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ABSTRACT 

  

The laser-induced intermolecular force that exists between two or more particles in the presence of an 

electromagnetic field is commonly termed ‘optical binding’.  Distinct from the single-particle forces that 

are at play in optical trapping at the molecular level, the phenomenon of optical binding is a manifestation 

of the coupling between optically induced dipole moments in neutral particles.  In other, more widely 

known areas of optics, there are many examples of chiral discrimination – signifying the different response 

a chiral material has to the handedness of an optical input.  In the present analysis, extending previous work 

on chiral discrimination in optical binding, a new mechanism is identified using a quantum 

electrodynamical approach.  It is shown that the optical binding force between a pair of chiral molecules 

can be significantly discriminatory in nature, depending upon both the handedness of the interacting 

particles and the polarization of the incident light, and it is typically several orders of magnitude larger than 

previously reported.  

 

I. INTRODUCTION 

Electromagnetic fields have a general capacity to produce inter-particle forces in matter, by the generation 

and coupling of static and dynamic polarizations.  In the absence of any applied optical source, vacuum 

field fluctuations induce electric dipoles, whose coupling gives rise to the well-known Casimir-Polder 

potential.[1]  Indeed it transpires even the well-known London or Hamaker[2] interactions, which occur 

between electrically neutral particles, can fundamentally be attributed to vacuum electromagnetic fields.   

However, when light is introduced to a material system, the associated fields can produce another kind of 

force.  One increasingly prominent example, first predicted using quantum electrodynamics (QED)[3], is 

an energy shift generated by the light-induced polarization in non-polar interacting particles.  This coupling 

between optically induced dipoles leads to an intermolecular force that is commonly referred to as optical 

binding[4, 5] (although it is not necessarily attractive in nature).  A decade after the original QED analysis, 

Burns et al. [6] provided the first experimental studies of optical binding using light propagating 

orthogonally to the inter-particle displacement vector.  In their pioneering studies, they made use of the 

then recently discovered phenomenon of optical tweezers[7] to isolate a pair of micron-sized polystyrene 

spheres, observing the radiation-induced interaction with respect to time.  Their semiclassical analysis of 

the results concluded that the polystyrene spheres formed a bound structure with preferred inter-particle 

separations.  Their first graphs of binding energy against particle separation exhibited rolling potential 

energy maxima and minima, and optical binding accordingly gained recognition[8] as a potentially very 

significant method for fabricating and manipulating micro- and nanoparticle arrays. 

In the succeeding years many theoretical and experimental investigations followed, including several 

further quantum electrodynamical studies. These more recent studies have underscored the fact that optical 

binding forces offer a large number of distinctive attributes which can be used in the optical manipulation 
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of matter.  Two such examples of key experimental studies of optical binding occurred in 2002-2003, where 

two groups[9, 10] independently observed what is now termed “longitudinal optical binding”.  In their 

studies, using a counterpropagating dual beam trap, multiple particles entering the trap were observed to 

take up equilibrium positions along the propagation axes, with inter-particle separations several times the 

particle diameters.  This work prompted a renewed attention to optical binding, and the longitudinal form 

has become the more widely studied system.[11-17]  In a further development of theory, based on the 

adoption of advanced QED methods, results were then obtained in a form applicable to radiation fields with 

arbitrary polarization and beam geometry, delivering further physical insights into the fundamental 

mechanisms in operation.[18-20]  One specific instance concerns particles of cylindrical symmetry such as 

carbon nanotubes (CNT).  It was shown that for a typical single-walled CNT pair, the optically induced 

forces range between 10-5 N and 10-12, depending on geometry.[21]   

More generally, the intricate local fields and forces produced by optical binding have been secured and 

illustrated through further QED analyses, generating richly structured potential energy landscapes.[22]  

These multidimensional landscapes pictorially represent the optically induced interactions between 

particles in the form of contour maps, on which the position and magnitude of local energy minima and 

maxima depend on the particle configuration and the polarization and wave-vector of the propagating light.  

