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Abstract  

Multipoint approximation method (MAM) focuses on the development of metamodels for the objective and constraint 

functions in solving a mid-range optimization problem within a trust region. To develop an optimization  technique 

applicable to mixed  integer-continuous design optimization problems in  which the objective and constraint functions  are 

computationally expensive and could be impossible to evaluate at some combinations of design variables, a simple and 

efficient algorithm, coordinate search, is implemented in the MAM. This discrete optimization capability is examined by 

the well established benchmark problem and its effectiveness is also evaluated as the discreteness interval for discrete 

design variables is increased from 0.2 to 1. Furthermore, an application to the optimization of a lattice composite fuselage 

structure where one of design variables (number of helical ribs) is integer is also presented to demonstrate the efficiency of 

this capability.  
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1. Introduction 

Lots of real-life structural optimizat ion problems have the same common features: the objective and constraint 

functions are computationally expensive using the finite element methods or could be impossible to evaluate at some 

combinations of design variables  (e.g., nodal values of displacements, stresses). In order to improve accuracy and 

computational efficiency, it  is necessary to develop the robust approximat ion techniques. The Multipoint  Approximat ion 

Method (MAM) is a  technique replacing the original optimization problem by a succession of simpler mathemat ical 

programming. It utilizes high quality exp licit  approximations in  order to reduce the total number of calls for analysis 

needed to solve large-scale optimization problems. This approach has been influenced by the previous work [1-3] on 

two-point approximation methods. This was later generalized to multi-point approximations [4-6]. 

Metamodel assembly  is an approach, which is based on an assembly of mult iple surrogates into a single surrogate 

using linear regression [7, 8]. The regression coefficients of the assembly model are not scaled weights but tuning 

parameters determined by the least squares method. Therefore, the tuning parameters of the assembly model are not 

restricted to a positive range but may have negative values as well . In the current work, following the previous research 

for a case of continuous variables  [6], this approach is utilized in the MAM for design optimizations with 

integer-continuous variables.  

In this paper the mixed  integer-continuous design optimization p roblems are solved using MAM with enhanced 

discrete capability. In  these cases, some of, or all, design variables are discrete. It is assumed that it is allowed to perform 

a response function evaluation only for points that have discrete values of the design variables  [9]. This makes it  impossible 

to initially ignore the discrete nature of the design variables, solve a continuous problem and adjust the result to the given 

set of the discrete values, as sometimes suggested in [10]. Thus, new procedures for sampling, metamodel building, their 

use for solving an optimizat ion problem with discrete properties within a trust region, and the trust region adaptation 

strategy are required. In current research, a discrete form of the coordinate search algorithm [11] is implemented within 

the MAM to search for the solution in the sub-space of the discrete variables only starting from the optimal continuous 

values obtained by the Sequential Quadratic Programming method (SQP) on the approximated functions in a current 

trust region. This is compared  to the use of a simp le rounding-off strategy for the discrete variab les. Based on the 

research by authors [12], the new mixed integer-continuous capability is implemented within the MAM and tested by two 

examples. The first example is the well-established benchmark ten-bar truss problem [13] and the effect of the size of 
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discreteness on the optimal results obtained by MAM with the implementation of coordinate search algorithm and the 

simple rounding-off algorithm is examined as well. The second case study relates to the optimizat ion of a lattice 

composite fuselage structure [14] where one o f the design variables, the number of helical ribs, is integer.  This 

composite lattice  fuselage barrel is detailed in the EU FP7 research project ALaSCA in  [15]. The obtained results are 

compared with the solutions obtained by a binary GA for the lattice fuselage barrel design. The efficiency of this 

technique is demonstrated by these two real-life industrial applications. 

2. Multipoint Approximation Method (MAM) 

 The MAM is based on the building of mid-range approximations [4-6] and is suitable to solve large-scale 

optimization problems by producing better quality approximations that are sufficiently accurate in a current trust region 

and inexpensive in term of computational costs required for their building. These approximat ion functions have a 

relatively s mall number (N+1 where N is number of design variables) of regression coefficients to be determined and the 

corresponding least squares problem can be solved easily. This feature of such approximations allows applying them to 

large scale optimization problems with the number of design variables in the order of hundreds  [6]. 

The technique replaces the original optimization problem by a succession of simpler mathematical programming  

problems. The functions in each iteration present mid-range approximat ions to the corresponding original functions. The 

solution of an individual sub-problem becomes the s tarting point for the next step and the trust region is also changed. 

The optimizat ion process is repeated iteratively until the optimum is reached. Each approximat ion function is defined as 

a function of both design variables and a number of tuning parameters. The tuning parameters are determined by the 

weighted least squares surface fitting using the original function values (and their derivatives, when available) at several 

sampling points of the design variable space. Some of the sampling points are generated in the trust region, and the rest 

are taken from the extended trust region, i.e. the pool of points considered in the previous iterations that are located not 

too far from the current trust region. 

A general optimization problem can be formulated as  

 

       NiBxAMjFF iiij ,...,1,,...,11,min 0 xx            （1） 

where x refers to the vector of design variables ; iA and iB are the given lower and upper bounds on the design variable 

xi ; N is the total number o f the design variables;  x0F is an objective function;  xjF is the constraint function 

and M is the total number of the constraint functions. 

