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Abstract

This paper characterizes the dynamics of jumps and analyzes their

importance for volatility forecasting. Using high-frequency data on
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of realized variance into its continuous and discontinuous components.

We find strong evidence of jumps in energy markets between 2007

and 2012. We then investigate the importance of jumps for volatility

forecasting. To this end, we estimate and analyze the predictive ability

of several Heterogenous Autoregressive (HAR) models that explicitly

capture the dynamics of jumps. Conducting extensive in-sample and

out-of-sample analyses, we establish that explicitly modeling jumps does

not significantly improve forecast accuracy. Our results are broadly
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I. Introduction

The theory of quadratic variation (QV) posits that the total variation of an asset

return can be decomposed into continuous and discontinuous components. The aim

of this paper is to advance our understanding of the dynamics of each of these

components and investigate their importance for volatility forecasting.

We make three important contributions to the literature. First, we identify

and characterize the dynamics of jumps in four leading energy markets, namely

crude oil, gasoline, heating oil and natural gas. Using intraday transaction prices,

we implement a non-parametric jump detection test to identify jumps. We then

rigorously analyze the time-series behaviour of jumps, thus shedding more light on

their dynamics. Our analysis shows that jumps are rare events that affect only a

small proportion of our sample. Moreover, we find important asymmetries in the

intensity of positive and negative jumps, suggesting that it may be important to

separately model the dynamics of positive and negative jumps.

Second, we investigate the importance of disentangling continuous volatility from

jumps for volatility forecasting. We present and thoroughly assess the predictive

ability of several models of the Heterogenous Autoregressive (HAR) family that

seek to explicitly capture the dynamics of jumps.1 We begin by analyzing the in-

sample predictive power of all models, which we compare to our benchmark HAR–RV

model, which does not account for the impact of jumps. To this end, we perform

simple ordinary least squares (OLS) regressions of realized volatility on the in-sample

forecasts obtained from the various HAR models. We find that all models yield

adjusted R2 that are very close to each other, indicating that the benefits of explicitly

modeling jumps are likely to be small. This is true for all forecast horizons, i.e. 1-,

5- and 22-day ahead.

Third, we go beyond the in-sample analysis and rigorously analyze the out-of-

sample performance of competing models. We use a rolling window of 600 days

to estimate the parameters of forecasting models. Equipped with these, we then

forecast the volatility of the next period, which we compare to realized volatility

(observed ex-post). We employ six distinct loss functions to analyze the accuracy

1See Corsi (2009) for an excellent treatment of the HAR model.
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of competing forecasts. Our results establish that all models yield forecast errors

that are of the same order of magnitude, indicating that explicitly modeling jumps

does not noticeably improve forecast accuracy. We analyze the question of statistical

significance by implementing the test of Giacomini and White (2006), hereafter GW.

This analysis suggests that explicitly modeling jumps does not significantly improve

forecast accuracy. This result generally holds for all horizons, loss functions and

markets.

We conduct several robustness checks. First, one may wonder whether our

conclusions change depending on whether we forecast variance and log variance

rather than volatility. Focusing on the task of forecasting realized variance and log

realized variance, we repeat our analyses and obtain broadly similar conclusions.

Second, we investigate the robustness of our findings to the jump detection

methodology. In particular, we draw on recent theoretical results by Andersen

et al. (2012), who introduce novel jump–robust estimators of integrated variance.

Repeating our analysis with the new estimator does not change our main insights.

Third, one may argue that the width of the rolling window may impact our analysis.

We consider alternative windows of 400, 800 and 1,000 observations. Our core

message is the same: explicitly modeling jumps does not significantly improve

volatility forecasts. Finally, we assess the robustness of our results to the estimation

methodology. Because our dependent variable, i.e. volatility, varies substantially

over time, our OLS estimates may be driven by a highly volatile pocket of data.

To address this concern, we repeat our analyses by estimating all models using

a weighted least squares (WLS) approach (rather than OLS) and reach similar

conclusions.

Our study relates to the literature on the econometrics of jumps. Barndorff-

Nielsen and Shephard (2004), Barndorff-Nielsen et al. (2004), Barndorff-Nielsen and

Shephard (2006), Tauchen and Zhou (2011) and Andersen et al. (2012) propose a

number of non-parametric tests to identify jumps. Eraker et al. (2003) and Eraker

(2004) rely on tightly parameterized continuous-time models to estimate jumps.

Aı̈t-Sahalia et al. (2014) and Maneesoonthorn et al. (2014) model jumps as processes

that are self-exciting and explore the implications of this modeling framework for
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derivatives prices.2 We contribute to this literature by presenting a thorough

and comprehensive model-free study on the dynamics of jumps in four leading

energy markets. Furthermore, our finding that explicitly modeling jumps does

not significantly improve volatility forecasts may have important implications for

continuous-time models that are needed for energy prices. If jumps are self-exciting

then historical jump returns should contain information about the discontinuous

component of the realized variation of asset prices. Hence, we would expect to

obtain more accurate volatility forecasts by explicitly modeling the dynamics of

jumps. Our results reveal that this is not the case, thus indicating that models with

self-exciting jumps are unlikely to successfully match the dynamics of energy prices.

Our paper also connects with the growing literature that uses intraday data to

obtain more accurate volatility forecasts (Andersen and Bollerslev, 1998; Areal and

Taylor, 2002; Martens and Zein, 2004; Giot and Laurent, 2007; Corsi and Reno,

2009; Corsi et al., 2010; Chung et al., 2011; Patton and Sheppard, 2015; Sévi, 2014).

Our paper relates to the important works of Andersen et al. (2007) and Andersen

et al. (2011), who study the importance of jumps for volatility forecasting in the

equity, fixed-income and foreign exchange markets. We complement these studies

by presenting fresh evidence from energy markets. Different from the evidence from

the other asset classes, we find that modeling jumps does not noticeably improve

the accuracy of volatility forecasts in commodity markets. Thus, our results suggest

that findings from other asset classes do not necessarily extend to commodities. We

conjecture that the different results may be due to the underlying determinants of

jumps in commodity prices. It is possible that the unpredictable nature of important

events, such as political unrest in major oil producing countries and natural disasters,

that trigger jumps in energy prices explains why past jumps are not necessarily

informative about future volatility.

The remainder of the paper is organized as follows. Section II introduces our

methodology and the dataset. Section III presents our empirical results. Section IV

discusses various robustness checks. Finally, Section V concludes.

2By “self-exciting” jumps, the financial modeling literature typically refers to the
clustering of extreme events: a jump event tends to trigger another jump event in the
same market.

3



II. Methodology and Data

This section begins with a brief overview of jump detection tests. We then introduce

the competing models. Finally, we present our dataset of intraday transaction prices.

A. Jump Detection Test

Consider the logarithmic price process, pt, defined on the probability space

(Ω,F , (Ft)0≤t≤T , P ), where Ft is the information set available up to time t, such

that pt is Ft-measurable and evolves in continuous-time as a jump-diffusion process:

dpt = µtdt+ σtdWt + ηtdNt (1)

where dpt denotes the change in log price. µt is the drift, which is a locally bounded

and predictable process of finite variance. dt is an increment of time. σt is the

instantaneous (or spot) volatility, which is a càdlàg process. Wt refers to the

Brownian motion. ηt is a random variable capturing the jump size. Finally, Nt

is a Poisson jump process. If a jump occurs during the increment dt, then dNt = 1.

Otherwise, dNt = 0. The probability of a jump occurring in the time interval dt is

P [dNt = 1] = λtdt, where λt is the (time-varying) jump intensity.

The quadratic variation, QVt, of the above return process can then be expressed

as the sum of a continuous and a discontinuous component (Barndorff-Nielsen and

Shephard, 2004, 2006). More formally, we have:

QVt =

t∫

t−1

σ2
sds

︸ ︷︷ ︸

continuous

+
∑

t−1≤τi≤t

η2τi

︸ ︷︷ ︸

discontinuous

(2)

where τi are the times corresponding to jump occurrences (with i = 1, 2, ..., Nt)

and all other variables are as previously defined. The first term on the right hand

side of the equality sign is the “integrated variance”; it is the continuous component

of the quadratic variation. The second term is the discontinuous component of the

quadratic variation.

We now explain in detail how to empirically compute each of the quantities
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shown in Equation (2). Suppose that on a trading day t we observe M +1 prices at

times: t0, t1, ..., tM . If ptj is the logarithmic price at time tj, then the corresponding

return, rtj , for the jth intraday interval of day t is defined as follows:

rtj = ptj − ptj−1 (3)

Andersen et al. (2001, 2003) and Barndorff-Nielsen and Shephard (2002a,b) propose

the “realized variance” estimator, defined as the sum of squared intraday returns:

RVt =

M∑

j=1

r2tj (4)

The authors show that, as the sampling frequency increases (M → ∞), realized

variance is a consistent estimator of daily quadratic variation:

lim
M→∞

RVt ≡ QVt (5)

Barndorff-Nielsen and Shephard (2004, 2006) introduce the “bipower variation”

(BPV), which is a consistent estimator of the continuous component of QVt:
3

BPVt = µ−2
1

(
M

M − 2

) M∑

j=2

|rtj−1 | · |rtj | (6)

where µ1 = E(|Z|) =
√

2/π is the first moment of the absolute value of a

standard normal random variable. The term M/(M − 2) corresponds to a finite

sample bias correction. BPVt consistently estimates the continuous sample path

of quadratic variation as M → ∞ (Barndorff-Nielsen and Shephard, 2004, 2006;

Barndorff-Nielsen et al., 2006):

lim
M→∞

BPVt ≡
t∫

t−1

σ2
sds (7)

where all variables are as previously defined.