Such maps can be produced for a wide range of multi-particle and beam geometries.[23-25]  The analysis 

of local energy minima in these landscapes reveals points of stability and possible particle configurations 

for optical binding; other features such as local forces and torques between particles can also be readily 

derived.  Subsequent QED studies have addressed the optical binding forces between molecular 

aggregates[23]; the effects broadband radiation[26] and secondary laser light[27], and light conveying 

orbital angular momentum[28, 29] (so-called structured light).[30]  Whilst theory for both micro- and 

nanoparticles is now well developed, and a plethora of experiments demonstrating the phenomenon for 

micro-sized objects are well documented, only recently has optical binding been experimentally observed 

for nanoparticles[31, 32] where, amongst other technical challenges, the more disruptive influence of 

thermal motions has to be overcome.  

In the present study, our focus is on the novel effects that arise when the trapped particles are chiral.  Optical 

forces and processes between chiral particles are generally dependent on the handedness of each material 

component and/or that of an applied circularly polarised beam: they are discriminatory.[33-35]  It is worth 

emphasizing that optical processes occur when the initial and final states of the system (matter and radiation 

field) differ, with discriminatory examples including circular dichroism[36] and circular differential 

scattering.[37]  In contrast, an optical force arises when both the initial and final states are identical, such 

as where discriminatory effects have recently been shown to occur in optical trapping.[38, 39]  The 

discriminatory effect in chiral entities can be attributed to their low symmetry, where selection rules allow 

at least some electronic transitions to include contributions from not only electric dipole, but also other 

electric and magnetic multipole moments.  Although small in comparison to electric-dipole forces, the 

leading term dependent on the handedness of each molecule typically arises from electric-magnetic dipole 

couplings, and these are the source of the chiral discrimination.  Some chirality-dependent aspects  of 

optical binding have previously been identified by QED analysis[40], in which it was found that for chiral 

molecules freely tumbling in the presence of circularly polarised light, the pair energy shift is independent 

of polarization and the discriminatory effects arise solely from the handedness of the molecules.  The 

discriminatory effect was also estimated to be in the order of 10-6 smaller than the purely electric-electric 

dipole coupling forces.  In the following analysis it is shown that there are in fact additional terms that 

contribute more significantly to the chiral discrimination in optical binding, typically several orders of 

magnitude larger than those previously reported.  
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II. THEORETICAL METHOD 

In non-relativistic QED, the Power-Zienau-Woolley Hamiltonian[41-43] is used to describe a closed 

system consisting of particles and electromagnetic fields. This Hamiltonian, equation (1) below, is written 

as a sum of three terms: (i) the second-quantized Hamiltonian for the radiation field in vacuo, Hrad; (ii) a 

sum over all particles with corresponding non-relativistic Hamiltonians, Hmol(ξ); and (iii) a sum of the 

interaction Hamiltonians that describe the coupling between each particle and the electromagnetic field, 

Hint(ξ):  

                                                       rad mol int .H H H H
 

      (1) 

The subscript ‘mol’ in the second term designates a common application to molecules; the general 

formalism is equally applicable to larger, electrically neutral, particles – as discussed later in this paper.  In 

the following, for simplicity we first discuss and derive expressions for optical binding energies on the 

basis of interactions between individual molecules, for which the electronic transitions relate to the entirety 

of the particle.  The last of the three terms Hint(ξ) in the above equation, when expressed in the multipolar 

formalism[44] appears as a sum of multipolar contributions as given here (where the convention of implied 

summation of repeated indices is used);  
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where μi(ξ), mi(ξ), and Qij(ξ) are electric-dipole, magnetic-dipole, and electric-quadrupole tensor operators, 

respectively. The first term in equation (2), which accounts for electric-dipole interactions, often suffices 

when describing a wide range of phenomena, including almost all previous studies of optical binding. The 

usually argued reason for this is that when the radiative wavelengths involved in the system are much larger 

than that of the particle’s dimensions, the higher order spatial variations of the optical vector potential are 

of zero-order.  In the canonical transformation that links interactions cast in terms of vector potential to the 

more familiar form engaging electric and magnetic multipoles, it is the terms involving spatial variation of 

the vector potential that correlate with magnetic dipole, electric quadrupole and higher electric and 

magnetic multipoles.[45]  In the multipolar formalism the interaction Hamiltonian Hint(ξ) is also dependent 

on components of the transverse displacement electric field operator and magnetic field operators, di
(ξ) 

and bi(ξ), whose mode expansions are written as follows; 
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where ek
(λ) and bk

