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Abstract

We establish links between countable algebraically closed graphs and the endomorphisms
of the countable universal graph R. As a consequence we show that, for any countable
graph Γ, there are uncountably many maximal subgroups of the endomorphism monoid of R
isomorphic to the automorphism group of Γ. Further structural information about EndR is
established including that Aut Γ arises in uncountably many ways as a Schützenberger group.
Similar results are proved for the countable universal directed graph and the countable
universal bipartite graph.

1 Introduction

Existentially closed relational structures have been widely considered with the example of the
countable universal homogeneous graph (also known as the random graph or the Rado graph)
probably the most studied (see, for one example of a survey, [2]). It was established by Truss [20]
that the automorphism group of the countable universal homogeneous graph is simple and this
was placed in a general setting by Macpherson and Tent [15]. The work in the present paper
arose when attempting to establish what can be said about other naturally arising groups
acting (in some sense) upon the countable universal graph R. To be more precise, we present
information about the maximal subgroups of the endomorphism monoid of R. We note that
this is not the first work to focus on endomorphisms in the context of homogeneous structures.
For example, Cameron and Nešetřil [3] consider homomorphism-homogeneous structures and
there are various links between their results and our work, particularly [3, Section 2]. More
recently, Lockett and Truss [14] examine generic endomorphisms of homogeneous structures
and in their concluding remarks propose that there should be a counterpart to the literature
on automorphism groups of such structures applying to the monoids of endomorphisms. This
paper may be thought of as part of the study suggested by Lockett and Truss.
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Sad, Serbia
†School of Mathematics, University of East Anglia, Norwich NR4 7TJ, United Kingdom
‡School of Mathematics & Statistics, University of St Andrews, St Andrews, Fife KY16 9SS, United Kingdom

Keywords: existentially closed graphs, algebraically closed graphs, random graph, endomorphism monoid,

countable universal graph, countable universal bipartite graph

MSC: 05C25, 03C50, 20M20, 20B27

1



A maximal subgroup of the endomorphism monoid of R is determined by the idempotent
endomorphism that plays the role of its identity element. Indeed, it is the H -class of that endo-
morphism, as we summarise in Section 2 below. Bonato and Delić [1, Proposition 4.2] show that
the images of idempotent endomorphisms of the countable universal graph are characterised as
being algebraically closed (a property weaker than existentially closed) and this is discussed in
detail by Dolinka [5, especially Theorem 3.2]. We make the same observation and also the cor-
responding result for images of idempotent endomorphisms of the countable universal directed
graph and countable universal bipartite graph in the course of our work. Indeed, we observe
that there are, except for one case, 2ℵ0 idempotent endomorphisms with image isomorphic to a
given algebraically closed graph, directed graph, or bipartite graph (Theorems 3.6, 4.4 and 5.6,
respectively). These observations are, however, merely the first steps in establishing the results
herein.

We shall establish the same types of theorem for the classes of graphs (that is, undirected
graphs), directed graphs, and bipartite graphs. These classes of relational structure are treated
in turn in separate sections below. The proofs for (undirected) graphs are the archetypes and so
the sections relating to directed graphs and bipartite graphs are concerned mostly with explain-
ing what modifications are required to establish the analogous results. One needs particular
care with bipartite graphs, in the first instance to ensure that the correct definition is chosen
so that the class of bipartite graphs does indeed have a Fräıssé limit, as noted in [8]. However,
a second wrinkle occurs since there are examples of algebraically closed bipartite graphs that
are finite (for example, the complete bipartite graph Km,n on two parts of cardinality m and n
respectively), unlike the situation for graphs and directed graphs where algebraically closed
structures are necessarily infinite, and this has some surprising consequences for our results
(compare Theorems 5.6 and 5.9 with their graph analogues). We therefore need to introduce
a stronger condition, that we term strongly algebraically closed, in order to establish some of
the analogues for the countable universal bipartite graph. These issues are discussed in detail
in Section 5. Homogeneous bipartite graphs were, for example, also considered by Goldstern,
Grossberg and Kojman [11], but they only permit what we term part-fixing automorphisms
whereas our automorphisms will be allowed to interchange the parts.

In the summary of our results that follows, we use the term “any group” to mean a group
isomorphic to the automorphism group of a countable graph. The extension of Frucht’s Theo-
rem [10] to infinite groups established by de Groot [7] and by Sabidussi [19] tells us this includes
every countable group. We note in the course of our work that this class of groups is the same
as those arising as the automorphism group of countable directed graphs (Proposition 4.2) and
of countable bipartite graphs (Theorem 5.3).

Let C denote either the class of countable graphs, countable directed graphs, or countable
bipartite graphs and let Ω denote the universal homogeneous structure in C. Then

• any group arises in 2ℵ0 ways as the automorphism group of an algebraically closed struc-
ture in C (Theorems 3.4, 4.3 and 5.4);

• any group arises in 2ℵ0 ways as a maximal subgroup of the endomorphism monoid of Ω
(Theorems 3.7, 4.5 and 5.7);

• any group arises in 2ℵ0 ways as the Schützenberger group of a non-regular H -class in the
endomorphism monoid of Ω (Theorems 3.14, 4.10 and 5.11).

The maximal subgroups of the endomorphism monoid of Ω are the group H -classes of regular
D-classes of EndΩ (that is, H -classes that inherit the structure of a group from EndΩ). For
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general H -classes (including all those in D-classes that are not regular), there is an alternative
group that one can use instead. This is the Schützenberger group referred to above (and which
we expand upon in Section 2) and generalises the concept of a group H -class (not least because
the Schützenberger group is isomorphic to the H -class when the latter happens to be a group).

Theorems 3.7, 4.5 and 5.7 say more about the structure of the endomorphism monoid of Ω,
namely every group arises as a group H -class in 2ℵ0 many D-classes and, except for one case
for the countable universal bipartite graph, every regular D-class contains 2ℵ0 group H -classes.
From the first of these facts, it follows there are 2ℵ0 regular D-classes in EndΩ. We also describe
how many L - and R-classes there are (usually 2ℵ0) in each of these regular D-classes (see
Theorems 3.9, 4.6 and 5.9, the latter containing the exceptions and illustrating the surprising
behaviour of the countable universal bipartite graph). For non-regular D-classes, we observe in
Theorems 3.11, 4.7 and 5.8 that there exist non-regular injective endomorphisms with specified
image and whose D-class contains both 2ℵ0 many L - and R-classes. By varying the image, we
shall deduce there are 2ℵ0 non-regular D-classes in the endomorphism monoid of Ω.

A number of questions remain about the endomorphism monoid of each of our universal
structures. For example, is it true that every D-class of the endomorphism monoid of the
countable universal graph contains 2ℵ0 many L - and R-classes? This question has a positive
answer for regular D-classes (Theorem 3.9) and some of the non-regular D-classes (by Theo-
rem 3.11). It is unclear whether the latter can be extended to all non-regular D-classes. One
reason for the difficulty in making further progress is that we have a necessary condition for en-
domorphisms to be D-related in terms of the isomorphism class of the images (in Lemma 2.3(iii)
below) but only for regular endomorphisms can we reverse the condition to be also sufficient.

One could also consider endomorphisms of the countable universal linearly ordered set (that
is, the rationals Q under 6) or the countable universal partially ordered set. Indeed, the
third author’s PhD thesis [17] contains information, including an analogue of Theorem 3.7,
about End(Q,6). The methods are inevitably a little different and this will appear in a subse-
quent publication.

2 Preliminaries

In this section, we establish the terminology used throughout the paper. We summarise the
basic facts about relational structures, including what it means for them to be algebraically
closed, and the semigroup theory needed when discussing their endomorphism monoids.

A relational structure is a pair Γ = (V, E) consisting of a non-empty set V and a sequence
E = (Ei)i∈I of relations on V . In general, one permits the Ei to have arbitrary arity, but as we
are principally concerned with (various types of) graphs it will be sufficient to deal only with
binary relations. For convenience then we shall make this assumption throughout. When Γ is a
graph, we shall then also call V the set of vertices of Γ. The definitions of graph, directed graph
and bipartite graph with this viewpoint are given at the beginning of Sections 3–5, respectively.
A relational substructure of Γ is a relational structure ∆ = (U,D), where U is a non-empty
subset of V and where D = (Di)i∈I satisfies Di ⊆ Ei for all i. If U is a subset of V , we write
〈U〉 for the substructure (U,D) where D = (Di)i∈I is defined by Di = Ei ∩ (U × U) for each i.
We shall call 〈U〉 the relational substructure induced by U .

If Γ = (V, (Ei)i∈I) and ∆ = (W, (Fi)i∈I) are relational structures (with relations indexed
by the same set I), a homomorphism f : Γ → ∆ is a map f : V → W such that (uf, vf) ∈ Fi
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whenever (u, v) ∈ Ei. The map f : V → W then induces f : Ei → Fi, for each i ∈ I, and we
call the substructure im f = (V f, Ef), where Ef = (Eif)i∈I , of ∆ the image of f . We define
the kernel of f to be the relation { (u, v) | uf = vf } on the vertex set V . An embedding is an
injective homomorphism f : Γ → ∆ such that, for each i, (u, v) ∈ Ei if and only if (uf, vf) ∈ Fi.

In order to describe what it means for a relational structure to be algebraically closed we
shall need a little model theory. We refer to Hodges [12] for the basic terminology.

Let L be a signature and K be a class of L-structures. A structure A in K is called
algebraically closed (in K) if given a formula Φ(x) of the form

(∃y)

k∧

i=1

Ψi(x,y), (1)

where k ∈ N and each Ψi is an atomic formula, and a finite sequence a of elements of A
such that there exists an extension A′ of A with A′ |= Φ(a), then already A |= Φ(a). (As
an aside, we mention that the formula Φ(x) given in (1) is called a positive primitive formula,
see, for example, [12, page 50].) In certain cases, this definition of algebraic closure can often
be simplified. For example, it is easy to see that a graph Γ is algebraically closed if and only
if, given any finite set A of vertices in Γ, there exists some vertex w that is adjacent to every
one of the vertices in A. We shall similarly interpret below what algebraically closed means
for directed and bipartite graphs in Sections 4 and 5. The concept of an existentially closed

relational structure is defined similarly but for this we permit each Ψi to be an atomic formula
or its negation.

Algebraically closed structures for our classes of relational structures can be characterised as
follows. Part (i) of this result is [3, Proposition 2.1(a)], which is established by a back-and-forth
argument. The proof is easily adjusted to cover directed graphs and bipartite graphs, though
one necessarily needs to use the strongly algebraically closed condition for the latter. This
condition is defined in Section 5 just before Theorem 5.4 where it is first used.

