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Abstract. We separate various weak forms of Club Guessing at
ω1 in the presence of 2ℵ0 large, Martin’s Axiom, and related forcing
axioms.

We also answer a question of Abraham and Cummings con-
cerning the consistency of the failure of a certain polychromatic
Ramsey statement together with the continuum large.

All these models are generic extensions via finite support itera-
tions with symmetric systems of structures as side conditions, pos-
sibly enhanced with ω–sequences of predicates, and in which the
iterands are taken from a relatively small class of forcing notions.

We also prove that the natural forcing for adding a large sym-
metric system of structures (the first member in all our iterations)
adds ℵ1–many reals but preserves CH.

1. Introduction

One is sometimes faced with the problem of building a model of set
theory satisfying the following two requirements.

(1) 2ℵ0 > ℵ2 holds in the model.
(2) Some particular combinatorial principle P of the form “For all x

there is some y such that Q(x, y)”, where Q(x, y) is sufficiently
absolute, holds in the model. Furthermore, for each x there is
a natural proper forcing adding a y such that Q(x, y). Hence,
P can be forced by means of a countable support iteration of
proper forcings, but in the corresponding extension 2ℵ0 ≤ ℵ2

necessarily holds.

The method of iterated forcing with finite supports and symmetric
systems of submodels as side conditions was developed in [6] in order
to resolve the tension between (1) and (2) in various situations (see
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[6] and [7] for background information). Variants of this method have
been subsequently investigated in [7] and [3].

One of the central themes of the present article is the construction
of iterations as in [6] where the iterands are chosen from some rela-
tively small class of posets (let us call these constructions of the first
type). The other central theme is a new variation of the general method
from [6] obtained from associating sequences of predicates to the sub-
models in the side conditions of the iteration (this gives rise to the
constructions of the second type). The main focus in this article is the
separation of club–guessing principles at ω1 in the presence of forcing
axioms for relatively small classes of posets but with respect to large
collections of dense sets. The corresponding models are obtained as
forcing extensions via constructions of either the first or the second
type. Also, using a construction of the first type we answer a ques-
tion of Abraham–Cummings in the context of polychromatic Ramsey
theory ([1]).

The rest of the paper is structured as follows. In the next subsection
we prove several implications and non-implications between weak forms
of Club Guessing at ω1, and present our main theorems (Theorems
1.13 and 1.14). In Section 2 we take a look at the forcing for adding
a symmetric system of submodels by finite conditions. This forcing is
either the first step or is subsumed in the first step in all our iterations.
We show that this forcing adds ℵ1–many reals but preserves CH. In
Section 3 we prove Theorems 1.13 and 1.14. Finally, in Section 4 we
deal with the Abraham–Cummings question. Most of our notation
will be standard (see e.g. [12] or [15]) but we will also be introducing
additional pieces of notation as we need them.

1.1. Weak forms of Club Guessing. A ladder system (also known
as a C–sequence) is a sequence 〈Cδ | δ ∈ Lim(ω1)〉, where each Cδ is
a club of δ of order type ω. Club Guessing (CG) is the well–known
weakening of ♦ saying that there is a C–sequence 〈Cδ | δ ∈ Lim(ω1)〉
which guesses clubs C of ω1, in the sense that for every such C there is
some δ such that a tail of Cδ is contained in C. In this subsection we
focus our attention on certain weakenings of CG. The web of implica-
tions between these principles will be immediate. We will then point
out how to prove several non–implications between these principles,
with a focus on what can be obtained in the presence of forcing axioms
for large families of dense sets. Finally we present our main separation
theorems, to be proved in Section 3.1

1For further information on these (and other related) club–guessing principles,
see for example [11], [10], and [17].
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Kunen’s Axiom (KA), also known as Interval Hitting Principle (see
for example [10]), is the following statement first considered by Kunen:
There is a C–sequence 〈Cδ | δ ∈ Lim(ω1)〉 with the property that for
every club C ⊆ ω1 there is some δ such that [Cδ(n), Cδ(n+ 1))∩C 6= ∅
for co-finitely many n < ω (where, here and throughout the paper,
X(ξ) denotes the ξ-th member of X if X is a set of ordinals).

f (mho), first defined by Todorčević ([22]), says that there is a se-
quence of continuous colourings gδ : δ −→ ω, for δ ∈ Lim(ω1),2 such
that for every club C ⊆ ω1 there is some δ with g−1

δ ({n}) ∩ C 6= ∅ for
all n < ω.

It is clear that CG implies KA and that KA implies f.
Weak Club Guessing (WCG), first defined by Shelah ([19]), says

that there is a C–sequence 〈Cδ | δ ∈ Lim(ω1)〉 such that every club of
ω1 has infinite intersection with some Cδ. Very Weak Club Guessing
(VWCG), also first considered by Shelah, says that there is a set X of
size ℵ1 consisting of subsets of ω1 of order type ω such that every club
of ω1 has infinite intersection with some member of X .

One can weaken VWCG even further: Given a cardinal λ ≥ ℵ1,
VWCGλ says that there is a set X of size at most λ consisting of
subsets of ω1 of order type ω and such that every club of ω1 has infinite
intersection with some member of X . ¬VWCGλ is called (∗)ωλ in [7]
(Definition 1.10).

Obviously WCG implies VWCG and VWCGλ implies VWCGµ when-
ever ℵ1 ≤ λ < µ.

By a result of Shelah, ¬WCG is compatible with CH ([20]; see also
[19]). On the other hand, CH obviously implies VWCG. In fact we
have the following.3

Fact 1.1. (Hrušák) b ≤ λ implies VWCGλ.

Proof. Let λ′ ≤ λ and let (rα | α < λ′) be such that {rα}α<λ′ is an
<∗–unbounded subset of ωω (where f <∗ g means that f(n) < g(n)
for a tail of n). Let 〈Cδ | δ ∈ Lim(ω1)〉 be a ladder system and let
hδ : ω −→ δ be a bijection for each δ ∈ Lim(ω1). For all α < λ′ and
δ ∈ Lim(ω1) let

Aαδ = {Cδ(n) | n < ω} ∪
⋃
{(hδ“[0, rα(n))) \ Cδ(n) | n < ω}

It is easy to check that for all α, δ, Aαδ has order type ω and sup(Aαδ ) =
δ. Given a club C ⊆ ω1, let δ ∈ C be a limit point of C and let

2Where δ and ω are both endowed with the order topology.
3Thanks to M. Hrušák for pointing this out in the case λ = ℵ1 (the proof for

general λ is the same).
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gC,δ : ω −→ ω be the function given by

gC,δ(n) = min{m | hδ(m) ∈ C \ Cδ(n)}

Now let α < λ′ be such that rα(n) > gC,δ(n) for infinitely many n. It
then follows that |Aαδ ∩ C| = ℵ0. �

Let us consider the following notion of rank (see e.g. [5] and [6]).

Definition 1.2. Given a set X and an ordinal δ, we define the Cantor–
Bendixson rank of δ with respect to X, rank(X, δ), by specifying that

• rank(X, δ) ≥ 1 if and only if δ is a limit point of ordinals in X.
• If µ > 1, rank(X, δ) ≥ µ if and only and for every η < µ, δ is a

limit of ordinals ε with rank(X, ε) ≥ η.

Let us call an ordinal δ perfect if rank(δ, δ) = δ.

Given any uncountable cardinal κ, the set of perfect ordinals in κ
form a club of order type κ. Hence, if κ ≥ ω1 is a regular cardinal and
C ⊆ κ is a club, the set of perfect ordinals δ in κ which are fixed points
of the enumerating function of C forms a club of κ.

Given an ordinal τ , we will say that a set X of ordinals is τ–thin in
case rank(X, δ) ≤ τ for all ordinals δ. One can strengthen ¬VWCGλ

even further in the following way.

Definition 1.3. ([7]) Given ordinals τ and λ, τ < ω1, (·)τλ is the
following statement: For every sequence (Xi)i<λ, ifXi is a τ–thin subset
of ω1 for all i < λ, then there is a club C ⊆ ω1 such that |C ∩Xi| < ℵ0

for all i.

One can define the ‘strong’ form of the (weak) guessing principles we
have been looking at by requiring that the relevant guessing occurs on
a club of δ’s. For example, Strong Club Guessing (Strong CG) is the
statement that there is a ladder system 〈Cδ | δ ∈ Lim(ω1)〉 such that for
every club C ⊆ ω1, |Cδ \C| < ℵ0 for club–many δ ∈ Lim(ω1). Similarly
we can define strong KA, strong f, strong Weak Club Guessing, and
so on. In particular, a strong f–sequence is a sequence of continuous
colourings gδ : δ −→ ω, for δ ∈ Lim(ω1), such that for every club
C ⊆ ω1 there are club–many δ < ω1 with g−1

δ ({n})∩C 6= ∅ for all n < ω,
and a strong WCG–sequence is a ladder system (Cδ : δ ∈ Lim(ω1))
such that for every club C ⊆ ω1 there are club–many δ such that Cδ∩C
is infinite. Note the following facts, which will be used in Section 3. In
the statement of these facts, and throughout the paper, we adopt the
convention of denoting by δN the ordinal N ∩ω1 if N is a set such that
N ∩ ω1 is an ordinal.
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Fact 1.4. If N is a countable elementary substructure of H(ω2) con-
taining a strong f–sequence (gδ : δ ∈ Lim(ω1)), then for every club
C ⊆ ω1 in N and every n ∈ ω there is some ε ∈ C ∩ δN such that
gδN (ε) = n.

Fact 1.5. If N is a countable elementary substructure of H(ω2) con-
taining a strong WCG–sequence (Cδ : δ ∈ Lim(ω1)), then for every
club C ⊆ ω1 in N , CδN ∩ C is infinite.

Of course Strong P implies P for all these guessing principles P , but
the reverse implications do not hold. Also, Strong P1 implies Strong P0

whenever P1 implies P0.4 In particular, strong CG implies both strong
f and strong WCG. These strong guessing principles are consistent:

Fact 1.6. (Folklore) CH + Strong CG can always be forced.

Proof. Assume CH and let P be the forcing for adding a C–sequence
~C by initial segments. In V P , let Q̇ be a countable support iteration
shooting all relevant clubs so as to make ~C strongly club–guessing. It
is easy to check that P ∗ Q̇ is a proper poset not adding reals and
that after forcing with Q̇ over VP , the generic ~C becomes strongly
club–guessing. �

We fix some notation regarding forcing axioms: Given a partial order
P and a cardinal λ, FA(P)λ means: For every collection {Di | i < λ}
of dense subsets of P there is a filter G ⊆ P such that G ∩Di 6= ∅ for
all i < λ. Given a class Γ of partial orders and a cardinal λ, FA(Γ)λ
means FA(P)λ for every P ∈ Γ.

