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We determine the endomorphism categories of cell 2-representations of fiat 2-categories

associated with strongly regular two-sided cells and classify, up to biequivalence,

J -simple fiat 2-categories which have only one two-sided cell J apart from the

identities.

1 Introduction and Description of the Results

Classically, Schur’s Lemma asserts that the endomorphism algebra of a simple mod-

ule (say for a finite dimensional algebra A over some algebraically closed field k) is

isomorphic to k. It might happen that the algebra A is obtained by decategorifying

some 2-category and that the simple module in question is the decategorification of

some 2-representation of A. It is then natural to ask whether the assertion of Schur’s

Lemma is the 1-shadow of some 2-analog. Put differently, this is a question about the

endomorphism category of a 2-representation of some 2-category.

In [11] we defined a class of 2-categories, which we call fiat 2-categories, forming

a natural 2-analog of finite dimensional cellular algebras. Examples of fiat 2-categories

appear (sometimes in disguise) in for example, [2–4, 7, 9, 18]. Fiat 2-categories have

certain 2-representations called cell 2-representations, which were also defined in

[11]. These 2-representations satisfy some natural generalizations of the concept of
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2 V. Mazorchuk and V. Miemietz

simplicity for representations of finite dimensional algebras. The main objective of this

article is to study the endomorphism categories of these cell 2-representations with the

ultimate goal to establish a 2-analog of Schur’s Lemma.

We start the article by extending the 2-setup from [11] to accommodate non-

strict 2-natural transformations between 2-representations of fiat 2-categories. This is

done in Section 2, which also contains all necessary preliminaries. The advantage of our

new setup is the fact that 2-natural transformations become closed under isomorphism

of functors and under taking inverses of equivalences (see Section 2.4).

Cell 2-representations of fiat 2-categories have particularly nice properties

for so-called strongly regular cells, see Section 2.7. In particular, the main result of

[14] asserts that in this cases cell 2-representations exhaust all simple transitive 2-

representations. This is the main case of our study in this article. Our main result is

that the endomorphism category of such a cell 2-representation is equivalent to k-mod,

see Theorem 16 in Section 5.

Along the way, we prove two further interesting results. First, we establish

2-fullness for cell 2-representations with respect to the class of 1-morphisms in the

two-sided cell, see Corollary 10 in Section 4.4. Second, we completely describe fiat 2-

categories which have only one two-sided cell J apart from the identities, in the case

when our 2-category is J -simple in the sense of [12], see Theorem 13 in Section 4.6. This

can be viewed as a 2-analog of Artin–Wedderburn theorem.

We present various examples in Section 6, including the fiat 2-category of Soergel

bimodules acting on the principal block of the BGG category O and the fiat 2-category

associated with the sl2-categorification of Chuang and Rouquier. Finally, in Section 7,

we introduce and investigate a natural setup for the study of graded fiat 2-categories.

Remark. The original version of the article appeared on arxiv in July 2012. The present

version is a substantial revision of the original one which takes into account that since

the publication of the original version several results and assumptions became obsolete

due to further developments presented in [13–15].

2 Preliminaries

We denote by N and N0 the sets of positive and non-negative integers, respectively.

2.1 Various 2-categories

In this article by a 2-category we mean a strict locally small 2-category (see [10] for

a concise introduction to 2-categories and bicategories). Let C be a 2-category. We
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Endomorphisms of Cell 2-Representations 3

will use i,j, . . . to denote objects in C ; 1-morphisms in C will be denoted by F,G, . . . ;

2-morphisms in C will be denoted by α,β, . . . . For i ∈ C we will denote by 1i the

corresponding identity 1-morphisms. For a 1-morphism F we will denote by idF the

corresponding identity 2-morphisms.

Denote by Cat the 2-category of all small categories. Let k be an algebraically

closed field. Denote by Ak the 2-category whose objects are small k-linear fully additive

categories; 1-morphisms are additive k-linear functors and 2-morphisms are natural

transformations. Denote by A
f
k
the full 2-subcategory of Ak whose objects are fully

additive categories A such that A has only finitely many isomorphism classes of inde-

composable objects and allmorphisms spaces inA are finite dimensional.We also denote

by Rk the full subcategory of Ak containing all objects which are equivalent to A-mod

for some finite dimensional associative k-algebra A.

2.2 Finitary and fiat 2-categories

A 2-category C is called finitary (over k), see [11], if the following conditions are

satisfied:

• C has finitely many objects;

• for any i,j ∈ C we have C(i,j) ∈ A
f
k
and horizontal composition is both

additive and k-linear;

• for any i ∈ C the 1-morphism 1i is indecomposable.

We will call C weakly fiat provided that it has a weak object preserving anti-

autoequivalence ∗ and for any 1-morphism F ∈ C(i,j) there exist 2-morphisms α :

F ◦ F∗ → 1j and β : 1i → F∗ ◦ F such that αF ◦1 F(β) = idF and F∗(α) ◦1 βF∗ = idF∗ . If ∗ is

involutive, then C is called fiat, see [11].

2.3 2-Representations

From now on C will denote a finitary 2-category. By a 2-representation of C we mean a

strict 2-functor from C to Ak (additive 2-representation), A
f
k
(finitary 2-representation),

or Rk (abelian 2-representation). In this article we define the 2-categories of 2-

representations of C extending the setup (from the one in [11, 12]) by considering

non-strict 2-natural transformations between two 2-representations M and N. Such a

2-natural transformation � consists of the following data: a map, which assigns to

every i ∈ C a functor �i : M(i) → N(i), and for any 1-morphism F ∈ C(i,j) a natural
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4 V. Mazorchuk and V. Miemietz

isomorphism ηF = η�F : �j ◦ M(F) → N(F) ◦ �i, where naturality means that for any

G ∈ C(i,j) and any α : F → G we have

ηG ◦1 (id�j ◦0 M(α)) = (N(α) ◦0 id�i) ◦1 ηF.

In other words, the left diagram on the following picture commutes up to ηF while the

right diagram commutes (compare with [6, Section 2.2]):

M(i)
M(F)

��

�i

��

M(j)

�j

��

��
ηF

N(i)
N(F)

�� N(j)

�j ◦ M(F)
ηF ��

id�j ◦0M(α)
��

N(F) ◦�i

N(α)◦0id�i
��

�j ◦ M(G)
ηG �� N(G) ◦�i

Moreover, the isomorphisms η should satisfy

ηF◦0G = (idN(F) ◦0 ηG) ◦1 (ηF ◦0 idM(G)) (1)

for all composable 1-morphisms F and G.

Given two 2-natural transformations� and� as above, amodification θ : � → �

is a map which assigns to each i ∈ C a natural transformation θi : �i → �i such that

for any F,G ∈ C(i,j) and any α : F → G we have

η�G ◦1 (θj ◦0 M(α)) = (N(α) ◦0 θi) ◦1 η
�
F . (2)

Proposition 1. Together with non-strict 2-natural transformations and modifications

as defined above, 2-representations of C form a 2-category. �

Our notation for these 2-categories is C-amod in the case of additive represen-

tations and C-afmod in the case of finitary representations. To define the 2-category

C-mod for abelian representations we additionally assume that all �i are right exact

(this assumption is missing in [11]).

