Healthcare professional’s guide to Cardio-Pulmonary Exercise Testing

Sathish Parasuraman¹; Konstantin Schwarz²; Nicholas D Gollop¹; Brodie Loudon¹; Michael P. Frenneaux¹

¹University of East Anglia; ²University Hospital Birmingham

Dr Sathish Kumar Parasuraman, MRCP (Corresponding Author)
BHF Cardiology Research Fellow
2.21d, Bob-Champion Research and Education Building
James Watson Road
University of East Anglia
Norwich Research Park
Norwich NR4 7UQ
Ph. 01603 591793
Email: S.Parasuraman@uea.ac.uk

Dr Konstantin Schwarz, MRCP
Cardiology Registrar
University Hospital Birmingham
Birmingham
B15 2TH
Email: Konstantin.Schwarz@uhb.nhs.uk

Dr Nicholas D Gollop, MB BCh
MRC Doctoral Research Fellow in Cardiology
University of East Anglia
Norwich Research Park
Norwich NR4 7UQ
Email: N.Gollop@uea.ac.uk

Dr Brodie L Loudon, MBBS
MRC Doctoral Research Fellow in Cardiology
University of East Anglia
Norwich Research Park
Norwich NR4 7UQ
Email: B.Loudon@uea.ac.uk

Prof Michael P. Frenneaux, MD, FRCP, FRACP, FACC, FESC
Head of Norwich Medical School
Bob Champion Research and Education Building
James Watson Road
University of East Anglia
Norwich Research Park
Norwich NR4 7UQ
Tel: 01603 592376
Email: M.Frenneaux@uea.ac.uk
Abstract

Cardiopulmonary exercise testing (CPEX) is a valuable clinical tool that has proven indications within the fields of cardiovascular, respiratory and pre-operative medical care. Validated uses include investigation of the underlying mechanism in patients with breathlessness, monitoring functional status in patients with known cardiovascular disease and pre-operative functional state assessment. An understanding of the underlying physiology of exercise, and the perturbations associated with pathological states, is essential for healthcare professionals to provide optimal patient care. Healthcare professionals may find performing CPEX to be daunting, yet this is often due to a lack of local expertise and guidance with testing. We outline the indications for CPEX within the clinical setting, present a typical protocol that is easy to implement, explain the key underlying physiological changes assessed by CPEX, and review the evidence behind its use in routine clinical practice. There is mounting evidence for the use of CPEX clinically, and an ever-growing utilisation of the test within research fields; a sound knowledge of CPEX is essential for healthcare professionals involved in routine patient care.

Keywords: cardio-pulmonary exercise testing; CPEX; exercise testing; CPEX evidence; guide to CPEX; guide to exercise testing; understanding CPEX; CPEX supervision; CPEX training; basic CPEX; CPEX indications.

Key messages:

1. CPEX provides valuable insight into pathophysiology of a breathless patient.
2. CPEX is a safe test and increasingly performed on high risk patients.
3. There is strong evidence for CPEX data in monitoring heart failure patients and predicting peri-operative risk in lung and abdominal surgery.
4. Knowledge of CPEX is essential for the healthcare professional, with mounting evidence in the field.
Introduction

Cardio-pulmonary exercise (CPEX) testing is used to establish the degree of exercise limitation, to identify the underlying mechanisms responsible in patients with breathlessness, and to monitor functional status in cardiovascular disease (1). It is an important prognostic tool and decision-aid in the assessment of perioperative risk (2). In addition to the routine parameters measured during the exercise electrocardiogram (ECG) stress test, CPEX can provide measurements of oxygen (O₂) consumption, carbon dioxide (CO₂) production, and lung ventilation to provide valuable information about respiratory, cardiovascular and muscle metabolic function as well as the subject’s effort during the test. Despite its useful diagnostic and prognostic functions, and established role in several guidelines for management of cardiovascular diseases, CPEX has remained largely a research or sport sciences tool, and is grossly under-utilized in clinical practice. This is commonly due to a lack of local expertise or awareness about the utility of CPEX among physicians. We review the indications and contraindications for CPEX and describe a standard protocol for cardiopulmonary stress testing. Additionally, we propose a practical reporting and data interpretation guide for the junior cardiology/respiratory trainee.

