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Chapter 2

Introduction

Non-verbal communication such as body language, paralanguage (the use of non-

verbal voice communication) and facial expression are probably the oldest form

of human interaction inherited from our animal ancestors. Indeed these are the

only forms of communication understood by infants for the first few months of

their lives, with even very young babies being able to encode and decode the

fundamental emotional meaning of a smile or a raised voice. Therefore non-verbal

communication represents an import aspect of language, the absence of which

often leads to confusion. As an example in our modern digital lives, the so-called

“emoticons” (textual representations of emotion) have become digital vernacular in

an attempt to alleviate the problem of mis-interpreting written text in emails, text

messages and status updates etc. We are all experts in non-verbal communication

and are attuned to every nuance of facial expression and intonation of pitch. In

Spanish, the intonation of the same sequence of words is used to indicate whether

a sentence is declarative or interrogative. In Mandarin Chinese the intonation is

used to indicate different meanings for the same words. We also use tone of voice

to signify more subtle differences in meaning such as irony, sarcasm or simply

2



CHAPTER 2. INTRODUCTION 3

to provide emphasis to pertinent information. Likewise, facial expression can be

used in a similar way and usually complements tonal intonation. The sentence

“I can’t wait for the World Cup” said with a groan and roll of the eyes, has a

completely different meaning to the same sentence said with elevated pitch and

raised eyebrows.

The production of facial expression on graphical models is useful for many ap-

plications. In the future, digital tutors may be able to recognise human emotion

and adapt the way they communicate and instruct a student. Computerised cus-

tomer service representatives could likewise adapt their behaviour to diffuse highly

fraught situations, or simply ease the instinctive frustration and uneasiness many

people have talking to computers. Psychologists could use such systems to design

novel experiments into human expression, using the model to carefully control the

expressive parameters or law enforcement agencies could use such a system to train

operatives into how humans communicate and display expression when they are

trying to deceive. Perhaps the area of greatest academic and commercial interest

is animation and visual speech synthesis.

The need for animated graphical models of the human face is commonplace in

the movies, video games and television, appearing in everything from low budget

advertisements and free mobile apps, to Hollywood blockbusters costing hundreds

of millions of dollars. Software for the production of such animation is mature

with several software packages forming the backbone of most commercial anima-

tion projects. Industry standard techniques for character animation include motion

capture (mocap) and handcrafted keyframe based animation. In mocap animation

an actor has reflective markers placed on their body and/or face, the movement

of which can be detected by an array of cameras. Using a triangulation of such

cameras, the movement of the actor can be calculated in 3D space. These move-

ments can subsequently be retargeted to a virtual model. This has the advantage
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of being a relatively fast process. Models can be animated in real time which is

an obvious advantage in a commercial enterprise with tight deadlines. While this

technique works well for full body motion (so long as the target model is not too

dissimilar in configuration to the source), it is less well suited to the capture of

facial motion. The subtleties of facial movement such as those required to express

emotion (sometimes a matter of a few millimetres), are often beneath the resolution

of such systems, even with many hundreds of markers on the actor’s face. When

this relatively sparse configuration of markers is enough, post-processing such as

the interpolation of occluded markers and smoothing, mean the performance can

lack realistic dynamics and liveliness.

In hand crafted animation, an animator creates frames using an animation

model for important points in a sentence, such as plosive lip shapes, or impor-

tant expressive gestures like eyebrow raising. The intervening frames between

these keyframes are then interpolated by the software package. In the pre-digital

days of animation, this workflow was done by a lead artist drawing the key frames,

and junior artists drawing the transitional frames in between. In an early attempt

to computerise the process, Parke [1972] showed that it was possible to design

keyframes of facial geometry, and then use a mixing coefficient to linearly inter-

polate between keyframes to create the intervening frames. Cosine functions were

used to modulate the mixing coefficients to simulate the acceleration/deceleration

dynamics observed in natural speech. Key frame techniques give the animator

tight control of the fine movement of a model and can lead to spectacular results.

There are however major drawbacks. Firstly the technique is hugely labour in-

tensive. Even for simple animations, several keyframes must be produced each

second for each character model. It can take a professional animator days to pro-

duce a few minutes of footage. It is easy therefore to see why it takes months or

even years to animate a feature length picture. When the key frames are created
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from “blend shapes” (linear combinations of pre-modelled facial poses), there is the

phenomenon of blend shape interference Lewis et al. [2005a], where certain combi-

nations of blend shapes have non-orthogonal areas of influence leading to unwanted

artefacts in the linear combination and must be corrected with additional blend

shapes and many iterations of fine tuning. Finally, the interpolation of intervening

frames may not provide the dynamics or liveliness required therefore leading to a

greater concentration of keyframes.

Generative statistical models of animation attempt to address some of these

drawbacks. Using a corpus of training data, statistical models can be built and

driven in various ways to produce high quality animation quickly, alleviating

keyframe animation’s major drawback of labour intensity. To address the problem

of the capture of facial movement with mo-cap, markerless face tracking tecniques

can be employed borrowing methods from computer vision, such as tracking with

Active Appearance Models (AAMs), deformable surface models driven by laser

scanned face data or dense stereo techniques. Some form of representational fea-

tures are extracted from the corpus and used in a generative model e.g. as selection

units in a concatenative synthesiser or emission features in an HMM based synthe-

siser. A major drawback in both these cases is the requirement of a large amount

of training data which grows linearly as more expressive detail is added. The com-

plexity of the synthesis technique itself also grows as a function of the amount of

expressive detail.

