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ABSTRACT

This thesis focuses on the global seismic forward modelling of body and surface waveforms

in realistic 3-D Earth models using approximate and purely numerical methods. Firstly, we

investigate two techniques: (i) the Born approximation, which should be valid for media

with weak heterogeneity; and, (ii) the full ray theory approach, which should be valid for

smooth media. We find that the Born approximation has a very limited domain of validity.

It only models accurately surface waveforms with wave periods longer than T∼80 s–90 s in

existing earth models, and for T>120 s–130 s when models with stronger heterogeneity are

considered. On the other hand, the full ray theory is valid for almost all the earth models

considered, failing only for unrealistically rough models. Hence, there is scope to build

future improved global tomographic models using this technique, which is computationally

very efficient. We then use a purely numerical technique, the spectral element method,

to assess the quality of a recently built global radially anisotropic mantle model (SGLOBE-

rani). We find that it explains independent seismic data slightly better than a previous

widely used model (S40RTS). Moreover, our tests find small data misfit differences between

isotropic and anisotropic versions of the models considered, which highlight the difficulties

in constraining 3-D radially anisotropic structure. Finally, we carry out forward modelling

experiments of short-period (T>5 s) body waves travelling through the Earth’s lowermost

mantle and investigate the effects of isotropic (1-D and 3-D), anisotropic and attenuation

structure on wave propagation. We find that phase interference can change the shape and

apparent arrival-time of wave pulses. This can give rise to apparent SH-SV wave splitting,

even when isotropic earth models are used. This suggests that caution should be taken when

interpreting SH-SV splitting of deep mantle body waves exclusively in terms of anisotropy in

the lowermost mantle.
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1
INTRODUCTION

1.1 GLOBAL SEISMOLOGY

The USGS (United States Geological Survey) estimates that every year more than 1.4 million

earthquakes with magnitude larger than 2.0 occur worldwide. Large magnitude earthquakes

(Mw ≥ 5.5) generate seismic waves that propagate around the globe and are recorded by

seismometers worldwide. Seismologists use these recordings—seismograms—to investigate

the kinematics and dynamics of earthquakes. Moreover, they use seismograms as probes of

the structure of the Earth’s interior. This is the fascinating geoscience discipline of global

seismology and this thesis is a contribution in this field.

The outer shell of the Earth (∼100 km–200 km) forms the lithosphere, which is subdivided

in ∼15 (almost) rigid tectonic plates, which move relatively to each other at the speed of a few

cm per year. The movements occur over the weaker asthenosphere and are the main cause

of earthquake occurrence, which is why most of the world’s seismicity takes place on tectonic

plate boundaries. Fig. 1.1 depicts the global spatial distribution of seismicity and its clear

relation with plate boundaries.

From a seismic perspective, the subdivision of the Earth into crust, mantle, outer

and inner core is normally used. Fig. 1.2 presents PREM (Dziewoński & Anderson, 1981,

Preliminary Reference Earth Model), the most used 1-D global reference model. PREM has

a 24.4 km-thick two-layer crust separated from the mantle by a strong discontinuity of the

seismic properties (named Mohorovičić or Moho). The core-mantle boundary (CMB) at

2 891 km depth separates the mantle from the liquid outer core, where S waves cannot

propagate. Finally, the inner-core boundary (ICB) separates the outer core from the solid

inner core, where S waves can propagate again generated by the conversion of P waves

crossing the liquid core.

This thesis investigates global seismic wave propagation in realistic 3-D media in order to

better understand the Earth’s mantle structure.

1
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Figure 1.1: Global seismicity that occurred between 1976–2013 from the Global CMT catalogue
(Mw>5.5, www.globalcmt.org). Events are shown with centroid depth: (i) shallower than 25 km
(yellow); (ii) between 25 km and 100 km (red); (iii) between 100 km and 300 km (green); and, (iv) deeper
than 300 km (blue). Lines in purple denote plate boundaries.

1.2 EARTH’S MANTLE INVESTIGATIONS

In this section we present the most common techniques used to probe the Earth’s mantle.

We start by briefly presenting seismic tomography—the large-scale imaging of the Earth’s

interior—followed by an introduction to target studies that model specific parts of the Earth,

often with higher resolution than in tomography studies. Both classes of methods use the

information carried by seismic waves propagating within the Earth to model the interior of

our planet.

1.2.1 SEISMIC TOMOGRAPHY

Seismic tomography is a powerful geophysical tool to build images of the Earth’s interior by

characterising the spatial distribution of its seismic properties (e.g., Vp, Vs, anisotropy and

attenuation). The first images of the Earth’s mantle were produced in 1977 (e.g., Dziewoński

et al., 1977), based on P wave travel-times, and in 1984 from seismic waveforms (e.g.,

Woodhouse & Dziewoński, 1984). These early studies revealed many large-scale features of

the Earth’s interior (e.g., low velocity regions associated with ridges and high velocities with

cratons), which are now well-known and reproducible. These analyses, as well as more recent

tomography studies rely on ray theory, which is an infinite frequency approximation that

represents a body or surface wave as a ray whose travel-time is only affected by the structure

along the ray path. The numerical simplicity of this approach has enabled the use of large

datasets to build new tomographic models in an efficient way, which may at least partly

compensate the theoretical approximations used.
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Figure 1.2: Schematic representation of the interior of the Earth following the Preliminary Reference
Earth Model (PREM, Dziewoński & Anderson (1981)). Vp and Vs are compressional and shear seismic
wave velocities, respectively. PREM includes radial anisotropy in the upper most mantle. Thus, green
and red dashed lines are used to represent Vsh and Vph when these are different from Vsv and Vpv,
respectively. ρ is the density. TZ: mantle transition zone; 410 km: seismic discontinuity within the
upper mantle at 410 km; 660 km: seismic discontinuity at 660 km separating the upper from the lower
mantle; D”: D” layer (bottom of the lower most mantle); CMB: core-mantle-boundary at 2 891 km; ICB:
inner-core-boundary at 5 150 km.

Body-wave travel times and surface wave dispersion data are complementary datasets.

Surface waves are well suited for global tomographic studies because they offer excellent

global coverage. However, their sensitivity is limited to down to ∼1000 km depth (upper

mantle, transition zone and uppermost lower mantle). Fig. 1.3 compares three recent shear

wave speed tomographic models, SL2013sv (Schaeffer & Lebedev, 2013), SEMum2 (French

et al., 2013) and DR2012 (Debayle & Ricard, 2012) of the upper mantle strongly based on

surface wave data. The models are defined as perturbations of Vs with respect to PREM. The

correlation among these models is significant in the shallower 200 km (uppermost mantle),
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where the heterogeneity is stronger and follows the long wave-length tectonic patterns

(e.g, low velocity anomalies under oceanic ridges and high velocity anomalies under the

continental shields). The main features of the mantle transition zone (TZ, around 410 km–

660 km) are the fast anomalies corresponding to subducted slabs but significant discrepancies

arise from the comparison of these models (e.g., in the Pacific Ocean at 600 km and 700 km)

where the resolution of surface wave data starts to vanish.

On the other hand, body-waves have deeper ray paths than surface waves allowing the

sampling of the lower mantle (particularly of the lowermost mantle). Tomographic models

obtained by inverting body-wave data have a good resolution in proximity of the subduction

zones. However, the lack of dense seismic stations in the oceans limits the resolution in such

regions. Body waves have been used in whole mantle tomography either alone (e.g., Montelli

et al., 2004; Fukao & Obayashi, 2013) or in combination with surface waves and/or normal

mode data (e.g., Ritsema et al., 2011; Chang et al., 2015). Fig. 1.4 compares five recent whole

mantle tomographic models: S362WANI+M by Moulik & Ekström (2014), SAW642ANb by

Lekić et al. (2010), S40RTS by Ritsema et al. (2011), SAVANI by Auer et al. (2014) and SGLOBE-

rani by Chang et al. (2015) in which data from both surface and body waves are employed.

As already seen for the upper mantle models, there is a certain level of agreement among

the whole mantle tomographic models for the first hundreds of km and for the large scale

heterogeneity. Between ∼1 000 km–2000 km depth, the tomographic maps are characterised

by weak heterogeneity except for 2 stronh slow anomalies beneath the African continent. At

the bottom of the mantle, two robust low velocity anomalies under Africa and Pacific ocean

(Large Low Shear Velocity Provinces, LLSVPs) dominate in all the tomographic models.

1.2.2 TARGETED SEISMIC STUDIES

Whilst seismic tomography produces extensive and smooth images of the Earth, several

targeted studies have been performed to resolve the fine earth structure of specific regions

of the globe. We here report some examples of key findings from such studies.

As seen in section 1.1, the movements of the lithosphere over the asthenosphere are the

basis of plate tectonics. Thus, processes at the lithosphere-asthenosphere boundary (LAB)

are fundamental to understand the dynamics of the Earth. These have been investigated

inverting and modelling reflected body-waves (see Fischer et al. (2010) for a review). Whilst

reverberations of the ScS phase (S wave reflected off the CMB) from the LAB have been

observed in oceanic environments (e.g., Bagley & Revenaugh, 2008), studies based on P-to-s

(Ps) and S-to-p (Sp) converted phases at the LAB are common in both oceanic and continental

environments (Fischer et al. (2010) and references therein). The correlation between LAB’s

depth and plate tectonics is strong. For example, Rychert & Shearer (2009), using Ps phases,

imaged a surface whose depth varies from about 95 km under the continental shields to 70 km

under the ocean islands. Moreover, Kawakatsu et al. (2009), employing Sp and Ps phases,

showed that the position of the LAB in the oceanic plates is sharp and age-dependent.
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Figure 16. Comparison of SL2013sv with five recent global tomographic models: CUB (Shapiro & Ritzwoller 2002), DR2012 (Debayle & Ricard 2012), SEMum (Lekić & Romanowicz 2011), S362ANI (Kustowski
et al. 2008a) and S40RTS (Ritsema et al. 2011). At each of five depths in the upper mantle (top to bottom 50, 100, 150, 250, 350 and 500 km), perturbations are plotted in per cent with respect to the mean value for
that model. The minimum and maximum values are indicated underneath each map, and the same linear colour scale spans from negative to positive saturation values indicated for each depth (at left). Models are
ordered left-to-right by decreasing peak-to-peak variations at 100 and 150 km depths.

 by guest on June 11, 2013 http://gji.oxfordjournals.org/ Downloaded from 

Figure 1.3: Comparison between recent upper mantle global tomographic models by Schaeffer &
Lebedev (2013); French et al. (2013); Debayle & Ricard (2012) (from left to right). Shear wave speed
perturbations are plotted in percentage with respect to the mean value for that model. The minimum
and maximum values are indicated underneath each map, and the same linear colour scale spans
from negative to positive saturation values indicated for each depth (at left). Plot courtesy of Andrew
Schaeffer.
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Figure 6. Figure 1.4: Comparison of whole mantle global tomographic models by Moulik & Ekström (2014);
Lekić et al. (2010); Ritsema et al. (2011); Auer et al. (2014); Chang et al. (2015) (from left to right).
Shear speed perturbations with respect to the PREM model are plotted with the same linear colour
scale, which spans negative to positive values shown for each depth (on the left). Figure modified from
Chang et al. (2015).

The mantle TZ (Fig. 1.2) divides the upper from the lower mantle and is defined by two

seismic discontinuities located at approximately 410 km and 660 km. The TZ is believed

to be a reservoir of water contained in high-pressure minerals (e.g., Bercovici & Karato,

2003). Its properties could potentially distinguish between whole-mantle and layered-mantle

convection (Hofmann, 1997). The topography of these discontinuities has been inferred from

the differential arrival-times of stacked SS phases (S waves downside reflection at the Earth’s

surface), and relative precursors (S410S and S660S), and converted phases (e.g., Shearer
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& Masters, 1992; Deuss & Woodhouse, 2001; Gu & Dziewoński, 2002; Tauzin et al., 2008).

The isochemical phase transition nature of these discontinuities, due to the rapid pressure

increase with depth, is still debated (e.g, Lebedev et al. (2002); Schmerr & Garnero (2007). The

detection and nature of the 410-km and 660-km discontinuities could also be complicated by

the presence of a low velocity layer above the 410-km discontinuity (Tauzin et al., 2010) and

multiple phase transitions around the 660-km discontinuity (Deuss et al., 2006).

Another region of the Earth, which has represented the subject of several imaging studies,

is the D” layer. The latter includes a region of 150 km–300 km at the bottom of the lowermost

mantle (Fig. 1.2) and it represents a thermal boundary between the mantle and the liquid

core. The thermal instability at the CMB could represent the cause of the existence of deep

mantle plumes. Wysession et al. (1998) demonstrated the presence of a sharp velocity increase

at the top of the D”. This has been explained with the presence of subducted slabs at the

bottom of the mantle (e.g., Wysession, 1996; Loubet et al., 2009). Many seismic studies of

the D” layer targeted the LLSVPs, which are believed to have distinctive composition because

of of their very low S wave velocity, moderately low P wave velocity and possibly high density

(e.g, McNamara & Zhong (2005); Garnero & McNamara (2008); Lekić et al. (2012)). Seismic

anisotropy, which is the directional dependence of seismic velocity and can generate the

splitting of horizontal and vertically polarised body-waves, was observed in the D” layer by

several authors, mainly using S and ScS phases (e.g., Vinnik et al., 1995, 1998; Pulliam & Sen,

1998; Ritsema et al., 1998; Kendall & Silver, 1998; Fouch et al., 2001). However, modelling

studies showed that anisotropy may not be the only cause for the SH-SV splitting observed

(see, e.g., Maupin, 1994; Komatitsch et al., 2010b).

1.3 CHALLENGES AND DIRECTIONS

In section 1.2.1 we presented some tomographic models defined in terms of Vs perturbations.

However, in order to understand the geodynamical behavior of our planet we need to image

other properties such as attenuation and anisotropy. In this section, we present the main

current challenges in global tomography to retrieve different seismic attributes and discuss

some key issues that global tomographers are facing.

Seismic attenuation in the mantle is a function of its composition, temperature, water

content and partial melt. Hence, the joint interpretation of elastic and anelastic structure

is important to better understand these properties of the Earth’s interior. Attenuation

tomography is lagging behind elastic seismic tomography. Most of the previous attenuation

tomography imaged the attenuation structure in the upper mantle using either surface waves

or body-waves (e.g., Romanowicz, 1995; Bhattacharyya et al., 1996; Selby & Woodhouse, 2002;

Gung & Romanowicz, 2004; Dalton et al., 2008). The main result of such studies is the

correlation at shallow depths (down to 200 km–250 km) with tectonics (Dalton et al., 2009)

but strong differences among these models remain. There have also been attempts to resolve

attenuation structure in the lower mantle using body-waves (Lawrence & Wysession, 2006;

Hwang et al., 2011) but a strong disagreement came from these results. The main difficulties
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in attenuation tomography are to accurately measure wave amplitudes and to separate the

effects of elastic and anelastic structure on the seismograms. When surface waves are used,

the latter issue can be addressed e.g. by considering amplitude ratios of consecutive Rayleigh

wave trains around the globe. (e.g., Durek & Ekström, 1996; Dalton et al., 2008). However, very

long-time, high-quality time series are needed for such analyses.

The reference model PREM includes radial anisotropy in the uppermost mantle to explain

the systematic delay of Rayleigh waves with respect to Love waves (see Fig. 1.2) observed

since the 1960s (e.g., Hess, 1964). Moreover, observations of seismic anisotropy in the whole

mantle have led to several attempts to constrain 3-D anisotropic variations in the mantle

(e.g., Ekström & Dziewonski, 1998; Shapiro & Ritzwoller, 2002; Ferreira et al., 2010; Lekić &

Romanowicz, 2011; French & Romanowicz, 2014; Chang et al., 2015). Seismic anisotropy

in the mantle is a fundamental piece of information to infer the geometry of mantle flow

when interpreted together with mineral physics. However, despite recent progress, there

are still discrepancies in the radially anisotropic structure in the most recent tomographic

models (e.g., Auer et al., 2014; Moulik & Ekström, 2014; French & Romanowicz, 2014; Chang

et al., 2015). For example, Chang et al. (2014) showed that a trade-off between isotropic

heterogeneities and anisotropic structure in the D” is a possible cause of these discrepancies.

Ferreira et al. (2010) and Bozdaǧ & Trampert (2008) discussed also the issues related to the

influence of the crust when inferring radial anisotropy.

Crustal effects are an important issue in global tomography even when only the isotropic

structure is considered. In fact, the crust has a strong influence on surface wave dispersion

even at the long periods usually considered in such studies (T>60 s). The effects of the

crust need to be separated from those due to the mantle prior to the inversion. To properly

account for crustal effects, the crustal structure has to be known and the corrections must

be accurately calculated. Traditionally, linear crustal corrections have been used (e.g.,

Woodhouse & Dziewoński, 1984) because of the minimal associated computational cost and

physical simplicity of the approach. However, Vs and Moho variations in the crust are too

large to be handled by linear corrections. More complete approaches have been formulated

(e.g., Montagner & Jobert, 1988; Boschi & Ekström, 2002; Lekić et al., 2010; Chang et al., 2015)

but these increase the cost of the computations and their effects on the tomographic models

are still debated.

Other heavily debated topics in global seismology are the data and methods used. Most

of the global tomographic models are based on so-called secondary observables of the

seismograms. That is, for example, phase delays of body waves and dispersion curves

of surface waves are obtained from the seismograms, and thus all the other information

potentially carried by the seismic traces is neglected. The secondary observables are usually

linearly related to the model’s heterogeneity and hence are often modelled using asymptotic

and ray-based approaches (e.g., Woodhouse & Dziewoński, 1984; Ritsema et al., 2011; Chang

et al., 2015). As discussed in section 1, this class of methods is computationally affordable

and enables the inversion of large datasets. On the opposite end-member, there is the

exploitation of all the information contained in the seismograms, without the need to identify
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any particular seismic phase (e.g., Fichtner et al., 2009). The full (or more realistically, a

reasonable portion of the) waveform is non-linearly related to the model’s heterogeneity

and then iterative improvements of the model are necessary following a non-linear inversion

approach.

The complete global seismic wavefield can be modelled with purely numerical methods

(Komatitsch & Vilotte, 1998, e.g., the spectral element method; ). However, tomographic

methods using these approaches are numerically expensive. This has limited the application

of the method to few local and regional models (e.g., Chen et al., 2007; Tape et al., 2009;

Fichtner et al., 2009; Chen et al., 2015). French & Romanowicz (2014) developed the first global

model based on this approach but a hybrid inversion scheme was applied. Other models

are based on waveform inversion but only individual wave trains are used. These models

are either based on ray theory (e.g., Schaeffer & Lebedev, 2013; Debayle & Ricard, 2012) or

finite-frequency theory (e.g., Nolet & Dahlen, 2000; Montelli et al., 2004; Zaroli et al., 2010).

This dichotomous aspect of the global tomography will be further discussed in this thesis (see

section 1.4 and in chapters 3 and 4).

The possibility of building full waveform global tomographic models lies on the evolution

of computer power. More powerful machines allow for the inversion of larger datasets

and the employment of more sophisticated theories. High-performance computing (HPC)

has allowed, for example, the implementation of numerical methods as SPECFEM (e.g.,

Komatitsch & Tromp, 2002a,b) and Axisem (Nissen-Meyer et al., 2014) that are freely available

to the seismological community.

Other important advances in global seismology concern the increase of the available

data. IRIS (Incorporated Research Institutions for Seismology, www.iris.edu) and Orpheus

(Observatories and Research Facilities for European Seismology, http://www.orfeus eu.org)

manages and provieds free access to huge amounts of observed and derived data for the global

earth science community. Fig. 1.5 shows the map of the global seismic network managed by or

in collaboration with IRIS. However, both Figs. 1.1 and 1.5 highlight that there are large areas in

the planet not covered by seismic sources and receivers. To improve the seismic coverage, the

community is moving toward using other data types such as e.g. ambient seismic noise, which

allows probing the Earth’s interior without earthquakes. To improve the receiver distribution,

the extensive deployment of Ocean Bottom Seismometers (OBS) and temporary dense array

on the continents are key ways forward. For example, the Ocean Hemisphere Network Project

distributes seismic data collected by different OBS networks in the West Pacific. Another

example is the USarray experiment, a 15-year deployment whereby a large traveling network

of 400 high-quality portable seismographs are being placed in temporary sites across the

United States in a rolling fashion (Fig. 1.6).
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Figure 1.5: Map of the global seismic network managed by or in collaboration with IRIS (figure
downloaded from www.iris.edu), updated to January 2015.

Figure 1.6: Map of the spatial and temporal distribution of the USarray experiment (figure downloaded
from www.iris.edu).

1.4 FORWARD MODELLING OF GLOBAL EARTH STRUCTURE: THESIS

OUTLINE

A large part of the global seismology applications summarised in section 1.2 involves the

calculation of theoretical seismograms. The process yielding to the calculation of synthetic
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seismic data is referred as seismic forward modelling and it is the main subject of this thesis.

In particular, here we are interested in computing relatively long-period surface waveforms

(T∼60 s–150 s) and relatively short-period body waves (T∼6 s–7 s). Fig. 1.7 shows an example

of real and synthetic three component synthetic waveforms typically used in this thesis.
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Figure 1.7: Example of synthetic and real three component (Z: vertical; L: radial; T: transverse)
displacement seismograms for the Mw 6.4 earthquake that occurred at depth of ∼50 km on Dec 19
2009 in Taiwan and recorded at the station KIP (epicentral distance: 73° ; azimuth: 74°). Body (P and
S) and surface (Rayleigh and Love) wave arrivals are indicated on the seismograms. Synthetics are
calculated with the spectral element method using the S40RTS mantle model (Ritsema et al., 2011).

In addition to earthquake source studies, the seismic forward modelling is used in

global seismology for: i) seismic tomography: differences between observed and theoretical

seismograms are minimised by successively modifying earth models; ii) assessment of

tomographic models: checking how the synthetics calculated in the tomographic model fit

the data. iii) targeted imaging studies, not involving a proper inverse problem: a hypothetical

model is "manually" changed by a trial and error procedure until the synthetics fit the data

sufficiently well.

Semi-analytical solutions for the calculation of synthetic seismograms in spherically

symmetric earth models are available at a reasonable computational cost (e.g., Takeuchi &

Saito, 1972; Friederich & Dalkolmo, 1995). For seismic wavefield simulations in laterally

varying earth models, several methods are available for computing both the full waveforms

or secondary observables. The accuracy of these methods depends on the theory used in the

calculations and usually is anticorrelated with the computational cost. For example, as seen

in section 1.3, the ray theory approach solves asymptotically the wave equation (Woodhouse

& Dziewoński, 1984). Due to its approximations, ray-theory is computationally inexpensive

but finite-frequency, scattering and diffraction effects are neglected. Another example is the

spectral element method (e.g., Komatitsch & Vilotte, 1998), which solves numerically the wave

equation. Due to the lack of physical approximations, it calculates the complete wavefield

with high accuracy but this accuracy is paid with a high computational cost. Hence, the choice



1.4. FORWARD MODELLING OF GLOBAL EARTH STRUCTURE: THESIS OUTLINE 12

of the method should depend on the particular problem to be addressed and the available

computing facilities.

Identifying accurate and computationally affordable forward modelling schemes is crucial

for the construction of the next generation of global images of the Earth’s interior. Thus,

our main goal is to investigate whether existing approximate, numerically efficient seismic

forward modelling methods are useful to calculate long-period surface waveforms (T∼60 s–

150 s) when building future global tomography images. On the other hand, highly accurate

calculations of the complete seismic wavefield, based on a purely numerical approach, are

key to independently assess the quality of 3-D Earth models and to interpret fine structures in

the Earth’s interior.

Advantages and disadvantages of the approximate and purely numerical methods for the

calculation of the seismic wave field are discussed in chapter 2. In the same chapter, we also

give the theoretical background and the implementation’s details of the methods used in this

thesis for the calculation of synthetic seismograms.

This thesis then addresses three main different applications of seismic forward modelling,

which are presented in chapters 3 to 6:

1. In the framework of global waveform tomography based on long-period surface

waves, we compare the accuracy of two approximate techniques against a purely

numerical approach. In particular, we compare synthetic surface waveforms

calculated in 3-D realistic earth models with the Born approximation (e.g., Capdeville,

2005) and the full ray theory (e.g., Ferreira & Woodhouse, 2007a) to the solutions of the

spectral element method (e.g., Komatitsch & Vilotte, 1998). Correlating errors due to

the physical approximations to parameters of the earth models, we define the domain

of validity of the Born approximation and full ray theory. Chapters 3 and 4 present and

discuss the synthetics experiments performed on the Born approximation and full ray

theory, respectively.

2. Often the assessment of tomographic models is performed calculating synthetic data

based on the same approximate theory as used for building the model, notably by using

checkerboard tests. However, errors due to the theory cannot be estimated with this

approach (Leveque et al., 1993). Conversely, if a different and more accurate technique

is employed to assess the quality of the model, it is possible to highlight the errors of the

model due to the theory used in the tomographic inversion. Hence, we use the accurate

spectral element method (e.g., Komatitsch & Vilotte, 1998) to assess the quality of a

new whole mantle radially anisotropic model (Chang et al., 2015) developed on the

basis of ray theory. Moreover, the performances of this model and some of its variants

are compared with predictions for the S40RTS mantle model (Ritsema et al., 2011). The

results of this assessment are presented and discussed in chapter 5.

3. In the framework of targeted studies of the structure of the Earth’s interior, we use

the spectral element method (e.g., Komatitsch & Vilotte, 1998) to model the structure
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of the lowermost mantle under the Indian Ocean. We study the effects of elastic,

anelastic and anisotropic structure on short-period body waveforms and investigate

whether seismic anisotropy is the only plausible cause of observed shear wave splitting

beneath the study region. The results of these synthetic experiments are presented and

discussed in chapter 6.

Finally, the main points and key findings of this thesis are discussed and summarised in

chapter 7.



2
FORWARD MODELLING OF THE GLOBAL

SEISMIC WAVEFIELD

2.1 SUMMARY

In seismology the forward modelling of the seismic wavefield involves the calculation of

synthetic seismograms for different purposes. It can be used as part of inverse problems

for earthquake source parameters and earth structure, it can be employed to model earth

structure without a proper inverse problem and it also finds applications as a validating

procedure of existing tomographic and source models.

Basically, a forward modelling method must solve the seismic wave equation. While in 1-

D earth models the normal mode summation method is routinely used and can be considered

exact, modelling of the seismic propagation in heterogeneous earth models is one of the

biggest challenges in seismology because of the complexity and computation demand of such

mathematical problem.

Here, we present a brief overview of some of the main forward modelling methods

in seismology. We start by presenting a brief summary of the normal mode formulation

of the wave equation, which is useful for understanding some of the methods extensively

used in this thesis. Then, we present the basis theory of two approximate methods, the

Born approximation and the full ray theory, for the calculation of long-period waveforms in

heterogeneous media. Approximate methods are usually fast and computationally affordable

but they have a limited domain of validity. For example, the Born approximation should be

valid when the heterogeneity of the earth models is weak while the full ray theory should be

applicable for media with smooth heterogeneity. In principle, these different and possibly

complementary domains of validity make these two methods attractive for the development

of hybrid forward modelling schemes.

Moreover, we present the spectral element method, which is a purely numerical

forward modelling method enabling the calculation of the complete seismic wavefield in

14



2.2. INTRODUCTION 15

highly heterogeneous media. It is more accurate than approximate techniques but also

computationally more expensive. In addition, the Gemini method for the fast computation

of seismograms in spherically symmetric earth models will also be presented.

When the solutions from different methods for waveform modelling in heterogeneous

models are compared, it is important to ensure that exactly the same earth models are used

by the different methods. Thus, we present the procedure we apply for this purpose.

2.2 INTRODUCTION

In geophysics, the term forward modelling refers to the mathematical calculation of a

response, given a physical model. In global seismology, the goal of the forward modelling is

to solve the seismic wave equation and calculate what would be recorded by a seismic station

at a given location, following the seismic wave propagation through a given earth model and

generated by a given source.

Seismic forward modelling is used in several seismological applications. It is a

fundamental part of the inverse problem for both source and earth structure and the

solutions of such problems strongly rely on the choice of the forward modelling scheme

employed. Moreover, the modelling of seismic propagation can be used to assess the quality of

tomographic and/or source models (e.g., by checking how the synthetics calculated in a given

model fit the data). Finally, seismic forward modelling can be performed to constrain Earth

structure without formally setting up an inverse problem. For example, the Earth structure

can be iteratively and "manually" changed to produce seismograms that fit the data well.

Two main sources of errors affect the seismic forward modelling problem. The first one

comes from the inaccuracy of the theory used to solve the wave equation. For example,

scattering, diffraction and coupling between waves are often ignored by some approximate,

asymptotic and semi-analytical methods. On the other hand, numerical methods are often

affected by numerical dispersion (artificial dispersion due to the discretisation of the domain)

and instability.

The second source of error arises from the inaccuracy of the earth and source models

used. We do not know exactly the parameters of the source and how the subsurface is made.

Moreover, the parametrisation of the earth (and source) model is only one of the possible

representations of the earth (and source) model itself, it is not the true earth (and source)

model.

Several forward modelling techniques are available for global seismology applications.

Such methods can be roughly subdivided into two large families: i) numerical approaches,

which enable the calculation of accurate seismograms in complex media usually by means

of heavy computations; and ii) approximate approaches, which apply mathematical and/or

physical simplifications of the wave propagation problem in order to solve it in an efficient

way. The latter are usually computationally more affordable but their efficiency is obtained at

the cost of reduced accuracy. Although the distinction between these two families is useful, it

must be borne in mind that their boundary is not always completely well defined. Numerical
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methods actually also use some approximations (e.g., by discretising the medium) and are

subject to numerical dispersion and instability. On the other hand, approximate methods

often employ numerical algorithms (e.g., integration solvers) to solve the wave equation.

In the following, we summarise the normal mode theory (section 2.3) whose basis and

terminology is needed to explain some of the forward modelling methods used in this thesis.

We then present two approximate techniques, the Born approximation and full ray theory

(section 2.4), and two numerical methods, the spectral element method and Gemini (section

2.5). For these methods we report the basis theory and we explain how we use them in this

thesis. Finally, we present a scheme that we developed for the consistent implementation

of 3-D earth models for seismic waveform calculations using different forward modelling

approaches (section 2.6).

2.3 NORMAL MODE FORMALISM

Most applications in short-period seismology (T less than ∼20 s) are essentially based on the

ray theory, an infinite frequency approximation, which provides an intuitive picture of seismic

wave propagation, being very useful for the interpretation of seismic observations. On the

other hand, in long-period seismology a common theoretical framework used to model the

seismic wavefield is the normal mode approach.

In this section we describe the fundamentals and the main aspects of the normal mode

approach that are useful for the approximate methods used in this thesis. For a complete

review of the normal mode theory, we refer to the studies of, e.g., Takeuchi & Saito (1972);

Woodhouse & Girnius (1982); Woodhouse (1983).

The seismic wave equation, with displacement u can be written as:

(H +ρ∂2
t )u = f (2.1)

where H is the integro-differential operator representing the elastic and gravitational

equations, ρ is the density distribution, ∂t denotes the partial differentiation with respect to

time, and f = f (x, t ) is the body force equivalent of the seismic source. Taking the Fourier

transform in time and considering the homogeneous equation (f=0), Eq. 2.1 can be written in

terms of an eigenfunction (sk ) - eigenvalue (ωk ) problem:

H sk = ρω2
k sk (2.2)

with k = 1,2, ...,∞. sk (x) represents the k th free oscillation (normal mode) of the earth with

the angular frequency ωk . It can be shown that the solution of Eq. 2.1 can be expressed as an

expansion in terms of the eigenfunctions sk :

u(x, t ) =∑
k

[
1−e−αk (t−ts )]Mi j ek

i j (xs)sk (x) (2.3)
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where αk denotes the decay of the k th mode due to the attenuation
(
αk = ωk

2Qk

)
. xs and ts

represent the spatial and temporal centroid of the source. Mi j is the moment tensor of the

source and ek
i j is the strain in the k th mode evaluated at the source’s location.