(λ) are the generalised electric and magnetic polarization unit vectors, respectively, and V 

is an arbitrary quantization volume defined as containing n number of photons.  For a mode (k, λ), 
 

a


k

and 
 †

a


k  are photon annihilation and creation operators, respectively.  For non-chiral systems the electric 
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dipole coupling term in equation (2) is the only term that is required in the calculation, as higher order 

multipole transitions feature only in very insignificant correction terms.  However, in chiral systems, the 

low symmetry permits many transitions to be allowed by not only electric dipole selection rules, but also 

magnetic dipole, electric quadrupole, and higher order forms of coupling.  Whilst the electric-electric and 

magnetic-magnetic coupling contributions are non-discriminatory, the electric-magnetic terms are 

discriminatory in light scattering processes.[46]   

The traditional method for carrying out QED calculations is diagrammatic time-dependent perturbation 

theory, where Feynman diagrams[47] are commonly used as an aid in calculating the matrix element for 

the phenomenon being studied.  A number of techniques have now been developed which give further 

physical insight and help circumvent the computational effort required using Feynman’s time-ordered 

diagrams – such as state-sequence diagrams[48], response theory[49, 50], the retarded coupling approach 

[51], effective interaction ‘collapsed vertex’ Hamiltonian (by a suitable canonical transformation of the 

multipolar Hamiltonian) [52-54], and the induced moments method [50, 55].  In this paper it is the latter 

technique listed that will be the focus of interest, due to its relative computational simplicity and added 

physical insight.  The method of induced moments is underpinned by the fact that incident electromagnetic 

fields induce, in polarizable bodies, moments that interact via the resonant multipole-multipole coupling 

tensor.[56]  For example, the  1... ni i  component of the nth-order electric multipole moment induced by an 

incident electric displacement field in a polarizable body ξ is given by; 
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whilst the nth-order magnetic multipole moment induced by a magnetic field in a polarizable body ξ is:  
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where    
1... n

ba
n

i iP  
 

are components of the nth-order transition electric multipoles (En) for the transition from 

b←a. The corresponding counterpart expression for a molecular polarizability cast in terms of magnetic 

multipoles Mn for 
 
   

1 1

:

... ...
,

p q

p q

m i i j j
   has a form analogous to (7).  

The above considerations are adequate for working with any order of electric multipoles, and for the present 

application involving mixed electric and magnetic dipoles this method is entirely suitable.  An energy shift 

is now obtained by taking the expectation value of the appropriate matrix element for a radiation field 

containing n photons, with both molecules assumed to be in the electronic ground state.  (In fact, if the 

number of input photons is taken as zero, corresponding to the vacuum field, the resulting energy shift 
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proves to be the dispersion force.[55]  Using this method, a general expression for dispersion forces was 

recently obtained[57, 58] for molecules with arbitrary electric multipole characteristics, for both ground 

and excited electronic states.  Nonetheless if a mixture of higher order electric and magnetic multipoles 

were to be examined, then a different approach would be required.)  In the case of optical binding, the 

expectation value over some number state of the radiation field delivers an energy shift which refers to the 

radiation-induced change in intermolecular interaction energy.  

 

III. RESULTS 

A. General derivation of laser-induced energy for a pair of chiral particles 

Consider two neutral polarizable chiral molecules (A,B) in mutual interaction.  For any such species, both 

the electric dipole polarizability  ij   and its mixed electric-magnetic counterpart  ijG   will have non-

zero components.  The two tensors are explicitly given by the following equations:   
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The former, which represents the simplest (lowest order) implementation of equation (7), signifies a non-

discriminatory E12 interaction, whereas its E1M1 analogue,  ijG  , changes sign when one enantiomer is 

replaced by another of opposite handedness.  For later reference, it is worth noting that the tensor  ij  is 

a real quantity, whereas  ijG   is imaginary (provided the optical frequency is well away from any optical 

absorption band, and the basis wavefunctions are real).  The underlying reason is that the E1 operator is 

based on charge displacement, whereas M1 entails charge circulation, through an angular momentum with 

an imaginary operator.  It is also important to note at this stage that the formalism we have developed, 

leading to results that will be cast in terms of the molecular tensors  ij   and  ijG  , is amenable to an 

extension to larger, chiral particles such as dielectric nanoparticles that are either intrinsically chiral, or 

others which are surface-functionalised with chiral species.[59]  In the former case the corresponding 

material response tensors will be the E12 and E1M1 linear optical susceptibilities; in the latter case the 

effective E1M1 response tensor can be constructed as a sum of contributions from each chiral constituent.  

