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Abstract There has been much work in the area of superconvergent error analysis
for finite element and discontinuous Galerkin (DG) methods. The property of super-
convergence leads to the question of how to exploit this information in a useful man-
ner, mainly through superconvergence extraction. There are many methods used for
superconvergence extraction such as projection, interpolation, patch recovery and
B-spline convolution filters. This last method falls under the class of Smoothness-
Increasing Accuracy-Conserving (SIAC) filters. It has the advantage of improving
both smoothness and accuracy of the approximation. Specifically, for linear hyper-
bolic equations it can improve the order of accuracy of a DG approximation from
k+1 to 2k+1, where k is the highest degree polynomial used in the approximation,
and can increase the smoothness to k−1. In this article, we discuss the importance
of overcoming the mathematical barriers in making superconvergence extraction
techniques useful for applications, specifically focusing on SIAC filtering.

1 Introduction
Many numerical methods experience a phenomenon known as superconvergence.
Superconvergence is higher than theoretical predicted convergence:

|(u−uh)(ξ )| ≤Chr+σ ,

where r is the expected convergence and σ > 0 [22]. So-called ”natural” Super-
convergence occurs when the function is evaluated at a point and compared with
the exact solution. We can create globally superconvergent solutions through post-
processing the approximation. In this article we focus on a specific post-processing
technique that uses B-spline convolution to obtain a superconvergent approxima-
tion. Specifically, we concentrate on SIAC filters, which have their roots in work by
Bramble and Schatz [2] and Cockburn, Luskin, Shu and Süli [5].
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2 Motivation and Background
We frame our discussion in the context of a linear hyperbolic equation with smooth
initial data,

ut +
d

∑
i=1

Ai
∂

∂xi
u+A0u = 0, x ∈Ω × [0,T ], (1)

u(x,0) = u0(x), x ∈Ω . (2)

We also assume periodic boundary conditions for simplicity. For these type of equa-
tions, the superconvergence property is straight-forward to prove in both the point-
wise setting and in terms of the negative-order norm.

2.1 Discontinuous Galerkin Methods
The important components that aid in creating a superconvergent approximation
from a discontinuous Galerkin solution are that
1. The approximation space consists of piecewise polynomials of degree ≤ k :

V k
h = {v ∈ L2(Ω) : v ∈ Pk(τe), j = 1, . . . ,N} (3)

where τe are the elements in the associated mesh and Ω = ∪eτe.
2. The variational formulation of the discontinuous Galerkin scheme:∫

τe

(uh)t vh(x)dx−
d

∑
i=1

∫
τe

Aiuh(x, t)(vh)xi (x)dx+
∫

τe

A0uh(x, t)vh dx+
d

∑
i=1

∫
∂τe

ˆAiuhn̂i vh,ds = 0

3. The weak continuity at the element interfaces that are enforced through the
choice of the fluxes in the discontinuous Galerkin scheme.

The reader is advised to consult [4] for a more detailed discussion of the discontin-
uous Galerkin method.

2.2 Error Estimates: Convergence and Superconvergence
Assuming the initial condition is regular enough, the errors in L2 for the DG ap-
proximation are given by

‖u−uh‖0 ≤C hk+1|u0|Hk+2 (4)
[4]. However, Adjerid et al. noted that the approximation has the property of point-
wise superconvergence [1]. That is, the local error at the“outflow” edge converges
at twice the usual convergence rate,

(u−uh)(x−j+1/2) = αk+1
(−a)k+1k!

2k +1
h2k+2 +O(h2k+3) (5)

for linear equations such as u′−au = 0. This occurs at the roots of the right Radau
polynomial.
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3 Extracting superconvergence
We would like to turn the local superconvergence property into a globally super-
convergent solution. There are many different options for this to be accomplished.
A few are to interpolate using superconvergent fluxes [6, 15], elementwise post-
processing [3], or convolution kernel post-processing [2, 5]. We focus on the lat-
ter, specifically the Smoothness-Increasing Accuracy-Conserving filter [17, 10, 19].
This last technique allows for global superconvergence and smoothness.