A synthetic seismogram u(x, t ) can thus be obtained by summation of the k modes of

the Earth (NMS, Takeuchi & Saito (1972)). When all the modes are included, the Eq. 2.3

is the exact solution to the wave equation, being one of the most commonly used methods

for the computation of theoretical seismograms in 1-D earth models (at least for long-

period seismology applications). The NMS technique is often used to validate other forward

modelling methods (both numerical and approximate techniques). In this thesis we use the

NMS method to calculate the reference waveforms used in Born approximation’s experiments

(see section 2.4.1).

To apply Eq. 2.3, the complete set of eigenfunctions sk (x) and the corresponding

eigenfrequencies ωk must be calculated. Following the classical approach (e.g., Morse &

Feshbach, 1953; Pekeris & Jarosch, 1958), sk (x) are expanded in spherical harmonic functions

(special functions defined on the surface of a sphere, Phinney & Burridge (1973)):

sr =U (r )Y m
l (θ,Φ) (2.4)

sθ =V (r )∂θY m
l (θ,Φ)+W (r )∂ΦY m

l (θ,Φ) (2.5)

sΦ =V (r )cscθ∂ΦY m
l (θ,Φ)−W (r )∂θY m

l (θ,Φ) (2.6)

Γ′ = P (r )Y m
l (θ,Φ) (2.7)

where Γ′ corresponds to the perturbations in the gravitational potential. U (r ), V (r ), W (r ),

and P (r ) are often denoted as scalar eigenfunctions, being the expansion coefficients of the

spheric harmonics Y m
l (θ,Φ) defined as:

Y m
l (θ,Φ) = (−1)m

[
(2l +1)(l −m)!

4π(l +m)!

] 1
2

P m
l (cosθ)e i mΦ (2.8)

with l = 0,1,2, ...;−l < m < l . P m
l are the associated Legendre functions:

P m
l (x) = (1−x2)

m
2

2l l !

d l+m

d x l+m
(x2 −1)l (2.9)

where l and m denote the angular and azimuthal orders. When Eqs. 2.4-2.7 are substituted

into Eq. 2.2 for a SNREI model (spherical, non-rotating, elastic, isotropic) a system of

ordinary differential equations for U (r ), V (r ), W (r ), and P (r ) is obtained. These equations

have solution only for discrete values of ωk , which are the angular frequencies of the free

oscillations of the Earth. The system of equations leads to two types of solutions, one for

U = V = P = 0, giving rise to the toroidal modes and one for W = 0, corresponding to the

spheroidal modes. The type of normal mode, toroidal or spheroidal, is defined by the index q .

The overtone number n is used for enumerating the eigenfrequencies in increasing order for
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a given q and l . When n = 0, the mode is named fundamental mode. For n > 0 the modes are

named overtones. n represents the number of nodes in the radial direction, while l represents

the number of nodes at the Earth’s surface. The 2l + 1 modes for each q , l and n form a

multiplet and the individual modes of the multiplet are named singlets. A multiplet is usually

denoted as nSm
l (spheroidal modes) and nT m

l (toroidal modes). However, in a SNREI model,

ωk does not depend on m and the multiplet is termed degenerate. Spheroidal modes for the

PREM model are shown in Fig. 2.1.
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Figure 2.1: Spheroidal modes for the PREM model (Dziewoński & Anderson, 1981). The various mode
branches are labeled: n=0 (fundamental model), n=1 (first overtone), n=2 (second overtone), etc.
Modified from Woodhouse & Dziewoński (1984).

A consequence of the non-sphericity, rotation and 3-D structure of the Earth is the

splitting of the modes (loss of the degeneracy). The splitting involves that the singlets of a

multiplet have angular frequency slightly different from each other. Another consequence

is the mode coupling that occur when the singlets are very close in frequency and cannot

be distinguished. While for 1-D Earth models the normal mode summation technique

provides a straightforward way to compute synthetic seismograms, for 3-D media it is more

cumbersome and computationally expensive (e.g., Lognonné, 1991; Deuss & Woodhouse,

2001). For these reasons, several approximations to solve the Eq. 2.3 have been developed

in the context of surface waves and long period body-waves. For example, the great-circle

path theory approximates the wave to a ray of infinite frequency only sensitive to the earth

structure along the great-circle path (Woodhouse & Dziewoński, 1984). On the other hand,

non-linear asymptotic techniques extend the wave’s sensitivity to the 2-D structure along

the path accounting for across-branch coupling between modes (Li & Tanimoto, 1993; Li &

Romanowicz, 1995). In the following section, we present two other fundamental approximate
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forward modelling schemes, which are the ones used in this thesis.

2.4 APPROXIMATE APPROACHES

In this thesis, we focus on two approximations for the calculation of synthetic seismograms

in heterogeneous earth models. The first method is the Born approximation, which is

based on the perturbation theory (see Backus & Gilbert (1967); Woodhouse (1976) for a

detailed description). In this framework, one starts from a reference model (usually 1-D) and

calculates the reference seismograms in such a model and then computes the perturbations of

the seismograms caused by variations in the model defined with respect to the reference one.

In order to maintain the linearity between the variations in the models and the perturbations

of the seismograms, the heterogeneity must be sufficiently weak.

The second method studied in this thesis is the full ray theory, an asymptotic approach

based on the assumption that the scale length of heterogeneity is larger than the wave

length of the seismic wave. In other words, the full ray theory is expected to work for earth

models sufficiently smooth. Although the definitions of weak and smooth are not defined

quantitatively in the literature, the two domains of validity are different and in principle

complementary. The complementarity of the validity domain of these two approaches makes

them potentially attractive to build a hybrid tomographic inversions method based on long-

period data.

2.4.1 BORN APPROXIMATION

In the framework of normal modes and perturbation theory of long-period seismograms u(t )

in the time domain, we can write:

u(t ) = u0(t )+δu(t ) (2.10)

where u0 is the seismogram calculated for a reference earth model (e.g, a 1-D earth model like

PREM (Dziewoński & Anderson, 1981)) and δu(t ) is the perturbation of the seismogram due

to the heterogeneity in the earth defined with respect to the reference model. The perturbed

wavefield can be calculated as (e.g., Woodhouse, 1983; Romanowicz, 1987):

δu(t ) = ∑
kk′

e iωk t −e iωk′ t

ω2
k −ω2

k ′
Akk′ (2.11)

where the real part is considered. k and k ′ denote two multiplets. Akk′ is defined as:

Akk′ =
∑

mm′
Rm

k H mm′
kk ′ Sm′

k ′ (2.12)

where m, m′ are the azimuthal orders of singlets within each of these multiplets. H mm′
kk ′ is

the splitting matrix including the linear functionals of the aspherical and spherical model
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perturbations and terms related to the gravitation and ellipticity of the Earth (Woodhouse,

1983; Tanimoto, 1984). Sm
k and Rm

k are the source and receiver terms as functions of colatitude

θ and longitudeΦ defined by Woodhouse & Girnius (1982):

Sm
k (θsΦs) =

N=1∑
N=−1

SkN Y N m
l (θs ,Φs) (2.13)

Rm
k (θrΦr ) =

N=1∑
N=−1

RkN Y N m
l (θr ,Φr ) (2.14)

SkN and RkN include the seismic moment tensor and eigenfunctions under the source and

receiver.

The Eq. 2.11 can be linearised (Woodhouse, 1983; Tanimoto, 1984) giving rise to the first-

order Born approximation (BORN):

δu(t ) =∑
k

[∑
k

i t

2ωk

∑
mm′

Rm
k H mm′

kk Sm′
k + ∑

k 6=k ′

e iωk t

ω2
k −ω2

k ′

∑
mm′

Rm
k H mm′

kk ′ Sm′
k ′

]
(2.15)

While the first term of Eq. 2.15 accounts for self-coupling (coupling within a multiplet),

the second term accounts for coupling between all multiplets. It is worthy to note that Eq.

2.15 is proportional to the time, with the term containing t being called secular because

it grows without bounds. For this reason BORN is a short-time approximation, which is

expected to break down for long time series. The Born approximation equation is solved

by integrating (summing) for all the scattering points due to heterogeneity. Each scattering

point is considered only once (no multiple scattering). Thus, being a single scattering

approximation it is valid in models with weak heterogeneity. Eq. 2.15 is also the basis of

the so-called finite-frequency theory (e.g., Montelli et al., 2004; Zhou et al., 2004), although

further approximations are applied in that case.

The summation over all the scattering points can be computationally heavy. In the

classical literature the BORN equation is solved analytically using a spherical harmonics

approach (e.g., Woodhouse & Girnius, 1982) or asymptotically with the stationary phase

approach (Romanowicz, 1987). Another class of methods involves the summation of the

effects of all scattering points numerically (e.g., Snieder & Romanowicz, 1988; Capdeville et al.,

2000). When BORN is dealt numerically, the summation over k and k ′ is performed down to a

given lmax , for each pair of source-receivers. Then, if nr is the number of receivers and ns the

number of sources, the numerical cost grows as a function of nr ns l 4
max because the corner

frequency of the source (chosen as cut-off frequency) is proportional to l 2
max . In this thesis,

we use BORN following the approach of Capdeville (2005) in which a forward wavefield from

the source to the scattering point is convolved with a backward wavefield from the scattering

integration point to the receiver, for each scattering point. With this strategy the numerical

cost is lower because it grows as a function of (nr +ns)l 2
max . A mesh similar to the one used

in the spectral element method (SEM, see section 2.5.1) is used to parametrise and integrate

over the volume of the Earth.
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BORN is used in chapter 3 to model long-period surface waveforms. Once that Eq. 2.15

is solved for obtaining the perturbations of the seismograms δu, these are summed to u0

calculated with the normal mode summation method (e.g., Takeuchi & Saito, 1972, see Fig.

2.2). These waveforms are then compared with the spectral element method’s solution (see

section 2.5.1), used as ground truth, to assess the accuracy of this approximation and to

evaluate the domain of validity of BORN.
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Figure 2.2: Sketch of the BORN algorithm. The red star and green triangle represent the source and
receiver, respectively. a) Schematic 1-D earth model. The reference seismogram u0 is calculated by
normal mode summation (Eq. 2.3). The wave path is the great-circle (dashed line). b) Schematic
heterogeneous earth model. The orange patch represents the heterogeneity of the earth model
(scattering point). The perturbation of the seismogram δu due to the scattering point is calculated
with BORN (Eq. 2.15). c) The seismogram u is calculated by summing the reference seismogram and
the perturbation seismogram (Eq. 2.10).

2.4.2 FULL RAY THEORY

The surface wave full ray theory (FRT) is an efficient tool to calculate synthetic waveforms

of surface waves. It combines the concept of local modes (Woodhouse, 1974) and exact ray

tracing (Woodhouse & Wong, 1986). Here, we will briefly give a theoretical introduction and

a schematic summary of the implementation of the method. For a more detailed description

we refer to Ferreira (2005); Ferreira & Woodhouse (2007a); Woodhouse (1974); Woodhouse &

Wong (1986); Tromp & Dahlen (1992a,b).

For a non-rotating, self-gravitating, anelastic earth model with smooth heterogeneity and

anisotropy, the displacement of surface waves in the frequency domain (u(ω)), travelling from

the source (s) to the receiver (r ) along the path (p), can be expressed as (Woodhouse, 1974;
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Tromp & Dahlen, 1992a,b):

u(ω) =
∞∑

n=0

∞∑
α=1

A(ω)e−iφ(ω) (2.16)

with

A(ω) = As Ap Ar (2.17)

and

φ(ω) =φs +φp +φr (2.18)

The displacement u(ω) is calculated as a double sum over the dispersion branches (n =
0,1,2, ...,∞) and the wave orbits (Rayleigh waves: R1, R2, R3, ... and Love waves: G1, G2, G3,

...). The amplitude A is the product, and the phaseφ is the sum, of the terms due to the source,

path and receiver. The source term is expressed as:

Ase−iφs = 1p
Cs

M : Ese i π4 (2.19)

where Cs is the angular group velocity under the source and is defined as Cs = ∂ω
∂λ where λ is

related to the local wavenumber k (λ= ka where a is the radius of the Earth). The expression

M : Es differs for Rayleigh and Love waves but in both cases includes the moment tensor of

the source, the local mode beneath the source, and the take-off angle of the ray. The receivers

term is defined as:

Ar e−iφr = 1p
Cr

v̂ ·sr (2.20)

where v̂ denotes the component of the surface wave displacement. Cr , analogously to the

source term, is the angular group velocity under the receiver. sr is different for Rayleigh and

Love waves but in both cases it is a function of the eigenfunction calculated for the structure

beneath the receiver and the arrival azimuth angle. The path term is given by:

Ap e−iφp =
√

λs

8πS
e

∫
path (−iλl− αl

Cl
)dl+i N π

2 (2.21)

where
p

S is the geometrical spreading of a monochromatic wave accounting for the

focussing and defocussing effects in the wave amplitudes due to heterogeneity. The term

e
∫

path (−iλl− αl
Cl

)dl+i N π
2 is the phase delay accumulated along the ray path. The factor e i N π

2 is

the so-called caustic phase shift with N taking into account the number of passages of the

wave through the caustic. The exponential term also includes αl (αl = ω
2Q ) to account for the

attenuation effects. It is a common assumption that Q is frequency dependent but within the

Earth it has been observed to be constant within bands of frequencies (e.g., Liu et al., 1976).

In this implementation of the algorithm, the dispersion for a medium with constant Qµ is
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calculated as:
µ(ω)

µ(ω0)
≈ 1+ 2

πQµ
l n

ω

ω0
(2.22)

A similar equation relates κ and Qκ. The reference angular frequency ω0 is 2π rad/s.

The following ordinary differential equation (Woodhouse & Wong, 1986; Ferreira &

Woodhouse, 2007a):

d 2γ

dΦ2 +γ=
(
1+ ν2

1+γ2

)
(∂θ−ν∂Φ) lnc(ω,θ,Φ) (2.23)

is used to calculate the exact ray path in the phase velocity map c(ω,θ,Φ). This is solved

for γ(Φ) = cotθ where θ is the colatitude and Φ the longitude on a sphere. ν is calculated

as ν = − dγ
dΦ = −(1+γ2) tan(ξ− π

2 ) where ξ is the azimuth. For c = const , the solution is the

great-circle path. The Eq. 2.23 is solved numerically. Instead of using the shooting method of

Woodhouse & Wong (1986) valid only for small deviations from the great-circle path, a more

complete scheme (e.g., Tape, 2003) is applied. This method involves the shooting of a fan of

rays reaching the longitude of the receiver. This shooting fan builds a function f (ψ) where f is

the finishing latitude as a function of the take-off angle ψ. The Newton’s method is then used

to find the take-off angle of the rays reaching the receiver. This method allows one to consider

multipathing effects (more than one path between the source and receiver). A sketch of the

method is shown in Fig. 2.3

The algorithm accounts for the ellipticity of the Earth (e.g, Dahlen & Tromp (1998)) and the

effects of the Earth’s gravitational field (Gilbert, 1980). Topography and bathymetry are also

incorporated by using the global ETOPO5 bathymetry and topography model (NOAA, 1988).

In this thesis, the earth models for the FRT calculations are given as depth profiles (ρ,

Vpv, Vph, Vsv, Vsh, Qκ, Qµ, η as functions of depth) (see section 2.6). These profiles are used

to calculate the local excitations at the source and receivers and to build the phase velocity

maps needed for the ray tracing.

The FRT algorithm is computationally very cheap. It needs only few minutes to calculate

90 mins of seismograms accurate down to 40 s for a source and 20 stations using a single

processor. However, the pre-calculation of Rayleigh and Love wave phase velocity maps (in

a period range of 40 s–270 s) needed as input for the FRT algorithm is heavier. Nevertheless,

since these are only calculated once and for all, the associated computational burden is not

problematic.

The FRT is referred as JWKB approximation or exact ray theory in other studies (e.g., Wang

& Dahlen, 1994, 1995; Tromp & Dahlen, 1992a,b). For its theoretical simplicity and negligible

numerical cost, the FRT is comparable to the great-circle path approximation (Woodhouse &

Dziewoński, 1984). Nevertheless, the FRT has already demonstrated to be more accurate than

the great-circle path approximation (Wang & Dahlen, 1994; Larson et al., 1998; Peter et al.,

2009) because it considers frequency-dependent off great-circle effects. Hence, the FRT might

be a valid and more accurate alternative to the great-circle path approximation for forward

modelling surface waveforms in the framework of waveform tomography.
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Figure 2.3: Sketch of the FRT algorithm. The red star and green triangle represent the source and
receiver, respectively. Colourful patches represent the heterogeneity of the earth model. The red wave
is the surface wave. a) Schematic phase velocity map with low (yellow/orange) and high (light/dark
blue) phase velocity heterogeneity. If there was no heterogeneity (constant phase velocity, no colourful
patches), the path of the surface wave would be the great-circle (dashed black line). Because of the
heterogeneity, the actual path of the surface wave (calculated with Eq. 2.23) deviates from the source-
receiver great-circle (solid black line). b) Schematic depth section of the shear speed perturbations
model. The source (Eq. 2.19) and the path (Eq. 2.20) terms account for the local modes (curves
in purple) under the source and receiver, respectively. c) Representation of the scale length of the
heterogeneity (Ω) and the wave length of the surface wave (λ). Theoretically, the FRT is valid when
λ¿Ω.

Being a high-frequency approximation, the FRT is expected to break down when the

Fresnel area (proportional to the wavelength) can no longer be approximated by a thin ray.

Thus, the FRT domain of validity is often expressed as λ¿Ω, whereby the wavelength of the

wave (λ) must be much smaller than the scale-length of heterogeneity of the earth model (Ω)

(see Fig. 2.3). Theoretically, when this condition is not respected, diffraction, scattering and

other finite frequency effects are no longer negligible.

One of the goals of this study is to investigate the accuracy of the FRT in modelling

fundamental mode (n = 0 in Eq. 2.16) long-period surface waves and and to quantify its

domain of validity when realistic 3-D earth models are used (see chapter 4).

2.5 NUMERICAL APPROACHES

Numerical methods are used in seismology to solve the wave equation in strongly

heterogeneous media, when approximate techniques no longer work. Several methods have

been developed for this purpose.
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Because of its simplicity, the finite-difference technique has been used in seismology at

all scales (from exploration to global scales) (e.g., Virieux, 1984, 1986; Igel & Weber, 1996;

Chaljub & Tarantola, 1997). It solves the strong formulation of the seismic wave equation

by approximating the displacement derivatives between neighbouring grid points with finite-

differences. The drawback of this method is that the discretisation of the domain can produce

some numerical dispersion and makes the implementation of the boundary conditions

difficult (e.g., at the earth’s surface). Pseudo-spectral techniques are also based on the

strong formulation of the wave equation but the displacement function is expanded in basis

functions (e.g, Kosloff & Baysal (1982); Furumura et al. (1998); Cormier (1999); Igel (1999)).

This method is affected by less numerical dispersion than the finite-difference approach but

the main limitations remain because of the strong formulation. Finite-element methods

are based on the weak form of the wave equation (e.g., Toshinawa & Ohmachi, 1992; Bao

et al., 1998). These methods subdivide the domain in elements in which the displacement

is approximated by a polynomial of low order that generates a large numerical dispersion due

to the low-order polynomial used. More details on the finite-element methods are given in

section 2.5.1 when the spectral-element method is presented.

In the following subsections we present two numerical methods for the calculation of

seismograms at the global scale: the spectral element method, which is a hybrid of finite-

element and pseudo-spectral techniques and the Gemini, which uses a numerical approach

to calculate the free oscillations of the Earth.

2.5.1 SPECTRAL ELEMENT METHOD

The spectral element method (SEM) allows for calculating the complete seismic wavefield

and it incorporates the effects due to velocity/density heterogeneity and related sharp

contrasts, anisotropy, anelasticity, Moho depth variations, topography and oceans, ellipticity,

rotation and self-gravitation (Komatitsch et al., 2002). It is a purely numerical method and,

theoretically, there is no restriction on the maximum frequency which can be simulated with

SEM.

The SEM technique was first developed in fluid mechanics in the 1980s (e.g., Patera,

1984) and has started to be used to simulate 2-D and 3-D seismic wave propagation in the

1990s (Priolo et al., 1994; Faccioli et al., 1997; Komatitsch & Vilotte, 1998; Seriani, 1998).

Several works demonstrated the feasibility of SEM for studies of global wave propagation (e.g.,

Komatitsch & Vilotte, 1998; Komatitsch & Tromp, 1999; Paolucci & Faccioli, 1999; Komatitsch

et al., 2000a,b). Then, Chaljub et al. (2003); Capdeville et al. (2003b); Komatitsch & Tromp

(2002a,b) applied SEM for such purposes. Today, a SEM code (SPECFEM3D_GLOBE) for

global seismology applications is freely available from the Computational Infrastructure for

Geodynamics website (www.geodynamics.org, last access: 08.07.2015) and it is in constant

update and development by developer seismologists. It is written in fortran (fortran95

and earlier versions) and it runs in parallel computers using the Message-Passing-Interface

protocol.
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Part of the work in this thesis is based on the versions 5 and 6 of the SPECFEM3D_GLOBE

package. We use the acronym SEM to refer to both the method and the code. A few routines

of the SEM code have been modified or adapted for the purpose of this research. We run SEM

in Grace, the UEA’s High Performance Compute Cluster and ARCHER (superceding HECToR),

the UK National Supercomputing Service.

The SPECFEM3D_GLOBE package is essentially made of two programs, the mesher and

the solver. In the following we report the basic theory behind the two programs giving some

technical details useful for the understanding of critical points of this thesis. A detailed

presentation of SEM theory and implementation can be found in Komatitsch & Tromp (1999,

2002a,b); Komatitsch et al. (2010a).

THE MESHER

SEM subdivides the volume of the globe into a mesh of non-overlapping hexahedral elements,

which are isomorphous to the cube, used as reference. The six sides of each element match

with the sides of the neighbouring elements. Such a mesh is called conforming in finite-

element theory. The shape and position of each element is defined by 27 control points (see

Fig. 2.4). The elements are mapped into the reference cube by means of the Jacobian of the

mapping. The partial derivatives of the Jacobian are defined in terms of Lagrange Polynomials

of degree 2 and their derivatives. The Jacobian should never vanish and its behaviour is a

measure of the quality of the mesh.
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the non-conforming interfaces. As a result, an iterative solver has to
be used to solve the non-diagonal system. Here we use a classical
SEM based upon a conforming mesh that retains a diagonal mass
matrix. Chaljub (2000) and Capdeville et al. (2002) incorporate
the effects of self-gravitation in a subsequent article (Komatitsch
& Tromp 2002), but they do not incorporate anisotropy or atten-
uation or the crust at short periods. Capdeville et al. (2002) deal
with problems posed by the fluid outer core by introducing an ef-
ficient coupling technique, which matches a normal-mode solution
in the core to a SEM in the mantle. This allows one to reduce the
cost of the method by assuming a spherically symmetric solution
in the core and using spectral elements only in the upper part of
the model. However, the requirement that the matching surface be
strictly spherically symmetric precludes the incorporation of ef-
fects due to CMB topography or the Earth’s ellipticity. Tromp &
Komatitsch (2000) used a SEM to simulate wave propagation in a
portion of the globe. In this article we extend the simulations to
the entire globe and incorporate effects due to anisotropy, attenua-
tion and the solid inner core. We implement the fluid–solid match-
ing conditions using a simple and efficient domain decomposition
technique.

Other researchers have attempted to simulate 3-D global wave
propagation based upon a coupled-mode approach, in which the
modes of a 3-D earth model are expressed as a sum over the modes
of a spherically symmetric earth model (e.g. Park 1986; Park &
Yu 1992; Lognonné & Romanowicz 1990; Capdeville et al. 2000),
or direct-solution methods, which use more general basis functions
(e.g. Hara et al. 1991; Geller & Ohminato 1994; Takeuchi et al.
2000). Coupled-mode and direct-solution synthetics are expensive
to calculate, particularly for models with strong lateral variations
which require a wide coupling bandwidth. Effects due to boundary
undulations are linearized, which makes it difficult to accommodate
significant variations in crustal thickness. The finite-difference tech-
nique (e.g. Igel & Weber 1996; Chaljub & Tarantola 1997; Thomas
et al. 2000) provides an alternative approach to the calculation of
global synthetics. It is well-known, however, that finite-difference
methods are inaccurate for surface waves because of numerical dis-
persion (e.g. Robertsson 1996). Furthermore, the design of a grid
for the globe poses geometrical difficulties because of the decrease
in grid spacing with depth. In addition, diffracted phases are hard
to model accurately, in particular at the CMB, because of the stag-
gered nature of the grid. Finally, pseudospectral methods have been
used to address the problem (e.g. Tessmer et al. 1992; Carcione &
Wang 1993; Furumura et al. 1998; Igel 1999). As in finite-difference
methods, gridding the entire globe has not yet been accomplished
because of difficulties related to the spherical geometry, and the
accurate implementation of the free surface boundary condition is
problematic. In addition, major velocity discontinuities in the model
are difficult to take into account because of the global polynomial
nature of the solution. In practice, coupled-mode, direct-solution,
finite-difference and pseudospectral methods often have to assume
that earth models are 2-D axisymmetric to reduce the computational
burden. The COSY project (Igel & Geller 2000) brought together
several research groups in an attempt to benchmark numerical algo-
rithms for 1-D and 3-D Earth models. The results are summarized in
a special issue of Physics of the Earth and Planetary Interiors (Vol-
ume 119, 2000) which illustrates many of the difficulties associated
with the problem.

2 M E S H I N G T H E G L O B E

As in any finite-element method, a first crucial step towards the ac-
curate simulation of 3-D seismic wave propagation is the design

of a mesh: the model volume ! needs to be subdivided into a
number of non-overlapping elements !e, e = 1, . . . , ne, such that
! = ∪ne

e=1 !e. In this section we highlight some of the basic ingre-
dients of mesh design, which are classical finite-element results.
For a detailed introduction to finite-element methods the reader is
referred to Zienkiewicz (1977) and Hughes (1987).

A classical spectral-element method relies upon a mesh of hexa-
hedral finite elements !e that are isomorphous to the cube. Tetrahe-
dra, which are classical in finite-element methods, are excluded in
the SEM because of the tensorization of the polynomial basis that
is required to obtain an exactly diagonal mass matrix, as will be ex-
plained in Section 3. The six sides of each hexahedral element must
match up exactly with the sides of neighbouring elements. Such a
mesh is traditionally called a conforming mesh in the finite-element
literature. For reasons of accuracy, a good mesh should honour all the
major first- and second-order discontinuities in the model, and the
size of the elements should reflect the distribution of wave speeds,
such that one maintains a relatively similar number of grid points
per wavelength throughout the model. Since wave speed generally
increases with depth, this implies that the elements should become
gradually larger with depth. These requirements make the design of
a mesh for the globe challenging.

The mapping between Cartesian points x = (x, y, z) within a de-
formed, hexahedral element !e and the reference cube may be writ-
ten in the form

x(ξ) =
na∑

a=1

Na(ξ)xa . (1)

Points within the reference cube are denoted by the vector
ξ = (ξ, η, ζ ), where −1 ≤ ξ ≤ 1, −1 ≤ η ≤ 1 and −1 ≤ ζ ≤ 1. The
geometry of our finite elements is defined in terms of na = 27 con-
trol points, or anchors, xa , as shown in Fig. 1. The na shape func-
tions Na are triple products of degree 2 Lagrange polynomials. The
three Lagrange polynomials of degree 2 with three control points
ξ0 = −1, ξ1 = 0, and ξ2 = 1 are %2

0(ξ ) = 1
2 ξ (ξ − 1), %2

1(ξ ) = 1 − ξ 2

and %2
2(ξ ) = 1

2 ξ (ξ + 1). Given the choice of anchors xa , the shape
functions Na determine the geometry of the element.

A small volume dx dy dz within a given finite element
is related to a volume dξ dη dζ in the reference cube by
dx dy dz = Jdξ dη dζ , where the Jacobian J of the mapping is

Figure 1. The geometry of each of the curved hexahedra is defined by
27 control nodes. This is a schematic example of a curved element and its
anchors.

C© 2002 RAS, GJI, 149, 390–412

Figure 2.4: Schematic representation of an element with its 27 control points, which is used in
the global scale implementation of the spectral element method used in this study. Adapted from
Komatitsch & Tromp (2002a).

The SEM mesh is named "cubed sphere" (e.g., Sadourny, 1972) because each face of the

reference cube is mapped to the surface of the sphere. The globe is thus subdivided in 6

chunks. Mapping twice, once at the earth’s surface and once at the inner-core boundary

(ICB) and interpolating in the radial direction, the meshing of the earth in finite-elements is

obtained. For seismic wavefield simulations it is important to maintain a relatively constant

number of grid points per wavelength. Since in the reference model PREM (Dziewoński &

Anderson, 1981) seismic speeds increase with depth, the size of the elements must increase
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analogously. In order to do so, the SEM mesh is doubled at the Moho, at the 670 km

discontinuities and at the ICB. The SEM mesh honours all the first-order discontinuities

of PREM: Moho, 220 km, 400 km, 670 km, core-mantle boundary (CMB) and inner-core

boundary (ICB) and the second-order discontinuities at 600 km, 771 km and at the top of

the D” layer (see Fig. 2.5). To do so, the faces of the elements match with the position of the

discontinuity.

394 D. Komatitsch and J. Tromp

Figure 6. (a) Mesh used for the simulations presented in this study. It honors first-order discontinuities at depths of 24.4 km, 220 km, 400 km, and 670 km,
the CMB, and the ICB; it also honours second-order discontinuities at 600 km, 771 km, and at the top of D′′. The mesh is doubled in size once below the
Moho, a second time below the 670 km discontinuity, and a third time just above the ICB. Each of the six chunks has 240 × 240 elements at the free surface
and 30 × 30 elements at the ICB. The triangle indicates the location of the source, situated on the equator and the Greenwich meridian. Rings of receivers with
a 2◦ spacing along the equator and the Greenwich meridian are shown by the dashes. We also show a close-up of the two mesh doublings in the mantle (b) .

3 T H E S P E C T R A L - E L E M E N T M E T H O D

In this article we ignore the effects of self-gravitation and rotation
on global wave propagation. Self-gravitation and rotation are only
relevant in the context of long-period surface waves and will be
considered in a subsequent article (Komatitsch & Tromp 2002).

3.1 Mantle and Crust

The wave equation for the Earth’s mantle and crust may be written
in the form

ρ∂2
t s = ∇ · T + f, (5)

where ρ denotes the 3-D distribution of density and T the stress
tensor which is linearly related to the displacement gradient ∇s by
Hooke’s law:

T = c : ∇s. (6)

In a transversely isotropic earth model, such as PREM, the elastic
tensor c is determined in terms of the five elastic parameters A, C,
L, N, and F (Love 1911).

In an attenuating medium, Hooke’s law (eq. 6) needs to be mod-
ified such that the stress is determined by the entire strain history:

T(t) =
∫ t

−∞
∂t c(t − t ′) : ∇s(t ′) dt ′. (7)

In seismology, the quality factor Q is observed to be constant over
a wide range of frequencies. Such an absorption-band solid may

be mimicked by a series of L standard linear solids (Liu et al.
1976; Carcione et al. 1988; Moczo et al. 1997). In practice, two
or three linear solids usually suffice to obtain an almost constant Q
(Emmerich & Korn 1987). Attenuation in the Earth is mainly con-
trolled by the shear quality factor, such that only the time dependence
of the isotropic shear modulus needs to be accommodated (the bulk
quality factor is several hundred times larger than the shear qual-
ity factor throughout the Earth). In a transversely isotropic earth
model one keeps track of the time dependence of the effective shear
modulus. The shear modulus of such a standard linear solid may be
written in the form (Liu et al. 1976)

µ(t) = µR

[
1 −

L∑

#=1

(
1 − τ ε

#

/
τ σ
#

)
e−t/τσ

#

]
H (t). (8)

Here µR denotes the relaxed modulus, H (t) is the Heaviside func-
tion and τ σ

# and τ ε
# denote the stress and strain relaxation times,

respectively, of the #th standard linear solid. Using the absorption-
band shear modulus (eq. 8), the constitutive relation (eq. 7) may be
rewritten in the form

T = cU : ∇s −
L∑

#=1

R#, (9)

where cU is the unrelaxed elastic tensor determined by the unrelaxed
shear modulus

µU = µR

[
1 −

L∑

#=1

(
1 − τ ε

#

/
τ σ
#

)
]
. (10)
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Figure 2.5: The SEM mesh is doubled at the Moho, 670 km and ICB. It honours the discontinuities at
the Moho, 220 km, 400 km, 600 km, 670 km, 771 km, CMB and ICB. Modified from Komatitsch & Tromp
(2002a).