Indications and contraindications of CPEX

The diagnostic and prognostic indications, along with the contraindications for CPEX testing are listed in Table 1. The ATS/ACCP guidelines (2003) include these absolute contraindications to CPEX (3), however recently the test has been performed safely in conditions like severe aortic stenosis (4). Indications to perform the test are also increasing, as in the diagnosis of heart failure with normal ejection fraction (5) and in exercise prescription for heart failure patients (6).
Table 1: Indications and contraindications of cardio-pulmonary exercise testing

<table>
<thead>
<tr>
<th>Indications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnostic</td>
</tr>
<tr>
<td>Breathlessness of unknown cause</td>
</tr>
<tr>
<td>Cardiac ischemia detection</td>
</tr>
<tr>
<td>Prognostic</td>
</tr>
<tr>
<td>Heart failure (prioritization for heart transplantation)</td>
</tr>
<tr>
<td>Perioperative risk in patients undergoing major surgery</td>
</tr>
<tr>
<td>Chronic obstructive pulmonary disease (COPD)</td>
</tr>
<tr>
<td>Pulmonary hypertension</td>
</tr>
<tr>
<td>Risk of lung resection</td>
</tr>
<tr>
<td>Congenital heart disease</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Absolute Contraindications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute myocardial infarction (3-5 days)</td>
</tr>
<tr>
<td>Acute myocarditis</td>
</tr>
<tr>
<td>Severe symptomatic aortic stenosis</td>
</tr>
<tr>
<td>Uncontrolled heart failure</td>
</tr>
<tr>
<td>Uncontrolled arrhythmia</td>
</tr>
<tr>
<td>Dissecting aneurysm</td>
</tr>
<tr>
<td>Resting Oxygen saturation of <86%</td>
</tr>
</tbody>
</table>

Preparation for CPEX Assessment

Patients are advised to avoid caffeine, nicotine and food for two hours prior to CPEX (7). Enquiry into the patient’s past medical history, medications, any limitations and any special requirements for participation in CPEX should be made. If the patient has a pacemaker, defibrillator or a cardiac resynchronisation device, guidance of the cardiac physiologist or rhythm management specialist should be sought. Additional assessments which should be completed in advance of CPEX include: clinical examination of the cardiovascular, respiratory and peripheral vascular systems, ECG, resting oxygen saturation, blood pressure (BP), spirometry, including vital capacity and forced expiratory volume in the first second (FEV1). Commonly used abbreviations in CPEX are given in table 2.
Table 2: Commonly used abbreviations in CPEX (8)

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VO₂ (oxygen uptake)</td>
<td>Amount of oxygen extracted from inspired gas per unit time (may be expressed as an absolute value (ml/min) or corrected for weight (ml/kg/min))</td>
</tr>
<tr>
<td>VCO₂</td>
<td>Amount of carbon dioxide exhaled from the body per unit time (usually, per minute)</td>
</tr>
<tr>
<td>VO₂ max</td>
<td>Maximum oxygen uptake achievable (confirmed by repeated tests), despite further work rate increases</td>
</tr>
<tr>
<td>Peak VO₂</td>
<td>Highest VO₂ achieved during presumed maximal effort (as indicated by RER>1.15), for that test</td>
</tr>
<tr>
<td>R (or Respiratory Exchange Ratio)</td>
<td>Ratio of carbon dioxide output to oxygen uptake (VCO₂/VO₂)</td>
</tr>
<tr>
<td>VE</td>
<td>Volume of air inhaled or exhaled by the body in 1 minute</td>
</tr>
<tr>
<td>MVV (Maximum Voluntary Ventilation)</td>
<td>The maximum potential ventilation achievable (estimated as FEV₁X40)</td>
</tr>
<tr>
<td>Anaerobic threshold (AT)</td>
<td>Exercise limit above which the subject’s anaerobic high energy phosphate production supplements aerobic metabolism</td>
</tr>
<tr>
<td>Breathing Reserve</td>
<td>The difference between maximum voluntary ventilation and the achieved maximum exercise minute ventilation</td>
</tr>
</tbody>
</table>

Checklist before the test

- Clinical history
- Drug history
- Device history (pacemakers/defibrillators)
- Clinical examination
- Electrocardiogram
- Blood pressure
- Oxygen saturation
- Recent haemoglobin
Protocol

The patient is prepared by connecting them to an ECG monitor and facemask. The facemask is tested for any air-leak and connected to the gas analyser. An alternative to facemask is mouthpiece with a nose-clip. Saliva dribbling from the mouthpiece is however a problem especially at peak exercise. A pulse oximeter and sphygmomanometer are attached. Oxygen saturation could be measured either through a finger or earlobe probe (3). New forehead sensors are another alternative.