Proof. To check that these are 2-categories, we have to verify that (strict) composition

of non-strict 2-natural transformations is a non-strict 2-natural transformation and
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Endomorphisms of Cell 2-Representations 5

that both horizontal and vertical compositions of modifications are modifications. The

first fact follows by defining

η�
′◦�

F :=
(
η�

′
F ◦0 id�i

)
◦1

(
id�′

j
◦0 η

�
F

)

and then checking (1) (which is a straightforward computation). Since the diagrams

� ′
j ◦�j ◦ M(F)

id
�′
j

◦0θj◦0idM(F)
��

id
�′
j

◦0η�F
��

� ′
j ◦�j ◦ M(F)

θ ′j◦0id�j ◦0idM(F)
��

id
�′
j

◦0η�F
��

�′
j ◦�j ◦ M(F)

id
�′
j

◦0η�F
��

� ′
j ◦ N(F) ◦�i

id
�′
j

◦0idN(F)◦0θi
��

η�
′

F ◦0id�i
��

� ′
j ◦ N(F) ◦�i

θ ′j◦0idN(F)◦0id�i ��

η�
′

F ◦0id�i
��

�′
j ◦ N(F) ◦�i

η�
′

F ◦0id�i
��

K(F) ◦� ′
i ◦�i

idK(F)◦0id�′
i

◦0θi
�� K(F) ◦� ′

i ◦�i

idK(F)◦0θ ′i◦0id�i �� K(F) ◦�′
i ◦�i

�j ◦ M(F)
θj◦0M(α)

��

η�F
��

�j ◦ M(G)
τj◦0idM(G)

��

η�G
��

	j ◦ M(G)

η	G
��

N(F) ◦�i

N(α)◦0θi �� N(G) ◦�i

idN(G)◦0τi
�� N(G) ◦	i

commute, the latter two facts also follow. �

2.4 Properties of 2-natural transformations

Let M and N be two 2-representations of C and � : M → N a 2-natural transformation.

Given, for every i ∈ C , a functor �i and an isomorphism ξi : �i → �i, define, for every

1-morphism F ∈ C(i,j)

η�F := (
idN(F) ◦0 ξ

−1
i

) ◦1 η
�
F ◦1

(
ξj ◦0 idM(F)

)
.

Then it is straightforward to check that this extends � to a 2-natural transformation.

Proposition 2. Let M and N be two 2-representations of C and � : M → N a 2-natural

transformation. Assume that for every i ∈ C the functor �i is an equivalence. Then

there exists an inverse 2-natural transformation. �

Proof. For any i ∈ C choose an inverse equivalence �i of �i. Let

ξi : IdM(i) → �i ◦�i and ζi : �i ◦�i → IdN(i)
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6 V. Mazorchuk and V. Miemietz

be some isomorphisms. Define

η�F := (
(id�j◦N(F) ◦0 ζi) ◦1 (id�j ◦0 η

�
F ◦0 id�i) ◦1 (ξj ◦0 idM(F)◦�i)

)−1
.

It is obvious that this produces a natural transformation, but we have to check that

η�F◦G = (
idN(F) ◦0 η

�
G

) ◦1

(
η�F ◦0 idM(G)

)
. (3)

This follows from commutativity of the diagram

M(F)M(G)�i

������������

������������

�k�kM(F)M(G)�i

�����
��

��
��

������������
M(F)�j�jM(G)�i

������������

����
��

��
��

�

�kN(F)�jM(G)�i

����
��

��
��

�
�k�kM(F)�j�jM(G)�i

������������

������������
M(F)�jN(G)�i�i

�����
��

��
��

		�
��

��
��

�kN(F)�j�j�jM(G)�i

�����
��

��
��

������������
�k�kM(F)�jN(G)�i�i

������������

����
��

��
��

�
M(F)�jN(G)



��
��

��
�

�kN(F)�jM(G)�i

����
��

��
��

�
�kN(F)�j�jN(G)�i�i

������������

������������
�k�kM(F)�jN(G)

�����
��

��
��

�kN(F)N(G)�i�i

������������
�kN(F)�j�jN(G)

������������

�kN(F)N(G)

where the maps are the obvious ones (each of the maps has exactly one component of the

form ξ , ζ , or η� and identities elsewhere). Commutativity of all squares is immediate.

Then reading along the right border gives (the inverse of) the right-hand side of (3).

Computing (the inverse of) the left-hand side of (3) directly, using the definition of η�

and property (1) of η�F◦G, gives the left border of the diagram, after noting that the 3rd and

4th morphism in this path compose to the identity on �kN(F)�jM(G)�i by adjunction.

Therefore (3) holds and this extends � to a 2-natural transformation. �
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Endomorphisms of Cell 2-Representations 7

In this scenario we will say that the 2-representations M and N are equivalent.

2.5 Abelianization and identities

Denote by · : C-afmod → C-mod the abelianization 2-functor defined as in [12,

Section 4.2]: for M ∈ C-afmod and i ∈ C , the category M(i) consists of all diagrams

of the form X
α−→ Y , where X ,Y ∈ M(i) and α is a morphism in M(i). Morphisms

in M(i) are commutative squares modulo factorization of the right downwards arrow

using a homotopy. The 2-action of C on M(i) is defined component-wise.

For any 2-representationM of C and any non-negative integer k, we denote by♠k

the 2-natural transformation from M to M given by assigning to each i ∈ C the functor

IdM(i) ⊕ IdM(i) ⊕ · · · ⊕ IdM(i)︸ ︷︷ ︸
k summands

and defining η
♠k
F as idF ⊕ · · · ⊕ idF (again with k summands).

2.6 Principal 2-representations and additive subrepresentations

For i ∈ C we denote by Pi the principal 2-representation C(i, −) ∈ C-afmod. For any

M ∈ C-amod we have the usual Yoneda Lemma (see [10, Section 2.1] and compare to [12,

Lemma 9]):

Lemma 3.

HomC -amod(Pi,M)
∼= M(i). (4)

�

Proof. Let � : Pi → M be a 2-natural transformation and set X := �i(1i). Denote

by � : Pi → M the unique strict 2-natural transformation sending 1i to X (see [12,

Lemma 9]). Then, for any 1-morphism F ∈ C(i,j), we have the natural isomorphism

(θj)F := (η�F )1i : �j(F) → M(F)�i(1i) = M(F)X = �j(F).