PFA (i.e., FA({P | P proper})ℵ1), and in fact BPFA, implies both
¬VWCG and ¬f (by a standard argument using a natural poset for
adding, by finite approximations, a club destroying the relevant guess-
ing sequence).5 On the other hand, every club of ω1 in every c.c.c.
extension contains a club in V. In particular, all these guessing princi-
ples P are preserved by c.c.c. forcing, and so they are consistent with
2ℵ0 large. In particular, no forcing axiom MAλ implies the negation of
even Strong CG. Of course MAω1 implies neither VWCG nor f since
MAω1 follows from BPFA.

H. Sakai shows in [18] that the finite–support product Add(ω, θ) of
θ copies of Cohen forcing always preserves ¬CG. A refined version of

4One should be careful: Even if ♦ implies CG, ♦+ (which is a ‘weakly strong’
form of ♦) does not imply Strong CG. This is a result of Ishiu–P. Larson ([11]).

5We will deal with these posets in Section 3. There is also a (more) natural
proper poset for adding, by initial segment, a club killing a potential f–sequence,
but in order to kill a VWCG–sequence one seems to need finite approximations.
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this argument shows that Add(ω, θ) preserves also ¬KA (cf. Lemma
1.12). On the other hand, it is not hard to see that Cohen forcing adds
both a WCG–sequence and a f–sequence (cf. [13]). A consequence
of these two facts together is that one can always force 2ℵ0 large +
FA(Add(ω, λ))µ for all λ, µ < 2ℵ0 + ¬CG + WCG +b = ω1 + KA. For
this, start with a model of KA +¬CG (cf. [10]) and add many Cohen
reals to it. And of course one can also force 2ℵ0 large + FA(Add(ω, λ))µ
for all λ, µ < 2ℵ0 + ¬KA + WCG +f + b = ω1: Start with a model of
¬KA and add many Cohen reals.

A forcing notion P is ωω–bounding if any f : ω −→ ω in any ex-
tension by P is dominated by some g : ω −→ ω in the ground model.
It is not difficult to see that any c.c.c. ωω–bounding forcing preserves
¬WCG and ¬VWCGλ for every λ:

Lemma 1.7. (Hrušák) Given a limit ordinal α < ω1 and X ⊆ α, a
set of ordinals of order type ω cofinal in α in an extension by an ωω–
bounding forcing notion, X is covered by a set Y in V of order type ω
and with sup(Y ) = α. Hence, If 〈Ai | i < λ〉 is a sequence of subsets
of ω1 of order type ω in an extension by a c.c.c. ωω–bounding forcing
notion, then there is a sequence 〈Bi | i < λ〉 ∈ V of subsets of ω1 of
order type ω such that sup(Bi) = sup(Ai) and |Ai \ Bi| < ℵ0 for every
i.

Proof. For the first assertion, let (αn)n<α ∈ V be a strictly increasing
sequence converging to α and let (hn)n<ω ∈ V be such that hn : ω −→
[αn, αn+1) is a surjection for every n. In the extension, let f : ω −→
ω be given by f(n) = min{m | X ∩ [αn, αn+1) ⊆ hn“m}, and let
g : ω −→ ω be a function in V dominating f . It suffices to define Y
such that Y ∩ [αn, αn+1) = {hn(0), . . . , hn(g(n))}. Now we can prove
the second assertion by a standard diagonalization argument using the
c.c.c. �

It follows of course that we can always force 2ℵ0 large + FA(Bλ)µ for
all λ, µ < 2ℵ0 + ¬VWCG, where Bλ denotes the measure algebra with
λ–many generators: Start with a model of ¬VWCG and add lots of
random reals to it.

At this point one would naturally ask whether MAλ, for any λ > ℵ1,
implies any nontrivial weak club–guessing principle.6 This question
was answered negatively in [7]:

6Note that one cannot hope to use a finite support iteration of c.c.c. forcings to
answer this question negatively since every such iteration will force WCG if it has
length at least ω (see [7]).
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Definition 1.8. ([7]) A poset P has the ℵ1.5–c.c. if for every regular
cardinal λ ≥ |TC(P)|+ there is a club D ⊆ [H(λ)]ℵ0 such that for
every finite {Ni : i < n} ⊆ D and every p ∈ P , if p ∈ Nj for some
j such that δNj = min{δNi : i < n}, then there is some condition
extending p and (Ni, P)–generic for all i.

Also, given any cardinal λ, MA1.5
λ is FA({P | P has the ℵ1.5–c.c.})λ,

and MA1.5 is MA1.5
λ for all λ < 2ℵ0 .

Every c.c.c. poset has the ℵ1.5–c.c. and every ℵ1.5–c.c. poset has the
ℵ2–c.c. and is proper. Also, for every cardinal λ, MA1.5

λ implies (·)τλ for
all τ < ω1. These facts are proved in [7].

Theorem 1.9. ([7]) (CH) Let κ ≥ ω2 be a regular cardinal such that
µℵ0 < κ for all µ < κ and ♦({α < κ : cf(α) ≥ ω1}) holds. Then there
is a proper forcing notion P of size κ with the ℵ2–c.c. such that the
following statements hold in the generic extension by P.

(1) 2ℵ0 = κ
(2) MA1.5

One prominent ℵ1.5–c.c. forcing notion is Baumgartner’s forcing for
adding a club of ω1 with finite conditions ([8]). We will denote this
poset by B.7 Conditions in B are finite functions p ⊆ ω1 × ω1 that
can be extended to a normal function F : ω1 −→ ω1,8 and given two
conditions p0, p1, p1 is stronger than p0 iff p0 ⊆ p1. B is ℵ1.5–c.c., and
in fact is a finitely proper poset of size ℵ1 (see [6] for the definition of
finitely proper). On the other hand, it is nowhere c.c.c. (i.e., it is not
c.c.c. below any condition) and, as Zapletal proved in [25], under PFA
it is a minimal nowhere c.c.c. poset, in the sense that every nowhere
c.c.c. poset adds a generic for B. Also, if P = {pα | α < ω1} is a
proper nowhere c.c.c. forcing notion adding a club C ⊆ ω1 such that
for all α ∈ C, Ġ ∩ {pβ | β < α} is generic for {pβ | β < α} (where

Ġ denotes the generic filter), then RO(P ) = RO(B) ([24]). Let FA(B)
denote FA(B)λ for all λ < 2ℵ1 .

Given a partial order P , let m(P) be the minimal size of a family D
of dense subsets of P such that there is no filter G ⊆ P intersecting
all members of D. There is a natural topology on the club filter Cω1

on ω1 such that cov(Cω1) = m(B) if m(B) > ℵ1 (where Cω1 is endowed
with this topology and where for a topological space X, cov(X), the

7The observations on B that follow are borrowed from [4].
8A function F : ω1 −→ ω1 is normal if it is strictly increasing and continuous.

There is of course a natural correspondence between clubs of ω1 and normal func-
tions F : ω1 −→ ω1 which sends a club to its enumerating function and a normal
function to its range.
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covering number of X, is the minimal size of a collection of nowhere
dense subsets of X whose union is X). This is of course the topology
whose basis is given by the conditions in B; in other words, a basis for
this topology is given by {Bp | p ∈ B}, where Bp is the set of all clubs
C ⊆ ω1 such that p ⊆ F , where F is the enumerating function of C.
The proof of this is a standard translation exercise between topological
notions and order–theoretical notions, and is identical to the proof that
m(Cohen) is the covering number of the meagre ideal for the Baire
space. The assumption m(B) > ℵ1 is needed only for the proof of
m(B) ≤ cov(Cω1): Given κ < m(B) and a collection {Xi | i < κ} of
closed nowhere dense subsets of Cω1 , Di = {p ∈ B | Bp ∩Xi = ∅} is a
dense open subset of B. Let {Eν | ν < ω1} be a set of dense subsets of
B such that

⋃
range(G) is a club of ω1 for every filter G ⊆ B meeting

all Eν . Since m(B) > ℵ1, we can find a filter G ⊆ B meeting all Eν and
all Di. It follows then that C =

⋃
range(G) is a club of ω1 such that

C /∈ Xi of all i.
Of course there is nothing special about Cohen forcing or Baum-

gartner’s forcing in any of these translations; in fact, a similar char-
acterisation can be always obtained for m(P) for any poset P . What
is nice about Cohen forcing and Baumgartner’s forcing (in the case
m(B) > ℵ1) is the appealing appearance of the topological side of the
translation.

The assumption m(B) > ℵ1 in the above characterisation is neces-
sary:

Fact 1.10. KA implies cov(Cω1) = ℵ0.

Proof. Let ~C = 〈Cδ | δ ∈ Lim(ω1)〉 be a KA–sequence. For every n <
ω, let Dn be the set of B–conditions p such that for every δ ∈ dom(p),
if δ is perfect and p(δ) = δ, then there is some m ≥ n and some
ξ ∈ dom(p) ∩ δ such that p(ξ) < Cδ(m) and p(ξ + 1) > Cδ(m+ 1). Dn

is clearly a dense subset of B, and therefore the set Xn of C ∈ Cω1 such
that p * C̃ for any p ∈ Dn, where C̃ is the enumerating function of C,
is nowhere dense in Cω1 . Now, if C ⊆ ω1 is a club, then there is some

n < ω such that C ∈ Xk for every k ≥ n since ~C is a KA–sequence. �

Thus, cov(Cω1) = ℵ0 can be regarded as a (very) weak club–guessing
principle that might be worth investigating.

As we have seen, all forcing axioms of the form MAλ are compatible
with even the strongest club–guessing principle we are considering in
this paper (namely Strong CG). This is not true for FA(B)λ: Let us
say that a set C of subsets of ω1 of order type ω is a KA set if for every
club D ⊆ ω1 there is some C ∈ C such that D ∩ [C(n), C(n + 1)) 6= ∅
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for a tail of n < ω. Given a cardinal λ, let KAλ be the assertion that
there is a KA set of size at most λ. It is not difficult to see that B
destroys every KA–sequence from the ground model. In particular we
obtain the following.

Proposition 1.11. For every cardinal λ, FA(B)λ implies ¬KAλ.

Given a cardinal λ, let CGλ denote the weakening of CG saying that
there is a set C of size at most λ consisting of subsets of ω1 of order
type ω and such that for every club D ⊆ ω1 there is some C ∈ C with
C ⊆ D. Of course CGλ implies KAλ.

By essentially the same argument as in [18] one can show that
Add(ω, θ) preserves ¬CGλ. Also, by refining the argument from [18],
one can establish the following preservation result ([4]), the proof of
which we include here for completeness:

Lemma 1.12. Add(ω, θ) preserves ¬KAλ.