Proposition 2.1 (i) Let Γ = (V,E) be a countable graph or directed graph. Then Γ is
algebraically closed (in the class of graphs or directed graphs, respectively) if and only if
there exists F ⊆ E such that (V, F ) is existentially closed.

(ii) Let Γ = (V,E, P ) be a countable bipartite graph. Then Γ is strongly algebraically closed
if and only if there exists F ⊆ E such that (V, F, P ) is existentially closed.

The classes of finite graphs, of finite directed graphs and of finite bipartite graphs each
possess what is known as the hereditary property, the joint embedding property and the amal-
gamation property. (Indeed, the reason for our particular way of defining the term bipartite
graph below is to ensure that the class of such graphs has these properties.) Consequently, each
class has a unique Fräıssé limit [9], referred to as the countable universal homogeneous structure

of the class (see, for example, [12, Theorem 6.1.2]). We shall follow Truss [20] and others and
abbreviate the terminology to refer to the countable universal graph, the countable universal di-

rected graph, and the countable universal bipartite graph. Furthermore, these Fräıssé limits are
the unique countable existentially closed structures in the classes of graphs, of directed graphs,
and of bipartite graphs (see [12, page 185]). The following is now an immediate corollary of
Proposition 2.1 and is used in the proofs of Theorems 3.11, 4.7 and 5.8.
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Corollary 2.2 Let Γ be countable and either an algebraically closed graph, algebraically closed
directed graph, or strongly algebraically closed bipartite graph. Let Ω be, correspondingly, the
countable universal graph, countable universal directed graph, or countable universal bipartite
graph. Then there is a homomorphism from Ω into Γ given by a bijection between the vertices.

�

Since we shall be concerned with maximal subgroups (that is, the group H -classes) of
endomorphism monoids, we need to recall Green’s relations and their properties. We refer to
Howie’s monograph [13] for a general background on semigroups.

Let M = EndΓ be the endomorphism monoid of a relational structure Γ = (V, E). Two
elements f and g ofM are L -related if f and g generate the same left ideal (that is,Mf =Mg),
while they are R-related if fM = gM . Green’s H -relation is the intersection of the binary
relations L and R, while the D-relation is their composite L ◦ R (which can be shown also
to be an equivalence relation). Finally, but less central to our work, f and g are J -related if
MfM = MgM . We shall use the notation fL g to denote that f and g are L -related and
similarly for the other relations. If f ∈ M , we write Hf for the H -class of f . If e is an
idempotent in M (that is, e2 = e), the H -class He is a subgroup of M [13, Corollary 2.2.6] and
the maximal subgroups of our monoid M are precisely the H -classes of idempotents of M .

The L -, R- and D-classes in the full transformation monoid TV , of all maps V → V , are
fully described in terms of the images and kernels of the maps involved (see [13, Exercise 2.6.16]).
We may view the endomorphism monoid M of Γ = (V, E) as a submonoid of TV and if f and g
are, for example, L -related in EndΓ, they are certainly L -related in TV . Consequently, parts
(i) and (ii) of the following lemma follow immediately.

Lemma 2.3 Let f and g be endomorphisms of the relational structure Γ = (V, E).

(i) If f and g are L -related, then V f = V g.

(ii) If f and g are R-related, then ker f = ker g.

(iii) If f and g are D-related, then the induced substructures 〈V f〉 and 〈V g〉 are isomorphic.

Proof: (iii) Write E = (Ei)i∈I . By assumption, there exists h ∈ EndΓ such that fRh and
hL g. By (i), it follows V h = V g. As fRh, there exist endomorphisms s and t of Γ with h = fs
and f = ht. As f = fst and h = hts, the map s induces a bijection from V f to V h. Moreover,
as s and t are endomorphisms, s induces, for each i ∈ I, a bijection from Ei ∩ (V f × V f) to
Ei ∩ (V h× V h) with inverse t. Hence s induces an isomorphism from 〈V f〉 to 〈V h〉 = 〈V g〉. �

An element f ofM is called regular if there exists g ∈M such that fgf = f . An idempotent
endomorphism e is regular since e3 = e and if f is regular, then every element in the D-class
of f is also regular [13, Proposition 2.3.1]. We refer to such D-classes as regular D-classes. We
are particularly concerned with idempotent endomorphisms and their H - and D-classes and
so the observation in Lemma 2.5 below that the implications in Lemma 2.3 reverse for regular
elements is useful.

If f is any endomorphism of Γ = (V, E), where E = (Ei)i∈I , then immediately Eif ⊆
Ei ∩ (V f × V f) for all i. On the other hand, if f is regular, say fgf = f for g ∈M , then gf is
idempotent and it is easy to check that V gf = V f . Hence if (x, y) ∈ Ei ∩ (V f × V f), then
x, y ∈ V gf and (x, y) = (x, y)gf ∈ Eif . Consequently Ei∩ (V f ×V f) = Eif , which establishes
that for regular endomorphisms our two possible definitions of image coincide.
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Proposition 2.4 Let f be a regular endomorphism of the relational structure Γ = (V, E). Then
the image im f = (V f, Ef) and the induced substructue 〈V f〉 of Γ are equal. �

Lemma 2.5 Let f and g be regular elements in the endomorphism monoid of the relational
structure Γ = (V, E). Then

(i) f and g are L -related if and only if V f = V g;

(ii) f and g are R-related if and only if ker f = ker g;

(iii) f and g are D-related if and only if the images of f and g are isomorphic.

Proof: It suffices to establish the “if” versions of each part. For (i) and (ii) this follows
immediately since, for example, if V f = V g, then f and g are L -related in TV (by [13,
Exercise 2.6.16]) and hence are L -related in EndΓ (see [18, Proposition A.1.16]).

(iii) A more general version of this result is Theorem 2.6 in [16], but what we require can be
completed easily. If α is an isomorphism from im f to im g, then fα is an endomorphism of Γ
with image im g. As g is regular, there is an idempotent endomorphism e that is L -related to g,
by [13, Proposition 2.3.2]. By (i), V e = V g and therefore im g = im e, using Proposition 2.4.
Hence the restriction e|im g is the identity. Then eα−1 is an endomorphism of Γ such that
fα · eα−1 = fαα−1 = f and we conclude that fRfα. It follows, by [13, Proposition 2.3.1], that
fα is also a regular element and so fαL g by (i). Hence fDg, as required. �

One might ask what happens in the case that the H -class H = Hf , of some endomorphism f
in M = EndΓ, is not a group. In such a case, one can associate to H the Schützenberger group,
which we shall denote SH . This consists of the permutations of the H -class H induced by
certain elements of M . Specifically, we define TH = { t ∈ M | Ht ⊆ H } and SH = { γt |
t ∈ TH }, where the map γt : H → H is given by h 7→ ht. It is known (see, for example,
[4, Theorem 2.22]) that SH is a group and if H is itself a group (for example, when f is an
idempotent) then SH

∼= H. Moreover, two H -classes in the same D-class have isomorphic
Schützenberger groups (see [4, Theorem 2.25]), which is why we produce distinct D-classes in
Theorems 3.14, 4.10 and 5.11. Amongst other things, we shall observe that in our context this
group can be expressed as a subgroup of the automorphism group of the image of f .

Proposition 2.6 Let f be an endomorphism of the relational structure Γ = (V, E) and H be
the H -class of f in EndΓ. Then

(i) if t ∈ TH , the restriction of t to the set V f induces an automorphism of both 〈V f〉
and im f ;

(ii) the mapping φ : γt 7→ t|V f (for t ∈ TH) defines an injective homomorphism from the
Schützenberger group SH into Aut〈V f〉 ∩Aut(im f);

(iii) if f is an idempotent endomorphism, then H ∼= Aut(im f) (as groups);

(iv) if f : V → V is injective and defines an endomorphism of Γ and g is an automorphism
of im f , then fg is L -related to f .
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Part (iii) of this lemma can also be shown directly without reference to the Schützenberger
group; see [17, Theorem 2.7]. When Γ is one of the existentially closed structures that we
are interested in and f arises in a specific way, we shall extend part (iv) to show that fg is
actually H -related to f and hence that the image of φ in part (ii) is Aut〈V f〉∩Aut(im f) (see
Propositions 3.13, 4.9 and 5.10 below).

Proof: (i) If t ∈ TH , then ft is H -related to f and so V ft = V f and ker ft = ker f , by
Lemma 2.3. It follows that t induces a bijection on the set V f and hence an endomorphism
of the substructure 〈V f〉. Also there exists some endomorphism s such that fts = f . Hence
if (uft, vft) ∈ Ei for some relation Ei ∈ E , then so is (uf, vf) = (ufts, vfts) and we conclude
that t induces an automorphism of 〈V f〉.

Now ft is, in particular, L -related to f and so there exist endomorphisms g and h of Γ
such that ft = gf and hft = f . Let (v1, v2) ∈ Eif for some Ei ∈ E , so vj = ujf for some
points uj ∈ V , for j = 1, 2, with (u1, u2) ∈ Ei. Then vjt = ujft = ujgf and we conclude
(v1t, v2t) is the image of (u1, u2) under the endomorphism gf and so (v1t, v2t) ∈ Eif . Thus
t induces an endomorphism of im f . In addition, the endomorphism s in the previous paragraph
is the inverse of t on the set V f and, since fs = hfts = hf , we similarly conclude s induces an
endomorphism of im f . Hence t induces an automorphism of the image.

(ii) Note that if γs = γt for some s, t ∈ TH , then in particular fs = ft and so the restrictions
of s and t to V f coincide. Conversely, if these restrictions coincide then fs = ft and we conclude
that hs = ht for all h that are L -related to f . Hence γs = γt. Therefore, using (i), we observe
that φ is a injective map and it is straightforward to see that it is also a homomorphism.

(iii) Since f is an idempotent endomorphism, 〈V f〉 = im f , by Proposition 2.4. Then, given
an automorphism g of im f , note that fg is H -related to f , because (fg)(fg−1) = f since
f acts as the identity on its image. We then see that γfgφ has the same effect on points in V f
as g does. Hence φ : S → Aut(im f) is surjective, as required to establish the isomorphism.