In order to present the detailed model of a structure by the response functions and reduce the number of calls for the 

response function evaluations , the MAM replaces the optimization problem by a sequence of approximate optimizat ion 

problems: 
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where  x
kF0

~
and  x

k
jF

~
 are the functions which approximate the functions  x0F and  xjF  of the initial optimization 

problem defined in Eq.(1), 
k
iA and

k
iB are the side constraints of a trust region when searching the solution of the 

approximate optimization problem, k  is the iteration number.   

The selection of the approximate response functions    MjF k
j ,...,0

~
x  is such that their evaluation is inexpensive 

as compared to the evaluation o f the response functions  xjF , although they are not necessarily exp licit  functions of the 

design variables. The approximate response functions are intended to be adequate in a current trust region. This is 

achieved by appropriate planning of numerical experiments and use of the trust region defined by the side constraints 
k
iA  and

k
iB . The Figure 1 illustrates the main steps of the optimization procedure using MAM. 
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Fig. 1. Main steps of the optimization procedure using MAM 

3. Design of Experiments 

In the MAM algorithm, the Design of Experiments (DoE) is  intentionally simple and is based on a random generation  

of sampling points  taking into account the discrete nature of some of (or all) the design variables. This ensures that the 

calls for the response function evaluations are only made for the points that have discrete values of the design variables. 

The added points are checked for calculability of the response function and, if the check fails (i.e. the simulation software 

did not return the response function values), a new set of points is generated until a required number of sampling points 

(all passing the check) are obtained. To improve the quality of the random DoE, a constraint on the min imal d istance 

between the points is imposed [6] using the following expression: 
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Diag is a characteristic size o f the trust region, e  is a number o f a new sampling point,  p is a number of a prev iously 

generated point, P is the total number of sampling points in the trust region, N is the total number of the design 

variables, 
k
iA and

k
iB are the side constraints of a trust region when searching the solution of the approximate 

optimization problem, k  is the iterat ion number. The parameter r is init ially set to 0.9 and if the assessment on Eq. (3) 

fails after a prescribed number of random generations for a new point, the value r will be iteratively reduced by 

multip lying a positive constant ( coeffrr  , 19.0  coeff ) until the Eq. (3) is satisfied. Imposing such a mechanis m 

on the selection of points, the uniform distribution of sampling points across the space is guaranteed. 

A seed for random numbers is used to create the sampling points in this paper. To show the influence of the 

randomness of the sampling points on min imal distances between points in DoE, Example 1 in Section 7.1.1 is selected 

to demonstrate the indication of this scatter shown in Figure 2. Note that the seed for random numbers is taken as 1 for all 

the examples in this paper due to its capability to generate more uniformly distributed sampling points. As an example 

indicating a good quality of the DoE, 30 points is generated for a two-dimensional test problem. Using the proposed 

technique, the comparison of patterns of sampling points without and with the consideration of a constraint imposed on 

the minimum distance is shown in Figure 3. 
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Fig. 2. Effect of randomness of sample points on minimal distance between points in 60–point design of experiments  

 

 

 

    
 

Fig. 3. 30-point patterns without (left) and with (right) a constraint imposed on the minimal distance when design 

variables only take discrete values  

 

4. Trust Region Strategy 

The aim of the trust region strategy is to control the quality of a metamodel . When the approximat ion gets better, the 

trust region will be further reduced. The track of the trust regions also indicates a path of the direction from the in itial 

starting point to the optimum over the entire searching domain. On each MAM iteration, a new trust region must be 

defined, i.e . its new size and its location have to be specified. It should be noted that if the sub -optimum point does not 

pass the check for calculab ility of the response functions, the trust region is reduced and the approximated problem is 

solved again. The only  essential assumption here is that all functions of the optimization problem exist at  the starting 

point. Note that for the discrete variables there is a restriction on the trust region size reduction, i.e. the corresponding 

size of the trust region has to contain at least three levels of a d iscrete variable. The Figure 4 summarizes the trust region 

strategy in MAM algorithm. 
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Fig. 4. Trust region indicators 

5. Using an Assembly Technique to Build Approximations  

Based on the research on mult iple metamodels [7, 8], a  two-step regression procedure is applied to build the 

metamodel [6] represented by the assembly of different approximations. This was introduced in the form 

),(bF

NF

l

ll xx 




1

)(
~

                                        (4) 

where )(xl means different approximate models, which are assembled  into one metamodel;  NF is the number of 

regressors in the approximate models { )(xl }; lb is the corresponding regression coefficient and reflects the accuracy of 

the individual surrogates on a set of validation points. 

In order to build the expression in Eq. (4), the optimization of the minimization of the expression  
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is formulated to determine the regression coefficients jb . This weighted least squares problem leads to solving a linear 

system of NF equations with NF unknowns jb . Here the regression coefficients jb should not be considered as weight 

factors, e.g. could be either positive or negative. The parameters pjw refer to the weights that reflect the inequality of data 

obtained at different sampling points  [4, 5]. 

 The functions l in (4) are determined in the similar manner  
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where the min imization is carried  out with respect to the tuning parameters ja , P  means the number of points used in a 

specified DoE (see Section 3). Note that the tuning parameters ja in Eq. (6) should be determined before the procedure 

(5) has been applied. 

The evaluation of the regressors l is based on the data from the sampling points currently located in the trust region. 