This gives us an (invertible) modification θ from � to � and the claim follows. �

Given M ∈ C-mod and X ∈ M(i) for some i ∈ C , define MX ∈ C-afmod by

restricting M to the full subcategories add(FX), where F runs through the set of all

1-morphisms in C(i,j), j ∈ C .
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8 V. Mazorchuk and V. Miemietz

2.7 The multisemigroup of C and cells

The set S[C ] of isomorphism classes of indecomposable 1-morphisms in C has the natu-

ral structure of amultisemigroup inducedbyhorizontal composition, see [12, Section 3.1]

(see also [8] for more details on multisemigroups). Let ≤L, ≤R, and ≤J denote the natural

left, right, and two-sided orders on S[C ], respectively. For example, F ≤L G means that

for some 1-morphism H the composition H◦F contains a direct summand isomorphic to

G. Equivalence classes with respect to ≤L are called left cells. Right- and two-sided cells

are defined analogously. Cells correspond exactly to Green’s equivalence classes for the

multisemigroup S[C ].
A two-sided cell J is called regular if different left (right) cells in J are not

comparable with respect to the left (right) order. A two-sided cell J is called strongly

regular if it is regular and, moreover, the intersection of any left and any right cell inside

J consists of exactly one element.

Given a left cell L, there exists an iL ∈ C such that every 1-morphism F ∈ L
belongs to C(iL,j) for some j ∈ C . Similarly, given a right cell R, there exists a jR ∈ C

such that every 1-morphism F ∈ R belongs to C(i,jR) for some i ∈ C .

2.8 Cell 2-representations

Let L be a left cell and i = iL. Consider Pi. For an indecomposable 1-morphism F

in some C(i,j) denote by LF the unique simple top of the indecomposable projective

module 0 → F in Pi(j). By [11, Proposition 17], there exists a unique GL ∈ L (called the

Duflo involution in L) such that the indecomposable projective module 0 → 1i has a

unique quotient N such that the simple socle of N is isomorphic to LGL and FN/LGL =
0 for any F ∈ L. Set Q := GL LGL . Then the additive 2-representation CL := (

Pi

)
Q
is

called the additive cell 2-representation of C associated to L. The abelianization CL of

CL is called the abelian cell 2-representation of C associated to L. For F ∈ L we set

PF := FLGL , which we also identify with the indecomposable projective object 0 → FLGL
in CL.

3 A Special Case of 2-Schur’s Lemma

In this section we prove a special case of Theorem 14 under one additional assumption

of surjectivity of the action of the center. It turns out that this assumption of surjectivity

allows us to use a short and elegant argument.
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Endomorphisms of Cell 2-Representations 9

3.1 The claim

The following is a special case of Theorem 14:

Theorem 4. Let C be a fiat 2-category, J a strongly regular two-sided cell of C and L
a left cell in J . Set i = iL and G = GL. Assume that the natural map

EndC (1i) −→ EndCL(PG)

ϕ �→ CL(ϕ)PG
(5)

is surjective. Then any endomorphism of CL is isomorphic to ♠k for some k (in the

category EndC -afmod(CL)). Similarly, any endomorphism of CL is isomorphic to ♠k for

some k (in the category EndC -mod(CL)). �

3.2 Annihilators of various objects in CL

For any 2-representation M of C and X ∈ M(j) for some j, let AnnC (X) denote the left

2-ideal of C consisting of all 2-morphisms α which annihilate X . The key observation to

prove Theorem 4 is the following:

Lemma 5. Under the assumption of Theorem 4, if X ∈ CL(i) is such that AnnC (X) ⊃
AnnC (LG), then X ∈ add(LG). �

Proof. Let F ∈ L be different from G. Then F∗ LF 
= 0 by [11, Lemma 15]. At the same

time, from the fact that J is strongly simple it follows that F∗ 
∈ L. Therefore F∗ LG = 0

by [11, Lemma 15]. Hence idF∗ ∈ AnnC (LG) and at the same time idF∗ 
∈ AnnC (LF).

Since F∗ is exact, the previous paragraph implies that for any X satisfying

AnnC (X) ⊃ AnnC (LG), every simple subquotient of X is isomorphic to LG. Assume now

that X is indecomposable such that there is a short exact sequence

0 → LG → X → LG → 0.

Then there is a short exact sequence K ↪→ PG � X and an endomorphism of PG

which induces a non-trivial nilpotent endomorphism of X . From (5), it follows that the

natural map

EndC (1i) −→ EndCL(X)

ϕ �→ CL(ϕ)X
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10 V. Mazorchuk and V. Miemietz

is surjective. Let α ∈ EndC (1i) be a 2-morphism which produces a non-trivial nilpotent

endomorphismofX . Then α 
∈ AnnC (X)while α2 ∈ AnnC (X). At the same time, EndC (1i)

is a local finite dimensional k-algebra (see Section 2.2), and hence α is either nilpotent or

invertible. But α cannot be invertible as α2 annihilates X . Therefore, α is nilpotent. This

implies that α ∈ AnnC (LG) as any nonzero endomorphism of LG is invertible by Schur’s

lemma.

Finally, if Y is an indecomposable module, every simple subquotient of which is

isomorphic to LG, then Y has a subquotient X as in the previous paragraph. Therefore

AnnC (LG) 
⊂ AnnC (Y). The claim of the lemma follows. �

3.3 Proof of Theorem 4

Let � ∈ EndC -mod(CL). By Lemma 5, we have �i(LG) ∼= L⊕k
G for some non-negative integer

k. Now for any F ∈ L we have an isomorphism

�j(PF) = �j(FLG) ∼= FL⊕k
G

∼= P⊕k
F ,

natural in F. As �j is right exact, every indecomposable projective is of the form PF, and

2-morphisms in C surject on to homomorphisms between indecomposable projectives

(see [11, Section 4.5]), we have that�j is isomorphic to Id⊕k
CL(j). Clearly, k does not depend

on j. Now we repeat the argument from the proof of Lemma 3. We have the natural

isomorphisms

(θj)FLG := (η�F )LG : �j ◦ CL(F)LG → CL(F) ◦ (♠k)i LG = CL(F)L
⊕k
G ,

which give us an invertible modification θ from � to ♠k. This proves the abelian part of

Theorem 4.

To prove the additive part we just note that any� ∈ EndC -mod(CL) abelianizes to

� ∈ EndC -mod(CL). Now the additive claim of Theorem 4 follows from the abelian claim

by restricting to projective modules. �

4 Description of J -Simple Fiat 2-Categories

4.1 Definition of 2-full 2-representations

Let C be a finitary category and M a 2-representation of C . We will say that M is 2-full

provided that for any 1-morphisms F,G ∈ C the representation map

HomC (F,G) → HomX(M(F),M(G)), (6)
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Endomorphisms of Cell 2-Representations 11

where X ∈ {Ak,A
f
k
,Rk} is the target 2-category of M, is surjective. In other words, 2-

morphisms in C surject on to the space of natural transformations between functors.

If J is a 2-sided cell of C , we will say that M is J -2-full provided that for any

1-morphisms F,G ∈ J the representation map (6) is surjective.

4.2 The 2-category associated with J

Let now C be a fiat 2-category and J a two-sided cell in C . Let L be a left cell of J ,

G := GL and i := iL. Let J be the unique maximal 2-ideal of C which does not contain

idF for any F ∈ J (see [12, Theorem 15]). Then the quotient 2-category C/J is J -simple

(see [12, Section 6.2]). Denote by C (J ) the 2-full 2-subcategory of C/J generated by 1iL
and all F ∈ J (and closed with respect to isomorphism of 1-morphisms). We will call

C (J ) the J -simple 2-category associated to J .

