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Abstract. Current models to explain regional-scale landslide events are not able to account for the possible

effects of the legacy of previous earthquakes, which have triggered landslides in the past and are known to drive

damage accumulation in brittle hillslope materials. This paper tests the hypothesis that spatial distributions of

earthquake-induced landslides are determined by both the conditions at the time of the triggering earthquake

(time-independent factors) and the legacy of past events (time-dependent factors). To explore this, we undertake

an analysis of failures triggered by the 1929 Buller and 1968 Inangahua earthquakes, in the northwest South

Island of New Zealand. The spatial extents of landslides triggered by these events were in part coincident. Spa-

tial distributions of earthquake-triggered landslides are determined by a combination of earthquake and local

characteristics, which influence the dynamic response of hillslopes. To identify the influence of a legacy from

past events, we first use logistic regression to control for the effects of time-independent variables. Through

this analysis we find that seismic ground motion, hillslope gradient, lithology, and the effects of topographic

amplification caused by ridge- and slope-scale topography exhibit a consistent influence on the spatial distribu-

tion of landslides in both earthquakes. We then assess whether variability unexplained by these variables may

be attributed to the legacy of past events. Our results suggest that hillslopes in regions that experienced strong

ground motions in 1929 were more likely to fail in 1968 than would be expected on the basis of time-independent

factors alone. This effect is consistent with our hypothesis that unfailed hillslopes in the 1929 earthquake were

weakened by damage accumulated during this earthquake and its associated aftershock sequence, which influ-

enced the behaviour of the landscape in the 1968 earthquake. While our results are tentative, they suggest that

the damage legacy of large earthquakes may persist in parts of the landscape for much longer than observed sub-

decadal periods of post-seismic landslide activity and sediment evacuation. Consequently, a lack of knowledge

of the damage state of hillslopes in a landscape potentially represents an important source of uncertainty when

assessing landslide susceptibility. Constraining the damage history of hillslopes, through analysis of historical

events, therefore provides a potential means of reducing this uncertainty.

Published by Copernicus Publications on behalf of the European Geosciences Union.
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1 Introduction

Regional landslide-hazard assessments rely on models that

upscale our conceptual understanding of fundamental con-

trols on landslides, through analysis of the influence of differ-

ent proxy variables on landslide occurrence (e.g. Capolongo

et al., 2002; Garcia-Rodriguez et al., 2008). Most studies to

date have addressed spatial correlations between the distri-

bution of landslides and variables that provide proxies for

seismic ground motions and the modelled stability of hill-

slopes (e.g. Dai et al., 2011; Meunier et al., 2007, 2008; Kri-

tikos et al., 2015). These studies implicitly rely upon a static

model of hillslope sensitivity to landslide triggering. In other

words, the predicted number of landslides triggered by any

given trigger event, or the susceptibility to landsliding in that

event, will not vary through time. However, this assumption

is at odds with observations of increased rainfall-triggered

landslide activity above baseline rates observed in the wake

of large earthquakes (Hovius et al., 2011; Saba et al., 2010;

Tang et al., 2011; Dadson et al., 2004). Similarly, data from

the 2010–2011 Canterbury earthquake sequence reveal land-

slide triggering at lower ground accelerations following the

February 2011 earthquake, which caused cracks to develop in

hillslopes that subsequently failed in later earthquakes in the

sequence (Massey et al., 2014a, b; Mcfadden et al., 2005).

These observations suggest that hillslopes may retain dam-

age from past earthquakes, which makes them more suscep-

tible to failure in future triggering events. Note that here we

define failure as the total collapse of a hillslope where the

failed mass evacuates the failure plane and moves downs-

lope to leave a discernable, bare-earth scar. According to the

classification of Keefer (1984, 2002), these types of failures

are generally grouped as disrupted slides, given the signifi-

cant internal disruption exhibited by the landslide mass. In

the classification system of Varnes (1978; updated by Hungr

et al., 2014), this group includes rock and debris falls and

slides, as well as rock avalanches. Globally, disrupted land-

slides are estimated to comprise the majority, ∼ 86 %, of re-

ported earthquake-induced landslides (Keefer, 1984, 2002;

Mcfadden et al., 2005).

One mechanism by which hillslopes could be made more

susceptible to failure is progressive brittle damage accumu-

lation in hillslope materials, whereby permanent slope dis-

placement leads to cracking and dilation of the mass (Pet-

ley et al., 2005; Nara et al., 2011; Bagde and Petroš, 2009;

Li et al., 1992b). Damage accumulation occurs near the sur-

face within hillslopes (Clarke and Burbank, 2011), as grav-

itational stress coupled with seismically and hydrologically

induced changes in the stress distribution cyclically load

and unload hillslope materials. Cyclic loading at stresses

lower than the static strength of the material can produce

irreversible localised strain damage (Suresh, 1998; Schijve,

2001), in natural rocks with abundant pre-existing micro-

cracks or pores (Attewell and Farmer, 1973; Li et al., 1992a;

Bagde and Petroš, 2005). While the effect of an individual

cycle may be insignificant, the nonlinear accumulation of

damage over repeated cycles can lead to the eventual failure

of the material, via a progressive mechanism of failure (Pet-

ley et al., 2005; Leroueil et al., 2012). Brittle deformation

of this type has been observed in soil at low confining pres-

sures (1–250 kPa), in mudrocks at confining pressures up to

2 MPa, and at greater confining pressures in harder geologi-

cal materials (Petley and Allison, 1997; Evans et al., 2013).

As this mechanism occurs in the fabric of brittle rock or co-

hesive soils (bonded or cemented materials, where strain is

localised during failure), it is likely to be common to most

disrupted types of landslide induced by earthquakes. Excep-

tions to this are shallow colluvial failures in cohesionless soil

and cases of failure in very poor quality, soft rock masses or

soft layers, where material behaves in a ductile manner (Pet-

ley and Allison, 1997). Where earthquake-induced landslide

failure develops progressively, via brittle deformation, hill-

slopes may retain damage from past earthquakes. Whether

or not a hillslope fails in response to an earthquake will be a

function of both the current event and, by definition, the his-

tory of damage accumulated in that hillslope from previous

events. The absence of this historical information from land-

slide analyses and predictive models potentially represents a

significant gap in our understanding of factors that control

the distribution of landsliding.

If damage from previous earthquakes does influence pat-

terns of landsliding in subsequent earthquakes, then it is rea-

sonable to hypothesise that spatial distributions of landslides

should be at least partially correlated with the ground mo-

tions from past earthquakes. In order to investigate the role

of hillslope damage history in conditioning landslide distri-

butions, we test this hypothesis through analysis of the spa-

tial distribution of landslides triggered by two large (Mw > 7)

earthquakes which occurred in close proximity in the north-

west South Island of New Zealand. First, we present inven-

tories of landslides triggered by the 1929 Buller and 1968

Inangahua earthquakes. Second, we undertake a spatial anal-

ysis of the distributions of both events, using logistic regres-

sion. Third, we use the results of this analysis to test the influ-

ence of the 1929 earthquake on the distribution of landslides

triggered by the 1968 earthquake.

2 The 1929 Buller and 1968 Inangahua earthquakes

The 17 June 1929 Buller (Murchison) earthquake (Mw =

7.7; Dowrick and Rhoades, 1998; Dowrick, 1994) and the

24 May 1968 Inangahua earthquake (Mw = 7.1; Anderson et

al., 1994) both triggered landslides over a large area (Fig. 1).

The epicentres of the two earthquakes were ∼ 21 km apart,

whilst at their closest point the mapped surface expressions

of the coseismic faults lie 7 km apart. Source analyses de-

scribed below indicate that the earthquakes have very similar

reverse thrust focal mechanisms, with small components of

left-lateral strike-slip (Dowrick and Smith, 1990; Anderson
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Table 1. Summary of 1929 and 1968 earthquakes.

Name Date Epicentre location Magnitude Focal depth Rupture length Strike Dip Dip direction

Buller 17 June 1929 41.70◦ S, Ms = 7.8 9± 3 km 50 km 15◦ 45◦ 100◦

earthquake 172.20◦ E Mw = 7.7

Inangahua 24 May 1968 41.76◦ S, Ms = 7.4 10± 5 km 30 km 25◦ 45◦ 295◦

earthquake 171.96◦ E Mw = 7.1
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Figure 1. Elevation map of the Buller River to Karamea of the

northwest South Island, New Zealand, showing the sources, ground

motions and landslides triggered by the 1929 Buller and 1968

Inangahua earthquakes. Included on this map are the epicentres,

focal mechanisms and fault planes of the earthquakes (Ander-

son et al., 1993, 1994; Stirling et al., 2007), isoseismal contours

(Dowrick, 1994; Adams et al., 1968), mapping coverage regions

and earthquake-induced landslides mapped in this study.

et al., 1994). Isoseismal maps (Dowrick, 1994; Adams et al.,

1968) suggest that ground motions from the two events had a

MMI VIII overlap area of∼ 3505 km2 and a MMI IX overlap

area of ∼ 584 km2 (Fig. 1).