3.1 Smoothness-Increasing Accuracy-Conserving (SIAC) Filtering
The SIAC filter has its roots in an accuracy-enhancing post-processor. Motivated
by the work of Mock and Lax [14], Bramble and Schatz introduced a central B-
spline kernel to post-process finite element approximations to elliptic equations [2].
This was also explored from a Fourier perspective and for derivative filtering by
Thomeé [21]. Cockburn, Luskin, Shu and Süli then extended it to discontinuous
Galerkin approximations to linear hyperbolic equations [5]. It was further extended
to a broader class of problems in [7, 8, 11].

The basic idea of the original post-processor, u∗(x), is to convolve the numerical
approximation with a B-spline kernel,

u∗(x) = (K2(k+1),k+1
H ∗uh(·,T ))(x). (6)

This allows us to achieve u−uh ∼ O(h2k+1) in L2 as shown in [5]. A more general
form of the B-spline kernel, K2(k+1),k+1

H (x), will be discussed in Section 3.2.
The post-processor is useful for removing the highly oscillatory errors in the

discontinuous Galerkin approximation. The result is a solution that has increased
smoothness and accuracy.

3.2 The SIAC Kernel
The SIAC kernel is a more general form of the B-spline kernel above. It is a linear
combination of suitably scaled B-spline translates,

K(r+1,`)
H (x) =

1
H

r

∑
γ=0

c(r+1,`)
γ ψ

(`)
( x

H
− xγ

)
, (7)

where r + 1 is the number of B-splines in the kernel and ` is the order of the B-
splines. In (7), cγ are weights of the B-splines, ψ(`)(x), and are determined by
reproducing polynomials of degree less than or equal to r. For the original kernel
r = 2k, ` = k + 1 and xγ = −k + γ as given in (6). In the more general SIAC filter,
xγ depends on the point being evaluated and we have more flexibility both in the
number of B-splines and order of the B-splines.

Fig. 1 Dashed lines: The B-splines, ψ(3)(x + k−
γ), γ = 0, . . . ,4 used in the k = 2 kernel. Solid line:
The kernel, K5,3

H (x) for k = 2.

Central B-splines are defined as
ψ(1) = χ[− 1

2 , 1
2 ], ψ(`) = ψ(`−1) ∗

χ[− 1
2 , 1

2 ], ` ≥ 2. Here, χ is equal to

one on [− 1
2 , 1

2 ] and otherwise is zero.
The central B-splines that form the
post-processed solution are chosen
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because of their compact support of
supp{ψ(`)} = [− `

2 , `
2 ]. Further, they

are easy to compute through a recur-
rence relation. Lastly, there is a natu-

ral relation between their derivatives and divided differences: Dα ψ(`) = ∂ α
H ψ(`−α).

In Figure 1 a plot of the B-splines making up the convolution kernel as well as the
convolution kernel is shown for k = 2.

The convolution coefficients that weigh the B-spline translates are found by using
the property of polynomial reproduction.

As an example, we give the original symmetric B-spline kernel for the second
order approximation, k = 1. The kernel coefficients are found by using K4,2

h ∗ p = p
for p = 1,x,x2. This creates the kernel

K4,2(x) =
−1
12

ψ
(2)(x−1)+

7
6

ψ
(2)(x)− 1

12
ψ

(2)(x+1). (8)

To summarise, the convolution kernel is designed to extract higher order accu-
racy through polynomial reproduction. It induces smoothness of C`−2 through the
convolution with the B-splines and uses a local stencil of size (r + `)H. The ker-
nel is a polynomial of degree `− 1, making the post-processed solution a poly-
nomial of degree `+ k. It has theoretical and numerical convergence of O(hs), s =
min{r +1,2k +1} in both L2− and L∞−norms for linear hyperbolic equations over
uniform meshes.