(iv) If g is an automorphism of im f , define h : V → V by setting vh to be the unique point
satisfying vhf = vfg. Since f is injective and g is a bijection on the set V f , we conclude that
h is a permutation of V . As both g and g−1 are automorphisms of im f , we deduce that h is
an automorphism of Γ. Then, from f = h−1fg, we conclude that fg and f are L -related. �

3 Graphs

In this paper, a graph will have its usual definition; that is, a relational structure Γ = (V,E)
where V is the set of vertices and E is an irreflexive symmetric binary relation on V . Thus
the term graph refers to an undirected graph without loops or multiple edges. If (u, v) is an
edge in E, we then say that the vertices u and v are adjacent in Γ. Recall that a graph Γ is
algebraically closed if for every finite subset A of its vertices, there exists some vertex v such
that v is adjacent to every member of A.

In order to establish our results, we introduce a number of constructions. If Γ = (V,E) is
any graph, we define the complement of Γ to be the graph Γ† with vertex set V and edge set
(V × V ) \ (E ∪ { (v, v) | v ∈ V }). Thus Γ† is the graph containing precisely all the edges that
are not present in Γ. We observe immediately:

Lemma 3.1 Let Γ and ∆ be any graphs. Then (i) AutΓ† = Aut Γ; (ii) Γ ∼= ∆ if and only if
Γ† ∼= ∆†. �
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Figure 1: The graph L{2,4,5,...}

Recall that a graph is locally finite if every vertex is adjacent to a finite number of vertices.
If Γ = (V,E) and ∆ = (W,F ) are two graphs (where the vertex sets V and W are assumed
disjoint), then the disjoint union Γ ∪̇∆ is the graph with vertex set V ∪W and edge set E ∪F .
These two concepts may be used to construct an algebraically closed graph as follows:

Lemma 3.2 Let Γ be any graph and Λ be an infinite locally finite graph. Then (Γ ∪̇ Λ)† is
algebraically closed.

Proof: Let V and W denote the vertex sets of Γ and Λ respectively and let ∆ = (Γ ∪̇ Λ)†. If
A is a finite subset of V ∪W then, since Λ is locally finite, there exists some vertex v ∈W that
is not adjacent in Λ to any vertex in A ∩W . Consequently, v is not adjacent in Γ ∪̇ Λ to any
vertex in A and so by construction v is adjacent in ∆ to every vertex in A. �

We shall use here, and also in later sections, the locally finite graphs LS defined as follows.
Let S be any subset of N \ {0, 1}. The set of vertices of LS is { ℓn | n ∈ N } ∪ { vn | n ∈ S }. For
every n ∈ N, vertex ℓn is adjacent to ℓn+1, while for every n ∈ S, vertex ℓn is also adjacent to vn.
See Figure 1 for a diagram of an example of LS . The following presents the basic information
we need about the graphs LS . If S ⊆ N\{0, 1}, then we write S+k for the set {n+k | n ∈ S }.

Lemma 3.3 Let S, T ⊆ N \ {0, 1}. Then

(i) AutLS = 1;

(ii) there exists a graph homomorphism f : LS → LT defined by an injective map on the sets
of vertices if and only if there exists some k ∈ N such that S + k ⊆ T ;

(iii) LS
∼= LT if and only if S = T .

Proof: (i) By construction, ℓ0 is the only vertex of degree 1 in LS that is adjacent to a vertex
of degree 2. All other vertices ℓn (for n > 1) have degree at least 2. All vertices vn (for n ∈ S)
have degree 1 and are adjacent to vertices ℓn of degree 3. It follows that AutLS = 1.

(ii) Suppose f : LS → LT is a graph homomorphism given by an injective map on the sets
of vertices. Then f must map the infinite path {(ℓ0, ℓ1), (ℓ1, ℓ2), . . . } in LS to an infinite path
of distinct vertices in LT . Hence there exists k ∈ N such that ℓnf = ℓn+k for all n ∈ N. In order
that edges of the form (ℓn, vn) in LS are mapped to edges in LT , it follows that S + k ⊆ T .

Conversely, if S + k ⊆ T , then the map f : LS → LT given by ℓnf = ℓn+k for n ∈ N and
vnf = vn+k for n ∈ S is a graph homomorphism.

(iii) follows immediately from (ii). �

We now establish the first of our main theorems for graphs.

Theorem 3.4 Let Γ be a countable graph. Then there exist 2ℵ0 pairwise non-isomorphic
countable algebraically closed graphs whose automorphism group is isomorphic to that of Γ.
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Proof: Fix the countable graph Γ. This has at most countably many connected components
and so, by Lemma 3.3(iii), there are 2ℵ0 choices of subsets S of N \ {0, 1} such that LS is
isomorphic to no component of Γ. For such a choice of S,

Aut(Γ ∪̇ LS)
† = Aut(Γ ∪̇ LS) ∼= AutΓ×AutLS

∼= AutΓ.

Hence there are 2ℵ0 choices of S such that ∆S = (Γ ∪̇LS)
† has automorphism group isomorphic

to that of Γ. Lemma 3.2 tells us that each ∆S is algebraically closed.
Finally, if S and T are distinct subsets of N \ {0, 1} such that neither LS nor LT are

isomorphic to a connected component of Γ, then LS 6∼= LT by Lemma 3.3(iii). It then follows
that Γ ∪̇ LS 6∼= Γ ∪̇ LT and hence ∆S 6∼= ∆T by Lemma 3.1(ii). This completes the proof. �

To establish the required information about images of endomorphisms of the countable
universal graph R, we shall remind the reader of a standard way to construct R by building it
around any countable graph. For a countable graph Γ = (V,E), construct a new graph G(Γ) as
follows. Enumerate the finite subsets of V as (Ai)i∈I where I ⊆ N. For each i ∈ I, let vi be a
new vertex. Define G(Γ) to be the graph with vertex set V ∪ { vi | i ∈ I } and edge set

E ∪ { (vi, a), (a, vi) | a ∈ Ai, i ∈ I };

thus, we have, for each i, added a new vertex vi that is adjacent to every vertex in Ai but
to no other vertex in G(Γ). Now construct a sequence of graphs Γn by defining Γ0 = Γ and
Γn+1 = G(Γn) for each n > 0. Since each Γn is naturally a subgraph of Γn+1, we can define Γ∞ to
be the limit of this sequence of graphs. The resulting graph is countable and is, by construction,
existentially closed and so isomorphic to the countable universal graph R.

Suppose now that we also have a graph homomorphism f : Γ → Γ∞. As before, enumerate
the finite subsets of V as (Ai)i∈N. We shall define an extension f̃ : G(Γ) → Γ∞. Indeed, suppose
that a graph homomorphism fn has been defined with domain equal to the subgraph of G(Γ)
induced by V ∪ {v1, v2, . . . , vn} and such that the restriction of fn to Γ equals f . As Γ∞ is in
particular algebraically closed, there exists a vertex w within it that is adjacent to every vertex
in (An+1∪{v1, v2, . . . , vn})fn. We extend to a function fn+1 with domain equal to the subgraph
of G(Γ) induced by V ∪ {v1, v2, . . . , vn+1} by defining vn+1fn+1 = w. The choice of w ensures
that fn+1 is a graph homomorphism. Note that, if im f was originally an algebraically closed
subgraph of Γ∞, then we could at every stage choose wn+1 ∈ im f . Consequently, in this case
we can arrange for im fn = im f for all n.

Since each fn+1 extends fn, we may define f̃ = limn→∞ fn =
⋃∞

n=0 fn. Then f̃ is a graph
homomorphism G(Γ) → Γ∞ whose restriction to Γ equals f . Moreover, if im f is algebraically
closed, we can arrange that im f̃ = im f . We use this contruction to establish the first two parts
of the following result (a variant of which appears in a more general setting as [6, Theorem 4.1]):

Lemma 3.5 Let Γ be a countable graph, let Γ∞ be the copy of the countable universal graph
constructed around Γ as described above, and let f : Γ → Γ∞ be a graph homomorphism.

(i) There exist 2ℵ0 endomorphisms f̂ : Γ∞ → Γ∞ such that the restriction of f̂ to Γ equals f .

(ii) If im f is algebraically closed, then there are 2ℵ0 such extensions f̂ of f with im f̂ = im f .

(iii) If f is an automorphism of Γ, then there is an automorphism f̂ of Γ∞ such that the
restriction of f̂ to Γ equals f .

9



Proof: (i), (ii): Our recipe above describes how to extend a graph homomorphism f : Γ → Γ∞

to f̃ : G(Γ) → Γ∞. As Γ∞ is defined as the limit of the sequence given by Γ0 = Γ, Γn+1 = G(Γn),
repeated use of this recipe constructs one example of the required endomorphism f̂ . Now
observe that algebraic closure ensures there are infinitely many suitable vertices w adjacent to
every vertex in (An+1 ∪ {v1, v2, . . . , vn})fn. This freedom at each stage ensures that there are
uncountably many possible extensions f̂ .

(iii) This is achieved by a variant construction. The automorphism f induces a permutation
of the finite subsets Ai. If Aif = Aj, then define the extension f̃ : G(Γ) → G(Γ) by setting
vif̃ = vj . This is an automorphism of G(Γ) and repeated use of this construction yields the
required extension to Γ∞. �

We can now observe that images of idempotent endomorphisms of the countable universal
graph R are characterized by being algebraically closed. This was established by Bonato and
Delić [1, Proposition 4.2] and is part (i) of the following theorem. However, our proof shows
there are in fact uncountably many idempotents with specified (algebraically closed) image.

Theorem 3.6 Let Γ be a countable graph. Then

(i) there exists an idempotent endomorphism f of the countable universal graph R such that
im f ∼= Γ if and only if Γ is algebraically closed;

(ii) if Γ is algebraically closed, there are 2ℵ0 idempotent endomorphisms f of R such that
im f ∼= Γ.

Proof: An existentially closed graph is certainly also algebraically closed and it is easy to see
that this latter property is inherited by images of an endomorphism f .

Conversely, if Γ is algebraically closed, let f be one of the extensions to Γ∞, given by
Lemma 3.5(ii), of the identity map Γ → Γ. We identify Γ∞ with R. Then the restriction of f to
im f = Γ is the identity and so f is an idempotent endomorphism of R with image isomorphic
to Γ. Moreover, as observed in Lemma 3.5, there are actually 2ℵ0 many such idempotent
endomorphisms. Consequently, part (ii) also follows. �

We may now establish that any suitable group arises in 2ℵ0 ways as a maximal subgroup
of EndR.

Theorem 3.7 Let R denote the countable universal graph.

(i) Let Γ be a countable graph. Then there exist 2ℵ0 distinct regular D-classes of EndR
whose group H -classes are isomorphic to Aut Γ.

(ii) Every regular D-class of EndR contains 2ℵ0 distinct group H -classes.