2.1 Coseismic sources and ground motion

The White Creek Fault has been identified as the source of

the 1929 earthquake, although surface faulting was only ob-

served along an 8 km length of the fault (Fyfe, 1929; Hender-

son, 1937). Back analysis of seismic data (Doser et al., 1999),

ground motion intensities (Dowrick, 1994), and coseismic

landslides (Pearce and Oloughlin, 1985; Hancox et al., 2002)

suggests a unilateral rupture extending 30–50 km to the north

of the epicentre. This corresponds with the mapped geolog-

ical (ground surface) trace of the White Creek Fault. Es-

timates of dip angle range from 60–70◦ based on surface

displacement observations (Henderson, 1937) to 46◦± 13◦

based on inversion of data from seismic stations (Doser et

al., 1999), and 45◦ based on elastic dislocation modelling

(Haines, 1991). Doser et al. (1999) inferred a focal depth of

9± 3 km. To approximate the 1929 seismic source geome-

try in our analysis, we use the surface fault line and fault

parameters of the White Creek Fault as used in the New

Zealand probabilistic seismic hazard model (Stirling et al.,

2000, 2002, 2007, 2012; Berryman, 1980; Haines, 1991).

This model assumes a fault plane striking 10◦, and dipping

at 45◦ from the surface to a maximum depth of 12 km, with

a dip direction of 100◦.

The seismic source geometry of the 1968 earthquake has

been constrained through an integrated geological, geode-

tic and seismological source model (Anderson et al., 1993,

1994). We use a single fault plane trending northeast (25◦),

dipping at∼ 45◦ from a depth of 10–15 km to within∼ 1 km

of the surface (i.e. no primary ground surface rupture), with a

dip direction of 295◦ extending around 30 km in length (An-

derson et al., 1993, 1994). Earthquake parameters for both

events are summarised in Table 1.

As coseismic landslide occurrence is driven by seismic

shaking, it is important that we constrain the spatial pattern

of ground accelerations. The strength of seismic ground ac-

celerations attenuates with distance from the seismic source.

However, the regional distribution of ground acceleration is

also subject to the effect of rupture directivity and regional

variation in the damping effect of earth materials (Abraham-

son et al., 2008; Campbell and Bozorgnia, 2008). In an at-

tempt to account for these effects in the case of the 1968

earthquake, we also make use of the USGS Shakemap out-

put for this event (USGS, 2014). This Shakemap is based on

the fault model described above and uses ground motion data

from 15 seismic stations across New Zealand, 3 of which

are within or just beyond the area of landslide mapping con-

ducted here (Fig. 1), as well as estimates of peak ground ac-

celeration (PGA) derived from reports at 159 additional sites.

Although this model is still subject to uncertainty, by incor-
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Figure 2. (a) 1968 rock falls from limestone bluffs at White Cliffs

Escarpment, 5 km west of Inangahua. (b) 1968 rock and debris fall

area in the upper Buller Gorge.

Figure 3. (a) 1968 debris slide on road cut in the upper Buller

Gorge. (b) Multiple 1968 debris slides on slopes on the south side

of the Buller River.

porating observed ground motions and site amplification fac-

tors, it can potentially provide a more accurate representa-

tion of the regional distribution of ground motion. PGA es-

timates derived from scratch-plate records at Reefton, West-

port and Murchison report ground accelerations of 0.58, 0.30

and 0.36 g respectively (Adams et al., 1968; Dowrick and

Sritharan, 1993), with which the Shakemap data set is con-

sistent.

3 Earthquake-induced landslides

Both earthquakes triggered widespread landsliding through-

out the area that experienced intensities of MMI=VIII to

X. We review the types of landslides triggered by the earth-

quakes and outline our methodology for producing landslide

inventories for the two events.

3.1 Landslide types

Most failures triggered by these earthquakes were disrupted

rock and debris slides, rockfalls and rock avalanches, with

very few coherent landslides and lateral spreads seen in the

field or in aerial photos (Hancox et al., 2002, 2014). In

Figs. 2–6 we present examples of these different landslide

types from the two earthquakes. Note that an extended re-

Figure 4. (a) Lake Stanley rock avalanche. The lake was dammed

by the landslide, which was triggered by the 1929 earthquake.

(b) 1995 photo of a rock avalanche that dammed the Buller River

during the 1968 earthquake. Apart from vegetation growth, the scar

has changed little in the last 40 years.

view of major landslides and landslide types is presented in

Hancox et al. (2014).

Rockfalls were commonly triggered on steep scarps of

Tertiary limestone, granite and greywacke, with numerous

failures ranging from individual, small boulders to large falls

of 105 m3 (Fig. 2). Debris slides were the most frequent type

of landslide triggered by the earthquakes and were common

in areas of granite and greywacke (Fig. 3). Several examples

of large rock avalanches were triggered by the earthquakes.

The 1929 earthquake triggered the 18 million m3 Lake Stan-

ley rock avalanche (Fig. 4a), in Palaeozoic conglomerate and

volcanics around 90 km north of the epicentre. Although this

landslide is 35 km north of the present study area and is not

included in the 1929 landslide data set (which covers only

the southern half of the landslide-affected area) it is typical

of the 10 largest landslides that occurred in 1929 (Hancox et

al., 2002). The landslide is around ∼ 2 km long with an ele-

vation range of 800 m. The largest landslide triggered by the

1968 earthquake was a 5 million m3 rock avalanche (Fig. 4b).

This failure occurred in weathered granite, running out about

1.2 km to the valley floor and about 100 m up the opposite

side of the valley.

Several large rockslides were also triggered by the earth-

quakes. For example, the 1929 earthquake triggered the

18 million m3 Matakitaki landslide (Hancox et al., 2002).

This dip slope rockslide travelled ∼ 1 km across the valley

floor, destroying two farm houses and killing four people,

and formed a landslide dam (Fig. 5a). Figure 5b shows the

intensity of landslide damage in the Matiri Valley, an area

close to the seismogenic fault, where landslide scars from

1929 are still clearly visible today. The 1968 earthquake trig-

gered the 3 million m3 Oweka rockslide, a disrupted mass of

muddy sandstone that fell from a vegetation-covered slope

(Fig. 6a). The largest (2.8 million m3) rotational landslide

triggered by the 1968 earthquake occurred on a 100 m high

terrace in sandy (“Blue Bottom”) mudstone (Fig. 6b).

In most of these failure types, we might reasonably expect

the process of material failure to involve some component

Earth Surf. Dynam., 3, 501–525, 2015 www.earth-surf-dynam.net/3/501/2015/
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Figure 5. (a) Matakitaki landslide triggered by the 1929 earth-

quake. Debris from this large (18 million m3) dip-slope rockslide

travelled ∼ 1 km across the valley floor, killing four people and

forming a landslide dam. Note that, after over 70 years, the land-

slide scar is still visible. (b) Aerial view of the Matiri Valley (15 km

north of Murchison), which was extensively damaged by landslides

during the 1929 earthquake. Numerous scars of rockfall and debris

slides are still clearly visible in 2011.

of brittle deformation, given the low temperature and confin-

ing pressure in near-surface materials. Notable exceptions to

this may include structurally controlled failures along duc-

tile bedding planes. For example, field observations from the

Oweka landslide suggest that, for a large semi-intact section

of the landslide, the mechanism of movement was sliding on

an extensive bedding plane coated with a thin layer of plastic

clay (Hancox et al., 2014). Among debris (colluvium) fail-

ures, the failure mode will vary, depending on the material

content and whether failure took place in brittle or ductile

zones.

3.2 Production of landslide inventories

In order to produce regional inventories of landslides trig-

gered by these events, landslide scars were identified and

mapped through stereoscopic interpretation of panchromatic

aerial photographs, combined with ground and oblique aerial

photography, based on morphometric criteria and the surface

reflectivity contrasts between undisturbed ground and fail-

ures (Nichol and Wong, 2005; Liu et al., 2002; Hovius et al.,

1997). Our inventories consist of landslides where the failed

mass evacuated the failure plane and moved downslope to

leave a discernable, bare-earth scar. Accordingly, all land-

slides included in the inventories are disrupted slides, which

moved rapidly downslope following failure.

Landslides triggered by the 1929 earthquake were mapped

using 1 : 86 000 scale images taken in February 1968, and

validated using ground photos taken in 1929 and further

aerial photos taken in 1947 (SN 265, runs 1457–1463) for

selected regions (Appendix A). From comparison of earlier

and later imagery, we found that scars from landslides trig-

gered in 1929 were still clearly visible and could be mapped

in imagery acquired 39 years after the earthquake, due to a

slow rate of regeneration of native bush. This is particularly

true for larger, bedrock failures, while smaller soil and de-

Figure 6. (a) 1968 Oweka rock slide with rock debris (Lensen and

Suggate, 1968). (b) 1968 rotational slide of∼ 2 million m3 in sandy

(“Blue Bottom”) mudstone. At the top of the landslide the semi-

intact block below the prominent head scarp has slumped about 6 m.

