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This paper investigates the interactional relationship between price volatility and futures trading activity for three heavily traded metal products on the Shanghai Metal Exchange and the Shanghai Futures Exchange. Using models based on vector autoregression and generalized method of moments we show, in particular, that futures trading activity has a strong impact on both spot and futures price volatility in copper and aluminium markets. Futures trading activity leads spot market volatility in copper and aluminium markets which suggests that futures markets have a destabilizing effect. In order to disentangle the effect of different traders’ types on asset price movements, we decompose futures trading into speculators’ and hedgers’ trading and investigate their contributions to volatility. As a robustness check, we investigate the impact of endogenous structural breaks on the interactional relationship between price volatility and futures trading. 
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I. Introduction
Numerous studies have focused on the impact of trading activity on price volatility and, especially, on the impact of futures trading on both, futures and equity prices. Early work tends to find that the introduction of futures trading resulted in an increase in price volatility. It uses a ‘pre-post comparison’ method to measure the change in volatility before and after the advent of futures markets. The conclusions are mixed (Edwards, 1988a, 1988b; Antoniou and Foster, 1992; Lee and Ohk, 1992). Studies in recent years have been devoted to answer a different question: How are futures and equity prices affected by futures trading (Fung and Patterson, 2001; Ripple and Moosa, 2009; Mahajan and Singh, 2009). To answer this question, researchers have built various models to examine the relationship between price volatility and futures trading activity. Most of these studies find a positive contemporaneous relationship between these variables, which indicates that price changes move in the same direction as futures trading. However, Cetin (2002) and Yang et al. (2005) do not find such contemporaneous relationship in their research. 