Proof. Let X be any set and let P (X) be the set of finite functions
p ⊆ (X × ω)× 2 ordered by reverse inclusion. It suffices to show that
forcing with P (X) preserves ¬KAλ. Let 〈Ȧi | i < λ〉 be a sequence
of P (X)–names for subsets of ω1 of order type ω. The fist observation
is that for every i there is a countable Yi ⊆ X such that Ȧi is in fact
a P (Yi)–name and such that for every α < ω1 there is some p ∈ P (X)
such that p 
P (X) α̌ ∈ Ȧi if and only if there is some p ∈ P (Y ) such

that p 
P (Y ) α̌ ∈ Ȧi.
For every i let (pin)n<ω be an enumeration of P (Yi). Also, for every

n < ω, if there is some σ ∈ ω1 such that pin 
P (Yi) sup(Ȧi) = σ, then
let X i

n be a set of pairwise compatible P (Yi)–conditions extending pin
and such that {ξ < σ | p′ 
P (Yi) ξ ∈ Ȧi for some p ∈ X i

n} is cofinal in
σ.9

Given any club C ⊆ ω1 there are i < λ, σ < ω1, γ < σ and nC < ω
such that pinC forces in P (Yi) that sup(Ȧi) = σ and that [α, α′) \C 6= ∅
for even two consecutive points α, α′ of Ȧi above γ. Let n∗ < ω be
such that the set C of clubs C such that nC = n∗ is ⊆–dense in the set
of all clubs of ω1. For every i < λ, if there is a σ such that pin∗ 
P (Yi)

sup(Ȧi) = σ, then let Bi = {ξ < σ | p 
P (Yi) ξ ∈ Ȧi for some p ∈
X i
n∗}.
By ⊆–density of C it suffices to show that if C ∈ C, then there is

some i < λ such that pin∗ 
 sup(Ȧi) = σ for some σ, and such that
[β, β′) ∩ C 6= ∅ for every two consecutive points β < β′ in Bi above

9The introduction of the X in’s is the new ingredient with respect to the proof in
[18].
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some γ < σ. But this is true by the previous paragraph and the
definition of Bi since all conditions in X i

n∗ extend pin∗ and are pairwise
compatible. �

It follows that if, say, GCH holds and ω2 ≤ κ ≤ λ are successor
cardinals, then there is a proper ℵ2–c.c. poset producing a model of
2ℵ0 = λ + FA(Add(ω, µ))λ′ for all λ′, µ < λ + ¬KAκ′ for any κ′ < κ
+WCG +f+b = ω1.10 For this, first force 2ℵ0 = κ+MA1.5 by a proper
ℵ2–c.c. poset as in Theorem 1.9 and then force with Add(ω, λ). The
first forcing kills KAκ′ for all κ′ < κ, and the second forcing preserves
¬KAκ′ for all κ′ < κ and forces 2ℵ0 = λ+ WCG +b = ω1.

In this paper we focus on the construction of models separating club–
guessing principles in which 2ℵ0 is arbitrarily large and in which some
relatively large fragment of MA1.5 (say, comprising MA + FA(B)) holds.
Our main theorems are the following.

Theorem 1.13. (CH) Suppose there is a strong f–sequence ~G. Let
κ be a regular cardinal such that 2<κ = κ. Then there exists a proper
poset P with the ℵ2–c.c. such that the following statements hold in V P .

(1) ~G is a f–sequence.
(2) (·)τλ for all τ < ω1 and λ < 2ℵ0.
(3) MA
(4) FA(B)
(5) 2ℵ0 = κ

Theorem 1.14. (CH) Suppose there is a strong WCG–sequence ~C.
Let κ be a regular cardinal such that 2<κ = κ. Then there exists a
proper poset P with the ℵ2–c.c. such that the following statements hold
in V P .

(1) ~C is a WCG–sequence.
(2) ¬f
(3) MA
(4) FA(B)
(5) 2ℵ0 = κ

By Fact 1.6 and the paragraph before Fact 1.6, the hypotheses of
Theorems 1.13 and 1.14 can always be forced.

Both theorems above can be proved starting from the weaker hy-
pothesis that ~G (resp., ~C) is defined only on a stationary subset of ω1

(for Theorem 1.13 and Theorem 1.14, respectively). Here, the rele-

vant object ~A being strongly guessing in the appropriate sense means

10This result will be partially improved in Theorem 1.14.
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of course that for every club C the guessing occurs for all ordinals in
D ∩ dom( ~A) for some club D ⊆ ω1.

Finally, we should point out that other separations of consequences
of MA1.5, in the presence of 2ℵ0 large, have been obtained also by other
people using iterations with symmetric systems of structures as side
conditions and considering instances from a restricted class of ℵ1.5–
c.c. forcings only (i.e., as in the proof of Theorem 1.13). Specifically,
Yorioka ([23]) builds a model of ¬f + ¬WCG + p = add(N ) = 2ℵ0 +
2ℵ0 large in which there is a destructible (ω1, ω

∗
1)–gap in (ωω,<∗).

2. Forcing with symmetric systems

For this section, let κ be a cardinal such that cf(κ) ≥ ω2.

Definition 2.1. ([6]; cf. [21], [14], [1]) Let P ⊆ H(κ), and let N be
a collection of countable subsets of H(κ). We will say that N is a
P–symmetric system if

(A) For every N ∈ N , (N,∈, P ) is an elementary substructure of
(H(κ),∈, P ).

(B) Given N , N ′ ∈ N , if δN = δN ′ , then there is a (unique) isomor-
phism

ΨN,N ′ : (N,∈, P ) −→ (N ′,∈, P )

Furthermore, ΨN,N ′ is the identity on N ∩N ′.
(C) For all M , N in N , if δM < δN , then there is some N ′ ∈ N

such that δN ′ = δN and M ∈ N ′.
(D) For all M , N and N ′ in N , if M ∈ N and δN ′ = δN , then

ΨN,N ′(M) ∈ N .

In (A) in the above definition, and elsewhere, we will tend to refer
to structures (N,∈, P ∩N) by the simpler expression (N,∈, P ). Also,
given any two structures N , N ′, if there is a (unique) isomorphism
between (N,∈) and N ′,∈), then we denote this isomorphism by ΨN,N ′ .

Given P ⊆ H(κ), there is a natural forcing notion SP for adding,
by initial approximations, a symmetric P–system N such that

⋃
N =

H(κ): SP is just the set of finite P–symmetric systems, ordered by
reverse inclusion.

The following lemma is proved in [6] (Lemma 2.3).

Lemma 2.2. Let P ⊆ H(κ), let N be a P–symmetric system, and let
N ∈ N . Then the following holds.

(i) N ∩N is a P–symmetric system.
(ii) If W ⊆ N is a P–symmetric system and N ∩N ⊆ W, then

V := N ∪ {ΨN,N ′(W ) : W ∈ W , N ′ ∈ N , δN ′ = δN}
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is a P–symmetric system.

Corollary 2.3. SP is proper. In fact, suppose that θ is a regular
cardinal and N∗ is a countable elementary substructure of H(θ) such
that P ∈ N∗. Then, letting N = N∗ ∩ H(κ), the following conditions
hold for every N ∈ SP .

(1) If N ∈ N , then N ∪ {N} ≤SP N .
(2) If N ∈ N , then N is (N∗, SP )–generic.

Proof. (1) is obvious. For (2), let E be a dense subset of SP in N∗.
It suffices to show that there is some condition in E ∩ N∗ compatible
with N . Notice that N ∩N∗ ∈ SP by Lemma 2.2 (i). Hence, we may
find a condition N ◦ ∈ E ∩N∗ extending N ∩N∗. Now let

N ∗ = N ∪ {ΨN,N(M) : M ∈ N ◦, N ∈ N , δN = δN}

By Lemma 2.2 (ii) we have that N ∗ is a condition in SP extending
both N and N ◦. �

The following is essentially Lemma 2.4 in [6].

Lemma 2.4. Let P ⊆ H(κ) and let N0 = {N0
i : i < µ} and N1 =

{N1
i : i < µ} be P–symmetric systems. Suppose that (

⋃
N0)∩(

⋃
N1) =

X and that there is an isomorphism Ψ between the structures

〈
⋃
i<µ

N0
i ,∈, P,X,N0

i 〉i<µ

and

〈
⋃
i<µ

N1
i ,∈, P,X,N1

i 〉i<µ

which is the identity on X. Then N0 ∪N1 is a P–symmetric system.

Recall that, given a cardinal λ, a poset P is λ–Knaster if for every
X ∈ [P]λ there is some Y ∈ [X]λ consisting of pairwise compatible
conditions. The following lemma is easy to prove using Lemma 2.4
together with standard ∆–system arguments (cf. [6], Lemma 3.9).

Lemma 2.5. (CH) Let P ⊆ H(κ). If there is a bijection ϕ : H(κ) −→
κ definable in (H(κ),∈, P ), then SP is ℵ2–Knaster.

It is not difficult to see that forcing with SP adds ℵ1–many new reals.

Fact 2.6. For every P ⊆ H(κ), SP adds ℵ1–many Cohen reals.

Proof. Let S ⊆ ω1 be stationary and co–stationary, Say that a count-
able N such that (N,∈, P ) 4 (H(κ),∈, P ) is minimal if there is some
x ∈ N with the property that either there is no countable M ∈ N such
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that x ∈ M , δM ∈ S and (M,∈, P ) 4 (N,∈, P ) or there is no count-
able M ∈ N such that x ∈M , δM /∈ S and (M,∈, P ) 4 (N,∈, P ). Let
G be SP–generic and let NG =

⋃
G. Given any δ̄ < ω1 and N̄ ∈ NG

such that δN̄ = δ̄, let fδ̄ : ω −→ 2 be the function sending n to 0 if
and only if there are minimal N0 ∈ . . . ∈ Nn in NG such that N̄ ∈ N0,
such that, letting N−1 = N̄ , for all i ≤ n, 0 ≤ i, it holds that there
there is no minimal M ∈ NG such that Ni−1 ∈M ∈ Ni, and such that
δNn ∈ S. It is easy to see that fδ̄ is a well–defined function defined on
all of ω and that it is (the numerating function of) a Cohen real over
V. It is also not difficult to see that fδ̄0 6= fδ̄1 if δ̄0 = δN0 < δ̄1 = δN1

and N0, N1 ∈ NG are both non–minimal. But then we are done since
by density there are arbitrarily high δ̄ < ω1 such that δ̄ = δN for some
non–minimal N ∈ NG. �

What is perhaps more surprising is that if CH holds, then SP does
not add more than ℵ1–many reals.