In each element the seismic displacement has to be represented. Conversely to

the traditional finite-element methods where the same degree polynomials are used to

describe the shape and the functions within the elements, SEM employs higher-degree

polynomials (N=4) based on Gauss-Lobatto-Legendre interpolation points (GLL) to represent

the displacement within the element. Then, functions in each elements are defined by (N+1)2

points (125). The GLL quadrature is also used to integrate the displacement over the elements.

Each of the six chunks of the cubed sphere is divided in slices and each slice is managed

by a single PC processor (see Fig. 2.6). There are two key input parameters for the mesh

calculation. One is NPROC which is the number of slices (and then of processors needed)

along one side of a chunk. The other one is NEX that is the number of elements along one

side of a chunk at the surface. NEX is actually the value affecting the resolution of the mesher

and the accuracy of the seismograms. For example, it is estimated that for NEX=256, the

simulations are accurate to a shortest period of ∼17 s.

The mesher implements 1-D and 3-D earth models. Since SEM does not include almost

any approximation, there is no difference in both accuracy or computational cost between 1-



2.5. NUMERICAL APPROACHES 28

400 D. Komatitsch and J. Tromp

Figure 9. Each of the six chunks that makes up the cubed sphere is sub-
divided in terms of 25 slices of elements. Each of these slices resides on a
single CPU. The central cube is handled by one extra processor, such that
the entire calculation involves 151 CPUs. The results on the edges of a slice
need to be communicated to all its neighbours. Note that the communication
patterns are different for slices inside a chunk, on the edges of a chunk, and
on the corners of a chunk.

provide an excellent price-performance ratio, i.e. impressive perfor-
mance can be reached at relatively low cost compared to classical
shared-memory computers. The main drawback of the parallel ap-
proach is that one needs to use message-passing techniques, since
memory is distributed over the different PCs, which makes the im-
plementation of algorithms usually more difficult. An important
advantage, however, is the portability of codes written based upon

Figure 10. The MPI communication pattern is particularly difficult for the
central cube, which is handled by a separate processor that needs to commu-
nicate with all the other processors, because every slice of the mesh touches
it. Some slices have been removed for clarity. One needs to use a master/slave
programming methodology in order to avoid communication patterns that
deadlock. In our implementation, the central cube acts as a master to which
all the slices, the slaves, report the results of their calculations. The master
collects the results from the slices, adds them to his calculations, and sends
the results back to the slaves, who update their calculations.

Figure 11. Focal mechanisms for the 1996 February 17 Irian Jaya earth-
quake which occurred at a depth of 15 km, and the 1994 June 9 Bolivia event
which occurred at a depth of 647 km. Both events have a moment magnitude
Mw = 8.2.

Figure 12. (a) Gaussian source–time function used in the benchmarks be-
tween the SEM and normal-mode method (solid line). The source-time func-
tion is very similar to a triangle with a half-duration of 18 s (dotted line).
(b) Spectral amplitude of the source. Unlike the triangle, the Gaussian
source–time function has no significant energy at periods shorter than 20 s.

C© 2002 RAS, GJI, 149, 390–412

Figure 2.6: Cubed-sphere divided in 6 chunks. Each chunk is divided into slices (highlighted by
different colours). In this particular case, each slice contains 25 elements (at the surface). Modified
from Komatitsch & Tromp (2002a).

D and 3-D simulations. A difference in the numerical burden can instead be due to different

crustal models used (homogeneous, 1-D and 3-D). The complexity of the crust requires a large

number of elements

Several crustal and mantle models are implemented in SEM by default and other models

have been implemented for the purpose of this research (see section 2.6 for more details).

THE SOLVER

Here we describe the SEM solver with a particular focus on seismic wave propagation in the

crust and mantle. More complex equations can be derived for the liquid outer-core and the

inner-core (Komatitsch & Tromp, 2002a,b).

In the crust and mantle the seismic wave equation can be written as

ρ∂2
t u =∇·T+ f (2.24)

where ρ and f are the density distribution and a force equivalent to the earthquake,

respectively, as seen in the previous sections. u is the displacement field and T is the stress

tensor. Hooke’s law describes the relation between the stress tensor and the gradient of the

displacement:

T = c : ∇u (2.25)

where c contains the Love elastic parameters (A, C, L, N, F; Love, 1911). The seismic source is

expressed as:

f =−M ·∆(r− rs)S(t ) (2.26)
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where M is the moment tensor, rs is the point source location, ∆(r − rs) is the Dirac delta

function for the source at rs and S(t ) is the source-time function. While finite-difference and

spectral-element methods solve the differential (or strong) formulation of the wave equation

(Eq. 2.24) for the appropriate boundary conditions, SEM, as well as finite-element methods,

solves the weak formulation of the wave equation:∫
M
ρw ·∂2

t ud 3r =−
∫

M
∇w : Td 3r+M : ∇w(rs)S(t )−

∫
C MB

w · n̂d 2r (2.27)

This expression is obtained by taking the dot product of the Eq. 2.24 with a test vector w,

integrating by parts over the crust and the mantle (volume M) and imposing the stress-free

boundary condition. n̂ is the unit outward normal on the CMB. The term in the left-hand side

of Eq. 2.27 is called mass matrix and it is diagonal. The first term of the right-hand side is

named stiffness matrix and the second term in the right-hand side is the surface integral over

the CMB representing the interaction in traction between the solid mantle and the liquid core.

To solve the weak form of the wave equation, the integrals are discretised numerically.

The time dependence of the wave propagation is expressed with the following ordinary

differential equation in matrix form::

HÜ+KU+MU = F (2.28)

where U is the displacement vector, H is the mass matrix, K is the stiffness matrix, I is the

boundary interaction at the CMB and F is the source term. The time discretisation of the Eq.

2.28 is based on the explicit second-order finite-difference scheme to take full advantage of

the fact that the mass matrix is diagonal. The iterative scheme used converges after only two

iterations.

In the actual implementation of SEM the construction of the mesher and Eqs. 2.27 and

2.28 are more complicated because the method considers the full complexity of the real

earth. The globe is made elliptical following the Clairaut’s equation (Dahlen & Tromp, 1998).

Topography and bathymetry from ETOPO5 (NOAA, 1988) are included. The bathymetry map

is also used in the oceans. Self-gravitation is incorporated using the Cowling approximation

(Dahlen & Tromp, 1998). The Coriolis effect due to the earth’s rotation is also taken into

account. Accounting for all these effects is computationally cheap.

On the other hand, when seismic attenuation is fully taken into account, the increase in

the numerical cost of the simulations is considerable. SEM only includes the shear quality

factor Qµ because the attenuation in the earth is mainly controlled by it (Komatitsch & Tromp,

2002a) with the quality factor Qκ being larger than Qµ by a factor of about 100. The 1-D

attenuation model from PREM, which includes 5 layers in the crust and mantle and 1 layer

in the core, is used in our simulations. As seen in the section 2.4.2, Q is frequency dependent

but within the Earth it is observed to be constant within a band of frequencies. Hence, it

can be represented by a series of standard linear solids (e.g., Liu et al., 1976) and in our

simulations three linear solids are used. In an attenuating medium the stress tensor becomes
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time dependent and Eq. 2.25 can be written as:

T(t ) =
∫
−∞

∂t c(t − t ′) : ∇u(t ′)d t ′ (2.29)

In this thesis we use SEM for a wide variety of numerical experiments. In chapters 3 and

4, we use SEM as ground truth to assess the accuracy of the Born approximation and full ray

theory when modelling long-period surface waveforms. In these cases, the SEM’s mesh has

NEX=288 (i.e., seismograms are accurate down to T∼15 s) for which 60 minutes of simulations

need ∼3 744 CPU hours (864 processors running for ∼6h30 on the ARCHER supercomputer).

In chapter 5, we use SEM to validate global tomographic models. For these experiments, SEM

waveforms are calculated with NEX=480 (i.e., seismograms are accurate down to T∼9 s) for

which 60 minutes of simulations need∼5 280 CPU hours (2400 processors running for∼3h18).

Finally, in chapter 6, we use SEM to model isotropic, anisotropic and anelastic structure in the

lowermost mantle. In this case, NEX=768 is used (seismograms accurate down to T∼5.6 s) for

which 60 mins of simulations need ∼25 574CPU hours (3 456 processors running for ∼7h20).

From these examples, one can notice that the numerical burden increases both with the wave

frequency and the length of the simulation. However, this is irrespective of the number of

receivers considered.

2.5.2 GEMINI

Gemini (GEM) is the name of a code based on the algorithm of Friederich & Dalkolmo (1995)

for the calculations of seismograms in spherical earth models up to high frequencies (∼1 s). It

is a numerical method based on the normal mode formalism (see section 2.3).

Starting from the system of Eqs. 2.4-2.7 in the frequency domain, the scalar eigenfunctions

U , V , W , and Γ′ are directly evaluated by numerical integration using second-order minors. A

second-order minor of the matrix (as the one that can be obtained from the system of ordinary

differential Eqs. 2.4-2.7) is the determinant of a submatrix whereby two columns and two

rows are crossed out. This approach avoids the search of discrete eigenfrequencies and it is

particularly suitable for calculating body-wave seismograms at high-frequency (up to 1 s). It

honours discontinuities by means of continuous functions of the elastic parameters between

layers. The attenuation is accounted by using complex elastic moduli.

The computational cost of GEM depends on the highest frequency, similar to the

NMS method. However, while NMS is almost independent of the length of the synthetic

seismogram, GEM is more dependent on the length of the time series than the maximum

frequency required. This aspect makes GEMINI attractive for body-wave studies where the

seismogram required are only 20–40 minutes long. For surface waves studies, at least 60–90

minutes long seismograms are needed and in this case NMS is be preferred.

In chapter 6, we use GEM to model high-frequency body-waves travelling through the

lowermost mantle. Our GEM simulations are performed down to wave periods of T∼4 s and

are 33 minutes long. Less than 10 minutes of computing time are needed using a single

processor.
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2.6 3-D EARTH MODELS

While the implementation of 1-D earth models in the codes for the calculation of synthetic

seismograms is simple and does not pose any particular issue, the use of 3-D global earth

models can be more problematic, especially regarding the coupling between the mantle and

the crustal models. The forward modelling methods, used in this thesis for calculations in 3-D

earth models are BORN, FRT and SEM.

Our reference 3-D crustal model is CRUST2.0 (Bassin et al., 2000). In this model, the crust

is divided into blocks that include 7 layers with different compressional and shear wave speed

(Vp and Vs, respectively) and density ρ. Fig. 2.7 shows that the crustal thickness in the globe

varies from less than 8 km in the oceans to more than 60 km in the Tibetan Plateau. While

in the FRT code the implementation of multiple thin layers would just slightly increase the

computational cost, it would yield to extremely expensive computations in SEM and BORN

where the number of elements in the crust must be increased to match the boundary of the

crustal layers. Moreover, since the Moho depth is not constant, the coupling with the mantle

model is not straightforward.

Figure 2.7: Map of crustal thickness from the crustal model CRUST2.0 (Bassin et al., 2000).

To overcome problem of the multiple thin layers we need to smooth or down-sample the

crustal model. For the crust-mantle coupling we applied a procedure to ensure that exactly

the same crust+mantle models are used by the different codes, when these are used in the

same experiment. For example, in chapters 3 and 4 we use SEM to validate FRT and BORN. In

this case, the consistent implementation of the earth models is fundamental to avoid biases

in the comparisons of the seismograms generated by the different methods.

Hence, we developed a code to build the earth models (named ppm) which are used as

input to the BORN, FRT and SEM codes in exactly the same format. We also built a routine

to consistently read such earth models in the three codes. The ppm models are defined in a
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grid with a horizontal resolution of 2° x 2° and vertical resolution of ∼8 km. Our reference

crust (CRUST2.0) is defined in blocks of 2° x 2°. Moreover, S40RTS (Ritsema et al., 2011) is the

mantle model with highest nominal resolution used in this thesis (∼1 000 km). Thus, our 2° x

2° grid seems appropriate for our purpose.
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Figure 2.8: Depth profiles of Vs for CRUST2.0 (a) and S40RTS (b) for four different geographical
locations for a SEM’s mesh with NEX=480. a. Dots correspond to GLL points of the spectral elements.
b. The mantle profiles are zoomed within the first 800 km where the differences are larger.

To build the ppm models we strictly follow SEM’s algorithm (e.g., Komatitsch & Tromp,

2002a,b). The Moho (from either PREM or 3-D crustal models) and the other PREM’s

discontinuities (220 km, 400 km, 600 km, 670 km, 771 km, core-mantle boundary and inner-

core boundary) are included. Multiple crustal thin layers (e.g., in sedimentary basins) are

ignored and sharp discontinuities are smoothed. Fig. 2.8 shows the depth-profiles for a

few geographical locations for CRUST2.0 and S40RTS as they are sampled by SEM. The dots

represent the locations where the model is actually sampled and represent GLL points of the

elements. These particular examples are valid for a mesher built with a NEX value of 480. The

discontinuities within the crust are substituted by gradients between the layers.

Moreover, when the crust is thinner than 24.4 km (PREM’s Moho) the space between the

crust and the mantle is filled by extrapolating the mantle from the depth of 24.4 km. When the

Moho is deeper than 24.4 km, the crust is overprinted onto the mantle. We have extensively

tested that SEM gives the same results when using the models by default and our ppm version

of the same models (see Fig. 2.9). This procedure is employed for the numerical experiments

presented in chapters 3 and 4.

Finally, we implement the new global tomographic model SGLOBE-rani (Chang et al.,
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2015) in SEM for the experiments reported in chapters 5 and 6. Both radially anisotropic and

voigt average isotropic versions of the models are now available for SEM simulations.
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Figure 2.9: Schematic representation of the work flow employed for the consistent implementation
of the 3-D earth models in the BORN, FRT and SEM codes. 0. The code buildmodel, following the
algorithm of the SEM’s mesher, is built. It includes subroutines to build and successively read the
mantle and crustal ppm models. This step is made only once. 1. buildmodel is run to build the ppm
models (mantleppm and crustppm). 2. ppm models are read by our subroutine readmodelppm used
in SEM to calculate seismograms. 3. SEM is run using the same models of step 2 but using the format of
the model and subroutine to read the model implemented by default in SEM itself. 4. Check whether
the ppm models give the same result as SEM’s default models. 5. ppm models are used in BORN using
the same routines of step 2. 6. ppm models are used to calculate Rayleigh and Love phase velocity
maps (phasemaps*) using the same routines of step 2. 7 The FRT code is run using the phasemaps*.



3
VALIDITY DOMAIN OF THE BORN

APPROXIMATION FOR SEISMIC

WAVEFORM MODELLING IN REALISTIC

3-D EARTH STRUCTURE

Most of the material presented in this chapter is included in a peer-review article published

in Geophysical Journal International (Parisi et al., 2015) of which I am the first author.

3.1 SUMMARY

While the first-order Born approximation is increasingly being used in many seismic

tomography efforts, its domain of validity to forward model seismic waveforms has not been

quantified in the context of current 3-D Earth models yet. We here address this issue by

comparing teleseismic synthetic surface waveforms calculated using the Born approximation

with spectral element method solutions for a variety of realistic global 3-D Earth models.

We find that the Born approximation has a very limited domain of validity when applied to

seismic waveforms. Specifically, it can only accurately model the phase (amplitude) of surface

waveforms for source-receiver paths leading to time shifts smaller than about 15 % (5 %)

of the wave period considered. These conditions usually occur in Earth models as S20RTS

or S40RTS combined with a homogeneous crust for periods longer than T∼80 s–90 s. For

models with stronger heterogeneity and/or realistic 3-D crustal structure, only the phase of

waveforms with periods longer than ∼120 s–130 s can be accurately modelled with the Born

approximation.

34
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3.2 INTRODUCTION

With increasing computational power, current efforts to enhance the quality of global

seismic tomographic models involve the inversion of waveforms in order to fully exploit the

information contained in seismograms. Despite the recent development of highly accurate

forward modelling schemes (e.g., Komatitsch et al., 2002; Nissen-Meyer et al., 2014) promising

a new generation of high-resolution tomographic images, waveform tomography presents

some drawbacks, such as the high computational cost and the strong non-linearity of the

inverse problem (e.g., Nolet, 2014).

Because of the intensive computing needs of such accurate seismic wavefield calculations,

several approximations such as the great circle approximation (Woodhouse & Dziewoński,

1984) and non-linear asymptotic techniques (Li & Tanimoto, 1993; Li & Romanowicz, 1995)

have been developed and used. The Born approximation is a first-order perturbation theory,

which is often used in seismology within the normal mode framework (Woodhouse, 1980;

Tanimoto, 1984). It takes into account finite-frequency effects and has been successfully used

to calculate phase delay kernels in global tomography applications (e.g., Montelli et al., 2004;

Zhou et al., 2006). In this paper we test the possibility of using the Born approximation as a

forward modelling scheme for waveform tomography instead. Its implementation is relatively

simple and efficient. Also, it is particularly appealing in seismic tomography because it

naturally gives a linear inverse problem. On the other hand, the disadvantage of the Born

approximation is that it is a short-time approximation, i.e., it is only valid for sufficiently

small times, and for weak perturbations compared to the reference model (usually 1-D)

(Woodhouse, 1980; Tanimoto, 1984; Romanowicz et al., 2008). It is thus of primary importance

to understand the domain of validity of the Born approximation in relation to the strength of

the heterogeneity obtained from tomographic inversions.

In particular, we are here interested in quantifying the domain of validity of the Born

approximation when modelling relatively long-period surface waves in realistic 3-D Earth

models. Some previous studies have investigated how good is the Born approximation to

compute synthetic seismograms and kernels (Capdeville et al., 2002; Tromp et al., 2005;

Romanowicz et al., 2008; Panning et al., 2009; Peter et al., 2009; Dalton et al., 2014). However,

its accuracy has been examined only by considering a few simplified situations of mantle

heterogeneity or for a few existing 3-D tomographic models. Moreover, a general criterion

predicting the situations in which it breaks down has not been established yet. We here aim

at filling this gap in the framework of forward modelling techniques.

To achieve this goal we calculate time-domain waveforms with the short-time first-order

Born approximation (BORN) by using the approach described by Capdeville (2005). This

efficient technique considers the full mode coupling although not explicitly present in the

equations. The effect of the perturbations with respect to the 1-D reference model, which

is PREM in this study (Dziewoński & Anderson, 1981), is integrated numerically, leading to

compute the sum of the scattered fields induced by a finite number of scattering points. The

perturbed wavefield is summed to the 1-D reference seismogram calculated by normal mode



3.3. DATA AND METHOD 36

summation (NMS, Gilbert (1971)). Refer to section 2.4.1 in chapter 2 for more details regarding

the Born approximation and its implementation.

BORN waveforms are then compared with seismograms computed by the spectral

element method (SEM, Komatitsch & Vilotte (1998); Komatitsch & Tromp (2002a,b);

Komatitsch et al. (2010a)), and phase and amplitude accuracy are separately assessed for

different dominant wave periods and for a wide range of realistic 3-D Earth models.

3.3 DATA AND METHOD

We generate SEM (SPECFEM3D_GLOBE package) and BORN waveforms and systematically

compare the corresponding minor-arc fundamental mode Rayleigh (R1) and Love (G1) waves.

We choose SEM as ground truth because it is a highly accurate purely numerical method for

the full calculation of the seismic wavefield in realistic 3-D media and represents a powerful

tool to assess the accuracy of approximate forward modelling techniques. Refer to section

2.5.1 in chapter 2 for more details regarding SEM and its implementation.

Our FRT and SEM velocity waveforms are sampled at 1 s. A SRO—seismic research

observatory’ seismometer—instrument response is convolved to the waveforms to highlight

the surface waves. Finally, three different cosine bandpass filters with cut-offs at T∼60 s–

1 000 s, 100 s–1 000 s and 150 s–1000 s are applied.

FRT-SEM waveform comparisons are conducted within time windows capturing 2.5 cycles

of the R1 and G1 arrivals, centred around the maximum amplitude, which are manually

selected to avoid the interference of surface wave overtones. Errors in phase (Eφ) and

amplitude (E A) of time-domain velocity waveforms are estimated for every BORN–SEM pair

of waveforms. Eφ is computed as the phase shift in seconds by cross-correlation of the two

waveforms. In Figs. 3.8, 3.9, 3.10 and 3.12, Eφ is expressed as a percentage of the wave period

T. E A is calculated as:

E A = 100∗
∑

i |AB
i+Eφ

− AS
i |∑

i |AS
i |

(3.1)

where AB and AS are the amplitudes of BORN and SEM waveforms, respectively. The

summations are carried out over the waveform time samples i. The subscript i + Eφ of

AB indicates that the BORN waveform is shifted in time by Eφ seconds before computing

the difference AB − AS . Thus, E A represents the percentual amplitude difference to the

SEM amplitude computed for the best waveform phase-matching. We choose a percentage

difference rather than a ratio to indifferently consider the cases in which the BORN

amplitudes are either larger or smaller than the SEM ones by the same quantity. We also

preferred the absolute value for the difference rather than the squared difference to reduce

the influence of outliers. For the same reason, we choose to use the medians of the Eφ and E A

rather than the average values to summarise the results (presented in section 3.4). To carry out

realistic waveform tomography experiments, we calculate theoretical seismograms for three

real seismic events ev1, ev2 and ev3 with M wev1 = 6.4, M wev2 = 6.2 and M wev3 = 6.4, and
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depthev1 = 16km, depthev2 = 20 km and depthev3 = 15 km. Focal mechanisms are presented

in Fig. 3.1. Earthquakes are selected to sample different regions of the Earth and to excite

fundamental mode surface waves well. We select 73 stations from the Global Seismic Network

whose epicentral distance from the source ranges between 40◦ and 140◦. A sketch of the ray

coverage is presented in Fig. 3.1.

ev1

ev2 ev3

Figure 3.1: Source-receiver geometry used in this work. The sources ev1, ev2 and ev3 are at 16 km,
20 km and 15 km depth and the stations are represented by green triangles.

3.3.1 EARTH MODELS

In this study we adopt six mantle and two crustal models and we combine them to ensure

that we use realistic Earth models. The expression realistic Earth model is used here to

refer to a global tomography model that can be built from a tomographic inversion with the

current tomography techniques and amount of available data (e.g., Ritsema et al., 1999, 2011).

Such model displays the main tectonic features already known of the Earth and contains

heterogeneity with strength comparable to those of the most recent tomography models. A

tomography model is smooth by definition but it is the best seismic representation of the

Earth available for this study.

We start from S20RTS (Ritsema et al., 1999) and S40RTS (Ritsema et al., 2011) mantle

models. S20RTS and S40RTS are represented by 3-D perturbations in shear wave speed (δVs),

superimposed upon the spherically symmetric PREM model (Dziewoński & Anderson, 1981).

The perturbations in compressional wave speed δVp and density δρ are scaled with respect

to the Vs perturbations, δρ=0.40δVs (Anderson et al., 1968) and δVp=0.59 δVs (Robertson

& Woodhouse, 1995). We build two other models by multiplying the δVs , δVp and δρ

of S20RTS by the factors PV=0.5 and PV=1.75. PV=0.5 is adopted to build a model with

fairly weak heterogeneity compared to current tomographic models. On the other hand,

we choose PV=1.75 as end-member model with heterogeneity as strong as in recent high-

resolution upper mantle models (e.g., Schaeffer & Lebedev, 2013). S40RTS is parameterised

with spherical harmonic basis functions expanded up to degree 40 (lmax =40). We derive two
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other models from S40RTS by truncating the maximum degree of the spherical harmonics to

20 and 12, gradually eliminating the smaller scale-lengths of heterogeneity.
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Figure 3.2: Rayleigh wave phase velocity maps at T∼60 s, 100 s, 150 s for the models obtained by varying
the PV factor. a- PV=0.5 + homogeneous crust; b- PV=1 (S20RTS) + homogeneous crust; c- PV=1.75 +
homogeneous crust. The scale of perturbations in the phase velocity maps is shown on the left for each
row.
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Figure 3.3: As in Fig. 3.2 but for Love waves.
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At first we couple the six mantle models with a homogeneous crust layer (Moho

depth=24.4 km, Vs=3.2 km/s, Vp=5.8 km/s, ρ=2.6 g/cm3). The models obtained by varying the

PV factor and combined with the homogeneous crust shall be referred as models a (PV=0.5),

b (PV=1.0) and c (PV=1.75) and the corresponding Rayleigh and Love phase velocity maps

are shown in Figs. 3.2 and 3.3. The models obtained by varying lmax and combined with the

homogeneous crust shall be referred as models d (lmax =40), e (lmax =20) and f (lmax =12) and

the corresponding Rayleigh and Love phase velocity maps are shown in Figs. 3.4 and 3.5.
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Figure 3.4: As in Fig. 3.2 for the models obtained by varying the lmax . d- lmax =40 (S40RTS) +
homogeneous crust; e- lmax =20 + homogeneous crust; f - lmax =12 + homogeneous crust.

In addition, we couple S20RTS with a 3-D crustal model derived from CRUST2.0 (Bassin

et al., 2000). For the sake of simplicity in the calculations and to avoid the need to

mesh complex crustal discontinuities in SEM (which could introduce numerical errors), the

corresponding crust has a constant Moho depth (24.4 km). Effects of the increase (or decrease)

of the Moho depth with respect to CRUST2.0 are compensated by an increase (or decrease) of

the wave speeds above (or below) the Moho, applying the trade-off relationship between the

Moho depth and the seismic shear-wave speed reported by Lebedev et al. (2013). This model

will be referred as g (Figs. 3.6 and 3.7).

We carried out extensive tests to ensure that the Earth models are consistently

implemented in the SEM and BORN codes (see section 2.6 in chapter 2 for more details).

3.4 RESULTS

We calculate Eφ and E A for BORN-SEM pairs of R1 and G1 waveforms at T∼60 s, 100 s and 150 s

for every path shown in Fig. 3.1. For each model, the medians of Eφ, expressed as percentage
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Figure 3.5: As in Fig. 3.4 but for Love waves.
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velocity maps is shown on the left for each row.
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Figure 3.7: As in Fig. 3.6 but for Love waves.
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of a wave cycle, and E A , as defined by Eq. 3.1, are summarised in Figs. 3.8 and 3.9. Figs. 3.8

and 3.9 highlight that: (i) the fit between BORN and SEM calculations deteriorates both in

amplitude and phase as the dominant period decreases and is particularly poor at T∼60 s;

(ii) a worsening of the fit is also associated with the increase of the PV factor; (iii) using a 3-D

crustal model rather than the homogeneous layer yields a poorer BORN–SEM match; and, iv)

BORN is not affected by the scale length of heterogeneity of the model (expressed by lmax ).

These considerations are valid regardless of the type of waves (Rayleigh or Love).
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Figure 3.8: Summary of the phase (Eφ) and amplitude (E A) errors for R1 at T∼60 s, 100 s and 150 s as a
function of the different models used in this work. Eφ is the percentual ratio of the BORN–SEM time-
shift to the dominant period. E A is calculated with equation 3.1. Eφ and E A values are the medians
for each model computed for all the paths illustrated in Fig. 3.1. The black dash-dot lines are our
reference thresholds corresponding to Eφ=5 % and E A=10 %. Model labels: a- PV=0.5 + homogeneous
crust; b- PV=1 (S20RTS) + homogeneous crust; c- PV=1.75 + homogeneous crust; d- lmax =40 (S40RTS)
+ homogeneous crust; e- lmax =20 + homogeneous crust; f - lmax =12 + homogeneous crust; g - PV=1.0
(S20RTS) + 3-D crust.

By visual inspection of the waveforms and associated errors, we setup error thresholds

to define a good modelling. These thresholds are 5 % of a wave cycle for Eφ and 10 % for

E A . For illustration, examples of waveform comparisons for various values of Eφ and E A

are shown in Fig. 3.10. By means of these thresholds (black dash-dot lines in Figs. 3.8 and

3.9), it arises that BORN matches well the phase of Rayleigh waves predicted by SEM only

in case of mantle models with: (i) PV=0.5 for T>60 s; (ii) PV=1.0, such as S20RTS (but also

S40RTS and models derived from it) for T>100 s; (iii) PV=1.75 and PV=1.0 mantle when the

latter is combined with a heterogeneous crust model similar to CRUST2.0, for T>150 s. On

the other hand, surface wave amplitudes modelled with BORN only match SEM results for

waves with T 150 s and for the models: (i) S20RTS with PV=0.5; (ii) S40RTS; and, (iii) models
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Figure 3.9: As in Fig. 3.8 but for G1.

derived from S40RTS with lmax =20 and lmax =12. Regarding Love waves, the performance of

the Born approximation follows similar trends but with slightly poorer fits to SEM results. On

the whole, the performance of the Born approximation is not encouraging in the framework of

the forward modelling for waveform tomography based on current 3-D tomographic models.

3.4.1 DOMAIN OF VALIDITY

In order to define the domain of validity of BORN applied to waveforms, we analyse the

correlation between the individual BORN errors and the phase delays in seconds accumulated

along the paths (δφ), with respect to the reference waveforms (Fig. 3.11). Namely, δφ is

the phase-shift in seconds between the SEM seismogram for a 3-D Earth model and the

NMS reference waveform calculated for PREM. δφ is calculated by cross-correlation and it is

expected to be linearly related to the perturbations of the 3-D model along the path (Mercerat

& Nolet, 2013). Fig. 3.11 shows that BORN fits well SEM in phase when δφ is less than 15 %

of a waveform cycle, quantifying a narrow but well-defined domain of validity. For δφ larger

than 15%, Eφ linearly grows with δφ. This behaviour is valid for all the periods and models

considered. A correlation between E A and δφ is also reported in Fig. 3.11. The validity domain

for the amplitude modelling is narrower (δφ<5%) and less defined. Note that Eφ and E A

against δφ show a similar behaviour for both Rayleigh and Love waves (represented in Fig.

3.11 with different symbols).
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Figure 3.10: BORN–SEM comparison examples of R1—visible in the Z (vertical) and L (radial)
seismogram components—and G1—visible in the T (transverse) component—waveforms at T∼100 s
for the event ev1. Eφ and E A are reported above each pair specifying the relation with the threshold
of goodness used in this work (Eφ=5 % and E A=10 %). Seismogram component, epicentral distance
and azimuth are indicated in the left-bottom corner. The black dashed lines indicate the selected time
windows for the errors calculations.

3.5 DISCUSSION

The Born approximation is a short-time approximation, which depends on: (i) the strength

and scale of heterogeneity; (ii) the number of wave cycles in the heterogeneous regions,

which in turn depends on the wave frequency and path length. Indeed, increasing the wave

frequency will lower the wavelength and thus increase the number of wave cycles in a given

fixed heterogeneous region and fixed time window length. Likewise, using longer paths and

thus longer time windows to reach seismic surface waves leads to a larger number of wave

cycles. To study the effects of the short-time condition, we analyse Eφ as a function of the

epicentral distance (Fig. 3.12). A low positive correlation between the errors and distance is

found for all the periods considered. Thus, we only show the correlation of Eφ for T∼100 s for

conciseness. Despite the average error (green line, Fig. 3.12) showing a slightly positive slope,

the large amount of small errors at large distances suggests that the Born approximation can
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Figure 3.11: Phase (Eφ) and amplitude (E A) errors of BORN with respect to SEM synthetics at T∼60
s, 100 s and 150 s, for PV=0.5, 1.0 (S20RTS) and 1.75 mantle models combined with a homogeneous
crustal layer versus the accumulated phase-delay on the path (δφ). Each point corresponds to a BORN–
SEM pair. δφ is the time-shift between SEM3D and SEM1D waveforms. Eφ is calculated as time-shift
between a BORN-SEM pair and E A using equation 3.1 for each BORN-SEM pair. Only -50 s< Eφ <50 s
and E A <100 % are included to zoom the plot around the window of validity. R1v and R1h refer to
Rayleigh waves windowed in the vertical and radial components of the seismogram, respectively. G1h
refers to Love waves windowed in the transverse component. Red lines are the reference thresholds
(Eφ=±5 % and E A=10 %). Blue lines enclose the BORN validity domain, δφ <15 % for the phase and
δφ<5 % for the amplitude. See section 3.4.1 for more details.

virtually model well surface waves propagating even at distances of 140◦ (maximum distance

considered in this work). This is due to the fact that the heterogeneity in 3-D Earth models is

not distributed uniformly. Thus, the performance of the Born approximation is more strongly

correlated with the total phase delay accumulated along the path (δφ) than with the path

length.