3Andersen et al. (2012) point out that because of microstructure effects, the contribution
of jumps does not vanish asymptotically, leading to an upward bias in the BPV estimator.
We address this issue in our robustness analysis by replacing the BPV estimator with the
MedRV estimator based on nearest neighbor truncation (Andersen et al., 2012).
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Huang and Tauchen (2005), Andersen et al. (2007) and others document that

using staggered returns alleviates many of the microstructure biases inherent in

high-frequency data. Instead of computing the product of adjacent returns, i.e.

|rtj−1 | · |rtj |, they consider |rtj−(k+1)
| · |rtj |, where k is a positive integer indicating

the number of returns to skip. When staggered returns are employed, the realized

bipower variation of Equation (6) is modified as follows:

BPVt = µ−2
1

(
M

M − (k + 1)

) M∑

j=k+2

|rtj−(k+1)
| · |rtj | (8)

Throughout our study, we work with staggered returns to allay concerns related to

the microstructure noise. We always skip 1 return observation, i.e. setting k = 1.

Since the quadratic variation is the sum of continuous and discontinuous

components (see Equation (2)), one can express the discontinuous component as

the difference between the quadratic variation and the continuous component. A

direct implication of this is that we can infer the discontinuous component from the

realized variance and the bipower variation:

RVt −BPVt
p−→

∑

t−1≤τi≤t

η2τi (9)

This intuition lies at the heart of most jump detection tests. Huang and Tauchen

(2005) show that the ratio statistic with a maximum adjustment (Barndorff-Nielsen

and Shephard, 2006) has good size and power properties. This result motivates us

to use the following test to detect significant jumps:

zTQ,t = ∆−1/2 (RVt −BPVt) /RVt
√(

(π2 )
2 + π − 5

)
max(1, TQt

BPV 2
t
)

(10)

TQt above is the realized tripower quarticity:

TQt = M

(
M

M − 2(k + 1)

)

µ−3
4/3

M∑

j=3

|rtj−2(k+1)
|4/3 · |rtj−k−1

|4/3 · |rtj |4/3 (11)

where µ4/3 = 22/3[Γ(7/6)/Γ(1/2)].

Using the test statistic of Equation (10) and a significance level α, which we set
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equal to 0.1%, we extract the significant jumps, Jt, as follows:
4

Jt = I{ZTQ,t>Φ1−α} · (RVt −BPVt) (12)

where I{ZTQ,t>Φ1−α} is an indicator function which is equal to 1 when a significant

jump occurs and zero otherwise, Φ1−α is the corresponding critical value from the

cumulative standard normal distribution at confidence level 1−α. Since RVt is equal

to the sum of the continuous component (Ct) plus jumps (Jt), the continuous path

of realized variance can be identified as follows:

Ct = I{ZTQ,t>Φ1−α} ·BPVt + I{ZTQ,t≤Φ1−α} ·RVt (13)

where all variables are as previously defined.

B. Volatility Forecasting Models

1. HAR-RV: Our benchmark econometric model is the HAR–RV recently

implemented in Patton and Sheppard (2015). The simple structure of this

model enables it to parsimoniously capture the long-memory behaviour of

realized volatility. This is achieved by combining historical estimates of

realized volatility computed over various non-overlapping horizons. Patton

and Sheppard (2015) emphasize that non-overlapping horizons are important

to (i) allay any concerns about the strong correlation between the components

of the model and (ii) facilitate the interpretation of the coefficient estimates.

We follow their recommendation and estimate the following volatility

4This stringent choice is mainly motivated by the theoretical results of Bajgrowicz et al.
(2014), who forcefully show that multiple testing issues could result in spurious jumps. The
authors recommend using stringent significance levels such as 0.1% to allay concerns that the
results of jump tests may be driven by any false positives. We follow their recommendation.
As a further robustness check, we also consider a significance level of 1% and reach very
similar conclusions (see Tables A.1–A.5 of the online Appendix). We are very grateful to
the reviewer for suggesting this analysis.
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forecasting model:5,6

RV
1/2
t:t+h = ω + βdRVt

1/2 + βwRV
1/2
t−5:t−1 + βmRV

1/2
t−22:t−5 + et+h (14)

As mentioned above, each component in the HAR-RV model is computed over

different horizons. Therefore, if RVt is the realized variance of day t (from time

t− 1 to t), then the h-day annualized realized variance is expressed as:7

RVt:t+h =
252

h
(RVt+1 +RVt+2 + . . .+RVt+h) (15)

In a similar manner, the weekly and monthly components are computed as:

RVt−5:t−1 =
252

4

5∑

i=2

RVt−i+1 (16)

RVt−22:t−5 =
252

17

22∑

i=6

RVt−i+1 (17)

2. HAR–J: Andersen et al. (2007) propose the HAR–J, which is a simple

extension of the HAR–RV model that seeks to capture the dynamics of jumps.

The main feature of the HAR–J model is that it replaces the most recent

realized volatility (RV
1/2
t−1 ) with two components: C

1/2
t−1 and J

1/2
t−1. Each of

these components has its own coefficient estimate:

RV
1/2
t:t+h = ω + βdCt

1/2 + βwRV
1/2
t−5:t−1 + βmRV

1/2
t−22:t−5

+γJJ
1/2
t + et+h (18)

where all variables are as previously defined.

5We focus on the task of forecasting volatility (rather than variance) because volatility
plays a key role in modern finance theory. For instance, it is a key variable for option pricing
and asset allocation. We also consider the task of forecasting variance and log variance. See
Section IV. for further results.

6Strictly speaking, the daily realized volatility should be written as RVt−1:t. However,
to simplify our notation, we write it as RVt.

7Similar to Busch et al. (2011), among others, we focus on annualized variance. This
explains the presence of the factor 252 in Equation (15). Naturally, this multiplicative factor
does not affect the statistical and economic interpretation of our findings.
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3. HAR–RJ: The previous model can be criticized on the grounds that it ignores

the sign of jumps. The HAR-RJ addresses this limitation (Tauchen and Zhou,

2011). We identify significant realized jumps as follows:

RJt = sign(rt) ·
√

Jt (19)

where RJt is the realized jump on day t, sign(·) is the sign operator. The

HAR–RJ model is then defined as:

RV
1/2
t:t+h = ω + βdCt

1/2 + βwRV
1/2
t−5:t−1 + βmRV

1/2
t−22:t−5

+γRJRJt + et+h (20)

where all components are as previously defined.8

4. HAR–ARJ: It may be that positive and negative observations of RJ

exert an asymmetric impact on volatility. As a result, it is interesting

to investigate which of positive and negative jumps is more important for

volatility forecasting. We advance in this direction by further decomposing

RJt into components due to positive and negative jumps:

RJ+
t = max(RJt; 0) (21)

RJ−
t = min(RJt; 0) (22)

The HAR–ARJ specification is employed to test whether the variation from

negative jumps has a more pronounced impact on future volatility than that

of positive jumps:

RV
1/2
t:t+h = ω + βdCt

1/2 + βwRVt−5:t−1
1/2 + βmRVt−22:t−5

1/2

+γRJ+RJ+
t + γRJ−RJ−

t + et+h (23)

5. HAR–C–J: Finally, we consider a more general specification, similar to that

of Andersen et al. (2007), which fully decomposes each realized variance

8Notice that the superscript 1/2 is omitted from RJt, since it is already expressed in
volatility form (see Equation (19)).
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component (i.e. daily, weekly, monthly) into its continuous and jump parts:

RV
1/2
t:t+h = ω + βdC

1/2
t + βwC

1/2
t−5:t−1 + βmC

1/2
t−22:t−5 + γJdJ

1/2
t

+γJwJ
1/2
t−5:t−1 + γJmJ

1/2
t−22:t−5 + et+h (24)

C. Data

Our dataset consists of tick-by-tick transaction prices on four energy futures

contracts traded at NYMEX, namely WTI crude oil, gasoline (RBOB), heating oil

and natural gas. The data comes from TickData and spans the period from January

2, 2007 to June 29, 2012.9 Energy futures contracts trade on two venues: pit and

electronic. Trading hours on both platforms have no overlap and collectively span

22:45 hours. Pit trading takes place between 9:30 AM (ET) and 4:15 PM (ET).

Electronic trading starts at 4:30 PM (ET), pauses at 5:15 PM (ET) for 45 minutes,

resumes at 6:00 PM (ET) and stops the following day at 9:15 AM (ET).

We use both pit and electronic transaction records and process the dataset as

follows. First, we discard all transactions with prices lower than or equal to zero.

Second, we expunge all trades with time-stamps that are inconsistent with the

exchange’s trading hours. Third, we retain the futures contract with the highest

number of transactions only (usually the first or second nearest contract). Following

existing studies, e.g. Lee and Mykland (2008) and Bradley et al. (2014), we sample

our data at the 15-min frequency.10

Table 1 presents summary statistics for the different (annualized) measures of

variance. Columns 2 to 4 relate to realized variance (RV ), bipower variation (BPV )

and significant jumps (Jt), i.e. RV-BPV, respectively. Columns 5 to 7 present results

for the square root of RV , BPV and Jt, respectively. A comparison of
√
RV across

the four energy futures markets reveals that on average natural gas exhibits the

highest volatility (44.3% per year), followed by crude oil (34.4%), gasoline (34.3%)

9The Gasoline RBOB futures contracts started trading in October 2005. This means
that we can only have a common sample period from that point onwards. While we could
consider the sample period from 2005 onwards, we feel that it is important to allow for about
a year to elapse to ensure that the gasoline futures contracts are actively traded.

10We also analyze the volatility signature plot, which plots realized volatility as a function
of sampling frequency (Andersen et al., 1999). The plots support the choice of the 15-min
sampling frequency.
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and heating oil (30.7%). These numbers are broadly consistent with the results of

Thomakos and Wang (2003) and Wang et al. (2008).

III. Empirical Results

This section presents our main results. We begin by characterizing the dynamics

of jumps. Next, we compare the predictive ability of these models in an

in-sample setting. Finally, we present a comprehensive and rigorous analysis of

the performance of these models.

A. The Dynamics of Jumps

Table 2 displays summary statistics of significant jumps. We use a conservative

significance level of 0.1%. We observe that the proportion of jump days (Intensity)

is highest for gasoline (11.5%), followed by natural gas (10%), heating oil (8.5%)

and crude oil (6.3%).