Some authors interpret the positive contemporaneous relationship as a signal of the destabilizing effect of futures trading (for example, Figlewski, 1981), i.e. futures trading drives price changes. However, there might be a reverse mechanism: price volatility induces the changes in futures trading (Yang et al, 2005). Early theoretical work interpreted contemporaneous relationship as a simultaneously interactional process. For example, Clark (1973), Epps and Epps (1976), and Tauchen and Pitts (1983) develop the ‘Mixture of Distributions Hypothesis’ (MDH) suggesting price and volume move simultaneously due to the arrival of the same latent information that may lead to the changes in traders’ expectations, and thus cause traders to adjust their trading strategy. This finally results in changes of trading volume and asset prices. To explain the interactional process, the following statements may be helpful: As spot markets and futures markets are usually linked by arbitrage, information based on arbitrage and speculation in the futures markets flows into the cash/futures markets accelerating spot/futures price volatility and, therefore, destabilizing underlying spot/futures markets. In this situation, the positive contemporaneous relationship indicates that an increase in futures trading has increased return volatility. However, information may flow in the opposite direction when participants in futures markets adjust their trading strategy based on market price changes. Buy buying and selling assets they trigger, therefore, moves in trading volume until prices reach a revised, post-information equilibrium (Foster, 1995). In such a case, the positive contemporaneous relationship may be interpreted by a reverse causation from volatility to futures trading activity, which may suggest more efficient markets (Garcia et al., 1986).
This study investigates the dynamic interactional relationship between spot and futures price volatility and futures trading activity in China’s metal markets. We examine three heavily traded metal products in the Shanghai Futures Exchange (SHFE), aluminium, copper and zinc, matched with the corresponding spots contracts on the Shanghai Metal Exchange (SHME). We estimate the contemporaneous relationship between variables by the Generalized Methods of Moments (GMM). Previous theoretical work has suggested that price volatility and trading volume are jointly determined by the same latent information flow. The GMM model takes account of this premise and treats both volatility and volume variables as endogenous. 
China’s futures market has grown dramatically over the last few decades. In 2010, there were 3.133 billion lots (a trading unit) of commodity futures contracts traded in Chinese futures market, and total turnover amounted to ¥308.665 trillion. In 2013, trading volume of the three Chinese commodity futures exchanges accounted for 46.13% of the total volume of trading in global commodity futures markets (Yang, 2014). In recent years, with a rapid and sustained growth in metal demand from Chinese clients, metal prices (especially copper price) in Chinese markets increasingly affect global metal prices. Copper price on the SHFE has become one of the most important reference prices after LME (London Metal Exchange) and COMEX (Commodity Exchange, Inc.) for top international copper companies such as Codelco and BHP Billiton Ltd. Historically the copper price on the SHFE is highly correlated with the LME with a correlation coefficient 0.94. Due to the internalization and increasing trading on the SHFE, its copper price is no longer a ‘shadow price’ following the LME, but in turn affects LME’s copper price. This motivates our focus on Chinese metal markets in this paper.
Studies such as this provide information for both, regulators and traders. Sound regulation depends on the precise estimation of the interaction between futures trading activity and price volatility. If futures trading activity increases spot markets and futures markets volatility, it may indicate a destabilizing effect of futures trading and the need of market regulation. On the other hand, if a positive simultaneous relationship results from volatility to futures trading, this may indicate high liquidity and efficient markets. Under this situation, further regulation and excessive intervention may harm the price responsiveness of futures. 
Decomposing futures trading into speculators’ and hedgers’ trading helps us to disentangle the effect of different traders’ activities on asset price movements, which may provide further interpretation in term of the cause of price volatility. Moreover, it may generate preliminary information for further studies on traders’ behaviour. Previous empirical studies examine the effects of futures trading on return volatility by decomposing the trading volume into two components: expected and unexpected elements, which represent the uninformed and informed trading, respectively (e.g., Bessembinder and Seguin, 1992, 1993; Board et al., 2001; Yang et al., 2005, and Hsueh et al., 2008). Some studies (e.g., Board et al., 2001; Hsueh et al., 2008) define speculators as those small individual investors (i.e., retail investors) who only pursue speculative profits. They are unable to access inside (private) information and trade on their own forecasts. Hence, speculators’ trading activity can be a proxy for uninformed trading. On the other hand, big, institutional investors often participate in financial markets for hedging purposes and, therefore, are usually treated as hedgers. However, they do not restrict their trades merely to hedging activities but also engage in speculative ventures. Hedgers (i.e. institutional investors) may have channels to gain private information making a pronounced contribution to information shocks (unlike retail investors). Hence, their trading activity can act as a proxy for informed trading (see also, Ederington and Lee, 2002 and Cheng and Xiong, 2014). 
This division is, to a great extent, close to the reality in financial markets. Thus, in this paper, we follow Board et al. (2001) and Hsueh et al. (2008) and assume speculators as uninformed and hedgers as informed traders. They represent the expected and the unexpected component of the trading volume, respectively. 
There exist different methods to decompose speculators’ and hedgers’ trading activity. For example, one method uses the CFTC (Commodity Futures Trading Commission) data with speculators and hedgers being differentiated on the basis of commercial and non-commercial principles (Chang et al., 2000). This method, however, may be misleading because while speculators, by definition, conduct speculative trading, hedgers may also engage in such activity. Another method suggests that trading volume primarily reflects speculative behaviour because hedgers’ trading comprises a relatively minor proportion of daily trading volume. Bessembinder and Seguin (1993) and Chatrath et al., (1996), on the other hand, argue that hedging activity is reflected in open interest. This approach, however, may bias empirical investigation as it ignores hedging activities comprised in the trading volume and the speculative activities in the changes of open interest.
We employ Granger causality test to examine whether one variable is significantly affected by the lagged value(s) of other variables (which, then, would have some predictive or leading power). Several studies on futures and spot markets have documented a variety of results on causal relationship, including unidirectional causality from futures trading volume to spot price volatility (Yang et al., 2005), unidirectional causality from price changes to futures trading activity (Ciner, 2002), and bidirectional interdependence between variables (Fung and Patterson, 1999)
. The Granger causality test is used in this work also in the context of both bivariate and a trivariate VAR model.

The appearance of structural breaks in time series may lead to changes in major parameters, for example, the mean and the variance, and changes in distribution of the series, and therefore result in estimation errors. The volatility-volume relationship may vary in different sub-periods through the entire sample. Previous research (e.g., Yang et al. (2005) detected volatility-volume interaction in sub-periods defined by a number of predetermined breakpoints. More recently, Wang et al. (2009) using Johansen’s co-integration procedure, which permits structural breaks, found evidence of co-integration and, hence, price discovery between soybean and corn prices on the Chinese Dalian Commodity Exchange with a significant break in July 2007 due to a drought in China's main soybean producing areas. In the Appendix, we verify the robustness of our findings by estimating structural breaks during the sample period. Rather than using predetermined breakpoints, we set the possible breakpoints as unknown and employ a technique developed by Bai and Perron (1998, 2003) to estimate them.
 As a further corroboration and exploration of the relationship between futures trading and price volatility, we investigate the interactional relationship in sub-periods, in which the effects of structural changes have been (partly) removed.
 