This fact explains why the medians of the errors rise with strength of heterogeneity of the

3-D Earth models (expressed by the PV factor) and the frequency of the wave. In fact, because

of the dispersion of surface waves, the shorter is the period the shallower are the regions of the

Earth sampled by the wave. In realistic models, surface waves with dominant period of 60 s,

for example, are sensitive to structure down to 250 km–300 km where stronger heterogeneities

are present. Conversely, for longer period surface waves the sampled regions include larger

depths with weaker heterogeneity. This can be easily noticed from the phase velocity maps at

different periods presented in Figs. 3.2-3.5. Thus, we can expect that at periods shorter than
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Figure 3.12: Correlation between Eφ (in percentage) and the epicentral distance at T∼100 s for PV=0.5,
1.0 (S20RTS) and 1.75 mantle models combined with a homogeneous crustal layer. R1v and R1h refer
to Rayleigh waves windowed in the vertical and radial components of seismogram, respectively. G1h
refers to Love waves windowed in the transverse component. In green, a moving average with a window
of 4° is shown.

60 s BORN will perform even worse due to the even stronger heterogeneity in the uppermost

mantle and crust. Also, the slightly larger discrepancies obtained for Love waves (Fig. 3.9) are

indeed related to the stronger heterogeneities in the Love phase velocity maps. In fact, in our

calculations, the Love wave phase velocity maps (Figs. 3.3 and 3.5) have on average anomalies

20 % stronger than the corresponding Rayleigh maps. Finally, the observed worsening in the

performance of BORN when using a 3-D crust compared to a homogeneous crustal model is

due to the large heterogeneities in CRUST2.0

The high correlation between BORN’s performance and δφ is confirmed by the domain of

validity shown in Fig. 3.11. Our analysis shows that the Born approximation can accurately

model the waveform phase of Rayleigh and Love waves for δφ not exceeding 15 % of the wave

period and the waveform amplitude for δφ not exceeding 5 % of the period. This condition is

more stringent than the rough estimate of 25 % reported by Panning et al. (2009). Our findings

are in agreement with those presented by Dalton et al. (2014), which used the technique

of Zhou et al. (2004) to calculate amplitude kernels based on the Born approximation. The

authors showed that the misfits decrease with the dominant period and for T>75 s the misfits

also decrease with the epicentral distance.



3.6. CONCLUSIONS 46

3.6 CONCLUSIONS

Given the increasing interest in forward modelling schemes for seismic tomography taking

finite frequency effects into account, the Born approximation is highly appealing due to

its simplicity and relative efficiency. However, this method is valid in a limited range

of seismic velocity perturbations and time windows, which prompted us to quantify its

domain of validity for forward modelling surface waveforms in a range of realistic current

3-D earth models. Previous studies (e.g., Capdeville et al., 2002; Romanowicz et al., 2008;

Panning et al., 2009; Peter et al., 2009; Dalton et al., 2014) investigated the accuracy of the

Born approximation but a unique criterion defining its domain of validity has not been

determined yet, especially regarding the forward modelling of seismic waveforms. We thus

generated synthetic seismograms by using the Born approximation for seven different realistic

combinations of 3-D mantle and crustal models and we treat SEM synthetics as ground truth.

We separately considered phase and amplitude errors between BORN and SEM synthetics at

T∼60 s, 100 s and 150 s. We found that the Born approximation can only accurately model

the phase of surface waveforms for source-receiver paths leading to time shifts smaller than

about 15 per cent of the wave period considered. Regarding the amplitude modelling, the

time-shifts cannot exceed 5 per cent of the period. In practice, these conditions are met for 3-

D earth structure with the same power of heterogeneity as in the S20RTS or S40RTS models, or

lower, at wave periods longer than 80 s–90 s for the phase and 150 s for the amplitude. Hence,

the short-time first-order Born approximation has a very restricted domain of validity when

applied directly to waveforms. More accurate forward modelling schemes should be used in

waveform tomography, or, alternatively, inversions based on secondary measurements such

as phase delays or amplitude anomalies remain an attractive possibility.



4
EMPIRICAL ASSESSMENT OF THE

VALIDITY LIMITS OF THE SURFACE WAVE

FULL RAY THEORY USING REALISTIC 3-D

EARTH MODELS

Most of the material presented in this chapter is included in a research article submitted for

publication to Geophysical Journal International (Parisi & Ferreira, n.d.) of which I am the

first author.

4.1 SUMMARY

The surface wave full ray theory (FRT) is an efficient tool to calculate synthetic waveforms of

surface waves. It combines the concept of local modes with exact ray tracing as a function of

frequency. The purpose of this study is to evaluate the ability of the FRT approach to model

teleseismic long-period surface waveforms (T∼60 s–150 s) in realistic 3-D Earth models and

to empirically assess its validity domain.

To achieve this goal, we compute vertical and horizontal component fundamental mode

synthetic Rayleigh waveforms using the FRT, which are compared with calculations using the

highly accurate spectral element method. We use thirteen global earth models including 3-

D crustal and mantle structure, which are derived by successively varying the strength and

length-scale of heterogeneity in current tomographic models.

We find that the FRT accurately predicts the phase and amplitude of long-period Rayleigh

waves (T∼60 s–150 s) for almost all the models considered, with errors in the modelling of

the phase (amplitude) of Rayleigh waves being always smaller than 5 % (10 %), except for two

models. The earth models for which FRT breaks exhibit shear-wave anomalies of up to ∼20 %,

47



4.2. INTRODUCTION 48

which is much larger than in current global tomographic models. This suggests that the FRT

approach is a useful means to build the next generation of surface wave tomography models.

We also find that while the FRT errors in modelling the phase of waveforms do not depend

strongly on frequency or component, the amplitude errors increase with increasing wave

period and are larger for horizontal than for vertical component Rayleigh waves. Moreover, we

observe a clear correlation between the FRT amplitude and phase errors and the roughness

of the models. This allows us to quantify the limits of validity of the FRT in terms of model

roughness thresholds, which can serve as useful guides in future seismic tomographic studies.

4.2 INTRODUCTION

Recent global 3-D whole-mantle tomographic models (e.g., Chang et al., 2015; Moulik &

Ekström, 2014; Ritsema et al., 2011; Auer et al., 2014) show an overall good consistency in

terms of large-scale isotropic shear-velocity structure, at least in the upper mantle (e.g., Chang

et al., 2015). However, smaller-scale features (e.g., smaller than ∼1 000 km) can exhibit high

levels of disagreement, particularly in the deeper mantle.

Several factors can affect the outcome of a tomographic study, such as the type, amount

and distribution of data, the model parametrisation and the forward and inverse modelling

schemes used. Most of the current whole-mantle models (e.g., Chang et al., 2015; Moulik

& Ekström, 2014; Ritsema et al., 2011; Auer et al., 2014) employ the so-called great-circle

approximation, which is an infinite frequency ray theory approach that only takes first-

order path effects into account (Woodhouse & Dziewoński, 1984) to calculate either body-

wave travel times or surface wave phases. The success of this approach lays in the low

computational cost involved, allowing the inversion of large datasets, which may at least

partly compensate the theory’s limitations.

The current rapid development of powerful computing facilities is pushing tomographers

towards the use of more sophisticated theories to increase the resolution of global Earth

models. For example, the upper-mantle tomographic study of Schaeffer & Lebedev (2013)

goes beyond the great-circle approximation by integrating across approximate sensitivity

areas that depend on the wave frequency considered. More recently, French & Romanowicz

(2014) used a hybrid approach based on the highly accurate spectral element method (SEM,

e.g., Komatitsch & Vilotte, 1998) to build a new whole mantle model. In order to reduce the

computational cost of the inverse problem, the non-linear asymptotic mode coupling theory

(Li & Romanowicz, 1995) was used for the calculation of sensitivity kernels.

Another forward modelling technique that is more accurate than the great-circle

approximation is the surface wave full ray theory, also referred as JWKB approximation or

exact ray theory in other studies (Woodhouse, 1974; Woodhouse & Wong, 1986; Tromp &

Dahlen, 1992a,b; Ferreira & Woodhouse, 2007a). While maintaining the physical simplicity

and numerical efficiency of the great-circle approximation, the FRT approach considers

off-great circle path and focussing/defocussing effects. Moreover, it also accounts for the

influence of local structures at the source and receiver on the waveforms. However, it still
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is an infinite frequency approximation, valid for smooth earth models, and it is expected to

break down when the Fresnel zone (which is proportional to the wavelength) can no longer

be approximated by a thin ray.

Some previous studies have investigated the quality of surface waveform predictions

taking into account off-great circle path effects. For example, Wang & Dahlen (1995)

compared FRT surface wave synthetics with coupled-mode theoretical seismograms and

showed that the accuracy of the FRT decreases for rougher models. Similarly, Peter et al. (2009)

also found increasing misfits for rougher media when comparing exact ray theory calculations

with results using a "membrane" approach to compute surface waveforms numerically.

Romanowicz et al. (2008) combined the non-linear asymptotic mode coupling theory (Li

& Romanowicz, 1995) with the exact ray tracing (Woodhouse & Wong, 1986; Romanowicz,

1987) showing that, in most of the cases, the predictions improve when focussing effects are

considered. Finally, Dalton et al. (2014) assessed the quality of FRT amplitude predictions and

found that, for periods longer than 50 s, neglecting the broad zone of surface wave sensitivity

worsens the accuracy of the FRT. However, these studies have some limitations, such as, e.g.,

the use of relatively few and/or simplified Earth models and the lack of quantitative criteria

establishing the validity domain of the theoretical formulations used.

The goal of this study is to quantify the validity domain of the FRT when modelling long-

period surface waveforms in realistic 3-D Earth models. The expressions realistic Earth model

is used with the same meaning explained in chapter 3 (section 3.3.1). Ultimately, we aim at

examining whether the FRT might be a useful forward modelling scheme for future waveform

tomography efforts. We calculate fundamental-mode surface waveforms using the FRT for 13

realistic 3-D earth models with various strength and scale of heterogeneity. These waveforms

are then compared with synthetic seismograms generated with the SEM by calculating phase

and amplitude anomalies between them in the period range T∼60 s–150 s. By correlating the

anomalies to the roughness of the earth models, we define the validity domain of the FRT,

which will be a useful reference for future seismic tomography studies.

4.3 SURFACE WAVE FULL RAY THEORY

4.3.1 THEORY

Surface wave FRT involves the concept of local normal modes (Woodhouse, 1974) and exact

ray tracing (Woodhouse & Wong, 1986) as a function of frequency. In the framework of FRT,

the seismic displacement of surface waves involves a source, a path and a receiver term.

The source term includes the source mechanism, local mode eigenfunctions (and their radial

derivatives) for the structure beneath the source, and the ray’s take-off angle. The path term

takes into account off-great circle path deviations as well as focusing and defocusing effects

due to Earth’s heterogeneity. Finally, the receiver term includes local mode eigenfunctions for

the structure beneath the receiver. In order to calculate the path term, we use fundamental-

mode phase velocity maps that we computed for the thirteen 3-D earth models used and for
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the wave periods considered (see section 5.3). We refer to section 2.4.2 of chapter 2 for more

detail on the FRT and its implementation.

Being a high-frequency approximation, the FRT is valid in a smooth medium on the

scale of a wavelength. Hence, diffraction, scattering and other finite frequency effects are

not considered, and the FRT domain of validity is often expressed as λ ¿ Ω, whereby the

wavelength of the wave (λ) must be much smaller than the scale-length of heterogeneity of

the earth model (Ω). Thus, in this study we use 3-D earth models with different scale lengths

of heterogeneity (see section 4.5.1). Moreover, since the most recent tomographic models

(e.g., Schaeffer & Lebedev, 2013) seem to show much stronger heterogeneity than in previous

models (e.g., Ritsema et al., 2011), here we test the FRT also using earth models with various

strengths of heterogeneity (see section 4.5.1). For each phase velocity map used in the FRT

calculations, we compute its roughness R as the root-mean-square of the gradient of the map:

R =
√∫

Ω
|∇1δc|2d A (4.1)

where ∇1 = θ̂ ∂θ+ Φ̂(sinθ)−1∂φ, θ the colatitude and Φ the longitude.
∫
Ω denotes integration

over the surface of the unit sphere and δc = c−cPRE M

cPRE M is the phase velocity perturbation as a

function of the frequency. The parameter R will be crucial to quantify the validity domain of

the FRT in section 4.7.

4.4 WAVEFORM CALCULATIONS

We generate synthetic waveforms with the FRT and we use SEM (SPECFEM3D_ GLOBE

package; Komatitsch & Vilotte (1998); Komatitsch & Tromp (2002a,b); Komatitsch et al.

(2010a)) as ground truth to assess the accuracy of the FRT calculations. As seen in chapter

2 (section 2.5.1), SEM is a highly accurate method for calculating the complete seismic

wavefield even in highly heterogeneous media and has already been previously used in a few

studies to benchmark forward modelling methods (Romanowicz et al., 2008; Panning et al.,

2009; Dalton et al., 2014; Parisi et al., 2015).

We select 3 real earthquakes and 75 seismic stations to achieve a realistic source-receiver

distribution (Fig. 3.1 in chapter 3). The earthquakes are selected attempting to evenly sample

most of the regions of the globe and with hypocentral depth less than 25 km to best excite

fundamental mode surface waves. Paths are selected with an epicentral length ranging

between 40° and 140° to avoid near-source effects, caustics and the overlapping of the wave

trains.

FRT and SEM velocity waveforms are processed as explained in section 3.3 in chapter 3.

The FRT–SEM pairs of vertical and radial component seismograms considered are compared

at wave periods of T∼60 s, 100 s and 150 s. We use time windows three times wider than the

dominant wave period and centred around the maximum Rayleigh wave amplitude. Picking

of the fundamental mode Rayleigh wave in the FRT traces is straightforward because our
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FRT calculations only include fundamental modes. Nevertheless, visual inspection of the

waveforms and selected windows is carried out to reduce the influence of overtones in the

windowed SEM traces.

On the other hand, it is not possible to separate the fundamental mode Love waves

in the SEM synthetics with our simple windowing strategy. Fig. 4.1 compares theoretical

seismograms calculated by normal mode summation for the 1-D reference model PREM

(Dziewoński & Anderson, 1981) for: (i) fundamental modes only (black); and, (ii) fundamental

and higher modes summed together (red). In the vertical component there is no difference

between the two traces in the window considered, allowing a good separation of the

fundamental mode Rayleigh wave. In contrast, the contamination of the fundamental mode

Love wave by the overtones is particularly noticeable in the transverse component. Since in

this study we are only interested in fundamental mode surface waves, in the remainder of this

paper we will focus on Rayleigh waves, for which it is easier to separate the fundamental mode

from the overtones. Further details regarding Love waves modelling are reported in appendix

A.

 

 

allmodes
fund

T=100s_LHT
median
t:4.00s
A:0.22
W:0.10

mean
t:3.83s
A:0.22
W:0.11
Wa:0.12

 

 

allmodes
fund

T=150s_LHT
median
t:3.00s
A:0.11
W:0.03

mean
t:3.17s
A:0.12
W:0.04
Wa:0.04

 

 

allmodes
fund

T=150s_LHZ
median
t:0.00s
A:0.02
W:0.00

mean
t:0.38s
A:0.02
W:0.00
Wa:0.00

 

 

allmodes
fund

T=100s_LHZ
median
t:0.00s
A:0.00
W:0.00

mean
t:0.00s
A:0.01
W:0.00
Wa:0.00

 

 

allmodes
fund

T=60s_LHT
median
t:2.00s
A:0.20
W:0.08

mean
t:2.04s
A:0.20
W:0.09
Wa:0.10

 

 

allmodes
fund

T=60s_LHZ
median
t:0.00s
A:0.00
W:0.00

mean
t:0.00s
A:0.00
W:0.00
Wa:0.00

T=100s

T=60s

0 360time(s)0 360time(s)

0 600 time(s)

0 960time(s)

all modes
fund mode

T=150s
0 600 time(s)

0 960time(s)

Z

Z

Z

T

T

T

Figure 4.1: Examples of waveforms calculated by normal mode summation in PREM and filtered to
have dominant wave periods of T∼60 s, 100 s, 150 s at an epicentral distance of 40°. Rayleigh waves
are visible in the vertical seismogram component (Z) and Love waves in the transverse component (T).
Black waveforms only include fundamental modes, while red waveforms are obtained by summing all
the overtones. Vertical black lines show the window within which waveforms are compared, following
the method described in section 4.4.
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4.4.1 PHASE AND AMPLITUDE ERRORS

For every pair of FRT–SEM waveforms, we calculate the error in phase Eφand amplitude

E A within the selected window for vertical and horizontal component Rayleigh waves. Eφ is

calculated by cross-correlation and it is expressed in percentage of a wave cycle. The error in

amplitude in percentage is calculated in the same way as by Parisi et al. (2015):

E A = 100∗
∑

i |AF
i+Eφ

− AS
i |∑

i |AS
i |

(4.2)

where AF and AS are the waveform amplitudes of the FRT and SEM waveforms, respectively.

The sum is calculated over the samples i in the selected window and the subscript i + Eφ

means that the waveforms are aligned before calculating the E A . To quantify the condition

of validity of the FRT, we consider that the modelling is accurate if the errors fall below the

following thresholds: Eφ<5 % and E A <10 % (Parisi et al., 2015). Examples of good and poor

performances of the FRT are shown in Fig. 4.2 where FRT waveforms are compared to SEM

results and the errors are shown.

4.5 EARTH MODELS

We compare FRT and SEM waveforms for 13 different combinations of mantle and crustal

models. Specifically, our set of models consists of 11 different mantle and 3 different crustal

models, which shall be referred as earth models a-m (sections 4.5.1 and 4.5.2). The mantle

models have been derived from either the S20RTS (Ritsema et al., 1999) or S40RTS (Ritsema

et al., 2011) models (section 4.5.1). These models are parameterised with spherical harmonic

basis functions and are defined in terms of shear velocity perturbations δV s with respect to

the reference model PREM (Dziewoński & Anderson, 1981). In this study, perturbations in

compressional wave speed δV p and density δρ are scaled with respect to the Vs perturbations

(δρ = 0.40δV s, Anderson et al. (1968); δV p = 0.59δV s, Robertson & Woodhouse (1995)). The

two 3-D crustal models have been derived from CRUST2.0 (Bassin et al., 2000) (section 4.5.2).

In order to study separately the effects of 3-D mantle structure from those due to the

heterogeneous crust, we started by considering a homogeneous crustal layer with thickness

of 24.4 km, Vs=3.2 km/s, Vp=5.8 km/s, ρ = 2.6 g/cm3, which corresponds to the PREM’s

upper crustal layer. Subsequently, we carry out SEM-FRT comparisons for 3-D crustal models

(section 4.5.2).

We undertook many tests to guarantee that the earth models are implemented in the SEM

and FRT codes in a consistent manner (see section 2.6 in chapter 2 for more details).

4.5.1 MANTLE MODELS

We build our set of mantle models varying the strength and the scale length of heterogeneity.

All the figures shown in this section correspond to the various 3-D mantle models described
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Figure 4.2: Examples of waveform comparisons using the FRT (black) and the SEM (red) with a
dominant period of T∼ 100 s. Z, L and T refer to the vertical, radial and transverse seismogram
components. Eφ and E A are reported on the right of each subplot. The relationship between the errors
and the threshold of the fit goodness (Eφ≤5 % and E A ≤10 %) is specified in brackets. The earth model,
seismogram component, azimuth and epicentral distance are indicated on the left hand side of each
subplot. Vertical black lines indicate the selected time window for the error calculations.

combined with a homogeneous crustal layer.

VARYING THE SCALE-LENGTH OF HETEROGENEITY-lmax

S40RTS is parameterised with spherical harmonic basis functions expanded up to degree

40 (lmax =40, model c). The smallest scale of heterogeneity Ω of a model with lmax =40 is

∼1 000 km. From S40RTS, we build a subset of models truncating the harmonic basis function

to 20 (model b) and 12 (model a). For lmax =20, Ω ∼2 000 km and for lmax =12, Ω ∼3 200 km.

Rayleigh wave phase velocity maps for this subset of models are reported in Fig. 4.3. As

expected, the maps show more small scale heterogeneity as lmax increases. The roughness

of these models (Eq. 4.1) increases as the period decreases and it ranges from R=0.7 x 10−5 for

lmax =12 and T∼150 s to R=1.8 x 10−5 for lmax =40 and T∼60 s (Table 4.1).
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Figure 4.3: Rayleigh wave phase velocity maps calculated for mantle models with lmax =40 (S40RTS),
20, 12 for wave periods ∼60 s, 100 s, 150 s. These mantle models are combined with a homogeneous
crustal layer and shall be referred as models a, b and c throughout this paper. The numbers on the
bottom left side of each map are roughness values (R ·10−5 , Eq. 4.1). The numbers on the bottom right
side of the maps represent the colour scale ranges.

Roughness (·10−5)
Models/Periods 60s 100s 150s

a lmax =12 1.2 0.9 0.7
b lmax =20 1.5 1.1 0.9
c lmax =40 1.8 1.5 1.3
d PV=0.5 0.9 0.7 0.5
e PV=1.0 1.9 1.3 0.9
f PV=1.75 3.3 2.3 1.6
g PO=1.5 2.8 2.0 1.7
h PO=2.0 3.7 2.6 1.8
i PO=3.0 5.5 3.9 2.7
j PO=3.5 6.4 4.6 3.2
k lmax =40 PO=3.0 5.4 4.5 3.9
l CRUST2.0 2.3 1.5 1.0

m const_moho 2.2 1.4 1.0

Table 4.1: Roughness (R as in Eq. 4.1) values of all the Rayleigh wave phase velocity maps used in this
study for wave periods of T∼60 s, 100 s and 150 s.

In this work we consider waveforms with dominant period from T∼60 s to T∼150 s, which

correspond to wavelengths λ ranging from about 240 km to 640 km. From the relation λ¿Ω

we expect an increase of the errors Eφand E A when either the wave period or lmax increase.

For lmax =40, the relation λ¿ Ω is in principle not strictly respected, at least for the longer
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Figure 4.4: Power spectra of Rayleigh wave phase velocity maps at T∼60 s (left column), 100 s (middle
column), 150 s (right column) for the earth models considered in this study. Top row: models obtained
varying lmax (subsection 4.5.1); second row: models obtained varying PV factor (subsection 4.5.1);
third row: models obtained varying PO factor (subsection 4.5.1). Fourth row: models obtained by
varying the crustal model (subsection 4.5.2). Spectra are normalised with respect to the maximum
value of each row of subplots.

wave periods, and thus we expect the FRT to break down.

VARYING THE STRENGTH OF HETEROGENEITY—PV FACTOR

We build a second subset of models starting from S20RTS (model e) and by applying a

multiplicative factor (PV) of 0.5 and 1.75 to δV s of S20RTS. On the one hand, PV=0.5 (model
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d) is chosen to be fairly weakly heterogeneous and, on the other hand, PV=1.75 (model f )

is chosen to obtain a strength of heterogeneity comparable to that in some of the current

global upper mantle tomographic models (Debayle & Ricard, 2012; Schaeffer & Lebedev, 2013;

French & Romanowicz, 2014). Rayleigh wave power spectra for these models can be seen in

Fig. 4.4 (second row). Rayleigh wave phase velocity maps for S20RTS (PV=1.0, PO=1.0) are

shown in Fig. 4.5. Maps for PV=0.5 and PV=1.75 are not shown for brevity as they differ from

those with PV=1.0 just by a constant factor.

The roughness of these models increases as the period decreases and PV increases. It

ranges from R=0.5 x 10−5 for PV=0.5 and T∼150 s to R=3.3 x 10−5 for PV=1.75 and T∼60 s

(Table 4.1).

As these three models have the same smallest scale of heterogeneity (lmax =20,

Ω∼2 000 km), considering the FRT validity condition λ ¿ Ω, in theory we do not expect a

strong dependency of the FRT’s performance on the PV factor.

VARYING THE STRENGTH OF HETEROGENEITY—PO FACTOR

We build another subset of mantle models by varying the strength of the small scale

heterogeneity only. We apply a multiplicative factor (PO) to the spherical harmonic

coefficients of S20RTS for l larger or equal to 5. In other words, we increase the strength of

heterogeneity with size smaller than about 7 300 km, leaving those larger than 7 300 km as in

S20RTS. We use PO=1.0 (same than PV=1, S20RTS, model e), 1.5 (model g ), 2.0 (model h), 3.0

(model i ) and 3.5 (model j ). Rayleigh wave phase velocity maps for these models are displayed

in Fig. 4.5 and the power spectra are shown in Fig. 4.4 (third row). Finally, in order to obtain an

end-member model with strong and rough heterogeneity, we also applied PO=3.0 to S40RTS

(model k).

Excluding the model k, we do not increase the smallest Ω of this subset of models. For

this subset of models R increases as the period decreases and PO increases. It ranges from

R=0.9 x 10−5 for PO=1.0 and T∼150 s to R =6.4 x 10−5 for PO=3.5 and T∼60 s (Table 4.1).

It is worthy to illustrate the difference between the PV and PO factors. Fig. 4.6 shows

examples of depth profiles at two locations when varying PV and PO. These profiles show

that whereas the variations of the PV factor have a linear effect on the global strength of the

perturbations, the PO factor can even change the sign of the anomalies in some cases (e.g.,

profile B, top, 600 km of depth).

4.5.2 CRUSTAL MODELS

In addition to considering a homogeneous crust model (Moho depth=24.4 km, Vs=3.2 km/s,

Vp=5.8 km/s, ρ=2.6 g/cm3), we have also combined our set of mantle models with two 3-D

crustal models.

We combine the mantle model S20RTS with the 3-D global crust model CRUST2.0 (model

l ). Moreover, in order to investigate the effects of variations in Moho depth, we also use a

combination of the S20RTS mantle with a simplified version of CRUST2.0, where the Moho
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Figure 4.5: Rayleigh wave phase velocity maps calculated for mantle models with PO=1.0 (S20RTS),
1.5, 2.0, 3.0, 3.5 for wave periods T∼60 s, 100 s, 150 s. These mantle models are combined with a
homogeneous crustal layer and shall be referred as models e, g , h, i and j , respectively, throughout
this paper. The numbers on the bottom left side of each map are roughness values (R ·10−5 , Eq. 4.1).
The numbers on the bottom right side of the maps represent the colour scale ranges.

depth is maintained constant to 24.4 km (model m). To build this model from CRUST2.0

we follow the same approach as in Parisi et al. (2015) whereby an increase (or decrease) of

the Moho depth with respect to CRUST2.0 is compensated by an increase (or decrease) of Vs,

applying the trade-off relationship between the Moho depth and Vs reported by Lebedev et al.

(2013).

Rayleigh wave phase velocity maps for S20RTS combined with these two 3-D crustal

models are shown in Fig. 4.7. Interestingly, the effects of the crust are visible even for T∼150 s.

Power spectra are shown in Fig. 4.4 (fourth row) and the roughness values are summarised in

Table 4.1.
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Figure 4.6: Examples of depth-profiles of shear velocity perturbations in the mantle showing the
differences of varying PO and PV.

4.6 RESULTS

The results of the FRT–SEM waveform comparisons are summarised in Fig. 4.8 and 4.9 where

the medians of all the phase (Eφ ) and amplitude (E A ) errors are reported for each model and
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Figure 4.7: Rayleigh wave phase velocity maps for wave periods∼60 s, 100 s, 150 s calculated for mantle
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paper. The numbers on the bottom left side of each map are roughness values (R ·10−5 , Eq. 4.1). The
numbers on the bottom right side of the maps represent the colour scale ranges.

each wave period. We prefer to use the median rather than the average to reduce the effects

of outliers. In the next subsections we analyse the various factors affecting the performance

of the FRT at predicting Rayleigh wave phase and amplitudes.

4.6.1 EFFECTS OF SCALE-LENGTH OF HETEROGENEITY

Fig. 4.8 shows that increasing lmax (models a, b and c) does not substantially affect Eφ , except

for T∼60 s. Eφ slightly increases with decreasing wave period, but, overall, for models a–c

the FRT accurately models Rayleigh wave phase, with Eφbeing always below the 5 % error

threshold for both vertical and horizontal component Rayleigh waves.

Regarding the amplitude errors, Fig. 4.9 shows a clearer trend of increasing errors with

lmax and wave period. Nevertheless, E A are also always under the error threshold of 10 % for

models a–c.

4.6.2 EFFECTS OF STRENGTH OF HETEROGENEITY

PV FACTOR

Fig. 4.8 for models d , e and f shows a strong correlation between Eφand the PV factor for both

vertical and horizontal component Rayleigh waves. Also, similar to the previous section, Eφ is

anti-correlated with wave period and it never exceeds the phase misfit threshold.

E A for these models (models d– f ; Fig. 4.9) is directly correlated to the wave period. The

threshold for E A is exceeded for the horizontal component of Rayleigh waves for PV=1.75 and

T∼150 s but the overall FRT performance in modelling Rayleigh wave amplitudes for this

subset of models is good.
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LoveFigure 4.8: Summary of the phase error Eφ at T∼60 s, 100 s and 150 s for all the models used in this
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PO FACTOR

Similar to the PV factor effect studied in the previous section, there is a strong correlation

between Eφand the PO factor (models e,g – j ; Fig. 4.8). The rate of increasing errors with PO is

highest for T∼60 s. The overall FRT performance for this subset of models is good, since Eφ is

only slightly above the misfit threshold for a PO factor of 3.5 and for a wave period of T ∼60 s.

The trend of E A (Fig. 4.9, models e, g – j ) against the period for this subset of models is

similar to that observed for the PV factor. For this subset of models, we also observe that

E A is larger for horizontal component Rayleigh waves than for vertical components. The FRT

performs poorly when modelling Rayleigh wave amplitudes for models with PO=3.0 and 3.5

for all periods considered.

Figs. 4.8 and 4.9 also show the results for the model k, which is built applying PO=3.5

to S40RTS. The phase and amplitude errors for this model are consistent with the results
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Figure 4.9: Summary of the amplitude error E A at T∼60 s, 100 s and 150 s for all the models used in this
study. E A values are the medians for each model and period computed for all the paths illustrated in
Fig. 3.1 (in chapter 3). The horizontal black dash-dot lines correspond to the error thresholds of 10 %.

obtained when varying lmax and the PO factor. The amplitude modelling for this model is

poor for all the wave periods considered.

4.6.3 CRUSTAL EFFECTS

When comparing the effects of different crustal models, the errors in phase Eφare slightly

lower when using a homogeneous crust and slightly higher for the 3-D constant-Moho crustal

model (see models e, l-m in Fig. 4.8). Nevertheless, Eφare below the phase misfit threshold

in all cases for these three models. On the other hand, E A increases substantially when

considering 3-D crustal effects (compare models e, l–m in Fig. 4.9). However, the FRT

amplitude modelling is still accurate for vertical component Rayleigh waves.
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4.6.4 EFFECTS OF THE PATH LENGTH

Eφand E A are also analysed for different ranges of path lengths (Fig. 4.10). Eφand E A clearly

increase with the epicentral distance at all periods considered. Eφ is always under the phase

misfit threshold (5 %) except for T∼150 s horizontal component Rayleigh waves, for distances

larger than 110°. On the other hand, the errors in amplitude E A are under the amplitude misfit

threshold (10 %) for paths shorter than 110°.
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Figure 4.10: Phase (left) and amplitude (right) errors plotted as functions of epicentral distance, for
models obtained varying PV, PO and lmax (models from a to j shown in Fig. 4.8 and 4.9). Every point
(circle) of the curves corresponds to the median of the errors obtained using 20° wide bins.

4.7 DISCUSSION

4.7.1 ROUGHNESS TO DEFINE THE FRT VALIDITY DOMAIN

As explained previously, the goal of this study is to assess the domain of validity of the full

ray theory when modelling long period surface waves in earth models that potentially can

be either used or built during realistic waveform tomography experiments. In particular, we

aim at obtaining quantitative criteria, which may provide guidance for future tomographic

inversions.
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The results presented in the previous section clearly highlight that the FRT is a highly

accurate technique to model the phase of Rayleigh waves in almost all the models considered.