Following Andersen et al. (2007) and Tauchen and Zhou (2011), we compute the

geometric average of monthly jump intensity to obtain a smoothed time-series. We

define the jump intensity of a specific month as the number of jump days in that

month over the total number of trading days in that particular month. Figure 1

reveals important time variations in the intensity of jumps, which peaks between

2008 and 2009. We also observe interesting differences across markets. While the

jump intensities of heating oil and gasoline both steadily decline post-2010, the jump

intensity of crude oil displays much more variation.

The second and third rows of Table 2 present some evidence of asymmetries in

the time-series of jumps. This is particularly visible by looking at the intensities

of positive and negative jumps, reported under Intensity+ and Intensity−,

respectively. For example, the proportion of positive jumps (4.1%) is almost twice

as high as that of negative jumps in the crude oil market. Another interesting

observation is that the average positive jump return (Mean+) is very similar in

magnitude to that of negative jumps (Mean−). Remarkably, this pattern holds for

all markets.
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B. In-sample Analysis

We begin by analyzing the in-sample predictive power of the competing models

introduced in the previous section. To this end, we use all daily observations to

estimate the models using OLS.11 We consider 3 forecasting horizons, namely 1-, 5-

and 22-day. Tables 3 to 6 report our results. We report in brackets, the Newey–West

corrected t-statistics with 5, 10 and 44 lags for the 1, 5 and 22 day forecasting

horizons, respectively. We highlight in bold, all significant estimates at the 5%

level. Looking first at the benchmark HAR–RV model, we see that this model

predicts realized volatility with adjusted R2 up to 76% in the crude oil market.

Turning to the HAR–J specification, we observe that the coefficient of the jump

component is generally positive and statistically significant. This is true for all

forecast horizons. This result indicates that volatility increases following a jump

event. The magnitude of the jump component differs across markets. In particular,

the coefficient estimate of the jump component at the 22-day horizon takes the

value 0.098, 0.074 and 0.038 in the crude oil, heating oil and natural gas markets,

respectively.

Focusing on the HAR–ARJ model, we see that the negative jump component

generally dominates its positive counterpart. This is true in terms of both economic

magnitude and statistical significance. Interestingly, the negative jump component

enters the regression with a negative loading, indicating that negative jumps predict

increases in future volatility. These results generally hold across all horizons.

The finding that only the negative jump component of the HAR–ARJ model

is statistically significant helps understand why the HAR–RJ typically yields an

insignificant jump component. Since positive and negative jumps are mixed together,

this blurs the information content of jumps and buries any evidence of predictability.

The last row of each panel reveals that the jump components of the HAR–C–J

model are generally significant. In spite of the statistical significance of the jump

components exhibited by the more sophisticated models, we can see that there is

very little to distinguish between the explanatory power of all models. This is true

11One may argue that volatility itself fluctuates significantly over time, raising concerns
that the OLS estimation may be driven by a small pocket of data. To address this concern,
we also use a weighted least squares (WLS) estimation. See Section IV. for further details.

12



for all markets and forecast horizons. For instance, in the crude oil market, all

models yield adjusted R2 roughly equal to 82%. The upshot of this is that the

benefits of explicitly modeling the dynamics of jumps are small.

C. Out-of-Sample Analysis

We now turn our attention to the out-of-sample performance of the competing

models. To do this, we adopt a simple procedure that allows us to generate forecasts

using parameters estimated on a rolling windows basis. Each day, we use the

most recent 600 observations to estimate the forecasting models.12 Equipped with

the parameter estimates, we generate out-of-sample volatility forecasts for a given

horizon, e.g. 22-day, which we then compare with realized volatility (computed

ex-post). We roll our window forward by one day and repeat all the steps above,

yielding a time-series of volatility forecasts that are compared with the corresponding

realized volatility. We do this for each market, model and forecasting horizon.

We consider the following 6 loss functions: the mean squared error (MSE),

the mean squared percentage error (MSPE), the mean absolute error (MAE),

the mean absolute percentage error (MAPE), the logarithmic loss (LL) and the

quasi–likelihood loss (QLIKE). These loss functions are defined as follows:

MSE = 1
N

N∑

t=1
(RV

1/2
t:t+h − F

1/2
t:t+h)

2 MSPE = 1
N

N∑

t=1

(
RV

1/2
t:t+h−F

1/2
t:t+h

F
1/2
t:t+h

)2

MAE = 1
N

N∑

t=1
|RV

1/2
t:t+h − F

1/2
t:t+h| MAPE = 1

N

N∑

t=1

∣
∣
∣
∣

RV
1/2
t:t+h−F

1/2
t:t+h

F
1/2
t:t+h

∣
∣
∣
∣

LL = 1
N

N∑

t=1

[

log(RV
1/2
t:t+h)− log(F

1/2
t:t+h)

]

QLIKE = 1
N

N∑

t=1

[

log(F
1/2
t:t+h) +

RV
1/2
t:t+h

F
1/2
t:t+h

]

where N is the number of out-of-sample forecasts, RV
1/2
t:t+h is the ex-post realized

volatility and F
1/2
t:t+h is the volatility forecast from each of the five forecasting models.

Table 7 presents the forecasting errors. Each panel focuses on a specific loss

function. While each row corresponds to a specific market, each column represents

a specific forecasting model. We present the results for each forecasting horizon.

12Section IV. considers other window sizes such as 400, 800 and 1,000. Our main
conclusions are robust to the width of the rolling window.

13



We observe that the forecast errors of the more complex models are of the same

order of magnitude as those of the baseline HAR–RV, indicating that modeling

jumps does not noticeably improve forecast accuracy. For instance, the MSEs of

natural gas (monthly horizon) vary within a tight range from 0.837 (HAR–ARJ) to

0.847 (HAR–C–J). Clearly, there is very little to distinguish between all competing

models. This example also reveals that the most elaborated model, i.e. HAR–C–J,

often produces the worst forecast, thus strengthening our main conclusion.

Up to this point, we only analyze the magnitudes of the loss functions and do

not formally investigate whether the economically small differences are statistically

significant. We rigorously address this question by implementing the statistical test

of Giacomini and White (2006), which accounts for parameter uncertainty and allows

for comparison of nested models.

The GW test is based on the expected difference in forecast errors between two

competing models. Let h and ∆Li,j denote the forecast horizon and the vector of

the loss differences between models i and j, respectively. The null hypothesis of the

GW test is:

H0 : E [∆Li,j] = 0 (25)

The test follows a chi–squared distribution with one degree of freedom and the null

is evaluated on the basis of the following test statistic:

GW = P

(

P−1
T−h∑

t=1

∆Lt+h,i,j

)′

V̂ −1
h

(

P−1
T−h∑

t=1

∆Lt+h,i,j

)

∼ χ2
1 (26)

where P is the total number of out-of-sample forecasts, ∆Lt+h,i,j is the loss difference

at time t + h and V̂h is a heteroskedasticity and autocorrelation consistent (HAC)

estimator of the asymptotic variance of P−1
∑

t
∆Lt+h. Following Giacomini and

White (2006), we employ the Newey-West (1987) estimator with h-1 lags to account

for the serial dependence in multistep-ahead forecasts. Using a significance level α,

the null of equal predictive ability is rejected if |GW | > χ2
1,1−α, where χ2

1,1−α is the

critical value from a chi-squared distribution with one degree of freedom.

Tables 8 to 11 summarize our results. The test statistics presented in the table

are based on the mean difference between the model [name in row] and the model

[name in column]. Hence, a negative test statistics means that the model [name in

14



row] yields more accurate forecasts than the model [name in column]. We highlight

in bold statistically significant test statistics at the 5% significance level.

Comparing our baseline model (HAR–RV) to its more sophisticated rivals, we

find very little evidence to suggest that explicitly modeling jumps significantly

improves the accuracy of volatility forecasts. To quickly see this, notice that very few

entries in the column headed “HAR–RV” are boldfaced, suggesting that the more

elaborated models yield forecasts that are not statistically distinguishable from those

of the simple and parsimonious HAR–RV. This is true, irrespective of the forecasting

horizon, the market and the loss function. Moreover, the most complex model, i.e.

HAR–C–J, significantly underperforms all other models (including the benchmark

HAR–RV). This is particularly noticeable in the crude oil and gasoline markets,

where significantly positive entries are often reported in the last row. This result

echoes our core finding: the simpler the model, the better.

In sum, our out-of-sample analysis reveals that models that explicitly seek to

capture the dynamics of jumps do not significantly improve the accuracy of volatility

forecasts: there is virtually no gain in modeling the dynamics of jumps in energy

markets.

IV. Robustness Checks

In this section, we conduct several additional tests to investigate the robustness of

our findings. We begin by analyzing whether our main findings hold if we consider

the task of predicting variance and log variance, rather than volatility. We then

explore the robustness of our results with respect to the jump detection procedure

by using the nearest neighbor estimator of Andersen et al. (2012). Additionally, we

show that our results are robust to the width of the window used to obtain rolling

forecasts. Finally, we consider a WLS (rather than OLS) estimation to establish

that our findings are not affected by the method of estimation.

A. Variance and Log Variance Forecasts

Up to this point, our analysis focuses on the task of forecasting volatility. As

previously discussed, we focus on volatility instead of variance because of the key

15



role it plays in modern finance. For instance, volatility (not variance) is a key input

in option pricing and modern portfolio theories. Nonetheless, one may argue that

the jump detection tests identify jumps in variance not in volatility, and this subtle

difference may matter for our analysis.

Tables B.6–B.10 of the complementary appendix investigate whether modeling

jumps can improve the accuracy of variance forecasts. Similarly, Tables C.11–C.15

of the appendix focuses on the task of forecasting log variance. Consistent with

our main findings, these tables establish that more sophisticated models do not

generally outperform the baseline specification. The upshot of this is that our results

are the same, irrespective of whether we look at volatility, variance or log variance

forecasting.