3.3 Implementing the Post-Processor
Assuming the one-dimensional discontinuous Galerkin approximation can be writ-
ten as

uh(x, t) =
k

∑
n=0

u(n)
e (t)φ (n)

e (x), x ∈ τe, (9)

where φ
(n)
e (x) are the basis functions for the DG approximation. Using this nodal

form of the DG approximation, the post-processed solution can be written as

u∗(x) =
p′

∑
j=−p′

k

∑
n=0

C( j,n,k,x)u(n)
e+ j (10)

where p′ = d r+`
2 e and

C( j,n,k,x) =
1
h

r

∑
γ=0

cr+1,`
γ

∫
Ie+ j

ψ
(`)
(

y− x
h
− γ

)
φ

(n)
e+ j(y)dy︸ ︷︷ ︸

∈P`+k

. (11)

The multi-dimensional kernel is a tensor product of the one-dimensional kernel.
For example, in two-dimensions,

KH(x,y) =
1

HxHy

r

∑
γx=0

r

∑
γy=0

cr+1,`
γx cr+1,`

γy ψ
(`)
(

x
Hx
− xγx

)
ψ

(`)
(

y
Hy
− yγy

)
. (12)

It is expected that the kernel can be applied to Qk-polynomial approximations, but
it is also effective for Pk-polynomial approximations.
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3.4 Convergence of the SIAC Filtered solution
Let u∗h(x,T ) = KH ∗ uh be the post-processed DG approximation at the final time.
Then the errors for the post-processed solution are given by

‖u−u∗h(x,T )‖0,Ω ≤ ‖u−u∗‖0,Ω︸ ︷︷ ︸
Exact filtered

+‖(u−uh)∗‖0,Ω︸ ︷︷ ︸
DG errors

. (13)

The estimate for the first term comes about from the ability of the kernel to
reproduce polynomials of degree r. Then, using a Taylor expansion we obtain ‖u−
Kh ∗ u‖Ω ≤ Chr+1 [5, 9]. The second term can be bounded by the negative-order
norm [2, 5]. If we can show the negative-order norm is of higher order, then we can
demonstrate superconvergence of the filtered solution.

Fig. 2 A comparison of the convergence rates and
errors between the discontinuous Galerkin approxi-
mation and the SIAC filtered DG approximation.

In Figure 2 a comparison of the
convergence rates and errors between
the discontinuous Galerkin approx-
imation and the SIAC filtered ap-
proximation is given. If we consider
the k = 1 filtered approximation and
compare it with the k = 2 DG approx-
imation, we can see that although
they have the same convergence rate,
the errors for the k = 2 approxima-
tion are better.

3.5 Applications
Currently, the applications of SIAC

filtering include extracting accuracy out of existing code [17] and visualization fil-
tering [20]. However, there is promising relations to image processing [13, 23] as
well as potential in LES filtering [7, 8].

3.6 Interesting Challenges
The challenge in making SIAC filtering applicable to broader areas of applications
include: A negative-order norm estimate that depends upon the PDE, the ability to
extract derivative information, filtering near a boundary, and most importantly mesh
geometry. In the following sections we discuss the challenges in extending SIAC
filtering to a range of applications.

4 The Error Estimate
Recall that in Equation (13) the SIAC filtered error estimate is controlled by our
ability to prove superconvergence in the negative-order norm, where the negative-
order norm is given by

‖∂ α
H (u−uh)‖−(k+1),Ω = sup

φ∈C∞
0 (Ω)

(∂ α
H (u−uh),φ)Ω

‖φ‖k+1,Ω
≤C h2k+1 ‖u0‖k+1,DΩ1 (14)

if H = h [5].
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For the negative-order norm, we actually only need to consider the numerator in
Equation (14). In general, the estimate depends on defining a suitable dual equation
and we are able to prove ‖u− u∗h‖ ≤Ch2k+m. Details of the existing estimates for
various equations are provided in Table 1.

m s = 2k +m Equation
2 2k +2 Elliptic (FEM) [2]
1 2k +1 Linear Hyperbolic (DG) [5]

1≤ m≤ 2 2k +1≤ s≤ 2k +2 Convection-diffusion (DG) [7]
1 2k +1 Variable-Coefficient Hyperbolic (DG) [11]

0, 1
2 ,2 2k ≤ s≤ 2k +2 Nonlinear hyperbolic (DG) [8]

Table 1 SIAC Filter error estimates for various types of equations.