This study contributes to the literature in a number of ways: First, there is little research on the relationship between price movements and futures trading in China’s metal spot and futures markets
. With the Chinese economy growing rapidly, China’s futures markets are in a process of globalization. This study is expected to be both, valuable and practical for regulators and international and domestic investors. Secondly, many previous studies treated futures trading as exogenous variables. This paper applies a method which treats information-led trading activity as an endogenous variable. Thirdly, previous research often investigates the simultaneous relationship without considering the trading activity from the angle of different trader types and, therefore, cannot disentangle their idiosyncratic impacts. Furthermore, we employ an approach that estimates the unknown structural breaks in the data. The majority of previous studies adopt predefined historical events as breakpoints. 
The remainder of this paper is organized as follows. Section two presents the empirical methods used in this study. Section three contains a description of the data and a preliminary data analysis, while section four presents and analyses our empirical results. Section five concludes and summarizes the findings.
II. Methodology
Volatility measures
All volatility estimators are imperfect. Therefore, we will use two alternative measures: one based on the GARCH (1,1) model (Bollerslev, 1986) and the other on the extreme value volatility estimator developed by Parkinson (1980) and Garman and Klass (1980). 

Most studies on the volatility-volume relationship employ the ARCH/GARCH specifications. In this specification, the variance of the error term is interpreted as a time series itself that evolves as a linear function of lagged squared errors. For example, in an AR(1) process,
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the error term can follow an ARCH(q) process,
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where zt  is the Gaussian noise and ht  can be modelled as an MA(q) process, 
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More generally, ht can follow an ARMA(p,q) process,
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If q=1, p=1, then Equations 2 and 4 define a GARCH (1,1) process. GARCH(1,1) avoids the overfitting problem and still maintains the main features presented in more complex models. We will refer to the volatility estimator based on the GARCH(1,1) model as the GARCH estimator. 
Our second measure, the extreme value volatility estimator is deemed to be very efficient because it incorporates the whole range or dispersion of prices observed over the entire day, not just a short moment price at the end of the day (Wiggins, 1992). We employ the high-low variance (HLV) estimator (Parkinson, 1980; Garman and Klass, 1980) to estimate volatility in markets. The daily highest (H), lowest (L), closing (C), and opening (O) prices are incorporated to capture the magnitude of price movement in both, intraday and inter-day period. This volatility estimator is computed as,
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where 
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= 0.511(u-d)2 - 0.019[c(u+d ) - 2ud] - 0.383c2 ; u=Ht - Ot; d = Lt - Ot; and c = Ct - Ot.  Ot, Ct, Ht and Lt are, respectively, the opening, closing, highest and the lowest price at day t. The coefficients 0.12 and 0.88 in Equation 5 have been estimated by Garman and Klass (1980). Furthermore, f denotes the fraction of the day that the trading is closed. As the SHFE opens at 9:00 am and closes at 3:00 pm each trading day, f = 0.75 is assumed. 

Measure of futures trading activity
Following Garcia et al. (1986) and Luu and Martern (2003), the ratio of daily closing trading volume (VOLt) over open interest (OIt) measures futures trading activity (Ft), 

                                       Ft = VOLt/OIt                                                                                                  
 (6)