Proof: (i) By Theorem 3.4, there are 2ℵ0 pairwise non-isomorphic countable algebraically
closed graphs with automorphism group isomorphic to that of Γ. For each such graph ∆,
there is an idempotent endomorphism f∆ of R with im f∆ ∼= ∆ by Theorem 3.6(i). The
idempotents f∆ belong to distinct D-classes, by Lemma 2.5(iii). By Proposition 2.6(iii), the
corresponding group H -class satisfies Hf∆

∼= Aut∆ ∼= AutΓ. This establishes part (i).
(ii) Let Df be a regular D-class in EndR with f an idempotent endomorphism belonging

to this class. Let Γ = im f . Then by Theorem 3.6, there exist 2ℵ0 idempotent endomorphisms
of R with image isomorphic to Γ. Each such endomorphism is D-related to f by Lemma 2.5(iii)
but lies in a distinct H -class by parts (i) and (ii) of that lemma. �
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We now turn to the L - and R-classes in the endomorphism monoid of R. We use the
graph Γ♯ constructed from a countably infinite graph Γ by, loosely speaking, replacing every
edge in Γ by a copy of the complete bipartite graph K2,2. More precisely, if Γ = (V,E) and
V = { vi | i ∈ N }, then define Γ♯ = (V ♯, E♯) where

V ♯ = { vi,r | i ∈ N, r ∈ {0, 1} }

and
E♯ = { (vi,r, vj,s) | (vi, vj) ∈ E, r, s ∈ {0, 1} }.

The following observations are straightforward.

Lemma 3.8 Let Γ be any countably infinite graph.

(i) If Γ is algebraically closed, then so is Γ♯.

(ii) For any sequence (bi)i∈N with bi ∈ {0, 1} for all i, the subgraph of Γ♯ induced by the
vertices { vi,bi | i ∈ N } is isomorphic to Γ. �

Theorem 3.9 Every regular D-class of the endomorphism monoid of the countable universal
graph R contains 2ℵ0 many L - and R-classes.

Proof: Fix an idempotent endomorphism f of R and let Γ be the image of f , which is
algebraically closed by Theorem 3.6. First assume that R is constructed as Γ∞ as described
above by taking Γ0 = Γ. Lemma 3.5(ii) tells us that there 2ℵ0 extensions to R of the identity map
on Γ with the same image and all such extensions of D-related to f by Lemma 2.5(iii). However,
as idempotents with the same image, they have distinct kernels and so are not R-related.

On the other hand, we may start with the same graph Γ, form Γ♯ as described above and
then construct Γ∞

∼= R now taking Γ0 = Γ♯. As Γ♯ is also algebraically closed, we can extend
the identity map on Γ♯ to an idempotent endomorphism g of R with image equal to Γ♯. Now
let b = (bi)i∈I be an arbitrary sequence with bi ∈ {0, 1} for each i and define φb : Γ

♯ → Γ♯ by

vi,rφb = vi,bi .

Then φb is an endomorphism of Γ♯ with image equal to the subgraph Λb
∼= Γ induced by the

set of vertices { vi,bi | i ∈ N }. Note that gφb is an idempotent endomorphism of R with image
equal to Λb and hence is D-related to f by Lemma 2.5(iii). As we permit b to vary, we produce
endomorphisms that are not L -related, by Lemma 2.5(i), since if b 6= c then Λb 6= Λc.

This establishes that the D-class of f has both 2ℵ0 many L - and R-classes within it. �

Comment 3.10 It is possible to construct a collection P of 2ℵ0 subsets of N such that for all
distinct pairs S, T ∈ P and all positive integers k, the translate S + k is not contained in T .
Consequently, the graph LS cannot be embedded in any LT for S, T ∈ P. Let us write fS for an
idempotent with image isomorphic to the graph ∆S as defined in the proof of Theorem 3.4. It
then follows that im fS cannot be embedded in im fT for distinct S, T ∈ P and this is sufficient
to establish that EndR has 2ℵ0 many J -classes. See [17, Theorem 3.32] for more details.

Theorem 3.11 Let Γ be any countable algebraically closed graph that is not isomorphic to
the countable universal graph R. Then there exists a non-regular injective endomorphism f
of R such that the subgraph induced by the images of the vertices under f is isomorphic to Γ
and such that the D-class of f contains 2ℵ0 many R- and L -classes.
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Proof: From the graph Γ, first build Γ♯ as above and take Γ0 = Γ♯ when building Γ∞
∼= R as

described earlier. We may thus assume that the countable universal graph R contains amongst
its vertices the vi,r. Write V for the set of vertices of R. Let Λ0 denote the subgraph of Γ♯ induced
by the set of vertices V0 = { vi,0 | i ∈ N }. Then, by Lemma 3.8(ii), Λ0

∼= Γ 6∼= R. There is
therefore, by Corollary 2.2, a bijection V → V0 defining a graph homomorphism f : R→ Λ0. By
construction, 〈V f〉 = 〈V0〉 ∼= Γ. We shall view f as an endomorphism of R via the constructed
embedding of Λ0 in R. Since Λ0 6∼= R, there must exist a pair of vertices u and v in R that
are not adjacent but such that (uf, vf) is an edge in Λ0. Consequently, f is not regular by
Proposition 2.4.

A variant of the argument used in Theorem 3.9 shows that the R-class of f contains 2ℵ0

many H -classes, i.e., that it intersects 2ℵ0 L -classes in the D-class of f . Let b = (bi)i∈N be
an arbitrary sequence with bi ∈ {0, 1} for each i and define ψb : Γ

♯ → Γ♯ by

vi,jψb = vi,j+bi

(where, in the subscript, we perform addition in {0, 1} modulo 2). It follows from the definition
of Γ♯ that ψb is an automorphism of this graph. By Lemma 3.5(iii), ψb can be extended to
an automorphism ψ̂b of R. Certainly fψ̂b is R-related to f . Now V fψ̂b = V0ψb and so,
using Lemma 2.3(i), fψ̂b and fψ̂c are not L -related if b and c are different sequences, since
V0ψb 6= V0ψc. It follows that the R-class of f contains 2ℵ0 non-L -related elements, as required.

Now let ∆ denote the graph that is the disjoint union of a copy R′ of the countable universal
graph and the empty graph E (i.e., with no edges) on a countably infinite set of vertices. By
taking Γ0 = ∆ in the initial step of our standard construction, we may assume that ∆ = R′ ∪̇E
occurs as a subgraph of R. Let g : R′ → R be a fixed isomorphism and let h : E → R be
any map. Then using Lemma 3.5(i) we find an endomorphism ξh : R→ R that simultaneously
extends both g and h. We continue to use the endomorphism f constructed above. Note that
ξhf and f are L -related, for any choice of h, since g−1ξhf = f (where by g−1 we mean the
endomorphism of R corresponding to the inverse R→ R′ of g).

Observe ker ξhf = ker ξh since f is injective. Therefore, if h, k : E → R are chosen with
ker h 6= ker k, then ξhf and ξkf are not R-related, by Lemma 2.3(ii). As there are 2ℵ0 possible
kernels for the map h, we conclude the D-class of f indeed contains 2ℵ0 many R-classes. �

Corollary 3.12 There are 2ℵ0 non-regular D-classes in EndR.

Proof: By Theorem 3.4 there are 2ℵ0 isomorphism types of countable algebraically closed
graphs. By the previous theorem, for each such graph Γ, with Γ 6∼= R, there is a non-regular
injective endomorphism f with 〈V f〉 ∼= Γ and each Γ determines a distinct D-class of f by
Lemma 2.3(iii). �

Finally, we turn to the Schützenberger groups of H -classes of non-regular endomorphisms.
As mentioned in Section 2, for specific injective endomorphisms of the countable universal graph
we are able to make Proposition 2.6 more precise.

Let Γ0 = (V0, E0) be a countable algebraically closed graph. Then, by Proposition 2.1(i),
there exists some F0 ⊆ E0 such that (V0, F0) is isomorphic to the countable universal graph R.
Use Γ0 in the initial step of the construction of R. Hence we can assume that R = (V,E)
contains Γ0 = (V0, E0) as a subgraph. Let f : R → R be the endomorphism that realises the
isomorphism (V0, F0) ∼= R; that is, f is given by a bijection from V to V0 and from E to F0.
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Consider a bijection g : V0 → V0 such that g is an automorphism both of im f = (V0, F0)
and of 〈V f〉 = 〈V0〉 = (V0, E0). By Proposition 2.6(iv), fg is L -related to f . However, since
g is an automorphism of Γ0, we can, by Lemma 3.5(iii), extend it to an automorphism ĝ of R.
Then we observe that fg and f are also R-related since fg = f ĝ and (fg)ĝ−1 = f . We can
now similarly establish that if h is an element of the H -class H of f , then hĝ is also H -related
to h. Hence ĝ ∈ TH (in the notation introduced in Section 2). Now returning to Proposition 2.6
we see that

γĝφ = ĝ|〈V0〉 = g.

Hence we conclude that the image of φ is Aut(V0, F0) ∩Aut(V0, E0); that is:

Proposition 3.13 Let f be an injective endomorphism of the countable universal graph R of
the form specified above and let H = Hf . Then SH

∼= Aut〈V f〉 ∩Aut(im f). �

To construct H -classes with Schützenberger group isomorphic to a particular group, we
need to specify the particular graph to select as Γ0 in the above argument. We shall again make
use of the graphs LS, for S ⊆ N \ {0, 1}, defined earlier. For such a subset S, define MS to be
the graph whose vertices are those of LS together with new vertices xn (for n ∈ N) and whose
edges are those of LS together with additional edges

{ (y, xn), (xn, y), (xm, xn), (xn, xm) | y ∈ V (LS), m, n ∈ N, m 6= n }.

Note that the xn are joined to every other vertex inMS , while no other vertex has this property.
It follows that any automorphism of MS must induce an automorphism of LS and permute the
vertices xn. As AutLS = 1, we conclude AutMS is isomorphic to the symmetric group on a
countably infinite set. Similarly, using Lemma 3.3(iii), if S and T are subsets of N \ {0, 1} then
MS

∼=MT if and only if S = T .
Now let Γ be an arbitrary countable graph and let Sn, for n ∈ N, be a sequence of distinct

subsets of N \ {0, 1} such that the graph MSn is not isomorphic to any connected component
of Γ. We perform the following construction: Define Γ∗

0 = Γ† (the complement of Γ, as previ-
ously). Then, assuming that Γ∗

n has been defined, enumerate the finite subsets of vertices of Γ∗
n

as (Ai)i∈N. Let the vertices of Γ∗
n+1 be the union of the vertices of Γ∗

n, the vertices of LSn and

new vertices {x
(n)
i | i ∈ N }. Define the edges of Γ∗

n+1 to be the edges of Γ∗
n together with

edges between a and x
(n)
i for all a ∈ Ai and all i. Having constructed the graphs Γ∗

n, we let
Γ∗ = (V ∗, E∗) be the limit of this sequence of graphs. By construction, Γ∗ is existentially closed
and therefore isomorphic to the countable universal graph R.