The cell 2-representationCL ofC factors overC/J by [12, Theorem19] and hence

restricts to a 2-representation of C (J ). Assume now that J is strongly regular. Then,

by [11, Proposition 32], J remains a strongly regular two-sided cell in C (J ). Moreover,

using [12, Section 6.5], the restriction of CL to C (J ) is equivalent to the corresponding

cell 2-representation of C (J ).

For the remainder of this section we fix a strongly regular cell J
and assume that C = C (J ).

4.3 Detecting 2-fullness

We consider the cell 2-representationM := CL. We start our analysis with the following

observation:

Proposition 6. For F ∈ J and j ∈ C consider the representation map

HomC (F,1j) → HomRk
(M(F),M(1j)). (7)

If this map is surjective for F = G and j = i, then it is surjective for any F and j. �

Both sides of (7) are empty unless F ∈ C(j,j). As usual, to simplify notation we

will use the module notation and write FX instead of M(F)(X).

Proof. Let H,K ∈ L and assume that H,K ∈ C(i,j). By strong regularity of J we have

HK∗ = aF for some F ∈ J and a ∈ N, moreover, if we vary H and K, we can obtain any
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12 V. Mazorchuk and V. Miemietz

F ∈ J in this way. To see that HK∗ 
= 0, one evaluates HK∗ on LK obtaining K∗LK = PG (by

[11, Corollary 38(a)]), and HPG 
= 0 since HLG = PH 
= 0.

Similarly, we have K∗H = bG for some b ∈ N since K∗H is in the same left cell as

H (which is L) and the same right cell as K∗ (which is L∗), and L ∩ L∗ = {G} since J is

strongly regular. Using the involution ∗ we have

HomC (H,K) ∼= HomC (K
∗, H∗).

By adjunction, we have

HomC (H,K) ∼= bHomC (G,1i), HomC (K
∗, H∗) ∼= aHomC (F,1j). (8)

Evaluating HomC (H,K) at LG (which is surjective by [11, Section 4.5]) and using

adjunction, we get

HomM(j)(H LG, K LG) ∼= bHomM(i)(G LG,LG).

As G LG
∼= PG, the space HomM(i)(G LG,LG) is one-dimensional, and thus

b = dimHomM(j)(H LG, K LG) (9)

On the other hand, evaluating HomC (K
∗, H∗) at a multiplicity-free direct sum L

of all simple modules in M(j) and using adjunction, we have

HomM(i)(K
∗ L, H∗ L) ∼= aHomM(j)(FL,L). (10)

By [11, Lemma12], K∗ LQ 
= 0 for a direct summand LQ of L, labeled byQ ∈ L, implies that K

is in the same right cell as Q. Strong regularity implies Q = K and by [11, Corollary 38(a)],

we have K∗ L ∼= PG. Similarly H∗ L ∼= PG and the left-hand side of (10) is isomorphic to

EndM(i)(PG).

As F is a direct summand of HK∗, again LK is the only simple module which is not

annihilated by F. By [15, Theorem 31], the module FLK is an indecomposable projective

in M(j), namely PH. This means that dimHomM(j)(FL,L) = 1 and hence

a = dimEndM(i)(PG). (11)

To proceed we need the following claim:
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Endomorphisms of Cell 2-Representations 13

Lemma 7. Let A be a finite dimensional k-algebra and e, f ∈ A primitive idempotents.

Assume that F is an exact endofunctor of A-mod such that FLf ∼= Ae and FLg = 0 for

any simple Lg 
∼= Lf . Then F is isomorphic to the functor F′ given by tensoring with the

bimodule Ae ⊗k fA and, moreover,

HomRk
(F, IdA-mod) ∼= HomA(Ae,Af ). �

Proof. Let L be a multiplicity-free sum of all simple A-modules. As FLf has simple top

Le, it follows that F is a quotient of F′, which gives us a surjective natural transformation

α : F′ → F. Further, FL ∼= F′ L, meaning that α is an isomorphism when evaluated

on simple modules. Using induction on the length of a module and the 3-Lemma we

obtain that α is an isomorphism, which proves the 1st claim. The 2nd claim follows by

adjunction. �

From Lemma 7 and surjectivity of (7) for G, we get

dimHomC (G,1i) = dimEndM(i)(PG).

Using (8), (9), and Lemma 7, we have

dimHomC (H,K) = dimHomM(j)(H LG, K LG) · dimEndM(i)(PG)

= dimHomM(j)(PH,PK) · dimEndM(i)(PG).

On the other hand, using (8) and (11) we have

dimHomC (K
∗, H∗) = dimHomC (F,1j) · dimEndM(i)(PG).

AsC isJ -simple, dimHomC (F,1j) ≤ dimHomRk
(M(F),M(1j)) and the latter by Lemma7

is equal to dimHomM(j)(PH,PK). Dividing through by dimEndM(i)(PG) yields

dimHomM(j)(PH,PK) = dimHomC (F,1j)

≤ dimHomRk
(M(F),M(1j))

= dimHomM(j)(PH,PK)

and hence

dimHomC (F,1j) = dimHomRk
(M(F),M(1j)).
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14 V. Mazorchuk and V. Miemietz

Injectivity of the representationmap, which follows fromJ -simplicity ofC , now implies

surjectivity and hence the statement of the proposition. �

Proposition 8. Let H,K ∈ C(j,k) ∩ J . If the representation map (7) is surjective for

F = G and i = j, then the representation map

HomC (H,K) → HomRk
(M(H),M(K))

is surjective. �

Proof. As J is strongly regular, we have K∗H = Q⊕m for some m ∈ N0, where Q is in

the intersection of the left cell of H and the right cell of K∗. We have the commutative

diagram

HomC (H,K)

��

∼ �� HomC (K
∗H,1j)

��

∼ �� HomC (Q,1j)
⊕m

��
HomRk

(M(H),M(K))
∼ �� HomRk

(M(K∗H), IdM(j))
∼ �� HomRk

(M(Q), IdM(j))
⊕m

where the vertical arrows are the representation maps, the left horizontal arrows are

isomorphisms given by adjunction, and the right horizontal arrows are isomorphisms

given by additivity. Then the rightmost vertical arrow is an isomorphism by Proposi-

tion 6 and J -simplicity of C . This implies that all vertical arrows are isomorphisms and

the claim follows. �

4.4 Cell 2-representations are J -2-full

Theorem 9. The cell 2-representation M := CL is J -2-full. �

Proof. Thanks to Proposition 8, we have only to show that the representation map (7)

is surjective for F = G and i = j. In order to show this it suffices, by Lemma 7 and

J -simplicity of C , to show that

dimHomC (G,1i) = dimEndM(i)(PG).
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Endomorphisms of Cell 2-Representations 15

By Lemma 7 and J -simplicity of C , we have

dimHomC (G,1i) ≤ dimEndM(i)(PG).