Proposition 2.7. (CH) Let P ⊆ H(κ). If there is a bijection ϕ :
H(κ) −→ κ definable in (H(κ),∈, P ), then SP preserves CH.

Proof. Suppose ṙα (for α < ω2) are SP–names for members of ω2 and
N ∈ SP forces ṙα 6= ṙα′ , for all α < α′ < ω2. By the ℵ2–c.c. of SP
we may assume that each ṙα is in H(κ). Let θ be a regular cardinal
such that SP ∈ H(θ). For each α let Nα be such that {N , ṙα} ∈ Nα

and Nα is a countable elementary substructure of (H(κ),∈, P,SP ). We
may also assume that for each α there is a countable N∗α ≺ H(θ)
such that Nα = H(κ) ∩ N∗α. By CH we may find distinct α, α′ such
that (Nα,∈, P,SP ,N , ṙα) and (Nα,∈, P,SP ,N , ṙα) are isomorphic, and
we may also assume that the unique isomorphism Ψ between these
structures fixes Nα ∩Nα′ . By Lemma 2.4 we know that N ∪{Nα, Nα′}
is an SP–condition, and by Corollary 2.3, N ∪ {Nα, Nα′} is (N∗α, SP )–
generic and (N∗α′ , SP )–generic. Note that for every n < ω and every
condition N ′ SP–extending N ∪{Nα, Nα′} there are conditions N ′′,M
and ε ∈ 2 such that M∈ Nα, M 
SP ṙα(n) = ε, and N ′′ is a common
SP–extension ofM andN ′ (this is true sinceN∪{Nα, Nα′} is (SP , N∗α)–
generic). By clause (D) in Definition 2.1, N ′′ also SP–extends Ψ(M) ∈
Nα′ . By correctness of Ψ with respect to the predicate SP , Ψ(M) 
SP
Ψ(ṙα)(n) = ṙα′(n) = ε. Since N ′ and n were arbitrary this shows that
N ∪ {Nα, Nα′} forces that ṙα = ṙα′ , which is a contradiction. �

3. Proving Theorems 1.13 and 1.14

The following notation will be used throughout the paper: If q is an
ordered pair, we denote the first and the second components of q by
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Fq and ∆q, respectively. Also, if q is an ordered pair such that Fq is a
function and ∆q is a binary relation with range(∆q) ⊆ Ord and ξ is an
ordinal, the restriction of q to ξ, denoted by q|ξ, is defined as the pair

q|ξ := (Fq � ξ, {(N,min{β, ξ}) : (N, β) ∈ ∆q})

Similarly, if q is an ordered pair such that Fq is a function and ∆q

is a set of triples (M, ~W , β) with β ∈ Ord and ξ is an ordinal, the
restriction of q to ξ, again denoted by q|ξ, is defined as the pair

q|ξ := (Fq � ξ, {(N, ~W ,min{β, ξ}) : (N, ~W , β) ∈ ∆q})

We will be using instances of the following forcing for adding, by ini-
tial approximations, a club of ω1 avoiding a given collection of subsets
of ω1 in the sense of (·)τλ (cf. [7]).

Definition 3.1. Let τ < ω1 and let A = (Ai : i < λ) ⊆ P(ω1) be such
that each Ai is τ–thin. Let BτA consist of all pairs (f, b) such that

(a) f ⊆ ω1 × ω1 is a finite strictly increasing function such that
rank(f(ν), f(ν)) ≥ max{τ, ν} for every ν ∈ dom(f),

(b) b is finite function with dom(b) ⊆ λ and b(i) ∈ [range(f)]<ω for
every i ∈ dom(b), and

(c) for every i ∈ dom(b), range(f) ∩ Ai = b(i).

Given B ~C–conditions (f0, b0) and (f1, b1), (f1, b1) extends (f0, b0) if
f0 ⊆ f1 and b0 ⊆ b1.

Remark 3.2. If N is a countable elementary substructure of H(θ),
for a large enough θ, and (f, b) ∈ N ∩ B ~C , then (f ∪ {〈δN , δN〉}, b) is
(N,B ~C)–generic.

Let Φ : κ −→ H(κ) be such that Φ−1(x) is unbounded in κ for every
x ∈ H(κ).11 Let 〈θα : α ≤ κ〉 be the strictly increasing sequence
of regular cardinals defined as θ0 = |2κ|+ and θα = |2sup{θβ :β<α}|+ if
α > 0. For each α ≤ κ let M∗

α be the collection of all countable
elementary substructures of H(θα) containing Φ and 〈θβ : β < α〉. Let
also Mα = {N∗ ∩ H(κ) : N∗ ∈ M∗

α} and note that if α < β, then
M∗

α ∈ N∗ for all N∗ ∈M∗
β such that α ∈ N∗.

The forcing P witnessing Theorem 1.13 will be (Pκ,≤κ), where the
sequence 〈(Pα,≤α) : α ≤ κ〉 is defined as follows. To start with, P0

consists of all pairs of the form

(a) (∅, {(Ni, 0) : i < m}), where {Ni : i < m} is a finite Φ–
symmetric system.

11This function Φ exists by 2<κ = κ.
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Given P0–conditions q and p, q ≤0 p iff ∆p ⊆ ∆q.
Let α = σ + 1. Suppose that Φ(σ) is a Pσ–name for either a c.c.c.

forcing or that there is some τ < ω1 and some Pσ–name Ȧ for a subset
of P(ω1) all of whose members are τ–thin and such that Φ(σ) is a Pσ–
name for BτA. Then we let Q̇σ = Φ(σ). If α = σ + 1 > 0 and Φ(σ) is

not as above, then we let Q̇σ be a Pσ–name for (say) trivial forcing on
{0}.

If α ≤ κ (regardless of whether α is a successor or a nonzero limit
ordinal), the definition of Pα is as follows. Conditions in Pα are pairs
of the form

q = (Fq, ∆q)

with the following properties.

(b 0) Fq is a finite function with dom(Fq) ⊆ α.
(b 1) ∆q is of the form {(Ni, βi) : i < m} where, for all i < m,

βi ≤ α ∩ sup(Ni ∩ κ).
(b 2) For all ξ < α, q|ξ ∈ Pξ.
(b 3) If ξ ∈ dom(Fq), then q|ξ forces (in Pξ) that Fq(ξ) ∈ Q̇ξ.
(b 4) If ξ ∈ dom(Fq), Q̇ξ is a Pξ–name for a poset of the form BτA

for some τ < ω1 and A ⊆ P(ω1), (N, β) ∈ ∆q, β ≥ ξ + 1, and
N ∈ Mξ+1, then δN is a fixed point of the first component of
Fq(ξ).

Given conditions

qε = (Fε, {(N ε
i , β

ε
i ) : i < mε})

(for ε ∈ {0, 1}) in Pα, we will say that q1 ≤α q0 if and only if the
following holds.

(c 1) For all ξ < α, q1|ξ ≤ξ q0|ξ.
(c 2) dom(F0) ⊆ dom(F1) and, for all ξ ∈ dom(F0),

q1|ξ 
ξ F1(ξ) ≤Q̇ξ F0(ξ)

.
(c 3) For all i < m0 there is some β̃i ≥ β0

i such that (N0
i , β̃i) ∈ ∆q1 .

Note that if α < β ≤ κ, then Pα ⊆ Pβ; in fact, every Pβ–condition
q = (F, {(Nj, βj) : j < m}) such that dom(q) ⊆ α and βj ≤ α for all
j is also a Pα–condition and is in fact its restriction to α.

Also note that if α ≤ κ and q ∈ Pα, then dom(∆q) ⊆ dom(∆q|0) and
q|0 ∈ P0.

Finally note that if α is a nonzero limit ordinal, then a pair q =
(Fq,∆q) is a Pα–condition if and only if it satisfies (b 0)–(b 2).
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For every Pκ–condition q and every ξ ∈ dom(Fq), if Q̇ξ is a Pξ–name
for a forcing of the form BτA, for some τ < ω1 andA ⊆ P(ω1), we denote
by fq,ξ and bq,ξ the first and second components of Fq(ξ), respectively.

The following lemmas are proved essentially in [6].

Lemma 3.3. Let α < β ≤ κ, let r ∈ Pβ and let q ∈ Pα be such
that q ≤α r|α. Then (Fq ∪ (Fr � [α, β),∆q ∪∆r) is a condition in Pβ
extending both of q and r. In particular, Pα is a complete suborder of
Pβ.

Lemma 3.4. (CH) For every ordinal α ≤ κ, Pα has the ℵ2–c.c.

Lemma 3.5. Pκ forces 2ℵ0 = κ.

Definition 3.6. Given ≤ α ≤ κ, a condition q ∈ Pα, and a countable
elementary substructure N ≺ H(κ), we will say that q is (N, Pα)–pre-
generic in case

• α < κ and (N,α) ∈ ∆q, or else
• α = κ and the pair (N, sup(N ∩ κ)) ∈ ∆q.

Lemma 3.7. Suppose α ≤ κ and N∗ ∈ M∗
α. Let N = N∗ ∩ H(κ).

Then the following conditions hold.

(1)α For every q ∈ N there is some q′ ≤α q such that q′ is (N, Pα)–
pre-generic.

(2)α If Pα ∈ N∗ and q ∈ Pα is (N, Pα)–pre-generic, then q is
(N∗, Pα)–generic.

Corollary 3.8. For every α ≤ κ, Pα is proper.

It is easy to see that forcing with any instance of BτA as in Definition
3.1 adds a generic for B. By standard book-keeping arguments together
with Lemma 3.4 it follows then that P forces MA + FA(B) + (·)τλ for
all τ < ω1 and λ < κ.

In order to complete the proof of Theorem 1.13 it therefore suffices
to prove the following lemma.

Lemma 3.9. Let α < κ and suppose G = 〈gδ : δ ∈ Lim(ω1)〉 is a
strong f–sequence. Let n < ω and suppose that M∗ and M satisfy the
following:

(1) M∗ ∈M∗
α+2 and M = M∗ ∩H(κ).

(2) Ċ ∈M is a Pα–name for a club of ω1.
(3) (M,α) ∈ ∆q for some q ∈ G.

Then q forces that there is some ε ∈ Ċ ∩ δM such that gδM (ε) = n.



Separating club–guessing principles in the presence of fat forcing axioms 17

Proof. The proof is by induction on α. The case α = 0 follow immedi-
ately from Fact 1.4.