It has been shown in earlier work that there is a detailed theoretical support for such applications to optical 

binding between mescoscopic particles.[60] 

To continue: through involvement of the  ijG   tensor, a chiral molecule ξ  at position  Rξ  experiences in 

a radiation field the induction of both an electric (10) and a magnetic (11) dipole moment, as well as an 

induced electric dipole moment (12) due to the αij (ω) tensor: 
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When the incident radiation field consists of n photons of a radiation mode (k, λ), we can assume that the 

annihilation and (re)creation of the photons occurs in the same mode (since the emission is then stimulated, 

and therefore the most favoured), and the energy shift is given as the expectation value of the following 

expression; 
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where R is the inter-particle separation vector R = RB – RA.  Evidently, from equation (13), electric dipoles 

induced at each centre couple through the tensor Vij(k, R), while an electric dipole induced at one molecule 

and a magnetic dipole induced at the other couple through the tensor  Uij(k, R): 
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The above tensors (14) and (15) are known as the retarded resonant dipole-dipole interaction tensors[45], 

derived in the QED representation through a calculation cast in terms of virtual photon[61] creation and 

annihilation events.  Extending this approach, a generalised retarded resonant multipole-multipole 

interaction tensor has more recently been derived.[56]  Substituting for the induced moments from 

equations (10), (11), and (12) in equation (13) produces a form of the energy shift that is cast in terms of 

the radiation field and the electric dipole, and mixed electric-magnetic dipole, polarizabilities of each chiral 

molecule (8) and (9). Hence we obtain:
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Note that we have introduced the identity 
ij jiG G  , which manifests itself through the fact, due to the 

time-odd character of the magnetic dipole operator, magnetic transition dipoles satisfy the relation 
0 0r r

i im m  in the mixed electric-magnetic dipole polarizability tensor (9).  The general form of the result 

(16) can thus be understood as coupling the polarizability tensor of one particle with the G tensor of the 

other, which we may for shorthand denote as ‘-G’ coupling. 

 

B. Molecular orientation averaging and polarization analysis 

Highly distinctive kinds of polarization dependence can be anticipated to arise in systems where the two 

trapped particles are randomly oriented.  To identify such behaviour, we must address the appropriate 

orientational averaging.  Focusing for the present on the first term of equation (16), which we label µµµm 

as it corresponds to the time-ordered diagram in Figure 1a, we first calculate its expectation value for the 

system state  0 0, ; ,A BE E n k . The molecular part results in the ground state electric dipole dynamic 

polarizability for A, and the ground state mixed electric-magnetic dipole dynamic polarizability for B.  For 

the electromagnetic field part, making use of the Maxwell field operators (3) and (4), the expectation value 

over the radiation field containing n photons is: 
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In equation (17), the numerical factors (n + 1) and n in the two terms reflect a difference in origin, between 

contributions in which the throughput photon creation features before, and after, the corresponding photon 

annihilation.  On assumption that the mode occupation number is sufficiently large for n + 1 ~ n, the two 

terms in (17) can be recognized as complex conjugates, allowing twice the real part to be taken. Thus, the 

energy shift can be expressed more concisely as: 
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Using standard techniques[62], an orientational average is now performed on equation (18) to deliver 

results for the interactions of molecules whose relative displacement R is fixed in position with respect to 

the beam of throughput radiation, but whose individual orientations are random and uncorrelated; 
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where δij is the Kronecker delta, symmetric in its indices.  Equation (19) leads to the following energy shift; 
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                 

   

0

, , , ,

Re , , , , ,

Im , cos .

i j i j

ij i j

ij

n k
E A G B e b G A B b e

V

V k c A G B G A B e e

U k

   

 

     


     

   
 

    

 

k k k k

R k k

R k R

 

(21)

 

 