Recall from [11, Proposition 17] that there is a unique submodule K of the inde-

composable projective module 0 → 1i in Pi(i) which has simple top LG and such

that the quotient of the projective by K is annihilated by G. We denote by β some 2-

morphism from G to 1i which gives rise to a surjection from 0 → G to K in Pi(i). Then

the EndC (G)-module HomC (G,1i) has simple top and β is a representative for this

simple top.

Let A be a basic finite dimensional associative k-algebra such that M(i) ∼=
A-mod. Let 1 = ∑n

i=1 ei be a decomposition of 1 ∈ A into a sum of pairwise orthogonal

primitive idempotents. We assume that e = e1 is a primitive idempotent corresponding

to LG. From Lemma 7, we have that the functor M(G) is isomorphic to tensoring with

Ae ⊗k eA. Clearly, M(1i) is isomorphic to tensoring with A.

Since J is strongly regular, Duflo involutions in J ∩ C(i,i) are in bijection with

{e1, e2, . . . , en}. Let Gi be the Duflo involution corresponding to ei. Similar to the existence

of β, there is a βi for each i, which we can put into the 2-morphism

γ := (β1,β2, . . . ,βn) :
⊕
i

Gi → 1i.

The cokernel Coker(γ ), as an object of Pi, is annihilated by all 1-morphisms in J . This

implies that M(Coker(γ )) annihilates LF for every F ∈ L and hence M(Coker(γ )) = 0 by

right exactness ofM(Coker(γ )). From this we derive thatM(γ ) is surjective and hence we

can choose β and the above identifications of functors with bimodules such that M(β)

is the multiplication map Ae ⊗k eA → A.

In order to show that dimHomC (G,1i) ≥ dimEndM(i)(PG), we show that no ϕ ∈
EndC (G) that induces a nonzero endomorphism of PG when evaluated at LG is sent to

zero under composition with β.

In order to see this, let ϕ ∈ EndC (G) be such that M(ϕ) ∈ eAe ⊗ eAe is not

killed under the map eAe ⊗ eAe � eAe ⊗ eAe/Rad(eAe) ∼= eAe. In other words, writing

M(ϕ) = ∑
j(ψj ⊗ (cje + rj)) for some cj ∈ k, rj ∈ Rad(eAe), and where ψj runs over a

basis of eAe, chosen in accordance with radical powers, we have that ψ := ∑
j cjψj

is nonzero in eAe. Then M(β ◦ ϕ) = ψ + (
∑

j cjψjrj) ∈ eAe. As ψ ∈ Radk
(eAe) implies

ψj ∈ Radk
(eAe) for all ψj such that cj 
= 0, the summand

∑
j cjψjrj is in Radk+1

(eAe)

and hence M(β ◦ ϕ) ∈ HomRk
(M(G),M(1i)) is nonzero. Therefore β ◦ ϕ ∈ HomC (G,1i) is

nonzero for any ϕ ∈ EndC (G) that is not killed by evaluation at LG. By surjectivity of
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16 V. Mazorchuk and V. Miemietz

the map from EndC (G) on to EndM(i)(PG) given by evaluation at LG (see [11, Section 4.5]),

this implies

dimHomC (G,1i) ≥ dimEndM(i)(PG)

and completes the proof of the proposition. �

Corollary 10. Assume that C is any fiat 2-category and J is a strongly regular 2-sided

cell of C . Then for any left cell L in J the cell 2-representation CL is J -2-full. �

Proof. This follows directly from Theorem 9 and [11, Corollary 33]. �

4.5 Construction of J -simple 2-categories C (J )

Letn ∈ N andA := (A1,A2, . . . ,An) be a collection of pairwise non-isomorphic, basic, con-

nected, weakly symmetric finite dimensional associative k-algebras. For i ∈ {1, 2, . . . ,n}
choose some small category Ci equivalent to Ai-mod, and let Zi denote the center of Ai.

Set C = (C1, C2, . . . , Cn). Denote by CC the 2-full fiat 2-subcategory of Rk with objects Ci,
which is closed under isomorphisms of 1-morphisms and generated by functors that are

isomorphic to tensoring with projective Ai–Aj bimodules.

We identify Zi with EndCC (1Ci) and denote by Z′
i the subalgebra of Zi generated

by id1Ci
and all elements which factor through 1-morphisms given by tensoring with

projective Ai–Ai bimodules.

Remark 11. In general, Z′
i 
= Zi. For example, let n = 1 and A = A1 = k[x]/(x3). Then

Z = Z1 = Awhile Z′
1 is the linear span of 1 and x2 in Z. Indeed, we have only one projective

bimodule A⊗kA, which has Loewy length 5 and unique Loewy filtration. As A has Loewy

length 3, any nonzero composition A → A ⊗k A → A must map the top of A to the

socle of A. It is easy to check that the composition of the unique (up to scalar) injection

A ↪→ A⊗k A and the unique (up to scalar) surjection A⊗k A � A is nonzero. �

Choose subalgebrasXi in Zi containing Z′
i and letX = (X1,X2, . . . ,Xn). Consider the

additive 2-subcategory CC,X of CC defined as follows: CC,X has the same objects and the

same 1-morphisms asCC; all 2-morphism spaces between indecomposable 1-morphisms

in CC,X are the same as for CC except for EndCC,X
(1Ci) := Xi.

Lemma 12. The 2-category CC,X is well defined and fiat. �
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Endomorphisms of Cell 2-Representations 17

Proof. To prove that CC,X is well defined we have to check that it is closed under both

horizontal and vertical composition of 2-morphisms. That it is closed under vertical

composition follows directly from the fact that Xi is a subalgebra. To check that it is

closed under horizontal composition, we first observe that if 1Ci appears (up to isomor-

phism) as a direct summand of F ◦ G for some indecomposable 1-morphisms F and G,

then both F and F are isomorphic to 1Ci . For x,y ∈ Xi, we have

A
∼−→ A⊗A A

x⊗y−→ A⊗A A
∼−→ A

1 �→ 1 ⊗ 1 �→ x ⊗ y �→ xy

from which the claim follows, again using that Xi is a subalgebra.

To prove that CC,X is fiat we have to check that it contains all adjunction mor-

phisms. The adjunction morphism from 1Ci to 1Ci is id1Ci
and thus contained in CC,X .

All other adjunction morphisms are between 1Ci and direct sums of indecomposable

1-morphisms none of which is isomorphic to 1Ci and therefore contained in CC,X by

definition. �

4.6 Description of J -simple 2-categories C (J )

Now we are ready to prove the main result of this section, which gives a description, up

to biequivalence, of fiat 2-categories that are “simple” in some sense.

Theorem 13. Let C = C (J ) be a skeletal fiat J -simple 2-category and assume that J is

strongly regular. Then C is biequivalent to CC,X for appropriate C and X . �

Proof. Let L be a left cell in J andM := CL be the corresponding cell 2-representation.

Set Ci := M(i) and let Ai be a basic algebra such that Ai-mod is equivalent to M(i). Let

Zi be the center of Ai which we identify with EndRk
(1M(i)). Set Xi := M(EndC (1i)) ⊂ Zi.