For the case when α = σ + 1, let q′ ∈ Pα be an extension of q.
Without loss of generality we may assume that σ ∈ Fq′ and that there

is some τ < ω1 and some Pσ–name Ȧ for a subset of P(ω1) all of whose
members are τ–thin and such that Q̇σ is a Pσ–name for BτȦ (the proof
in the other cases is easier). So, δM is a fixed point of fq′,σ. Let G be a

Pσ–generic with q′|σ ∈ G and let ȦG = (Ai : i < λ). By Lemma 3.7,
G is also generic over M∗ and we may therefore assume τ ∈ M . We
may assume that fq′,σ � δM 6= ∅. Let δ = max(dom(fq′,σ � δM). Now
we consider the following function F with domain the open interval
(fq′,σ(δ), ω1). Suppose % is in this interval. Assume that there exists a
condition t in Pα with the following properties.

(a) t|σ ∈ G
(b) (fq′,σ � δM) ∪ {〈δ + 1, %〉} ⊆ ft,σ
(c) ft,σ � (δ + 1) = fq′,σ � δM
(d) There is some ν ∈ dom(ft,σ), ν > δ + 1, such that ft,σ(ν) = δN

for some N ∈ Mα+1 such that Ċ ∈ N and (N,α) ∈ ∆t (so, by
Lemma 3.7, t forces ft,σ(ν) ∈ Ċ).

In this case we fix such a t and set F (%) = ft,σ(ν) for a ν as in (d).
Otherwise, we set F (%) = 0.

Now, let E(F ) be the club of all ε such that rank(ε, ε) > τ and F“ε ⊆
ε. Note that F and E(F ) are definable from parameters in M∗[G], and
therefore they are in M∗[G] as well. Moreover, by the ℵ2–c.c., we can
assume that E(F ) is in M [G]. Using the induction hypothesis, we
know that there is some ε ∈ δM which is a limit point of E(F ) and
such that gδM (ε) = n. Let % < η < ε be such that rank(%, %) ≥ δ + 1,
η ∈ E(F ), gδM“[%, η) = {n}, and [%, η)∩Ai = ∅ for every i ∈ dom(bq′,σ).
These ordinals can be found since gδM is continuous and since ε is a
limit of ordinals in E(F ) and rank(ε, ε) > τ , together with the fact
that rank(Ai, ε) ≤ τ for every i ∈ dom(bq′,σ). Let t ∈ Pα ∈ M∗[G]
witness (a)–(d) for %. The existence of such a t follows from the fact
that q′′ witnesses (a)–(d) in V[G], where dom(Fq′′) = dom(Fq′) and
∆q′′ = ∆q′ , Fq′′(ξ) = Fq′(ξ) for all ξ ∈ dom(Fq′), ξ 6= σ, and where
Fq′′(σ) = (fq′,σ ∪ {〈δ + 1, %〉}, bq′,σ). It follows from (d) for t that
there is some ν ∈ dom(ft,σ) such that ν > δ + 1 and such that t forces

ft,σ(ν) ∈ Ċ. Since we may assume that ft,σ(ν) ∈ [%, η) by the definition
of E(F ) and the fact that η ∈ E(F ), we have that gδM (ft,σ(ν)) = n.
By extending q′|σ if necessary we may assume that q′|σ decides the
above facts holding in V[G]. Finally, by the choice of % such that
[%, η)∩Ai = ∅ for all i ∈ dom(bq′,σ), we may amalgamate q′ and t into



18 D. ASPERÓ AND M.A. MOTA

a Pα–condition q†. Since gδM (ft,σ(ν)) = n, q† forces ft,σ(ν) ∈ Ċ, and q′

was an arbitrary extension of q, we are done in this case.
Now assume that α is a limit ordinal. Let q′ ∈ Pα be an extension

of q and let σ ∈ M be an ordinal with σ > max(dom(Fq′) ∩M). Let
G ⊆ Pσ be a generic filter with q′|σ ∈ G. By Lemma 3.7, G is also
generic over M∗.

Note that the set D of all δ < ω1 for which there is some N ∈Mα+1

such that

(e) δ = δN ,
(f) Ċ ∈ N , and
(g) (N,α) ∈ ∆t for some t ∈ Pα such that t|σ ∈ G and dom(Ft) ⊆ σ

is definable in M∗[G].
Note also that D is cofinal in ω1 since δM ∈ D as witnessed by

q|σ. So, if C is the set of the accumulation points of D, then C is
a club definable in M∗[G]. Moreover, by the ℵ2-c.c., we may assume
C ∈M [G]. Using the induction hypothesis, we know that there is some
ε ∈ C∩δM such that gδM (ε) = n. Take η < ε such that gδ“[η, ε) = {n}.
We may now find δ ∈ (η, ε) ∩ D. Let now N ∈ Mα+1 and t satisfy
(e)–(g) for δ, and note that t forces δ = δN ∈ Ċ by Lemma 3.7. As in
the previous case, by extending q′|σ if necessary we may assume that
q′|σ forces the above facts holding in V[G]. Since t forces δ = δN ∈ Ċ
by Lemma 3.7, it suffices to find a common extension q† of q′ and t.
But q′ and t can indeed be amalgamated into an extension q† by (g)
for t. Since q′ was an arbitrary extension of q, we are done in this case
too.12 �

We will next prove Theorem 1.14. We start by defining a natural
forcing for destroying a potential f–sequence (cf. [6] and [7]).

Definition 3.10. Let G = 〈gδ : δ ∈ Lim(ω1)〉 be such that each gδ is
a continuous function from δ into ω with respect to the order topology.
Let BG be the forcing notion consisting of all pairs (f, 〈bξ : ξ ∈ D〉)
satisfying the following conditions.

(1) f ⊆ ω1 × ω1 is a finite strictly increasing function such that
rank(f(ν), f(ν)) ≥ ν for every ν ∈ dom(f).

(2) b is a function with dom(b) ⊆ dom(f) and such that for each ξ
in dom(b),

(2.1) b(ξ) ∈ ω,
(2.2) gf(ξ)“ range(f) ⊆ ω\{b(ξ)}, and

12The proof in the successor case could be simplified a bit by looking, in the
definition of F , at conditions t such that σ /∈ dom(Ft) (similarly as what we do in
the limit case).
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(2.3) rank({γ < f(ξ) : gf(ξ)(γ) 6= b(ξ)}, f(ξ)) = rank(f(ξ), f(ξ)).

Given BG–conditions cε = (f ε, bε) for ε ∈ {0, 1}, c1 extends c0 if and
only if f 0 ⊆ f 1, and b0 ⊆ b1.

The forcing P witnessing Theorem 1.14 is (Pκ,≤κ), where the se-
quence 〈(Pα,≤α) : α ≤ κ〉 will be defined soon by recursion. Let
~C = 〈Cδ : δ ∈ Lim(ω1)〉 be a strong WCG–sequence. For every
δ ∈ Lim(ω1), let (Cδ(m))m<ω be the strictly increasing enumeration of
Cδ and define Cδ

m := Cδ\Cδ(m).

Definition 3.11. Let N and U be two sets. We will say that U is
N–unbounded in case for every x ∈ N there is some M ∈ U ∩N such
that x ∈M .

Given a set N , let us say that N is sufficiently closed if for every
finite set x, x ⊆ N iff x ∈ N .

Remark 3.12. If U is N–unbounded, U ′ ⊆ U and every member of
{N} ∪ U is sufficiently closed, then at least one of U ′, U\U ′ is N–
unbounded.

Given an ω–sequence ~U , we will use Un to denote the nth member
of ~U ; that is, ~U = (Un)n<ω. Given two ω–sequences ~U , ~V of sets, by
~V ⊆ ~U we will mean that Vn ⊆ Un for all n. Finally, an ω–sequence ~U
is said to be ⊆–decreasing if Um ⊆ Un whenever n < m < ω.

Lemma 3.13. Let G = 〈gδ : δ ∈ ω1〉 be such that each gδ is a con-
tinuous function from δ into ω and let us denote by M the set of all
sufficiently closed countable subsets N of H(κ) such that N |= ZFC∗,

δN exists and ωN1 = ω1. Suppose p < ω and {Ni : i < p}, {~Ui : i < p}
are such that for all i < p, n < ω and m < ω, the following hold.

(◦) Ni ∈M.
(◦) δNi′ = δNi for all i′.

(◦) ~Ui is a ⊆–decreasing ω–sequence.
(◦) Ui,n ⊆ Ni ∩M.

(◦) {M ∈ Ui,n : δM ∈ C
δNi
m } is Ni–unbounded.

Then, for each s in [ω]p+1 and each i < p there is some si ∈ [s]p such
that

{M ∈ Ui,n : δM ∈ C
δNi
m and gδNi (δM) /∈ si}

is Ni–unbounded for all n, m < ω. In particular, for each s in [ω]p+1

there is at least one colour j ∈ s such that

{M ∈ Ui,n : δM ∈ C
δNi
m and gδNi (δM) 6= j}

is Ni–unbounded for all i < p, n < ω and m < ω.
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Proof. It suffices to note that for each pair {n0, n1} ∈ [s]2, the above

remark (together with the fact that ~Ui is a ⊆–decreasing ω–sequence)
ensures the existence of j ∈ 2 such that

{M ∈ Ui,n : δM ∈ C
δNi
m and gδNi (δM) 6= nj}

is Ni–unbounded for co–finally many n, m < ω, and therefore for all
n, m < ω. �

Notation 3.14. If W is a set of ordered pairs, then the projection
{a : 〈a, b〉 ∈ W for some b} will be denoted by π0(W). Similarly,
π1(W) denotes the projection {b : 〈a, b〉 ∈ W for some a}

Let us fix Φ and θα,M∗
α andMα (for α ≤ κ) exactly as in the proof

of Theorem 1.13. We proceed to the definition of 〈Pα : α ≤ κ〉 now.

P0 consist of all pairs of the form (∅, {(Ni, ~Wi, 0) : i < m}) with the
following properties.

(a 1) {Ni : i < m} is a finite Φ–symmetric system.

(a 2) For every i < m, ~Wi = (Wi,n)n<ω is a ⊆–decreasing ω–sequence
such that each Wi,n is a set of ordered pairs in Ni.

(a 3) For every i < m and n < ω, every member of π0(Wi,n) is a
countable M 4 (H(κ),∈,Φ).

Given P0–conditions q and p, q ≤0 p iff ∆p ⊆ ∆q.
Let α = σ+1. Suppose Φ(σ) is a Pσ–name for a c.c.c. poset or there

is a Pσ–name Ġ for a sequence of continuous functions gδ : δ −→ ω
(δ ∈ Lim(ω1)) such that Φ(σ) is a Pσ–name for BĠ. Then we let

Q̇σ = Φ(σ). In the other case we let Φ(σ) be a Pσ–name for, say,
trivial forcing on {0}.