Garcia et al. (1986) suggest that Ft addresses the problem of the potential expiration effects as it standardizes the daily volume by open interest, both functions of time to expiration.  Moreover, volume over open interest reflects the impact of speculative activity as open interest largely captures hedging activities. The ratio Ft is, therefore, more likely to capture information arrival rate than total volume, which also includes liquidity trades (Luu and Martern, 2003).
Volatility-volume contemporaneous relationship
To investigate the simultaneous relationship between volatility and futures trading activity, we use an approach similar to Foster (1995) and Ciner (2002), where an instrumental variable (IV) is employed as a GMM estimator. Foster (1995) pointed out that the IV approach controlled for the problems of simultaneity bias in the GMM framework producing heteroskedasticity-consistent estimates. The GMM model treats futures trading activity as endogenous in the estimation of the volatility-volume relationship and allows for bidirectional simultaneous correlation estimation. Our GMM model takes the form,
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where Ft is the futures trading activity and ht represents volatility. Ft and ht are treated as endogenous in Equation 7. The coefficients 
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 measure the contemporaneous relationship between trading activity and market volatility. If they are simultaneously significant, this indicates an interactional contemporaneous dependence between these variables. The coefficients 
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 measure the lagged volume effects, 
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 is the lagged volatility effect on the current volatility. For convenience only, the predetermined variables Ft-1, Ft-2, and ht-1 are independent of the error term. The system is estimated by the GMM with the lagged values of Ft and ht used as instrumental variables (IVs). 
Speculators’ and hedgers’ trading activity
As we mentioned earlier, this study decomposes futures trading activity into the expected and the unexpected component and interprets the expected (unexpected) component as speculators’ (hedgers’) behaviour. We assume that speculators trade according to their own knowledge and forecasts, while hedgers may have access to inside information. We use a two-step procedure to decompose speculators’ and hedgers’ trading activity. In the first step, we fit the daily futures trading activity using the ARIMA specification. This procedure yields a one step ahead forecast errors
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where 
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 is the unexpected component, which represents hedger’s trading activity. It reflects news arrivals and information shocks. The expected component is defined as the difference between the original Ft and the unexpected component, which represents speculators’ predictable trading activity. The parameters n and m in Equation 8 for the lagged volume and the lagged open interest, respectively, are selected by the Breusch-Godfrey serial correlation LM test. 
Contemporaneous relationship between volatility and trader’s activity
We construct an additional GMM model to measure the simultaneous relationship between speculators’ and hedgers’ trading activity and price volatility. We specify the following structural equations,
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where HGt is hedgers’ trading activity, SPt speculators trading activity and ht volatility. M is a dummy variable (M = 1 for Monday and M = 0 otherwise) that controls for the weekend effect. Many studies suggest the existence of the weekend effect (e.g., Schwert, 1990; Fung and Patterson, 2001) as asset returns on Monday are often significantly lower than those on the preceding Friday. Lee et al. (2009) also consider the day of the week effects in the US and Chinese commodity futures markets. The parameters g1 and w1 in Equations 9-10 are the coefficient estimates on the endogenous variables which measure the contemporaneous relationship between variables. The parameters w3, w4 and w5 in Equation 9 represent the lagged variable effects. The predetermined variables HGt-1, SPt-1, and ht-1 are independent of the error term. It should be noted that the variable representing speculators’ trading activity, SP, is usually deemed as the uninformed component that is based on speculators’ own forecast (see Yang et al., 2005). Therefore, we treat it as exogenous in Equation 9 with w2 measuring the SP’s effects on return volatility. We also introduce the additional OLS Equation 10 for the contemporaneous relationship between speculators’ trading and volatility, in which k1  provides information about the effect of volatility on SP.
Bivariate and trivariate VAR model and the causality test
The Granger causality test is used to examine if the lagged terms of the independent variable jointly affect the dependent variable. We use both bivariate and trivariate VAR model to detect the causal relationships between volatility and entire trading, as well as the relationships between volatility and trading for different trader types. Our VAR model is specified as follows:
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where Yt is a 2x1 (3x1) column vector for entire trading (speculators’ trading or hedgers’ trading) and market volatility at time t, 
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is a 2x1 (3x1) intercept metric, bk is a 2x2 (3x3) coefficient metric and l is the lag length. Bayesian information criterion (BIC) is used to select the optimal lag length. The 2x1 (3x1) column vector et represents the serially uncorrelated errors. The ith component of et is the innovation of the ith variable which cannot be predicted from the other variables (Fung and Patterson, 1999). The components of bk measure the direct effect that a change of the variables in Yt-k has upon the variables in Yt after k periods. As can be seen, each variable is affected by its own lag terms as well as the lags of the other variable. M is the exogenous Monday variable to control for the weekend effect. 
The Granger causality test can be conducted by using the 
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A time series y1 Granger-causes y2 (y1→y2) when it possesses predictive power for forecasting y2. When both directions are true, there exists an interdependent causality between y1 and y2. The similar rule can be applied to y1 and y3, as well as to y2 and y3. 
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III. Preliminary Data Analysis
Three heavily traded futures products on the SHFE, copper, aluminium and zinc, are selected for our investigation. The delivery month of futures contracts are from January through December. Futures time series are generated by splicing futures data consecutively between each nearest delivery contract and rolled over year by year. The sample periods of futures data, including trading volume and open interest data, are from 20 August 2004 to 31 August 2010 except the zinc contract, where the sample period is from 26 March 2007 to 31 August 2010 (zinc futures product was introduced in the SHFE on 26 March 2007). The number of daily observations for copper and aluminium is 1,473 and for zinc 842. Spot market data for copper, aluminium and zinc are obtained from the Shanghai Metal Exchange (SHME). The sample period and the number of daily observations are consistent with the futures data.
This paper examines three sets of return data: open to close, close to open and close to close. These returns measure price changes due to, respectively, information flow during the trading period, nontrading period, and in the full information process. The information released during the nontrading period can be thought of as the result of the oversea markets’ trading activity, which may subsequently result in price and trading activity changes in domestic markets. The trading period returns are computed as ln(Pc,t/Po,t), where Pc,t is the closing and Po,t the opening price at day t. Similarly, the nontrading period returns are computed as ln(Po,t/Pc,t-1) and the close-close returns as ln(Pc,t/Pc,t-1). The close-close returns reflect price changes in the entire trading day that encompasses both, trading and nontrading information flow. Because daily opening data for the spot markets are not available, we cannot derive the trading, nontrading and the close-close returns from the original spot market data. 