Now let Γ0 = (V ∗, E0) be the graph whose edges are all possible edges between pairs of
vertices except the following are not included:

(i) the edges in Γ;

(ii) for each n ∈ N, all edges between distinct vertices of {x
(n)
i | i ∈ N };

(iii) for each n ∈ N, the edges in LSn ;

(iv) for each n ∈ N, all edges between a vertex in LSn and a vertex x
(n)
i .

Note then that E∗ ⊆ E0. Therefore Γ0 is algebraically closed and it is this graph that we use
in the argument employed above to establish Proposition 3.13. Let f : R→ R be the endomor-
phism given by an injective map on the set V of vertices of R and whose image is (V ∗, E∗). Note
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that f is necessarily not regular by Proposition 2.4, since im f = (V ∗, E∗) 6= 〈V f〉 = (V ∗, E0).
Then the Schützenberger group of the H -class of f is as specified by Proposition 3.13, namely
SHf

∼= Aut(V ∗, E0) ∩Aut(V ∗, E∗).

To apply this result, we first determine the automorphism group of Γ0. Note that Γ†
0 is the

disjoint union of the graphs Γ and MSn for n ∈ N. Hence

AutΓ0
∼= AutΓ†

0
∼= Aut Γ×

∏

n∈N

AutMSn
∼= AutΓ× (SymN)ℵ0

by our earlier observations. It follows that if g is a bijection V → V that is simultaneously an
automorphism of both (V ∗, E0) and (V ∗, E∗), then g induces an automorphism of Γ, fixes all

vertices of LSn (for all n ∈ N) and, for each n ∈ N, permutes the vertices in {x
(n)
i | i ∈ N }.

However, given an automorphism of Γ, there is precisely one choice for these permutations that

defines an automorphism of (V ∗, E∗) since, at each stage n, the vertex x
(n)
i must be mapped to

the vertex adjoined to the finite set Aig. We conclude that mapping g to its restriction to the
vertices of Γ yields an isomorphism from Aut(V ∗, E0) ∩Aut(V ∗, E∗) to Aut Γ.

Finally, note that this method also constructs for us 2ℵ0 many D-classes where the Schützen-
berger group is isomorphic to the automorphism group of Γ. First fix the subsets Sn for n > 2 as
above. There remain 2ℵ0 possible choices now for S1 in order to follow the above construction.
Each such S1 determines an (injective) non-regular endomorphism f = fS1 of R with SHf

∼=

AutΓ. Moreover, since 〈V f〉† = Γ†
0 is the disjoint union of Γ and the MSn , when S1 6= S′

1 there
can exist no isomorphism from 〈V fS1〉 to 〈V fS′

1
〉 since MS1 6∼= MS′

1
. Hence fS1 and fS′

1
belong

to distinct D-classes if S1 6= S′
1 by Lemma 2.3(iii).

We have now established our final result about the endomorphism monoid of R:

Theorem 3.14 Let Γ be any countable graph. There are 2ℵ0 non-regular D-classes of the
countable universal graph R such that the Schützenberger groups of H -classes within them are
isomorphic to Aut Γ. �

4 Directed graphs

A directed graph is a relational structure Γ = (V,E) where E is an irreflexive binary relation
on V . This ensures that every graph is, in particular, a directed graph. We can therefore use
all the graphs constructed in Section 3 but now viewed as directed graphs. Consequently, our
methods in this section are almost identical to those for undirected graphs and we therefore
omit most of the details. Furthermore, the class of groups arising as the automorphism group
of a graph are amongst those that arise as the automorphism group of a directed graph. Our
first step is to show that these two classes are actually the same.

Let Γ = (V,E) be a countable directed graph. Enumerate the vertices of Γ as V = { vi | i ∈
I } (where I ⊆ N). We construct an (undirected) graph Γ⊣ = (V ′, E′) as follows. Set

V ′ = V ∪ {xjk, yjk, zjk | (vj , vk) ∈ E }

and define the (undirected) edges in Γ⊣ to be all (vj , xjk), (xjk, yjk), (yjk, zjk) and (yjk, vk) for
all (vj , vk) ∈ E. This has the effect of replacing the “arrow” from vj to vk in Γ by the shape
shown in Figure 2.

For our directed graph Γ = (V,E), let us also define, for v ∈ V ,

Γ+(v) = {x ∈ V | (v, x) ∈ E } and Γ−(v) = {x ∈ V | (x, v) ∈ E }.
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vj xjk yjk vk

zjk

Figure 2: Replacement edges in Γ⊣

. . .

Figure 3: L{2,4,5,... } as a directed graph

Lemma 4.1 Let Γ = (V,E) be a directed graph. Suppose that |Γ+(v)| + |Γ−(v)| > 3 for all
v ∈ V . Then AutΓ⊣ ∼= AutΓ.

Proof: We observe that, by construction, in Γ⊣, every vertex in X = {xjk | (vj , vk) ∈ E }
has degree 2, every vertex in Y = { yjk | (vj , vk) ∈ E } has degree 3, every vertex in Z =
{ zjk | (vj , vk) ∈ E } has degree 1 and (by assumption) every vi has degree greater than 3.
Consequently, if f ∈ AutΓ⊣ then Xf = X, Y f = Y , Zf = Z and V f = V .

Let us define a map φ : AutΓ⊣ → Aut Γ by fφ = f |V for all f ∈ AutΓ⊣. For such an
automorphism f , from the above observation, fφ defines a bijection V → V . If (u, v) is a
(directed) edge in Γ, then there exists x ∈ X and y ∈ Y such that (u, x), (x, y) and (y, v) are
(undirected) edges in Γ⊣. Then (uf, xf), (xf, yf) and (yf, vf) are edges in Γ⊣ and necessarily
xf ∈ X and yf ∈ Y . It follows that (uf, vf) must be an edge in Γ. Similarly, if (u, v) /∈ E,
then (uf, vf) /∈ E. Hence fφ is indeed a graph automorphism of Γ.

It is straightforward to see that φ is a homomorphism and, since the images of xjk, yjk
and zjk (for (vj , vk) ∈ E) under f are completely determined by vjf and vkf , it follows that
φ is injective. Finally, if h ∈ Aut Γ, define vif = vih for all i and if (vj , vk) ∈ E with vjh = vℓ
and vkh = vm define xjkf = xℓm, yjkf = yℓm and zjkf = zℓm. This defines f ∈ AutΓ⊣ with
the property that fφ = f |V = h. Consequently, φ is an isomorphism as required. �

In addition to the above lemma, the other tools we require are the constructions used in
Section 3. If S is a subset of N \ {0, 1}, we define the graph LS as earlier, but we now view it
as a directed graph. So, for any pair of vertices u and v joined in LS , there is both an edge
from u to v and from v to u (see Figure 3). The disjoint union of two directed graphs and the
complement Γ† of a directed graph Γ are defined exactly as earlier. In particular, there is an
edge (u, v) from u to v in Γ† if and only if there is no edge from u to v in Γ. Using these we
now observe that the classes of groups arising as the automorphism group of a directed graph
and as the automorphism group of an undirected graph coincide.

Proposition 4.2 Let Γ be a countable directed graph. Then there exists an (undirected)
countable graph Λ such that AutΛ ∼= Aut Γ.

Proof: As Γ is countable, we can choose S such that the directed graph LS is not isomorphic
to any component of Γ. Take ∆S to be the directed graph (Γ ∪̇LS)

† and Λ to be the undirected
graph ∆⊣

S as constructed above. By construction, each vertex in ∆S has infinite degree and so,
by Lemmas 4.1, 3.1(i) and 3.3(i), AutΛ ∼= Aut∆S

∼= Aut(Γ ∪̇ LS) ∼= AutΓ, as required. �
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For the class of directed graphs, the condition to be algebraically closed is easily seen to be
equivalent to the following: a directed graph Γ = (V,E) is algebraically closed if for any finite
subset A of its vertices, there exists some vertex v such that (u, v), (v, u) ∈ E for all u ∈ A. If
we start with a directed graph Γ and perform the same constructions as in Section 3, then we
observe that ∆S = (Γ∪̇LS)

† is algebraically closed (as a directed graph) and, provided LS is not
isomorphic to any (weakly) connected component of Γ, that Aut∆S

∼= AutΓ. This establishes
the analogue of Theorem 3.4 for the class of directed graphs:

Theorem 4.3 Let Γ be a countable (undirected) graph. Then there exist 2ℵ0 pairwise non-
isomorphic countable algebraically closed directed graphs whose automorphism group is isomor-
phic to that of Γ. �

As in the previous section, we shall make use of a standard method to construct a copy
of the countable universal directed graph. If Γ = (V,E) is any countable directed graph, first
construct a new directed graph H(Γ) as follows. Enumerate the set of all triples of finite and
pairwise disjoint subsets of Γ as (Ai, Bi, Ci)i∈I for I ⊆ N. Define H(Γ) to be the directed graph
with vertex set V ∪ { vi | i ∈ I } (where each vi is a new vertex) and edge set

E ∪ { (vi, a), (b, vi), (vi, c), (c, vi) | a ∈ Ai, b ∈ Bi, c ∈ Ci, i ∈ I }.

Thus each new vertex vi has the property that there is an edge from vi to every vertex in Ai,
from every vertex in Bi to vi, and from vi to every vertex in Ci and vice versa.

Now construct a sequence of directed graphs Γn by defining Γ0 = Γ and Γn+1 = H(Γn) for
each n > 0. We define Γ∞ to be the limit of this sequence of graphs, which is countable and,
by construction, existentially closed. Therefore Γ∞ is isomorphic to the countable universal
directed graph D.

The same arguments apply to constructing extensions of homomorphisms and an analogue
of Lemma 3.5 transfers straight across to the setting of directed graphs. We then establish,
by identical methods as used in Section 3, first the characterization of graphs that arise as
images of idempotent endomorphisms of the countable universal directed graph D and second
observations about H - and D-classes of regular elements of the endomorphism monoid D:

Theorem 4.4 Let Γ be a countable directed graph. Then

(i) there exists an idempotent endomorphism f of the countable universal directed graph D
such that im f ∼= Γ if and only if Γ is algebraically closed;

(ii) if Γ is algebraically closed, there are 2ℵ0 idempotent endomorphisms f of D such that
im f ∼= Γ. �

Theorem 4.5 Let D denote the countable universal directed graph.

