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To consider the relationship between different measures of chirality in an optical field, the simplest case is 
considered: direct spontaneous emission of circularly polarized light by a point source.  In the electromagnetic fields 
radiated from a suitably chiral source, such as a low-symmetry chiral molecule undergoing radiative decay, optical 
helicity is exhibited in the extent of a difference in left- and right-handed circular polarization components.  There 
are several practical measures for quantifying the emergence of ensuing optical helicity, exhibiting different forms 
of dependence on the properties of the emitter and the positioning of a detector.  By casting each measure in terms 
of an irreducible helicity density, connections and distinctions can be drawn between results expressible in either 
classical or quantum form.  © 2015 Optical Society of America 
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1. INTRODUCTION 
Building on foundational work by Lipkin, [1] a range of issues 
concerning the helicity of light – in particular its measures, conservation 
and connection to optical angular momentum – have attracted an 
increasing amount of interest in recent years. [2–8]  It has, for example, 
been shown that an optical chirality density and its associated flux can 
both be defined in terms of helicity and spin. [9,10]  Moreover it emerges 
that these each of these quantities, expressed in photonic terms, has a 
direct dependence on the relative occupancy of optical modes with 
opposing helicity – a feature that is most readily apparent when left- and 
right-handed modes are used as the basis. [11,12]  To further address in 
detail the specific relationships between various practical measures of 
optical chirality, it is appropriate to consider the very simplest system: 
the optical field associated with spontaneous, circularly polarized 
emission from an isolated point source.  Focusing on quantitative 
analytical measures of optical helicity, the development of 
electrodynamic theory leads to expressions for three distinct 
observables, each of which has a connection with optical helicity.  The 
results reveal how the evolution of these measures, as the light 
propagates outwards from the source, change from near-field to far-
field form. 

2. DESCRIPTION OF THE SYSTEM 
Spontaneous photon emission by a single chiral molecule is the simplest 
optical process in which material chirality is conferred into an optical 
field – and to begin, it may be helpful to reflect on the physical 
mechanism involved.  It may be assumed that the molecule, initially in 
an electronically excited state, has the same nuclear geometry as the 

ground states: the symmetry properties of those two states will be 
identical.  There is no sense in which the photon released in its process 
of electronic decay ‘conveys away’ any molecular chirality, not least 
because the ground state molecule fully retains the chiral character of its 
initial, excited state.  There is no meaningful measure of net helicity for a 
system comprising both matter and light. [13]  However, in the initial 
state of the emission process, in which the radiation field is empty, the 
symmetry of the system is determined by the excited molecule – 
generally a subgroup of the rotation group SO(3). 
The expectation of differential circularity in the emission from a chiral 
molecule is perhaps most readily appreciated by considering the time-
inverse process: temporal (and spatial) symmetry considerations afford 
fundamental insights into magnetoelectric chiral interactions. [22] It is 
well known that chiral molecules exhibit circular dichroism (CD): [14–
16] a range of important applications in absorption spectroscopy are 
based on this sensitivity to the handedness of input light.  It is clear on 
symmetry grounds that there is a qualitative difference between the 
interactions of, say a ‘left-handed’ molecule with a left-handed photon, 
as opposed to a right-handed one this is manifest in a quantifiable CD – 
a corresponding difference in absorption rate.  From time-reversal 
arguments it therefore follows that chiral discrimination in 
spontaneous emission has a similar physical basis – indeed, the 
technique of circular polarized luminescence has developed from this 
exact principle. [16–19]  Equally, symmetry arguments based on spatial 
inversion show that, just as molecules of one particular enantiomeric 
form can display a difference in rates for emitting left-, compared to 
right-, circular light, the same difference can be expected between the 
rates of emitted light of one specific optical circularity, from opposite 
enantiomers.  The principle is illustrated in schematic form in Fig. 1. 
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Fig. 1. (Color online) Correspondence and non-correspondence in the 
forms of interaction between enantiomers and circularly polarized 
photons of each handedness 

3. MEASURES OF OPTICAL HELICITY 
The fundamental measure of optical helicity in classical electro-
dynamics is most simply defined by the following formula: 