Table 1 reports summary statistics for both, spot market and futures market returns. Futures returns are examined in the trading and nontrading hours and during the full information process. The mean returns in the trading hours are higher than during the nontrading hours with the exception of the aluminium series. The aluminium and the zinc returns have slightly higher volatilities during the trading hours than during the nontrading hours. Volatilities of the close-close returns are higher than those for the trading and nontrading hours. This pattern for means and volatilities is consistent with the finding in Fung and Patterson (2001) that more information is usually released during the trading period. The contrary findings, e.g. on the copper series, may suggest that important information is released after the domestic futures market closes. 
Returns autocorrelations suggest persistence in volatility. In Table 1, the last column for each time series shows that the number of statistically significant lag terms is very high for all spot markets and also for the copper futures. This also occurs for the close-close returns for the aluminium series and for the nontrading period for the zinc series. We take into account the volatility persistence by estimating return volatility using an additional time varying volatility estimator, in which the price changes are regressed on 22 (about one month) lagged returns.
 Stationarity of the time series is examined with the Augmented Dickey-Fuller test. The results reported in Table 2 show that the time series under study are stationary. 

IV. Empirical Results
Contemporaneous relationship between volatility and the entire market trading activity 
We apply the GMM model with different volatility measures and different futures information processes to 18 data sets. Estimation results are displayed in Table 3. The last row of each model shows whether there is a unique set of estimates for the coefficients in the model. The Hansen (1982) test is applied and shows that each model is identified. 

For the metal products traded in the spot market, Table 3 shows that the contemporaneous coefficient 
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 on volatility in the futures trading Equation 7(a) is insignificant in all cases for the three products on different volatility measures. The results indicate that there is no interactional contemporaneous relationship between spot return volatility and futures trading activity. This suggests that there may be other factors, such as market intervention, that drive spot market prices or futures prices. The results may also indicate that spot markets and futures markets are not well linked due to liquidity or efficiency problems. 

The contemporaneous coefficient 
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 on the futures trading in the volatility Equation 7(b) is significant on one volatility measure for both, copper and zinc. It is significantly different from zero on two volatility measures for the aluminium returns. These findings suggest that spot market volatility of the three metals can be explained by futures trading activity but not the other way round. In other words, trading activity in futures market is mainly driven by factors other than spot price volatility, while the latter to some extent is driven by futures trading activity. 
The coefficient 
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 on the lagged futures trading in the volatility Equation 7(b) is significant on one volatility measures for both copper and zinc. For aluminium, 
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is significant on two volatility measures, which implies that the lagged values of futures trading activity contain information on spot market volatility. This phenomenon suggests some degree of pricing inefficiency. Such inefficiency could be due to traders conditioning their prices on previous trading volume as a measure of market sentiment. It could be also interpreted as a form of mimetic contagion where agents set their prices with reference to the trading patterns of other agents. 
For the futures market contracts, empirical results on close-to-close returns for the copper contract show that the coefficients 
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and 
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are significantly different from zero. This suggests a contemporaneous relationship between trading activity and volatility. The coefficient 
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is significant on HLV volatility measure on the aluminium close-close returns, while 
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is significant on the two volatility measures, implying that there might be an interactional contemporaneous relationship on the aluminium close-close returns. As
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 is more often (twice) significant on different volatility measures as compared to 
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 (once), futures trading activity appears to have stronger effects on volatility than vice versa. For the zinc close-close returns, 
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is insignificant in all cases, 
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, however, is significant on both volatility measures. This suggests that there is no interactional contemporaneous relationship between futures trading activity and market volatility but there exists a unidirectional effect of the former on the latter. 
With regard to the trading hour returns and the nontrading hour returns, our results show that there is a unidirectional effect of futures trading activity on market volatility for copper returns. There are interactional contemporaneous relationships for the trading hour returns for the aluminium and the zinc contracts. However, no interactional contemporaneous correlation is found during nontrading hours. Aluminium returns show a unidirectional effect of volatility on futures trading, whereas for zinc there is a unidirectional effect in the opposite direction.  
Finally, 
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is significantly different from zero in most cases, especially for the trading hour returns. This suggests that lagged trading activity contains information that can explain price changes. 
Causal relationship between volatility and trading activity 
Table 4 shows the empirical findings for the causal relationships between price volatility and futures trading activity. For copper spot market, the Chi-square statistic is significant on V←F on two volatility measures when volatility is the dependent variable. This suggests a leading power of futures trading activity. We find similar findings for copper futures market, where the Chi-square statistic is significant on V←F for the trading and nontrading period. There is an interactional causal relationship for close-to-close return data.
Aluminium product shows a unidirectional causal relationship from futures trading activity to spot market volatility. Empirical results in terms of aluminium futures exhibit interactional predicting power during the trading period and for the close-to-close returns.