If α = σ + 1 and ~W ∈ V is an ω–sequence whose members are

sets of ordered pairs, then ~WĠσ denotes the canonical Pσ–name for the
ω–sequence whose n-th member is defined as

WĠσ
n := {(M, ~Z) ∈ Wn : (M, ~Z, σ + 1) ∈ ∆u for some u ∈ Ġσ}

Note that if ~W is ⊆–decreasing, then Pσ forces that so is ~WĠσ .
If α ≤ κ (regardless of whether α is a successor or a nonzero limit

ordinal), the definition of Pα is as follows. Conditions in Pα are pairs
of the form

q = (Fq, ∆q)

with the following properties.

(b 0) Fq is a finite function with dom(Fq) ⊆ α.

(b 1) ∆q is of the form {(Ni, ~Wi, βi) : i < m} where, for all i < m,
βi ≤ α ∩ sup(Ni ∩ κ).
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(b 2) For all ξ < α, the restriction of q to ξ is a condition in Pξ.
(b 3) If ξ ∈ dom(Fq), then q|ξ forces (in Pξ) that Fq(ξ) ∈ Q̇ξ.
(b 4) Suppose ξ ∈ dom(Fq) and there is some Pξ–name Ġ for a se-

quence of continuous functions gδ : δ −→ ω (for δ ∈ Lim(ωV
1 ))

such that Φ(ξ) is a Pξ–name for BĠ. Suppose (N, ~W , β) ∈ ∆q,
β ≥ ξ + 1, N ∈Mξ+1, and

{M ∈ π0(Wn) : δM ∈ CδN
m }

is N–unbounded for all n, m ∈ ω. Then δN is a fixed point of
fq,ξ, bq,ξ(δN) is defined, and q|ξ forces that

{M ∈ π0(WĠξ
n ) : ġξ,δN (δM) 6= bq,ξ(δN) and δM ∈ CδN

m }
is N–unbounded for all n,m ∈ ω.13

Given conditions

qε = (Fε, {(N ε
i ,
~Wε
i , β

ε
i ) : i < mε})

(for ε ∈ {0, 1}) in Pα, we will say that q1 ≤α q0 if and only if the
following holds.

(c 1) For all ξ < α, q1|ξ ≤ξ q0|ξ.
(c 2) dom(F0) ⊆ dom(F1) and, for all ξ ∈ dom(F0),

q1|ξ 
ξ F1(ξ) ≤Q̇ξ F0(ξ)

(c 3) For all i < m0 there is some β̃i ≥ β0
i such that (N0

i , ~W0
i , β̃i) ∈

∆q1 .

As in the proof of Theorem 1.13,14 we can show that the corre-
sponding versions of Lemmas 3.3, 3.4 and 3.5 are true for our present
iteration. The proof of the corresponding form of Lemma 3.7 will need
to be a bit more elaborate.

Definition 3.15. Given an ordinal α ≤ κ and a pair (N, ~W) such that

N = N∗∩H(κ) for some N∗ ∈M∗
α and such that ~W is a ⊆–decreasing

ω–sequence of sets consisting of ordered pairs in N , we will say that
~W is N–α–large whenever the following conditions hold.

(1) For all n < ω, every member of π0(Wn) is a countable elemen-
tary substructure of (H(κ),∈,Φ). If α = 0, we also require that
π1(Wn) = {∅}

(2) For all n, m < ω, {M ∈ π0(Wn) : δM ∈ CδN
m } is N–unbounded.

13Here, and throughout the proof of Theorem 1.14, we are using the obvious
notational conventions when writing things like fq,ξ and bq,ξ (as in the proof of
Theorem 1.13).

14I.e., as in [6].
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(3) For every nonzero ordinal β ∈ N ∩ α there is some n < ω with

the property that for every (M, ~W ′) ∈ Wn,
(◦) M = M∗ ∩H(κ) for some M∗ ∈M∗

β with Pβ ∈M∗ and

(◦) ~W ′ is M–β–large.

Lemma 3.16. Let α ≤ κ and let N∗ ∈ M∗
α be such that ~C ∈ N∗ and

(Pβ)β<α ∈ N∗. Let N = N∗ ∩ H(κ). Then there is a ⊆–decreasing

ω–sequence ~W such that ~W is N–α–large.

Proof. The proof is by induction on α. We first show that for every
m ∈ ω, every x in N and every finite set s ⊆ N ∩ α there is some
(M, ~W ′) ∈ N such that M 4 (H(κ),∈,Φ), |M | = ℵ0, M ∈ Mmax(s)

if s 6= ∅, x ∈ M , and such that δM ∈ CδN
m . If s is empty, we simply

define ~W ′ as the empty set. Otherwise, we also require that ~W ′ is
M–max(s)–large and M = M∗ ∩ H(κ) for some M∗ ∈ M∗

max(s) with

{s,Pmax(s)} ⊆M∗.
If s 6= ∅, let C ∈ N∗ be a club of ω1 such that for every δ ∈ C there

is some M∗ ∈ Mmax(s) such that {x, s,Pmax(s)} ⊆ M∗ and δM∗ = δ.
(If s = ∅, we take C ∈ N∗ to be a club of ω1 such that for every
δ ∈ C there is some countable M 4 (H(κ),∈,Φ) such that x ∈M and

δM = δ.) Since ~C ∈ N∗, by Fact 1.5, we may fix δ ∈ C ∩ CδN
m . By

correctness of N∗ there is then some M∗ ∈ Mmax(s) ∩ N∗ such that
{x, s,Pmax(s)} ⊆ M∗ and such that δM∗ = δ, if s 6= ∅, and a countable
M 4 (H(κ),∈,Φ), M ∈ N∗, such that x ∈ M and δM = δ if s = ∅.
Let M = M∗ ∩ H(κ) (if s 6= ∅). By induction hypothesis there is

some ω–sequence ~W ′ such that ~W ′ is M–max(s)–large if s 6= ∅, and

by correctness of N∗ there is some such ~W ′ in N . Now (M, ~W ′) is as
desired.

For every m < ω, x ∈ N , and every finite subset of N ∩ α, choose
a pair (M, ~W ′) as above and let W0 be the set of all these pairs. If
α = 0, we let Wn+1 = W0 for every n. If α > 0, we fix a surjection
f : ω −→ N ∩ α. In this case, Wn+1 is defined as the set of those

pairs (M, ~W ′) in W0 such that, letting µ = max(range(f � n + 1)),
~W ′ is M–µ–large and M = M∗ ∩ H(κ) for some M∗ ∈ M∗

µ with

{range(f � n+ 1),Pµ} ⊆M∗. Since ~W = (Wn)n<ω is ⊆–decreasing, it
is clear that this ω–sequence is N–α–large. �

We consider the following natural notion of pre–properness (cf. Def-
inition 3.6).

Definition 3.17. Given α ≤ κ, a condition q ∈ Pα, and a pair (N, ~W),

we say that q is Pα–pre-generic for (N, ~W) in case
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• α < κ and (N, ~W , α) ∈ ∆q, or else

• α = κ and (N, ~W , sup(N ∩ κ)) ∈ ∆q.

Our properness lemma now is the following.

Lemma 3.18. Suppose α ≤ κ and N∗ ∈ M∗
α. Let N = N∗ ∩ H(κ)

and assume that ~W is a ⊆–decreasing ω–sequence consisting of ordered
pairs in N and such that for all n < ω, every member of π0(Wn) is a
countable elementary substructure of (H(κ),∈,Φ). Then the following
conditions hold.

(1)α For every q ∈ N there is q′ ≤α q such that q′ is Pα–pre-generic

for (N, ~W).
(2)α If

(◦) Pα ∈ N∗ and ~W is N–α–large and

(◦) q ∈ Pα is Pα–pre-generic for (N, ~W),
then q is (N∗, Pα)–generic.

(3)α For all q ∈ Pα, m∗, n∗ < ω, and x ∈ N , if

(◦) q is Pα–pre-generic for (N, ~W) and
(◦) {M ∈ π0(Wn) : δM ∈ CδN

m } is N–unbounded for all m,
n < ω,

then there is some condition q′ ∈ Pα extending q and some
(M, ~W ′) ∈ Wn∗ such that
(a) x ∈M ,

(b) δM ∈ CδN
m∗, and

(c) q′ is Pα–pre-generic for (M, ~W ′).

Proof. The proof will be by induction on α. The case α = 0 follows
from Corollary 2.3 (the proof of (3)0 is like the proof of that corollary,
using the fact that {M ∈ π0(Wn) : δM ∈ CδN

ν } is N–unbounded for
all m < ω and n < ω).

Now we prove the conclusion for the case α = σ + 1. We may
assume that there is some Pσ–name Ġ for a sequence of continuous
functions gδ : δ −→ ω (for δ ∈ Lim(ωV

1 )) such that Φ(σ) is a Pσ–
name for BĠ (otherwise the proof is easier). Let also ġδ be a name
for gδ for every δ as above. We start with the proof of (1)α. By
(1)σ we may assume, by extending q|σ if necessary, that q|σ is Pσ–pre-

generic for (N, ~W). If the hypothesis of (b 4) fails for q and σ, then
(b 4) holds vacuously for this pair. So, assume that σ ∈ dom(Fq) and
{M ∈ π0(Wn) : δM ∈ CδN

m } is N–unbounded for all n, m ∈ ω. By

(3)σ, q|σ forces that {M ∈ π0(WĠσ
n ) : δM ∈ CδN

m } is N–unbounded
for all n,m ∈ ω. By Lemma 3.13, we may assume, by extending q|σ if
necessary, that there is a colour j ∈ ω such that q|σ forces that j is not
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in the range of ġσ,δN � range(fq,σ) and

{M ∈ π0(WĠσ
n ) : ġσ,δN (δM) 6= j and δM ∈ CδN

m }

is N–unbounded for all n,m ∈ ω. In this case, it suffices to define
q′ in such a way that ∆q′ = ∆q ∪ {(N, ~W , α)}, Fq′ � σ = Fq � σ,
fq′,σ = fq,σ ∪ {(δN , δN)} and bq′,σ = bq,σ ∪ {(δN , j)}.

Given q ∈ Pκ, we will say that a countable structure M is relevant
for q at stage ξ if there are some ~W and β such that (M, ~W , β) ∈ ∆q

β ≥ ξ+1, N ∈Mξ+1 and {M ∈ π0(Wn) : δM ∈ CδN
m } is N–unbounded

for all n,m ∈ ω. The following claim can be proved by essentially
repeating the same argument as above (based on (3)σ together with
Lemma 3.13) finitely many times.

Claim 3.19. The set of q ∈ Pα such that σ ∈ dom(Fq) is a dense
subset of Pα. Moreover, if q ∈ Pα, σ /∈ dom(Fq), q|α forces that (f, b)

is in Q̇σ, and max(range(f)) < min{δM : M is relevant at stage σ},
then there is a condition r extending q such that σ ∈ dom(Fr), f ⊆ fr,σ
and b ⊆ br,σ.