5 Derivative SIAC Filtering
Another interesting aspect of SIAC filtering is that it allows us to create a supercon-
vergent approximation to derivatives. In general, the approximation obtained via a
DG method will give ‖∂ α(u− uh)‖ ≤ Chk+1−α for the derivatives. This makes it
impossible to obtain a good second order derivative approximation for k = 1. How-
ever, using SIAC filtering makes it possible to obtain higher order derivatives even
for a piecewise linear approximation. In order to obtain a superconvergent derivative
approximation, there are two options: accept a reduction in order of accuracy by tak-
ing the derivative of the filtered solution, or forming a kernel that uses higher-order
B-splines whose errors do not reduce in order with differentiation. Each method has
its advantages and disadvantages and both will give a superconvergent derivative
approximation.

In the first method, we compute the derivative of the SIAC filtered solution di-
rectly. This gives

dα

dxα

(
Kr+1,`

h ∗uh(·,T )
)

(x) =
dα

dxα

(
1
H

∫
R

K(r+1,`)
H

(
x− y

h

)
uh(y, t)dy

)
. (15)

Recall that the post-processed approximation induces smoothness of C`−2 and is
up to 2k + 1th−order accurate. If we calculate the derivative of the post-processing
polynomial directly we would then have ∼ O(hmin{2k+2,r+2}−α), for α ≤ `− 1,
which would give a reduced order of accuracy with each successive derivative. Fur-
ther, the oscillations in the error increase [17]. This method may be more advanta-
geous if only a first or second derivative is needed.

There is an alternative that allows us to obtain the same superconvergent approx-
imation to the derivatives. That is, we can obtain a 2k + 1 order accuracy approxi-
mation to the α th−derivative using higher order splines in our kernel [21, 16]. This
gives a derivative approximation whose order or convergence is independent of α .
The derivative kernel is defined as

Kr+1,α,`
H (x) =

1
H

r

∑
γ=0

dr+1,α,`
γ ψ

(`+α)
( x

H
− xγ

)
. (16)

The difference to the kernel in Equation (7) is that it uses smoother B-splines. Note
that smoother B-splines give an increased support size. Further, computing the α−th
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derivative only requires computing the convolution of translations of the B-spline
ψ(`) with uh. This allows us to obtain the error estimate:

Theorem 1. (Ryan & Cockburn [16]) Let uh be the approximate solution given by
the DG method for the model problem ut +(au)x = 0, (x, t) ∈ R× (0,T ). Assume
that the initial data uo is very smooth. Then∥∥∥∥ dα

dxα
u(x,T )− dα

dxα

(
Kr+1,α,`

h ∗uh(·,T )
)

(x).
∥∥∥∥

0,Ω0

≤ Chs,

where s = min{r +1,2k +1} and C depends upon the smoothness of the solution.

In Figure 3 and Table 2, we can see how these two methods of obtaining a deriva-
tive approximation compare by considering a variable coefficient equation taken
from [16]. If we take the derivative of the SIAC filtered approximation, we can still
obtain 2k + 1 order accuracy for the first derivative, but each successive derivative
looses an order. However, if we use smooth B-splines of higher order, we can main-
tain 2k +1 order accuracy for higher derivatives as well.

P2

∂ α
x uh ∂ α

x (K ∗uh) K̃ ∗∂ α
h uh

N L2 error order L2 error order L2 error order
1st Derivatvies

40 8.7240E-04 — 5.5069E-08 — 2.4411E-06 —
60 3.8775E-04 2.00 6.9067E-08 5.12 3.2245E-06 4.99
80 2.1811E-04 2.00 1.6903E-09 5.03 7.6554E-08 4.99
100 1.3959E-04 2.00 5.8972E-09 4.72 2.5074E-09 5.00

2nd Derivatives
40 3.3923E-02 — 3.2544E-07 — 1.4294E-07 —
60 2.2619E-02 1.00 6.1855E-08 4.10 1.7735E-08 5.15
80 1.6966E-02 1.00 1.9310E-08 4.05 4.2872E-09 4.94
100 1.3573E-02 1.00 7.8612E-09 4.03 1.4798E-09 4.77

Table 2 L2−errors and orders the first and second derivatives for the DG approximation together
with the SIAC filtered solutions.