B. Alternative Jump-Robust Estimators

Andersen et al. (2012) point out that the standard multipower variations may be

biased in finite samples. The authors then propose jump-robust volatility estimators

that use the nearest neighbor truncation. They forcefully show that the “median

realized variance estimator” (MedRVt) is more efficient and robust to jumps than

its main rivals. As a robustness check, we repeat our analysis replacing BPV with

the MedRV variation estimator. This estimator, using staggered (skip–1) returns,

is defined as follows:

MedRVt =
π

6− 4
√
3 + π

(
M

M − 2(k + 1)

) M∑

j=2k+3

med
(

|rtj−2(k+1)
|, |rtj−(k+1)

|, |rtj |
)2

(27)

where med(·) stands for the median operator. As in our main analysis, we set k=1

(skip–1 return). The corresponding jump test statistic is as follows:

zMed,t = ∆−1/2 (RVt −MedRVt) /RVt
√

0.96 max(1, MedRQt

MedRV 2
t
)

(28)

The number 0.96 comes from the asymptotic distribution of theMedRV estimator.13

Notice also that the tripower quarticity in the test statistic of Equation (10) is

13For further details, we refer the interested reader to Propositions 1–3 in Andersen et al.
(2012).
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replaced with the median realized quarticity given by:

MedRQt = 3πN
9π+72−52

√
3

(
M

M−2(k+1)

)

·
M∑

j=2k+3

med
(

|rtj−2(k+1)
|, |rtj−(k+1)

|, |rtj |
)4 (29)

Finally, the decomposition of realized variance into its continuous and jump

components is done exactly as in Equations (12) and (13) replacing, BPV with

MedRV. Tables D.16–D.20 of the online appendix confirm our main findings:

specifically accounting for jumps in volatility forecasting does not significantly

improve forecasting accuracy.

C. Alternative Estimation Periods

Our out-of-sample analysis rests on a rolling window of 600 observations. One may

argue that this choice is somewhat arbitrary and wonder what effect, if any, it may

have on our results. To investigate this point, we consider windows of 400, 800 and

1,000 observations. Tables E.21 through E.35 of the supplementary appendix clearly

show that changing the width of the rolling window has very little impact on our

main conclusions.

D. Alternative Estimation Methods

Patton and Sheppard (2015) argue that because the dependent variable in the models

is volatility, the OLS estimation may put too much weight on highly volatile periods.

To address the concern that this may be the driving force behind our results, we

estimate each model with WLS (rather than OLS). To be more specific, we first

estimate each model using OLS and then employ the inverse of the fitted values as

weights for the WLS estimations. Equipped with the parameter estimates, we repeat

our main analyses (both in- and out-of-sample) and obtain very similar conclusions

(See Tables F.36–F.40 of the appendix.
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V. Conclusions

This paper uses high-frequency data on four deep and liquid commodity futures

markets, namely crude oil, heating oil, natural gas and gasoline, to identify jumps

and analyze their impact on future volatility.

Our analysis establishes that jumps are rare events and their intensity

substantially varies over time. We then investigate the importance of jumps for

forecasts of realized volatility over horizons ranging from 1 to 22 days. To this

end, we estimate and empirically analyze several extensions of the HAR–RV model

that explicitly seek to capture the dynamics of jumps. We employ six distinct loss

functions and the GW test to carefully assess the predictive ability of these models.

Analyzing the magnitude of the error metrics, we find very little to distinguish

between the benchmark model and its more complex competitors. Moreover, our

rigorous econometric analysis establishes that the differences in forecast errors are

not only economically small but also statistically insignificant. Collectively, our

results suggest that explicitly modeling jumps does not significantly improve the

accuracy of volatility forecasts in energy markets.
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Figure 1: Time-Varying Jump Intensity

This figure presents the series of monthly jump intensities for the four energy markets. Monthly

jump intensity is the ratio of the number of days associated with jumps in a given month over the

total number of days in that particular month. The series of monthly intensities are smoothed

by taking a rolling 12-month geometric average.
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Table 1: Summary Statistics for Variation Measures

This table presents summary statistics of realized variance (RV ), bipower variation (BPV ),

significant jumps (Jt) and their square root (volatility) counterparts (
√
RV ,

√
BPV ,

√
Jt). Panels

A to D report statistics for crude oil, heating oil, natural gas and gasoline, respectively. The dataset

covers the period from January 2, 2007 to June 29, 2012. Daily variance (volatility) series are

computed using 15–min returns and are annualized by multiplying by (the square root of) 252. Each

panel reports the mean, standard deviation, skewness, kurtosis, minimum and maximum, respectively.

RV BPV Jt
√
RV

√
BPV

√
Jt

A. Crude oil

Mean 0.150 0.137 0.092 0.344 0.328 0.250

St. dev. 0.200 0.185 0.156 0.178 0.171 0.169

Skewness 3.885 3.770 3.751 2.187 2.224 2.138

Kurtosis 23.395 20.217 19.279 8.786 8.875 8.132

Min 0.010 0.008 0.004 0.101 0.091 0.059

Max 2.288 1.655 1.027 1.513 1.286 1.014

B. Heating oil

Mean 0.114 0.098 0.069 0.307 0.285 0.225

St. dev. 0.125 0.103 0.093 0.141 0.128 0.134

Skewness 3.230 2.802 2.806 1.732 1.615 1.532

Kurtosis 17.444 12.079 11.709 6.682 5.937 5.345

Min 0.006 0.005 0.004 0.079 0.070 0.064

Max 1.273 0.752 0.540 1.128 0.867 0.735

C. Natural gas

Mean 0.224 0.189 0.152 0.443 0.408 0.337

St. dev. 0.204 0.164 0.202 0.167 0.152 0.189

Skewness 4.264 4.227 3.515 1.669 1.433 1.820

Kurtosis 32.985 37.412 17.786 8.576 7.758 7.287

Min 0.013 0.002 0.005 0.116 0.047 0.070

Max 2.295 2.164 1.331 1.515 1.471 1.154

D. Gasoline

Mean 0.151 0.123 0.109 0.343 0.311 0.271

St. dev. 0.221 0.169 0.209 0.183 0.160 0.188

Skewness 4.991 4.556 5.613 2.540 2.392 2.615

Kurtosis 37.737 30.949 42.919 11.745 10.714 12.661

Min 0.003 0.001 0.003 0.055 0.023 0.050

Max 2.559 1.831 1.946 1.600 1.353 1.395
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Table 2: Summary Statistics of Significant Daily Jumps

This table presents summary statistics for the series of significant daily jumps. The first

row of the table presents the total number of jump days. We detect statistically significant

jumps by using the zTQ,t statistic shown in Equation (10) and a confidence level of 99.9%.

The second and third rows show the total number of jumps positive and negative jumps,

respectively. The row labeled “Intensity” shows the jump intensity, that is the ratio of

jump days over the total number of days. The next two rows further decompose jump

intensity into its positive and negative parts following Tauchen and Zhou (2011). The

table also reports the mean (“Mean”) and standard deviation (“St.Dev.”) of the series of

significant jumps, as well as the corresponding statistics for positive and negative jumps.

Crude oil Heating oil Natural gas Gasoline

#Jumps 90 122 142 163

#Positive 58 65 61 88

#Negative 32 57 81 75

Intensity 0.063 0.085 0.100 0.115

Intensity+ 0.041 0.045 0.043 0.062

Intensity− 0.022 0.040 0.057 0.053

Mean 0.250 0.225 0.337 0.271

Mean+ 0.254 0.227 0.338 0.281

Mean− -0.243 -0.225 -0.337 -0.260

St. Dev. 0.169 0.134 0.189 0.188

St.Dev.+ 0.180 0.142 0.224 0.190

St.Dev.− 0.149 0.127 0.160 0.186
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Table 3: In-Sample Predictability: Crude Oil

This table assesses the predictive ability of several models in the crude oil market. Each of the three panels shows results for a different

forecasting horizon (1-, 5- and 22-day horizon). The jump components are computed based on Equation (12) using the test statistic

of Equation (10) and a significance level of 0.1%. All regressions are estimated using Newey–West (1987) corrected standard errors

with 5, 10 and 44 lags for the 1-, 5- and 22-day horizon, respectively. T-statistics are reported in parentheses. The intercepts are not

reported to save space. Significant coefficients at the 5% level are highlighted in bold. The second last column reports the adjusted R2

of each regression. The last column shows the number of observations. The sample period is from January 2, 2007 to June 29, 2012.

βd βw βm βCd
βCw

βCm
γJd

γJw
γJm

γRJ γRJ+ γRJ− R̄2 Obs.

Panel A: 1-Day Horizon

HAR–RV 0.334 0.396 0.226 - - - - - - - - - 0.758 1392

(7.115) (7.560) (4.561)

HAR–J - 0.397 0.230 0.334 - - 0.053 - - - - - 0.757 1392

(7.396) (4.506) (6.222) (0.916)

HAR–RJ - 0.397 0.234 0.331 - - - - - 0.037 - - 0.757 1392

(7.401) (4.362) (6.055) (0.780)

HAR–ARJ - 0.396 0.231 0.334 - - - - - - 0.069 -0.022 0.757 1392

(7.377) (4.480) (6.174) (0.925) (-0.359)

HAR–C–J - - - 0.326 0.409 0.220 0.053 0.041 0.018 - - - 0.759 1392

(6.164) (7.531) (4.194) (0.935) (1.905) (1.361)

Panel B: 5-Day Horizon

HAR–RV 0.264 0.431 0.257 - - - - - - - - - 0.852 1388

(7.896) (8.683) (5.446)

HAR–J - 0.433 0.258 0.261 - - 0.080 - - - - - 0.851 1388

(8.635) (5.416) (6.846) (2.178)

HAR–RJ - 0.437 0.263 0.256 - - - - - -0.031 - - 0.850 1388

(8.580) (5.275) (6.737) (-1.207)

HAR–ARJ - 0.435 0.256 0.261 - - - - - - 0.039 -0.160 0.852 1388

(8.638) (5.384) (6.946) (1.103) (-2.610)

HAR–C–J - - - 0.250 0.446 0.245 0.082 0.038 0.030 - - - 0.854 1388

(6.780) (8.682) (4.905) (2.133) (2.011) (1.665)