At this stage, a key distinction emerges between the behaviour that can be observed with plane and with 

circularly polarised light.  For the pair of molecules in a positionally fixed configuration, the molecular 

orientationally averaged result (21) for the radiation-induced total energy is zero when the incident light is 

linearly polarized, regardless of whether the wave-vector of the light is parallel or perpendicular to R. This 

is evident after expanding both ReVij(k, R) and ImUij(k, R), and using relations based on the transversality 

and real character of the plane polarization vectors:         0ij i je b
  k k , 

       ˆ ˆ 0i j i jR R e b
 

k k , and 

       ˆ 0k ijk i jR e e
 

 k k . However, the use of circularly polarized incident light results in non-zero energies 

for both k ║ R and k ┴ R.   

Assuming a circular polarization, therefore, we now process the first term of equation (21), expanding 

ReVij(k, R), and contracting the tensor components with the aid of the following relation; 

 

                 L/R L/R L/R L/R 1
2

ˆ ˆ ˆ ,i j i j ij i j ijk ke b ie e i k k k       
 

k k k k  (22) 

 

with εijk representing the antisymmetric Levi-Civita tensor in three dimensions.  Only the first term in square 

brackets of equation (22) contributes since ReVij(k, R) is ij-symmetric, and for k ┴ R the energy shift is 

therefore seen to be;  

 

 
        L/R 2 2

2 2 3

0

Re , , cos sin cos ,
8

m

I
E A G B i kR kR kR ik R kR

c R
   



        (23) 

 

where I is the input laser irradiance and is equal to  2n c k V . A similar analysis for the remaining three 

terms in equation (21) for two neutral chiral molecules in the presence of a circularly polarised beam 

propagating k ┴ R gives the overall energy shift as; 
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          

  

L/R

2 2 3

0

2 2

, , , ,
8

cos sin cos ,

I
E G A B A G B

c R

kR kR kR k R kR

     


   

     

 

(24)

 

 

where we have further simplified the notation using    , ,G iG     .  The ‘Re’, which signifies to 

take the real part of the equation, has been dropped from equation (24) as no imaginary parts longer exist, 

due to the tensor G itself being imaginary, as noted earlier.  For circularly polarised light propagating 

parallel k ║ R, the total energy shift for a pair of neutral chiral molecules finally emerges as:  

 

 

          

    

L/R

2 2 3

0

2 2

, , , ,
4

cos sin cos cos .

I
E G A B A G B

c R

kR kR kR k R kR kR

     


  

    

 

(25)

 

 

C. Phased-weighted pair orientational average analysis 

The next step is to carry out a pair orientational average, pertaining to a common situation where the 

molecular pair are in a gaseous or liquid state. This involves averaging over all k relative to R, and over 

the relative orientations of the pair of molecules in the system.  As we are concerned with a pair interaction 

with radiation, we require the use of a phased rotational average, accounting for the difference in optical 

phase of the throughput radiation at each center.[63]  In the present case, the relevant phased rotational 

average takes the generic form;  

 

         
1 2 1 2

Re ,i

i iE K S T e

 

  k R
k R  (26) 

 

where  
1 2i iS k and k are respectively tensors and vectors which are fixed in a laboratory frame of reference; 

in our specific example k relates to the wave vector of light and  
1 2i iS k  the two polarization vectors: 

 
1 2

T  R and R are tensors and vectors fixed in a molecular frame, with  
1 2

T  R the appropriate retarded 

resonant dipole-dipole interaction tensor as given by (14) and (15);  K  is a constant.  The above expression 

can then be cast as;  

 

 
   
1 1 1 1

ˆ ˆ

,..., : ,...,
ˆ ˆ, , ,

m m m m

m i k R

i i i iI k R l l e
 

       (27) 
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where   k R , m is the rank of the tensor to be averaged, and 
p pil  is the direction cosine of the angle 

between the laboratory axis ip and the molecular axis λp.. The following results for 
   
1 1,..., : ,...,

ˆ ˆ, ,
m m

m

i iI u w


   , 

defined by equation (27) , are expressed in terms of spherical Bessel functions jm(α)  [64] for m ≤ 2: 

                                       
     0

0

0
 

ˆ ˆ     , , .

m

I k R j

 





          
(28)

  

                                        

     