In the mid-range approximat ion framework, inexpensive approximate models for objective and constraint functions are 

built using minimum required number of sampling points. The simplest case is a linear function and more complex ones 

are intrinsically linear functions [16] that have been successfully used for a variety of design optimization problems  [4-6].  

Intrinsically linear functions are nonlinear but they can be led  to linear ones by simple t ransformat ions. In this paper, the 

intrinsically linear functions considered in the model bank { )(xl } are: 
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(7) 

6. Local Optimization Procedure 

In each iteration of MAM, a continuous solution is initially sought in a current trust region using the SQP method 

applied to the approximated optimization problem (2). The discrete variables are init ially obtained by rounding the 

continuous variables to the nearest discrete ones, fixing these values and solving a continuous optimizat ion problem 

again (with the reduced number of design variables to include only continuous variables). This becomes a starting guess 

for the d iscrete form of the optimizat ion problem (2). Two approaches to solving discrete optimizat ion problems have 

been examined, accepting the solution obtained after the rounding-off, and the discrete form of the coordinate search 

method.  

The coordinate search algorithm examines points near the current point by perturbing design variables - one variable 

at a time - until an  improved point is found. There is a similarity between this technique and one previously suggested in 

[9] although for a different type of approximat ions. The algorithm begins with the starting point, as well as 2Nd 

coordinate points, where Nd is the number of discrete design variables. The ith pair of coordinate points differs from the 

starting point only in the ith coordinate. The next test point will be places by a perturbationΔi  (positive or negative) 

along the ith coordinate. The size ofΔi is determined by the spacing of the ith discrete design variable. The point with the 

lowest objective function value (that is penalized in case of violated constraints) along ith coordinate will be selected as 

the new starting point for the ne xt (i+1) th coordinate search. As direct search algorithms [11] are known as unconstrained 

optimization techniques, an exterior penalty function is used to accommodate the constraints by penalizing unfeasible 

solutions as follows: 

                    



m

i
i xF

F

xF
f

1
*
0

0 )](,1max[
)(

)( x                             (8) 

where )(xf  is the objective function penalized is case any of the constraints is violated, 

     )(0 xF  is the objective function, 

      
*

0F   is the initial value of objective function at the starting point, 

      ,   are the penalty parameters, here 5.0 and 1 are suggested  

     )(xFi  is the i-th constraint function, mi ,1 , 
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      m   is the total number of constraints. 

Every time when the discrete variables are modified by the discrete optimizer, it is necessary to make an adjustment 

of the remain ing, continuous design variables. This is carried  out by the use of SQP in the space of continuous variables 

only. Therefore, the overall local optimization process  that is carried out on the approximated response functions, is 

carried out in two levels. The outer optimizat ion loop deals with the discret e variables only and is based on the discrete 

form of the two search algorithms, and the inner optimization loop adjusts the continuous design variables using SQP. 

7. Numerical Examples:  

7.1 Ten-bar Truss Structure 

7.1.1 Example 1 

The developed approach was tested on the well known ten-bar truss benchmark problem [13] shown in Figure 5 that 

has been used by many authors. The minimum weight design is obtained by changing the cross -sectional areas (from 0.1 

in2 to 12.7 in2 with the increment o f 0.2) of the truss members subject to stress constraints and minimum gage constraints 

of 0.1in2. The allowable stress in each truss member is the same in tension and compression and is set to 25 кsi for all 

members except member 9 for which it is 75 кsi. The density of the truss material is 0.1 lb/in3, the member size L=360 in,  

the loads P1 = P2 = 100 Kips and P3 = 0. 

 

 

 
 

 

 

The results for weight optimization of the ten-bar truss structure are presented in Table 1 and informat ion on the 

constraint values for the optimal design is listed in Table 2.  In  order to compare to the known results [13], the weight 

optimization of the ten-bar truss with continuous properties (cross -sectional areas) is performed by MAM. The number of 

sampling points used in each iteration is 15. The optimal result (1497.1) of weight optimizat ion by MAM with 

continuous variables is almost the same as of the benchmark [13] (1497.0) and of the optimizat ion by SQP [17] (1497.6). 

All these three optimal designs are (almost) feasible solutions with only a s mall v iolat ion of constraints (by 0.4%), see 

Table 2. For the discrete optimizat ion of ten-bar truss, optimization by MAM with the implementation of coordinate 

search algorithm has achieved the same optimal weight as  the one by the simple rounding-off, but the number of 

iterations (24) for the coordinate search algorithm is only half of the total number required by the simple rounding-off 

algorithm (48). For the number of response analyses in both algorithms, the same conclusion could be made. Hence, the 

computational efficiency of the coordinate search algorithm is higher than the simple rounding-off method for the 

discrete optimizat ion using MAM, whereas both obtained the same result. The maximum constraint violation fo r the 

either implementation of MAM was 0.8% that was deemed acceptable. 

Next, the obtained results were compared to the results obtained by a binary genetic algorithm (GA). Since a GA is 

naturally suitable to the discrete optimizat ion and it is also a global search algorithm, a better result from GA could be  

expected. On the contrary, a g reater weight (1560.4) was obtained, that is the best result out of five separate GA runs . 

This optimal design is a feasible solution with no v iolation of  constraints (see Table 2) and also gives  the exp lanation 

why this slightly heavier truss design is obtained. As expected, the number of iterations and response analyses in the 

optimization by binary genetic algorithm are significantly increased. 