Panel C: 22-Day Horizon

HAR–RV 0.233 0.395 0.270 - - - - - - - - - 0.817 1371

(7.501) (4.604) (3.559)

HAR–J - 0.399 0.271 0.227 - - 0.098 - - - - - 0.817 1371

(4.577) (3.587) (7.030) (4.027)

HAR–RJ - 0.403 0.278 0.222 - - - - - -0.010 - - 0.815 1371

(4.538) (3.597) (7.092) (-0.567)

HAR–ARJ - 0.400 0.270 0.228 - - - - - - 0.068 -0.154 0.817 1371

(4.554) (3.544) (7.054) (3.156) (-3.365)

HAR–C–J - - - 0.213 0.401 0.239 0.097 0.071 0.064 - - - 0.825 1371

(7.461) (4.662) (3.131) (4.459) (2.382) (1.671)
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Table 4: In-Sample Predictability: Heating Oil

This table assesses the predictive ability of several models in the heating oil market. Each of the three panels shows results for a different

forecasting horizon (1-, 5- and 22-day horizon). The jump components are computed based on Equation (12) using the test statistic

of Equation (10) and a significance level of 0.1%. All regressions are estimated using Newey–West (1987) corrected standard errors

with 5, 10 and 44 lags for the 1-, 5- and 22-day horizon, respectively. T-statistics are reported in parentheses. The intercepts are not

reported to save space. Significant coefficients at the 5% level are highlighted in bold. The second last column reports the adjusted R2

of each regression. The last column shows the number of observations. The sample period is from January 2, 2007 to June 29, 2012.

βd βw βm βCd
βCw

βCm
γJd

γJw
γJm

γRJ γRJ+ γRJ− R̄2 Obs.

Panel A: 1-Day Horizon

HAR–RV 0.296 0.394 0.265 - - - - - - - - - 0.711 1395

(5.952) (7.608) (5.558)

HAR–J - 0.396 0.267 0.294 - - 0.097 - - - - - 0.710 1395

(7.265) (5.492) (5.137) (2.590)

HAR–RJ - 0.406 0.276 0.283 - - - - - 0.018 - - 0.708 1395

(7.359) (5.422) (4.825) (0.443)

HAR–ARJ - 0.396 0.267 0.294 - - - - - - 0.107 -0.086 0.710 1395

(7.285) (5.508) (5.117) (2.151) (-1.462)

HAR–C–J - - - 0.291 0.399 0.250 0.096 0.039 0.027 - - - 0.710 1395

(5.168) (7.768) (5.057) (2.591) (1.866) (1.758)

Panel B: 5-Day Horizon

HAR–RV 0.240 0.377 0.331 - - - - - - - - - 0.823 1391

(8.999) (7.694) (7.460)

HAR–J - 0.377 0.332 0.239 - - 0.085 - - - - - 0.823 1391

(7.508) (7.478) (7.616) (3.444)

HAR–RJ - 0.385 0.341 0.230 - - - - - -0.020 - - 0.821 1391

(7.558) (7.513) (7.040) (-0.719)

HAR–ARJ - 0.376 0.332 0.240 - - - - - - 0.061 -0.114 0.823 1391

(7.549) (7.534) (7.729) (2.184) (-2.887)

HAR–C–J - - - 0.233 0.395 0.303 0.083 0.026 0.033 - - 0.825 1391

(7.558) (7.822) (6.496) (3.261) (1.464) (1.823)

Panel C: 22-Day Horizon

HAR–RV 0.180 0.304 0.425 - - - - - - - - - 0.821 1374

(9.561) (5.443) (6.593)

HAR–J - 0.306 0.425 0.178 - - 0.074 - - - - - 0.821 1374

(5.474) (6.577) (8.980) (4.167)

HAR–RJ - 0.312 0.433 0.170 - - - - - -0.034 - - 0.819 1374

(5.364) (6.531) (8.806) (-0.966)

HAR–ARJ - 0.304 0.426 0.179 - - - - - - 0.038 -0.118 0.821 1374

(5.433) (6.566) (9.123) (1.521) (-2.543)

HAR–C–J - - - 0.173 0.307 0.405 0.072 0.041 0.035 - - - 0.823 1374

(8.705) (5.096) (5.769) (4.196) (2.597) (1.245)
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Table 5: In-Sample Predictability: Natural Gas

This table assesses the predictive ability of several models in the natural gas market. Each of the three panels shows results for a

different forecasting horizon (1-, 5- and 22-day horizon). The jump components are computed based on Equation (12) using the test

statistic of Equation (10) and a significance level of 0.1%. All regressions are estimated using Newey–West (1987) corrected standard

errors with 5, 10 and 44 lags for the 1-, 5- and 22-day horizon, respectively. T-statistics are reported in parentheses. The intercepts are

not reported to save space. Significant coefficients at the 5% level are highlighted in bold. The second last column reports the adjusted

R2 of each regression. The last column shows the number of observations. The sample period is from January 2, 2007 to June 29,

2012.

βd βw βm βCd
βCw

βCm
γJd

γJw
γJm

γRJ γRJ+ γRJ− R̄
2

Obs.

Panel A: 1-Day Horizon

HAR–RV 0.253 0.438 0.174 - - - - - - - - - 0.444 1396

(6.970) (9.440) (3.771)

HAR–J - 0.419 0.169 0.284 - - 0.053 - - - - - 0.447 1396

(8.988) (3.686) (6.494) (1.990)

HAR–RJ - 0.418 0.171 0.286 - - - - - -0.002 - - 0.446 1396

(8.923) (3.670) (6.444) (-0.088)

HAR–ARJ - 0.419 0.169 0.284 - - - - - - 0.054 -0.052 0.447 1396

(9.021) (3.682) (6.417) (1.571) (-1.353)

HAR–C–J - - - 0.269 0.439 0.181 0.054 0.057 -0.009 - - - 0.451 1396

(6.334) (8.434) (3.632) (2.029) (2.998) (-0.873)

Panel B: 5-Day Horizon

HAR–RV 0.237 0.400 0.200 - - - - - - - - - 0.602 1392

(7.202) (9.344) (3.947)

HAR–J - 0.390 0.198 0.252 - - 0.079 - - - - - 0.604 1392

(8.971) (3.927) (6.669) (3.005)

HAR–RJ - 0.388 0.201 0.256 - - - - - -0.015 - - 0.600 1392

(8.854) (3.880) (6.575) (-0.640)

HAR–ARJ - 0.390 0.198 0.253 - - - - - - 0.068 -0.089 0.604 1392

(9.006) (3.917) (6.514) (1.850) (-2.390)

HAR–C–J - - - 0.236 0.423 0.198 0.080 0.040 -0.004 - - - 0.611 1392

(6.664) (7.902) (3.655) (2.993) (2.001) (-0.282)

Panel C: 22-Day Horizon

HAR–RV 0.170 0.291 0.266 - - - - - - - - - 0.540 1375

(8.527) (8.189) (3.075)

HAR–J - 0.278 0.263 0.191 - - 0.038 - - - - - 0.542 1375

(7.383) (3.033) (7.796) (2.110)

HAR–RJ - 0.276 0.264 0.195 - - - - - -0.043 - - 0.543 1375

(7.210) (3.019) (7.526) (-2.218)

HAR–ARJ - 0.276 0.262 0.194 - - - - - - -0.006 -0.076 0.543 1375

(7.333) (3.034) (7.626) (-0.249) (-2.414)

HAR–C–J - - - 0.177 0.315 0.245 0.038 0.022 0.011 - - - 0.547 1375

(7.825) (7.015) (2.998) (2.129) (1.421) (0.419)
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Table 6: In-Sample Predictability: Gasoline

This table assesses the predictive ability of several models in the gasoline market. Each of the three panels shows results for a different

forecasting horizon (1-, 5- and 22-day horizon). The jump components are computed based on Equation (12) using the test statistic

of Equation (10) and a significance level of 0.1%. All regressions are estimated using Newey–West (1987) corrected standard errors

with 5, 10 and 44 lags for the 1-, 5- and 22-day horizon, respectively. T-statistics are reported in parentheses. The intercepts are not

reported to save space. Significant coefficients at the 5% level are highlighted in bold. The second last column reports the adjusted R2

of each regression. The last column shows the number of observations. The sample period is from January 2, 2007 to June 29, 2012.

βd βw βm βCd
βCw

βCm
γJd

γJw
γJm

γRJ γRJ+ γRJ− R̄2 Obs.

Panel A: 1-Day Horizon

HAR–RV 0.210 0.475 0.265 - - - - - - - - - 0.730 1394

(3.463) (7.898) (4.687)

HAR–J - 0.476 0.267 0.222 - - 0.021 - - - - - 0.731 1394

(7.665) (4.645) (3.361) (0.431)

HAR–RJ - 0.490 0.266 0.213 - - - - - -0.049 - - 0.732 1394

(7.687) (4.686) (3.216) (-1.533)

HAR–ARJ - 0.484 0.261 0.220 - - - - - - -0.023 -0.080 0.732 1394

(7.629) (4.532) (3.362) (-0.433) (-1.166)

HAR–C–J - - - 0.204 0.491 0.332 0.023 0.032 -0.011 - - - 0.734 1394

(2.979) (6.821) (4.893) (0.474) (1.453) (-0.674)

Panel B: 5-Day Horizon

HAR–RV 0.215 0.458 0.285 - - - - - - - - - 0.858 1390

(7.984) (8.558) (5.616)

HAR–J - 0.459 0.286 0.227 - - 0.034 - - - - - 0.859 1390

(8.495) (5.466) (8.145) (1.222)

HAR–RJ - 0.473 0.289 0.216 - - - - - -0.031 - - 0.859 1390

(8.576) (5.446) (7.475) (-1.522)

HAR–ARJ - 0.464 0.282 0.226 - - - - - - 0.004 -0.073 0.859 1390

(8.437) (5.344) (8.183) (0.105) (-2.231)

HAR–C–J - - - 0.206 0.493 0.323 0.038 0.020 0.000 - - - 0.864 1390

(7.050) (8.918) (6.165) (1.479) (1.141) (0.005)

Panel C: 22-Day Horizon

HAR–RV 0.198 0.420 0.296 - - - - - - - - - 0.835 1373

(6.142) (4.621) (3.081)

HAR–J - 0.421 0.297 0.209 - - 0.029 - - - - - 0.836 1373

(4.611) (3.049) (6.113) (1.195)

HAR–RJ - 0.432 0.300 0.200 - - - - - -0.020 - - 0.836 1373

(4.683) (3.018) (5.627) (-1.054)

HAR–ARJ - 0.424 0.295 0.208 - - - - - - 0.009 -0.056 0.836 1373

(4.602) (3.018) (6.079) (0.281) (-1.869)

HAR–C–J - - - 0.191 0.444 0.329 0.032 0.025 0.005 - - - 0.840 1373

(6.784) (4.815) (3.895) (1.346) (1.324) (0.133)
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Table 7: Forecasting Errors

This table presents out-of-sample forecasting errors for the five volatility models considered. Each panel focuses on a

specific loss function. MSE is the mean squared error, MSPE is the mean squared percentage error, MAE is the

mean absolute error, MAPE is the mean absolute percentage error, LL is the logarithmic loss and QLIKE is the

quasi likelihood loss function. We consider three forecast horizons, namely 1, 5 and 22 days. Out-of-sample forecasts

are obtained using a rolling window of 600 observations. In order to facilitate the presentation of our results, we

multiply each loss function by 100.