Then the representation map M is a 2-functor from C to CC,X , which is a biequivalence

by Theorem 9, J -simplicity of C and construction of X . �

5 2-Schur’s Lemma

5.1 The 1st layer of 2-Schur’s lemma

Here we prove the following generalization of Theorem 4.

Theorem 14. Let C be a fiat 2-category and J a strongly regular two-sided cell of C .

Let L be a left cell of J . Then any endomorphism of CL is isomorphic to ♠k for some k

 at U
niversity of E

ast A
nglia on A

pril 19, 2016
http://im

rn.oxfordjournals.org/
D

ow
nloaded from

 

http://imrn.oxfordjournals.org/


18 V. Mazorchuk and V. Miemietz

(in the category EndC -afmod(CL)). Similarly, any endomorphism of CL is isomorphic to ♠k

for some k (in the category EndC -mod(CL)). �

Proof. We follow the proof of Theorem 4 described in Section 3. What we need is an

analog of Lemma 5 in the new situation. More precise, we have to prove that given a

non-split short exact sequence

0 → LG → X → LG → 0

in CL(i), the obvious inclusion AnnC (X) ⊂ AnnC (LG) is strict.

As in Section 4.4, CL(i) is equivalent to A-mod for some finite dimensional asso-

ciative k-algebra A and the functor CL(G) can be identified with tensoring with Ae⊗k eA

for some primitive idempotent e ∈ A. By Theorem 9, this identification is fully faithful

on 2-morphisms. Clearly,

AnnC (LG) ∩ EndA⊗kA
op(Ae ⊗k eA) = eAe ⊗k Rad(eAe).

At the same time, as X is a non-split self-extension of LG, we have

AnnC (X) ∩ EndA⊗kA
op(Ae ⊗k eA) = eAe ⊗k U ,

where U is a proper subalgebra of Rad(eAe) (since eA⊗A X = eX = X as a vector space).

The rest of the proof follows precisely the proof of Theorem 4. �

5.2 Endomorphisms of the identity functor

So far we have only determined the objects in the endomorphism category of a cell 2-

representation (Theorems 4 and 14) up to isomorphism. Now we would like to describe

morphisms in this category.

Proposition 15. Let C be a fiat 2-category, J a strongly regular two-sided cell of C and

L a left cell in J . For any k ∈ N, consider ♠k ∈ EndC -mod(CL) (or ♠k ∈ EndC -mod(CL)).

Then there are isomorphisms

EndEndC -mod
(CL)(♠k) ∼= Matk×k(k) and EndEndC -mod

(CL)(♠k) ∼= Matk×k(k). �

Proof. We prove the statement for CL, the other case being analogous. For i ∈ C , let Ai

be a finite dimensional associative k-algebra such that CL(i) is equivalent to Ai-mod.
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Endomorphisms of Cell 2-Representations 19

Let θ : ♠k → ♠k be a modification. As endomorphisms of IdCL(i) can be identified with

the center Zi of Ai, we can view θi as an element of Matk×k(Zi).

First consider the case k = 1. Clearly, scalars belong to the endomorphism ring of

♠1. We would like to show that the radical of Zi does not. Let e be a primitive idempotent

of Ai. From [11, Corollary 38(b)] it follows that there is F ∈ J such that CL(F) can be

described by tensoring with a direct sum of bimodules of the formAie⊗keAi. The action

of ♠1 on CL(i) is described as tensoring with Ai, and the isomorphism η
♠1
F is a direct

sum of morphisms

Ai ⊗Ai Aie ⊗k eAi
∼= Aie ⊗k eAi ⊗Ai Ai

sending 1 ⊗ e ⊗ e to e ⊗ e ⊗ 1.

Let 0 
= z ∈ eRad(Zi)e. Then applying z after η sends 1⊗ e⊗ e to e⊗ e⊗ z, which

is identified with e ⊗ z in Aie ⊗k eAi. Applying z before η sends 1 ⊗ e ⊗ e to z ⊗ e ⊗ 1,

which is identified with z ⊗ e in Aie ⊗k eAi. We have e ⊗ z 
= z ⊗ e as z ∈ eRad(Zi)e.

Now consider arbitrary k. From the above it follows that we can view θi as an

element of Matk×k(k) (here k ∼= Zi/Rad(Zi)). That every element M ∈ Matk×k(k) indeed

defines an element of EndEndC -mod
(CL)(♠k) can be seen from the commutative diagram

A⊕k ⊗A Ae ⊗k eA

M⊗id

��

ηk �� Ae ⊗k eA⊗A A⊕k

id⊗M
��

A⊕k ⊗A Ae ⊗k eA
ηk �� Ae ⊗k eA⊗A A⊕k

where A := Ai and ηk is the diagonal k×k-matrix with η on the diagonal. This completes

the proof. �

5.3 The 2nd layer of 2-Schur’s lemma

Our main result is the following statement.

Theorem 16. Let C be a fiat 2-category, J a strongly regular two-sided cell of C and L
a left cell in J . Then both categories EndC -mod(CL) and EndC -amod(CL) are equivalent to

k-mod. �

Proof. This follows directly from Theorems 4 and 14 and Proposition 15. �
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20 V. Mazorchuk and V. Miemietz

6 Examples

6.1 Category O in type A

Consider the simple complex Lie algebra g = sln with the standard triangular decom-

position g = n− ⊕ h ⊕ n+ and a small category O0 equivalent to the principal block

of the BGG-category O for g (see [5]). Let S be the 2-category of projective functors

associated to O0 as in [11, Section 7.1]. Indecomposable 1-morphisms in S are in nat-

ural bijection with elements of the symmetric group Sn (the Weyl group of g) and

left, right, and two-sided cells are Kazhdan–Lusztig right, left, and two-sided cells,

respectively. As shown in [11, Section 7.1], all two-sided cells are strongly regular.

Hence Theorem 16 completely describes the endomorphism category of all cell 2-

representations for S (the latter were first constructed in [17]). As cell 2-representations

corresponding to the same two-sided cell are equivalent (see [11, 17]), it follows that

this equivalence is unique (as a functor) up to isomorphism of functors. In [17],

equivalence of cell 2-representations corresponding to the same two-sided cell was

obtained using Arkhipov’s twisting functors and the fact that they naturally com-

mute with projective functors, see [1]. Our present result shows that the shadows of

Arkhipov’s twisting functors act, on a cell 2-representation, simply as a direct sum of the

identity.

We also would like to note that in this example we can also apply Theorem 4.

A very special feature of Sn is that every two-sided Kazhdan-Lusztig cell of Sn contains

the longest element w := wP
0 in some parabolic subgroup P in Sn. Then w is the Duflo

involution in its Kazhdan–Lusztig right cell and hence the corresponding projective in

the cell 2-representation is isomorphic to θwLw . From [16, Theorem 6.3] it follows that

the center of O0 surjects on to the endomorphism algebra of θwLw and hence we can

apply Theorem 4.