Incremental exercise testing can either be performed on a treadmill or an electronically-braked cycle. Treadmills are widely used in USA and UK (9), and are a popular method allowing most patients to exercise to their maximal physical limit, achieving satisfactory end-points. Cycle ergometers are advantageous for quantifying work-rate accurately and additionally enable clinicians to gain arterial blood gas (ABG) samples if necessary. People with musculoskeletal limitations or imbalance that might limit weight-bearing may prefer the cycle ergometer, however hamstring fatigue could stop cycle exercise before true peak VO₂ is reached (9). The peak VO₂ achieved on cycle is usually 10-20% lower than that on a treadmill (9). Figure 1 shows a patient performing CPEX on a cycle ergometer.
Current software calculates the maximum watts achievable automatically, based on the patient’s sex, age, height, and weight. Then a protocol is selected to reach the maximum exercise in 10-minutes, usually by dividing likely maximum watts by 10. The patient should be encouraged to exercise to his/her maximum physical limit, so that O_2 consumption at peak exercise can be measured.

Several protocols with different increments in workload exist; a typical example is presented in Table 3. Following a 2-minute warm-up period, the exercise starts with speed and gradient increased by 1 km/hour and 1% respectively every minute. Less fit patients can use a protocol with half a kilometre speed increase every minute. The operator records the reason for stopping the test at the end.
Table 3: Example of a typical treadmill CPEX protocol

<table>
<thead>
<tr>
<th>Speed Kilometre/hour</th>
<th>Warm-up 2 mins</th>
<th>Stage 1 1 min</th>
<th>Stage 2 1 min</th>
<th>Stage 3 1 min</th>
<th>Stage 4 1 min</th>
<th>Stage 5 1 min</th>
<th>Stage 6 1 min</th>
<th>Stage 7 1 min</th>
<th>Stage 8 1 min</th>
<th>Stage 9 1 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>0%</td>
<td>1%</td>
<td>2%</td>
<td>3%</td>
<td>4%</td>
<td>5%</td>
<td>6%</td>
<td>7%</td>
<td>8%</td>
<td>0%</td>
<td></td>
</tr>
</tbody>
</table>

Patients should be monitored closely for complications. Table 4 lists the indications for terminating the test early.

Table 4: Indications for terminating a CPEX test (3)

<table>
<thead>
<tr>
<th>Symptoms and signs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limiting chest pain</td>
</tr>
<tr>
<td>Dizziness</td>
</tr>
<tr>
<td>Poor co-ordination</td>
</tr>
<tr>
<td>Sudden pallor</td>
</tr>
<tr>
<td>Confusion</td>
</tr>
<tr>
<td>Measurements</td>
</tr>
<tr>
<td>Significant ECG changes suggesting ischemia (ST depression >3 mm, ST elevation, LBBB)</td>
</tr>
<tr>
<td>Second or third degree heart block</td>
</tr>
<tr>
<td>Ventricular tachycardia</td>
</tr>
<tr>
<td>Supraventricular tachycardia, new onset atrial fibrillation</td>
</tr>
<tr>
<td>Fall in systolic blood pressure of >20 mmHg</td>
</tr>
<tr>
<td>Severe desaturation to <80%</td>
</tr>
</tbody>
</table>

Physiological parameters

Anaerobic threshold

Oxygen (O₂) consumption and carbon dioxide (CO₂) production increase with incremental workload on exercise. CO₂ production is linearly related to the amount of O₂ consumed during exercise, until the onset of anaerobic metabolism (3). The lactate produced by anaerobic metabolism contributes to additional CO₂ production, measured in the expired air from this time point, resulting in a disproportionate increase in CO₂. This inflection point between the linear component and the progressively greater increase in CO₂ production relative to the O₂ consumption is called the anaerobic threshold (10). An example is shown in figure 3.
Peak and Max VO₂

O₂ consumption obtained at peak exercise (averaged over 60 seconds) is called peak VO₂ (PVO₂). A peak VO₂ <85% of that predicted for age and gender, indicates significant exercise limitation (3). Normal age and sex specific values for Peak VO₂ have been defined in various studies (11, 12). At maximal exercise, the VO₂ consumption plateaus despite incremental increases in workload. This state is achievable in healthy adults (13). Max VO₂ is a term used to denote the maximum O₂ consumption possible for that subject, and is measured by several constant-work-rate exercise tests, each at varying workloads. Peak VO₂ achieved in incremental testing is usually very close to the Max VO₂. Max VO₂ is not routinely used in the clinical setting.