 

 

Fig. 5. Ten-bar truss structure 
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Table 1.  Results of continuous and discrete optimizations 

 

Design 

variables 

Continuous 

variables, in2 

[13] 

 

 

Continuous 

variables, in2 

(SQP, [17]) 

Continuous 

variables, in2 

(MAM) 

Discrete 

variables, in2 

(MAM with 

coordinate 

search 

algorithm) 

Discrete 

variables, in2 

(MAM with a 

rounding-off 

algorithm) 

 

 

Discrete 

variables, in2 

(GA, [17]) 

x1 7.9 7.9 7.9 7.5 7.5 7.7 

x2 0.1 0.1 0.1 0.5 0.5 0.5 

x3 8.1 8.1 8.1 8.5 8.5 8.5 

x4 3.9 3.9 3.9 3.5 3.5 3.7 

x5 0.1 0.1 0.1 0.1 0.1 0.1 

x6 0.1 0.1 0.1 0.5 0.5 0.5 

x7 5.8 5.8 5.8 6.3 6.3 6.3 

x8 5.51 5.52 5.52 5.1 5.1 5.1 

x9 3.68 3.68 3.66 3.3 3.3 3.7 

x10 0.14 0.14 0.14 0.7 0.7 0.7 

Obj. (lb) 1497.0 1497.6 1497.1 1525.6 1525.6 1560.4 

No. of 

iterations 
N/A 13 22 24 48 57 

No. of 

response 

analyses 

N/A 144 331 361 721 7157 

 

 

 

Table 2.  Constraints results of the continuous and discrete optimizations   

(violated constraint values shown in bold) 

 

Constraints 

(ksi) 

Continuous 

variables, in2 

[13] 

Continuous 

variables, in2 

(SQP,[17]) 

Continuous 

variables, in2 

(MAM) 

Discrete 

variables, in2 

(MAM) 

Discrete 

variables, in2 

(GA, [17]) 

G1 25.0 25.0 25.0 25.0 24.5 

G2 24.9 25.0 25.1 24.6 22.6 

G3 25.0 25.0 25.0 25.0 24.8 

G4 25.0 25.0 25.0 25.0 24.0 

G5 0.07 6.5e-7 0.05 1.5 1.0 

G6 24.9 25.0 25.1 24.6 22.6 

G7 25.0 25.0 25.0 25.2 25.0 

G8 25.0 25.0 25.0 24.4 24.6 

G9 37.5 37.5 37.5 37.5 33.9 

G10 25.1 25.0 25.0 25.0 22.8 

 

 
7.1.2 Example 2 

In this example all the design parameters are the same as the ones in Example 1, but the allowable stress for the 

member 9 is set to 25 кsi. The optimal results and constraint values for weight optimizat ion of this ten-bar truss structure 

are presented in Table 3 and 4, respectively. The optimal result (1593.1) of weight optimization with continuous 

variables by MAM is the same as of the optimization by SQP. For the discrete optimization of this ten-bar truss structure, 

optimization by MAM with the implementation of coordinate search algorithm has achieved the best result (the lightest 

weight, 1610.1) and a slightly heavier weight (1617.3) is obtained by MAM with the simple rounding-off. These two 

results are much better than the discrete results from [17-19] shown in  Table 3. The numbers of response analyses for 

both coordinate search algorithm and simple rounding-off algorithm have been reduced by an order magnitude as 
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compared to the results from other published paper in Table 3. It  is concluded that the computational efficiency of the 

coordinate search algorithm and the simple rounding-off method for the discrete optimization using MAM are quite 

higher than GA. All the optimal designs obtained by discrete optimizations  are feasible solutions with  no violat ion of  

constraints (see Table 4). 

 

Table 3.  Results of continuous and discrete optimizations  

 

Design 

variables 

Continuous 

variables, 

in2 

(SQP,[17]) 

Continuous 

variables, 

in2 

(MAM) 

GA, in2 

[18] 

Discrete 

variables, 

in2 [19] 

Discrete 

variables, in2 

(GA, [17]) 

Discrete 

variables, in2 

(MAM with 

coordinate 

search 

algorithm) 

Discrete 

variables, in2 

(MAM with a 

rounding-off 

algorithm) 

x1 7.94 7.94  N/A 8.1 7.7 7.9 7.5 

x2 0.10 0.10 0.1 0.5 0.1 0.3 

x3 8.06 8.06 8.1 8.5 8.1 8.3 

x4 3.94 3.94 4.1 3.7 4.1 3.7 

x5 0.10 0.10 0.1 0.1 0.1 0.1 

x6 0.10 0.10 0.1 0.5 0.1 0.5 

x7 5.74 5.74 5.9 6.3 5.7 6.1 

x8 5.57 5.57 5.7 5.1 5.7 5.3 

x9 5.57 5.57 5.7 3.7 5.7 5.3 

x10 0.10 0.10 0.1 0.7 0.1 0.5 

Obj. (lb) 1593.1 1593.1 1635 1627.5 1627.5 1610.1 1617.3 

No. of 

iterations 
20 21 

 N/A 
120 57 30 27 

No. of 

response 

analyses 

211 316 17906 5190 7206 451 406 

 

 

Table 4.  Constraints results of the continuous and discrete optimizations  

 

Constraints 

(ksi) 

Continuous 

variables, in2 

(SQP, [17]) 

Continuous 

variables, in2 

(MAM) 

Discrete 

variables, in2 

[19] 