For zinc spot market, the Chi-square statistic is significant on V←F on GARCH volatility measure indicating a leading power of futures trading activity. For zinc futures market, the leading power of trading activity is detected during the trading period and for the close-to-close returns as the Chi-square statistics is significant on V←F on GARCH.  

Volatility-trading activity correlation for different traders
Table 5 shows the empirical findings for the contemporaneous relationship between volatility and hedgers’ and speculators’ trading activity (Models 9-10). The findings for the products traded in spot markets are very similar to that in Table 3. The contemporaneous coefficient 
[image: image44.wmf]1

g

 on volatility in hedgers’ trading Equation 9(a) is insignificant in all cases. The contemporaneous coefficient 
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 on the hedgers’ trading variable in the volatility Equation 9(b) is significant on one volatility measure for the copper and zinc products and it is significant on all volatility measures for aluminium returns. This suggests that hedgers’ trading in the futures market affects spot market prices. 

The coefficient 
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 in 9(b) measures the impact of speculators’ trading activity on volatility. We find that it is significant on the HLV volatility measure for copper and aluminium, which indicates an impact of speculators’ trading on spot market volatility. In Equation 10, coefficient k1 measures the impact of price volatility on speculators’ trading activity. For both copper and zinc products, k1 are insignificant on all volatility measures. 
The coefficient 
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 in 9(b) measures the effects of lagged hedgers’ trading on volatility. For copper and aluminium, we find that lagged values of hedgers’ trading contain some information on spot price changes as the coefficients on the HLV estimator are significant. Lagged values of speculators’ trading may also affect spot market volatility as 
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 is significant on the HLV estimator for copper and aluminium products. There is a Monday effect for hedgers’ trading in copper and zinc as g2 is significant on both, GARCH and HLV, estimators for copper and is significant on the HLV estimator for zinc. However, the Monday variable does not affect speculators’ trading activity as k4 is insignificant in all cases.
In futures market, 
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 is significant for trading and nontrading hour returns for copper contracts while 
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 is insignificant. This implies an impact of hedgers’ trading on price volatility. The coefficient 
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 is significantly different from zero in all cases, which indicates that speculators’ trading affects futures price volatility. The coefficient k1 is insignificant during the trading and nontrading periods. 

Aluminium contract suggests that hedgers’ trading has strong effect on price volatility as 
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 is significant in all cases, whereas 
[image: image53.wmf]1

g

is insignificant in most instances. For the zinc contract, 
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 and 
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are significant simultaneously on the HLV estimator for close-to-close returns suggesting a contemporaneous interdependence between hedgers’ trading and volatility. However, the effect of hedgers’ trading on volatility appears for the GARCH estimator. Our findings also suggest that hedgers’ trading influences volatility for nontrading hour returns. Furthermore, 
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is significant for trading and nontrading hours on HLV estimator for close-to-close returns, which indicates the existence of speculators’ trading effects on price volatility. Meanwhile, k1 is significant for trading and nontrading hour returns. It is, however, insignificant for close-to-close returns.
Interactional causal relationship between volatility and activity of different trader types 
Table 6 shows the Chi-square statistic (Equation 12) of the Granger causality test for the trivariate VARs model. For copper spot market, the Chi-square statistics is significant on V←F when volatility is the dependent variable and speculators’ trading is the independent variable. This indicates a unidirectional causal relationship that speculators’ trading activity leads volatility. In futures market, price changes lead hedgers’ trading activity during trading hours. However, during nontrading hours, empirical findings reveal the leading power of hedgers’ trading activity. For close-to-close returns, there is a leading power of hedgers’ trading on the HLV estimator. It also shows a leading power of speculators’ trading activity.

Aluminium spot price volatility is led by lagged values of hedgers’ trading activity, which indicates the destabilizing effects of the futures market on the spot market. In terms of the test for futures market, hedgers’ trading activity leads price volatility on the GARCH estimator for close-to-close returns.  