(a) ∂ 2(u−uh) (b) ∂ 2(u−Kh ∗uh) (c) ∂ 2(u− K̃h ∗uh)
Fig. 3 Pointwise errors in log scale for the second derivatives for the DG approximation together
with the SIAC filtered solutions.
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6 Filtering Near a boundary
The next question that would be useful to answer is how to filter near a boundary or
discontinuity. This requires modifying the filter [18, 19]. To do so, we first use B-
splines that depend continuously on the evaluation point through the shift function
λ (x̄):

xγ =− r
2

+ γ +λ (x), λ (x) =


min

{
0,− r+`

2 + x̄−xL− εh
2

h

}
, x ∈ [xL, xL+xR

2 ],

max
{

0, r+`
2 + x̄−xR+ εh

2
h

}
, x ∈ ( xL+xR

2 ,xR],

(17)
where the one-dimensional domain is defined as Ω = [xL,xR].

The accuracy is improved by using extra B-splines near a boundary so that the
post-processed solution is

u∗h(x̄) = θ(x̄) u∗h,2k+1(x̄)︸ ︷︷ ︸
filtering with 2k +1 B-splines

+(1−θ(x̄)) u∗h,4k+1(x̄).︸ ︷︷ ︸
filtering with 4k +1 B-splines︸ ︷︷ ︸

smooth convex combination

(18)

In this example, θ is chosen such that θ(x̄) = 1 in the interior (giving the symmetric
filter); θ(x̄) = 0 near the boundary (to obtain extra accuracy from extra B-splines);
θ is smooth in the transition regions between symmetric and boundary filtering.

As an example, we consider the linear equation ut +ux = 0 with Dirichlet bound-
ary conditions. Plots of the errors are given in Figure 4 and errors are given in Table
3. We can see from these that we have an improved convergence rate as well as re-
duction in errors. This occurs even near the boundary and for non-periodic boundary
conditions.

(a) DG Errors (b) SIAC DG (2k +1) (c) SIAC DG (4k +1)
Fig. 4 Pointwise errors in log scale for before and after post-processing for a linear hyperbolic
equation with Dirichlet boundary conditions. A comparison of using 2k+1 (middle) versus 4k+1
(right) central B-splines when near a boundary.

Adapting the kernel to handle filtering near boundaries allows us to obtain the
following L∞−error estimate:

Theorem 2. (Ji, van Slingerland, Ji, & Vuik [9]) Let uh be a DG approximation to
an exact solution u for a linear hyperbolic equation. Construct u∗h by applying the
position-dependent SIAC filter to uh, k ≥ 1. Then,

‖u−u∗h‖∞,Ω ≤C‖u0‖2k+3+[d/2],Ω hs,
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Before After (2k +1) After (4k +1)

mesh L2-error order L2-error order L2-error order
P2

20 2.681e-04 - 4.003e-03 - 6.984e-06 -
40 3.352e-05 3.00 2.108e-04 4.25 1.850e-07 5.24
80 4.190e-06 3.00 5.464e-06 5.27 4.798e-09 5.27
160 5.238e-07 3.00 1.254e-07 5.45 1.498e-10 5.00

P3

20 5.176e-06 - 1.304e-04 - 3.751e-07 -
40 3.236e-07 4.00 4.712e-06 4.79 6.396e-10 9.20
80 2.023e-08 4.00 3.406e-08 7.11 2.867e-12 7.80
160 1.264e-09 4.00 1.999e-10 7.41 3.079e-14 6.54

Table 3 L2−errors and order for before and after post-processing for a linear hyperbolic equation
with Dirichlet boundary conditions. A comparison of using 2k +1 (middle column) versus 4k +1
(right column) central B-splines when near a boundary.

and
‖u−u∗h‖0,Ω ≤C‖u0‖2k+2,Ω h2k+1,

where s = min{2k+1,2k+2− d
2} and C is a constant, dependent on the L1−norm

of the kernel coefficients but independent of the mesh.

However, there are still limitations to overcome. For example, using extra B-
splines at the boundaries is good for lower-order approximations, but not for higher-
order approximations due to the excessive support size and increased condition
number of the matrices involved. Further, the added support does not aid in cre-
ating a better approximation for non-uniform meshes.