Discrete 

variables, in2 

(GA, [17]) 

Discrete 

variables, in2 

(MAM with 

coordinate 

search 

algorithm) 

Discrete 

variables, in2 

(MAM with a 

rounding-off 

algorithm) 

G1 25.0 25.0 24.5 24.5 25.0 25.0 

G2 15.5 15.5 15.1 15.1 14.9 22.8 

G3 25.0 25.0 24.8 24.9 24.9 24.9 

G4 25.0 25.0 24.0 24.0 24.0 25.0 

G5 1.7e-8 9.0e-4 0.14 0.1 4.4e-2 1.2e-2 

G6 15.5 15.5 15.1 15.1 14.9 13.7 

G7 25.0 25.0 24.3 24.3 25.0 24.8 

G8 25.0 25.0 24.4 24.4 24.5 24.8 

G9 25.0 25.0 24.4 24.4 24.5 24.8 

G10 22.0 22.0 21.3 21.3 21.0 19.3 
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7.1.3 Example 3 

A mixed integer-continuous design problem has been solved in this example. The optimization formulat ion has 

been defined as:  

 

Objective: Minimize Weight 

Constraint: The allowable stress iG , 10,,1,25  iksiGi  except for ksiG 759  ; 

Design Variables: Cross-sectional areas are changing from 0.1 in2 to 12.7 in2; Continuous cross-sectional areas for truss 

member 1 to 6 (horizontal and vertical members); Discrete cross-sectional areas for truss member 7 to 10 (diagonal 

members) with the increment of 0.2. 

 

In Table 5, the optimal designs of the ten-bar truss structure by GA, MAM with the implementation of coordinate 

search algorithm and the simple rounding-off algorithm are presented. Since the optimal design obtained by MAM with 

the coordinate search algorithm (1506.7) has reduced the weight by 5% as compared to the one by GA (1583.3), more 

constraints have been activated or become critical in the converged solution shown in Table 6. As expected, the number 

of iterations and response analyses in the mixed integer-continuous optimization by MAM are significantly reduced. The 

number of response analyses for GA (14901) has been reduced by 96% as compared to the result by the coordinate 

search algorithm (526), while the lighter weight is also achieved by the latter. The similar conclusion could be made for 

the results obtained by MAM with the simple rounding-off algorithm and GA. The lightest design shown in Table 5 is 

1506.7 by MAM with the coordinate search algorithm and this requires acceptable more numbers of iterat ions (35) and 

response analyses (526) than the ones for the slightly heavier design (1534.3) by MAM with the simple rounding-off 

algorithm. In  terms of the computational efficiency, both the coordinate search algorithm and the simple rounding-off 

method for the optimization of this truss structure are much higher than GA. MAM, enhanced by the discrete 

optimization capability, outperforms a GA not only in the efficiency but also in the quality of the obtained solution. In 

Table 6, all the solutions are feasible and no constraint violation happens in these three discrete optimizations. 

 

 

 

Table 5.  Results of the mixed integer-continuous optimizations 

(discrete design variables  shown in bold) 

 

 

Design variables 
Discrete variables, in2 

(GA, [17]) 
Discrete variables, in2 

(MAM with coordinate 

search algorithm) 

Discrete variables, in2 

(MAM with a rounding-off 

algorithm) 

x1 7.75 7.86 7.43 

x2 0.21 0.21 0.63 

x3 8.25 8.15 8.59 

x4 3.80 3.92 3.45 

x5 0.22 0.1 0.1 

x6 0.27 0.21 0.64 

x7 (discrete) 6.7 5.9 6.5 

x8 (discrete) 5.3 5.5 4.9 

x9 (discrete) 4.3 3.5 3.1 

x10 (discrete) 0.3 0.3 0.9 

Obj. (lb) 1583.3 1506.7 1534.3 

No. of iterations 114 35 11 

No. of response analyses 14901 526 166 
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Table 6.  Constraints results of the mixed integer-continuous optimizations 

(discrete design constraints  shown in bold) 

 

 

Constraints 

(ksi) 

Discrete variables, in2 

(GA, [17]) 
Discrete variables, in2 

(MAM with coordinate 

search algorithm) 

Discrete variables, in2 

(MAM with a 

rounding-off algorithm) 

G1 25.0 24.9 24.8 

G2 24.6 25.0 25.0 

G3 25.0 25.0 25.0 

G4 25.0 24.7 24.4 

G5 5.1 7.0e-2 7.4e-2 

G6 19.0 25.0 24.7 

G7 22.4 25.0 25.0 

G8 25.0 24.4 24.4 

G9 31.2 38.9 38.4 

G10 24.4 24.7 24.8 

 

 
7.1.4 Effect of the discreteness interval on the results 

In above three examples, design variables have values with the discreteness interval of 0.2 in  the optimizat ion 

process. Such small d iscreteness interval might be of the mildest possible form in  the discrete optimization problems. It  

remains to be determined how the accuracy and efficiency of the proposed two methods (MAM with the implementation 

of coordinate search algorithm and the simple rounding-off algorithm) will be influenced as the discreteness interval is 

relatively large, fo r example 1. To examine the potential of MAM with the developed discrete capability, the optimal 

results in the above three examples with the discreteness interval of 1 for d iscrete design variables are compared with the 

ones by GA. 