There is a unidirectional causal relationship, in which hedgers’ trading leads spot market volatility for zinc. In zinc futures market, when hedgers’ trading is the dependent variable, the Chi-square statistic is significant on the GARCH volatility measure for trading hour returns, which indicates futures price volatility leading hedgers’ trading activity. For close-to-close returns, when hedgers’ trading becomes the independent variable, this statistic is significant on HLV volatility measure, indicating hedgers’ trading activity leads price volatility.
V. Conclusions
This paper considers the dynamic interdependence between price volatility and futures trading activity for three metal products heavily traded in China’s spot and futures markets. The products are copper, aluminium and zinc. Various insights are obtained from this analysis.

First, there is no contemporaneous relationship between spot market volatility and futures trading activity. These two variables are not driven by the same latent information flow. Furthermore, spot market volatility is significantly affected by futures trading activity with particularly strong effects from hedgers’ trading. Unfortunately, this suggests a destabilizing effect of the futures markets. 

Second, although there is some evidence of an interactional relationship between futures price volatility and trading activity, there is stronger evidence suggesting unidirectional effects of futures trading (especially hedgers’ trading) activity on price volatility. This reveals an asymmetric relationship between variables: traders’ activity influences volatility more than the other way round.

Third, a majority of empirical findings for the Granger causality test shows that lagged trading activity has leading power on market volatility. This indicates a destabilizing effect of futures markets on the underlying spot markets. There is limited empirical evidence suggesting bidirectional causal relationship between variables.

Fourth, the empirical results do not show much difference in the dynamic interactional relationship between the trading and nontrading hours.

As a robustness check, we investigate in the following Appendix the impact of endogenous structural breaks on the interactional relationship between price volatility and futures trading activity. Essentially, we identify structural breaks in all series. However, while we find some inconsistencies between the different structural regimes and the original analysis, there appears to be much more evidence of uniformity. 
Appendix: Robustness Check under Structural Change
The method for estimating structural break
The multiple linear regression specification with m breaks developed by Bai and Perron (1998, 2003) is applied to identify structural break(s). Observations are partitioned into m+1 regimes. The break points (
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 the disturbances. 

The estimation process is based on the least-squares principle. Thus, for each m-partition 
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are the associated least-squares estimates, which are obtained by minimizing the sum of squared residuals 
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The computation of the estimates
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can be carried out by applying the OLS segment by segment without constraints among them. Once the sums of squared residuals of the relevant partitions have been computed, a dynamic program can be used to compare possible combinations, and then find a partition which achieves a global minimum over the entire sum of squared residuals. This procedure essentially proceeds through a sequential examination of optimal one-break partitions. 

It is important to pre-specify the minimum fraction 
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 of observations allocated to one segment or the minimum number h of observations per segment, where
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=0.05 and T=100 indicate that estimates of such quantities as the variance of the residuals use only 5 observations. Thus, except for the case that errors are homogenous or there is no serial correlation, larger values of 
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 the fractions of the estimates of the break points. The maximum number of breaks considered should be eight rather than nine when 
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Clark (1973) developed the ‘Mixture of Distributions Hypothesis’ (MDH) suggesting price and volume move simultaneously due to the arrival of the same latent information. He developed three different regression models of price changes as functions of operational time:
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where 
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is the squared price change and vt the operational time. Test results in Clark (1973) suggest that both models 15 and 16 explain well price changes. Kim (2003) concludes that 16 is better than 15 because returns adjusted by this model are closer to the normal distribution. In our analysis, we use 16 to estimate structural breaks in the squared price changes as a function of the operational time that we set equal to the ratio of volume over open interest. 
Estimations of Structural breaks 
Using Bai and Perron (1998, 2003) approach, there are two breakpoints estimated for the copper and aluminium products and one breakpoint for the zinc product. The estimated breakpoints are shown in Table A1. These breakpoints partition the copper and the aluminium series into three segments and the zinc series into two segments. Table A1 also shows the volatility changes in each sub-period (although changes are tiny). For the copper series, the value of the standard deviation is highest in the second sub-period in both, spot and futures markets. For the aluminium series, the standard deviation is highest in the third sub-period in both, spot and futures markets. For the zinc product, the value of the standard deviation is largest in the second sub-period for the spot returns and in the first sub-period for the futures returns. 
Contemporaneous relationship under structural breaks