Maximum Voluntary Ventilation (MVV)

Maximum Voluntary Ventilation (MVV) is estimated from pre-test FEV₁ obtained by spirometry and multiplied by maximum respiratory rate (MVV = FEV₁X40). Breathing reserve is then calculated by subtracting the ventilatory equivalent, (VE, expressed in litres/minute) measured at peak exercise from the MVV (BR= MVV-peak VE [normal >11 litres]). Breathing reserve is preserved in patients with cardiac limitation and in those with deconditioning, but is usually reduced to <11L in patients with respiratory disease (14).

Lung Dead Space

The ratio of the lung dead space (VD) to the tidal volume (VT) is another important measurement. The VD/VT is increased in patients with obstructive or restrictive lung diseases and in pulmonary vascular disease (15-17). VD/VT can be calculated by the formula:

\[\text{VD/VT}= \frac{(\text{PaCO}_2-\text{PECO}_2)}{\text{PaCO}_2} \]

[\text{PaCO}_2\text{-partial pressure of arterial CO}_2 \text{ (blood gas measurement); PECO}_2\text{-patial pressure of CO}_2 \text{ in expired air (CPEX measurement) (18)}]
Ventilation-Perfusion mismatch

Arterial Blood Gas measurements can provide valuable additional information. The difference between alveolar and arterial O₂ levels \([P(A-a)O₂]\) is usually between 20-30 mm Hg and this does not increase during exercise in normal subjects. In patients with lung disease or pulmonary vascular disease the difference is exaggerated during exercise due to ventilation-perfusion (V/Q) mismatch. Additionally, the difference between arterial and end-tidal CO₂ levels \([P(a-ET)CO₂]\) remains positive throughout exercise in patients with lung disease, again due to V/Q mismatch (18).

When ventilation (VE on Y axis) is plotted against carbon dioxide (VCO₂ on the X axis), the relationship is linear until the anaerobic threshold is reached, with a slope of 23-28 degrees. The relationship is steeper in conditions associated with increased VD/VT ratio such as heart failure, pulmonary vascular disease, interstitial lung disease and COPD, while it is normal in patients with exercise limitation due to deconditioning (3,19). The slope is measured from the beginning of exercise to just after the anaerobic threshold, as shown in figure 2. The VE/VCO₂ slope increases with age in normal subjects. A value of <30 degrees is considered normal.

Figure 2: VE/VCO₂ slope measurement-The slope is measured from the beginning to just after the anaerobic threshold. (AT-anaerobic Threshold, VE-ventilation per minute, VCO₂- CO₂ produced per minute)
Analysis and interpretation

A peak VO$_2$ of <85% predicted (for age and gender) indicates significant exercise limitation (3).

Respiratory Exchange ratio

Respiratory Exchange Ratio (RER or simply R) is the ratio of the CO$_2$ production to O$_2$ consumption (RER=VCO$_2$/VO$_2$). Once anaerobic metabolism begins, RER progressively increases. A RER of >1.15 at peak exercise indicates an adequate exercise test (3). Current software measures RER automatically and is displayed throughout the test.

Anaerobic threshold measurement

Anaerobic threshold can be identified from several scatter graphs obtained by automatic software by plotting gas exchange markers against each other. The V-slope method, where the VCO$_2$ is plotted against VO$_2$ is the preferred method (see Figure 3). Other graphs used for determining the anaerobic threshold are VO$_2$, VCO$_2$ against time (see Figure 4), VE/VCO$_2$, VE/VO$_2$ against time, and PETCO$_2$, PETO$_2$ against time.