    3 ,d  A r B r r
   (1) 

where A and B are the electromagnetic vector potential and magnetic 
induction fields, respectively.  In the corresponding quantum field 
formulation, in which both of these fields are elevated to operator status 
and cast as Fourier series, it is not immediately apparent that the result 
is Hermitian, as should befit a quantum observable.  However, on 
performing a mode expansion the helicity emerges in an obviously 
Hermitian form simply cast in terms of the number operators for left 

and right circular polarizations, ˆ
LN  and ˆ

RN  respectively: [12]   
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in which ε0 is the vacuum permittivity, ħ is the reduced Planck constant  
and k represents a wave vector.   For radiation propagating in a region 
sufficiently far away from a point source, a plane wave representation 
for each specific wave-vector is appropriate, and the corresponding 
intensity of light is suitably expressible in terms of a mean irradiance I.  
Duly re-expressing equation (1) in terms of photons of left- and right-
handed polarizations, measurement of the optical helicity for a specific 
wave vector is therefore given by: 
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Fig. 2. (Color online) Three methods used to gauge, at a position R, the 
emission from a chiral molecule A at the origin, curly arrows indicating 
the capacity of the source to radiate circularly polarized photons. Red 
lines figuratively indicate the focus of measurement. (a) Determination 
of a Stokes parameter at R; (b) Identification of a differential in the rate 
of spontaneous emission by A; (c) Measurement of a differential in the 
source emission through photon absorption by a physical detector B at 
position R. 

where V represents the volume around the point of detection.  The main 
intention of this article is to now consider and duly assess different 
mathematical means by which objective, quantifiable measurements of 
radiation helicity can be made.  Three methods are considered; the first  
involves one of the Stokes parameters, directly addressing optical 
circularity in terms of the polarization of the emergent field; the second 
quantifies the circular differential rate of spontaneous emission, as 
might be measured by an independent detector; the third treats the 
emitter and detector as optically coupled components.  Each method is 
illustrated within Fig. 2.   

A. Helicity Measurement through Stokes Polarimetry 

The polarization of a single quantized mode is typically quantified in 
terms of four Stokes parameters Sn – each one directly related to wave 
intensities measured in different orthogonal bases.  With respect to the 
chirality focus of this investigation, the most significant of these 
operators is S3, whose classical expression is commonly cast as; [20,21] 
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where each E is a complex vector associated with the electric field (but 
cast in different units).  However, the corresponding expression for the 
third Stokes operator, in quantum form, is conventionally cast in a 
similar guise as follows; [22] 

 † †

3
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in which a and a† represent the familiar photon annihilation and 
creation operators respectively.  To more clearly establish a connection 
to circular polarizations, use can be made of the following identities; 
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By substitution, it is again possible to re-express equation (5) in terms 
of the number operators for left- and right- handed photon populations 

where † † ˆ ˆ
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For the corresponding relation between measurements, we can use the 
standard relation 2I N c k V  to connect irradiance with the 
expectation number of photons in volume V, so producing the result: 
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In passing we note that the expression for S3 based on the quantum 
formula therefore delivers a result of opposite sign to the classical 
expression (4).  Nonetheless, it is clear from this that the third Stokes 
parameter does correctly register optical helicity.  As a result of the 
analysis previously performed by Coles and Andrews, it therefore 
transpires that this correlation holds true even in the case of optical 
vortex radiation (‘twisted beams’).  However, the assumption of 
remoteness from the source (insignificant angle of divergence) suggests 
that the connection may hold true only in the far-zone (FZ), λ << R where 
λ is the optical wavelength and R the distance from the source.  We now 
explore this issue in detail.      

The classical, text-book expression (4) casts the result for S3 in a form 
suited to plane wave detection, and both Ex and Ey can accordingly be 
determined from classical expressions. [23]  In a general emissive field,  
the fully retarded electric field from an E1 (electric dipole) radiative 
transition is given as:  
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with R̂  and μ the unit displacement vector and electric dipole moment 
for the source transition, respectively.  This formula accommodates 
both near- and far-field behavior.  The corresponding electric field from 
an M1 (magnetic dipole) transition also follows as: 
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introducing the magnetic transition dipole moment m.  For an 
electronically excited transmitter whose chirality permits radiative 
decay transition simultaneously allowed by both E1 and M1 selection 
rules, the total electric field is subsequently the sum of equations (9) and 
(10).  Expressing all vectors in the resulting expression in Cartesian 
component form, the x component of the electric field is thus expressible 
as; 
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This result is determined under the condition that ‘measurement’ of the 
field is made along the z-axis of the emission, therefore the displacement 
vectors projected along the x and y axes are both zero.  Whilst the y 
component of the electric field can also be extracted from the sum of 
equations (9) and (10), an alternative method involves rotating the 
Cartesian indices in equation (11) about the z-axis.  By either 
prescription, Ey is proven to be identical to equation (11) upon 
substitution of μx with μy, and my with -mx.  The S3 parameter of an 
emerging electric field then follows by substitution of Ex and Ey into 
equation (4).  In the far-zone regime, the parameter involves terms with 
an inverse square dependence on distance, whose measurement 
satisfies the required invariance to z-axis rotation: 
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In the derivation of equation (12), it is assumed that the electric dipole 
moments are real, whereas the magnetic moments are entirely 
imaginary.  For this to hold, the condition is that the spatial 
wavefunctions are real – which is always satisfied by non-degenerate 
states, or can be satisfied by suitably chosen combinations in the case of 
degenerate states.  The physically appealing form of the S3 parameter is 
thus consistent with a scalar product of μ and m, excluding their 
‘longitudinal’ z-components.  In the near-zone (NZ) limit, R << λ, it 
emerges that S3 instead varies with R -5,  
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Interestingly, the optical response determined by equation (13) exhibits 
a change in sign upon rotation about the z-axis, incompatible with the 
arbitrary designations of the x and y directions for the circularly 
polarized emitted field.  Although the same issue might have been 
thought to apply to the right-hand side of the defining equation (4), the 
difference in (13) is that here the x and y directions are no longer 
arbitrary; in an emitter that is necessarily anisotropic they have specific 
significance as reference coordinates for components of the emission 
dipoles.  More significantly, the result (13) is clearly imaginary, in light 
of the imaginary character of the magnetic transition moment.  The 
result therefore validates the earlier suggestion that in the near-zone (in 
the vicinity of the source), the third Stokes parameter does not afford a 
valid representation of optical helicity. 