Let us proceed to the proof of (3)α now. By the above claim, we
may assume that σ ∈ dom(Fq). In particular, δN is a fixed point of

fq,σ. Since Ġ is forced to be a sequence of continuous functions, we
may assume, by extending q|σ if necessary, that there is an ordinal
an ordinal η < δN such that q|σ forces that for every µ ∈ [η, δN ] and
every ν ∈ dom(bq,σ) \ (δN + 1), ġν(µ) 6= bq,σ(ν). By condition (b 4)
in the definition of Pα and extending q|σ if necessary, we can find

some (M, ~W ′) ∈ Wn∗ such that {η, x, fq,σ � δN} ⊆ M , δM ∈ CδN
m∗ ,

(M, ~W ′, σ) ∈ ∆q|σ and such that q|σ forces that ġδN (δM) 6= bq,σ(δN).
So, q|σ forces that for all ν ∈ dom(bq,σ) \ δM , ġν(δM) 6= bq,σ(ν). If
M /∈Mα or {M ′ ∈ π0(W ′n) : δM ∈ CδM

m } fails to be M–unbounded for
any m < ω and n < ω, then the pair

q′ = (Fq,∆q ∪ {(M, ~W ′, α)})

is a condition in Pα extending q, so we are done in this case. Otherwise,
we can find q′ using (2)σ together with Lemma 3.13 (in the extension
via Pσ) as in the relevant case of the proof of (1)α.

Now let us prove (2)α. Let A be a maximal antichain of Pα in N∗.
By extending q if necessary we may assume that q extends a condition
in A. We want to show that such a condition is in N and for this it
will suffice to find a member of A ∩ N compatible with q. Let Gσ be
a Pσ–generic filter over V with q|σ ∈ Gσ. By (2)σ we have that Gσ is
also generic over N∗.
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By Claim 3.19 we may assume that σ ∈ dom(Fq). In particular, δN
is a fixed point of fq,σ. As in the proof of (3)α, we may assume, by
extending q|σ if necessary, that there is an ordinal η < δN such that
q|σ forces that for every µ ∈ [η, δN ] and every ν ∈ dom(bq,σ) \ (δN + 1),
ġν(µ) 6= bq,σ(ν). Let ρ = max(range(fq,σ � δN)) and define A+ as the
(partially defined) function sending each p in A to the Φ–first Pα–
condition p+ such that p+|σ ∈ Gσ, fp,σ � δN ⊆ fp+,σ, range(fp,σ) ∩ ρ =
range(fp+,σ) ∩ ρ and bp,σ � δN ⊆ bp+,σ. By the ℵ2–c.c., A+ is not
only in N∗[Gσ], but in N [Gσ] (i.e., we can find in N a Pα–name for

A+). Since ~W is N–α–large, by condition (b 4) we can find n ∈ ω and

(M, ~W ′) ∈ Wn such that

(i) ~W ′ is M–σ–large and M = M∗∩H(κ) for some M∗ ∈M∗
σ such

that Pσ ∈M∗,
(ii) (M, ~W ′, σ) ∈ ∆u for some u ∈ Gσ,

(iii) ġδN (δM) 6= bq,σ(δN), and
(iv) {η, ρ, A+} ⊆M [Gσ].

Since q|σ and u are both in Gσ, we may assume that q|σ extends u.
We may also assume that there is an ordinal η′ ∈ (η, δM) such that
q|σ forces that for every ordinal µ ∈ [η′, δM ], ġδN (µ) 6= bq,σ(δN). Now,
in M [Gσ], there is r ∈ range(A+) such that min(range(fr,σ) \ ρ) > η′.
Note that max(range(fr,σ)) < δM since δM = δM [Gσ ] (this equality
follows from the conjunction of (i), (ii) and (2)σ). Since r|σ and q|σ
are both in Gσ, we may assume, by extending q|σ if necessary, that q|σ
decides r and extends its corresponding restriction. Finally note that
the inequalities η < η′ < min(range(fr,σ) \ ρ) ≤ max(range(fr,σ)) < δM
ensure that q|σ forces that Fq(σ) and Fr(σ) are compatible in Q̇σ. So,
q and r are compatible.

It remains to prove the lemma for the case when α is a nonzero limit
ordinal. The proof of (1)α (resp., (3)α) is trivial using (1)β (resp., (3)β)
for all β < α, together with the fact that dom(Fr) is bounded in α for
any Pα–condition r. For (2)α, let E ⊆ Pα be dense and open, E ∈ N∗,
and let q satisfy the hypothesis of (2)α. We want to find a condition in
E ∩N∗ compatible with q. We may assume that q ∈ E.

Suppose first that cf(α) = ω. In this case we may take σ ∈ N∗ ∩ α
above dom(Fq). Let G be Pσ–generic with q|σ ∈ G. In N∗[G] it is true
that there is a condition q◦ ∈ Pα such that

(a) q◦ ∈ E and q◦|σ ∈ G, and
(b) dom(Fq◦) ⊆ σ.

(the existence of such a q◦ is witnessed in V[G] by q.)
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Since q|σ is (N∗,Pσ)–generic by induction hypothesis, q◦ ∈ N∗. By
extending q below σ if necessary, we may assume that q|σ decides q◦

and extends q◦|σ. But now, if q = (p,∆q), the natural amalgamation
(p,∆q ∪∆q◦) of q and q◦ is a Pα–condition extending them.

Finally, suppose cf(α) ≥ ω1. We may assume that dom(Fq) is not
bounded by sup(N ∩ α) as otherwise we can argue as in the cf(α) = ω
case. The crucial observation now is that if N ′ ∈ dom(∆q) and δN ′ <
δN , then sup(N ′ ∩ N ∩ α) ≤ sup(ΨN,N(N ′) ∩ α) ∈ N ∩ α whenever

N ∈ dom(∆q) is such that δN = δN and N ′ ∈ N . To see this, recall
that ΨN,N fixes N ∩ N ∩ κ. Also, sup(ΨN,N(N ′) ∩ α) ∈ N ∩ α since
ΨN,N(N ′) is countable in N and α has uncountable cofinality. The
symmetry of the systems dom(∆q) is needed precisely to derive the
conclusion that sup(N ′ ∩N ∩α) < sup(N ∩α) for every N ′ ∈ dom(∆q)
with δN ′ < δN .

Hence we may fix σ ∈ N ∩ α such that:

(i) sup(N ′ ∩N ∩ α) < σ for all N ′ ∈ dom(∆q) with δN ′ < δN , and
(ii) if η ∈ dom(Fq) and η < sup(α ∩N), then η < σ.

As in the case cf(α) = ω, if Gσ is Pσ–generic with q|σ ∈ Gσ, then in
N∗[Gσ] we can find a condition q◦ ∈ Pα such that q◦ ∈ E and q◦|σ ∈ Gσ,
and such a q◦ will necessarily be in N∗ by (2)σ. By extending q below
σ we may assume that q|σ decides q◦ and extends q◦|σ. The proof of
(2)α in this case will be finished if we can show that there is a condition
q† extending q and q◦. The condition q† can be built by recursion on
dom(Fq◦) \ σ (note that sup(N ∩ α) ≤ min(dom(Fq) \ σ) by the choice
of σ, and therefore min(dom(Fq) \ σ) > max(dom(Fq◦))). The details
of this construction, which for the sake of completeness we will sketch
here, appear in [6].

Suppose | dom(Fq◦) \ σ| = n and let µ = max(dom(Fq◦)). Applying
n times Claim 3.19, we get a condition q4 ∈ Pµ+1 extending both q|µ+1

and q◦|µ+1 (note that if ξ ∈ dom(Fq◦) \ σ and M is relevant for q at
stage ξ, then the choice of σ ensures that δM ≥ δN). Finally note that
if ξ ∈ (µ, α) ∩ dom(Fq) and M is relevant either for q, or for q◦ or for
q4 at stage ξ, then M must be relevant for q (the choice of σ shows
in fact that M cannot be relevant for q◦. On the other hand, every M
associated to q4 is relevant at most at stage µ + 1 since q4 ∈ Pµ+1).
Therefore,

q† = (Fq4 ∪ (Fq � [µ+ 1, α)),∆q4 ∪∆q◦ ∪∆q)

is a condition in Pα extending both q and q◦.
�
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The following corollary follows immediately from Lemas 3.16 and
3.18.

Corollary 3.20. Pκ is proper.

Corollary 3.21. Pκ forces that ~C is a WCG–sequence.

Proof. Let Ċ be a Pκ–name for a club of ω1 and let q be a Pκ–condition.
By the ℵ2–c.c. of Pκ there is some α < κ such that Ċ is a Pα–name
and such that q is a condition in Pα. We may also assume that Ċ is
in H(κ). Let us take a countable N∗ 4 H(θ) (for a large enough θ)
containing everything relevant (this includes Ċ). Let N = N∗ ∩H(κ).

By Lemma 3.16 there is a ⊆–decreasing ω–sequence ~W such that ~W
is N–(α + 1)–large. By Lemma 3.18 (1)α there is a condition q′ in Pα
extending q and Pα–pre-generic for (N, ~W). It suffices to show that q′

forces Ċ ∩ CδN
m 6= ∅ for every m ∈ ω.

Notice that the hypothesis of (3)α in Lemma 3.18 is realized by q′.
Hence, for every n,m < ω, and every q′′ extending q′ there is some Pα–
condition q∗ extending q′′ and there is some (M, ~W ′) in Wn such that

Ċ ∈ M , δM ∈ CδN
m , and such that q∗ is Pα–pre-generic for (M, ~W ′).

But by (3) in the definition of N–(α + 1)–large we may take n large

enough so that ~W ′ is necessarily M–α–large. Then, by Lemma 3.18
(2)α we have that q∗ is (M∗,Pα)–generic for any M∗ ∈Mα containing
Pα such that M∗ ∩H(κ) = M . But then q∗ forces δM ∈ Ċ. �

Finally, by arguing as in the proof of Theorem 1.13 (i.e., by the usual
book–keeping arguments using the ℵ2–c.c. of Pκ) we can prove that Pκ
forces ¬f, MA and FA(B). This completes the proof of Theorem 1.14.

4. On polychromatic Ramsey theory

Polychromatic Ramsey theory15 (see [9], [2] and [1]) is the study
of colourings f of sets of the form [X]n, focusing on the existence or
non–existence of large sets Y ⊆ X such that c � [Y ]n is a one–to–
one function (such a set Y is usually called a rainbow for c). Here we
consider the following negative polychromatic partition relation (see
[1]).

Definition 4.1. ω2 9poly (ω1)2

2−bd means that there is a function f

with the following properties.