Figure 3: V-slope method for detecting anaerobic threshold – NB: this is independent of the subject’s ventilatory response. (AT-AAnaerobic Threshold)
Heart disease

Oxygen consumption per heart rate (HR) (termed “oxygen pulse”) can be calculated by dividing the Oxygen consumption by HR, and this rises steadily throughout exercise. A fall of oxygen pulse with increasing workload indicates a fall in cardiac output (Figure 5). A normal breathing reserve, low VO2 at anaerobic threshold (VO2 at anaerobic threshold (AT) of <40% of predicted Peak VO2), flattening oxygen pulse, and high VE/VCO2 slope indicate to a cardiac pathology (3). Flattening of the O2 pulse in a person with normal left ventricular function and spirometry could suggest myocardial ischemia, and this precedes ECG changes (20).

Figure 5: Oxygen pulse in different subjects

A- Healthy volunteer. VO2 pulse increases steadily with work rate
B- Myocardial ischemia. Late flattening at high workload caused by myocardial dyskinesia
C- Dilated cardiomyopathy. Early flattening of VO2 pulse
Patients with a patent foramen ovale (PFO) may develop a right-to-left cardiac shunt during exercise, when the right atrial pressure exceeds that of the left atrium due to functional pulmonary hypertension (21). This may cause an abrupt decrease in the partial pressure of the exhaled CO\(_2\) (PETCO\(_2\)), with simultaneous abrupt increases in VE/VCO\(_2\), VE/VO\(_2\) (due to increase in minute ventilation, VE) and a drop in arterial O\(_2\) saturation (21).

Lung disease

An abnormal spirometry, high VD/VT, desaturation during exercise, low breathing reserve, and increase in alveolar-arterial O\(_2\) gradient [(A-a)O\(_2\)] indicate respiratory pathology (3). Normal individuals exhaust their cardiovascular potential at peak exercise. Their breathing reserve is preserved (>11L) at peak exercise, indicating that the limitation to further exercise is the cardiovascular system (3). One exception to this are athletes who have excellent cardiovascular fitness; they can deplete their breathing reserve at peak exercise to <11 L, but achieve a supra-normal peak VO\(_2\) (22).

Deconditioning

A low peak VO\(_2\), normal VE/VCO\(_2\) slope, normal VO\(_2\) at anaerobic threshold, and preserved breathing reserve indicate deconditioning (3). A simplified diagnostic approach is shown in Figure 6.
Evidence base

Heart Failure

CPEX is a cornerstone test in identifying heart failure patients for heart transplantation; a peak VO$_2$<14 mL/kg/min in patients not on beta-blockers and peak VO$_2$<12 mL/kg/min in patients on beta-blockers is the current recommendation for consideration for heart transplantation (23-25).

VE/VCO$_2$ slope is another predictor of mortality in heart failure patients. Gitt et al showed a low VO$_2$ at anaerobic threshold (AT) of <11 mL/kg/min and a high VE/VCO$_2$ slope of >34 degrees at AT were strong predictors of 6 month prognosis in heart failure patients (26). However, the VE/VCO$_2$ slope is yet to find a place in cardiac transplant guidelines.

Lung resection

In the case of lung tumour resection surgery, Beckles’ et al review of the literature (27) showed lung cancer patients with:
1. Peak VO$_2$ of >20 were not at increased risk of complications

2. Peak VO$_2$ of <15 were at increased risk of post-operative complications

3. Peak VO$_2$ of <10 were at very high risk of peri-operative complications

CPEX is not necessary in all patients undergoing lung resection, but to risk-stratify patients with an FEV1 or diffusion capacity <80% of predicted on pre-operative testing (28).

Abdominal surgery

CPEX is increasingly used for risk stratification in patients with known cardiovascular and respiratory disease being considered for major non-cardiac surgery. Current evidence is:

1. VO$_2$ at AT of >11 mL/kg/min combined with a VE/VCO$_2$ slope of <35 are predictors for low cardio-vascular risk after major abdominal surgery (29, 30).

2. A VO$_2$ at AT of >11 mL/kg/min is correlated with improved post-operative survival in open and endo-vascular aortic surgery (31). Nagamatsu et al showed that in patients undergoing oesophagectomy, a low peak VO$_2$ was associated with increased cardiovascular complications (32). They concluded that a peak VO$_2$ of <800 ml/m2 is associated with a higher risk.