(i) Let Γ be a countable (undirected) graph. Then there exist 2ℵ0 distinct regular D-classes
of EndD whose group H -classes are isomorphic to AutΓ.

(ii) Every regular D-class of EndD contains 2ℵ0 distinct group H -classes. �

It is a consequence of this theorem that the maximal subgroups of the endomorphism monoid
of the countable universal directed graph are, up to isomorphism, the same as the maximal
subgroups of the endomorphism monoid of the countable universal (undirected) graph R.
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The formulae used in Section 3 to define Γ♯ make perfect sense when Γ is a directed
graph. They provide us with a directed graph satisfying analogous properties to those stated in
Lemma 3.8. This is the primary tool in establishing the following results, which are the directed
graph analogues of 3.9, 3.11 and 3.12. The proofs are identical to those for undirected graphs,
except for judicious insertion of the word “directed”, and so we omit them.

Theorem 4.6 Every regular D-class of the endomorphism monoid of the countable universal
directed graph D contains 2ℵ0 many L - and R-classes.

Theorem 4.7 Let Γ be any algebraically closed directed graph that is not isomorphic to the
countable universal directed graphD. Then there exists a non-regular injective endomorphism f
of D such that the subgraph induced by the images of the vertices under f is isomorphic to Γ
and such that the D-class of f contains 2ℵ0 R- and L -classes. �

Corollary 4.8 There are 2ℵ0 non-regular D-classes in EndD. �

For the Schützenberger groups of H -classes of non-regular endomorphisms of the countable
universal directed graph D = (V,E), we proceed once more as in Section 3. If Γ0 = (V0, E0)
is an algebraically closed directed graph, let F0 ⊆ E0 be such that (V0, F0) ∼= D (as provided
by Proposition 2.1(i)). Assume that D has been constructed using Γ0 in the initial step of our
standard method and let f : D → D be the endomorphism that realises this isomorphism; that
is, f is given by a bijection V → V0 that induces a bijection from E to F0. Then the same
argument as used to establish Proposition 3.13 gives:

Proposition 4.9 Let f be an injective endomorphism of the countable universal directed
graph D of the form specified above and H = Hf . Then SH

∼= Aut〈V f〉 ∩Aut(im f). �

To apply this proposition, we make minor changes in the argument used to establish The-
orem 3.14. Let Γ be an arbitrary countable (undirected) graph and let Sn, for n ∈ N, be a
sequence of distinct subsets of N\{0, 1} such that the graphMSn (as defined towards the end of
Section 3) is not isomorphic to any connected component of Γ. Define Γ∗

0 = Γ† (the complement
of Γ) and view this as a directed graph. Then, assuming that the directed graph Γ∗

n has been
defined, enumerate the triples of finite pairwise disjoint subsets of Γ∗

n as (Ai, Bi, Ci)i∈N. Let the
vertices of Γ∗

n+1 be the union of the vertices of Γ∗
n, the vertices of the graph LSn and new vertices

{x
(n)
i , y

(n)
i , z

(n)
i | i ∈ N }. Define the edges of Γ∗

n+1 to be the edges of Γ∗
n together with, for all

i ∈ N, (x
(n)
i , a) for a ∈ Ai, (b, y

(n)
i ) for b ∈ Bi, and both (z

(n)
i , c) and (c, z

(n)
i ) for c ∈ Ci. We

define Γ∗ = (V ∗, E∗) to be the limit of this sequence of directed graphs, which is existentially
closed by construction and so isomorphic to the countable universal directed graph D.

Then let Γ0 = (V ∗, E0) be the directed graph whose edges are all possible edges between
pairs of vertices except the following are not included:

(i) the edges of Γ;

(ii) for each n ∈ N, all edges between distinct vertices of {x
(n)
i , y

(n)
i , z

(n)
i | i ∈ N };

(iii) for each n ∈ N, the edges in LSn ;

(iv) for each n ∈ N, all edges between a vertex in LSn and a vertex x
(n)
i , y

(n)
i or z

(n)
i and vice

versa.
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We have, of course, constructed an undirected graph but in this context we shall view Γ0 as
a directed graph. By construction, E∗ ⊆ E0. Therefore Γ0 is an algebraically closed directed
graph and we use this graph when applying Proposition 4.9. The endomorphism f : D → D
whose image is (V ∗, E∗) is not regular since E∗ 6= E0.

The complement Γ†
0 is the disjoint union of Γ and copies of MSn (namely the graph com-

prising the vertices of LSn and the vertices x
(n)
i , y

(n)
i and z

(n)
i for i ∈ N). Hence

AutΓ0
∼= AutΓ†

0
∼= AutΓ×

∏

n∈N

AutMSn
∼= AutΓ× (SymN)ℵ0 .

The same argument as employed in Section 3 shows that Aut(V ∗, E0) ∩ Aut(V ∗, E∗) ∼= Aut Γ.
Equally, by varying the subset S1 we produce 2ℵ0 many D-classes of the endomorphism f .
Therefore, the analogue of Theorem 3.14 holds for the countable universal directed graph:

Theorem 4.10 Let Γ be any countable (undirected) graph. There are 2ℵ0 non-regular D-
classes of the countable universal directed graph D such that the Schützenberger groups of
H -classes within them are isomorphic to AutΓ. �

5 Bipartite graphs

One usually defines an (undirected) graph Γ = (V,E) to be bipartite if there exists a function
c : V → {0, 1} such that c(u) 6= c(v) whenever (u, v) ∈ E. However, as noted by Evans in [8,
Section 2.2.2], it is easy to observe that the class of finite graphs satisfying this condition does
not have the amalgamation property and so we cannot speak of the Fräıssé limit of such graphs.
The solution is to encode the partition of the vertex set V via an additional equivalence relation.
Accordingly, we define a bipartite graph to be a relational structure Γ = (V,E, P ) such that
E is an irreflexive symmetric binary relation on V , P = (V0×V0)∪ (V1×V1) for some partition
V = V0 ∪̇ V1 of the vertex set, and if (u, v) ∈ E then (u, v) 6∈ P (which means one of u and v
belongs to V0 and the other belongs to V1).

Let Γ = (V,E, P ) and ∆ = (W,F,Q) be bipartite graphs in this sense, where V = V0 ∪̇ V1
and W = W0 ∪̇ W1 are the partitions of the vertex sets given by P and Q, respectively. It
follows from the definition that if f : Γ → ∆ is a homomorphism, then V0f is contained in one
of W0 or W1 and similarly for V1f . Moreover, if f is an embedding then either V0f ⊆ W0 and
V1f ⊆ W1, or V0f ⊆ W1 and V1f ⊆ W0. This enables one to show that the class of bipartite
graphs (according to our definition) satisfies the amalgamation property and hence there is a
unique Fräıssé limit of the finite bipartite graphs, the countable universal bipartite graph B.

A particular observation from the previous paragraph is that if f is an automorphism of
the bipartite graph Γ = (V,E, P ), where P = (V0 × V0) ∪ (V1 × V1), then either V0f = V0 and
V1f = V1, or V0f = V1 and V1f = V0. We call f part-fixing if V0f = V0 and V1f = V1. The
following observation is straightforward.

Lemma 5.1 Let Γ = (V,E, P ) be a bipartite graph such that the graph (V,E) is connected.
Then Aut Γ = Aut(V,E).

To address which groups could arise as the group H -classes and Schützenberger groups of
the countable universal bipartite graph, we shall first observe that any group arising as the
automorphism group of a graph also arises as that of a bipartite graph, and vice versa. To
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achieve the first of these, let Γ = (V,E) be any countable graph. We now associate a countable
bipartite graph Γ′ = (V ′, E′, P ′) to Γ. Enumerate the vertices of Γ as V = { vi | i ∈ I } (where
I ⊆ N). Whenever there is an edge joining vertices vi and vj in Γ (with i < j), choose a
new vertex xij so that the set X = {xij | (vi, vj) ∈ E, i < j } is a set disjoint from V . Set
V ′ = V ∪X, P ′ = (V × V ) ∪ (X ×X) and

E′ = { (vi, xij), (vj , xij), (xij , vi), (xij , vj) | (vi, vj) ∈ E, i < j }.

(Intuitively, we have added a new vertex xij in the middle of each original edge (vi, vj) and the
partition of our new graph Γ′ is into “old vertices” and “new middle-edge vertices”.)

Define Γ(v) to be the set of vertices in Γ that are joined by an edge to v.

Lemma 5.2 Let Γ = (V,E) be a countable graph such that |Γ(v)| > 3 for all v ∈ V . Then
AutΓ′ ∼= AutΓ and every automorphism of Γ′ is part-fixing.

Proof: If f ∈ AutΓ′, then f defines an automorphism of the graph (V ′, E′). Since each x ∈ X
has degree 2 and each vertex v ∈ V has the same degree in Γ′ as in Γ, we conclude from the
hypothesis that Xf = X and V f = V . In other words, each automorphism of Γ′ is part-fixing.

Now define a map φ : AutΓ′ → Aut Γ by defining fφ to be the restriction of f to the
elements of V . We have observed that f restricts to a bijection V → V . If (u, v) ∈ E, then
there is a unique x ∈ X such that (u, x), (x, v) ∈ E′. Then (uf, xf), (xf, vf) ∈ E′, as f is an
automorphism of Γ′, and the definition of our bipartite graph Γ′ then tells us that (uf, vf) ∈ E.
Similarly, if (uf, vf) ∈ E, then we deduce (u, v) ∈ E and we conclude that fφ does indeed
define an automorphism of the graph Γ.

Then φ is a homomorphism from AutΓ′ to AutΓ. It is injective, since the effect of f on
the vertices in V completely determines the effect on the vertices in X. If h ∈ Aut Γ, we may
extend h to an automorphism h̃ of Γ′ by mapping a vertex x ∈ X satisfying (u, x), (x, v) ∈ E
to the unique vertex y ∈ X satisfying (uh, y), (y, vh) ∈ E. Then h̃ ∈ AutΓ′ and h̃φ = h,
completing the proof. �

We shall also need analogues of the constructions in Section 3 for bipartite graphs. First,
if Γ = (V,E, P ) is a bipartite graph, with P = (V0 × V0) ∪ (V1 × V1), define the bipartite

complement Γ‡ to be Γ‡ = (V,E‡, P ) where

E‡ = (V × V ) \ (E ∪ P ).

Then by construction, Γ‡ is a bipartite graph with the same vertex partition as Γ such that, for
u ∈ V0 and v ∈ V1, (u, v) is an edge in Γ‡ if and only if (u, v) is not an edge in Γ.