Partly to corroborate the result, an alternative method of 
determining S3, based on the formalism of QED, is now introduced.  
Here, the effective electric field generated by the source emission is 
determined in terms of components from the corresponding electric 
and magnetic decay terms, by deriving the coupling fields associated 
with photons of arbitrary propagation and polarization vector.  Indeed, 
this requires adding the quantum amplitudes for the release of 
circularly polarized photons through source decay.  Here, expressing the 
result with implied summation over repeated Cartesian indices, we 
have  

1 ,j i ij i ijE V c m U        (14) 

where Vij and Uij represent the second-rank E1-E1 and E1-M1 coupling 
tensors respectively; [24] 
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Upon substitution of the tensors in equation (15) into equation (14), it 
is possible to determine the x and y components of the emerging field, as 
before.  For the given system, only diagonal components of the V tensor 
yield non-zero electric contributions to the field, whilst for the U tensor, 
non-zero components arise only for i ≠ j, and neither index can represent 
the z-component, given that Rk = Rz.  Utilizing equation (4) now produces 
an S3 parameter whose far-zone limit proves identical in form to 
equation (12).  The non-physical nature of the near-zone result, noted 
earlier, therefore emerges as a reflection upon the short-range validity 
of the Stokes parameter, rather than any issue between a classical or 
quantum field formulation.  

B. Helicity Measured in Spontaneous Emission 

Having evaluated emission chirality as determined by the third Stokes 
parameter, an alternative, quantitative means to assess chiral 
discrimination, focusing on the spontaneous emission from the emitter, 
is considered. [25]  Specifically, the differential rate of emission of 
photons possessing either left- or right-circular polarization is now to be 
directly investigated.  It is appropriate to begin with the following 
expression for I (Ω), the radiant intensity per unit solid angle Ω,  

  ,I d ck       (16) 

in which the emission is cast in terms of a product of the emission rate 
Г, and the photon energy ħck.  The former, secured through the ‘Fermi 
Golden Rule’ is linked to the system matrix element MFI, the latter 
characterizing the quantum amplitude for progression from the initial 

system state I  to the final state F , 
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In equation (17), ρF represents the density of final states for the radiation 
field, which for the given system is written in the following form, 
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As before, emission is assumed to occur through decay transitions that 
are both E1 and M1 allowed, resulting in the following matrix element, 
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where ei and bi represent components of the electric and magnetic 

polarization vectors respectively.  The superscript notation on 
 A

FIM  

identifies emitter A as the focus of measurement.  The rate of emission 
as determined by equation (17) invokes the square modulus of the 
emission matrix element, 
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This equation, of general applicability, relates to the rate of emission of 
a single emitter, at any given instant in time.  To secure a time-averaged 
result for a system undergoing stochastic rotations, or equally an 
ensemble average for a system comprising randomly oriented emitters, 
a rotational average is implemented by an integration-free method 
utilizing isotropic tensors. [26,27]  The average of equation (20) thus 
entails a Kronecker delta (the second-rank isotropic tensor) which duly 
acts to contract the dummy indices i and j.  The terms in the second line 
of equation (20) then vanish for linearly polarized light; however, for 
circularly polarized emission the result of effecting tensor contraction 
between the electric and magnetic polarization vectors is non-zero, and 
depends on the handedness of the emission.  The reason is that the 
radiation and molecular parts of each term in the round brackets – for 