Reporting

A standard reporting format includes pre-test observations, test findings and interpretation. An example is given below. In our department, an experienced cardiologist reports all CPEX’s. An accurate interpretation of the test should be made available within 72 hours; this ought to be earlier if the findings are significantly abnormal (33). A sample reporting tool is shown in table 5.
Table 5: Sample reporting tool for cardio-pulmonary exercise test

<table>
<thead>
<tr>
<th>Name</th>
<th>Age</th>
<th>DOB</th>
<th>Hospital ID</th>
<th>Height</th>
<th>Ideal body weight</th>
<th>Weight</th>
<th>Haemoglobin</th>
<th>BMI</th>
<th>Smoking status</th>
</tr>
</thead>
</table>

Spirometry:
<table>
<thead>
<tr>
<th>FEV1</th>
<th>KCO</th>
<th>MVV</th>
</tr>
</thead>
</table>

Exercise test details:
<table>
<thead>
<tr>
<th>Protocol</th>
<th>Duration of exercise</th>
<th>Reason for stopping the test</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Resting heart rate</th>
<th>Peak Heart Rate</th>
<th>Resting blood pressure</th>
<th>Peak blood pressure</th>
<th>Resting Oxygen saturation</th>
<th>Peak Oxygen Saturation</th>
</tr>
</thead>
</table>

Exercise test findings:
<table>
<thead>
<tr>
<th>Peak Respiratory Exchange Ratio (RER)</th>
<th>VE/VCO₂: slope</th>
<th>Predicted Peak VO₂</th>
<th>Oxygen Pulse (VO₂/heart rate) at peak exercise</th>
<th>ΔVO₂/Work rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak VO₂</td>
<td></td>
<td>Peak VO₂/ Predicted peak VO₂ %</td>
<td></td>
<td>VD/VT (if blood gas measured)</td>
</tr>
<tr>
<td>VO₂ at Anaerobic Threshold</td>
<td>PETCO₂ at Rest</td>
<td>Peak Ventilation (VE)</td>
<td>Peak PETCO₂</td>
<td>Breathing reserve</td>
</tr>
</tbody>
</table>

Interpretation
Supervision and monitoring

The risk of acute myocardial infarction (AMI) during an exercise test is 1 in 2500 and risk of death is 1 in 10000 cases (34). The physician in-charge of the exercise laboratory decides on the appropriateness of the request for testing, and the degree of supervision needed depending on the specific clinical situation. In patients who have had a recent AMI (7-10 days), severe valvular stenosis, or complex arrhythmias, direct physician supervision is indicated (35). In most other cases appropriately trained physiologists and specialist nurses can conduct the test safely, with the physician in the immediate vicinity. Two people are required to conduct the test, both qualified in cardio-pulmonary resuscitation (36). Blood pressure should be measured every 2-3 minutes and more frequently in high risk patients (13). Continuous ECG monitoring is mandatory during the test and should be continued 6 minutes into recovery (13). Manual measurement of blood pressure is still the preferred method during stress test (34). Staff performing the test should be aware of the indications for exercise test and be able to recognise adverse events (13).

The AHA guidelines (2000) recommend that a physician in-charge should have participated in 50 procedures over a dedicated 4 week period to achieve competence in supervision and reporting of exercise tests, and should continue to perform 25 cases per year to preserve competence (35). The physician is responsible for data interpretation and suggesting further evaluation and testing (33). The physician should also maintain advanced cardiovascular life support competence. The AHA guidelines detail the cognitive skills required for performing and interpreting the test (35).

The exercise laboratory should be a spacious room and have the necessary equipment for advanced cardiac life support. Each laboratory should have a written emergency plan and all
personnel should rehearse it on a regular basis (36). Written informed consent is required prior to the exercise test (9).

Conclusion

CPEX testing is a relatively safe non-invasive tool which provides excellent diagnostic and prognostic information in patients with heart or lung disease. It should be utilized as a complementary diagnostic tool in the investigation of breathless patients, along with chest X-ray, echocardiography, pulmonary angiography, right heart catheterisation, and coronary angiography.

It is increasingly used in pre-operative risk assessment, cardiac and pulmonary rehabilitation, and adult congenital heart disease. With increasing applications and understanding, a sound grasp of the nuances of CPEX testing is mandatory for the cardiac, pulmonary and general physician.
References