If Γ = (V,E, P ), where P = (V0 × V0) ∪ (V1 × V1), and ∆ = (V ′, E′, P ′), where P ′ =
(V ′

0 × V ′
0) ∪ (V ′

1 × V ′
1), are bipartite graphs, then we define the bipartite disjoint union of

Γ and Γ′ to be
Γ ⊔̇∆ = (V ∪ V ′, E ∪ E′, Q)

where Q = (V0∪V
′
0)× (V0∪V

′
0)∪ (V1∪V

′
1)× (V1 ∪V

′
1). This definition depends upon our choice

for V0, V1, V
′
0 and V ′

1 (i.e., which way round we pair the parts of the vertex sets) so strictly
speaking we must refer to a bipartite disjoint union of Γ and ∆. This choice, however, does not
affect the results in this section.
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Finally, we shall use the following adjustment to produce a bipartite analogue of the graph LS

defined in Section 3. For S ⊆ N \ {0, 1}, take ΛS = (VS , ES , PS), where VS and ES are the
vertices and edges of LS as defined in Section 3 and PS = (V0 × V0) ∪ (V1 × V1) where

V0 = { ℓn | n is even } ∪ { vn | n ∈ S is odd }

V1 = { ℓn | n is odd } ∪ { vn | n ∈ S is even }.

With these constructions, we easily establish analogues of Lemmas 3.1 and 3.3: If Γ and ∆
are bipartite graphs then AutΓ‡ = AutΓ and Γ ∼= ∆ if and only if Γ‡ ∼= ∆‡. Also if S and T
are subsets of N \ {0, 1}, then AutΛS = 1 and ΛS

∼= ΛT if and only if S = T .

Theorem 5.3 The class of groups arising as automorphism groups of countable graphs is pre-
cisely the same as the class of groups arising as automorphism groups of countable bipartite
graphs.

Proof: Let Γ be a countable graph. Choose S ⊆ N \ {0, 1} such that the graph LS, as in
Section 3 is not isomorphic to any connected component of Γ. Let ∆S = (Γ ∪̇ LS)

†, so that
Aut∆S

∼= AutΓ (see Theorem 3.4). Then each vertex v of ∆S has infinite degree and so, taking
Λ = (∆S)

′ as defined above, we conclude from Lemma 5.2 that AutΛ ∼= Aut∆S
∼= AutΓ.

Conversely, if Γ = (V,E, P ) is a bipartite graph, choose S ⊆ N \ {0, 1} such that LS is
not isomorphic to any connected component of the graph (V,E). Take ∆S = (W,F,Q) to
be the bipartite graph (Γ ⊔̇ ΛS)

‡. Then (W,F ) is a connected graph and so, by Lemma 5.1,
Aut(W,F ) = Aut∆S

∼= AutΓ. �

The definition of algebraic closure for bipartite graphs is soon established to be equivalent to
the following. A bipartite graph Γ = (V,E, P ) is algebraically closed if, given a finite collection
of vertices {v1, v2, . . . , vk} such that (vi, vj) ∈ P for all i and j, there exists some vertex w that
is connected by an edge to each of the vi. Equivalently, if V = V0 ∪̇ V1 is the partition of the
vertices determined by the relation P , then if given finite subsets A0 ⊆ V0 and A1 ⊆ V1, there
exist vertices w0 ∈ V0 and w1 ∈ V1 such that w0 is joined by an edge for each vertex in A1 and
w1 is joined by an edge to each vertex in A0.

There are some potentially unexpected consequences of this observation. The first is that, for
m,n ∈ N, the complete bipartite graph Km,n on two parts of cardinalities m and n, respectively,
is algebraically closed. There are also examples of algebraically closed infinite bipartite graphs
but with only one witness w of the algebraic closure condition. This stands in contrast to the ob-
servation that in both algebraically closed graphs and algebraically closed directed graphs, there
are always infinitely many witnesses. Accordingly, we define a bipartite graph Γ = (V,E, P ) to
be strongly algebraically closed if for every finite collection A of vertices satisfying (v,w) ∈ P for
all distinct v,w ∈ V , there exist infinitely many vertices x connected to every vertex of A by an
edge. Our analogue of Theorem 3.4 for bipartite graphs makes use of this stronger condition.

Theorem 5.4 Let Γ be a countable graph. Then there exist 2ℵ0 pairwise non-isomorphic
strongly algebraically closed bipartite graphs whose automorphism group is isomorphic to that
of Γ.

Proof: By Theorem 5.3, there is a countable bipartite graph ∆ such that Aut∆ ∼= AutΓ. Now
there are 2ℵ0 choices for subsets S of N\{0, 1} such that ΛS is not isomorphic to any connected
component of ∆. Take ΠS = (∆ ⊔̇ ΛS)

‡. Then, by construction, AutΠS
∼= Aut∆ × AutΛS

∼=
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AutΓ, while ΠS
∼= ΠT if and only if S = T . Moreover, each ΠS is strongly algebraically closed:

given any finite subset A of vertices of ΠS that are related under the partition relation, there
are in fact infinitely many vertices in ΛS that are joined to every vertex in A. �

The standard method to construct a copy of the countable universal bipartite graph is as
follows. If Γ = (V,E, P ) is any countable bipartite graph with corresponding vertex partition
V = V0 ∪̇ V1, enumerate the set of all finite subsets of V0 as (Ai)i∈I and all finite subsets of V1
as (Bj)j∈J for some I, J ⊆ N. Set W0 = V0 ∪ { vj | j ∈ J } and W1 = V1 ∪ {wi | i ∈ I }, where
the vj and wi are new vertices. Define I(Γ) to be the bipartite graph with vertex set W0 ∪W1,
edge set to consist of E and new edges joining each vj to every element of Bj (for j ∈ J) and
each wi to every element of Ai (for i ∈ I), and partition relation

Q = (W0 ×W0) ∪ (W1 ×W1).

As in the previous sections, we construct a sequence of bipartite graphs by setting Γ0 = Γ
and Γn+1 = I(Γn). Then the limit Γ∞ of this sequence is existentially closed and therefore
isomorphic to the countable universal bipartite graph B.

Many of our arguments transfer from Section 3 but throughout one needs to be careful when,
for example, finite algebraically closed bipartite graphs arise. The first example of this occurs
in our analogue of Lemma 3.5 for bipartite graphs.

Lemma 5.5 Let Γ be a countable bipartite graph, let Γ∞ be the copy of the countable uni-
versal bipartite graph constructed around Γ as described above, and let f : Γ → Γ∞ be a
homomorphism of bipartite graphs.

(i) There exist 2ℵ0 endomorphisms f̂ : Γ∞ → Γ∞ such that the restriction of f̂ to Γ equals f .

(ii) If im f is an algebraically closed bipartite graph, then there is an extension f̂ of f with
im f̂ = im f . Moreover, if im f is not isomorphic to K1,1, the countable universal bipartite

graph Γ∞ may be constructed so that there are 2ℵ0 such extensions f̂ .

(iii) If f is an automorphism of Γ, then there is an automorphism f̂ of Γ∞ such that the
restriction of f̂ to Γ equals f .

Proof: For (i) and (ii), the argument is essentially the same as in Lemma 3.5: having defined
an extension fn of f to Γn, we extend to fn+1 : Γn+1 → Γ∞, where Γn+1 = I(Γn) by mapping
each new vertex wn to a vertex joined to every vertex of Bnfn and each vn to a vertex joined
to every vertex of Anfn. In Γ∞, there are always infinitely many choices and hence in the end
we obtain 2ℵ0 extensions f̂ in (i).

The only place where extra care is required in the argument is in part (ii) since, although
we can at every stage arrange that im fn = im f , we can no longer guarantee there are infinitely
many such extensions. If im f is not isomorphic to K1,1, there is some vertex x in im f that is
joined to at least two vertices in this image. Suppose x = yf . At each stage, when construct-
ing I(Γn) we enumerate the finite subsets as above by always choosing A1 = {y}. This ensures
that there are at least two choices for the image of the new vertex w1, namely any of the vertices
joined to x. We then continue as before. We conclude that there are at least two extensions of
the endomorphism fn of Γn to endomorphisms fn+1 of Γn+1 preserving the image being equal
to im f . Hence there are 2ℵ0 extensions f̂ of f to an endomorphism of Γ∞ with im f̂ = im f .

Part (iii) is proved exactly as in the case for graphs. �
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Relying on the above lemma, but otherwise proceeding in exactly the same way as in Sec-
tion 3, we establish parts (i) and (ii) of the result that classifies images of idempotent endomor-
phisms of the countable universal bipartite graph.

Theorem 5.6 Let Γ be a countable bipartite graph. Then

(i) there exists an idempotent endomorphism f of the countable universal bipartite graph B
such that im f ∼= Γ if and only if Γ is algebraically closed;

(ii) if Γ is algebraically closed and is not isomorphic to the finite complete bipartite graphK1,1,
then there are 2ℵ0 idempotent endomorphisms f of B such that im f ∼= Γ;

(iii) if Γ ∼= K1,1, there are ℵ0 idempotent endomorphisms f of B such that im f ∼= Γ.

Proof: (iii) If V = V0 ∪̇V1 is the partition of the vertex set associated to the partition relation
on Γ, then idempotent endomorphisms of f with im f ∼= K1,1 are determined by choosing any
edge (u, v) present in E where u ∈ V0 and v ∈ V1, and then mapping vertices in V0 to u and
vertices in V1 to v. As B has ℵ0 many edges, there are ℵ0 such idempotent endomorphisms. �

By following the same steps as used to establish Theorem 3.7, we can then establish parts
(i) and (ii) of the following. We rely on Theorem 5.4 and note that strongly algebraically
closed bipartite graphs are certainly not isomorphic to K1,1. For the final part, two idempotent
endomorphisms of B with image isomorphic to K1,1 are D-related by Lemma 2.5 and each of
the ℵ0 such idempotent endomorphisms determines a group H -class.

Theorem 5.7 Let B denote the countable universal bipartite graph.

(i) Let Γ be a countable graph. Then there exist 2ℵ0 distinct regular D-classes of EndB
whose group H -classes are isomorphic to Aut Γ.

(ii) Let f be an idempotent endomorphism of B whose image is not isomorphic to the finite
complete bipartite graph K1,1. Then the D-class of f in EndB contains 2ℵ0 distinct group
H -classes.