The main body of the slide has carried the rock downslope and com-

prises highly disrupted mudstone boulders and finer debris.

bris failures are more rapidly obscured by vegetation. Land-

slides attributed to the 1968 earthquake were mapped using

1 : 66 000 scale panchromatic aerial images (Appendix A)

taken in November 1974 and aerial oblique and ground pho-

tos taken in 1968–1969. Landslide mapping was further val-

idated based on observations from fieldwork undertaken by

G. Hancox throughout 1968 and 1969, and during aerial re-

connaissance undertaken by G. Hancox in 1998 and 2010,

and in 2011 by R. Parker.

Comparison of pre- and post-1968 imagery was carried

out to delineate 1929 landslide areas from those triggered

or further influenced by the 1968 earthquake (Fig. 7). Al-

though the intervening periods between seismic events and

imagery acquisition create potential for inclusion of land-

slides triggered by aseismic (rainfall) events, observations

from reconnaissance between 1968 and 2014 and historical

records compiled by the West Coast Regional Council (Han-

cox et al., 2014) suggest a lack of widespread landsliding

resulting from heavy rainstorms or other processes during

inter-seismic periods, supporting a seismic mode of trigger-

ing for the landslides observed (Pearce and Oloughlin, 1985;

Hancox et al., 2014). Prior to the 1929 earthquake, two large

events of Mw ∼ 7 are estimated to have occurred in 1868

and 1893, with epicentres located around 200 km to the north

and northeast of the study area, respectively (Anderson et al.,

1994). Due to the lack of pre-1929 imagery, there may be po-

tential for landslides triggered by these events to be wrongly

attributed to the 1929 earthquake. However, due to their dis-

tance from the study area, these events would have produced

relatively weaker ground motions than the 1929 event – MMI

V–VII (1868, 1893) vs. MMI IX–X (1929) (Anderson et al.,

1994; Hancox et al., 2002) – capable of triggering few, rel-

atively small landslides (Hancox et al., 2002). As smaller

landslides are more rapidly obscured by vegetation, it is un-

likely that smaller failures from these events feature in our

data set. An earlier larger earthquake of around Mw ∼ 7.4

is also thought to have occurred ca. 1650, as indicated by

www.earth-surf-dynam.net/3/501/2015/ Earth Surf. Dynam., 3, 501–525, 2015
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Figure 7. Two aerial images used to map landslides triggered by the 1929 and 1968 earthquakes in the Buller Gorge area. Scars from

the 1929 landslides are recognisable on the Survey No. 2033 image (a), 39 years after the earthquake, and many scars were reactivated or

enlarged by the 1968 earthquake (b).

Figure 8. Probability densities of landslide areas as a function

of landslide area for the 1929 Buller and 1968 Inangahua earth-

quake landslide inventories. Power-law scaling exponents(α) have

been derived using the method of Clauset et al. (2009), for areas

> 11 000 m2.

several landslide-dammed lakes in the northwest Nelson area

(Hancox et al., 2002; Perrin and Hancox, 1992; Henderson,

1937). Larger, visible pre-20th century landslide scars in the

region were mapped separately and are not included in this

analysis.

Polygons delineating the combined landslide source and

runout areas of individual landslides were mapped by hand

on 1 : 50 000 scale topographic maps, which were then digi-

tised and imported into a GIS. Particular effort was made

to map individual failures separately and separate coalesced

landslide features, in order to avoid issues of feature amal-

gamation in the data set (Li et al., 2014). The imagery res-

olution allowed mapping of landslides down to a minimum

size of ∼ 50× 50 m (∼ 2500 m2). For the 1929 earthquake,

4074 landslides (182 km2 total landslide area) were mapped

across an area of 4222 km2. Note that this mapping covers

the southern half of the landslide-affected area, while the

1929 landslides extend to the north, away from the region

affected by the 1968 earthquake. By contrast, for the 1968

Inangahua earthquake, 1400 landslides (39 km2 total land-

slide area) were mapped across an area of ∼ 3500 km2. Of

these, 246 landslides were reactivations or enlargements of

landslide scars that failed in 1929, mostly in over-steepened

source areas of the previous failures. The areal extents of the

landslide inventories overlap by 2882 km2, ∼ 80 % of which

experienced MMI≥VIII in both events. The areas of both

the 1929 and 1968 landslides exhibit characteristic power-

law scaling (e.g. Hovius et al., 1997; Guzzetti et al., 2002;

Malamud et al., 2004; Van Den Eeckhaut et al., 2007; Fig. 8):

p(x)=
α− 1

xmin

(
x

xmin

)−α
, (1)

where p(x) is the probability of a landslide having a given

area, xmin is the minimum area of landslide modelled by the

Earth Surf. Dynam., 3, 501–525, 2015 www.earth-surf-dynam.net/3/501/2015/
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Table 2. Summary of proxy variables suggested to influence spatial distributions of earthquake-induced landslides, based on empirical

studies.

Proxy variable Mechanistic link to landslide occurrence References

Seismic forcing (ground motion intensity)

Seismic wave attributes (e.g. PGA, PGV, PGD, Local metric of shaking intensity
Meunier et al. (2007, 2013), Dai

et al. (2011), Lee et al. (2008),

Hancox et al. (1997, 2002)

Arias intensity, MMI)

Distance from the seismic source Regional attenuation of seismic

wave amplitudes

Position on hillslope (normalised Ridge to stream patterns of
Davis and West (1973), Bou-

chon (1973), Wu et al. (1990),

Benites et al. (1994), Meunier

et al. (2008), Densmore et al.

(1997)

distance from stream to ridge crest) topographic amplification and

damping

Orientation of hillslope relative Directional patterns of topographic

to seismic source amplification and damping, due to the

incidence angle of seismic waves

Hanging wall vs. footwall location Proximity of the fault and enhanced Abrahamson and Somerville (1996),

of sites rupture directivity effects in hanging wall areas Somerville et al. (1997),

Abrahamson et al. (2008)

Strength of hillslope materials

Bedrock lithology Hillslope material strength Khazai and Sitar (2004),

Parise and Jibson (2000),

Keefer (2000), Dai et al. (2011)

Structural geology (discontinuities) Kinematic feasibility, i.e. orientation of Hoek et al. (2002), Selby (2005),

bedrock discontinuities relative to Moore et al. (2009)

slope aspect and topography

Northness component of hillslope aspect Relative intensity of rock breakdown via Meunier et al. (2008), Parker

physical and chemical weathering (2010, 2013), Chen et al. (2012)

Rainfall The effect of pore water pressure in reducing Dellow and Hancox (2006),

hillslope effective stress Iverson (2000)

Static stress loading in hillslopes

Hilllope gradient
Magnitude of static stress loading in hillslopes

Keefer (2000), Khazai and Sitar (2004),

Lee et al. (2008), Dai et al. (2011)
Local hillslope relief

function and α is the power-law scaling exponent. The po-

sitions of the rollover for smaller landslides suggest com-

plete mapping of landslides larger than between 11 000 and

13 000 m2 in both data sets. These limits result from the com-

bined effects of the mapping resolution and vegetation recov-

ery in obscuring smaller landslide scars. The power-law scal-

ing exponents of 2.68 (1929) and 2.85 (1968), fitted using the

method of Clauset et al. (2009), fall within the typical range

of previously observed values for landslide inventories (1.4–

3.4), which have a central tendency around 2.3–2.5 (Van Den

Eeckhaut et al., 2007; Stark and Guzzetti, 2009).

To analyse the spatial pattern of hillslope failures, we use

the landslide source areas, rather than areas covered by land-

slide runout and deposits. For most landslides it was difficult

to visually separate landslide source and runout or deposit

area. Based on a sample of 51 landslides where visual de-

lineation of the source area was possible, dividing the ex-

tent of each landslide at its midpoint elevation (i.e. the con-

tour halfway been the maximum and minimum landslide el-

evation) provided a good approximation of the separation

between source and runout–deposit (Appendix B). This ap-

proach is similar to the method of extracting landslide areas

above the median landslide elevation, which has been em-

ployed in previous studies (Parise and Jibson, 2000; Jibson et

al., 2000; Capolongo et al., 2002; Lee et al., 2012). However,

our technique is less prone to overestimation of the source

area for landslide masses that run out over large distances

across low-gradient ground.