The optimal designs of the ten-bar truss structure in the preceding Example 1 by GA, MAM with the implementation 

of coordinate search algorithm and the simple rounding-off algorithm are presented in Table 7 and the associated 

constraint values are listed in Tab le 8.  Optimizat ion by MAM with the implementation of coordinate search algorithm 

has achieved the lightest weight (1612.6) compared with the result (1684.6) by the simple rounding-off and the solution 

(1663.5) by GA. Although the numbers of iterations (86 and 120) are required to converge the optimizat ion analysis 

using the coordinate search algorithm and the simple rounding-off algorithm are more than the one by GA (57), the 

associated numbers of response analyses (1291 and 1801) are far less than the number required by GA (6900). It  

indicates that the computational efficiency of the coordinate search algorithm and the simple rounding-off method is 

much h igher than GA. By comparing weights of the optimal designs  obtained by the either implementation of MAM and 

GA, the quality of the obtained designs is well kept, whereas the maximum constraint violation for both enhanced MAM 

is 0.8% that falls within an acceptable tolerance. 

The optimal designs and constraint values are shown in Table 9 and 10 fo r the foregoing Example 2 in the 

optimization process with the discreteness interval of 1. In Table 9, better designs by both coordinate search algorithm 

(1786.4) and simple rounding-off method (1801.3) can be identified as compared to the one by GA (1858.4). The 

numbers of response analyses are much reduced from 6764 (by GA) to 1711 (simple rounding -off method) or 376 (by 

coordinate search algorithm). As expected, implementation of MAM by the coordinate search algorithm can solve the 

optimization problem more efficiently and produce a better design than the simple rounding -off method. Either 

implementation of MAM outperforms GA to obtain an improved feasible design (see Table 10) in  terms of the structural 

weight and number of analyses. 

Finally, the mixed integer-continuous design optimization problem (Example 3) has been solved with respect to the 

size o f d iscreteness of 1 for discrete design variab les. The very  expensive computational efforts of GA method are 

considerably reduced by the methods of either implementation of MAM shown in Table 11. The number of response 

analyses by GA (12375) has been reduced by 95.7% as compared to the result by the coordinate search algorithm (526), 

while the lightest weight (1600.4) is also achieved by the latter. W ith the comparison of MAM implemented with the 

simple rounding-off method, GA can  generate a slightly lighter design (1666.6), but the computational cost in  search for 



12 

 

the optimal solution has significantly increased to 12375 from 1396 in terms of the number of analyses . Again, all three 

optimal designs are feasible solutions and no constraint violation has been observed in Table 12. 

Based on the above six examples, the effect o f the discreteness interval on the optimal designs  in terms of 

computational efficiency and the quality of solutions has been evaluated by comparing the results from either 

implementation of MAM and GA. When the size of the d iscreteness is increased from 0.2 to 1 for discrete design 

variables, the heavier weights of the optimal designs are always obtained . The reason for that is  obviously because of the 

reduced design space in the optimizat ion process. When the discreteness interval is set to the mildest value (0.2), there is 

no distinct difference in the optimal designs between the coordinate search algorithm and the simple rounding-off method. 

Either implementation of MAM outperforms GA (see Table 1, 3 and 5). As the discreteness interval is increased to 1, the 

best designs by MAM with the implementation of coordinate search algorithm are g iven at a lowest computational cost 

as compared to MAM with the implementation of simple rounding-off method and GA  (see Table 7, 9 and 11). MAM 

with the implementation of simple rounding-off method can produce the same level of quality of the results as GA, while 

it requires much fewer response analyses and less computational expense. It turns out that when the size of the 

discreteness is increased, the simple rounding-off method can not solve the optimization problem as efficiently  and 

precisely as the coordinate search algorithm due to its simple search mechanism. Furthermore, either implementation of 

MAM can obtain the better or similar designs as GA does, but the computational efficiency to achieve the optimal 

designs has been significantly improved. In summary, comparing with the results by GA, the coordinate search algorithm 

is a more robust method as compared with the simple rounding-off method in the discrete optimizat ion problems, 

especially when the relatively large value is assigned to the discreteness interval. The designs can be significantly 

improved by MAM with the implementation of coordinate search algorithm by comparing with the results by GA as the 

discreteness interval is increased in the optimization problems. For MAM with the implementation of simple 

rounding-off method, the optimal results can be slightly better or almost the same level of quality as GA. 

 

 

 

 

Table 7.  Optimal results for ten-bar truss structure designs (Example 1) with the size of discreteness of 1.0 for 

design variables 

 

 

Design variables 

Discrete variables, in2 

(MAM with coordinate search 

algorithm) 

Discrete variables, in2 

(MAM with a rounding-off 

algorithm) 

Discrete variables, in2 

(GA, [17]) 

x1 7.1 7.1 7.1 

x2 1.1 1.1 1.1 

x3 9.1 9.1 9.1 

x4 3.1 3.1 3.1 

x5 0.1 2.1 0.1 

x6 1.1 1.1 1.1 

x7 7.1 7.1 7.1 

x8 4.1 4.1 5.1 

x9 3.1 3.1 3.1 

x10 2.1 2.1 2.1 

Obj. (lb) 1612.6 1684.6 1663.45 

No. of iterations 86 120 57 

No. of response analyses 1291 1801 6900 

 

 

 

 

 

 

 

 

 



13 

 

Table 8.  Constraints results of discrete optimizations with the size of discreteness of 1.0 for design variables 