(iii) There is a single D-class of B containing the idempotent endomorphisms with image
isomorphic to K1,1. This D-class contains precisely ℵ0 group H -classes, each of which is
isomorphic to the cyclic group of order 2. �

We now turn to establishing information about L - and R-classes in the endomorphism
monoid of B. We deal first with the bipartite graph version of Theorem 3.11, since it involves
fewer changes. We use essentially the same construction Γ♯ as in Section 3. Let Γ = (V,E, P )

be a bipartite graph with P = (V0 × V0) ∪ (V1 × V1). Assume that Vk = { v
(k)
i | i ∈ N } for

k = 0, 1. Then define Γ♯ = (V ♯, E♯, P ♯), where V ♯ = V ♯
0 ∪ V ♯

1 ,

V ♯
k = { v

(k)
i,r | i ∈ N, r ∈ {0, 1} }, for k = 0, 1,

E♯ = { (v
(k)
i,r , v

(1−k)
j,s ) | (v

(k)
i , v

(1−k)
j ) ∈ E, r, s ∈ {0, 1} },

P ♯ = (V ♯
0 × V ♯

0 ) ∪ (V ♯
1 × V ♯

1 ).
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The analogue of Lemma 3.8 holds for this bipartite version of Γ♯ and, indeed, if Γ is strongly
algebraically closed, then so is Γ♯.

We now mimic the proof of Theorem 3.11, using our bipartite construction Γ♯ = (V ♯, E♯, P ♯).
We need Γ to be strongly algebraically closed in order to be able to apply Corollary 2.2 to
construct the injective homomorphism f : B → Λ0 that appears. In addition, in the last half
of the proof we must take E = (W0 ∪W1,∅, (W0 ×W0) ∪ (W1 ×W1)) as the empty bipartite
graph where W0 and W1 are countably infinite disjoint sets. This then allows us to establish:

Theorem 5.8 Let Γ be a countable strongly algebraically closed bipartite graph that is not
isomorphic to the countable universal bipartite graph B. Then there exists a non-regular injec-
tive endomorphism f of R such that the subgraph induced by the images of the vertices under f
is isomorphic to Γ and such that the D-class of f contains 2ℵ0 R- and L -classes. �

The bipartite analogue of Theorem 3.9 involves some surprising differences and reflects the
fact that there can be finite algebraically closed bipartite graphs.

Theorem 5.9 Let f be a regular endomorphism of the countable universal bipartite graph B.

(i) If the image of f is infinite, then the D-class of f contains 2ℵ0 many L - and R-classes.

(ii) If the image of f is finite but not isomorphic to K1,1, then the D-class of f contains
ℵ0 many L -classes and 2ℵ0 many R-classes.

(iii) If im f ∼= K1,1, then the D-class of f contains ℵ0 many L -classes and one R-class.

Proof: Suppose that B = (V,E, P ), where V = V0 ∪̇ V1 is the partition of the vertices
determined by the relation P . Let Γ = im f . For the R-classes in the D-class Df of f , we can,
for (i) and (ii), argue exactly as in Theorem 3.9: build B as Γ∞ around Γ as described above
and use Lemma 5.5(ii) to extend the identity map on Γ to 2ℵ0 idempotent endomorphisms of B
with image Γ. Each such extension is D-related to f but they have distinct kernels and so are
not R-related to each other by Lemma 2.5.

For the R-classes in Case (iii), note that when Γ ∼= K1,1, the endomorphisms in Df map all
the vertices in V0 to some fixed vertex v and all the vertices in V1 to some fixed vertex w joined
to v (and necessarily v and w lie in different parts of the partition). Thus the kernel of such an
endomorphism equals the partition relation P and we conclude that all endomorphisms in Df

are R-related by Lemma 2.5(ii).
When Γ is infinite (i.e., Case (i)), we build a copy of B around the bipartite graph Γ♯ and

use the same argument as in Theorem 3.9 to show that Df contains 2ℵ0 many L -classes. When
Γ is finite (i.e., Cases (ii) and (iii)), write n = |V f |. If g is D-related to f , then im g ∼= im f
and so |V g| = n. There are ℵ0 many subsets of V of cardinality n and so at most ℵ0 many
L -classes in Df by Lemma 2.5(i). However, we can construct infinitely many non-L -related
endomorphisms by adjusting the construction Γ♯ as follows.

Assume Γ = (W,F,Q) with associated partition W = W0 ∪̇ W1 of its vertices. Write

Wk = {w
(k)
i | i ∈ Ik } for finite subsets I0 and I1 of N. Define Γ♮ = (W ♮, F ♮, Q♮), where

W ♮ =W ♮
0 ∪W

♮
1 ,

W ♮
k = {w

(k)
i,r | i ∈ Ik, r ∈ N }, for k = 0, 1,

F ♮ = { (w
(k)
i,r , w

(1−k)
j,s ) | (v

(k)
i , v

(1−k)
j ) ∈ F, r, s ∈ N },

Q♮ = (W ♮
0 ×W ♮

0) ∪ (W ♮
1 ×W ♮

1).
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Thus we are now in effect replacing each edge in Γ by a copy of the infinite complete bipartite
graph Kℵ0,ℵ0 . The remainder of the argument is similar to Theorem 3.9. We build a copy
of B around Γ♮ and extend the identity map on Γ♮ to an idempotent endomorphism g of B with

image Γ♮. For any b = (b
(k)
i ) with b

(k)
i ∈ N for each i ∈ Ik, we define an endomorphism φb : Γ

♮ →

Γ♮ by w
(k)
i,r φb = w

(k)

i,b
(k)
i

. Then gφb has image isomorphic to Γ and so is D-related to f , but

as b varies we obtain infinitely many distinct images and so these endomorphisms are not
L -related. This completes the proof. �

We can perform the same arguments for the Schützenberger groups of H -classes of non-
regular endomorphisms of the countable universal bipartite graph B = (V,E, P ) as in Section 3.
If Γ0 = (V0, E0, P0) is a strongly algebraically closed bipartite graph, let F0 ⊆ E0 be such that
(V0, F0, P0) ∼= B (as provided by Proposition 2.1(ii)). Assume that B has been constructed
using Γ0 in the initial step of our method and let f : B → B be the endomorphism that realises
this isomorphism. Then we establish:

Proposition 5.10 Let f be an injective endomorphism of the countable universal bipartite
graph B of the form specified above and H = Hf . Then SH

∼= Aut〈V f〉 ∩Aut(im f). �

To complete the work on the Schützenberger group, we shall need a bipartite analogue of
the graphs MS appearing in Section 3. For S ⊆ N \ {0, 1}, recall LS contains vertices ℓn (for
n ∈ N) and vn (for n ∈ S). Let xn and yn (for n ∈ N) be new vertices and set

V0 = { ℓn | n is even } ∪ { vn | n ∈ S is odd } ∪ {xn | n ∈ N },

V1 = { ℓn | n is odd } ∪ { vn | n ∈ S is even } ∪ { yn | n ∈ N }.

Let NS be the bipartite graph with vertex set V0 ∪ V1, partition relation (V0 × V0) ∪ (V1 × V1)
and edges consisting of all edges present in LS, together with an edge between each xn and
every vertex in V1 and an edge between each yn and every vertex in V0.

Let f be any automorphism of NS . Since the xn and yn are the only vertices adjacent to
all vertices in the other part of the partition, either f fixes the parts and then must permute
the xn and permute the yn, or f interchanges the parts and then it maps the xn to the yn and
vice versa. Therefore f induces an automorphism of the bipartite graph LS. Since AutLS = 1,
we conclude that f actually does fix the parts of the partition and simply permutes the xn and
permutes the yn. Hence AutNS

∼= (SymN)2. Similarly NS
∼= NT if and only if S = T .

Now let Γ be an arbitrary countable (undirected and not necessarily bipartite) graph. Apply
Theorem 5.3 to construct a countable bipartite graph Λ satisfying AutΛ ∼= AutΓ. Let Sn, for
n ∈ N, be a sequence of distinct subsets of N \ {0, 1} such that the bipartite graph NSn is not
isomorphic to any connected component of Λ. (Indeed, note that the Λ occurring in Theorem 5.3
is connected, so we simply require NSn 6∼= Λ.) Define Γ∗

0 = Λ‡ (the bipartite complement of Λ, as
described above). Then, assuming that the bipartite graph Γ∗

n has been defined with partition
relation (W0 ×W0) ∪ (W1 ×W1), enumerate the finite subsets of W0 as (Ai)i∈N and the finite
subsets ofW1 as (Bi)i∈N. Let the vertices of Γ

∗
n+1 be the union of the vertices of Γ∗

n, the vertices

of LSn and new vertices {x
(n)
i , y

(n)
i | i ∈ N }. Define the edges of Γ∗

n+1 to be the edges of Γ∗
n

together with edges between a and y
(n)
i for all a ∈ Ai and between b and x

(n)
i for all b ∈ Bi. The

partition relation on Γ∗
n+1 is the one that groups together all the vertices inW0 with all the x

(n)
i

and all the vertices in W1 with the y
(n)
i . Having constructed the bipartite graphs Γ∗

n, we let
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Γ∗ = (V ∗, E∗, P ∗) be the limit of this sequence of graphs. By construction, Γ∗ is existentially
closed and therefore isomorphic to the countable universal bipartite graph B.

Now let Γ0 = (V ∗, E0, P
∗) be the bipartite graph whose edges are all possible edges permitted

by the bipartite relation P ∗, except the following are not included:

(i) the edges in Λ;

(ii) for each n ∈ N, all edges between an x
(n)
i and a y

(n)
j ;

(iii) for each n ∈ N, the edges in LSn ;

(iv) for each n ∈ N, all (permitted) edges between a vertex in LSn and a vertex x
(n)
i or y

(n)
i .

As in previous sections, we have arranged that E∗ ⊆ E0. Therefore Γ0 is algebraically closed
and we use this when applying Proposition 5.10. The endomorphism f : B → B is not regular
since E0 6= E∗.

The bipartite complement Γ‡
0 is the disjoint union of the bipartite graphs Λ and NSn (for

all n ∈ N). Hence

AutΓ0
∼= AutΛ×

∏

n∈N

AutNSn
∼= Aut Γ× (SymN)ℵ0 .

As in the previous sections, we observe that Aut(V ∗, E0, P
∗) ∩ Aut(V ∗, E∗, P ∗) is isomorphic

to AutΓ, and by varying S1 we construct 2ℵ0 many D-classes of such endomorphisms f . This
completes our final step in establishing the analogue of Theorem 3.14 for bipartite graphs.

Theorem 5.11 Let Γ be any countable graph. There are 2ℵ0 non-regular D-classes of the
countable universal bipartite graph B such that the Schützenberger group of H -classes within
them are isomorphic to AutΓ. �
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