4 Investigating controls on the spatial distribution

of landslides

Distributions of earthquake-induced landslides are depen-

dent on factors that influence the dynamic response of hill-

slopes undergoing seismic shaking (e.g. Jibson, 2011; New-

mark, 1965). These factors can be broadly grouped into those

www.earth-surf-dynam.net/3/501/2015/ Earth Surf. Dynam., 3, 501–525, 2015



508 R. N. Parker et al.: Earthquake-induced landslides and hillslope preconditioning

Figure 9. Hypothetical output of hillslope failure conditional probability analysis for the 1929 and 1968 earthquakes. This illustrates how

the model residuals (observed PLS minus predicted PLS) would be distributed if conditional probability models, which account for the full

subset of spatial, time-independent factors (i.e. those not associated with previous events) influencing landslide occurrence, have been fitted

and used to hindcast PLS. (a) 1968 model residuals are uncorrelated with predicted PLS. (b) Model residuals are uncorrelated with values

of individual model predictors. (c) Model residuals are correlated with PLS hindcast for the 1929 earthquake either negatively (model 1) –

indicating preconditioning of hillslopes against failure – or positively (model 2) – indicating preconditioning of hillslopes for failure. The

residuals are calculated by aggregating probabilities across equal quantile bins of the x variable. Note that positive and negative residuals

are relative to the prediction of a model that does not explicitly consider the effect of hillslope preconditioning but is fitted using landslide

data that are subject to the effect of hillslope preconditioning. Therefore it is the direction of the trend, rather than the absolute (positive or

negative) residual values, that is of importance in the test of preconditioning.

that influence the intensity of event-specific seismic ground

motions, and the strength of hillslope materials and the static

shear stresses acting on them, which may remain more con-

sistent from one event to the next. Empirical studies have

revealed a number of proxy variables that can be used to rep-

resent these factors at the regional scale (Table 2).

Logistic regression is a standard technique for assessing

controls on earthquake-triggered landslide distributions (e.g.

Yesilnacar and Topal, 2005; Dai and Lee, 2003; Garcia-

Rodriguez et al., 2008; von Ruette et al., 2011), by modelling

the influence of multiple predictor variables on a categorical

response (Cox, 1958; Walker and Duncan, 1967). The func-

tion takes the form

P (Y = 1)

=
1

1+ exp(− (b0+ b1x1+ b2x2+ b3x3. . .bnxn))
, (2)

where logistic regression is used to estimate the coefficients

(b, bn. . .) for predicting the probability that Y = 1, given the

values of one or more predictor variables (x, xn. . .). In this

case, Y = 1 corresponds to the occurrence of a landslide at a

particular point in space.

Although previous studies have applied logistic regression

with the implicit assumption of temporally static hillslope

sensitivity to landslide triggering, here we use this technique

to test a hypothesis of hillslope preconditioning for failure

by previous events. We first undertake an implicitly static lo-

gistic regression analysis in order to model the distributions

of landslides, as can best be achieved without considering

the influence of past events. We hypothesise that if the 1929

earthquake influences the 1968 landslide distribution, then

the residual variability, unexplained by our regression model,

must exhibit a relationship with the spatial distribution of the

effect of the previous earthquake on hillslopes. To test this

hypothesis, we compare the residuals of our 1968 regression

with a measure of hillslope preconditioning, here the prob-

ability of landslide occurrence in 1929. A graphical repre-

sentation of hypothetical outcomes is presented in Fig. 9. We

assume that logistic regression models have been fitted and

used to hindcast the probability of hillslope failure (PLS) for

both earthquakes. Note that by definition the observed prob-

ability of landsliding, being based on observations a posteri-

ori, is 1 for landslide sites and 0 for non-landslide sites. For

comparison, observed and predicted probabilities are there-

fore aggregated (mean-averaged) across sites (pixels) that

fall within equal quantile bins of the predictor variables. For

each data point generated, the mean predicted probability

represents the proportion of sites expected to fail, while the

mean observed probability represents the proportion of sites

observed to fail. If the model for the 1968 earthquake is accu-

rate, then the residuals (observed PLS minus predicted PLS)

should yield no structure when plotted against the predicted

values (Fig. 9a). Similarly, there should be no structure in the

residuals when plotted against each of the individual predic-

tor variables (Fig. 9b). However, if the 1929 earthquake has

influenced the 1968 landslide distribution, then the residuals

should exhibit structure when plotted against the predicted

PLS for the 1929 earthquake. Fig. 9c illustrates two end-

member scenarios, showing how the 1929 earthquake might

be expected to influence the 1968 landslide distribution:
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1. Hillslopes with higher predicted PLS in 1929 exhibit

lower than expected PLS in 1968. This could be the case

if widespread failure of unstable hillslopes in 1929 re-

sulted in fewer hillslopes being “available” for failure in

1968.

2. Hillslopes with higher predicted PLS in 1929 exhibit

higher than expected PLS in 1968. This could be the

case if, despite the widespread failure of unstable hill-

slopes in 1929, damage accumulation in those hillslopes

that did not fail primed those sites for failure in 1968.

Conversely, if there were no trend in the residuals, this

would suggest that the 1929 earthquake has not influenced

the 1968 landslide distribution. Although damage accumula-

tion is specific to landslides in brittle hillslope materials, and

not necessarily present in all hillslopes where landslides have

been mapped, even if a subset of hillslopes record the legacy

of past earthquakes, we should expect to see the signal via

this test.

In order to undertake logistic regression analysis, we first

removed landslides with areas less than 13 000 m2 from our

data set to eliminate biases arising from small landslides

censored by the mapping resolution and post-landslide veg-

etation regrowth. We then defined a sample grid at 30 m

resolution, based upon a digital elevation model, resampled

from the 10 m resolution New Zealand Digital Terrain Model

(GNS Science, 2011), using bilinear resampling. The eleva-

tion model was resampled at this scale to remove fine-scale

noise, while ensuring that the characteristics of individual

landslides are resolved. Using a 30 m grid, we ensure that

more than 10 sample points fall within the smallest landslides

included in our analysis. Additionally, 30 m is much less than

typical hillslope lengths in the region of 500 m, ensuring that

multiple hillslopes are not contained in a single pixel. Re-

sponse and predictor variables were then generated for each

grid cell. For the response variable, binary grids of landslide-

source and non-landslide-source pixels were generated from

the mapped 1929 and 1968 landslide source zones. We re-

moved from this analysis the 246 landslides from the 1968

data set that occurred as reactivations of 1929 landslide scars.

This allowed our analysis to test exclusively for the influence

of hillslope damage accumulation, rather than the effect of

slopes over-steepened or undermined by previous landslides.

Predictor variables (Fig. 10, Table 3) were derived to rep-

resent factors previously found to influence landslide occur-

rence elsewhere (Table 2). For both earthquakes, we used the

horizontal distance of each grid cell to the surface projec-

tion of the fault (FLD), and the three-dimensional distance

from each grid cell to the closest point on the coseismic fault

plane (FPD) as proxies for the regional attenuation of seis-

mic waves and shaking intensity. For the 1968 earthquake,

we also used the Shakemap PGA model for this purpose by

interpolating from modelled PGA values at 0.05◦ (∼ 4.5 km)

grid spacing (PGA). A binary variable, HW, coding the hang-

ing walls (HW= 1) and footwalls (HW= 0), was used to

Figure 10. Matrix of maps showing potential predictor variables

used in logistic regression analysis of hillslope failure probability.

Each map shows distributed values of each predictor variable across

the 5629 km2 combined area of landslide mapping for both events

(as shown in Fig. 1). Variable descriptors and units are summarised

in Table 3.

represent hanging wall effects on ground motion (Abraham-

son and Somerville, 1996). A second binary variable, DIR,

coding regions towards and away from which the fault rup-

tures propagated (0 and 1, respectively), was used to repre-

sent the effect of rupture directivity on ground motion (Bray

and Rodriguez-Marek, 2004). The local hillslope orientation

(HO) relative to the seismic source (0 for hillslopes with as-

pect oriented away from the fault rupture, and 1 for aspects

oriented towards the fault rupture) was used to represent the

incidence angle of seismic waves. Normalised distance from

stream to ridge crest (0 for sites located in a stream chan-

nel, 1 for sites located on a ridge crest) was used to repre-

sent valley-scale patterns of topographic amplification and

damping (NDS). Local hillslope gradient, measured over a

three-pixel (90 m) spatial window (SL) and two relief met-

rics (the relief (ER) and standard deviation (ES) of elevation

within individual drainage basins, divided by the drainage
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Table 3. Potential predictor variables, ID codes, descriptions and units.