   
   

     

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2 1 2 1 2

2
2 2:

: :

0

2:0 1
: 03

2:1

: 12

2:2 3 1 1
: 22 3 3

2

ˆ ˆ , ,  ,

    ,
    

ˆ ˆ     ,

ˆ ˆ ˆ ˆ     .

j

i i i i

j

i i i i

i
i i i i i i

i i i i i i

m

I k R I

I j

I j k R

I j k k R R

   

 

   



   



     



     



  

  

  






 






   




 

(29) 

  

Just as with the results of the previous sub-section, the energy shift for a pair of freely tumbling chiral 

molecules in the presence of linear polarised light is zero, but it becomes non-zero when circularly polarised 

light is used.  Taking the first term of equation (21) once again and expanding Re Vij(k, R), the energy shift 

that requires phased averaging is of the form: 

 

             
          

L/R L/R

2 2 3

0

L/R L/R 2 2

ˆ ˆRe , , 3 cos sin
4

ˆ ˆ cos .

i

m i j ij i j

i

i j ij i j

I
E A G B e b R R kR kR kR e

c R

e b R R k R kR e

    








 
    

 

 

k R

k R

k k

k k

 

(30)

  

 

Taking the first term in curly brackets of equation (30) and expanding; 

 

                    L/R L/R L/R L/R ˆ ˆcos sin 3 cos sin ,i i

i j ij i j i je b kR kR kR e e b R R kR kR kR e    k R k R
k k k k  (31) 

 

using 
       L/R L/R

j jb ie k k  and 
       L/R L/R

1i je e k k  and m = 0 from (28),  the phased average in 

the first term in angular brackets of (31) reduces to:  

 

                                                                          0 .iie ij kR  k R
 (32) 
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For the second term in angular brackets of (31) we use 
       L/R L/R

j jb ie k k  again and the m = 2 result 

from (29) . Taking this term by term: 

 

    
           L/R L/R 1

0 03
ˆ ˆ3 ,i j ijiR R e e j kR ij kR     k k  (33) 

 

                          
         L/R L/R

12
ˆˆ ˆ ˆ3 0,i

i j ijkiR R e e j kR k R      k k  (34) 

 

           L/R L/R9 1 1
2 22 3 3

ˆ ˆˆ ˆ ˆ ˆ .i j i j ijiR R e e j kR k k R R ij kR           
  

k k  (35) 

 

Therefore, the overall phased average result for equation (31) is:  

 

             
            L/R L/R

2
ˆ ˆ3 cos sin cos sin .i

i j ij i je b R R kR kR kR e ij kR kR kR kR    k R
k k

 (36) 

 

A similar analysis for the second term in curly brackets of (30) gives the result; 

 

  
               L/R L/R 2 2 2 22

0 23 3
ˆ ˆ cos cos ,i i i

i j ij i je b R R k R kR e j kR j kR k R kR   k R
k k   (37) 

 

which gives the overall phase-averaged energy shift for (30) as:  

 

             

      

     

22 2 3

0

2 22 1
0 23 3

, , cos sin
4

cos .

m

I
E A G B j kR kR kR kR

c R

j kR j kR k R kR

   


 
   

 

 

 

(38)

 

 

Finally, averaging the remaining three terms of equation (21), expanding the spherical Bessel functions and 

using double angle formulae gives the total phased-averaged energy as:  
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          

   

/

2 2 3

0

2 3

, , , ,
4

sin 2 3sin 2 3cos2 3sin 2
cos2 .

2 2 2

L R I
E A G B G A B

c R

kR kR kR kR kR
kR

kR kR kR

     


   

 
     
 
 

 (39) 

 

This is the main result for the differential energy shift experienced by two neutral, randomly oriented chiral 

molecules (A,B) bound together by the presence of circularly polarised light.  As with the dominant ‘-’ 

coupling, the result clearly depends linearly on the irradiance of the input beam, whilst the discriminatory 

effects embedded in the ‘-G’ coupling alone arise from the handedness of the radiation and the mixed 

electric-magnetic polarizabilities of the molecules. Taking two chemically identical chiral particles, one 

left-handed and the other right-handed, it is evident that the binding energy contributions (24), (25) and 