1-Day Horizon 5-Day Horizon 22-Day Horizon

A. MSE

HAR–RV HAR–J HAR–RJ HAR–ARJ HAR–C–J HAR–RV HAR–J HAR–RJ HAR–ARJ HAR–C–J HAR–RV HAR–J HAR–RJ HAR–ARJ HAR–C–J

Crude oil 0.535 0.533 0.530 0.533 0.538 0.376 0.375 0.373 0.374 0.381 0.401 0.401 0.400 0.403 0.419

Heating oil 0.399 0.400 0.396 0.400 0.400 0.247 0.247 0.247 0.247 0.248 0.244 0.245 0.247 0.245 0.249

Natural gas 1.494 1.487 1.491 1.493 1.483 0.842 0.836 0.849 0.841 0.848 0.841 0.838 0.838 0.837 0.847

Gasoline 0.484 0.483 0.484 0.483 0.499 0.297 0.299 0.299 0.299 0.314 0.289 0.291 0.293 0.292 0.309

B. MSPE

HAR–RV HAR–J HAR–RJ HAR–ARJ HAR–C–J HAR–RV HAR–J HAR–RJ HAR–ARJ HAR–C–J HAR–RV HAR–J HAR–RJ HAR–ARJ HAR–C–J

Crude oil 7.339 7.342 7.275 7.351 7.511 3.540 3.543 3.480 3.504 3.718 4.320 4.348 4.303 4.354 4.721

Heating oil 7.488 7.513 7.422 7.502 7.501 3.525 3.532 3.511 3.529 3.502 4.054 4.060 4.072 4.063 4.067

Natural gas 8.250 8.209 8.241 8.253 8.204 3.079 3.044 3.104 3.087 3.065 3.128 3.111 3.130 3.128 3.138

Gasoline 7.740 7.733 7.766 7.744 7.950 3.663 3.668 3.682 3.677 3.830 4.197 4.217 4.227 4.226 4.379

C. MAE

HAR–RV HAR–J HAR–RJ HAR–ARJ HAR–C–J HAR–RV HAR–J HAR–RJ HAR–ARJ HAR–C–J HAR–RV HAR–J HAR–RJ HAR–ARJ HAR–C–J

Crude oil 5.150 5.165 5.144 5.169 5.214 4.206 4.205 4.196 4.199 4.303 5.012 5.010 5.005 5.011 5.119

Heating oil 4.505 4.511 4.491 4.511 4.510 3.649 3.650 3.653 3.644 3.650 4.102 4.103 4.117 4.100 4.147

Natural gas 8.721 8.715 8.739 8.731 8.721 6.229 6.212 6.290 6.224 6.287 6.632 6.629 6.631 6.616 6.589

Gasoline 5.142 5.148 5.134 5.132 5.233 4.003 4.015 4.011 4.004 4.136 4.360 4.376 4.390 4.379 4.547

D. MAPE

HAR–RV HAR–J HAR–RJ HAR–ARJ HAR–C–J HAR–RV HAR–J HAR–RJ HAR–ARJ HAR–C–J HAR–RV HAR–J HAR–RJ HAR–ARJ HAR–C–J

Crude oil 18.872 18.921 18.839 18.935 19.157 14.226 14.220 14.161 14.179 14.676 17.047 17.050 17.011 17.039 17.626

Heating oil 18.976 18.991 18.906 18.988 19.001 14.474 14.472 14.458 14.448 14.432 16.410 16.412 16.441 16.386 16.497

Natural gas 21.150 21.136 21.205 21.179 21.141 13.646 13.603 13.789 13.641 13.718 14.174 14.162 14.181 14.147 14.059

Gasoline 19.832 19.847 19.812 19.797 20.134 14.616 14.632 14.615 14.591 15.004 16.239 16.273 16.321 16.290 16.776

E. LL

HAR–RV HAR–J HAR–RJ HAR–ARJ HAR–C–J HAR–RV HAR–J HAR–RJ HAR–ARJ HAR–C–J HAR–RV HAR–J HAR–RJ HAR–ARJ HAR–C–J

Crude oil 5.633 5.634 5.597 5.645 5.708 3.593 3.577 3.549 3.551 3.676 4.238 4.239 4.228 4.242 4.456

Heating oil 5.610 5.615 5.561 5.614 5.626 3.321 3.323 3.318 3.321 3.315 3.539 3.541 3.560 3.546 3.544

Natural gas 6.615 6.597 6.621 6.629 6.562 3.104 3.079 3.132 3.102 3.080 3.250 3.237 3.244 3.241 3.239

Gasoline 5.914 5.901 5.915 5.909 6.072 3.459 3.475 3.482 3.476 3.641 3.658 3.680 3.696 3.691 3.851

F. QLIKE

HAR–RV HAR–J HAR–RJ HAR–ARJ HAR–C–J HAR–RV HAR–J HAR–RJ HAR–ARJ HAR–C–J HAR–RV HAR–J HAR–RJ HAR–ARJ HAR–C–J

Crude oil -25.534 -25.536 -25.552 -25.530 -25.507 -23.233 -23.245 -23.255 -23.258 -23.209 -21.189 -21.192 -21.193 -21.191 -21.103

Heating oil -37.243 -37.242 -37.266 -37.242 -37.236 -35.058 -35.058 -35.059 -35.059 -35.059 -33.582 -33.581 -33.570 -33.577 -33.580

Natural gas 14.556 14.548 14.557 14.563 14.523 16.996 16.984 17.010 16.994 16.980 18.177 18.170 18.172 18.171 18.167

Gasoline -29.255 -29.263 -29.255 -29.258 -29.171 -27.032 -27.021 -27.019 -27.022 -26.931 -25.457 -25.444 -25.435 -25.438 -25.355
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Table 8: Out-of-Sample Forecast Comparisons for Crude Oil

This table presents test statistics from pairwise comparisons of equal predictive accuracy of forecasting models for crude oil volatility. Each day, we

use a trailing window of 600 observations to estimate the parameters of the HAR models. Equipped with these estimates, we then make out-of-sample

forecasts of volatility. We consider three forecasting horizons: daily, weekly and monthly. We report the test statistics from comparing the mean

difference between the forecast errors of model [name in row] and those of the model [name in column]. The Giacomini and White (2006) test statistic

is distributed as a chi-squared random variable with 1 degree of freedom. We highlight in bold all the significant test statistics based on the 95%

confidence level.

