnostic and 

analytical tools, will allow us to make headway in the treat-

ment of these unusual morphotypes.
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