Table A2 displays the contemporaneous relationship between volatility and activity of the two trader types for three metal products in the estimated sub-periods. In copper spot market, our results show that there is no contemporaneous interdependence between hedgers’ trading activity and volatility in the first sub-period. In the second and third sub-period, the coefficients
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in Equations 9(a) and 9(b), respectively, are significant on the GARCH but not on the HLV volatility measure. The reason for this difference may be complicated. There might be, for example, contemporaneous interdependence between variables when volatility is measured at a time point (the end of the day). When we consider the dispersion of prices over the entire day, there is no contemporaneous interdependence. Moreover, 
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 is insignificant except on HLV volatility measure in the second sub-period, which may suggest that speculators’ trading in futures market affects price volatility in the spot market, while 
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is insignificant throughout all sub-periods suggesting price volatility in spot market does not affect speculators’ trading activity. 

In copper futures market, 
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 is significant for close-to-close returns on the HLV estimator, indicating the effects of hedgers’ trading activity on volatility in the first sub-period, while 
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 is insignificant throughout. In the second sub-period, 
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 is significant on the GARCH volatility measure for nontrading hours and close-to-close returns, whereas 
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is insignificant in all cases. This indicates the impact of hedgers’ trading activity on volatility. Moreover, 
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is significant on the HLV estimator for close-to-close returns suggesting the effects of speculators’ trading on volatility. In the third sub-period, the coefficients
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are both significant in all cases, suggesting the effects of volatility on hedgers’ and speculators’ trading activity. 

For aluminium, a stronger effect of hedgers’ trading on spot price volatility is detected in the second and third sub-period. The test results on 
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 in the third sub-period suggest the effects of spot price volatility on speculators’ trading. For futures contract, 
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 is insignificant in all cases while
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is significant in trading hours in the first sub-period suggesting the effects of hedgers’ trading on volatility. Similar results are also found in the second sub-period for nontrading hours and for the close-to-close returns. While 
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is insignificant in all cases, 
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is significant for trading hour returns and close-to-close returns, which indicates the effects of volatility on speculators’ trading. In the third sub-period, test results show the effects of hedgers’ trading on volatility for close-to-close returns and for the nontrading hour returns. 
In the zinc spot market, we find the effects of volatility on traders’ trading activity. For example, 
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 is significant on HLV volatility measure while 
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 is insignificant in all cases in the first sub-period. Also, 
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 is significant on both volatility measures, while 
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 is insignificant through the first and the second sub-period. In zinc futures market, the effect of hedgers’ trading activity on volatility is detected for nontrading hour returns in the first sub-period. In the second sub-period for the close-to-close returns, test results reveal the effects of volatility on hedgers’ trading activity as 
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 is significant on the GARCH estimator while 
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 is insignificant. 
The analysis of the causal relationship under structural breaks provides a broad general consistency across products. The inclusion of a further table documenting causal relations between volatility and traders’ activity under structural breaks would result in an unduly lengthy paper. Consequently, the highlights of this analysis (in tabular form) are available from the authors on request. 
In spite of some differences between the results before and after considering structural breaks, the overall findings are broadly consistent. The estimates of the parameters 
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before and after considering structural breaks are very similar. Only 
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 in the second sub-period for copper futures and in the first sub-period for aluminium futures are significant, which indicates the existence of the Monday effects on speculators’ trading activity. Moreover, the empirical findings suggest that volatility changes across different sub-periods do not affect the relationship between volatility and traders’ activity. 
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� Liu and An (2011) investigate information transmission and price discovery in an information-share framework. Based on both synchronous and nonsynchronous trading information from Chinese futures/spot markets, the NYMEX and the CME Globex futures markets for copper, they show that there is a bidirectional relationship in terms of price and volatility spillovers between US and Chinese markets, with a stronger effect from US to Chinese markets than vice versa.


� See also Perron (2005), Dealing with Structural Breaks, Working Paper. Boston University.


� Fung et al. (2010) examine the information flow and market efficiency between the metal futures markets in the US and China from 1999 to 2009 and find structural breaks in the aluminum and copper futures prices at the New York Mercantile Exchange (NYMEX) and Shanghai Futures Exchange (SHFE) between 2006 and 2008. NYMEX and SHFE are cointegrated indicating an equilibrium relationship between these two markets.


� Wei and Frino (2012) investigate the trading activity of Chinese stock index futures at the open and close of the underlying asset and analyse the impact of the underlying on futures market liquidity and volatility. Yang et al. (2012) uses high-frequency data to investigate intraday price discovery and volatility transmission between the Chinese stock index and the stock index futures markets in China. 


� Details of this procedure are available from the authors on request.
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