1-Day Horizon 5-Day Horizon 22-Day Horizon

HAR–RV HAR–J HAR–RJ HAR–ARJ HAR–RV HAR–J HAR–RJ HAR–ARJ HAR–RV HAR–J HAR–RJ HAR–ARJ

A. SE

HAR–RV – HAR–RV – HAR–RV –

HAR–J -0.60 – HAR–J -0.31 – HAR–J 0.06 –

HAR–RJ -2.75 -2.25 – HAR–RJ -1.61 -0.70 – HAR–RJ -0.17 -0.23 –

HAR–ARJ -0.35 0.53 4.98 – HAR–ARJ -1.11 -0.90 0.10 – HAR–ARJ 0.40 0.59 0.57 –

HAR–C–J 0.38 4.30 6.30 3.04 HAR–C–J 0.58 1.05 1.67 1.50 HAR–C–J 1.01 1.06 1.09 0.95

B. SPE

HAR–RV HAR–J HAR–RJ HAR–ARJ HAR–RV HAR–J HAR–RJ HAR–ARJ HAR–RV HAR–J HAR–RJ HAR–ARJ

HAR–RV – HAR–RV – HAR–RV –

HAR–J 0.00 – HAR–J 0.01 – HAR–J 1.98 –

HAR–RJ -1.35 -3.36 – HAR–RJ -1.98 -2.54 – HAR–RJ -0.61 -1.90 –

HAR–ARJ 0.05 0.24 7.43 – HAR–ARJ -0.79 -2.90 0.80 – HAR–ARJ 1.05 0.05 1.62 –

HAR–C–J 4.33 6.73 8.96 5.53 HAR–C–J 3.79 3.76 6.73 5.28 HAR–C–J 2.76 2.54 3.00 2.59

C. AE

HAR–RV HAR–J HAR–RJ HAR–ARJ HAR–RV HAR–J HAR–RJ HAR–ARJ HAR–RV HAR–J HAR–RJ HAR–ARJ

HAR–RV – HAR–RV – HAR–RV –

HAR–J 0.53 – HAR–J 0.00 – HAR–J -0.03 –

HAR–RJ -0.12 -2.97 – HAR–RJ -0.46 -0.45 – HAR–RJ -0.34 -0.09 –

HAR–ARJ 0.79 0.71 5.33 – HAR–ARJ -0.21 -0.35 0.06 – HAR–ARJ -0.01 0.02 0.11 –

HAR–C–J 5.00 6.44 8.97 5.17 HAR–C–J 3.76 4.37 4.74 4.70 HAR–C–J 0.57 0.65 0.64 0.63

D. APE

HAR–RV HAR–J HAR–RJ HAR–ARJ HAR–RV HAR–J HAR–RJ HAR–ARJ HAR–RV HAR–J HAR–RJ HAR–ARJ

HAR–RV – HAR–RV – HAR–RV –

HAR–J 0.34 – HAR–J -0.01 – HAR–J 0.00 –

HAR–RJ -0.26 -3.05 – HAR–RJ -1.04 -1.10 – HAR–RJ -0.75 -0.49 –

HAR–ARJ 0.55 0.65 4.93 – HAR–ARJ -0.62 -1.11 0.14 – HAR–ARJ -0.02 -0.12 0.25 –

HAR–C–J 6.42 10.22 13.10 8.49 HAR–C–J 5.90 6.80 8.00 7.67 HAR–C–J 1.33 1.41 1.50 1.45

E. LL

HAR–RV HAR–J HAR–RJ HAR–ARJ HAR–RV HAR–J HAR–RJ HAR–ARJ HAR–RV HAR–J HAR–RJ HAR–ARJ

HAR–RV – HAR–RV – HAR–RV –

HAR–J 0.00 – HAR–J -0.57 – HAR–J 0.00 –

HAR–RJ -1.36 -2.42 – HAR–RJ -2.54 -1.42 – HAR–RJ -0.39 -0.26 –

HAR–ARJ 0.08 1.45 4.58 – HAR–ARJ -2.39 -3.26 0.01 – HAR–ARJ 0.03 0.06 0.34 –

HAR–C–J 2.15 5.81 7.99 3.70 HAR–C–J 1.48 2.35 3.59 3.64 HAR–C–J 1.44 1.56 1.57 1.54

F. QLIKE

HAR–RV HAR–J HAR–RJ HAR–ARJ HAR–RV HAR–J HAR–RJ HAR–ARJ HAR–RV HAR–J HAR–RJ HAR–ARJ

HAR–RV – HAR–RV – HAR–RV –

HAR–J -0.01 – HAR–J -1.33 – HAR–J -0.16 –

HAR–RJ -1.34 -1.72 – HAR–RJ -2.86 -0.84 – HAR–RJ -0.28 -0.01 –

HAR–ARJ 0.03 1.79 3.31 – HAR–ARJ -3.31 -3.12 -0.07 – HAR–ARJ -0.03 0.08 0.05 –

HAR–C–J 1.07 3.78 5.37 2.09 HAR–C–J 0.48 1.29 1.88 2.22 HAR–C–J 0.95 1.14 1.05 1.11
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Table 9: Out-of-Sample Forecast Comparisons for Heating Oil

This table presents test statistics from pairwise comparisons of equal predictive accuracy of forecasting models for heating oil volatility. Each day, we

use a trailing window of 600 observations to estimate the parameters of the HAR models. Equipped with these estimates, we then make out-of-sample

forecasts of volatility. We consider three forecasting horizons: daily, weekly and monthly. We report the test statistics from comparing the mean

difference between the forecast errors of model [name in row] and those of the model [name in column]. The Giacomini and White (2006) test statistic

is distributed as a chi-squared random variable with 1 degree of freedom. We highlight in bold all the significant test statistics based on the 95%

confidence level.

1-Day Horizon 5-Day Horizon 22-Day Horizon

HAR–RV HAR–J HAR–RJ HAR–ARJ HAR–RV HAR–J HAR–RJ HAR–ARJ HAR–RV HAR–J HAR–RJ HAR–ARJ

A. SE

HAR–RV – HAR–RV – HAR–RV –

HAR–J 0.11 – HAR–J 0.44 – HAR–J 0.84 –

HAR–RJ -2.23 -2.65 – HAR–RJ 0.23 0.01 – HAR–RJ 2.02 1.07 –

HAR–ARJ 0.08 0.00 2.73 – HAR–ARJ 0.19 -0.01 -0.02 – HAR–ARJ 0.34 0.06 -1.06 –

HAR–C–J 0.34 0.20 2.61 0.20 HAR–C–J 0.29 0.08 0.04 0.10 HAR–C–J 0.61 0.51 0.16 0.38

B. SPE

HAR–RV HAR–J HAR–RJ HAR–ARJ HAR–RV HAR–J HAR–RJ HAR–ARJ HAR–RV HAR–J HAR–RJ HAR–ARJ

HAR–RV – HAR–RV – HAR–RV –

HAR–J 0.27 – HAR–J 0.13 – HAR–J 0.32 –

HAR–RJ -1.50 -2.94 – HAR–RJ -0.26 -0.54 – HAR–RJ 0.77 0.30 –

HAR–ARJ 0.07 -0.33 2.66 – HAR–ARJ 0.03 -0.05 0.33 – HAR–ARJ 0.18 0.03 -0.24 –

HAR–C–J 0.03 -0.04 0.93 0.00 HAR–C–J -0.29 -0.49 -0.04 -0.34 HAR–C–J 0.03 0.01 0.00 0.00

C. AE

HAR–RV HAR–J HAR–RJ HAR–ARJ HAR–RV HAR–J HAR–RJ HAR–ARJ HAR–RV HAR–J HAR–RJ HAR–ARJ

HAR–RV – HAR–RV – HAR–RV –

HAR–J 0.14 – HAR–J 0.02 – HAR–J 0.10 –

HAR–RJ -0.87 -1.55 – HAR–RJ 0.09 0.04 – HAR–RJ 1.20 0.92 –

HAR–ARJ 0.12 -0.01 1.54 – HAR–ARJ -0.25 -0.77 -0.45 – HAR–ARJ -0.02 -0.10 -2.50 –

HAR–C–J 0.07 -0.01 0.99 -0.01 HAR–C–J 0.00 0.00 -0.02 0.06 HAR–C–J 0.65 0.63 0.31 0.70

D. APE

HAR–RV HAR–J HAR–RJ HAR–ARJ HAR–RV HAR–J HAR–RJ HAR–ARJ HAR–RV HAR–J HAR–RJ HAR–ARJ

HAR–RV – HAR–RV – HAR–RV –

HAR–J 0.04 – HAR–J 0.00 – HAR–J 0.01 –

HAR–RJ -1.06 -1.56 – HAR–RJ -0.08 -0.07 – HAR–RJ 0.34 0.29 –

HAR–ARJ 0.02 -0.04 1.57 – HAR–ARJ -0.40 -0.81 -0.05 – HAR–ARJ -0.25 -0.37 -2.07 –

HAR–C–J 0.07 0.04 1.34 0.07 HAR–C–J -0.19 -0.19 -0.07 -0.03 HAR–C–J 0.21 0.21 0.09 0.33

E. LL

HAR–RV HAR–J HAR–RJ HAR–ARJ HAR–RV HAR–J HAR–RJ HAR–ARJ HAR–RV HAR–J HAR–RJ HAR–ARJ

HAR–RV – HAR–RV – HAR–RV –

HAR–J 0.03 – HAR–J 0.01 – HAR–J 0.06 –

HAR–RJ -2.63 -3.37 – HAR–RJ -0.03 -0.06 – HAR–RJ 0.96 0.66 –

HAR–ARJ 0.02 -0.01 3.53 – HAR–ARJ 0.00 -0.06 0.03 – HAR–ARJ 0.24 0.15 -0.76 –

HAR–C–J 0.18 0.25 3.09 0.27 HAR–C–J -0.04 -0.07 -0.01 -0.03 HAR–C–J 0.01 0.00 -0.07 0.00

F. QLIKE

HAR–RV HAR–J HAR–RJ HAR–ARJ HAR–RV HAR–J HAR–RJ HAR–ARJ HAR–RV HAR–J HAR–RJ HAR–ARJ

HAR–RV – HAR–RV – HAR–RV –

HAR–J 0.00 – HAR–J 0.00 – HAR–J 0.02 –

HAR–RJ -2.93 -3.26 – HAR–RJ 0.00 0.00 – HAR–RJ 0.96 0.72 –

HAR–ARJ 0.01 0.01 3.53 – HAR–ARJ -0.01 -0.02 0.00 – HAR–ARJ 0.35 0.26 -0.77 –

HAR–C–J 0.16 0.31 2.95 0.25 HAR–C–J 0.00 0.00 0.00 0.00 HAR–C–J 0.00 0.00 -0.11 -0.01
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Table 10: Out-of-Sample Forecast Comparisons for Natural Gas

This table presents test statistics from pairwise comparisons of equal predictive accuracy of the forecasting models for natural gas volatility. Three

forecast horizons are considered: daily, weekly and monthly. Entries correspond to test statistics from comparing the mean difference between the

forecast errors of model [name in row] and those of the model [name in column]. We report in the lower triangular matrix the Giacomini and White

(2006) test statistic. The statistic is asymptotically distributed as a chi-squared random variable with 1 degree of freedom. Panels 1 to 6 contain results

for the different loss functions. Significant mean differences (rejection of the null) at the 5% level are highlighted in bold. Out-of-sample forecasts are

generated using a rolling sample of 600 observations.