Eφ is, in fact, slightly above the threshold of 5 % only for models with heterogeneity more than

3 times stronger than the heterogeneity of the S20RTS or S40RTS mantle models and at periods

shorter than 80 s–70 s (Fig. 4.8).

The increase in FRT phase error with decreasing wave period is a common feature for

all the models considered. We also observe that the shortest wave period here considered,

T∼60 s, is the most affected by the PO factor, i.e., by the strength of small scale heterogeneity.

Due to the dispersion of surface waves, the shorter is the period, the shallower are the parts of

the Earth sampled by the waves. In realistic earth models the shallower parts of the mantle are

those with the stronger anomalies and this increases wave scattering effects (especially due to

small scale anomalies affecting short period waves), which are not taken into account by the

FRT. Inaccuracies in phase of Rayleigh waves can be controlled by considering paths shorter

than 110°.

Conversely, the accuracy of the amplitude modelling of Rayleigh waves mostly increases

for the shorter periods, respecting the general ray theory validity condition λ ¿ Ω. The

amplitude of the surface waves is a function of the second derivative of the phase velocity

map, calculated transversely to the ray (e.g., Ferreira & Woodhouse, 2007a) within the Fresnel

zone. For longer wave periods, the ray approximation is less accurate because it neglects the

finite area of the Fresnel zone, whose width is proportional to the period. However, in more

complex cases (e.g., in models with 3-D crust), we observe that E A for vertical component

Rayleigh waves decreases as the wave period increases. The difference in behaviour between

the vertical and horizontal components of Rayleigh waves when 3-D crusts are taken into

account suggests that heterogeneity of the shallower parts of the models, as well as horizontal

discontinuities, are the factors that mostly affect the accuracy of the modelling. Overall, our

waveform comparisons indicate that FRT is accurate at calculating even the amplitude of

Rayleigh waves as long as models with PO and PV factors larger than 3.0 and periods longer

than 150 s are avoided. These inaccuracies in modelling the amplitude of Rayleigh waves can

be controlled by considering paths shorter than 110°. Moreover, it should be noted that the

models with PO and PV factors ≥ 3 lead to seismic velocity anomalies of ∼20 %, which may

not be realistic.

To generalise the outcome of our FRT–SEM waveform comparison experiment, in Fig. 4.11

we have plotted Eφand E A against the model roughness R (Eq. 4.1; see Table 4.1 for a summary

of R for all the models considered in this study). Eφ is related to R with a correlation coefficient

of 0.90. The plot highlights that FRT is a valid approximation to calculate the phase of Rayleigh

waves when R of the phase velocity map is less than 6 x 10−5 .

E A has distinct trends for the three different wave periods. In this case, the correlation

coefficients are 0.70 (T∼60 s) and 0.85 (T∼100 s and 150 s). The scatter plot suggests that

FRT is a good approximation to model the amplitude of vertical component Rayleigh waves

when R<3 x 10−5 for T∼150 s, R<3.2 x 10−5 for T∼100 s and R<5 x 10−5 for T∼60 s. The same

thresholds are valid for horizontal components for T<100 s. At longer periods, the FRT should
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be used for models with R<1 x 10−5 .
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Figure 4.11: Scatter plot of Eφ and E A against the roughness R (Eq. 4.1) of the corresponding phase
velocity map. The different symbols correspond to distinct families of models: (i) varying lmax (models
a–c; squares); (ii) varying the PV factor (models d– f ; triangles); (iii) varying the PO factor (models g – j ;
diamonds); and, (iv) with 3-D crustal structure (models l –m; stars).

4.7.2 COMPARISON WITH PREVIOUS STUDIES

Several studies have already demonstrated the larger accuracy of the FRT with respect to

the great-circle approximation (Woodhouse & Dziewoński, 1984), especially when modelling

surface wave amplitudes. Early studies (Wang & Dahlen, 1994; Larson et al., 1998) achieved

this result by direct comparison of the FRT and great-circle approximation predictions. Wang

& Dahlen (1994) compared the amplitude predictions for the FRT—with and without the

local source and receiver excitations taken into account (in this work local excitations are

taken into account)—and they found that the differences in the wave amplitude were around

30 %. These were even larger between the complete FRT and the great-circle approximation.
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Larson et al. (1998), comparing FRT and great-circle approximation predictions, concluded

that, whilst for the phase modelling the great-circle approximation could be adequate, the

amplitude modelling needed the more sophisticated calculations of the FRT.

More recent works used accurate numerical methods as ground truth to compare the FRT

and great-circle approximation accuracies. Romanowicz et al. (2008) applied the non-linear

asymptotic mode coupling theory (Li & Romanowicz, 1995) taking into account off great-

circle effects. They found that, in most of the cases, the waveform errors (a combination of

the phase and amplitude errors) decrease when the exact ray-tracing was used. Peter et al.

(2009) used a simplified membrane approach and highlighted that the improvement of the

phase anomalies predictions of the FRT over the great-circle approximation increases with the

number of the surface wave orbits. Dalton et al. (2014) focussed on the amplitude predictions

only and found that the errors of the great-circle approximation were systematically larger

than the errors of the FRT.

All these studies consistently proved the larger accuracy of the FRT with respect to the

great-circle approximation, especially when modelling surface wave amplitudes. Thus, in this

study we only focus on the accuracy of the FRT when compared with the more accurate SEM.

The domain of validity of the FRT was investigated in a few previous studies. Wang &

Dahlen (1995) tested the FRT for three earth models and found that δc and ∇∇δc are good

proxies for the errors in phase and amplitude, respectively, but general values of guidance

were not given. A remarkable difference with our study is that the earth models used by Wang

& Dahlen (1995) did not have crustal structure and consisted of only three mantle models

with different lmax (from 12 to 36). In addition, ground truth synthetics were calculated using

a normal mode coupling technique, which involves some theoretical approximations (Um &

Dahlen, 1992).

Other studies (e.g., Kennett & Nolet, 1990; Lebedev et al., 2005; Schaeffer & Lebedev, 2013)

attempted to define the validity bounds of their modelling of the phase of Rayleigh waves

when considering a sensitivity area around the ray. The corresponding domain of validity was

defined by analysing the trade-off between wave frequency and epicentral distance (Schaeffer

& Lebedev, 2013). Similar to our study, these authors also found a decrease in the accuracy of

the phase modelling with decreasing wave period for the epicentral distances considered in

our work. This is probably due to enhanced scattering effects with decreased wave periods.

The trends of amplitude errors of Rayleigh waves are in line with the results of Dalton

et al. (2014). The authors used two different earth models differing by a factor similar to our

PO factor, but for lmax >18, to test the FRT against other amplitude modelling techniques. As

in this paper, they found an increase of the error in amplitude with increasing PO factor, wave

period and epicentral distance.

4.8 CONCLUSIONS

We have assessed the accuracy of the surface wave full ray theory when modelling the phase

and amplitudes of relatively long period surface waves (T∼60 s–150 s), using the spectral
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element method as ground truth.

We have found that the FRT is accurate in modelling the phase and the amplitude of

Rayleigh waves in almost all the models considered. In the range of wave period studied,

the accuracy when modelling Rayleigh wave phase decreases as the period decreases. This

is probably due to strong small scale heterogeneities sampled by the shorter period waves,

resulting in strong scattering effects.

We have also found that the roughness, expressed as the gradient of the phase velocity

maps, is a good indicator of the accuracy of the FRT. Our results suggest that the FRT is a good

approximation for predicting the phase of Rayleigh waveforms when the average roughness of

δc(θ,Φ) is less that 6 x 10−5 . The accuracy of the amplitude modelling depends on the wave

period considered and is poorer for horizontal component Rayleigh waves than for vertical

components. We predict a good amplitude modelling of the vertical component Rayleigh

wave for models with R less that 3 x 10−5, 3.2 x 10−5 and 5 x 10−5 for dominant periods of

∼60 s, 100 s and 150 s, respectively. Similar thresholds are valid for the amplitude modelling of

horizontal component Rayleigh waves with periods shorter than 100 s. At longer periods, even

low roughness values can compromise the accurate modelling of amplitudes, unless paths

shorter than 100°–110° are considered.

Our results show that there is scope to build future improved global tomographic models

based on the FRT. The domain of validity defined in this study can serve as a useful guide in

future seismic tomographic inversions using the FRT as a forward modelling scheme.



5
ASSESSMENT OF GLOBAL MANTLE

TOMOGRAPHY MODELS USING SPECTRAL

ELEMENT METHOD SEISMOGRAMS

5.1 SUMMARY

Estimating the quality of global tomography models is fundamental for robust geodynamical

interpretations. Global tomographic models are often assessed using the same theoretical

approach applied in the inverse problem. However, this strategy does not enable the

estimation of the errors due to the approximations of the theory used. Other approaches,

such as the comparison with existing models or estimation of the misfit reduction present

a large margin of subjectivity and do not allows for the quality assessment across different

models.

Here we assess the quality of the new global tomographic model SGLOBE-rani using an

independent real dataset and synthetic seismograms calculated with the spectral-element

method (SEM), an accurate numerical technique for the modelling of the complete seismic

wavefield. SGLOBE-rani is a radially anisotropic whole mantle model (SGLOBEfull). Yet, to

test the effects of the anisotropy on the waveforms we also modelled the wavefield confining

the anisotropy to the upper mantle (SGLOBEup) and using the voigt average isotropic version

of SGLOBE-rani (SGLOBEvoigt).

We compare fundamental mode Rayleigh and Love waveforms calculated with SEM in

the SGLOBE-rani set of models to the waveforms from the independent dataset. For three

dominant wave periods (T∼60 s, 100 s and 150 s) we calculate phase and the amplitude misfits

between data and synthetics. As reference, we also compared the data to the waveforms

calculated for the S40RTS mantle model.

We find the SGLOBE-rani explains the phase and the amplitude better than S40RTS.

67
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However, the small differences in the phase misfits between SGLOBE-rani and S40RTS

compared to the data misfits suggests that there is still room for improvement of the

tomographic models. Both SGLOBE-rani and S40RTS show large amplitude misfits indicating

that the tomographic models have a lack of small scale heterogeneity and/or the 1-D

attenuation model for PREM used in this study is not adequate to explain the amplitude of

surface waveforms.

The differences in phase misfits among the SGLOBE-rani models are small but in most

cases SGLOBEfull performs better than the other two models. For the cases whereby either

SGLOBEvoigt or SGLOBEup outperform SGLOBEfull, the hypothesis of the leakage of the

isotropic structure within the anisotropic structure of the SGLOBE-rani model is considered.

The misfit differences between the SGLOBE-rani set of models decrease as the wave period

increases. Our hypothesis is that the unmodelled short scale heterogeneity generates strong

scattering effects, which are more evident in the shorter period waves.

5.2 INTRODUCTION

The quantitative assessment of the quality of 3-D tomography mantle models is crucial for

robust geodynamical interpretations and for several practical applications, such as for reliable

earthquake source inversions. So far the evaluation of the quality of tomography models has

mostly relied on subjective choices by their authors. For example, new mantle tomographic

models are usually compared with existing models, being verified that well-known large-

scale structures are reproduced (e.g., low velocities associated with oceanic ridges and high

velocities associated with subducting slabs). A more quantitative parameter used in model

assessments is the final data misfit and the misfit reduction compared to the starting model

used in the tomographic inversion. However, data misfit values are not always comparable

across the studies because they depend on specific choices in the inverse problem’s set up.

Another common method to verify the robustness of tomography images is to carry out

’checkerboard tests’, whereby synthetic data are calculated for a given input model with an

alternating pattern using the same source-receiver pairs as in the real data. The synthetic

data are then inverted to verify how well the input model is recovered. Whilst this technique

assesses the suitability of the source-receiver path distribution used, it does not allow the

evaluation of errors due to the approximations used in the tomographic problem, notably

due to assumptions in the forward modelling scheme (Leveque et al., 1993).

An alternative method to assess the reliability of a tomographic model is to test how

well it explains independent seismological observations (e.g., data not used in the model’s

construction). Moreover, a useful way to assess the impact of simplifying forward modelling

approaches on the tomographic imaging is to use more sophisticated techniques to compute

theoretical seismograms for the retrieved model and compare them with real data. The

spectral element method (SEM, e.g., Komatitsch & Vilotte, 1998) is a very useful tool to carry

out such tests, since, as explained in chapter 2, it is a very accurate technique, without

(almost) any approximations. Tape et al. (2009), followed by Chen et al. (2015), pioneered
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these approaches by validating their regional/continental scale models with independent

SEM waveforms for events not used in the construction of their models. Moreover, Qin et al.

(2009) used a coupled SEM-normal mode approach (CSEM, Capdeville et al., 2003a)) to assess

the performance of four global mantle models at modelling Love and Rayleigh waveforms.

They found that, as expected, the 3-D tomographic models explain the data better than PREM.

Moreover, two of the global 3-D models (S20RTS by Ritsema et al. (1999) and Smean by Becker

& Boschi (2002)) fitted the data slightly better than the other two (SB4L18, Masters et al.

(2000) and SAW24B16, Megnin & Romanowicz (2000)). The main limitation of that study

was the implementation of the crust, which only included as horizontally varying structure,

with further simplifications for the Moho depth in the oceans. Finally, Bozdaǧ & Trampert

(2010) used SEM seismograms to study how differently damped mantle models explain the

data. They found small differences in the theoretical seismograms calculated for the different

models and slightly better performance for the smoother models.

While an objective assessment and comparison of global tomographic models is

important for isotropic 3-D structure (for which there is a good agreement of large scale

structure between models), it is crucial for anisotropic structure, since there are large

discrepancies between existing anisotropy models (e.g., Chang et al., 2015). Images of seismic

anisotropy in the Earth’s mantle are important because they provide key information to

reconstruct the patterns of mantle flow when interpreted together with mineral physics and

geodynamics information.

The effects of seismic anisotropy on seismic waveforms can be subtle, leading to

difficulties in separating them from isotropic effects. For example, crustal effects (Ferreira

et al., 2010), trade-offs between isotropic and anisotropic properties due to data’s sensitivity

(Chang et al., 2014; Bodin et al., 2015; Chang et al., 2015) and limitations in isolating

the individual modes of Love waves (see, e.g., appendix A) can all influence the retrieved

anisotropic images.

In this study we assess the reliability of the recent whole mantle radially anisotropic model

SGLOBE-rani (Chang et al., 2015) using SEM seismograms (SPECFEM3D_GLOBE package,

Komatitsch & Vilotte (1998); Komatitsch & Tromp (2002a,b); Komatitsch et al. (2010a)), which

are compared with real Rayleigh and Love waveforms with wave periods of T∼60 s, 100 s, and

150 s. To the best of our knowledge, this is the first attempt to evaluate global anisotropic

models with this approach. For reference, we also carry out comparisons between real

waveforms and SEM synthetics for the global isotropic 3-D mantle S40RTS (Ritsema et al.,

2011). The choice of this model is due to the facts that it is widely used and that SGLOBE-rani

uses a similar parameterisation and has been constructed with a data set including, amongst

others, the data used to build S40RTS.

In the following sections we briefly explain how the S40RTS and SGLOBE-rani models

have been built (section 5.3) and implemented in the SPECFEM3D_GLOBE package (section

5.4). The independent data used for the assessment of the models are presented in section

5.5. Examples of waveform comparisons and phase and amplitude misfits are summarised in

sections 5.6 and 5.7. Our results are discussed in section 5.8 and plans for future developments
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are explained in section 5.9.

5.3 TOMOGRAPHIC MODELS

In this section we report the main common features in the construction of the S40RTS

(Ritsema et al., 2011) and SGLOBE-rani (Chang et al., 2015) mantle models. The distinctive

characteristics of the two models are reported in the subsections 5.3.1 and 5.3.2.

The models are both expressed in terms of perturbations with respect to the PREM model.

Spherical harmonic basis functions are used to parameterise the horizontal variations in the

parameters and 21 depth spline functions parameterise variations in depth (e.g, Ritsema et al.

(1999)). The spacing of the splines is smallest in the uppermost mantle, where the data’s

resolving power is highest.

A linearised damped least-squares approach (e.g., Tarantola, 1987) is employed in both

studies whereby the data are linearly related to the model parameters by depth-dependent

sensitivity kernels as illustrated in Fig. 5.1 for fundamental mode Rayleigh waves with wave

periods of T∼60 s, 100 s, and 150 s. The great-circle approximation is used (Woodhouse &

Dziewoński, 1984), which is computationally very efficient.

The S wave travel-times dataset is the same for both models. Rayleigh wave phase velocity

measurements used in S40RTS are also used in SGLOBE-rani. These include fundamental and

higher modes up to the 4th overtones within the period range 40 s–275 s.

The crust has a strong effect on both body-wave travel-times and surface wave phase

velocity (see Ritsema et al., 2009). In this thesis, such effects for Rayleigh waves can be

noticed comparing Figs. 3.2-b in chapter 3 (homogeneous crust) and Fig. 4.7 in chapter 4

(3-D crustal structure). For Love waves, this can be noticed comparing Fig. 3.3-b in chapter 3

(homogeneous crust) and Fig. A.2 in appendix A.

In the construction of both S40RTS and SGLOBE-rani crustal corrections are used

whereby the contribution of the crust to the observed data are theoretically calculated and

subtracted from the measurements before inverting them. Crustal corrections in both models

are calculated by normal-mode summation (Takeuchi & Saito, 1972) combining CRUST2.0

(Bassin et al., 2000) with PREM.

Both studies assume constant scaling factors of δρ and δVp to δVs.

5.3.1 S40RTS

The S40RTS (Ritsema et al., 2011) mantle model is parameterised in terms of δVs expanded up

to degree 40 (lmax = 40). The horizontal resolution of this model is of∼1 000 km. Tomographic

maps at different depths down to 800 km are shown in Fig. 5.2 (left column).

In addition to the dataset described in section 5.3, S40RTS also includes the normal mode

splitting functions dataset by Deuss et al. (2011). While the ratio δρ
δV s is kept constant to 0.5

during the inversion, δV s
δV p increases from 2 (at the surface) to 3 (at CMB). The regularisation

parameter ε is chosen so that the model S40RTS has 8 000 effective unknowns.
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Figure 5.1: Normalised fundamental mode Rayleigh wave phase velocity (δc) kernels with respect to
shear velocity (δVs) at periods of 60 s, 100 s, and 150 s calculated for PREM.

5.3.2 SGLOBE-RANI

SGLOBE-rani (Chang et al., 2015) is defined in terms of perturbations of isotropic shear

speed δV s and S radial anisotropy δζ (δζ= V sh2−V sv2

2V s ) with respect to PREM. It also includes

perturbations of crustal thicknesses δd with respect to CRUST2.0. The three perturbation

distributions are expanded up to degree 35 (lmax = 35 in Eq. 2.8, nominal horizontal

resolution of around 1 300 km).

Re-parametrised tomographic maps of SGLOBE-rani in terms of δV svoi g t

(√
2V sv2+V sh2

3

)
and ξ

(
V sh2

V sv2

)
are depicted down to 800 km in Fig. 5.2 (middle and right column, respectively).

One strength of the SGLOBE-rani model is the combination of multiple datasets. In

addition to the Rayleigh wave phase velocities and body wave travel times used in S40RTS,

SGLOBE-rani is built using further Rayleigh and Love wave overtones and fundamental mode

phase velocity dispersion measurements from Ekström et al. (1997) (35 s–300 s), Ekström

(2011) (25 s–250 s) and Visser et al. (2008) (35 s–375 s). Group-velocity measurements from

Ritzwoller & Levshin (1998) (16 s–150 s) are also included to constrain crustal structure.

Another improvement in the SGLOBE-rani model is the handling of the crustal structure.
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Figure 5.2: Tomographic maps at 100 km, 200 km, 300 km, 400 km, 600 km, 800 k for, from left to
right, δVs of S40RTS , δV svoi g t and δξ of SGLOBE-rani. Perturbations are calculated with respect to
the reference model PREM. Numbers on the bottom right of each map indicate the range of the colour
scale.

The authors firstly applied the crustal corrections as explained in section 5.3 and secondly

inverted for crustal thickness using 1-D kernels.

During the inversion δρ and δVp are scaled using the scaling factors δVp=0.5δVs and

δρ=0.4δVs.

5.4 SEM IMPLEMENTATION

We use the spectral element method (package SPECFEM3D_GLOBE, Komatitsch & Vilotte,

1998; Komatitsch & Tromp, 2002a,b; Komatitsch et al., 2010a) to run our global simulations.
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We shall refer to both method and package as SEM. All the simulations are run with NEX=480

and thus are accurate down to wave periods of T∼10 s. See section 2.5.1 in chapter 2 for more

details on the SEM.

5.4.1 EARTH MODELS

MANTLE MODELS

Whereas S40RTS is already implemented in the currently available version of the code, we

had to add a subroutine to simulate the wavefield in the SGLOBE-rani mantle model. We

implement and test three different versions of SGLOBE-rani: i) SGLOBEvoigt, in which the

voigt average perturbations δV svoi g t are superimposed to both Vsv and Vsh of PREM. The

radial anisotropy from PREM model, confined to the upper mantle (220 km of depth), is taken

into account. ii) SGLOBEup, in which the perturbations of radial anisotropy δξwith respect to

PREM model are confined to the upper mantle (down to 220 km of depth). Below 220 km, the

δVsv perturbations of SGLOBE-rani are applied to both Vsv and Vsh of PREM. iii) SGLOBEfull,

which is the whole mantle anisotropic version of SGLOBE-rani.

We assess these three different versions primarily to evaluate the effects of the radial

anisotropy on the seismic wavefield. A secondary reason is that the computational cost

increases from model i) (SGLOBEvoigt ) to model iii) (SGLOBEfull). Thus, it is interesting to

check whether, for future simulations, one could limit the anisotropy in the upper mantle to

save CPU time in case of limited effects on the waveforms.

For all simulations, a degree-12 δVp model (Ritsema & van Heijst, 2002) is superimposed

to Vp of PREM and δρ is scaled as 0.4 of δVs.

CRUSTAL MODELS

The SGLOBE-rani model set and S40RTS are combined with CRUST2.0 (Bassin et al., 2000)

because the crustal corrections for both models are calculated from this crustal model.

CRUST2.0 is already available in the SEM package and we use its default implementation.

At this stage, we do not consider the perturbations of the Moho depth for the calculations

with the SGLOBE-rani set of models. Thus, the crustal model is the same for all the mantle

models used in this chapter. More details regarding the implementation of the crust in SEM

are explained in section 2.5.1 in chapter 2.

5.5 DATA AND SYNTHETICS

We select 10 shallow earthquakes chosen to evenly sample the globe. Deep events excite

overtones of surface waves and since in this study we are interested in the fundamental

mode only, we exclude earthquakes with hypocentral depth larger that 50 km. Although

SEM models the complete wavefield including surface wave overtones we prefer to avoid

overtone contamination to have a clearer idea regarding the depths of the models sampled

with our selected periods of fundamental Rayleigh and Love waves. The moment magnitude
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of the events is chosen larger than 6.4 to sufficiently excite the surface waves above the noise

level. For each earthquake, we select 90 minute-long three component broadband waveforms

recorded at stations of the II and IU seismic networks from the IRIS seismograph network

(www.iris.edu). We manually select between 20 and 30 stations for each earthquake with a

reasonable noise level within an epicentral distance 40◦<∆<140◦ to avoid near-source effects,

caustics and multiple orbit overlapping wave trains. The source-receivers distribution used is

shown in Fig. 5.3 and a list of the earthquakes is reported in Table 5.1.

Figure 5.3: Earthquake and station distribution for the data used in this work. Earthquakes are
represented by red stars and seismic stations by green triangles.

Event Location Magnitude Depth
code Mw (km)

200502162027A Southern Mid-Atlantic Ridge 6.6 13.0
200510290405A Southeast Indian Ridge 6.5 12.0
200603140657A Seram, Indonedia 6.7 13.0
200702200804A Southern Molucca Sea 6.7 12.0
200704161320A West of Macquarie Island 6.7 12.0
200706280252A Solomon Islands 6.7 18.0
200801051101A Queen Charlotte Islands 6.6 12.0
200805071645A Near East Coast of Honsh 6.8 26.3
200805231935A Central Mid-Atlantic Ridge 6.5 12.6
200912191302A Taiwan 6.4 48.25

Table 5.1: List of seismic events from the Global CMT catalogue (www.globalcmt.org) used in this work.

We use the CMT solutions of the selected events from the CMT catalogue

(www.globalcmt.org) as a source input for the SEM code. We run point source simulations

for the selected sources and receivers, setting the source half duration to 0 s and subsequently

convolving a gaussian source-time function with a half-width equal to the half duration of

the CMT solution. We are aware that uncertainty of the source parameters that can affect the

accuracy of the simulations when compared with real data. However, CMT solutions are the
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best choice we have available.

Displacement data and synthetics are re-sampled at 1 s. The instrument response is

deconvolved from the data before convolving data and synthetics with a SRO instrument

response to highlight the surface waves. Finally, three different cosine band pass filters with

cutoff periods of T∼60 s–1 000 s, 100 s–1 000 s and 150 s–1 000 s are applied.

5.6 SURFACE WAVEFORM COMPARISONS

As mentioned in section 5.4, SEM waveforms are calculated for S40RTS and for the three

variants of the SGLOBE-rani model: (i) SGLOBEfull (the actual, whole mantle SGLOBE-rani

model); (ii) SGLOBEup (only with radially anisotropic structure in the upper mantle); and,

(iii) SGLOBEvoigt (only laterally varying isotropic structure). These models are assessed

by comparing fundamental mode Rayleigh and Love synthetic and observed waveforms at

dominant periods of T∼60 s, 100 s and 150 s. Fig. 5.1 shows the sensitivity of the fundamental

mode Rayleigh waves at these three different periods. Rayleigh waves at ∼60 s have the peak of

sensitivity to mantle structure at around 80 km. At ∼100 s they are mostly sensitive to mantle

structure at around 150 km depth and around 200 km depth for T∼150 s waves. However,

they also show non-negligible sensitivity to structures deeper and shallower than the peak

sensitivity. For brevity we do not show the sensitivity of Love waves whose peaks are, in

general, shallower than than those for Rayleigh waves at the same period. Hence, we can

assume that with our tests we are assessing the mantle models down to 600 km–800 km.

We separately calculate phase and amplitude misfits, δφ and δA respectively, between real

and synthetic waveforms within a time window with a width about 3.5 times the dominant

wave period. Firstly, the waveforms are windowed waveforms around the maximum

amplitude of the SEM seismograms. Since the seismograms are 90 mins-long, in most cases

the maximum amplitude corresponds to the maximum amplitude of the fundamental mode

surface wave. Nevertheless, a visual check of all the waveforms is performed before using the

corresponding misfits. The phase misfits are calculated by cross-correlation and are expressed

either in seconds (in section 5.7.1, where it is referred as δt ) or as a percentage of the wave

cycle (δφ). δA is calculated with the Eq. 3.1 where the reference traces are the real data. An

example of Rayleigh (Z and L components) and Love (T component) waveform comparisons

for a dominant wave period of T∼100 s for one event and three stations, for the S40RTS and

SGLOBEfull models is shown with the respective misfit values in Fig. 5.4.

5.7 RESULTS

In this section we present the misfits δφ and δA for the models assessed. Results are

summarised as average misfits for S40RTS and the SGLOBE-rani set of models, separately

considering the three components and the three dominant periods in the Tables 5.2 and 5.3.

The choice to use the average rather than the median as in chapters 3 and 4 is due to the fact

the median does not allow one to identify the small differences in the misfits obtained for the
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Figure 5.4: a. Three component waveforms for the 200805071645A event in Japan recorded at PAB,
COR and CTAO stations at T∼100 s calculated in the S40RTS (black traces, S40) and SGLOBEfull models
(green traces, SGL) compared to the data (gold traces). Within each subplot, the name of the station
and the component (vertical Z, radial L and transverse T) are reported on the top left corner. Values
of δφ and δA for the two models are reported on the bottom left corner of each subplot. Vertical lines
on top of the waveforms bound the window where the misfits are calculated. b. Great circle paths
between the event (red star) and the stations (green triangles). The structure crossed by these paths
roughly corresponds to the tomographic maps at 100 km and 200 km shown in Fig. 5.2.

different models. This fact will be discussed further in the following sections.

5.7.1 PHASE MISFITS

Distributions of misfits in seconds (δt ) between data and synthetics are shown in Fig. 5.5 for

S40RTS and the SGLOBE-rani set. A positive δt means that the synthetic waveform is in delay

with respect to the real waveform. The distributions are all close to a Gaussian distribution

and for all the variants of the SGLOBE-rani model the mean of the phase shifts is around

zero, for every component and dominant period. Differences among the distributions of the

SGLOBE-rani set of models are small and become even less evident for the larger periods. The
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S40RTS SGLOBE SGLOBE SGLOBE
voigt up full

150s 8.03 6.42 6.66 6.62
Z 100s 8.17 6.03 5.96 5.90

60s 9.16 7.44 7.29 8.19

150s 9.38 8.44 8.45 8.05
L 100s 8.40 6.70 6.91 6.61

60s 8.36 7.17 7.13 8.05

150s 9.64 7.85 6.97 6.68
T 100s 8.61 6.84 6.37 6.70

60s 8.56 7.29 7.47 7.16

Table 5.2: Summary of δφ misfits (in %) calculated as the average of the absolute values. The smallest
misfits for each period and component are highlighted in bold.

S40RTS SGLOBE SGLOBE SGLOBE
voigt up full

150s 31.75 31.46 31.90 32.74
Z 100s 37.95 36.34 36.55 36.95

60s 68.83 62.40 62.05 61.87

150s 38.35 37.83 38.11 38.14
L 100s 38.44 38.14 38.24 38.29

60s 59.10 55.59 55.71 55.14

150s 36.89 37.16 36.88 37.09
T 100s 42.49 39.70 39.90 39.48

60s 75.75 73.05 73.94 72.29

Table 5.3: Summary of δA misfit (%). The lowest misfits for each period and component are in bold.

distributions for S40RTS are wider than for the SGLOBE-rani models and show that in most

cases the S40RTS waveforms are delayed compared to the real data.

Average values of δφ as percentage of a wave cycle are reported in Table 5.2. Phase misfits

for SGLOBE-rani are between 6 % and 8 %, while for S40RTS are between 8 % and 9%. Thus,

in all cases, SGLOBE-rani performs better than S40RTS in modelling the phase of the surface

waveforms. As anticipated when analysing the distributions in Fig. 5.5, the misfit differences

between the various variants of the SGLOBE-rani model are small. In most cases, SGLOBEfull

explains the data slightly better than SGLOBEup and SGLOBEvoigt. However, Rayleigh waves

at ∼60 s are modelled slightly better when the radial anisotropy is confined to the upper

mantle.
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Figure 5.5: Frequency distributions of the time misfits δt for the S40RTS model and the SGLOBE-rani
set of models for each period and seismogram component. Z, L and T refer to the vertical, radial and
transverse seismogram components, respectively.

5.7.2 AMPLITUDE MISFITS

Distributions of the amplitude misfits δA are shown in Fig. 5.6 and the averages are

summarised in Table 5.3. Amplitudes are overall very poorly modelled in all the models with

δA ranging from 31 % (Rayleigh waves at ∼150 s) to 76 % (Love waves at ∼60 s) .

Peaks of distributions (Fig. 5.6) are far from 0 for all the models and become larger and

shorter as the period decreases. The difference in the distributions for S40RTS and all the

SGLOBE-rani model are quite small. Although these small differences, Table 5.3 reports

that SGLOBE-rani set explains the amplitude of data slightly better than S40RTS. Rayleigh

wave amplitudes at ∼100 s and 150 s are modelled better in SGLOBEvoigt and at ∼60 s in

SGLOBEfull. Amplitude of Love waves are better explained by the anisotropic models at every
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Figure 5.6: Frequency distributions of the amplitude misfits δA for the S40RTS model and the
SGLOBE-rani set of models for each period and seismogram component. Z, L and T refer to the
vertical, radial and transverse seismogram components, respectively. NB: the metric used for the
amplitude anomalies is far from ideal to plot distributions, because it will never lead to a Gaussian-
like distribution.

period but are always modelled worse than the corresponding Rayleigh waves.