6.2 Category O in type B2

Consider the previous example for g of type B2. Let W be the Weyl group of type B2

with elements {e, s, t, st, ts, sts, tst, stst} (here s2 = t2 = e and stst = tsts). We have the

2-category S with 1-morphisms θw , w ∈ W . Cells are again given by Kazhdan–Lusztig

combinatorics, the two-sided cells are Je = {e},Js,t = {s, t, st, ts, sts, tst} and Jstst = {stst}.
The middle cell splits into two left cells L1 = {s, st, sts} and L2 = {t, ts, tst} (recall that
our left cells are Kazhdan–Lusztig’s right cells and vice versa) as shown in the following

picture:
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Endomorphisms of Cell 2-Representations 21

L1 L2

L∗
1 {s, sts} {ts}

L∗
2 {st} {t, tst}.

Since strong regularity fails, we cannot apply Theorem 16 and, indeed, it turns out that

the cell 2-representation CL1 has more endomorphisms than just the identity, as we

now show.

For w ∈ Li, i = 1, 2, set Lw := Lθw . Let Ts and Tt be Arkhipov’s twisting functors

corresponding to s and t. Starting from CL1 we apply Ts, project onto CL2 , apply Tt and

project on to CL1 . This maps Ls to Ls ⊕ Lsts. As twisting functors naturally commute with

projective functors, it follows that AnnS (Ls) = AnnS (Lsts) and hence mapping Ls to

Lsts extends to an endomorphism of CL1 which is clearly not isomorphic to the identity

functor.

6.3 sl2-Categorification

Consider the 2-category Bn associated with the sl2-categorification of Chuang and

Rouquier (see [3]) as described in detail in [12, Section 7.1]. This is a fiat 2-category

with strongly regular cells. Hence Theorem 16 completely describes endomorphisms

for each cell 2-representation of sl2 (compare [3, Proposition 5.26]). However, we would

like to point out that in the case of Bn describing the endomorphism category for cell

2-representations is much easier (than, e.g., for the example in Section 6.1). Indeed, as

explained in [12, Section 7.1], each two-sided cell of Bn has a left cell with Duflo invo-

lution G such that, in the corresponding cell 2-representation, the simple module LG

is projective (the corresponding Duflo involution has the form 1i). Because of this, any

endomorphism of the cell 2-representation maps LG to a direct sum of copies of LG and

is uniquely determined by the image of LG up to isomorphism.

6.4 A non-symmetric local algebra

In this subsection we describe an example for which the additional assumption of Theo-

rem 4 fails, while the conditions in Theorem 16 are satisfied. LetA := k〈x,y〉/(x2,y2,xy+
yx) and C be a small category equivalent to A-mod. The center Z of A is the linear span

of 1 and xy. Consider the fiat 2-category CC,Z . This category has two two-sided cells,

one consisting of the identity and the other one, say J , consisting of the 1-morphism G

given by tensoring with A⊗k A. Then G is the Duflo involution in J and the correspond-

ing cell 2-representation is equivalent to the defining 2-representation. Therefore, the
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22 V. Mazorchuk and V. Miemietz

projective module PG is isomorphic to AA. Since A is not commutative, Z does not surject

on the endomorphism algebra of PG. Hence the additional assumption of Theorem 4 is

not satisfied. On the other hand, the conditions in Theorem 16 are satisfied as explained

in [11, Section 7.3].

7 Graded Fiat 2-Categories

In the original version of the article, the main results of this article were stated under

an additional numerical assumption which was shown to be redundant in [15]. The

original version of this section contained an argument that the numerical assumption is

satisfied for graded fiat 2-categories. Although the result itself is no longer interesting,

the setup of graded fiat 2-categories is of interest (as most of the natural examples of

fiat 2-categories are graded) and this is what is presented in this section, leading up to

an analog of Lusztig’s a-function for graded fiat 2-categories.

In this section, by graded we always mean Z-graded.

7.1 2-categories with free Z-action

LetA be 2-category. Assume that, for each i,j ∈ A , we are given an automorphism (·)1 of
A(i,j). For k ∈ Z, set (·)k := (·)k1 and, for F ∈ A(i,j), set Fk := (F)k. We will say that this

datum defines a free action of Z on A provided that, for any F ∈ A(i,j), the equality

Fk = Fm implies k = m and, moreover, for any composable 1-morphisms F and G,

we have

Fk ◦ Gm = (F ◦ G)k+m. (12)

Example 17. Let A be a graded, connected, weakly symmetric finite dimensional asso-

ciative k-algebra and C a small category equivalent to the category A-gmod of finite

dimensional graded A-modules. The algebra A⊗k Aop inherits the structure of a graded

algebra from A. Let 〈1〉 denote the functor which shifts the grading such that (M〈1〉)i =
Mi+1, i ∈ Z. Consider the 2-category CC defined as follows: It has one object (which we

identify with C), its 1-morphisms are closed under isomorphism of functors and are gen-

erated by 〈±1〉 and functors induced by tensoring with projective A-A-bimodules (the

latter are naturally graded), its 2-morphisms are natural transformations of functors

(which correspond to homogeneous bimodule morphisms of degree zero). The group Z

acts on CC by shifting the grading and this is free in the above sense. �
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7.2 Graded fiat 2-categories

Assume that A is a 2-category equipped with a free action of Z. Assume further that A

satisfies the following conditions:

• A has finitely many objects.

• For any i,j ∈ A , we have A(i,j) ∈ Ak and horizontal composition is both

additive and k-linear.

• The set of Z-orbits on isomorphism classes of indecomposable objects in

A(i,j) is finite.

• All spaces of 2-morphisms are finite dimensional.

• For each 1-morphism F, there are only finitely many indecomposable 1-mor-

phisms G (up to isomorphism) such that HomA (F,G) 
= 0.

• For each 1-morphism F, there are only finitely many indecomposable 1-mor-

phisms G (up to isomorphism) such that HomA (G, F) 
= 0.

• For any i ∈ C the 1-morphism 1i is indecomposable.

• A has a weak object preserving involution and adjunction morphisms.

We will call such A pro-fiat.

Define the quotient 2-category C = A/Z to have the same objects as A and as

morphism categories the categorical quotients C(i,j) := A(i,j)/Z. Recall that objects

ofA(i,j)/Z are orbits of Z acting on objects ofA(i,j) (for F ∈ A(i,j), wewill denote the

corresponding orbit by F•) and, for F,G ∈ A(i,j), the space HomC (F•, G•) is the quotient

of
⊕

k,l∈Z
HomA (i,j)(Fk, Gl) modulo the subspace generated by the expressions α − αl for

l ∈ Z. Horizontal composition in C is induced by the one in A in the natural way (which

is well defined due to (12)). We denote by � : A → C the projection 2-functor.

Thanks to our assumptions on A , the 2-category C is a fiat 2-category. We will

say that C is a graded fiat 2-category. If we fix a representative Fs in each F•, then, by

construction, the categoryC(i,j)becomes graded (in the sense that for any 1-morphisms

F•, G• we have

HomC (F•, G•) =
⊕
i∈Z

Homi
C (F•, G•),

where Gt is our fixed representative for G• and Homi
C (F•, G•) = HomA (Fs, Gt+i), vertical

composition being additive ondegrees).Wewill say that this grading ispositiveprovided

that the following condition is satisfied: for any indecomposable 1-morphismsF•, G• ∈ C ,
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24 V. Mazorchuk and V. Miemietz

the inequality Homi
C (F•, G•) 
= 0 implies i > 0 unless F• = G•. In the latter case we

require End0
C (F•) = k idF• .