(a) dom(f) = [ω2]2

(b) f is 2–bounded (which means that |f−1(x)| ≤ 2 for every x).

15Also known as anti–Ramsey theory
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(c) f does not have rainbows of order–type ω1 (i.e., there is no
Y ⊆ ω2 of order type ω1 such that the restriction of f to [Y ]2

is one to one).

In [1], Abraham and Cummings show the consistency of the relation
ω2 9poly (ω1)2

2−bd. In their model, 2ℵ0 = ℵ2. One of the questions

asked in [1] is whether ω2 9poly (ω1)2

2−bd is consistent together with

2ℵ0 > ℵ2. Here we give an affirmative answer to this question. In
fact, we show that if CH holds and λ is any cardinal, then there is a
proper poset with the ℵ2–c.c. forcing ω2 9poly (ω1)2

2−bd together with

FA(B)λ. Our result is the following.

Theorem 4.2. (CH) If κ is a regular cardinal such that 2<κ = κ, then
there exists a proper forcing notion P with the ℵ2–chain condition such
that FA(B), 2λ = κ for every infinite λ < κ, and ω2 9poly (ω1)2

2−bd
hold in the generic extension by P.

Starting from CH and using symmetric systems,16 Abraham and
Cummings generically add a function c such that

(1) c : [ω2]2 −→ ω1,
(2) There are no α0 < α1 < α2 < β < ω2 such that c(α0, β) =

c(α1, β) = c(α2, β), and
(3) For every X ⊆ ω2 of order type ω1 there are α0 < α1 < β in X

such that c(α0, β) = c(α1, β).

It is straightforward to check that f(α, β) = (c(α, β), β) witnesses
ω2 9poly (ω1)2

2−bd. Let us assume the hypotheses of Theorem 4.2

and let Φ : κ −→ H(κ) be a bijection. Let also (eα)α<ω2 be Φ–first
such that each eα is a bijection between α and |α|. The following is
(essentially) the forcing in [1] for adding c, which we will call (P0,≤0).

Definition 4.3. Conditions in P0 are triples p = (∅, cp,∆p) with the
following properties.

(1) cp is a finite partial function from [ω2]2 to ω1.
(2) There are no α0 < α1 < α2 < β in the domain of cp such that

cp(α0, β) = cp(α1, β) = cp(α2, β).
(3) For every (α, β) ∈ dom(cp), cp(α, β) ≥ eβ(α).
(4) ∆p is a finite set of pairs of the form (N, 0) such that dom(∆p)

is a Φ–symmetric system.

Given p and q conditions in P0, q ≤0 p whenever the following holds:

(i) cp ⊆ cq,

16In our terminology.
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(ii) ∆p ⊆ ∆q, and
(iii) for every (α, β) ∈ dom(cq)\dom(cp) and every pair (N, 0) ∈ ∆p,

if {α, β} ∈ N , then cq(α, β) ∈ N .

In [1], what we have called here ∆q is an actual Φ–symmetric system
(i.e., there is no mention of 0’s). Here we add the ‘marker’ 0 to the N ’s
occurring in ∆q – as well as the first vacuous component ∅, which of
course does not show up in [1] either – since we are going to incorporate
this forcing into an iteration with symmetric systems of structures and
markers as in the other constructions in this paper. The restriction
to 0 of any condition in Pα, for any α > 0, will be a condition in
P0 by definition, and this is the need for the ∅’s and 0’s in Definition
4.3. Another difference between the original definition and the poset in
Definition 4.3 is that the N ’s occurring in conditions in [1] are countable
elementary substructures of H(ω2) and not of H(κ). These differences
have no effect whatsoever on the proofs of the following lemmas from
[1].

Lemma 4.4. Let p = (∅, cp,∆p) ∈ P0 and let α0 ≤ α1 < β < ω2 be
such that

(1) none of {α0, β}, {α1, β} is in dom(cp), and
(2) for every N ∈ dom(∆p), {α0, β} ∈ N if and only if {α1, β} ∈

N .

Then there is q = (∅, cq,∆q) ≤0 p such that {α0, β}, {α1, β} ∈ dom(cq)
and cq(α0, β) = cq(α1, β).

Lemma 4.5. P0 has the ℵ2–c.c.

Lemma 4.6. Let θ > |P0| be a regular cardinal, p = (∅, cp,∆p) ∈ P0,
and N∗ a countable elementary substructure of H(θ) such that p and
Φ are in N∗. Let N = N∗ ∩H(κ) and let p+ = (∅, cp,∆p ∪ {(N, 0)}).
Then the following holds.

(1) p+ ≤0 p,
(2) If q = (∅, cq,∆q) ≤0 p

+ and r = (∅, cq � N,∆q ∩ N), then the
following are true:

(2.1) r ∈ N ∩ P0

(2.2) If s ∈ N ∩P0 and s ≤0 r, then q and s are ≤0–compatible.
(3) p+ is an (N∗,P0)–generic condition.

Lemma 4.6 implies of course that P0 is strongly proper.
The forcing P witnessing Theorem 4.2 is (Pκ,≤κ), where P0 is the

poset in Definition 4.3 and 〈(Pα,≤α) : 1 ≤ α ≤ κ〉 is defined as follows.
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Let α, 1 ≤ α ≤ κ, and suppose Pξ has been defined for all ξ < α.
Conditions in Pα are triples of the form q = (Fq, cq,∆q) with the
following properties.

(b 0) Fq is a finite function with dom(Fq) ⊆ α.
(b 1) ∆q is a finite set of pairs of the form (N, γ), with N a countable

elementary substructure of (H(κ),∈,Φ) and γ ≤ α∩sup(N∩κ).
(b 2) For all ξ < α, the restriction of q to ξ, denoted17 q|ξ, is in Pξ.

This restriction is defined as the triple

q|ξ := (Fq � ξ, cq, {(N,min{γ, ξ}) : (N, γ) ∈ ∆q})
(b 3) If ξ ∈ dom(Fq), then Fq(ξ) ∈ B.
(b 4) If ξ ∈ dom(Fq), (N, β) ∈ ∆q, β ≥ ξ + 1, and N ∈ Mξ+1, then

δN is a fixed point of Fq(ξ).

Given conditions qε = (Fε, cε,∆ε) (for ε ∈ {0, 1}) in Pα, q1 ≤α q0 if
and only if

(c 1) q1|0 ≤0 q
0|0,

(c 2) dom(F0) ⊆ dom(F1) and, for all ξ ∈ dom(F0), F1(ξ) ⊇ F0(ξ),
and

(c 3) ∆0 ⊆ ∆1

The proofs of the corresponding versions of Lemmas 3.3, 3.4 3.5 and
3.7 are identical to the proofs in [6]. One can also show that Pκ forces
FA(B) by a standard argument using Lemmas 3.3 and 3.4 (cf. [6]).

It remains to prove that Pκ forces ω2 9poly (ω1)2

2−bd. This is an

immediately consequence of Lemma 4.7. This lemma is a variant of a
corresponding lemma in [1].

Lemma 4.7. Let p ∈ Pκ and let Ẋ be a Pκ–name. Assume that p
forces that Ẋ is a subset of ω2 of order type ω1. Then there are t ≤κ p
and ordinals α0 < α1 < β in dom(ct) such that

(1) t forces that α0, α1 and β are in Ẋ, and
(2) ct(α0, β) = ct(α1, β).

Proof. By extending p if necessary, we may start assuming that there
is some γ such that p forces that sup(Ẋ) = γ. Let θ be a sufficiently
large regular cardinal and let N∗ 4 H(θ) be countable and such that p,
Pκ, Φ and Ẋ are in N∗. Let N = N∗ ∩H(κ) and let p+

0 ∈ Pκ extend p
and such that (N, sup(N ∩ κ)) ∈ ∆p+0

. By the relevant form of Lemma

3.7, p+
0 is (N∗, Pα)–generic. Since cf(γ) = ω1, N ∩ γ is bounded in γ.

By extending p+
0 if necessary we may assume that there is an ordinal

β such that sup(N ∩ γ) < β < γ and p+
0 forces β ∈ Ẋ. Let m < ω be

17As usual.
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bigger than the collection of all subsets of ∆p+0
, let F0 be the function

with domain dom(Fp+0 ) ∩N and such that F0(ξ) = Fp+0 (ξ) � δN for all

ξ ∈ dom(F0), and let p0 = (F0, cp+0 ∩N,∆p+0
∩N).

Now we can build increasing sequences of conditions (p+
i )1≤i≤m and

(pi)1≤i≤m, together with a sequence (αi)1≤i≤m of distinct ordinals such
that for all positive i ≤ m,

(a) pi ∈ N extends pi−1 and forces αi ∈ Ẋ,
(b) p+

i is a condition extending p+
i−1,

(c) ∆p+i
\N = ∆p+i−1

\N , and

(d) dom(Fpi) = dom(Fp+i ) ∩ N and Fpi(ξ) = Fp+i (ξ) � δN for all

ξ ∈ dom(Fpi), cpi = cp+i ∩N , and ∆pi = ∆p+i
∩N .

Given a positive i ≤ m, if p+
i and pi – namely, its restriction to N –

have been defined, we can find pi ∈ N by correctness of N since p+
i−1

forces β ∈ Ẋ and β /∈ N . But then we can easily find p+
i . The point is

that the forcings we are plugging in at nonzero stages ξ of the iteration
are B, so that, for every such ξ in dom(Fpi), it is indeed easy to find
an extension of Fpi(ξ) which is generic for the relevant structures N ′

which are not in N simply by adding δN ′ as fixed point. The point is
of course that we do not need to go to any extension of pi|ξ to do that.

In the end we can find two i, i′ ≤ m and an extension q of p+
m

such that cq({αi, β}) = cq({αi′ , β}) as in the proof (cf. [1]) of Lemma
4.4. More specifically, we may find distinct i, i′ such that for all M ∈
dom(∆p+0

), {αi, β} ∈ M if and only if {αi′ , β} ∈ M , and then we may

fix some ν > eβ(max{αi, αi′}) such that ν ∈M for all M ∈ dom(∆p+0
)

such that {αi, β} ∈ M (equivalently, such that {αi′ , β} ∈ M). Then
we may let cq({αi, β}) = cq({αi′ , β}) = ν. This finishes the proof. �

It is worth pointing out that if we were to force the forcing axiom
for Cohen forcing rather than FA(B) (together with 2ℵ0 = κ), the
construction could be made a bit simpler, in that we could dispense
with the markers γ – in (N, γ) ∈ ∆q, for a condition q – in the definition
of our iteration. Such a construction would of course suffice also to
answer the question in [1].
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32 D. ASPERÓ AND M.A. MOTA
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