Ocean acidification has different effects on the production of dimethylsulfide and dimethylsulfoniopropionate measured in cultures of Emiliania huxleyi and a mesocosm study:a comparison of laboratory monocultures and community interactions

Webb, Alison L., Malin, Gill, Hopkins, Frances E., Ho, Kai Lam, Riebesell, Ulf, Schulz, Kai G., Larsen, Aud and Liss, Peter S. (2015) Ocean acidification has different effects on the production of dimethylsulfide and dimethylsulfoniopropionate measured in cultures of Emiliania huxleyi and a mesocosm study:a comparison of laboratory monocultures and community interactions. Environmental Chemistry, 13 (2). pp. 314-329. ISSN 1448-2517

[img]
Preview
PDF (Webb et al (2015)) - Submitted Version
Download (1919kB) | Preview

    Abstract

    The human-induced rise in atmospheric carbon dioxide since the industrial revolution has led to increasing oceanic carbon uptake and changes in seawater carbonate chemistry, resulting in lowering of surface water pH. In this study we investigated the effect of increasing CO2 partial pressure (pCO2) on concentrations of volatile biogenic dimethylsulfide (DMS) and its precursor dimethylsulfoniopropionate (DMSP), through monoculture studies and community pCO2 perturbation. DMS is a climatically important gas produced by many marine algae: it transfers sulfur into the atmosphere and is a major influence on biogeochemical climate regulation through breakdown to sulfate and formation of subsequent cloud condensation nuclei (CCN). Overall, production of DMS and DMSP by the coccolithophore Emiliania huxleyi strain RCC1229 was unaffected by growth at 900 μatm pCO2, but DMSP production normalised to cell volume was 12 % lower at the higher pCO2 treatment. These cultures were compared with community DMS and DMSP production during an elevated pCO2 mesocosm experiment with the aim of studying E. huxleyi in the natural environment. Results contrasted with the culture experiments and showed reductions in community DMS and DMSP concentrations of up to 60 and 32 % respectively at pCO2 up to 3000 μatm, with changes attributed to poorer growth of DMSP-producing nanophytoplankton species, including E. huxleyi, and potentially increased microbial consumption of DMS and dissolved DMSP at higher pCO2. DMS and DMSP production differences between culture and community likely arise from pH affecting the inter-species responses between microbial producers and consumers.

    Item Type: Article
    Faculty \ School: Faculty of Science > School of Environmental Sciences
    Related URLs:
    Depositing User: Pure Connector
    Date Deposited: 22 Mar 2016 09:12
    Last Modified: 09 Apr 2019 11:06
    URI: https://ueaeprints.uea.ac.uk/id/eprint/57656
    DOI: 10.1071/EN14268

    Actions (login required)

    View Item