5.8 DISCUSSION

The use of independent datasets in combination with highly accurate synthetics provides an

objective way to assess global tomographic earth models. In this chapter we use this approach

to assess the quality of the recent global radial anisotropy model SGLOBE-rani. We test three

different variants of this model—SGLOBEvoigt, SGLOBEup, SGLOBEfull—which include only:

(i) laterally varying isotropic structure; (ii) 3-D radial anisotropy in the upper mantle; and,
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(iii) 3-D radial anisotropy in the whole mantle, respectively. For reference, we also test the

widely used S40RTS mantle model. The differences in waveform predictions of SGLOBE-

rani with respect to S40RTS can essentially be attributed to the use of a larger dataset, to the

inversion for Moho depth perturbations and, most importantly, to the inclusion of 3-D radial

anisotropic structure in the modelling.

We find that SGLOBE-rani fits the data better than S40RTS, both for phase and

amplitude measurements (although for the latter there is only a slight improvement, with

the significance of the amplitude misfit differences being unclear). Comparing the results

obtained for the various wave periods, the data fits are poorest at T∼60 s. The misfits for each

earthquake are not shown for brevity since they are consistent with each other. Overall, in

most of the cases considered, the actual full version of SGLOBE-rani with anisotropy in the

whole mantle (SGLOBEfull) gives the best predictions. However, it is important to note that

the differences in misfit between the different variants of SGLOBE-rani are often very small.

Qin et al. (2009) used both shallow (depth<50 km) and deeper

earthquakes (depth>500 km) to limit the effects of the unmodelled crustal structure in the

assessment of various global tomographic models and they found that shallow earthquakes

gave rise to poorer data fits. In our dataset, we have an earthquake that is deeper than the

others (depth ∼48 km, CMTCODE 200912191302A) and the Moho depth beneath this event’s

location is ∼25 km. Despite the source being located in the mantle, the misfits for this event

do not show significant differences compared to the other earthquakes. This is encouraging

regarding the implementation of the crust in our study.

While the results obtained for the individual earthquakes considered are overall consistent

with each other, it is important to note that some source-receiver paths show some

peculiarities, as illustrated in Figs. 5.4 and 5.7. Fig. 5.4 shows three examples of waveform

comparisons (data vs SGLOBEfull vs S40RTS) for an event in in Japan (GCMT code

200805071645A) at T∼100 s. Waveforms at this period mainly sample earth structure at depths

of ∼100 km–200 km (Fig. 5.2). SGLOBEfull models Love and Rayleigh waves better than

S40RTS for a path crossing Europe (PAB station), consistent with the average results found

over all the events. For a path crossing the Pacific Ocean (station COR), SGLOBEfull gives

better predictions than S40RTS for Rayleigh waves, but slightly worse for Love waves. In the

last example, for a path crossing the Western Pacific (station CTAO), SGLOBEfull’s accuracy is

slightly worse than S40RTS for both Rayleigh and Love waves.

Fig. 5.7 shows other examples of waveform comparisons for the event 200706280252A in

the Solomon Islands recorded at the station ERM for wave periods of T∼60 s T∼100 s and

T∼150 s. SGLOBEfull explains the data overall better than S40RTS, particularly for T∼60 s

(consistent with the average results for all the events in Tables 5.2 and 5.3), but the differences

in misfit between these two models decrease as the wave period increases. Fig. 5.8 also shows

that the differences among theoretical waveforms obtained for the SGLOBEup, SGLOBEfull

and SGLOBEvoigt models decrease with increasing period for this wave path, especially

for Rayleigh waves. Overall the waveforms are quite similar for the three different models

considered, with some slight differences for T∼60s, for which SGLOBEup and SGLOBEfull
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Figure 5.7: a. As top in Fig. 5.4 but for the event 200706280252A in the Salomon Islands recorded at
the station ERM (∆ 51° , az: 349° ) for T∼60 s T∼100 s and T∼150 s. Black traces and S40 denote the
S40RTS model. Green traces and SGL denote the SGLOBEfull model (green traces, SGL). Gold traces
are the data. b. Vertical section along the great circle path between the event (red star) and the station
ERM (yellow triangle) for δV s of S40RTS, δV svoi g t and δξ of SGLOBE-rani.

waveforms have phase shifts of about 4 s (δφ∼6.7 %). The largest waveform differences

observed for the shortest wave periods both when comparing the various synthetics, and

synthetics versus real data might be due to the stronger scattering effects associated with

small-scale heterogeneity. Also, the fact that SGLOBEup slightly outperforms SGLOBEfull

at T∼60 s for Rayleigh waves (Tables 5.2 and 5.3) could be due to the leakage of small scale

isotropic heterogeneities (generating scattering effects) into the anisotropic structure. This

possible issue was also highlighted by (Chang et al., 2014, 2015).

Bozdaǧ & Trampert (2010) found that using different global mantle tomographic models

produces small differences in the corresponding theoretical seismograms. The authors
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Figure 5.8: As in Fig. 5.7-a but comparing theoretical waveforms generated using the three variants of
the SGLOBE-rani model.

associated this waveform convergence to crustal structure effects, which strongly affect

seismic surface waves. However, if that would be the case, we would expect a larger

convergence of the waveforms for the shorter wave periods for which the crustal effects

are larger. Yet, this was not the case. Moreover, the authors also found that the smoother

models considered in their study led to slightly better data fits and that, consistently with our

results, the data fit increases for the longer wave periods for all the models considered. The

data fit improvement as the wave period increases could suggest a different resolution of the

models at the different depths. Another hypothesis is that the poorer data fit (noticed in both

our study and Bozdaǧ & Trampert (2010)) for shorter wave periods due to scattering effects

affecting more such short period waves. That is, even small differences between tomographic

models produce larger larger differences on the seismograms because of the larger scattering

effects. This hypothesis would also explain the larger difference among synthetic waveforms

(noticed in this study). This would also be supported by the results of Fig. 4.8 (chapter 4) where

the FRT (e.g., Ferreira & Woodhouse, 2007a), which does not take into account the scattering

effects, systematically displays poorer predictions for the shorter periods, despite of the fact

that this behaviour does not respect the theoretical domain of validity λ¿Ω. Nevertheless,

the differences in synthetic and real waveforms are very small. Thus, in order to support the

idea that the crust is not the main cause of the waveform convergence and that the scattering

effects affect differently surface waves at different periods, further tests are necessary. Future

development of this study could include a systematic assessments of crustal effects on the

surface waveforms at different wave periods. It would also be interesting to evaluate whether

the convergence of synthetics at longer periods for different earth models differs in the case of
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synthetics calculated with an approximate method that does not consider scattering effects,

such as the great-circle path approximation (Woodhouse & Dziewoński, 1984) or FRT.

This study has shown that SGLOBE-rani leads to an improved surface wave data fit than

S40RTS, notably for the phase of surface waves. However, the small misfit differences between

S40RTS and SGLOBE-rani compared to the actual real data misfit values suggests that there is

still room for the improvement of the global tomographic models. Although the amplitude

predictions for SGLOBE-rani are slightly better than for S40RTS, overall the surface wave

amplitudes are poorly modelled, highlighting our poor knowledge of 3-D small scale elastic

heterogeneity and/or 3-D attenuation within the earth. Scattering effects due to unmodelled

elastic structure may in particular play an important role even for the unexplained amplitudes

(Ferreira & Woodhouse, 2007b).

The approach used in this study is currently one of the most objective ways to

quantitatively test tomographic models. However, it also has some limitations. For

example, similarly to most global tomographic studies, we use global CMT source parameters

Dziewoński et al. (1981) to run our simulations and assume that they represent the earthquake

source parameters perfectly well. CMT solutions are built inverting long period waveforms

in a very long-wavelength (degree 12) 3-D Earth model. Ferreira et al. (2011) show that the

use of various recent 3-D Earth models can have a strong impact on the source inversions.

Inaccuracies in the origin time and location of the source can affect the phase of the

waveforms and the seismic moment is linearly related to the seismic amplitudes. Valentine

& Woodhouse (2010) show that surface waveforms can be shifted by a few seconds due to

the inaccuracy of the source parameters and that tomographic models may have an imprint

of errors in CMT solutions. Nevertheless, since we use the exact same source parameters to

assess the different Earth models, errors in the CMT parameters in principle should affect all

model comparisons in the same way. Likewise, the crustal model used in the SEM simulations

(CRUST2.0, which is combined with all the mantle models assessed) likely contains errors

that may affect the waveform comparisons with real data. In future work we are planning to

also use the Moho depth perturbations associated with the SGLOBE-rani model (Chang et al.,

2015). Another factor that probably affects the waveform comparisons is the use of a simple

1-D attenuation model. The amplitude misfits obtained suggest that this model is probably

not sufficient to explain the data.

5.9 CONCLUSIONS AND FUTURE WORK

This work aimed at using SEM seismograms to assess the accuracy of global tomographic

models. In particular, we tested the accuracy of the predictions of the anisotropic model

SGLOBE-rani against the predictions of S40RTS when Rayleigh and Love waves at T∼60 s 100 s

and 150 s are considered.

We found that SGLOBE-rani explains the phase and amplitude of real surface

waveforms better than S40RTS. In order to investigate the effects of the anisotropic

structure we tested three versions of SGLOBE-rani: SGLOBEfull (whole anisotropic mantle),
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SGLOBEup (anisotropic upper mantle) and the average voigt isotropic structure (δVsv=δVsh).

Interestingly, SGLOBEup models Rayleigh waves at T∼60 s slightly better than SGLOBEfull

suggesting that part of the smaller scale heterogeneity could have been wrongly mapped

in the anisotropic structure instead. We also noticed a waveforms convergence (decrease

of the differences) among the synthetic waveforms as the period increases, which might

be due to decreasing seismic scattering effects for larger wave periods. Nevertheless, the

misfit differences between the three variants of SGLOBE-rani are small and their statistical

significance is unclear. This issue will be further investigated in future work.

Although SGLOBE-rani showed an improvement in the phase modelling of surface waves,

a higher resolution 3-D elastic model is desirable. In fact, especially at short scale, 3-D

structure generates strong scattering effects and the shorter period waveforms are those

affected more strongly. The poor amplitude modelling for all the models highlights the urgent

need for robust 3-D elastic and anelastic models including small-scale heterogeneity. This

should be ideally built starting from a high-resolution 3-D elastic model or obtained jointly

inverting for elastic, anelastic and anisotropic structure. Advances in computational power

should allow such large scale inversions soon.

In order to complete this study, we plan to repeat the simulations for SGLOBE-rani

taking into account the Moho depths obtained together with the elastic and anisotropic

structure. Combinations of SGLOBE-rani mantle with different crustal models could also be

accommodated to check how this affects the modelling. We shall also test the lowermost

mantle structure considered in this study by investigating S waveforms with wave periods

down to T∼10 s.

In order to provide a comprehensive guide for scientists interested in using the available

tomographic models, we also aim to implement and test other recent elastic and anisotropic

global tomographic models (e.g., Debayle & Ricard, 2012; Schaeffer & Lebedev, 2013; Auer

et al., 2014; Moulik & Ekström, 2014; French & Romanowicz, 2014). Comparing the predictions

of models obtained by waveform inversion (e.g., French & Romanowicz, 2014) against

traditional approximate methods (e.g., Ritsema et al., 2011; Chang et al., 2015) could give

interesting insights on the accuracy of the approximate techniques complementary to those

obtained in chapters 3 and 4.



6
WAVEFORM MODELLING OF

HIGH-FREQUENCY BODY-WAVES

6.1 SUMMARY

Taking advantage of accurate waveform modelling techniques such as Gemini and the

spectral element method we investigate the effects of elastic, anelastic and anisotropic

structure on S waveforms travelling in the lowermost mantle. Our three component

theoretical waveforms are generated in a wide set of 1-D and 3-D, isotropic and radially

anisotropic earth models, and are accurate down to a wave period of ∼5.6 s. It has been

observed that vertical (SV) and horizontally (SH) polarised S waves crossing the lowermost

mantle sometimes are split by a few seconds and present different pulse widths. The splitting

of such waves is usually interpreted in terms of seismic anisotropy in the D” region, the

deepest mantle layer at the boundary with the liquid core. Here we investigate systematically

the effects of elastic, anelastic, isotropic and anisotropic structure on shear-wave splitting,

including 3-D effects in some of these physical properties. Our numerical simulations in

isotropic earth models show that the contamination of S waves by other phases can generate

an apparent splitting between SH and SV waves. In particular, in the case of very shallow

sources, the sS phase can interfere with the direct S phase, resulting in split SH and SV pulses

when the SH and SV (or sSH and sSV) waves have different polarity or a substantial amplitude

difference. In the case of deep earthquake sources, a positive shear velocity jump at the top

of the D” can cause the triplication of the S waves and the ScSH and ScSV phases can have

different polarity. Thus, when the triplicated S wave is combined with the ScS phase, the

resulting SH-ScSH and SV-ScSV can seem split. When there is not a sharp vertical variation

of the shear wave velocity, the difference in polarity between ScSH and ScSV can make the

SH pulse larger than SV and thus also lead to apparent splitting between these phases. This

effect depends on the thickness of the D” and the Vs gradient within it. S waveforms simulated

in radially anisotropic models reveal that a radial anisotropy of ξ=1.07 in the D” seems to be
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necessary to explain the∼2 s–3 s of splitting observed in waveforms recorded in Tanzania from

an event in the Banda Sea. However, our analysis also shows that other factors such as sharp

vertical variations at the top of D” and gradients of Vs and η within the D” may also affect

the observed waveforms. This study suggests that caution should be taken when interpreting

SH-SV splitting of deep mantle body waves in terms of anisotropy in the lowermost mantle.

6.2 INTRODUCTION

In the previous chapters we discussed the importance of the forward modelling of seismic

waveforms as part of the inverse tomographic problem (see chapters 3-4) and as a strategy

to assess the accuracy of tomographic models (chapter 5). We also demonstrated that

current global tomographic models produce waveform differences that are quite small,

especially when compared to the differences with the real waveforms. A possible cause for

such synthetic waveform convergence is the limited resolution of the global tomographic

models. While such models are very useful to investigate large-scale, whole-mantle

geodynamical processes, they do not image small-scale heterogeneity (e.g., strong gradients

and discontinuities of seismic properties).

The forward modelling of high-frequency seismic data in regions of interest is a useful

means to constrain strong velocity gradients and discontinuities in the Earth’s interior (e.g.,

Ritsema, 2000; Kawakatsu et al., 2009; Tauzin et al., 2010). Starting from an hypothetical

model, waveforms can be calculated and compared to the real data. From the interpretation

of the waveform differences, the model can be changed to improve the data fit. Moreover,

during this trial-and-error procedure,the effects on the waveforms of various seismic

properties (e.g., Vp, density, attenuation, discontinuities, etc, often kept fixed in tomographic

inversions) can be systematically analysed.

The main limitations of such trial-and-error forward modelling approaches are that they

can be difficult to automate and usually involve small data sets. Moreover, previous studies

typically used simple forward modelling tools (e.g., ray theory) in 1-D Earth models. Thus,

using more accurate forward modelling schemes such as the spectral element method (SEM,

e.g., Komatitsch & Vilotte, 1998) for realistic 1-D and 3-D Earth models is highly desirable.

In this chapter we use a trial-and-error forward modelling approach to study

systematically the effects of isotropic, anisotropic and anelastic structure on high-frequency

body waveforms. We use two numerical techniques (GEMINI and SEM; see chapter 2) to

calculate waveforms accurate down to wave period of ∼5.6 s in 1-D and 3-D models and we

target the structure of the lowermost mantle, notably of the D” region (in the bottom 150 km–

300 km of the lowermost mantle).

The splitting (phase shift) of horizontally and vertical polarised S waves has been

extensively used to study the anisotropy in this region of the Earth (e.g., Kendall & Silver,

1996, 1998; Garnero & Lay, 1997; Vinnik et al., 1995, 1998; Ritsema, 2000). In this study we

test whether other factors may produce significant shear-wave splitting.

In the remainder of this section we describe our current understanding of the D” region
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(subsection 6.2.1). We then describe the most commonly used seismic body-wave data to

investigate the D” (subsection 6.2.2) and related previous studies (subsection 6.2.3). Section

6.3 briefly summarises the forward modelling methods used in this chapter, and results from

purely synthetic experiments are presented in section 6.4. Finally, section 6.5 shows results

from the modelling of real data and a discussion of the results is given in section 6.6.

6.2.1 THE D” REGION

After the classification of Bullen (1940) in seven concentric shells (from A, the crust, to G, the

inner core), Bullen (1949) realised that the bottom few hundred km of the lower mantle have

a seismic velocity gradient lower than the rest of the layer D, representing a thermal boundary

between the mantle and the core. It was named D” to differentiate it from the rest of the

lower mantle (D’ layer). Although Bullen’s classification is not used anymore, the name D”

has remained.

Since then, many exciting discoveries about the D” have been made. For example,

Wysession et al. (1998) demonstrated that the top of the D” shows a sharp velocity increase. A

possible explanation for this observation is the presence of subducted slabs at the bottom

of the mantle, highlighted by a geographical correspondence between these high velocity

zones and the projected locations of ancient slabs (e.g., Wysession, 1996; Loubet et al., 2009).

On the other hand, seismic tomography imaged two Large Low Shear Velocity Provinces

(LLSVPs) at the bottom of the mantle under Africa and Pacific (Fig. 6.3) that, although

with large uncertainties, are believed to have distinctive composition because of reported

very low S wave velocity, moderately low P wave velocity and possible high density (e.g,

McNamara & Zhong (2005); Garnero & McNamara (2008); Lekić et al. (2012)). Waveform

studies also recognised Ultra Low Velocity Zones (ULVZs) mostly near the edges of LLSVPs

(e.g., McNamara et al., 2010) whose shear speed decreases in the range of 20 %–30 %.

Another interesting and debated feature of the D” is the presence of anisotropy (e.g.,

Meade et al., 1995; Montagner & Kennett, 1996; Chang et al., 2015). The lower mantle is mainly

composed of magnesium silicate perovskite. The discovery of a phase change from perovskite

(Pv) to post-perovskite (pPV, Iitaka et al., 2004; Murakami et al., 2004; Oganov & Ono, 2004)

provided a possible explanation for the reported D” anisotropy because pPv minerals have a

structure that is intrinsically more anisotropic than Pv. Moreover, this phase transition may

also explain the observed seismic discontinuities at the top of the D”. However, there are still

many uncertainties regarding pPv, with some studies even suggesting that it may only occur

in core conditions (Iitaka et al., 2004; Murakami et al., 2004; Oganov & Ono, 2004). Hence, the

strong complexity of the D” remains largely unexplained.

6.2.2 SHEAR WAVE SPLITTING AND DEEP MANTLE BODY-WAVES

Seismic anisotropy has been observed globally in the uppermost and lowermost mantle (see,

e.g., reviews by Savage, 1999; Chang et al., 2014). While the presence of anisotropy in the

uppermost mantle is widely recognised and included, e.g., in the 1-D reference model PREM
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(Dziewoński & Anderson, 1981), the anisotropy in the D” is still object of debate since only

local studies based on few wave paths have reported its presence.

The simplest type of anisotropy is the so-called radial anisotropy (or vertical transverse

isotropy, VTI), which is investigated in this study (e.g., Nowacki et al., 2011). In the

experiments performed in this chapter we will only consider the radial anisotropy and we

shall refer to negative (positive) radial anisotropy when Vsh>Vsv (Vsh<Vsv). Anisotropy in the

lowermost mantle is often studied using shear wave splitting data. When an S wave travels

through an anisotropic medium, differences between Vsv and Vsh lead to a time shift between

the SV and SH phases, which can be observed in the radial and transverse components of

seismograms, respectively. In the theory, the observed SH-SV arrival time differences are

proportional to the length of the path within the anisotropic medium. As reference, Kendall

& Silver (1998) inferred 1.8 % of anisotropy, defined as 2(V sh−V sv)
V sh+V sv , from a SH-SV splitting of

about 5 s recorded at an epicentral distance of ∼100°.

The lower mantle is often investigated using body-waves travelling through the deep

mantle. In particular, studies of anisotropy in the D” are mainly based on S, Sdiff, ScS waves

(see Figs. 6.1 and 6.2). When the direct S wave grazes the core-mantle boundary (CMB) it is

named Sdiff (Fig. 6.2). The S wave starts to be diffracted (Sdiff) along the CMB at epicentral

distances of about 100° when the ScS phase is no longer observable. S and Sdiff waves can

be studied to investigate the lowermost mantle at epicentral distances of around 90° - 120°.

Moreover, at shorter epicentral distances, the S phase can be used in investigations based on

differential travel-times between S and ScS phases. Since S and ScS have a very similar path

until the turning point of the S phase, the differential arrival-times can be associated to the

path of the ScS in the lowermost mantle.

When using shear wave splitting data to infer D” anisotropy, the observations have to be

corrected for anisotropy in the upper mantle. This is usually done by using SKS data (see

Fig. 6.1). The path of SKS in the lowermost mantle is short; thus, D” anisotropy should not

affect this phase. Hence, SKS splitting data is often used to correct the receiver-side splitting

in S, Sdiff and ScS phases for upper mantle anisotropy. Finally, source-side splitting can be

avoided by using earthquakes deeper than 500 km, where anisotropy is thought to be small or

negligible.

6.2.3 PREVIOUS STUDIES

Several studies have investigated radial anisotropy in the lowermost mantle using S and

Sdiff waves ((for a recent review, see, e.g., Nowacki et al., 2011, ; Fig. 1.2). While beneath

Alaska various studies have found negative (Vsh>Vsv) anisotropy (e.g., Garnero & Lay, 1997;

Wysession et al., 1999), mixed-signal anisotropy has been reported beneath the central and

southern Pacific (e.g., Vinnik et al., 1995, 1998; Pulliam & Sen, 1998; Ritsema et al., 1998;

Kendall & Silver, 1998; Fouch et al., 2001). The coexistence of both positive and negative

anisotropy beneath the central Pacific has been previously interpreted as horizontal mantle

flow into mantle plumes (Russell et al., 1998). Moreover, negative radial anisotropy has also
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Figure 6.1: Raypaths for different body-wave phases mentioned in this study. They are calculated in
the PREM model (Dziewoński & Anderson, 1981) for a seismic source at 300 km depth. The legend is
also used for the arrival-time bars in several figures throughout this chapter.
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Figure 6.2: Raypaths for S and Sdiff waves travelling at an epicentral distance ranging from 90° to 120°
in PREM. In PREM, the D” is 150 km thick and S waves start to be diffracted at about 100°.

been observed in the Indian Ocean (Ritsema, 2000), Caribbean (Kendall & Silver, 1996) and

Siberia (Thomas & Kendall, 2002).

Almost all the cited studies estimated the SH-SV splitting by picking the onset times of the

polarised waves or were limited to a qualitative analysis of the increase of the splitting with the

epicentral distance. Due to the difficulties of such picking because of noise and complexity of

the waveforms, Garnero & Lay (1997) preferred to pick the wave peaks, although this can be

problematic when the wavelengths of the SH and SV phases differ. Fouch et al. (2001) used

a more sophisticated technique based on cross-correlation. However, cross-correlations are
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A. Nowacki et al. / Journal of Geodynamics 52 (2011) 205–228 211

Fig. 7. Summary of previous studies of D′ ′ anisotropy. Numbered regions corresponding to Table 1 are shown in outline, plotted on top of a global tomographic model of VS at
2750 km (Becker and Boschi, 2002) (colour indicates the variation away from PREM (Dziewonski and Anderson, 1981) as per the legend). Regions where the dominant signal
is VSH > VSV are shown in blue; those where VSH < VSV are in purple. Where a region is shown with red and blue stripes, both situations have been seen, as well as isotropy.
Yellow areas indicate regions where the orientation of an assumed TTI fabric has been determined: this symbol shows the dip direction of the plane of isotropy with a tick of
varying length, as shown in the legend (longer is steeper dip). In regions where one azimuth of raypaths show fast directions which are not CMB-parallel or -perpendicular,
they also have a dip symbol as for the TTI regions, with the long bar parallel to the ray path in D′ ′ . Regions with no fill show isotropy, and grey-filled regions show complex
isotropy, either from SKS–SKKS differential splitting (see Table 1), or because no studies comparing VSH to VSV have been undertaken.

around the Pacific rim subduction zones. Where VS is relatively low,
such as beneath the central Pacific and beneath Africa, VSV > VSH.
Similarly to the work of Montagner and Kennett (1996), it also
predicts � > 1 for D′ ′ on average (Fig. 8). Kustowski et al. (2008)
invert surface and body waves for 3-D anisotropic mantle veloci-
ties using similar data, but find strong tradeoffs in the lowermost
mantle between VS and �, and the anisotropic structure in D′ ′ cor-
relates poorly between the two models. It seems that at present
there is still some room to improve on current global models.

2.4. Regional full-waveform inversion

An alternative to producing a global map of anisotropy is to con-
duct regional full-waveform inversion of seismic data from phases
which traverse D′ ′. However, current studies are limited to assum-
ing VTI in the lowermost mantle for computational and theoretical
convenience. Using Tonga–USA raypaths, Kawai and Geller (2010)
employ a full-waveform inversion for � beneath the central Pacific
and find that � < 1 in D′ ′, though there is little sensitivity to struc-
ture below about 150 km above the CMB. This agrees with other
studies along similar raypaths, with � ≈ 0.97, which is at the lower
end of the range of values found previously. Here, it was necessary
to impose a discontinuity of arbitrary depth at the top of the model,

and upper mantle anisotropy was not included, so this may have a
large impact on the uncertainty.

2.5. Waveform analysis

Whilst relatively straightforward to implement, a weakness of
any study which compares SH and SV waves is the assumption of
VTI. Recently, efforts have been made to relax this constraint and
infer more complex type of anisotropy.

An approach used by Garnero et al. (2004a) and Maupin et al.
(2005) is regional forward waveform modelling of S–ScS waves
beneath the Cocos plate and the Caribbean. They infer small devia-
tions of a TI symmetry of ≤20◦ away from VTI as the raypaths move
east to west across the region. Using an SH–SV traveltime approach,
this would and does appear as VSH > VSV, though energy will appear
on both radial and transverse components for both fast and slow
arrivals.

2.6. Measurements of shear wave splitting

Another recent advance towards allowing more complex forms
of anisotropy to be studied is to apply the measurement of both �
and ıt by grid search over the splitting parameters (Fukao, 1984;

more complex 
anisotropy

Figure 6.3: Summary of previous studies of D” anisotropy. Region IDs: 1. Caribbean; 2. Central Pacific;
3. Alaska; 4. South East Pacific; 5. North West Pacific; 6. East Pacific; 7. Western USA; 8. Atlantic
Ocean; 9. Antarctic Ocean; 10. Southern Africa; 11. Indian Ocean; 12. Siberia; 13. Southeast Asia. In
the background: Vs global tomographic model of Becker & Boschi (2002). Regions with Vsh>Vsv are
shown in blue; those where Vsh<Vsv are in pink. Pink and blue stripes indicate that both positive and
negative anisotropy have been reported. Other reported types of anisotropy more complex than radial
anisotropy are shown in grey. TTI: transverse tilted anisotropy. Modified from Nowacki et al. (2011).

often avoided in these analyses by other authors due to waveform differences between SH and

SV phases. Finally, Kawai & Geller (2010) applied a waveform inversion approach to retrieve

D” anisotropy in Central Pacific and found values of anisotropy much larger than other studies

focussing on the same region (e.g., Vinnik et al., 1995; Kendall & Silver, 1998).

Other studies found that radially anisotropic models could not explain their observations

and modelled the S wave splitting with more complex types of anisotropy, such as for Tilted

Transverse Isotropic (TTI) media under the Caribbean (e.g., Garnero et al., 2004; Maupin et al.,

2005; Nowacki et al., 2010), northern Pacific (Wookey et al., 2005), western USA (Nowacki et al.,

2010), Siberia (Wookey & Kendall, 2008) and southeast Asia (Thomas et al., 2007).

6.2.4 MOTIVATION

Some previous forward modelling studies of phases sensitive to the D” have investigated

shear wave splitting in isotropic mantle models. In this thesis we shall refer to such splitting

(i.e., not due to anisotropy) as "apparent splitting". Maupin (1994) used a method based on

the Langer approximation (Richards, 1976; Aki & Richards, 1980) and on perturbation theory

(Garmany, 1988) to model Sdiff waves in isotropic and anisotropic models and found that the
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discrimination between isotropic and anisotropic effects is not straightforward.

Komatitsch et al. (2010b), which shall be referred as KO10 throughout this chapter,

modelled S waves accurately down to wave period of 5 s travelling at an epicentral distance

ranging from 90° to 120° in both the isotropic 1-D IASP91 model (Kennett & Engdahl, 1991)

and a simple laterally varying model, using the spectral element method. The authors

demonstrated that even such models can cause an apparent splitting of SV(diff) and SH(diff)

phases. To reduce the computational cost and simplify the shape of the waveforms, the

authors did not take into account the attenuation effects and used a simplified version of

the IASP91 model by approximating the crust to a homogeneous layer and smoothing the

discontinuities at 410 km and 660 km depth (see Fig. 6.4). The laterally varying model was

built just by combining the simplified IASP91 with a further 1-D variation of IASP91.
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Figure 6.4: Left: velocities and density profiles for the smoothed version of IASP91 used by KO10 and
PREM. Right: zoom in the lowermost mantle.

Fig. 3 of KO10 (reported here in Fig. 6.5) shows the waveforms calculated for the simplified

IASP91 model, for an event at the Earth’s surface with an oblique-reverse focal mechanism
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(see Fig. 6.6). The figure reports a SH-SV apparent splitting increasing from ∆=100° to ∆=120°

, reaching 2.4 s, which roughly corresponds to the average splitting found in the studies

summarised in section 6.2.3 , which is usually explained by the presence of anisotropy in the

D” region. Motivated by these findings, in this study we start by reproducing and interpreting

the results of KO10. We then carry out a more general, systematic analysis of the effects of

elastic (1-D and 3-D), anelastic and anisotropic structure on S waves travelling through the

D”.

[18] We note that the dominant period of SVdiff in our
synthetics is somewhat shorter than that of SHdiff and, for
this reason, the first SV and SH peaks are less shifted than
the picked onset times. However, the difference in slowness
is essentially the same for both the peaks and the onset
times. Of course, the shift between the peaks of pulses with
a differing dominant period can be misleading if interpreted
as a travel‐time difference.
[19] For comparison and further numerical validation, in

Figure 4 we show the same seismograms as in Figure 3
but computed using the GEMINI code of Friederich and
Dalkolmo [1995]. We observe the same SHdiff‐SVdiff
splitting, which confirms the SEM results of Figure 3.
[20] In the model with higher velocities in D″ (Figure 5a)

a dominant feature in the SV component is the seismic phase
that propagates with an apparent velocity of ∼8.3 s/°. In our
interpretation, this phase is mainly the near‐critical reflec-
tion from the upper boundary of the high‐velocity D″ layer,
and its apparent velocity is related to the S velocity atop the
D″ layer. SHdiff is well seen in a distance range from 92° to
120°. SVdiff is much smaller, but it is visible at distances
less than ∼112° in the self‐normalized traces (Figure 5b).
SVdiff is distinctly slower than SHdiff: at a distance of 94°
they arrive almost at the same time, but at a distance of 112°
the delay of SVdiff reaches 2.3 s. The difference in slowness
between SVdiff and SHdiff is ∼0.13 s/°, i.e., 1.3 times that of
the standard model. Note that at a distance of 90° SH arrives
∼3 s earlier than the first clearly visible SV. The actual arrival

of SVdiff is earlier, but it is relatively weak. This effect
can be described as “apparent splitting.”
[21] In the model with smaller velocities in D″ (Figure 6a)

SVdiff propagates with almost the same efficiency as
SHdiff, and at a distance of 120° SVdiff and SHdiff are
comparable in amplitude. This effect is in agreement with
the theoretical results of Phinney and Alexander [1966] and
Doornbos and Mondt [1979]. For this model the waveform
of SVdiff at distances larger than 100° looks approximately
as the derivative of SHdiff. As a result the peak in the
SVdiff waveform occurs about 1.5 s earlier than in SHdiff.
A broadly similar SVdiff waveform was shown by Maupin
[1994] for a model of D″ with a negative S velocity gradient
of −8.8 × 10−4 s−1. With such a gradient the S velocity in D″
decreases from 7.27 km/s at the top of D″ to 7.13 km/s at the
core‐mantle boundary. From our computations for this
model (not shown here) we found that the resulting SVdiff
waveform is indeed very much the same as in Figure 6a.
Maupin [1994] commented on this effect: “SVdiff arrives
earlier than SHdiff in such a model, in disagreement with the
observations of Vinnik et al. [1989] and Lay and Young
[1991].” However, our synthetics in Figure 6a demonstrate
that the early arrival of SVdiff is an optical effect of the
waveform difference, while the actual first arrivals of SVdiff
and SHdiff are synchronous and the apparent velocities are
very much the same.
[22] In Figure 7 we summarize amplitude measurements

for SHdiff and SVdiff for D″ with a standard thickness of

Figure 3. Synthetic velocity seismograms of SH (red) and SV (black) components along the equatorial
profile for the IASP91 model: (a) with true amplitudes and (b) self‐normalized amplitudes. The numbers
on the left‐hand side represent the epicentral distance in degrees. The red and black dashed lines indicate
the arrivals of SHdiff and SVdiff, respectively. The arrival times are shown with a reduction slowness of
8.3 s/°.