1-Day Horizon 5-Day Horizon 22-Day Horizon

HAR–RV HAR–J HAR–RJ HAR–ARJ HAR–RV HAR–J HAR–RJ HAR–ARJ HAR–RV HAR–J HAR–RJ HAR–ARJ

A. SE

HAR–RV – HAR–RV – HAR–RV –

HAR–J -1.19 – HAR–J -1.57 – HAR–J -0.47 –

HAR–RJ -0.08 0.66 – HAR–RJ 1.01 7.76 – HAR–RJ -0.33 -0.03 –

HAR–ARJ -0.03 3.55 0.18 – HAR–ARJ -0.03 2.45 -2.09 – HAR–ARJ -0.57 -0.10 -0.15 –

HAR–C–J -1.11 -0.23 -0.79 -1.39 HAR–C–J 0.13 0.56 0.00 0.18 HAR–C–J 0.16 0.33 0.33 0.37

B. SPE

HAR–RV HAR–J HAR–RJ HAR–ARJ HAR–RV HAR–J HAR–RJ HAR–ARJ HAR–RV HAR–J HAR–RJ HAR–ARJ

HAR–RV – HAR–RV – HAR–RV –

HAR–J -0.39 – HAR–J -1.47 – HAR–J -0.52 –

HAR–RJ -0.01 0.37 – HAR–RJ 0.50 10.53 – HAR–RJ 0.01 0.45 –

HAR–ARJ 0.00 1.36 0.06 – HAR–ARJ 0.19 1.79 -0.23 – HAR–ARJ 0.00 0.23 -0.05 –

HAR–C–J -0.31 -0.01 -0.32 -0.69 HAR–C–J -0.05 0.23 -0.78 -0.13 HAR–C–J 0.01 0.10 0.01 0.01

C. AE

HAR–RV HAR–J HAR–RJ HAR–ARJ HAR–RV HAR–J HAR–RJ HAR–ARJ HAR–RV HAR–J HAR–RJ HAR–ARJ

HAR–RV – HAR–RV – HAR–RV –

HAR–J -0.07 – HAR–J -1.14 – HAR–J -0.03 –

HAR–RJ 0.26 1.53 – HAR–RJ 3.11 9.21 – HAR–RJ 0.00 0.02 –

HAR–ARJ 0.16 1.41 -0.23 – HAR–ARJ -0.09 1.10 -6.01 – HAR–ARJ -0.47 -0.51 -1.80 –

HAR–C–J 0.00 0.06 -0.36 -0.14 HAR–C–J 1.26 2.86 -0.01 1.75 HAR–C–J -0.21 -0.19 -0.21 -0.09

D. APE

HAR–RV HAR–J HAR–RJ HAR–ARJ HAR–RV HAR–J HAR–RJ HAR–ARJ HAR–RV HAR–J HAR–RJ HAR–ARJ

HAR–RV – HAR–RV – HAR–RV –

HAR–J -0.05 – HAR–J -1.10 – HAR–J -0.09 –

HAR–RJ 0.35 1.78 – HAR–RJ 3.16 10.06 – HAR–RJ 0.01 0.15 –

HAR–ARJ 0.20 1.07 -0.35 – HAR–ARJ -0.02 1.09 -5.61 – HAR–ARJ -0.27 -0.09 -1.61 –

HAR–C–J -0.01 0.01 -0.71 -0.30 HAR–C–J 0.49 1.99 -0.56 0.66 HAR–C–J -0.26 -0.20 -0.27 -0.14

E. LL

HAR–RV HAR–J HAR–RJ HAR–ARJ HAR–RV HAR–J HAR–RJ HAR–ARJ HAR–RV HAR–J HAR–RJ HAR–ARJ

HAR–RV – HAR–RV – HAR–RV –

HAR–J -0.30 – HAR–J -2.19 – HAR–J -0.76 –

HAR–RJ 0.02 0.86 – HAR–RJ 1.01 8.91 – HAR–RJ -0.09 0.17 –

HAR–ARJ 0.19 2.13 0.13 – HAR–ARJ -0.03 2.06 -1.58 – HAR–ARJ -0.25 0.04 -0.17 –

HAR–C–J -1.51 -1.69 -2.61 -3.61 HAR–C–J -0.32 0.00 -2.27 -0.31 HAR–C–J -0.03 0.00 -0.01 0.00

F. QLIKE

HAR–RV HAR–J HAR–RJ HAR–ARJ HAR–RV HAR–J HAR–RJ HAR–ARJ HAR–RV HAR–J HAR–RJ HAR–ARJ

HAR–RV – HAR–RV – HAR–RV –

HAR–J -0.28 – HAR–J -2.66 – HAR–J -0.92 –

HAR–RJ 0.00 0.60 – HAR–RJ 0.99 7.52 – HAR–RJ -0.24 0.07 –

HAR–ARJ 0.19 2.25 0.29 – HAR–ARJ -0.18 2.21 -2.02 – HAR–ARJ -0.49 0.01 -0.16 –

HAR–C–J -2.36 -3.01 -3.32 -4.94 HAR–C–J -0.64 -0.07 -2.97 -0.55 HAR–C–J -0.12 -0.01 -0.03 -0.02
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Table 11: Out-of-Sample Forecast Comparisons for Gasoline

This table presents test statistics from pairwise comparisons of equal predictive accuracy of forecasting models for gasoline volatility. Each day, we

use a trailing window of 600 observations to estimate the parameters of the HAR models. Equipped with these estimates, we then make out-of-sample

forecasts of volatility. We consider three forecasting horizons: daily, weekly and monthly. We report the test statistics from comparing the mean

difference between the forecast errors of model [name in row] and those of the model [name in column]. The Giacomini and White (2006) test statistic

is distributed as a chi-squared random variable with 1 degree of freedom. We highlight in bold all the significant test statistics based on the 5%

significance level.

1-Day Horizon 5-Day Horizon 22-Day Horizon

HAR–RV HAR–J HAR–RJ HAR–ARJ HAR–RV HAR–J HAR–RJ HAR–ARJ HAR–RV HAR–J HAR–RJ HAR–ARJ

A. SE

HAR–RV – HAR–RV – HAR–RV –

HAR–J -0.64 – HAR–J 1.74 – HAR–J 4.15 –

HAR–RJ -0.11 0.55 – HAR–RJ 1.31 0.09 – HAR–RJ 5.62 2.00 –

HAR–ARJ -0.32 0.09 -0.64 – HAR–ARJ 0.71 -0.01 -1.16 – HAR–ARJ 4.99 0.62 -1.00 –

HAR–C–J 9.28 13.57 12.06 13.10 HAR–C–J 13.14 12.94 10.73 11.09 HAR–C–J 4.78 4.40 3.84 3.92

B. SPE

HAR–RV HAR–J HAR–RJ HAR–ARJ HAR–RV HAR–J HAR–RJ HAR–ARJ HAR–RV HAR–J HAR–RJ HAR–ARJ

HAR–RV – HAR–RV – HAR–RV –

HAR–J -0.03 – HAR–J 0.06 – HAR–J 1.46 –

HAR–RJ 0.49 0.77 – HAR–RJ 0.28 0.20 – HAR–RJ 1.83 0.36 –

HAR–ARJ 0.01 0.15 -1.24 – HAR–ARJ 0.16 0.07 -0.15 – HAR–ARJ 1.86 0.34 -0.02 –

HAR–C–J 3.69 4.77 3.39 4.35 HAR–C–J 7.70 9.79 6.13 5.68 HAR–C–J 2.81 2.79 2.41 2.44

C. AE

HAR–RV HAR–J HAR–RJ HAR–ARJ HAR–RV HAR–J HAR–RJ HAR–ARJ HAR–RV HAR–J HAR–RJ HAR–ARJ

HAR–RV – HAR–RV – HAR–RV –

HAR–J 0.11 – HAR–J 0.98 – HAR–J 1.44 –

HAR–RJ -0.28 -1.32 – HAR–RJ 0.15 -0.05 – HAR–RJ 2.64 1.49 –

HAR–ARJ -0.34 -1.62 -0.09 – HAR–ARJ 0.00 -0.44 -2.11 – HAR–ARJ 1.43 0.09 -3.65 –

HAR–C–J 6.85 7.92 9.66 10.11 HAR–C–J 8.82 8.42 8.42 9.05 HAR–C–J 4.35 4.33 3.92 4.27

D. APE

HAR–RV HAR–J HAR–RJ HAR–ARJ HAR–RV HAR–J HAR–RJ HAR–ARJ HAR–RV HAR–J HAR–RJ HAR–ARJ

HAR–RV – HAR–RV – HAR–RV –

HAR–J 0.05 – HAR–J 0.13 – HAR–J 0.55 –

HAR–RJ -0.11 -0.58 – HAR–RJ 0.00 -0.07 – HAR–RJ 1.60 1.11 –

HAR–ARJ -0.25 -1.14 -0.39 – HAR–ARJ -0.09 -0.34 -1.61 – HAR–ARJ 0.77 0.15 -2.62 –

HAR–C–J 5.40 6.69 7.57 8.45 HAR–C–J 6.06 6.62 6.46 6.88 HAR–C–J 3.18 3.40 2.99 3.26

E. LL

HAR–RV HAR–J HAR–RJ HAR–ARJ HAR–RV HAR–J HAR–RJ HAR–ARJ HAR–RV HAR–J HAR–RJ HAR–ARJ

HAR–RV – HAR–RV – HAR–RV –

HAR–J -0.29 – HAR–J 0.88 – HAR–J 2.40 –

HAR–RJ 0.00 0.64 – HAR–RJ 0.77 0.09 – HAR–RJ 3.47 1.44 –

HAR–ARJ -0.04 0.20 -0.54 – HAR–ARJ 0.47 0.00 -0.56 – HAR–ARJ 3.14 0.77 -0.75 –

HAR–C–J 8.45 12.33 9.73 10.90 HAR–C–J 11.78 13.47 10.33 10.20 HAR–C–J 3.79 3.62 3.18 3.31

F. QLIKE

HAR–RV HAR–J HAR–RJ HAR–ARJ HAR–RV HAR–J HAR–RJ HAR–ARJ HAR–RV HAR–J HAR–RJ HAR–ARJ

HAR–RV – HAR–RV – HAR–RV –

HAR–J -0.56 – HAR–J 1.34 – HAR–J 2.77 –

HAR–RJ 0.00 0.86 – HAR–RJ 1.02 0.03 – HAR–RJ 3.89 1.91 –

HAR–ARJ -0.07 0.35 -0.53 – HAR–ARJ 0.67 -0.01 -0.72 – HAR–ARJ 3.55 0.96 -1.17 –

HAR–C–J 9.60 13.84 11.12 12.11 HAR–C–J 12.40 14.14 11.40 11.49 HAR–C–J 3.88 3.61 3.20 3.35
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