7 Mesh Geometry
Until now, the assumptions on the applicability of the SIAC filter have required a
uniform mesh. A logical question to then ask is whether it can work for nonuniform
meshes. The challenges that are incurred when attempting to extend the SIAC filter
to a nonuniform mesh is that it requires O(h2k+1) convergence in the negative-order
norm for both the approximation as well as the divided difference of the approx-
imation. This requires defining a suitable dual equation and a DG scheme for the
divided differences. If the mesh is translation invariant, it is easy to show appropri-
ate convergence for the divided differences [10]. However, let us investigate further
the actual requirements of the scaling parameter.

Recall that our error estimate is ‖u−KH ∗uh‖Ω ≤CH2k+1, where H is the kernel
scaling parameter. The translation invariance property requires that T `

Hv(x) = v(x+
H`). Thus the mesh is translation invariant for a scaling of mH, m ∈ Z as well.
This is illustrated in Figure 5. In this figure, a kernel scaling of H = mh is used for
the convolution kernel in the SIAC filter for a discontinuous Galerkin approximation
over a uniform mesh designated by h. We can see that error reduction actually occurs
even when H < h. Superconvergent order starts to occur around H = h and errors
start to increase for H > h. The sweetspot of reduced errors and superconvergence
seems to occur around H = h.
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Fig. 5 Effect of H scaling for P2 and P3 polynomials for a uniform mesh.

Although the typical meshes tested involve some type of translation invariance,
the SIAC filter has also been tested over unstructured triangular meshes with promis-
ing results [10, 12]. For example Figure 6 shows the difference in the pointwise
errors for the DG approximation versus the SIAC filtered DG approximation. The
L2−errors are given in Table 4. Figure 7 displays the effect of different scalings,
when h is taken to be the longest element edge and the kernel is scaled by H = mh.
Clearly, one can achieve error reduction.

(a) DG Errors (b) SIAC Filtered Errors
Fig. 6 Typical pointwise error plots for SIAC filtering over a Delaunay Mesh with element split-
ting.

m = 0.5 m = 1 m = 2
mesh L2−error order L2−error order L2−error order

P2

776 7.08E-05 — 1.25E-04 — x —
3104 7.84E-06 3.17 6.45E-06 4.27 x —
12416 8.24E-07 3.25 5.02E-07 3.68 1.98E-06 —
49664 1.09E-07 2.20 5.97E-08 3.07 8.11E-08 4.60

P3

776 9.88E-07 — 8.52E-06 — x —
3104 2.71E-08 5.18 1.30E-07 6.03 x —
12416 3.28E-09 6.02 1.99E-09 6.02 4.58E-08 —
49664 2.34E-10 3.80 5.85E-11 5.08 6.20E-10 6.20

Table 4 Typical errors for SIAC filtering over a Delaunay Mesh with element splitting.
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(a) P2-polynomials (b) P3-polynomials
Fig. 7 The effect of the kernel scaling for SIAC filtering over a Delaunay Mesh with element
splitting.

With SIAC filtering we can usually improve the DG convergence rate from order
k+1 to order 2k+1 but we have to be careful with kernel scaling [10]. Table 5 gives
a list of some of the meshes that SIAC filtering has been tested over and whether
reduced errors, improved order or increased smoothness occurs.

Mesh type Reduced Errors Improved Order Increased Smoothness
Uniform Quadrilateral X X X
Variable Cross Quadrilateral X X X
Uniform Structured Triangle X X X
Structured Variable Triangle X X X
Delaunay Mesh X ? ?

Table 5 Some typical meshes over which SIAC filtering has been tested. Listed is the mesh type
along with whether SIAC filtering will aid in error reduction, improved convergence order or in-
creasing the smoothness of the solution.

8 Summary
We can make superconvergence useful through accuracy extraction techniques.
SIAC filtering is one technique that uses a B-spline convolution kernel that induces
smoothness on the DG field and enhances accuracy. In general, we can obtain order
improvement from O(hk+1) to O(hs) where s = min{r + 1,2k + 1}. However, the
expected order improvement relies on higher-order estimates in the negative-order
norm for the approximation as well as the divided differences. Once we are able
to prove these estimates we can concentrate on other issues in SIAC filtering such
as modifying the filter for higher-order derivative information or boundary filtering.
For the scaling of the kernel, we must exploit information about the mesh geometry
in order to have a reduction in the errors.
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