KOMATITSCH ET AL.: SHDIFF‐SVDIFF SPLITTING B07312B07312

5 of 13

Figure 6.5: Red (black) lines represent the horizontally (vertically) polarised S waves. Every waveform
is normalised with respect to its own maximum amplitude. Numbers in the right of each pair of
waveforms represent the epicentral distances in degrees. Dashed lines are onset manual pickings of S
waves. The largest apparent splitting, measured as the difference of the onset times, is 2.4 s at ∆=120°
. The earthquake used is at the Earth’s surface and has an oblique-reverse focal mechanism. Modified
from Fig. 3 of Komatitsch et al. (2010b).

6.3 METHODS

In order to accurately model the seismic wavefield, we use the spectral element method

(Komatitsch & Vilotte, 1998, SEM, e.g.,)) and Gemini (Friederich & Dalkolmo, 1995, GEM,).

We considered a wide range of isotropic (1-D and 3-D), attenuation and anisotropic models,

leading to a total of 35 models tested, as explained below. SEM simulations presented in this

chapter are run using a NEX parameter of 768 (element size around 14 km) which allows

obtaining waveforms accurate down to wave period of ∼5.6 s (see section 2.5.1 in chapter

2 for more technical details). Due to the high computational cost and being interested in the

S waves recorded at epicentral distance between 90° and 120°, our simulations are only 33
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Δ=90° Δ=120°

Figure 6.6: Source-receiver geometry used by Komatitsch et al. (2010b) and for the simulations
presented in sections 6.3 and 6.4. The source is at the Earth’s surface (0.1 km in our simulations)
and the beach ball shows the focal mechanism. Triangles represent the range of epicentral distances
considered in the experiments.

minutes long.

6.3.1 VALIDATION

Since the SPECFEM3D_GLOBE code (SEM; Komatitsch & Tromp (2002a,b); Komatitsch et al.

(2010a); see section 2.5.1 in chapter 2) has not been extensively used at at such high

frequencies, we start by reproducing some of the results of KO10 and we benchmark SEM

against GEMINI (GEM; Friederich & Dalkolmo (1995)). The latter algorithm calculates

spheroidal and toroidal motions numerically in a 1-D earth model by integrating a system

of ordinary differential equations followed by summation over vector spherical harmonics

(for more details, see chapter 2). As SEM, the computational cost of GEM depends on

the maximum frequency and duration length of the seismograms. It is quite accurate but,

conversely to SEM, is computationally more affordable. However, it cannot take into account

3-D heterogeneity in the models. Our GEM simulations are run with a cut-off wave period of

4 s.

To reproduce the results of KO10 (Fig. 6.5), we use the simplified version of IASP91 (Fig.

6.4) and the same source-receiver configuration (Fig.

refequatorialgeometry). Due to numerical reasons, the source cannot be placed at exactly

0 km of depth but it is placed at 0.1 km. The focal mechanism was chosen by KO10 to avoid

nodal planes along the equator line where the virtual stations are located. The stations are

placed every 2° of longitude between 90° and 120°. Attenuation is not considered. Waveforms

are calculated using a point-source with half-duration set to 0 s. In the processing stage, the

waveforms are then convolved with a Gaussian source time function with half duration of 6.5

s. We perform this simulation using both SEM and GEM.

Our plot equivalent to Fig. 3 of KO10 (Fig. 6.5) is shown in Fig. 6.7. Our SEM and GEM
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simulations fit each other very well. Our results are also very similar to the results of KO10.

Thus, we successfully use both SEM and GEM to reproduce the splitting reported in KO10 in

a isotropic 1-D earth model. Since SEM and GEM produce identical 1-D Earth seismograms,

in the remainer of this chapter all the simulations for 1-D Earth models are carried out using

GEM.
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Figure 6.7: Comparison between velocity seismograms calculated with SEM (solid lines) and GEM
(dashed lines). Black and red traces are radial (SV) and transverse (SH) seismogram components,
respectively. Numbers on the left show the epicentral distance; numbers on the right represent the
apparent splitting in seconds calculated by cross-correlation. Our traces are convolved with a Gaussian
source time function with a half duration of 6.5 s and and are filtered with a low-pass Butterworth filter
with corner period of 5s (order 6). Source and stations as in Fig. 6.6. Every waveform is normalised
with respect to its own maximum amplitude.

In this work, we focus on the phase of the waveforms only. For this reason, all

the waveforms shown in this chapter are normalised in amplitude, except when stated

otherwise. Waveform splitting is measured by cross-correlation in seconds, but we only

discuss measurements obtained when the correlation coefficient is larger than 0.85. This

approach is chosen to limit the subjectivity of the interpretation of the observations. When

the splitting measured is 0 s or the associate correlation coefficient is less than 0.85, it is not

shown.
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6.4 SYNTHETIC TESTS

In this section we focus on the study of synthetic waveforms, without any regards to real

data. We start is subsection 6.4.1 by carrying out additional numerical experiments that help

explain the splitting observed in Fig. 6.7. We then repeat the same simulations but for more

realistic 1-D and 3-D earth models using the same (or similar) source-receiver configuration

(subsection 6.4.2).

6.4.1 1-D EARTH MODELS

Here we attempt to explain the apparent splitting observed in the S waves modelled for

the simplified version of IASP91 and then we examine the differences when the PREM is

considered.

Isotropic IASP91 model

We repeat the KO10 experiment for same earth model, epicentre, moment tensor, stations

location, no attenuation but changing the source’s depth. Fig. 6.8 shows the resulting

waveforms calculated at∆=100° and∆=110° for sources placed at the surface (0.1 km), 10 km,

20 km, 30 km, 40 km, 50 km, 100 km and 500 km. The waveforms at ∆=100° and ∆=110° for

the source at the surface are the same as those shown in Fig. 6.7. Vertical bars on top of the

waveforms indicate the theoretical arrival-time of the various phases. These are calculated

by using the TauP tools (Crotwell et al., 1999) based on the ray theory and the same model

used for the waveform calculations. To keep the figure simple, only the phases relevant for the

discussion are plotted. The legend for the phase bars is shown in Fig. 6.1 and is the same for

all the figures in this chapter.

At ∆=100°, the S wave is already diffracted (dark green bar) along the CMB and of course

it continues to be also at ∆=110°. The sS (point-dashed light green bar) and sSdiff phases

(point-dashed dark green bar) are also shown. Onsets of pS (dashed light green bar) and

pSdiff (dashed dark green bar) waves are also reported. Please note the difference between

the point-dashed (e.g., sS, sSdiff, sSKS, etc.) and the dashed bars (e.g., pS, pSdiff, pSKS, etc.).

A pS(diff) wave is similar to a sS wave with the difference that the wave leaves the source as P

wave and then is converted into S when it bounces at the surface (see Fig. 6.1).

The analysis of Fig. 6.8-a and 6.8-b suggests that when the source is at the surface, the

arrival of the S wave coincides with the arrival of the pSdiff and sSdiff phases (they are not

actually distinguishable). On the other hand, these phases clearly separate as the source goes

deeper. At 30 km depth, the separation of the phases starts to be evident. At 100 km, it is

clear that the two superimposed phases are Sdiff and sSdiff while the pSdiff phase does not

contain any energy in the radial component. At 500 km depth, the only clear phase in the

radial component is the sSdiff wave.
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Figure 6.8: Black and red traces are radial (SV) and transverse (SH) seismogram components,
respectively. Only arrival times for S(diff), pS(diff), sS(diff) are plotted (phase legend is in Fig. 6.1). The
source epicentre and stations are the same as in Fig. 6.6 and the processing of the waveforms is carried
out as in Fig. 6.7. a-b: Waveforms are calculated with different hypocentral depths (numbers on the
left) and recorded at epicentral distances of 100° and 110°. Amplitudes are normalised with respect to
the maximum amplitude of all the waveforms shown in each of the subplots. c-f: Zooms of some of the
waveforms in the plots a and b, for different depths (reported on the top) at 100° and 110°(reported on
the left of the waveforms). Each waveform is normalised with respect to its own maximum amplitude.
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The subplots in Figs. 6.8-c to 6.8-f show a zoom around the Sdiff arrivals. When the source

is at the surface (Fig. 6.8-c), the apparent splitting is visible for the Sdiff wave recorded at

∆=110°. When the source is placed at 100 km (Fig. 6.8-c), waveforms at ∆=100° and ∆=110°

could be still interpreted as being split. At 500 km depth, the Sdiff phase is well isolated and

no apparent splitting is noticed.

In conclusion, it seems that the apparent splitting in the KO10 experiment is due to the

superposition of different phases (notably Sdiff and sS(diff)) associated with the use of a

source placed just under the Earth’s surface. The fact that the superposition of these phases

results in different pulse/arrival-time in the radial and transverse components might be due

to the difference in the polarity of the superposed phases (e.g., constructive superposition the

transverse component, destructive in the radial). This issue disappears when the source is

deep enough to avoid the sS(diff) contamination.

Isotropic PREM

In the following experiment, we simulate S waves in a slightly modified PREM model (Fig.

6.4). Specifically, we replace PREM’s crust by the same simple homogeneous crust model

as before, we consider a purely isotropic earth model (i.e., Vsh=Vsv even between 24.4 km

and 220 km depth). We include the discontinuities in the mantle at 220 km, 410v and 660 km

depth. Although they create reverberations that complicate the waveforms, they are necessary

for realistic simulations. We carry out calculations both taking and not taking into account

PREM’s attenuation.

We modelled S waveforms in the isotropic PREM model using the same source-geometry

configuration as before (stations at azimuth of 90°), but adding other virtual stations at the

opposite azimuth (270°). We plot the waveforms recorded at the azimuth of 90° on top of those

recorded at the azimuth of 270°to highlight the differences (Fig. 6.9-a). As before, attenuation

is not taken into account. An apparent SH-SV splitting can be noticed from ∆=90° to ∆=106°,

although it varies in sign and there is not a clear correlation with the epicentral distance. From

an epicentral distance larger than∆=108°, there is not a clear S pulse in the radial component.

Also, although the model used is 1-D, different estimates of apparent splitting are obtained

from stations at the same epicentral distance but for different azimuths (Fig. 6.9-a, red and

green numbers at the right of the waveforms). In particular, SV waves are almost identical for

the two azimuths but SH waves differ. As a consequence, stations at azimuth of 90° always

present larger splitting than stations at azimuths of 270°. The maximum apparent splitting is

1.8 s with a positive sign for ∆=96° and azimuth of 90°.

To make our simulations more realistic, we simulate the same wavefield taking into

account PREM’s attenuation. Results are shown in Fig. 6.9-b. The attenuation changes the

shape and the onset time of both SH and SV waveforms because it eliminates the higher

frequencies. As result, the SH-SV splitting is evident in fewer stations.

The distinct results that we obtained as a function of the azimuth and attenuation suggest

that: (i) the radiation pattern, which depends on the moment tensor/azimuth does affect

the shape of the waveforms. Two wavefronts propagating in the opposite direction can have
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Figure 6.9: S waveforms calculated in the isotropic PREM model. a- attenuation not taken into
account. b- attenuation taken into account. Solid waveforms are for stations with azimuth of 90° .
Dashed waveforms are for stations with azimuth of 270° . Black and blue waveforms are SV waves, for
azimuth of 90° and 270° , respectively. Note that the black are blue waveforms are almost identical. Red
and green waveforms are SH waves for azimuth of 90° and 270°, respectively. Red and green numbers
on the left of the waveforms are the SH-SV apparent splitting in seconds for azimuth of 90° and 270°
, respectively. The source, amplitude normalisation and processing are the same as in Fig. 6.7. The
stations with azimuth of 90° are those shown in Fig. 6.6. The stations for azimuth 270° are at 180° with
respect to the previous ones.

opposite polarity and differently interact with discontinuities, giving rise to different wave

fields. ii) The attenuation is another factor which can change the shape of the waveform, even

changing the apparent onset time, and the measured apparent splitting.

6.4.2 3-D ISOTROPIC EARTH MODELS

In this section, we render the simulations even more realistic using two 3-D mantle models,

S40RTS (Ritsema et al., 2011) and SGLOBE-rani (Chang et al., 2015) combined with CRUST2.0

(Bassin et al., 2000). By default, S40RTS is defined in terms of perturbations of Vs with respect
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to the transversely isotropic PREM. SGLOBE-rani is defined as Vsv and Vsh perturbations

with respect to the transversely isotropic PREM. However, in these simulations the radial

anisotropy in both PREM and SGLOBE-rani is neglected. Both models are combined with

a degree 12 δVp model (Ritsema & van Heijst, 2002) and δρ is scaled from δV s, using the

relationship δρ=0.4δVs.

Simulations for SGLOBE-rani are run fully taking into account the attenuation effects.

On the other hand, to limit the CPU time needed, simulations with S40RTS are run taking

into account only the physical dispersion due to the anelasticity, for which waves at different

frequency travels at different velocity. Therefore, the arrival times of the individual pulses are

corrected for the attenuation in the earth but the decay of waveform amplitude is neglected.

This approximation should have limited effects on our analysis as we are not considering the

amplitude of the waveforms.

We consider exactly the same source-receiver configuration as in our previous

experiments (subsection 6.4.1) and start by placing the source at the Earth’s surface. We then

place the source at 604 km of depth to limit the superposition between the S(diff) and sS(diff)

phases.

Isotropic 3-D earth models - shallow source

Fig. 6.10-a shows the 3-D Vs perturbations of S40RTS with respect to PREM crossed by the S

waves recorded at an azimuth of 90°. S waves cross the the so-called African superplume just

before travelling near-horizontally across the D” region, where slightly positive and negative

Vs anomalies alternate. Waveforms for S40RTS and SGLOBE-rani for a source placed at the

surface (0.1 km) and recorded along the equator by stations with an azimuth of 90° are shown

in Figs. 6.10-b and 6.10-c. S waves for S40RTS (SGLOBE-rani) recorded from 90° (92°) to 108°

(106°) show a clear SH-SV apparent splitting with SV(diff) leading SH(diff).

Fig. 6.11-a shows the structure in S40RTS crossed by the S waves recorded at an azimuth

of 270°. All the waves cross the edge of the Pacific mid-ocean ridge before entering into the D”

region. Waveforms for the azimuth of 270° and shallow source are shown in Figs. 6.11-b and

6.11-c. The S waves recorded at ∆>108°–110° also cross a high velocity region from the D” to

the surface. While only few station for S40RTS show S waveforms with apparent splitting, the

SGLOBE-rani model leads to an apparent splitting from -1.6 s to -2.0 s at distances ranging

from 90° to 100°.

These tests for a shallow source show that 3-D Vs perturbations from different Earth

models and at different azimuths can affect the shape of the S waves substantially, leading

to important variations in the apparent SH-SV splitting.

Isotropic 3-D earth models—deep source

The same simulations as in the previous section were repeated, but now placing the source at

a depth of 604 km. Figs. 6.10-d and 6.10-e shows waveforms recorded along an azimuth of 90°

and Figs. 6.11-d and 6.11-e for an azimuth of 270° .
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Figure 6.10: a) S(diff) rays traced in PREM for a source at 0.1 km superimposed on S40RTS Vs
perturbations from PREM. Stations are at an azimuth of 90° from the source. b) and c) S waveforms
calculated with a source at 0.1 km for the S40RTS model (b) and the isotropic version of the SGLOBE-
rani model (c). d) and e) show the same as in b) and c), respectively, but for a source placed at 604 km
depth. The red traces are SH waveforms and the black traces are SV waveforms. The numbers on the
left correspond to the epicentral distance. The numbers on the right of the subplots correspond to
the SH-SV apparent splitting in seconds. The source, amplitude normalisation and processing are the
same as in Fig. 6.7.



6.4. SYNTHETIC TESTS 101

120°

102°

104°

106°

108°

110°

112°

114°

116°

118°

94°

96°

98°

100°

90°

92°

Source 0.1 km Source 604 km

a

b c d e

-25s 25s0 -25s 25s0-25s 25s0-25s 25s0

-0.6

-0.2

4.2

-1.0

-1.4

-1.6

-1.6

-1.8

-2.0

1.0

1.0

0.8

0.4

0.4

0.4

0.2

-0.2

0°

!"#$ !"%# !"$$ $"&# $"#$ $"%# $"$$ $"%# $"#$ $"&# !"$$ !"%# !"#$

!"#$ %!"#$
&'()*+,(-./012+,)*0)10.3+4*.5+! 6

789:;7
'()*)+,-. $/
'/01*)+,-. 2$/
34*5+)6. %&$/

0˚

30˚

60˚

90˚

120˚
15

0˚

18
0˚

90°

60°

30°150°

180°

0˚ 0˚

0

!"#$%&'%()*+,-&'#.+#,+)/&0.)1&2 3
45 645

(71#892:&0.)1&;<=>?; >#-(%+@"&?9&4=&$

-1.5% 1.5%
δVs

-1.6

0.6

0.2

0.4

0.2

0.2

S40RTS SGLOBE-rani S40RTS SGLOBE-rani

Figure 6.11: As in Fig. 6.10 but for stations with azimuth of 270° .

These figures show that when the source is deeper (e.g., 604 km) the apparent splitting is

reduced for both azimuths and both models. However, it can still reach 3.8 s in some cases

(e.g., for SGLOBE-rani at an azimuth of 90° and epicentral distance of 98°, Fig. 6.10-e).
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6.5 REAL DATA APPLICATIONS

In this section we model S(diff) waves using a real source-receiver distribution for which

clear SH-SV splitting observations have been reported (Ritsema, 2000). In order to model

real waveforms with 1-D and 3-D, isotropic and anisotropic models, we analyse the effects of

several model parameters on the waveforms.

6.5.1 MODELLING THE MW 5.8 AUGUST 30 1994 BANDA SEA EARTHQUAKE

We model waveforms recorded by stations of a temporary network in Tanzania generated by

the Mw 5.8 Banda Sea earthquake that occurred on the 30th of August 1994 with a depth of

∼600 km. This event was studied by Ritsema (2000) (event C in that study), with observed

waveforms as shown in Fig. 6.12. Data used in this section are available from the IRIS website

(www.iris.edu).
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Figure 6.12: Broadband displacement waveforms for the Mw 5.8 August 30 1994 Banda Sea earthquake
on the arrival of the S wave. The red traces are SH waveforms and the black traces are SV waveforms. On
the left of the waveforms: name and epicentral distance of the station. Numbers on the right: splitting
in seconds. Waveforms on the left are normalised with respect to the largest amplitude of SV and SH for
every station. Each waveform on the right is normalised with respect to its own maximum amplitude.
The instrument’s response is deconvolved from the waveforms and a high pass-cosine filter at 80 s is
applied.

In the study of Ritsema (2000), the recordings of this earthquake were compared to

the recordings of two other events that occurred at a shorter epicentral distance from the

network considered. All the recordings have similar azimuth (∼265°). While waveforms from

event C, recorded at an epicentral distance ranging from ∆=∼87° to ∆=∼91°, show a SH-SV

splitting of ∼1s–3 s, the SH and SV waveforms generated by the two other closer events do not

show any SH-SV splitting. Ritsema (2000) invoked velocity jump at about 300 km above the

CMB to explain the wave shape difference and a radial anisotropy ranging from 1.4 %–2.7 %

(calculated as 1− V sv
V sh ) to explain the SH-SV splitting observed for the event C. The source-

receiver geometry and the 3-D earth structure of S40RTS along these S paths are shown in Fig.

6.13. In PREM, the D” has a thickness of 150 km (see Fig. 6.13-a). In order for S-waves at∆=87°
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–92° to sample the D” layer, it must be at least 300 km thick (see Fig. 6.13-b). Hence, in our

modelling we also consider models with a D” layer with a thickness of 300 km.
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Figure 6.13: Source-receiver geometry for the Mw 5.8 August 30 1994 Banda Sea earthquake. S40RTS
mantle model in background of the cross sections. Red star: location of the event; green triangles, from
East to West, are the stations URAM, PUGE, MITU, MTOR, KIBA. Top: rays are traced in PREM (mod2
of Fig. 6.15); focal mechanism for the studied event. Bottom: rays are traced in the mod16 of Fig. 6.15
(double thickness for the D”).

We use GEM and the SEM to model the waveforms shown in Fig. 6.12 for various 1-D and

3-D Earth models, and for the source parameters as reported in the global CMT catalogue

(www.globalcmt.org). All the real and theoretical seismograms are filtered with a low pass
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cosine filter—cut off of 7 s—because the SEM synthetics are only accurate for wave periods

longer than T∼5.6 s.
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Figure 6.14: Comparison between observed displacement waveforms (subplot a) and synthetics
calculated for the simplified version of IASP91 (subplot b) (mod1 in Fig. 6.15) and PREM (subplot c)
(mod2 in Fig. 6.15). Black and red traces are radial (SV) and transverse (SH) seismogram components,
respectively. Name and epicentral distance of the stations are reported on the left of the waveforms.
Vertical bars represent the theoretical arrival-times for different phases (legend in Fig. 6.1). Arrival-
times for synthetic waveforms are calculated for the correspondent earth models. Arrival-times for the
data are calculated for PREM. Waveforms are aligned with respect to the S(diff) arrivals. Traces are
convolved with a Gaussian source time function with a half duration of 2.9 s and filtered using a cosine
low-pass filter leading to a dominant period of T∼7 s. Particle motions are reported on the right of each
pair of waveforms, aquamarine and magenta dots on the waveforms mark the start and the end of the
particle motion plots.

For completeness, in our simulations we add several virtual stations with the same

azimuth as the real stations but at shorter and larger epicentral distance from the hypocentre

(whole real/virtual network is from ∆=∼72° to ∆=∼103°).

6.5.2 ISOTROPIC EARTH MODELS

Firstly, we attempt to model the Banda sea event data with the simplified version of IASP91

and PREM (now named mod1 and mod2, respectively) used in the previous experiments

(subsection 6.4.1). Fig. 6.14 shows the modelled S waveforms. All the main theoretical onsets

for the corresponding models are marked with vertical bars on top of the waveforms (same

legend as in Fig. 6.1). We also plot the particle motion for every pair of transverse and

radial seismograms to facilitate the comparison with the real data. Fig. 6.14 shows that the
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real data S waves arrive slightly before PREM (mod2) synthetics because they cross a high

velocity structure in the lowermost mantle (see Fig. 6.13). mod1 and mod2 generate synthetics

with a large dissimilarity with respect to the data, both in terms of shape of the pulse and

splitting. It seems that the effects of the attenuation model used (from PREM) are too strong

as the synthetic pulses are too wide compared to the data. However, we will not change the

attenuation models in the following experiments to keep the trial-error process simpler and

consistent. An interesting point of the synthetics calculated for the stations AA9, AA8 and

AA7 is the evidence that the ScS waveform (magenta bars) has opposite polarity in the radial

and transverse components. Hence, interference with the ScS phase is a possible cause of the

different width pulse between SH and SV in the synthetics at the stations from KIBA to URAM

and in the data at the station MTOR.

Waveform modelling is then performed by using several other 1-D isotropic models

built varying the seismic properties of the D” (Fig. 6.15). In the following paragraphs we

will investigate the effects of these properties on the waveforms with the ultimate goal of

attempting to fit the real waveforms.

Vs gradient in the D”

mod2, mod3, mod10, mod13, mod14 and mod15 have the same D” thickness (150 km) but

different Vs gradient in the D” (Fig. 6.15). While the differences in waveforms between mod2

(gradient almost null) and mod3 and mod10 (positive gradient) are quite small (not shown

for brevity), the differences between mod2 and models with negative gradients (mod13 to

mod15) are more evident (Fig. 6.16).

As expected, the SKS phase (red bar) is only evident on the longitudinal component (black

traces, SV) and the SP and SSP phases (blue bars) do not show any energy in the seismograms.

The main differences between the waveforms for the models mod2 and mod15 are related

to the S (light green bar) and ScS (magenta bar) phases, which have distinct theoretical

arrival times in these two models. For mod15, the ScSH pulse is clearly evident before the

complete superposition with the SH phase as the epicentral distance increases. Indeed, the

superposition between SH and ScSH leads to a pulse with two peaks at stations KIBA and

MTOR. For larger epicentral distances, the SH/ScSH superposition gives rise to a pulse larger

than the SV/ScSV waveform. Conversely, the ScSV phase does not appear in the seismograms

(possibly it has opposite polarity to SV and hence may be obscured by the latter).

The smaller differential arrival time between S and ScS for mod2 is the cause of the wider

SH pulse than SV for the stations at smaller epicentral distance (from KIBA to URAM). Hence,

the wider SH pulse than SV observed in the real data (e.g., station MTOR in Fig. 6.14) may be

at least partly due to the superposition of the SH and ScSH phases. Nevertheless, it is worth

noting that while the widening of the SH synthetic waveforms seems to occur mainly towards

the tail of the pulses (e.g., from KIBA to URAM), in the real data, it occurs at earlier times.

In conclusion, variations in D” Vs gradient can affect the differential arrival times between

S and ScS substantially. Interferences between these phases can lead to wider SH than SV

pulses. The broadening of the waveforms is another factor that should be considered when
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Figure 6.15: Lowermost mantle structure in the 1-D isotropic models used to model waveforms for the
Banda Sea earthquake considered in this study. mod1 is the modified version of IASP91 already used in
the previous section. mod2 is PREM. When Vp (in red) is not shown, it is the same as in PREM, except
for mod16 (mod17 has the same Vs structure as mod 16, but different Vp, shown in red). The shallower
parts of the models are as in the modified IASP91 model for mod1 and as in the PREM model for all
other cases. The ranges of depth (y-axis), Vp and Vs (x-axis) are the same for all the models.

the wave splitting is interpreted.
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Figure 6.16: S waveforms and particle motions for three different 1-D isotropic models. Black and red
traces are radial (SV) and transverse (SH) seismogram components, respectively. The main differences
between models mod2 and mod15 are their Vs gradients in the D”, whereas mod2 and mod16 differ
in their D” thickness. Models are shown in Fig. 6.15. Name and epicentral distance of the stations
are reported on the left of the waveforms. Vertical bars represent the theoretical onsets for different
phases (legend in Fig. 6.1), which are calculated for the correspondent earth models. Waveforms are
aligned with respect the S(diff) arrivals. Traces are convolved with a Gaussian source time function
with a half duration of 2.9 s and filtered using a cosine low-pass filter leading to a dominant period of
T∼7 s. Particle motions are reported on the right of each pair of waveforms, aquamarine and purple
dots on the waveforms mark the start and the end of the particle motion plots.

Discontinuities at the top of the D” layer

mod11 and mod12 have a negative shear velocity jump at the top of a 150 km thick D”. These

models generate S waveforms very similar to those obtained for model mod15 with a negative

Vs gradient (Fig. 6.16) and hence we here do not show them for conciseness.

The models from mod5 to mod9 (Fig. 6.15) have positive jumps of Vs at the top of the

150 km thick D”. S waves for models mod6 to mod9 show a negative apparent splitting up

to ∼4s (Vsh>Vsv) which starts at an epicentral distance that depends on the strength of the

velocity jumps (Fig. 6.17, for brevity we only show waveforms for models from mod7 to mod9).

S waveforms for models with stronger Vs jumps (e.g., mod9) start to show apparent splitting at

smaller epicentral distances than waveforms for models with weaker jumps (e.g., mod7). The

positive jump at the top of D” in mod5 is too weak and the apparent splitting is not evident. S

waves, at distances larger than 96°–97° (not shown for conciseness) do not show any apparent

splitting because they start to be diffracted and SV waves dissipate all their energy.

It is important to note that ray theory predicts that for station KIBA (∆=87°, Fig. 6.13) the

direct S wave does not cross a 150 km thick D”. Yet, the waveforms for different models in Fig.

6.17, which differ only for earth structure deeper than 150 km, show some slight differences
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at this station (Fig. 6.17), highlighting the non-ray character of these waves.
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Figure 6.17: Same as in Fig. 6.16 but for models with a positive Vs jump at the top of a 150 km thick
D”. The Vs jump at the top of the D” causes the triplication of the S wave so three light green bars are
reported.

The models mod18 and mod19 (Fig. 6.15) have a positive Vs jump at the top of D” as in the

models previously discussed but in these models the thickness of the D” is 390 km. For these

models, Fig. 6.18 shows that the waveforms show a widening of the SH pulses, but no clear

apparent splitting as in Fig. 6.17. A possible explanation for this is given by Fig. 6.19 where

travel-time curves of S and ScS for mod9 (150 km thick D”) and mod19 (390 km thick D”) are

compared. The strong high-velocity discontinuity at the top of the D” in both models causes

the triplication of the S wave.

The Vs jump in mod19 causes a triplication of the S waves at an epicentral distance range

of 70°–95°, where there is no interaction with the ScS arrival. In mod9, as well as in mod6 to

mod8, the triplication due to the Vs jump occurs at distances of 85°–95°. In this case, the ScS

phase arrives after the first S of the triplet and before the end of the triplicated arrivals. As seen

in Fig. 6.14, ScSH and ScSV have opposite polarity. Thus, the different interference between

the S triplet and ScS in the radial and transverse component probably causes the apparent

splitting observed in models mod6 to mod9. Conversely, in mod18 and mod19, in the range

of epicentral distance considered, the ScS arrives soon after the S arrivals. In this case, the

effect of the triplication is that the SH pulse seems broader than the SV pulse.

In summary, in this subsection we found that a positive shear wave velocity jump at the

top of the D” causes a triplication of the S wave. In a range of epicentral distance that depends

on the Vs jump and the thickness of the D”, the ScS wave can arrive within the time window

of the S triplet interfering with it and apparently anticipating the S arrival (and thus leading to
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Figure 6.18: Same as in Fig. 6.16 but for models with positive Vs jump at the top of 390 km thick D”.
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Figure 6.19: Travel-time curves calculated for models mod19 and mod9. In mod9, the ScS phase
arrives after the first triplicated S wave and before the end of the triplication.

apparent SH-SV splitting).

D” thickness effects

Models as mod2 and mod16 have the same gradient in the D” region, differing only in its

thickness. In mod16 the SH waveforms are broader than in mod2 (Fig. 6.16) because of the

S-ScS superposition. As seen in the previous paragraphs discussing the differences between

e.g. mod9 and mod19, varying the D” thickness affects the way the S and ScS phases interfere.

Hence, for the epicentral distances considered here, variations in D” thickness affect S-ScS

interferences, which can broaden the pulses.
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Vp/Vs ratio in the D”

Starting from mod16, we change the Vp profile, obtaining mod17 (Fig. 6.15), to verify if

apparent SH-SV splitting could be caused by the interference of the S wave with SP and

PS waves in the radial and transverse component, respectively. However, changes in the

waveforms are visible only in the radial component when the first P wave arrives. No

changes in the waveforms are visible around the S arrivals at least in the epicentral distance

considered.

Hence, nSP (SP, SSP, . . .) and nPS (PS, PPS, . . .) do not seem to interfere with the direct

S waveform in the range of epicentral distance and for the source model considered in this

study.

Non uniqueness of the problem

The models mod15 and mod19 have distinct D” thickness, Vs jump at the top of the D”

and Vs gradient within the D”. Despite these differences, the waveforms generated by these

models are quite similar (not shown for brevity). This highlights that there are strong trade-

offs between the various properties of the D”, which complicate the interpretation of seismic

observations of this region.

3-D Earth models

In order to examine the influence of 3-D structure on the waveforms we carried out

simulations using three different 3-D Earth models: (i) S40RTS (Ritsema et al., 2011) (ii)

S40RTS in which δVs are multiplied by a factor of 1.75; and, (iii) the isotropic version of

S362WMANI (Kustowski et al., 2008), which shall be referred to as S362iso model. In our

simulations the Vs perturbations in these models are superimposed to the isotropic PREM

model. To reduce the computational cost, these 3-D simulations are run taking into account

only the physical dispersion due to the anelasticity.