Variable ID Description Units

FLD-1929 Horizontal distance of each sample cell to the surface projection of the 1929 fault km

FPD-1929 3-dimensional distance from each sample cell to the closest point on the 1929 coseismic fault plane km

HW-1929 Binary variable coding the 1929 hanging wall and footwall

HO-1929 Local hillslope orientation relative to the 1929 seismic source (incidence angle of seismic waves) ◦

FLD-1968 Horizontal distance of each sample cell to the surface projection of the 1968 fault km

FPD-1968 3-dimensional distance from each sample cell to the closest point on the 1968 coseismic fault plane km

HW-1968 Binary variable coding the 1968 hanging wall and footwall

HO-1968 Local hillslope orientation relative to the 1968 seismic source (incidence angle of seismic waves) ◦

PGA-1968 Shakemap peak ground acceleration for the 1968 earthquake g

NDS Normalised distance from stream to ridge crest

G Lithology (tectonostratigraphic terrane units)

SL Local hillslope gradient ◦

ES SD of elevation within individual drainage basins, divided by the drainage basin area m m−2

ER Range of elevation within individual drainage basins, divided by the drainage basin area m m−2

DS Binary variable of dip slopes and anti-dip slopes

CA Cosine transformation of hillslope aspect (hillslope-scale variations in solar radiation)

PD3 Long-term mean antecedent precipitation total for 3 months prior to the earthquake mm

PD6 Long-term mean antecedent precipitation total for 6 months prior to the earthquake mm

basin area) were used to represent the magnitude of static

stresses. In the calculation of elevation derivatives, using a

spatial window size (three pixels or 90× 90 m) smaller than

the smallest individual landslides included in our analysis,

we minimise the risk of overgeneralising the characteristics

of individual landslides. A categorical variable indicating dif-

ferent lithologies was used to represent variability in material

strength (G). In order to capture the regional distribution of

structure on bedrock landslides, we generated a binary vari-

able of dip/anti-dip slopes (DS) by comparing local slope

gradient and aspect with the azimuth and dip of recorded

structures from the New Zealand QMap data set (Ratten-

bury et al., 1998, 2006; Nathan et al., 2002), which was in-

terpolated using Thiessen polygons. The northerly compo-

nent of aspect (cosine of aspect, CA) is used to characterise

hillslope-scale variations in received solar radiation, which

have been associated with the relative intensity of physical

and chemical weathering (Mcfadden et al., 2005). Note that

CA= 1 indicates north-facing hillslopes, which experience

higher levels of southern hemisphere solar radiation, while

CA=−1 indicates south-facing hillslopes.

Although a clear relationship between rainfall-induced

pore pressure and earthquake-induced landslide triggering

has not be shown, collated data sets for New Zealand sug-

gest that earthquakes that occur during wetter months trig-

ger more landslides than those during drier periods (Del-

low and Hancox, 2006). Rainfall records from Karamea (see

http://cliflo.niwa.co.nz/) suggest similar levels of rainfall pre-

ceded the two events, which had a difference in calendar

position of only 23 days. For example, June 1929 received

307 mm (May–June 1929 received 406 mm) and May 1968

received 275 mm (April–May 1968 received 525 mm). It is

therefore unlikely that a difference in groundwater conditions

is responsibly for a difference in sizes of landslide events

triggered by the earthquakes. On the scale of the individual

events, we account for spatial variability in rainfall across

the region using mean monthly precipitation totals for the

period 1950–2000 (Hijmans et al., 2005). These were used

to estimate antecedent precipitation totals for each grid cell,

for the 3-month (PD3) and 6-month (PD6) periods prior to

each earthquake. Note that these data are used to indicate

the generalised mean distribution of rainfall across the re-

gion, rather than data for those specific years. In the absence

of high-resolution spatial–temporal rainfall data, this allows

our analysis to test whether regions of the landscape receiv-

ing more rainfall are more susceptible to landslide triggering

than drier regions.

In order to avoid the problem of over-fitting regression

models and predictor covariance, issues particularly char-

acteristic of automated fitting procedures (e.g. Hosmer and

Lemeshow, 2000), model fitting was undertaken manually,

and based on the following criteria:

1. All predictors must have a logical, statistically signifi-

cant (p < 0.05) and consistent influence on PLS for both

earthquakes. Whilst the regression coefficient associ-

ated with a variable may differ between the two events,

this condition stipulates that the direction of influence

(+/−) must remain constant.

2. Predictor variables included in the model must not ex-

hibit multicollinearity, as determined by variance infla-

tion factors (VIF):

VIF=
1

1−R2
, (3)
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whereR2 is the linear coefficient of determination of the

relationship between any two predictor variables. VIF

values greater than 10 indicate a high level of multi-

collinearity and are avoided in our model (Kutner et al.,

2004). The matrix of VIF values is given in Appendix C,

and it indicates no high multicollinearity among the

variables that feature in our final models.

3. Any predictor variable added to the model must im-

prove the fit of the model, as determined by McFadden’s

pseudo-R2 (McFadden, 1974):

R2
= 1−

ln L̂(Mfull)

ln L̂(Mintercept)
, (4)

where ln L̂(Mfull) is the log likelihood of the full model

and ln L̂(Mintercept) is the log likelihood of the model

without any predictors. The pseudo-R2 is designed to

look like a conventional R2 goodness of fit, derived

from ordinary least square regression, with values rang-

ing from 0 (no correlation) to 1 (perfect correlation or, in

the case of logistic regression, perfect separation of true

(landslide) and false (non-landslide) categories). As lo-

gistic regression is fitted through an iterative process of

maximum-likelihood estimates, the conventionalR2 ap-

proach to goodness of fit does not apply. However, like

conventionalR2 values, pseudo-R2 can be seen as an in-

dicator of explained variability and the level of improve-

ment offered by the full model over the model without

its predictors (McFadden, 1974).

During the fitting process, multiple variable combinations

were iteratively tested. The final models presented below rep-

resent those that produced the best fit whilst meeting the

above criteria.

During the model fitting, grid cells with hillslope gradi-

ent > 58◦ were found to produce numerical problems associ-

ated with the very low frequency of data at high values. This

amounted to an area of 1.3 km2 (less than 0.05 % of the study

area). In this range the relationship between hillslope gradi-

ent and failure probability was found to exhibit a rollover,

suggesting a decrease in failure probability at high gradients.

It is unclear whether this behaviour is real, an artefact of the

low data frequency, a reflection of the difficulty of mapping

landslides on steep slopes from aerial imagery, or a deterio-

ration of DEM quality at high gradients. As the logistic func-

tion cannot simulate a modal (humped) relationship, and as

slope gradient is one of the dominant variables in the model,

these cells were removed from the analysis prior to model

fitting.

Table 4. Logistic regression output coefficients and fit statistics.

1929 Buller earthquake

Number of observations 4 669 997

Likelihood ratio chi2 −3.56× 105

Model p value 0.00

Pseudo-R2 0.183

95 % confidence

interval

Standard Lower Upper

Variable Coefficient error p value bound bound

FPD −0.0916 0.0006 0.00 −0.0927 −0.0905

NDS 1.4595 0.015 0.00 1.4302 1.4888

SL(G= 1) 0.0928 0.0004 0.00 0.092 0.0937

SL(G= 2) 0.0815 0.0004 0.00 0.0807 0.0822

SL(G= 3) 0.1099 0.0004 0.00 0.1091 0.1107

SL(G= 4) 0.1348 0.0008 0.00 0.1331 0.1364

CA 0.1117 0.0052 0.00 0.1014 0.1219

Intercept −6.6782 0.0178 0.00 −6.7132 −6.6433

1968 Inangahua earthquake

Number of observations 3 181 861

Likelihood ratio chi2 −5.51× 104

Model p value 0.00

Pseudo-R2 0.208

95 % confidence

interval

Standard Lower Upper

Variable Coefficient error p value bound bound

FPD −0.2031 0.0018 0.00 −0.2067 −0.1995

NDS 1.0153 0.0404 0.00 0.9361 1.0945

SL(G= 1) 0.0777 0.0011 0.00 0.0755 0.08

SL(G= 2) 0.0822 0.001 0.00 0.0802 0.0842

SL(G= 3) 0.1142 0.0011 0.00 0.112 0.1163

SL(G= 4) 0.1297 0.002 0.00 0.1258 0.1337

CA 0.0987 0.0145 0.00 0.0702 0.1271

Intercept −6.363 0.0435 0.00 −6.4482 −6.2778

1968 Inangahua earthquake

Number of observations 3 181 861

Likelihood ratio chi2 −5.24× 104

Model p value 0.00

Pseudo-R2 0.246

95 % confidence

interval

Standard Lower Upper

Variable Coefficient error p value bound bound

PGA 10.9946 0.0973 0.00 10.804 11.1852

NDS 1.114 0.0413 0.00 1.0331 1.1949

SL(G= 1) 0.099 0.0012 0.00 0.0968 0.1013

SL(G= 2) 0.1082 0.001 0.00 0.1061 0.1102

SL(G= 3) 0.1056 0.0011 0.00 0.1034 0.1077

SL(G= 4) 0.1501 0.0021 0.00 0.146 0.1542

CA 0.1192 0.0146 0.00 0.0906 0.1478

Intercept −7.0207 0.0418 0.00 −7.1027 −6.9387
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Figure 11. Comparison of observed and predicted distributions of

hillslope failure. 1929 earthquake: (a) input map of hillslope fail-

ures and (b) output map of predicted PLS from Eq. (5). 1968 earth-

quake: (c) input map of hillslope failures, (d) output map of pre-

dicted PLS from Eq. (5) (fault distance model) and (e) output map

of predicted PLS from Eq. (6) (PGA model). Plots of observed vs.

predicted PLS: (f) 1929 earthquake, Eq. (5); (g) 1968 earthquake,

Eq. (5); and (h) 1968 earthquake, Eq. (6). These data are gener-

ated by aggregating probabilities across 20 equal quantile bins of

the predicted PLS.