(39) will be zero.  It is worth noting, however, that when the chiral species A and B are not identical, their 

G tensors will generally differ in magnitude and (24), (25) and (39) will be non-zero.  The energy shifts 

experienced by pairs of the same molecules with the same handedness will differ, the sign of their chirally 

sensitive components depending on the relative handedness of the incident light and of the molecules 

themselves.  For example, if the incident beam is of a specific handedness, the optical binding of two left-

handed molecules will differ in energy from the binding of two right-handed molecules: the effect is 

discriminatory.  On changing the handedness of light, the signs reverse, as illustrated in Figure 2.  In each 

instance, the usual position-dependence of intensity within the spatial profile of the laser beam will signify 

that the pair experience differential restoring forces for any displacements from their equilibrium 

configuration. 

 

III. DISCUSSION  

Our general analysis has focused upon a previously overlooked mechanism that operates between chiral 

particles held in an optical trap.  In particular it elucidates the discriminatory optical binding forces that 

come into play in the presence of a sufficiently intense, circularly polarized laser beam.  It has been revealed 

how the discrimination of particle chirality arises from both the polarization of the input light and the mixed 

electric-magnetic polarizability  ,G    of the species present.  In earlier work by Salam,[40] identifying 

a discriminatory effect due to a ‘G-G’coupling, chiral discrimination based entirely on the mixed electric-

magnetic polarizability was estimated to be in the order of 10-6 smaller than the dominant ‘’coupling.  

In the mechanism presented in this paper, however, the discriminatory ‘-G’ binding energies prove to be 

more significant – potentially a magnitude of 103 or more times larger than in Salam’s pioneering work.  It 

is not only the difference in magnitude of the optical binding energies between the two mechanisms that 

proves to be of interest, since the interaction we have described draws out the interplay of material and 

optical chirality, affording new opportunities to exploit the effects of varying circular polarization.[65]  In 

considering the scope for applications, it should also be borne in mind that there is a possibility of further 

enhancing the binding energies by exploiting pre-resonance enhancement of  ,G   .  

One possible exploitation of these discriminatory optical binding forces lies in the helicity-dependent 

manipulation of chiral particles.  Another distinct application could be in optical strategies for chiral sorting.  

Although a host of established methods exist for chiral resolution at the molecular level[66], such methods 

generally rely on other materials to act as resolving agents.  Other systems for chiral sorting of micro-sized 

objects instead are based on the different hydrodynamical forces associated with the different chiral shape 

for each enantiomer.[67-70]   More contemporary work in the field involves the use of optomechanical 

forces and laser light to act as potential methods of enantiomeric separation.  For example, experimental 



13 
 

work has promoted the differential absorption of left- and right-circularly polarised light (circular 

dichroism) as a chiral sorting strategy for micro-objects in a fluidic environment.[71]  It has also been 

shown, through an application of QED theory, that discriminatory optical trapping forces – though small – 

can act as a mechanism to separate left- and right-handed molecules.[38, 72]   

In conclusion, although it is likely to prove difficult to implement these discriminatory effects in the direct 

pursuit of enantiomer separation, there may be scope to develop a means of identifying chirality in optically 

bound systems, using conventional laser optical instrumentation.  It is interesting to consider a possible 

experimental strategy.  For example, if the input light is modulated between right and left circular 

polarizations, the response of a system comprising chiral particles with a common sense of handedness will 

be a corresponding oscillation in their equilibrium positions.  In particular, if the modulation frequency is 

tuned into resonance with the essentially harmonic natural frequency of the optically bound pair,[13] such 

small-scale oscillations should become readily detectable by conventional optical methods, and so serve 

both to identify and characterize the chiral nature of the bound particles.  The detailed exploration of such 

effects represents scope for future work. 
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CAPTIONS FOR THE FIGURES 

Figure 1. (color online) Four permutations of E1 and M1 interactions in ‘m’ contributions to the 48 

distinct Feynman time-ordered diagrams for optical binding, in one representative time-ordering. 

Figure 2. (color online) Illustration of the equivalences, and non-equivalences, between the optical 

binding energies for chiral particles of different handedness (depicted by the dark purple and pale blue 

spheres) irradiated by circularly polarized light of either circularity (right- and left-handed forms shown 

with opposite twist). 
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