(violated constraint values shown in bold) 

 

 

Constraints 

(ksi) 

Discrete variables, in2 

(MAM with coordinate search) 

Discrete variables, in2 

(MAM with rounding off) 

Discrete variables, in2 (GA, [17]) 

G1 24.3 24.4 24.6 

G2 25.0 25.2 23.7 

G3 25.0 25.0 24.8 

G4 23.3 23.2 23.8 

G5 1.6 0.5 8.6 

G6 25.0 25.2 23.7 

G7 25.2 25.2 25.0 

G8 25.0 25.0 20.7 

G9 33.0 32.9 33.7 

G10 18.7 18.8 17.6 

 

 

 

 

Table 9.  Optimal results for ten-bar truss structure designs (Example 2) with the size of discreteness of 1.0 for 

design variables 

 

 

Design variables 

Discrete variables, in2 

(MAM with coordinate 

search algorithm) 

Discrete variables, in2 

(MAM with a rounding-off 

algorithm) 

Discrete variables, in2 

(GA, [17]) 

x1 7.1 7.1 9.1 

x2 2.1 1.1 1.1 

x3 9.1 9.1 8.1 

x4 3.1 3.1 4.1 

x5 1.1 1.1 2.1 

x6 1.1 1.1 1.1 

x7 8.1 8.1 6.1 

x8 4.1 4.1 6.1 

x9 4.1 5.1 5.1 

x10 2.1 2.1 1.1 

Obj. (lb) 1786.4 1801.3 1858.4 

No. of iterations 25 114 57 

No. of response analyses 376 1711 6764 

 

 

 

Table 10.  Constraints values of discrete optimizations with the size of discreteness of 1.0 for design variables  

 

 

Constraints 

(ksi) 

Discrete variables, in2 

(MAM with coordinate 

search algorithm) 

Discrete variables, in2 

(MAM with a rounding-off 

algorithm) 

Discrete variables, in2 (GA, 

[17]) 

G1 24.0 24.3 21.7 

G2 13.1 20.7 13.0 

G3 25.0 25.0 25.0 

G4 23.4 25.0 20.9 

G5 1.9 4.5 5.6 
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G6 25.0 20.7 13.0 

G7 22.7 22.3 23.8 

G8 24.3 25.0 22.6 

G9 25.0 21.4 23.8 

G10 18.6 15.4 18.4 

 

 

 

Table 11.  Optimal results for ten-bar truss structure designs (Example 3) with the size of discreteness of 1.0 for 

design variables (discrete design variables shown in bold) 

 

 

 

 

Table 12.  Constraints results of discrete optimizations with the size of discreteness of 1.0 for design variables  

(constraints associated with discrete cross-sectional areas of bars shown in bold) 

 

 

Constraints 

(ksi) 

Discrete variables, in2 

(MAM with coordinate 

search algorithm) 

Discrete variables, in2 

(MAM with a rounding-off 

algorithm) 

Discrete variables, in2 (GA, [17]) 

 

 

G1 25.0 23.7 25.0 

G2 24.8 25.0 22.3 

G3 24.8 25.0 25.0 

G4 24.8 23.7 25.0 

G5 1.6 0.8 0.8 

G6 24.5 24.9 22.5 

G7 23.5 22.7 23.0 

G8 22.8 23.8 23.4 

G9 37.1 29.9 31.0 

G10 24.0 17.3 21.5 

 

Design variables 

Discrete variables, in2 

(MAM with coordinate 

search algorithm) 

Discrete variables, in2 

(MAM with a rounding-off 

algorithm) 

Discrete variables, in2 (GA, 

[17]) 

x1 7.30 7.86 6.73 

x2 0.76 0.54 1.43 

x3 8.80 8.57 9.29 

x4 3.28 3.65 2.72 

x5 0.36 0.84 0.1 

x6 0.76 0.54 1.42 

x7 (discrete) 7.1 7.1 8.1 

x8 (discrete) 5.1 5.1 4.1 

x9 (discrete) 3.1 4.1 3.1 

x10 (discrete) 1.1 1.1 2.1 

Obj. (lb) 1600.4 1677.7 1666.6 

No. of iterations 35 93 95 

No. of response 

analyses 
526 1396 12375 
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7.2 A lattice composite fuselage structure 

Another mixed integer-continuous example , presented in Figure 6, relates to the optimizat ion of a lattice composite 

fuselage structure where one of the design variables, the number of helical ribs, is integer. A schematic of a composite 

lattice barrel, considered in the ALaSCA EU FP7 research project [14] is shown in Figure 7. The bounds on the design 

variables used for the FE modelling of the barrel model in the weight optimization are listed in Figures 8, 9 and Table 13. 

The optimization formulation has been defined as  (see [15]):  

 

 

Objective: Minimize weight of the fuselage barrel; 

Constraint: Subject to normalized strain constraints on the fuselage barrel; 

Design Variables: six continuous design variables and one discrete design variable (see Table 13). 