5 Results

5.1 Earthquake-induced hillslope failure probability

models

We derived two fitted model versions to hindcast hillslope

failure probability; these differ in their characterisation of

the regional distribution of ground motions. For both earth-

quakes, models were derived using fault plane distance, FPD,

and location relative to rupture directivity, DIR, as a proxies

for ground motion. For the 1968 earthquake we also present

a model using PGA in place of FPD+DIR, which constrains

the landslide distribution more accurately. In our FPD-based

model for the 1929 and 1968 earthquakes, hillslope failure

probability can be modelled via the following equation:

PLS(A)

=
1

1− exp

(
−

(
cintercept+ cFPDFPD+ cDIRDIR

+cSL(G) SL+ cNDS NDS

)) , (5)

where the regression coefficients are indicated by c. Simi-

larly, in our PGA-based model for the 1968 earthquake, hill-

slope failure probability can be modelled via the following

equation:

PLS(A)

=
1

1− exp

(
−

(
cintercept+ cPGA PGA

+cSL(G) SL+ cNDS NDS

)) . (6)

The regression coefficients and fit statistics for these mod-

els are given in Table 4, while Fig. 11 presents a comparison

of predicted and observed PLS.

In each model, landslide probability is expressed as a func-

tion of the regional seismic ground motion (characterised

by three-dimensional distance from the fault plane and loca-

tion relative to rupture directivity, or Shakemap PGA), hills-

lope gradient (where the influence of hillslope gradient varies

with lithology) and normalised distance from stream to ridge

crest. Note that the lithology predictor variable has more ex-

planatory power and significance when it is used to allow

variability in the effect (coefficient) for hillslope gradient,

rather than allowing a categorical lithology variable to mod-

ify landslide probability directly. All other variables tested

during model fitting were found to be less effective predictors

than those included in the models presented, or they failed

in one or both of the fitting criteria. Note that these models

describe the relative spatial distribution of landslides, while

absolute differences in the magnitude of the earthquakes are

accounted for implicitly by fitting the model separately for

each earthquake.

For both model versions, predicted and observed probabil-

ities display a good fit to the line of equality (Fig. 11f–h). PLS

values hindcast using Eq. (5) display a slight over-prediction

at low probability values. It is likely that these errors at the

lower limit of the distribution of probabilities are at least in

part statistical artefacts of low data frequency and near-zero

probability values. Spatially, values hindcast using Eq. (5)

also display a step change produced by the DIR binary vari-

able (Fig. 11b and d). Although this discrete artefact is un-

realistic, the variable exhibits a significant, physically plau-

sible effect, which improves the fit of both models; landslide

probabilities are higher in regions towards which the rup-

ture propagated, where stronger ground motions are expected

(Bray and Rodriguez-Marek, 2004). PLS values hindcast us-

ing Eq. (6) do not exhibit this artefact (Fig. 11e), and provide

a better statistical fit to the observed landslide distribution.

Although each predictor explains a component of the vari-

ance in the spatial distribution of failures, not all variables
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Figure 12. Relative contributions of predictor variables to the fit of the 1929 and 1968 hillslope failure probability models. Sequence of

model input predictors and resulting pseudo-R2 goodness of fit values, produced by sequentially removing the least contributing predictor

variable. (a) Results from Eq. (5) for the 1929 earthquake, (b) results from Eq. (5) for the 1968 earthquake, and (c) results from Eq. (6) for

the 1968 earthquake.

contribute equally. Figure 12 presents the predictor variables

in rank order of their importance in each model, determined

by sequentially removing the predictor contributing least to

the fit of the model. In all three models, the regional ground

motion proxy (distance from the fault plane or PGA) and

hillslope gradient rank as the top two variables, followed by

geology, position on hillslope, and location relative to rup-

ture directivity in the case of Eq. (5). In all three models,

the regional ground motion, hillslope gradient and geology

account for over 80 % of the total model fit, while position

on hillslope (NDS) and location relative to rupture directiv-

ity (DIR) are secondary in defining the spatial distribution

of landslides. The position on hillslope (NDS) relationship

is consistent with ridge-to-valley scale patterns of amplifica-

tion and damping of seismic waves found by others (Davis

and West, 1973; Bouchon, 1973; Wu et al., 1990; Benites et

al., 1994; Meunier et al., 2008).

Note that in none of the models does predicted PLS ever

reach values of 1 or 0, as the predictor variables are not able

to discriminate slopes where failure or non-failure is a cer-

tainty. This observation may be attributed to stochastic uncer-

tainty in the model predictors, but it also points to the possi-

bility of important factors omitted from the model (epistemic

uncertainty), of which the unconstrained damage legacy of

past events is one possible candidate. While we do not have

data to constrain the influence of all past events that have pos-

sibly conditioned hillslope materials, we are now able to test

whether the damage legacy of the largest recent earthquake

(the 1929 earthquake) may be present in the distribution of

landsliding triggered by the 1968 earthquake.
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Figure 13. Distributions of PLS residuals for the 1968 earthquake, hindcast using Eq. (6). Panels (a)–(c) show the residuals for this model

(observed PLS minus predicted PLS) plotted against each of the model predictors. Panel (d) shows the model residuals plotted against the

predicted PLS. Panels (e) and (f) show the model residuals plotted against predicted PLS for the 1929 earthquake and distance from the

1929 coseismic fault, respectively. All residuals are calculated by aggregating probabilities across 20 equal quantile bins of the x variable.

Positive residuals indicate that the model under-predicts PLS and negative residuals indicate that the model over-predicts PLS. Note that the

amplitude of the plotted residuals varies due to binning and aggregating probabilities with the different predictor variables. For each plot,

the coefficient (r) and significance (p) of correlation in the residuals are given. These were derived by adding each x variable into a logistic

regression analysis of PLS predicted using Eq. (6) and observed landsliding. In this respect we test the coupled significance of SL and G as

they feature in the model.

5.2 Potential influence of the 1929 earthquake on the

1968 landslide distribution

We use Eq. (6) to test our hypothesis of the influence of the

1929 earthquake on the landsliding resulting from the 1968

event. This model most accurately hindcasts the 1968 land-

slide distribution, using a ground motion term – PGA (1968)

– that cannot be overfitted to the landslide distribution. Con-

versely, in Eq. (5), DIR forms part of the ground motion term,

giving the model an additional degree of freedom to account

for any imbalance in PLS between the northeast and south-

west quadrants. As the northeast quadrant represents much

of the area closest to the 1929 source, while the southeast

quadrant is further away, the DIR variable absorbs and masks

some of the preconditioning signal of the 1929 earthquake.

Any test for preconditioning depends on having a regional

ground motion term that cannot be overfitted in this way,

for which we use the Shakemap PGA field. As this is based

on observed ground motions that are influenced by rupture

directivity, the Shakemap PGA also implicitly accounts for

the effect represented by DIR in Eq. (5). However, as the

Shakemap data are subject to large uncertainties, we present

the following result as tentative, using the best available data

for these events. To test whether the 1929 earthquake has in-

fluenced the 1968 landslide distribution, we use FPD (1929)

as a proxy of the regional distribution of ground motion pro-

duced by the 1929 earthquake, in the absence of PGA data

for this event. We acknowledge that this scenario is not ideal

and it would be preferable if PGA (1929) were available,

along with PGA (1968). However, in the absence of 1929

PGA data, a distance term provides a reasonable proxy for

the spatial pattern of ground motions (Campbell and Bozorg-

nia, 2008).

Figure 13 presents the results of our analysis in a form

equivalent to that outlined conceptually in Fig. 9, with cor-

relation coefficients (r) and p values to test the strength and

significance of trends in the residuals. When tested against

the predictor variables (Fig. 13a–d), there is no monotonic

trend and little structure in the residuals, which suggests that

the model predictors are well fitted to the data. There is mi-

nor nonlinearity in the residuals plotted against NDS, which

suggests that the increase in PLS with NDS begins to satu-

rate close to the top of hillslopes. While this results in slight

over-prediction of near-ridge-top landslide probability (sites

with NDS > 0.7), we found that removing these sites from

our analysis does not change the result that we now discuss.

When plotted by hindcast PLS for the 1929 earthquake

(PLS 1929), the 1968 residuals display a significant posi-

tive trend (Fig. 13g). Hillslopes with PLS 1929 greater than

0.013 (38 % of the overlap region mapped for both events)

exhibit higher PLS in the 1968 earthquake than predicted
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Table 5. Logistic regression output coefficients and fit statistics, for

models including the influence of the 1929 earthquake on the 1968

landslide distribution.