S waveforms for these 3-D earth models are shown in Fig. 6.20. Theoretical arrival times

(vertical bars) for PREM are plotted on top of the waveforms. S40RTS and S362iso present

positive Vs perturbation along the S paths in the lowermost mantle; thus, the S waves arrive

before PREM’s theoretical arrival time for all the models. Small apparent SH-SV splitting is

observed in some cases (e.g., at KIBA station the splitting is more than 1 s). However, the 3-D

models seem to have limited effects on the shape of the waveforms compared to the effects

considered in the previous paragraphs.

6.5.3 ANISOTROPIC EARTH MODELS

In this section we investigate the effects of radial anisotropy on the waveforms generated by

the Banda sea earthquake. We use twelve 1-D models with an anisotropic D” layer (Fig. 6.21).

Essentially, these models in Fig. 6.21 differ from each other in terms of their Vsv and Vsh

gradients and the D” thickness. The strength of the anisotropy is defined by the parameters

ξ= V sh2

V sv2 and η that relates the velocity at intermediate angle. All the anisotropic simulations
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Figure 6.20: Same as in Fig. 6.16 but for the 3-D earth models S40RTS (Ritsema et al., 2011), S40RTS
multiplied by a factor of 1.75 and the isotropic version of S362WMANI (S362iso) (Kustowski et al., 2008).
Theoretical arrival-times are calculated in PREM.

of this section, except where stated otherwise, are run with a constant η=0.9 in the D”; η=1,

ξ=1 everywhere else. As in the previous section, only the waveforms generated by models for

which we obtain the most interesting results are displayed for brevity. After modelling the S

waves with 1-D anisotropic models, we superimpose 3-D isotropic heterogeneity on the 1-D

anisotropic model that better explains the data.

Parameter ξ

modA8 to modA10 (Fig. 6.21) have the same values (and gradient) of Vsh in the D” and the

same gradient of Vsv. Thus, the main difference between them is ξ (that is constant through

the D” layer). S waveforms for these models are shown in Fig. 6.22. For a given epicentral

distance, where evident, as expected, the SH- SV splitting increases as ξ increases.

In principle, for an S wave travelling through an anisotropic D” layer, the SH-SV splitting is

expected to increase with the epicentral distance because of the longer horizontal path within

the anisotropic layer. However, this behaviour is clear only for model modA9, suggesting that

the radial anisotropy is not the only factor affecting the splitting. Indeed, even for model

modA9, interferences between the ScS and S phases make the SH pulses complex (especially

for the shortest distances), rendering the interpretation of the splitting difficult.

To conclude, as expected, ξ causes real SH-SV splitting, which, however, does not have a

linear effects on the S waveforms. Again, waveform interference (notably superposition with

ScS) can complicate the interpretation of the splitting.

Parameter η

Fig. 6.23 compares waveforms for modA10 with η= 0.9 (default value for all the models in Fig.
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Figure 6.21: Anisotropic models used in this section. ξ= V sh2

V sv2 is calculated just above the CMB. The
same x-axis and y-axis scales are used in all the sub-plots.

6.21) and modA10 with η= 1.0. We notice that while η does not affect SH, it changes the shape

of the SV pulse. In particular, for η=1.0, SV arrives around 2 s later compared to SV for η=0.9,

affecting the SH-SV splitting. Simulations with intermediate values of η show that η is almost

linearly correlated to the SV shift.

Hence, the η parameters is a fundamental parameter in the modelling of radial anisotropy

and it should be carefully considered when modelling S waves.

Data fitting

The models modA5, modA7 and modA11 generate S waveforms with features similar to those

shown in the data, although these features are not always present at the same epicentral

distance (Fig. 6.24). This is probably due to the fact that the arrival of the S wave paths do

not depend only on the seismic parameters in the D” but also along the whole path of these
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Figure 6.22: Same as in Fig. 6.16 but for radially anisotropic models differing from each other for ξ (see
Fig. 6.21). Vertical bars correspond to the theoretical SV arrival times calculated for the corresponding
earth models.!"#"
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Figure 6.23: Setting of the plot and waveform processing as in Fig. 6.16 except for: Solid lines are for
modA10 with η=0.9. Dashed lines are for the same model but with η=1.0. Vertical bars correspond to
the theoretical SV arrival times. Numbers on the right of the waveform represent the shift between SV
calculated for the two different models. Vertical bars correspond to the theoretical SV arrival times.
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waves. However, to maintain the trial and error problem simple and to isolate the effects of

D” properties, in this study we mainly varied primarily seismic parameters within the D”.

The model modA5 has a D” layer that is 150 km thick (Fig. 6.21). The Vsv profile is as in

the isotropic PREM and Vsh has a positive jump at the top of the D”. ξ at the CMB is 1.0816. S

waves for this model (Fig. 6.24) do not show a well defined SH-SV splitting as in the real data,

probably because the S waves at the epicentral distances considered do not go deep enough

to sample the anisotropy in the D”. However, the SH waveforms from ∆=93° to ∆=97° (from

station AA1 to AA4) have a double-peak pulse similar to the real waveform observed at station

MTOR (even if with a different wavelength, as noted previously).

modA7 and modA11 are the models that better explain the SH-SV splitting observed in the

real data. These models have a 300 km thick D” and Vsv and Vsh profiles without any jump.

The S waveforms for modA7 present a SH-SV splitting consistent with the splitting observed

in the real for all the stations. However, the SH pulses do not show any broadening. On the

other hand, modA11 generates SH-SV splitting larger than that observed in the real data, but

it also leads to a widening of the SH pulse. Hence, overall, model modA11 is our preferred

model, leading to the best data fit.
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Figure 6.24: As in Fig. 6.16 but for the anisotropic models modA5, modA7 and modA11. Vertical bars
correspond to the theoretical SV arrival times for the corresponding earth models.

3-D Earth models.

Fig. 6.25 compares real data observations for the Banda sea earthquake with theoretical

calculations for our preferred 1-D anisotropic model (modA11) and for the 3-D model S40RTS

superimposed on modA11. The 3-D structue has an effect not only on the onset of the S waves

but also on the shape of the waveforms. It increases the SH-SV splitting by around 1 s.

To first order, synthetics calculated in the 3-D radially anisotropic structure match the

data relatively well in terms of S onset, wave shape and SH-SV splitting, but some differences
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Figure 6.25: a) Observed displacement S(diff) waveforms for the Banda Sea earthquake. (b)
Comparison between theoretical waveforms calculated for our preferred 1-D anisotropic model
modA11 (dashed lines) and for S40RTS superimposed on modA11 (solid lines). The vertical bars
correspond to the theoretical SV arrival times for model modA11. Black and red traces are radial (SV)
and transverse (SH) seismogram components, respectively. Waveforms are aligned with respect the
S(diff) arrivals. All the traces are convolved with a Gaussian source time function with a half duration of
2.9 s and filtered using a cosine low-pass filter leading to a dominant period of T∼7 s. Particle motions
are reported on the right of each pair of waveforms, aquamarine and purple dots on the waveforms
mark the start and the end of the particle motion plots.

remain. This may be due to the fact that uppermost mantle anisotropy has not been included

in the modelling, which will be the subject of future work.

6.6 DISCUSSION AND CONCLUSIONS

Several seismological and multidisciplinary studies have been carried out on the enigmatic

D” layer (see, e.g., the review by Nowacki et al., 2011, and references therein). Some previous

seismic studies focussed on the possibility of anisotropy based on the splitting observed

between horizontally and vertically polarised S waves travelling in the lowermost mantle (e.g.,

Kendall & Silver, 1996).

One of the limitations in previous SH-SV splitting studies is the subjectivity of peak/onset

picking. SH-SV splitting measurements are complicated by noise, waveform complexity

and uneven data coverage in the globe. For example Garnero & Lay (1997) and Kawai &

Geller (2010) based their studies on waveform cross-correlation and waveform inversion,

respectively, to overcome this problem but these techniques require strong waveform

similarity, which is not always the case. Moreover, the accuracy of such studies is limited by
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the approximate forward modelling techniques usually employed in the analysis (e.g., ray-

based approaches). This is problematic because the finite frequency of the S waves is an

important factor that influences the region of sensitivity of such waves. Moreover, sharp

transitions of the seismic parameters also produce strong scattering effects that cannot be

neglected.

Taking advantage of accurate modelling techniques as the SEM method (e.g., Komatitsch

& Vilotte, 1998) and Gemini (Friederich & Dalkolmo, 1995), we extensively modelled the

complete seismic wavefield for over 30 different Earth models. We focussed on waveforms

recorded at epicentral distances ranging from 90° to 120° in the radial and transverse

components and on a time window centred on the theoretical S arrival. We measured

the splitting between the theoretical SH and SV polarised waves by cross-correlation and

discussed only the splitting values associated with a cross-correlation coefficient larger than

0.85.

Our study was motivated by the findings of Maupin (1994) and Komatitsch et al. (2010b),

which showed that apparent SH-SV splitting of S waves travelling in the lowermost mantle

could be generated without invoking an anisotropic D” layer. Using a simple 1-D isotropic

model, KO10 modelled a negative SHdiff-SVdiff apparent splitting (SH in advance) increasing

with epicentral distance and reaching 2.4 s at∆=120°. After reproducing the same experiment,

we showed that the the SHdiff phase is apparently in advance because of interference between

Sdiff and sS waves. Different polarities of the S and sS phases in the radial and transverse

components lead to different interference effects for SV and SH waves. In order to avoid

such phase superimposition effects, earthquake sources deeper than a few hundreds of km

should be used. Moreover, even the combination moment tensor/azimuth of the stations can

enhance or weaken the apparent splitting measured. Maupin (1994) suggested, in fact, that

the study of more than one source mechanism for the same ray path can help to distinguish

the effects of isotropic and anisotropic structure. However, this option is not always available

when dealing with real data.

We then tried to model the observed SH-SV splitting of ∼2 s generated by a deep

earthquake in the Banda Sea, recorded by several stations azimuthally aligned with the source

(Ritsema, 2000), using 1-D and 3-D isotropic models. We found that a 1-D model with a

150 km-thick D” layer and a positive Vs jump of ∼2% at its top can generate SH-SV splitting

comparable to that observed in the real data. Ray-theory helped us understand that such

apparent splitting is caused by the interference of the ScS wave with a S wave triplicated at

the top of the D”. However, ray-theory could not predict that structure at a depth of ∼3 040 km

can affect S waves with dominant period of about 7 s and travelling at ∆<90°. In fact, from a

ray viewpoint, the ray paths should not reach that depth, but accurate wavefield calculations

highlighted the non-ray, finite frequency character of the S waves considered in this study.

For some epicentral distances, the ScS and S phases can also interfere as a function of the

Vs gradient in the D”. Hence, the widths of the SV and SH pulses are different. Since the ScS

pulse can have different polarity in the radial and transverse components, S-ScS interference

may be different in the two components. For example, Kendall & Silver (1998) recognise that
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the S and ScS phases are very close in the seismograms, so that they preferred to study them

as a single phase. Thus, studies of S waves travelling in the lower mantle should only consider

relatively short epicentral distances (less then 95°) to avoid ScS contamination. Another factor

that strongly affects the width of the S pulse is the attenuation model. In particular, we found

that the attenuation in the PREM model seems too strong to fit waveform data travelling down

to the lowermost mantle.

Testing the effects of radially anisotropic structure on the waveforms, we found that they

are more complex than expected. In particular, the SH-SV splitting due to anisotropy can

be complicated by Vs jumps at the top of the D” and by velocity gradients within the D”. A

radial anisotropy of ξ=1.07–1.08 in a 300 km thick D” layer is necessary to explain the splitting

observed in the data here analysed. However, 3-D heterogeneity, values of η and gradient of ξ

can also strongly affect the modelling. Moreover, more complex types of anisotropy not tested

in this study (e.g., azimuthal anisotropy) may also affect our results.

To conclude, S waves crossing the lowermost mantle offer a great opportunity to study

the elusive D” layer. However, these waves are affected by several factors along their path as

well as by uncertainties in the source model. Hence, the forward modelling of such waves and

its interpretation can be quite challenging when used to fit the data. Interpretations on the

shape, polarisation and splitting of such waves should be cautiously performed.
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CONCLUSIONS AND FUTURE WORK

7.1 CONCLUSIONS

In this thesis we extensively simulated the seismic wavefield at global scale. We employed

two approximate methods, the first-order Born approximation (BORN, e.g., Capdeville, 2005)

and surface wave full ray theory (FRT, e.g., Ferreira & Woodhouse, 2007a), to model long-

period (∼60 s–150 s) surface waveforms and assess whether their accuracy is satisfactory in

the framework of waveform tomography. We compared the predictions of BORN and FRT

against complete seismic wavefield calculations based on a purely numerical approach, the

spectral element method (SEM, e.g., Komatitsch & Vilotte, 1998).

Although BORN is increasingly being used in many seismic tomography efforts, notably

to model travel-times, because it takes into account finite-frequency and scattering effects,

we found that it has a very limited validity domain when applied to seismic waveforms and

realistic earth models. Rayleigh and Love waveform phase predictions are accurate for earth

models with small scale-length/weak heterogeneity, notably for source-receiver paths leading

to time shifts smaller than about 15 per cent of the dominant period of the surface waves. On

average, this condition occurs for global mantle models such as S20RTS (Ritsema et al., 1999)

or S40RTS (Ritsema et al., 2011) only for wave periods longer than T∼80 s–90 s and when

crustal heterogeneity is neglected. For stronger mantle heterogeneity and/or heterogeneous

crustal structure, only the phase of surface waves with periods longer than T∼120 s–130 s can

be accurately modelled. Amplitude predictions are accurate only for waves with period longer

than ∼150 s and when mantle models with unrealistically weak heterogeneity are considered.

Conversely, despite the computational simplicity of the FRT, we found that it is able to

model phase and amplitude of Rayleigh waves accurately for almost all the realistic earth

models considered. We found that the general ray-theory validity condition λ ¿ Ω is too

stringent. Also, a worsening of the FRT predictions with the increase of the wave-length

(and the wave period) is found only for the amplitude modelling and not for the phase.
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The cases whereby the FRT failed (errors in phase larger than 5% and in amplitude larger

than 10%) involved earth models with unrealistically rough heterogeneity. This suggests that

the FRT is useful to build the next generation of models based on surface waves, which is

encouraging, since intensive numerical wavefield simulations useful for global tomography

are still computationally unaffordable when using standard academic HPC facilities. We could

not obtain final results on the performance of FRT for Love waves because of the strong

contamination of fundamental mode waveforms by overtones. However, our initial results

suggest that FRT’s performance may be as good as for Rayleigh (see appendix A).

We chose to assess BORN and FRT because in principle the domains of applicability

of the ray-theory and scattering theory are different. BORN is expected to work for weak

media and the FRT should be valid for smooth earth models. We expected that when the

domains of validity intersect the results are the same. However, we conclude that the finite-

frequency, scattering and diffraction effects neglected by the FRT are minimal, at least in the

range of frequencies here considered, making BORN’s validity domain to be actually included

in the FRT’s domain. Our findings reflect experimental observations of seismic waveforms

in realistic earth models. That is, our results are not suggesting that the FRT is a better

mathematical approximation than the Born approximation. Our findings rather suggest that

heterogeneity in the real Earth is too strong to be modelled using BORN calculations of

seismic waveforms, but perhaps smooth enough to be modelled by the FRT (at least given

our current knowledge of 3-D Earth structure and for the wave periods considered).

On the other hand, purely numerical approaches, such as the spectral element method,

represent a powerful and affordable tool in seismology when only tens of simulations are

needed. In addition to the tests of BORN and FRT, in this thesis we used SEM in two further

applications. We assessed the quality of the new global radially anisotropic mantle model,

SGLOBE-rani (Chang et al., 2015). The two reasons why performing these tests on global

models is important are: i) despite new developments of anisotropic tomography in the

past few years, there are still large discrepancies between existing models, suggesting large

uncertainties; (ii) SGLOBE-rani is based on ray theory, and thus it is important to estimate the

errors introduced in the model due to theoretical shortcomings using independent datasets

and accurate waveform simulations.

We found that SGLOBE-rani explains the data better than the widely used S40RTS mantle

model. However, the small differences in phase predictions between SGLOBE-rani and

S40RTS compared to real data misfits suggest that more efforts must be done to improve

current tomographic models (e.g., including higher frequency datasets, improving crustal

corrections, using more accurate theories such as the FRT). The large amplitude misfits (>
30% between predictions and real data) obtained for both SGLOBE-rani and S40RTS might be

in part attributed to errors in focussing and defocussing effects due to laterally varying elastic

structure. However, an accurate global 3-D attenuation tomography model is probably also

necessary to better explain observed amplitudes of surface waves. Finally, tests performed

using different versions of SGLOBE-rani show that there are small misfit differences between

them, highlighting the difficulties in constraining global anisotropy in the Earth’s mantle.
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Finally, we carried out forward modelling experiments of short-period (T>5 s) body waves

travelling through the Earth’s lowermost mantle and investigated the effects of isotropic (1-D

and 3-D), anisotropic and attenuation structure on wave propagation. We found that, even

if a radially anisotropic D” layer can partially explain the splitting observed in SH and SV

polarised waves, the effects of radial anisotropy on the waveforms are not simple and linear

as might be expected. In fact, the ratio Vsh/Vsv is not the only factor affecting the SH-SV

wave splitting but other seismic parameters, as η, strongly influence the splitting amplitude.

Moreover, even isotropic earth models can generate an apparent SH-SV wave splitting. In fact,

we found that the interference between phases arriving close to each other can change the

shape and the apparent arrival-time of the wave pulses. For example, a strong positive seismic

discontinuity at the top of an isotropic D” layer can generate an apparent splitting between SV

and SH polarised waves of more than 1 seconds. The constructive or destructive interference

of phases with small differential arrival-times strongly depends on the polarity and amplitude

of the wave pulses. The latter are strongly affected by factors not taken into account by

ray-theory, such as scattering and diffraction occurring at the discontinuities of spherically

symmetric earth models and at the edges of seismic anomalies in laterally varying models. We

have been able to model these effects because of the complete wavefield calculations allowed

by the purely numerical approaches used in this study.

We believe that there is not a best or worst forward modelling theory. There must be a

responsible choice by seismologists to use the appropriate method depending on the purpose

of the designed study (e.g., type of seismic wave, frequency band, study region, etc) and errors

due to the forward modelling used should be quantified.

7.2 FUTURE WORK

In the following we present some directions of how we might develop further the research

work carried out in this thesis:

• Calculate surface wave overtones with the FRT. This would enable to check whether the

boundary of the validity domain found for the fundamental mode Rayleigh waves is

also valid for the overtones. If a similar error–roughness relationship is found, the FRT

would be sufficiently accurate to also model the deeper regions of the upper mantle

and transition zone, since overtones sample regions deeper than the correspondent

fundamental mode and the mantle’s heterogeneity is expected to be smoother from

depths greater than 250 km–350 km. Moreover, we would be able to rigorously assess

the accuracy of the FRT when modelling Love waves and systematically estimate the

correlation between overtone contamination effects, for both Rayleigh and Love waves,

and the accuracy of the modelling. These results could allow the inclusion of both

fundamental and overtones, Rayleigh and Love waves, in a waveform inversion scheme.

The so obtained seismograms could be inverted using a "full" waveform approach,

without the need to measure the arrival-times of the individual modes.
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• Implement the crustal thickness variations from SGLOBE-rani in our experiments

assessing tomography models. This would allow checking whether the surface wave

predictions of SGLOBE-rani improve when using its own crustal model. The numerical

experiments could be extended to other crustal models (varying Moho depth and

seismic wave speed distributions) to systematically assess the effects of crustal structure

on surface waves with different dominant periods.

• Assess the quality of SGLOBE-rani in the lower mantle using short-period body-waves

(T∼10 s).

• Assess the accuracy of a wide set of existing global isotropic and anisotropic mantle

models. This could give interesting insights on the accuracy of the approximate

techniques in the construction of the models and, more generally, on the tomographic

procedures employed.

• Simulate SEM wave fields both propagating into the lowermost mantle (e.g., generated

by other earthquakes) and targeting other interesting regions of the Earth, such as the

mantle transition zone and the lithosphere-astenosphere boundary.



A
CONTAMINATION OF FUNDAMENTAL

MODE LOVE WAVES BY OVERTONES

A.1 INTRODUCTION

In chapter 4 we investigate the accuracy of the full ray theory (FRT) when modelling

fundamental mode surface waves. Whereas the windowing of the fundamental mode

Rayleigh waves is straightforward because the mode is well isolated, we notice that Love wave

overtones are often superimposed in time onto the fundamental mode (see Fig. 4.1 in chapter

4). This fact does not allow us to isolate the fundamental mode of Love waves with our simple

strategy (see section 4.4 in chapter 4).

Our FRT calculations only contain the fundamental mode. Conversely, the SEM

seismograms represent the complete seismic wavefield. Hence, the FRT–SEM comparisons

for Love waves are affected by a source of errors difficult to estimate. Despite these errors, our

results suggest that the FRT performs well when modelling the phase of Love waves in almost

all the models used. However, we cannot be sure whether this positive result is due to the

chosen thresholds of goodness employed (Eφ<5 % and E A <10 %, see section 4.4.1 in chapter

4) or because the contamination of the fundamental mode by the overtones has limited effects

in such models. Whilst this aspect will be investigated further in the future, the analogous

analysis performed for Rayleigh waves in chapter 4 is here reported for Love waves.

A.2 LOVE WAVE PHASE VELOCITY MAPS

Love wave phase velocity maps for some of the models used in chapter 4 have already been

shown in chapter 3, though the nomenclature of the models is slightly different. Fig. 3.5

(chapter 3) shows the phase velocity maps for the models obtained by varying lmax (in the

FRT studys these models correspond to: third row–models a; second row–model b; first row–

model c). Fig. 3.3 (chapter 3) depicts the phase velocity maps for the models obtained by
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varying the PV factor (first row–model d ; second row–model e; third row–models f ). Love

e
g

h
i

j

Figure A.1: Fundamental mode Love wave phase velocity maps calculated for mantle models with
PO=1.0 (S20RTS), 1.5, 2.0, 3.0, 3.5 for wave periods T∼ 60 s, 100 s, 150 s. These mantle models are
combined with a homogeneous crustal layer and are referred as models e, g , h, i and j , respectively,
throughout chapter 4 and this appendix. The numbers on the bottom right side of the maps represent
the colour scale ranges.

wave phase velocity maps of models obtained by varying the PO factor are shown in Fig. A.1

(models e, g , h, i and j ). Finally, maps for the S20RTS mantle model combined with the two

3-D crustal models are depicted in Fig. A.2 (models l and m). The R values (roughness, Eq. 4.1

of chapter 4) and power spectra for all these Love wave phase velocity maps are reported in

Table A.1 and Fig. A.3, respectively. Fig. A.3 also reports the power spectra for Rayleigh waves

for comparison.

By comparing the roughness values (see Tables A.1 and 4.1 in chapter 4) and power spectra

(Fig. A.3), we notice that heterogeneity of the Love wave phase velocity maps are always

stronger (and then rougher) than the heterogeneity for the Rayleigh wave phase velocity maps

at the same wave period. This is due to the fact Love waves have different depth sensitivities.

In fact, in the range of wave period considered in this thesis, Love waves have the peak of

sensitivity at shallower depth (where the earth heterogeneity is stronger) compared to the

depth of the sensitivity peak of Rayleigh waves at the same period.
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Figure A.2: Fundamental mode Love wave phase velocity maps for wave periods T∼ 60 s, 100 s, 150 s
calculated for the mantle model S20RTS combined with CRUST2.0 (top row) and a simplified version
of CRUST2.0 with constant Moho depth (bottom row). These crustal models are referred as models l
and m throughout chapter 4 and this appendix. The numbers on the bottom right side of the maps
represent the colour scale ranges.

G1
Models/Periods 60s 100s 150s

a lmax =12 1.3 1.2 1.0
b lmax =20 1.5 1.4 1.3
c lmax =40 2.0 1.8 1.6
d PV=0.5 1.0 0.9 0.7
e PV=1.0 2.0 1.7 1.5
f PV=1.75 3.4 0.3 2.5
g PO=1.5 2.9 2.6 2.3
h PO=2.0 3.8 3.4 2.8
i PO=3.0 6.0 5.1 4.3
j PO=3.5 8.3 5.9 5.0
k lmax =40 PO=3.0 6.1 5.4 4.8
l CRUST2.0 2.7 2.0 1.6

m const_moho 2.0 1.7 1.4

Table A.1: Roughness (R as in Eq. 4.1) values of all the Love wave phase velocity maps used in this
study for wave periods of T∼60 s, 100 s and 150 s.

A.3 ERROR ANALYSIS

Analogously to the waveform comparisons carried out for Rayleigh waves in chapter 4, here

we calculate phase Eφand amplitude E A errors at T∼60 s, 100 s and 150 s by comparing SEM

and FRT Love waveforms. The summary of these comparisons is shown in Fig. A.4.



A.3. ERROR ANALYSIS 125

0 4 8 12 16 20 24 28 32 36 40

10−3

10−2

10−1

100
Rayleigh − Love T ⊕60s

angular order l

po
w

er

0 4 8 12 16 20 24 28 32 36 40

10−5

10−4

10−3

10−2

10−1

100
Rayleigh − Love T ⊕100s

angular order l

po
w

er

0 4 8 12 16 20 24 28 32 36 40
10−5

10−4

10−3

10−2

10−1

100
Rayleigh − Love T ⊕150s

angular order l

po
w

er

T=60s

T=100s

l - angular order

Po
w

er
Po

w
er

Po
w

er

T=150s

0 4 8 12 16 20 24 28 32 36 4010!4

10!3

10!2

10!1

100
Rayleigh T !60s

angular order l

po
we

r

 

 
a! PV=0.5
b! PV=1.0
c! PV=1.75
d! PO=1.5
e! PO=2.0
f! PO=3.0
g! PO=3.5
h! lmax=12

i! lmax=20

l! lmax=40

m! lmax=40 PO=3.0

n! CRUST2.0
o! const moho

d
e
f

0 4 8 12 16 20 24 28 32 36 4010!4

10!3

10!2

10!1

100
Rayleigh T !60s

angular order l

po
we

r

 

 
a! PV=0.5
b! PV=1.0
c! PV=1.75
d! PO=1.5
e! PO=2.0
f! PO=3.0
g! PO=3.5
h! lmax=12

i! lmax=20

l! lmax=40

m! lmax=40 PO=3.0

n! CRUST2.0
o! const moho

a

b

c

0 2 4 6 8 10 12 14 16 18 20
10

10

10

100
Rayleigh T ≈150s

angular order l

po
we

r

0 2 4 6 8 10 12 14 16 18 20
10

10

10

10

10

100
Rayleigh T ≈100s

angular order l

po
we

r

0 2 4 6 8 10 12 14 16 18 20
10

10

100
Rayleigh T ≈60s

angular order l

po
we

r

T=60s

T=100s

T=150s

! - angular order

Po
w

er
Po

w
er

Po
w

er

e
l

m

0 4 8 12 16 20 24 28 32 36 4010!4

10!3

10!2

10!1

100
Rayleigh T !60s

angular order l

po
we

r

 

 
a! PV=0.5
b! PV=1.0
c! PV=1.75
d! PO=1.5
e! PO=2.0
f! PO=3.0
g! PO=3.5
h! lmax=12

i! lmax=20

l! lmax=40

m! lmax=40 PO=3.0

n! CRUST2.0
o! const moho

g
h
i
j

Figure A.3: Power spectra of Rayleigh (solid lines) and Love (dashed lines) wave phase velocity maps at
T∼ 60 s, 100s and 150 s for all the earth models considered in this study.
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Figure A.4: Summary of the phase Eφ and amplitude E A errors at T∼60 s, 100 s and 150 s for all the
models used. Eφ and E A values are the medians for each model and period computed for all the paths
illustrated in Fig. 3.1 (chapter 3). The horizontal black dash-dot lines correspond to the error thresholds
of 5 % for Eφ and 10 % for E A .
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Figure A.5: Scatter plot of Eφ and E A against the roughness R (Eq. 4.1) of the corresponding Love
wave phase velocity maps. The different symbols correspond to distinct families of models: (i) varying
lmax (models a–c; squares); (ii) varying the PV factor (models d– f ; triangles); (iii) varying the PO factor
(models g – j ; diamonds); and, (iv) with 3-D crustal structure (models l –m; stars).

We notice Eφand E A for Love waves are both negatively correlated to the wave period.

While the relation Eφ–period is the same as that observed for Rayleigh waves, the relation

E A –period is the opposite of what observed for Rayleigh waves. The anticorrelation between

E A and the wave period is probably due to the contamination by the overtones which has a

larger effect at shorter periods(see Fig. 4.1 in chapter 4).

Moreover, the contamination effects seem to impact more the amplitude than the phase

modelling. In fact, E A is above the goodness threshold (10 %) for all the models and periods

considered. On the other hand, despite the overtone contaminations, Eφ is (almost) under the

threshold of goodness (5 %) for all the models with PO≤2.0 for all the wave periods considered,

except for T∼60 s when the complex 3-D crustal structure as that in CRUST2.0 is considered.
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Despite the overtone contamination, Eφ for Love waves is related to R with a correlation

coefficient of 0.82 (Fig. A.5). For R less than 2.5 x 10−5, the FRT models the phase of Love

waves with an error smaller than 5 %. The R limit would be probably larger if the fundamental

mode was isolated. The correlation between E A and R present different trends for the three

different periods (correlation coefficients equal to 0.88 for T∼60 s, 0.97 for T∼100 s and 0.99

for T∼150 s) but, as already discussed, in no case a satisfying amplitude modelling of Love

wave is obtained.

A.4 CONCLUSIONS

The contamination of the fundamental mode by the overtones did not allow us to accurately

assess the accuracy of the FRT in modelling Love waveforms. In future studies, the Love

overtones will also be modelled with the FRT enabling a more complete analysis of these

surface waves, similarly to what obtained in the Born approximation study (BORN, see

chapter 3). In light of these considerations, we point out that the results obtained for the

modelling the fundamental mode of surface waves with BORN, can possibly be extended to

the overtones.
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French, S., Lekić, V., & Romanowicz, B. 2013. Waveform tomography reveals channeled flow

at the base of the oceanic asthenosphere. Science, 342(6155), 227–230.

French, S.W., & Romanowicz, B.A. 2014. Whole-mantle radially anisotropic shear velocity

structure from spectral-element waveform tomography. Geophysical Journal International,

199(3), 1303–1327.



REFERENCES 132

Friederich, W., & Dalkolmo, J. 1995. Complete synthetic seismograms for a spherically

symmetric Earth by a numerical computation of the Green’s function in the frequency

domain. Geophys. J. Int, 122(2), 537–550.

Fukao, Y., & Obayashi, M. 2013. Subducted slabs stagnant above, penetrating through, and

trapped below the 660 km discontinuity. Journal of Geophysical Research: Solid Earth,

118(11), 5920–5938.

Furumura, M., Kennett, B.L.N., & Furumura, T. 1998. Anomalous surface waves associated

with deep earthquakes, generated at an ocean ridge. Geophysical Journal International,

134(3), 663–676.

Garmany, J. 1988. Seismograms in stratified anisotropic media - II. Uniformly asymptotic

approximations. Geophys. J., 379–389.

Garnero, E. J., & Lay, T. 1997. Lateral variations in lowermost mantle shear wave anisotropy

beneath the north Pacific and Alaska. Journal of Geophysical Research: Solid Earth, 102(B4),

8121–8135.

Garnero, Edward J., & McNamara, Allen K. 2008. Structure and Dynamics of Earth’s Lower

Mantle. Science, 320(5876), 626–628.

Garnero, E.J., Maupin, V., Lay, T., & Fouch, M.J. 2004. Variable azimuthal anisotropy in earth’s

lowermost mantle. Science, 306(5694), 259–261.

Gilbert, F. 1971. Excitation of normal modes of the Earth by earthquake sources. Geophys. J.

R. astr. Soc., 22.

Gilbert, F. 1980. Proc. ’Enrico Fermi’ Int. Sch. Phys. Vol. vol. LXXVII. Chap. An introduction to

low-frequency seismology, pages 41–81.
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