 

 

 

 

 

    
 

          Fig. 6. The lattice composite fuselage structure                      

 

 

 

 

 

 

       
 

Fig. 8.  Barrel cross section         Fig. 9.  Circumferential ribs and helical ribs 

 

 

 

 

 

Fig. 7.  A schematic of the composite 

lattice barrel (frames are shown in  yellow;  

helical ribs in green and blue; skin in red) 
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Table 13.  Design variables properties  

(discrete design variable shown in bold) 

 

Design variables Lower bound Upper bound 

Skin thickness (h) 0.6 (mm) 4.0 (mm) 

Number of helix rib pairs around the circumference, (n)  50 150 

Helix rib (hat-section) thickness, (th) 0.6 (mm) 3.0 (mm) 

Helix rib (hat-section) height, (Hh) 15 (mm) 30 (mm) 

Frame pitch, (d) 500 (mm) 650 (mm) 

Frame (z-section) thickness, (tf) 1.0 (mm) 4.0 (mm) 

Frame (z-section) height, (Hf) 50 (mm) 150 (mm) 

 

Optimal design of the fuselage barrel leads to a mixed d iscrete-continuous optimization problem where one parameter 

(number of helical ribs) is integer and other parameters, e.g. helical rib  height, can  be considered as continuous. In order 

to perform weight optimization of this barrel structure efficiently, metamodel-based optimizat ion approach is  applied in 

this paper. Genetic Programming (GP) [20, 21] is used to build  the metamodels for structural responses of interest 

obtained by the FE analysis. For more details on GP and FE simulations, see [15]. Since GP metamodels are analyt ical 

expression that provides the best fit  into the data from the FE runs , the prohibit ive computational effort  is avoided to 

solve this parametric optimizat ion problem. Once the metamodels of all structural responses have been built, the weight 

optimization is then performed by a Genetic Algorithm (GA), MAM with a rounding-off algorithm and MAM with the 

coordinate search algorithm, respectively. It should be noted that the validation of predicted optimal results by FE 

analysis has also been carried out for the final design.  

The optimal results by GA, MAM with a rounding-off algorithm and MAM with coordinate search algorithm are 

shown in Table 14. It can be seen that the designs obtained by both MAM with a rounding-off algorithm and coordinate 

search algorithm are similar but the latter has produced a slightly better result in terms of structural weight. An 

alternative design by binary GA is also given with the acceptable weight (0.0980). In comparison with these three 

designs, the correlation between number of helical rib pairs around the circumference (n) and frame pitch (d) can be 

identified: when n is increased in the design, d is increased for generating large skin bays. Also, Hh is decreased for the 

light weight of helical ribs  so that the same weight of the fuselage section can be kept. It is seen that all these three 

optimal designs have some common features: The helical ribs have a tall and slender hat-shaped cross section with a 

thickness of 0.60 mm, which is the minimal allowed valued of 0.60, and a height close to the maximum allowed value of 

30 mm. This had led  to a large moment o f inertia and thus to a high bending stiffness. The circumferential frames, which  

are less instrumental in preventing fuselage bending have become thin  and small, with both of their dimensions reaching 

the minimal bounds of 1.0 mm and 50.0 mm respectively. Th is case study has shown that the fuselage barrel is generated 

with large skin bays; few thin tall helical ribs; and few thin s mall circumferential frames. By altering the frame p itch, the 

height of the triangular skin bay is affected. Similarly, the number of helical ribs changes the width of the base of these 

triangular bays, see Figure 6. Consequently, these two variables change the area and the angle 2φ  of these skin bays, and 

thus are - along with the skin thickness - instrumental in  influencing the buckling behaviour of the barrel structure. In  

Table 15, the validation by FE analysis has been given for the final optimal design. The optimal result by MAM with 

coordinate search algorithm is validated by FE analysis in terms of normalized strains and weight. It is concluded that the 

predicted optimal design and FE simulation have a high degree of agreement. 

 

Table 14.  Results of weight optimization of the lattice fuselage barrel 

 

Design variable GA 

[17] 

MAM with coordinate 

search algorithm 

MAM with a rounding-off 

algorithm 

Skin thickness (h) 2.08 2.09 2.10 

Number of helical rib pairs around the 

circumference, (n)  
60.00 66.00 67.00 

Helix rib (hat-section) thickness, (th) 0.60 0.60 0.60 

Helix rib (hat-section) height, (Hh) 27.90 24.34 23.77 

Frame pitch, (d) 627.70 650.00 650.00 

Frame (z-section) thickness, (tf) 1.00 1.00 1.00 

Frame (z-section) height, (Hf) 50.00 50.00 50.00 

Objective (normalized weight) 0.0980 0.0978 0.0979 
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Table 15.  Optima obtained using normalized strain constraints 

 

 

8. Conclusions  

 

MAM with the discrete capability for solving mixed integer-continuous optimization problems was successfully 

demonstrated on a benchmark problem of a ten-bar truss structure and weight optimization of a lattice composite fuselage 

structure. The proposed method in this paper, MAM with the implementation of the coordinate search algorithm, has 

successfully solved the benchmark problem and applied for an aerospace application. By evaluating the effect of the size 

of discreteness for discrete design variables on the optimal designs, it indicates that MAM with the implementation of the 

coordinate search algorithm is a robust method and it outperforms a GA not only in the efficiency but also in  the quality 

of the obtained solution; MAM with the implementation of the simple rounding-off method can not solve the 

optimization problem as efficiently  and precisely as the coordinate search algorithm due to its simple search mechanis m, 

but it produces the same level o f quality of the results as GA, while requiring much  fewer response analyses and less 

computational cost. The developed discrete capability in MAM is currently used in industrial projects where it is  

essential to consider the mixed integer-continuous problem formulations. 
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