1968 Inangahua earthquake

Number of observations 3 181 175

Likelihood ratio chi2 29 885

Model p value 0.00

Pseudo-R2 0.251

95 % confidence

interval

Standard Lower Upper

Variable Coefficient error p value bound bound

Intercept −29.184 0.210 0.000 −29.595 −29.595

PGA (1968) 11.187 0.102 0.000 10.987 10.987

SL (G= 1) 0.099 0.001 0.000 0.096 0.096

SL (G= 2) 0.111 0.001 0.000 0.109 0.109

SL (G= 3) 0.113 0.001 0.000 0.111 0.111

SL (G= 4) 0.153 0.002 0.000 0.148 0.148

NDS 1.241 0.046 0.000 1.151 1.151

FPD (1929) −0.031 0.001 0.000 −0.034 −0.034

1968 Inangahua earthquake

Number of observations 3 181 175

Likelihood ratio chi2 30 422

Model p value 0.00

Pseudo-R2 0.256

95 % confidence

interval

Standard Lower Upper

Variable Coefficient error p value bound bound

Intercept −27.426 0.222 0.000 −27.861 −27.861

DIR (1968) 0.886 0.040 0.000 0.807 0.807

PGA (1968) 9.965 0.114 0.000 9.741 9.741

SL (G= 1) 0.103 0.001 0.000 0.101 0.101

SL (G= 2) 0.108 0.001 0.000 0.106 0.106

SL (G= 3) 0.113 0.001 0.000 0.110 0.110

SL (G= 4) 0.152 0.002 0.000 0.147 0.147

NDS 1.242 0.046 0.000 1.152 1.152

FPD (1929) −0.040 0.001 0.000 −0.043 −0.043

by Eq. (6) alone. Conversely, PLS in the 1968 earthquake is

over-predicted for hillslopes exhibiting PLS 1929 less than

0.013. The factor driving the difference between the 1968

and 1929 PLS models is the ground motion term. Corre-

spondingly FPD (1929) displays a significant, negative re-

lationship with the residuals. To put this result into context,

for regions within 15 km of the 1929 fault plane, observed

PLS is 56 % higher than PLS predicted by Eq. (6). A pre-

dicted landslide area of 2.4 km2 and an observed landslide

area of 3.7 km2 amount to a 1.3 km2 (56 %) underestimation

of the total landslide area in this 1648 km2 region. By adding

FPD (1929) into Eq. (6), we are able to improve the fit of

the logistic regression model fromR2
= 0.246 toR2

= 0.251

(Table 5). Additionally, by adding DIR (1968) together with

FPD (1929) into Eq. (6), we can check whether this result

can be attributed to a lack of consideration given to rupture

directivity in the Shakemap PGA data (Table 5). Although

the rupture directivity term has a significant coefficient, the

relationship between PLS and FPD (1929) is still present and

statistically significant.

6 Discussion

Our analysis has sought to control for all major factors

known to influence the spatial distribution of landslides, at

(or close to) the scale of the whole earthquake-induced land-

slide event. Using the best available data for the 1968 earth-

quake, our model achieves this using variables with defined

physical links to landsliding while maintaining a low level of

model complexity, which avoids overfitting. Once these steps

have been taken to control for the influence of other vari-

ables, our results suggest that landslide probability in 1968 is

higher for hillslopes that experienced strong ground motions

in the previous 1929 earthquake.

Our results support the findings of previous work into

modelling earthquake-induced landslides, as well as provid-

ing new insights into how past earthquakes may influence

future landslide distributions. The roles of individual com-

ponents in our logistic regression models are in agreement

with those observed in previous studies (e.g. Dai et al., 2011;

Meunier et al., 2008; Meunier et al., 2007), and the presence

of these relationships in both the 1929 and 1968 earthquakes

supports the extrapolation of these models both temporally

and spatially. A number of variables that we might expect

to influence the landslide distribution showed no significant

influence when the effect of other predictors was controlled

for. This particularly concerns factors influencing the aspect

of landslides. Neither the orientation of hillslopes relative to

the seismic source nor relative to hillslope-scale variations

in received solar radiation was found to exhibit a significant

influence on landslide probability. This implies that patterns

observed in other earthquakes may be regionally specific or

confounded by the influence of other more “powerful” pre-

dictors that might not have been controlled for and which

co-vary with the aspect of hillslopes. For example, given the

dominant influence of hillslope gradient on landsliding, sys-

tematic variations in hillslope gradient with aspect are a pos-

sible candidate for this confounding effect.

The consistency with which the model describes the spa-

tial distribution of hillslope failures for both events suggests

that the combination of underlying relationships presented

in Eqs. (5) and (6) may be applied more generally to earth-

quakes in this region. In other words, landslides triggered by

earthquakes in this area are likely to conform to the spatial

distribution of hillslope failure probability described here.

By removing the less influential variables and identifying

the major regional-scale influences on failure probability, the

model can be made less event-specific and therefore more

transferrable. The combination of ground motion and local

hillslope gradient, with the influence of hillslope gradient de-

pendent on lithology, therefore provides a candidate variable
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subset for a generalised earthquake-induced landslide proba-

bility model.

While time-independent variables provide useful con-

straints on the spatial distribution of earthquake-triggered

landslides, our results also suggest that previous earthquakes

may impart an influence on future landsliding. Residuals in

the landslide distribution predicted for the 1968 earthquake

suggest that hillslopes with higher predicted PLS in 1929

(or those closer to the 1929 seismic source) exhibit higher

than expected PLS in 1968. This implies that, despite the

widespread failure of unstable hillslopes in 1929, at least

some of those hillslopes that did not fail in or shortly fol-

lowing 1929 were more susceptible to failure in 1968. This

behaviour is consistent with our hypothesised influence of

damage accumulation, where failure occurred in brittle hill-

slope materials. Our results suggest the possibility that in

the case of the 1929 earthquake, damage in unfailed hill-

slopes persists, resulting in regions close to the 1929 seis-

mic source having enhanced sensitivity to landslide trigger-

ing in 1968. We stress that this suggestion must be treated

as tentative due to uncertainties in our analysis variables.

This particularly applies to the ground motion proxies and

the PGA field, which relies on interpolation from limited ob-

servations, using ground motion prediction equations (Wald

et al., 2006). Additionally, as the elevation model used in our

analysis was derived following both earthquakes, there is the

possibility that hillslope gradients measured at landslide sites

may not accurately reflect slope characteristics at the time of

landslide triggering. However, depths of most mapped land-

slides are likely to be smaller than uncertainties in the el-

evation data, suggesting that the 1929 and 1968 landslides

are unlikely to have produced surface changes detectable in

the elevation model (Appendix D). As our analysis explic-

itly considered only the source area of landslides, any bias

is likely to involve overestimation of gradients, in source ar-

eas where head scarps have been steepened by landsliding, or

no effect in cases of translational failures. In our probability

modelling, underestimation of gradients for landslide sites

produces over-prediction of landslide probability for steeper

hillslopes. The residuals of Eq. (6), plotted against slope gra-

dient (Fig. 13b), may indicate very slight over-prediction

at high gradients, reflecting this effect. However, as post-

landslide topographic changes are small relative to the ele-

vation model uncertainty, and as slope gradient appears to

be well fitted to the data, this suggests that the use of post-

landslide elevation data is unlikely to effect the outcome of

our analysis.

Further advances in testing our theory may be made where

multi-earthquake landslide data sets are available for more

recent events, where higher resolution (and multi-temporal)