Example 18. Let D = k[x]/(x2) with x in degree 2 and consider CC as in Example 17 for

some C equivalent to D-gmod. Choosing the representatives IdD-gmod and (D⊗k D⊗D −)〈1〉
makes CC/Z into a positively graded 2-category. �

7.3 From 2-representations of A to 2-representations of C

Let A be a pro-fiat 2-category and C := A/Z. Let M be a 2-representation of A and

i ∈ A . Then the group Z acts (strictly) on M(i) via isomorphisms 1i,k, k ∈ Z. We call M

pro-graded if this action is free (i.e., the stabilizer of every object is trivial) for every i.

Let M be a pro-graded 2-representation of A . We define a 2-representation M of

C as follows: For i ∈ C , we set M(i) := M(i)/Z, that is objects of M(i) are orbits of Z

acting on objects of M(i) (for Q ∈ M(i), we will denote the corresponding orbit by (Q)).

For F ∈ A(i,j) and Q ∈ M(i), we define M(F•) (Q) := (M(F)Q) while, for f : Q → P,

mapping the class f̂ : (Q) → (P) to the class

M̂(F)f : (M(F)Q) → (M(F)P)

defines the action ofM(F•) onmorphisms (this is well defined because of the strictness of

our Z-action). Functoriality ofM(F•) follows directly from the definition. Each α : F → G

induces a morphism from F• to G• and we define

M(α)(Q) : M(F•) (Q) → M(G•) (Q)

as the class ofM(α)Q : M(F)Q → M(G)Q. This extends to all 2-morphisms by additivity.

It follows directly from the definitions that M becomes a 2-representation of C .

7.4 Functoriality of ·

Unfortunately, · is not a 2-functor between the 2-categories of 2-representations of A

and C = A/Z. However, it turns out to be a 2-functor on a suitably defined subcat-

egory of 2-representations of A . Define the 2-category A-pgamod as follows: objects

are pro-graded additive 2-representations of A ; 1-morphisms are 2-natural transfor-

mations satisfying the condition that η1i,n is the identity map for all i and n (i.e.,

our 2-natural transformations commute strictly with all shifts of the identity); 2-

morphisms are modifications. This clearly forms a 2-subcategory in the category of

additive 2-representations of A .
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Proposition 19. The operation · defines a 2-functor from A-pgamod to C-amod. �

Proof. Let M,N ∈ A-pgamod and � ∈ HomA -pgamod(M,N). Define � : M → N by

�i (Q) := (�iQ). This is well defined as �i commutes strictly with the action of 1i,n

and each element in (Q) is obtained by applying some 1i,n to Q. We have to check

commutativity of the diagram

�j ◦ M(F•)
ηF• ��

id�j ◦0M(α)
��

N(F•) ◦�i

N(α)◦0id�i
��

�j ◦ M(G•)
ηG• �� N(G•) ◦�i

for any α : F → G in A (here ηF• is the class of ηF and similarly for ηG• ). To check commu-

tativity of this diagram, we have to evaluate it at any object and it is straightforward to

check commutativity there using strict commutativity of � with shifts of the identity.

Condition (1) for ηF• is automatic. This verifies the first level of 2-functoriality.

For a modification θ : � → � in A-pgamod, we define θ by θi,(Q) := θ̂i,Q. We have

to check (2), that is, commutativity of the diagram

�j ◦ M(F•)
η�F• ��

θj◦0M(α)
��

N(F•) ◦�i

N(α)◦0θi
��

�j ◦ M(G•)
η�G• �� N(G•) ◦�i

which again follows by evaluating it at any object and using strict commutativity of �

and � with shifts of the identity. �

7.5 Principal and cell 2-representations of A

For i ∈ A , consider the principal 2-representation PA
i of A .

Proposition 20. The 2-representations PA
i and Pi of C are equivalent. �
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26 V. Mazorchuk and V. Miemietz

Proof. First we note that PA
i is pro-graded by definition. For j ∈ C , the orbits of Z

on PA
i (j) coincide with the fibers of � on C(i,j). The equivalence is then defined by

mapping the fiber to its image under �. �

Directly from the definitions, we have that (M) = (M) for any 2-representationM

of A . Consider the 2-representation PA
i . By definition, each PA

i (j) is a length category

with enough projective objects. For any j, there is a bijection between isomorphism

classes of simple objects in Pi(j) and Z-orbits on isomorphism classes of simple objects

in PA
i (j).

The 2-functor � induces a bijection between left, right, and two-sided cells of

A and C . Let L be a left cell in C and G a 1-morphism in A such that G• is the Duflo

involution in L. Setting Q := G LG as in Section 2.8, we consider the 2-representation

CA
L := (PA

i (j))Q. We leave it to the reader to check that this is the cell 2-representation

of A associated with �−1(L).

Proposition 21. The 2-representations CA
L and CL of C are equivalent. �

Proof. The fact that CA
L is pro-graded follows from the definition of CA

L and the fact

that PA
i is pro-graded. Similar to Proposition 20, the equivalence is induced by �. �

7.6 Graded adjunctions

Let A be a pro-fiat 2-category and C := A/Z. Let L be a strongly regular left cell of C and

i := iL. We assume that we have chosen some representatives in Z-orbits such that the

induced grading on C is positive. We also assume that 1i,• is represented by the identity

1-morphism 1i,0 in A(i,i). Let G• be the Duflo involution for L and let G be its chosen

representative in A(i,i).

We have HomC (G•,1i,•) 
= 0 by [11, Proposition 17] and hence it makes sense to

define a as the smallest integer such that

Homa
C (G•,1i,•) = HomA (G−a,1i,0) 
= 0.

This should be thought of as an analog of Lusztig’s a-function.

Consider the cell 2-representation CL of C . By Proposition 21, we have a positive

grading on CL(i). Denote by l the maximal i ∈ Z such that Endi
(PG•) 
= 0.

Lemma 22. We have G∗ ∼= Gl−2a. �
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Proof. As G∗
• ∼= G•, we have G∗ ∼= Gx for some x ∈ Z. As in [11, Section 4.7], we denote

by � the unique quotient of 0 → 1i,0 which has simple socle LG−a . We compute:

0 
= Hom(G1i,0,LG)

⊂ Hom(G�,LG)

= Hom(G LG−a ,LG)

= Hom(LG−a , Gx LG)

= Hom(LG−a , Gx+a LG−a).

Here the 3rd line follows from the fact that G annihilates all subquotients of � apart

from LG−a (see [11, Proposition 17]), and the 4th line uses adjunction. ThemoduleGx+a LG−a

has simple socle LGx+a−l
. Therefore, the inequality Hom(LG−a , Gx+a LG−a) 
= 0 means that

−a = x + a − l, that is, x = l − 2a. �
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