example i je b  and i jm  – are both polar second-rank tensors, whose 

sign changes on spatial inversion.  Utilizing the standard spherical basis 
vectors for left- and right polarized light, the rotationally averaged 
matrix element for spontaneous emission now follows as,   
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where the angular brackets denote a fully isotropic result.  After 
substitution of equations (17), (18) and (21) into equation (16), the 
radiant intensity of emitted photons possessing left- and right- handed 
circular polarizations can then be derived, and recast using the formula  
I = I (Ω)/R2   to give the irradiance detected at distance R: 
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As expected, the chiral differentiation evident in the mode term is 
observed to entail the scalar product of the electric and magnetic 
transition dipoles, μ and m.   From equation (2) it emerges that the 
optical helicity is therefore finally expressible as; 
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Further implications will be considered in the later discussion.  

C. Helicity Measured in a Coupled Emitter-Detector System 

A third approach considers the system in its entirety, including a second 
molecular component acting as a detector of the emerging field.  Since 
the emitted light no longer exists in the final state of this system (with it 
having been absorbed by the detector) the interaction between the 
emitter and the detector is considered to be mediated by virtual 
photons.  Specifically, the creation and subsequent annihilation of 
virtual photons couples the electronic and magnetic transitions of the 
emitter to electronic transitions of a detector molecule.  Since 
photodetection generally entails electric dipole excitation, it is assumed 
that M1 contributions to the detection process are negligible.  The 
required matrix element for the overall process is therefore, 
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where (A-B) denotes the coupled system, in which A and B label the 
molecular emitter and detector respectively.  The squared modulus of 
equation (24) follows, 
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The first two terms in equation (25) will undergo no change in sign as a 
result of choosing the opposite enantiomer for the emitter A; attention 
therefore focuses upon the remaining terms which do change sign 
according to the enantiomer; the corresponding rate contributions will 

now be written as ΓR S .  Utilizing the established forms of the two 

coupling tensors, the far-zone limit of the latter rate contribution is then 
expressible as, 
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It is worth noting that, given electric and magnetic dipole moments that 
are entirely real and imaginary respectively, equation (26) reduces to 
zero.  Physically such a result is interpreted as the inability, at least in the 
far-zone regime, of an achiral detector to discriminate between left- and 
right handed circular emission from a chiral emitter.  However, in the 
near-zone, certainly within the span of wavelength, use of the electric-
dipole approximation for the detector becomes less valid.  Under such 
conditions a displaced electric dipole can assume chiral attributes, as in 
the two-group (Kirkwood) model of optical activity. [28,29]  Hence the 
following, non-zero contribution in the near-zone emerges, 
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It is of note that the first set of terms in brackets exhibits the form of the 
near-zone (or static) coupling between two electric dipoles, separated 
along the z-direction.  The result (27) no longer correlates with the 
optical helicity of the field between the source and the detector; indeed 
it would otherwise contravene the principles of quantum measurement 
theory – since no observations are made on the system in its 
progression from a defined initial to a detected final state.   What it does 
clearly show, through a lack of factorability into separate source and 
detector properties, is that the electronic properties of those two 
material components are inextricable, in the near-zone region. 

4. Conclusion  
Three distinct methods have been investigated for quantifying the 
helicity of circularly polarized light emitted in the electronic decay of a 
chiral molecule.  It has been shown that results of evaluating the third 
Stokes parameter, and a differential rate of spontaneous emission, 
exhibit common features in the far-zone.  Moreover, classical and QED 
calculations deliver results of equivalent form.  The mathematical origin 
of chiral discrimination in the emission is a scalar product of electric and 
magnetic dipole moments associated with the decay transition of the 
emitter, and the emission has the expected dependence on the inverse 
square of the distance between the emitter and the point of detection.   

It has been determined, however, that S3 fails to accurately 
characterize chiral discrimination in the near-zone regime, as the 
derived expression (equation (13)) exhibits a change in sign on rotation 
about the optical observation axis.  This failure can be considered an 



important caveat for the broad field of imaging microscopy, [30] or 
indeed any prospective studies aiming to extend, into the near-field 
regime, current far-field applications of Stokes vector analysis. [31]  

 Finally, an alternative, rigorous measure of optical helicity based on 
a coupled system incorporating both a molecular emitter and detector 
has been evaluated within the theoretical framework of QED.  The near-
field result is noted to vary with R-5 and exhibits features consistent with 
the familiar near-zone electric dipole-dipole coupling interaction, 
consistent with chiral dissymmetry in the coupled source-detector 
system. 
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