elevation models are available, along with data from more

dense seismic networks. On the basis that future testing may

further support our hypothesis, we discuss the implications

of our results in light of current understanding of the tem-

poral landslide response to earthquakes. Fundamentally, our

results are consistent with the idea that seismic ground mo-

tion produces irreversible damage, such that the legacy of

past earthquakes may be preserved to a greater or lesser de-

gree as a loss in strength in hillslope materials, for longer

periods of time than previously thought. Several studies sug-

gests that, following large earthquakes, prolonged rates of

mass wasting, and associated indicators of changes in hill-

slope material strength, return to background levels within

timescales of less than a decade (Hovius et al., 2011; Uchida

et al., 2014; Marc et al., 2014). However, our data suggest

that even after several decades, when the next large earth-

quake occurs, there is still a signal of hillslopes weakened

by the previous earthquake. Note that, unless some heal-

ing or annealing process takes place in hillslope materials,

or all damaged material is stripped from hillslopes by ero-

sion, there is no reason why we should not expect this to

be the case. We explain this observation further by consider-

ing groups of hillslopes in different states from a spectrum

of earthquake-induced damage. During the 1929 earthquake

a first subset of hillslopes is weakened to the point of fail-

ure (co-seismic landslides). A second subset of hillslopes is

moved to states close to the point of failure, such that fail-

ure of these hillslopes is triggered during relatively moderate

aftershocks and post-seismic rainfall events. Landslides pro-

duced by these two subsets of hillslopes generate sediments

that take time to be evacuated from the orogen by fluvial

processes, at a rate that decays over a sub-decadal timescale

as landslide deposits are exhausted of mobilisable sediment

(Hovius et al., 2011; Dadson et al., 2004). A third subset of

hillslopes has also been weakened by the 1929 earthquake,

but insufficiently for moderate post-seismic events (after-

shocks and rainstorms) to trigger failure. Additionally, yield

stresses in these hillslopes may remain too high to be ex-

ceeded by moderate interseismic events, such that continued

permanent deformation and damage accumulation does not

occur post-seismically. As a result, the post-seismic rate of

landsliding decays, while the landscape maintains a subset

of hillslopes damaged and in a state closer to failure than

prior to the 1929 earthquake, but which may only be brought

to the point of failure by another large earthquake. Both co-

seismically and post-seismically, only a relatively small pro-

portion of hillslopes in the landscape actually undergo full

failure. For example, within 10 km of the 1929 source, only

3 % of hillslopes were mapped as 1929 landslides. There-

fore the behaviour of hillslopes that fail during or soon af-

ter an earthquake only accounts for small subset of the land-

scape effected by the seismic ground motions. The result we

present here, and numerical simulations using geotechnical

models (Parker et al., 2013; Moore et al., 2012), supports the

hypothesis that there is a legacy of damage in the remain-

ing apparently intact landscape that may not fail either dur-

ing or after an earthquake. If this is the case, then, at any

point in time, each of these subsets exists along a continuum

from pristine hillslopes to those damaged almost to the point
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of failure, evolving with each event that generates damage-

inducing stresses.

This long-term perspective may reveal why correlation be-

tween the 1968 landslide and the 1929 earthquake is weak.

Although our analysis provides spatial estimates of the ef-

fect of the 1929 and 1968 earthquakes on hillslopes, we lack

information on the damage condition of hillslopes prior to

the 1929 earthquake. Hence we can only expect to find par-

tial or weak correlation with a single past event, even if the

1968 landslide distribution were the deterministic product of

the accumulation of all past events. However, one would ex-

pect events added to the historical record to incrementally

and cumulatively account for more unexplained variability

in landsliding.

Similarly, if landslide distributions are predetermined by

the legacy of accumulated damage from past events, then

data from neither the triggering earthquake nor a single pre-

vious event can provide an exact prediction of landsliding. In

this way, the apparently stochastic nature of landslide occur-

rence and the inability of current models to identify the exact

hillslopes that undergo failure may in part result from not

knowing the condition of each hillslope at the onset of shak-

ing. In future, if the damage condition of hillslopes can be

correlated with the history of past damage-inducing events,

then building historical data or proxies for damage into land-

slide models may provide a means of constraining this effect.

7 Conclusions

The main conclusions drawn from this study can be sum-

marised as follows:

1. The 1929 and 1968 earthquakes reveal a consistent spa-

tial pattern of landslides that can be modelled proba-

bilistically as a function of spatial variability in seis-

mic ground motion, hillslope gradient, lithology and

position on hillslope. Statistically, the seismic ground

motion and hillslope gradient (where the influence of

hillslope gradient is lithologically dependent) account

for the majority (> 80 %) of the explanatory power of

the model. We therefore conclude that these factors

are the most important considerations for predicting

an earthquake-induced landslide distribution at the re-

gional or whole-event scale.

2. Our results suggest that the legacy of the 1929 Buller

earthquake may have influenced the spatial distribution

of landslides triggered by the 1968 Inangahua earth-

quake, in a manner consistent with the accumulation of

damage in hillslopes that did not fail in the 1929 earth-

quake. Although uncertainty in input variables makes

our result necessarily tentative, our methodology could

be used for further testing of this hypothesis where

multi-earthquake landslide data exist for more recent

events.

3. The signal of the 1929 earthquake revealed in landslides

triggered by an earthquake several decades later sug-

gests that the damage legacy of past earthquakes persists

in the landscape for much longer than suggested sub-

decadal decay periods of post-seismic landslide activity.

We speculate that this may be due to damage that per-

sists in hillslopes that do not fail co- or post-seismically

but have only been sufficiently weakened to fail in the

next large triggering event.

4. Long-term damage accumulation provides a potential

deterministic explanation for the observed stochastic

spatial nature of landslide triggering. Predetermined by

the legacy of damage accumulated in hillslopes during

past events, landslide distributions may be viewed as a

function of the damage history of the landscape surface.

We may expect each past event to partially correlate

with unexplained variability in landsliding, resulting in

improved predictions as the historical record of trigger-

ing events is extended.

5. Accurate, multi-event mapping of landslide distribu-

tions, resampled following individual earthquakes and

storms, may represent a significant step towards bet-

ter understanding of temporal correlation between past

and future landslide-triggering events. To implement

the findings of this investigation into regional landslide

assessments, future work should explore the value of

adding historical and palaeo-seismic and climatic data

into landslide models, providing a means of making sus-

ceptibility assessments dynamic through time.
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Appendix A: Aerial imagery used for landslide

mapping

Table A1. Source and details of imagery used for landslide mapping

for the 1929 and 1968 earthquakes.

Source: New Zealand Aerial Mapping (http://www.nzam.com/)

Imagery for mapping of 1929 Buller earthquake-triggered

landslides

Survey number: SN 2033, February 1968

Contact print scale: 1 : 86 000

Run 4029, photos 9–56

Run 4030, photos 6–66

Run 4031, photos 68–85

Run 4032, photos 15–38

Run 4033, photos 18–31

Imagery for mapping of 1968 Inangahua

earthquake-triggered landslides

Survey number: SN 3777

Acquisition period: November 1974

Contact print scale: 1 : 60 000

Run A, photos 1–7

Run B, photos 1–7

Run C, photos 1–9

Run D, photos 1–9

Run E, photos 1–10

Run F, photos 4–6

Run G, photos 4–10

Run H, photos 6–12

Run I, photos 9–12

Run J, photos 7–11

Details of aerial imagery used for landslide mapping are

provided in Table A1 and Fig. A1.

Figure A1. Map showing the layout and location of aerial photo

surveys SN2033 and SN3777, aerial photo runs and areas of

1 : 50 000 topographic maps used in the mapping of landslides

caused by the 1929 and 1968 earthquake (Hancox et al., 2014).
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A: Aerial imagery B: Full landslide areas mapped through 
stereoscopic interpretation

C: Full landslide areas analysed using DEM to iden-
tify areas above the median landslide elevation

D: Landslide source areas approximated

Figure B1. Illustration of landslide source area extraction tech-

nique for a 10× 10 km sample area, showing landslides triggered

by the 1929 Buller earthquake.

Appendix B: Extraction of landslide source areas

In order to delineate landslide source areas where the quality

of aerial imagery did not allow visual separation of source

and runout-deposit areas, we developed a topographic algo-

rithm. Landslide polygons were separated into source and

runout-deposit zones by dividing each landslide along its

mid-elevation contour (Fig. B1). Comparison of visually and

algorithm-delineated source areas, for a sample of 51 land-

slides, suggests that this technique provides a reasonable ap-

proximation of landslide source areas (Fig. B2).

Figure B2. Comparison of manually and algorithm-delineated

source areas, for a sample of 51 landslides. Manually and automati-

cally delineated areas fall near the 1 : 1 line, showing that this tech-

nique can provide an accurate approximation of the landslide source

area.
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Appendix C: Predictor variables variance inflation

factor matrix
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4 Figure C1. Matrix of variance inflation factors (VIF) for pool of all potential predictor variables. Combinations for which VIF values exceed

the threshold of 10 (Kutner et al., 2004) are highlighted.

Earth Surf. Dynam., 3, 501–525, 2015 www.earth-surf-dynam.net/3/501/2015/



R. N. Parker et al.: Earthquake-induced landslides and hillslope preconditioning 521

Appendix D: Comparison of landslide depths and

uncertainty in elevation data

In order to assess the implications of using post-landslide el-

evation data in our analysis, we test the extent to which the

1929 and 1968 landslides have produced surface changes de-

tectable in the elevation model. Contours and spot heights

from which the DEM was derived are considered to be ac-

curate to +/−10 m (GNS Science, 2011). In the absence of

field-measured landslide depths, we estimate mean landslide

depths using a published scaling relationship between land-

slide area and volume (Larsen et al., 2010):

V = αAγ ,

D =
V

A
,

where V is landslide volume, A is landslide area and D

is mean landslide depth. α and γ are empirical parame-

ters. Using the global best-fit relationship for all landslides

(bedrock and soil), α = 0.146 and γ = 1.332±0.005 (Larsen

et al., 2010). Based on this relationship we estimate that, for

99 % of our mapped landslides in both earthquakes, landslide

depths are less than the 10 m elevation accuracy (Fig. D1).

Surface changes produced by the 1929 and 1968 landslides

are therefore unlikely to be detectable in the elevation model.

Figure D1. Distribution of landslide depths for the 1929 and 1968

earthquakes, estimated using global best-fit relationship between

landslide area and volume (Larsen et al., 2010). Vertical accuracy

of elevation data is indicated in red.
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