Such statistical models have been the subject of much research over recent

years in an attempt to alleviate some of the problems of traditional animation

techniques, but as yet have found little widespread industrial acceptance. This is

because the quality of lip movements produced by such systems is still sub-optimal

and the emotional component is lagging behind. This work is an attempt to build

a technique capable of modulating neutral visual output such as that produced
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by modern visual speech synthesisers with emotional expression and therefore to

create a compelling, convincing and complete visual speech synthesis solution.



Chapter 3

Statement of Originality

What follows is a list of the main features of this work which set it apart from

preceding research. Taking Cao et al. [2003] as a starting point, this thesis shows

the following:

• That Cao’s original technique can be applied to unseen data which was never

in the training set.

• That it is possible to create an ICA model from neutral visual speech and

visual speech in a single expressive style. This reduces the complexity of the

technique specified in Cao et al. [2003] (where a model was created for each

pair of expressive styles) from n2 models to n models (where n is the number

of expressions in the training set).

• That it is possible to modulate an arbitrary amount of unseen neutral visual

speech data with the expression found in the training set, thus making the

technique of potential use to animators.

• That it is possible to train a mixed visual speech ICA model from neutral

and multiple expressive styles. From this ICA is able to project these ex-

7
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pressive styles into different independent components where it is possible to

manipulate these components orthogonally to a speech signal, therefore tak-

ing neutral visual speech data and modulating it with any of the expressions

found in the single ICA model. This further simplifies the Cao’s original

work from from n2 models to 1 model.

• That the technique is capable to modulating neutral expressions with a blend

of expressions found in the training set i.e. Anger mixed with Surprise. This

is necessary for any emotion synthesiser since human emotion is generally

ambivalent. Furthermore it allows the trained expression space to be in-

terpolated producing novel expressions not present in the original training

set.

• That the technique works for a variety of data types. Specifically, it works

for point cloud data, Active Appearance Model features and rig controller

activations.



Chapter 4

Data Description

The work described in this thesis uses two datasets which are discussed below. As

explained in Cicconetti et al. [2009], there are three types of expressive dataset,

known as posed, re-acted and interacted. Posed data is collected by filming or oth-

erwise capturing the speech and movements of actors performing a pre-designed

corpus of lines. This is useful as it gives tight control over exactly what is said,

and in which expressions. However, the plausibility of the output can only be as

good as the quality of the actor. Re-acted data involves showing the actor a video

clip, and them trying to copy the delivery observed. This tends to lead to better

output for untrained actors, but finding appropriate video clips for participants to

copy can be time-consuming, and the technique limits sentence content. Interacted

data is where participants are simply filmed having conversations with others. This

leads to the most plausible and natural data, but is the most difficult to capture.

The participant must be guided (by carefully choreographed conversations) into

displaying different expressions. Therefore, only certain expressions may be ethi-

cally obtained. For example obtaining happiness and laughter is easy, however it

would be unethical to elicit genuine fear in the participant. Additionally, the less

9
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constrained nature of interacted data can lead to difficulties in processing later in

the pipeline due to things like head movement, view distance and lighting.

4.1 Biwi 3D Audiovisual Corpus of Affective Com-

munication

Some of our experiments use the Biwi 3D Audiovisual Corpus of Affective Com-

munication, Fanelli et al. [2010a]. This re-acted corpus comprises of depth scanned

data captured using a novel method allowing for 3D data capture using relatively

inexpensive equipment (a digital projector and three cameras), by employing phase

shifting and stereo unwrapping (see Weise et al. [2007], for a detailed description).

The content of the dataset consists of 40 english sentences, each performed by eight

female and six male subjects, all native english speakers. Their ages ranged from

21 to 53 (mean 33.5). Each sentence was performed in a neutral style and then in

an expressive style. The expressive styles were elicited using clips from well known

films e.g. Pulp Fiction and Pride & Prejudice, and were chosen so as to cover a

large range of expressive styles. The performer was shown the text on a screen

and asked to say it in as neutral way as possible. Then they were shown up to

30 seconds of the film leading up the sentence to be performed, so as to provide

some emotional background. The movie clips could be seen multiple times. They

were asked to repeat the sentence using the emotional tone they perceived from the

clip. The average length of a sentence was 4.67 seconds and the data was captured

at 25 fps. Since the captured 3D data was noisy, not in correspondence and con-

tained occluded points, some cleanup was required. A generic mesh was warped to

the rest position of an actor’s scanned face, i.e. neutral expression, mouth closed,

eyes open. Then displacements between the neutral mesh and each frame of the
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Figure 4.1 An example frame rendered in Matlab with the “patch” function. A
simple light provides illumination for the scene

performance were computed using geometric and texture constraints to optimise

the solution. Therefore the final 3D output mesh is in geometric and temporal

correspondence for every frame. The dataset itself contains the original noisy 3D

scans, the cleaned up 3D data, corresponding audio as well as phonological labels

and code (written in C and Matlab) for reading the cleaned up data files. An ex-

ample frame from the dataset can be seen rendered using Matlab’s patch function

in Figure 4.1 with a standard “camlight” to show the full surface model, and as a

simple 3D plot in Figure 4.2 to show the density of the mesh.
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Figure 4.2 The same frame as in Figure 4.1, but this time rendered as a 3D plot
to give an idea of the density of the data. The plot consists of 23370 vertices in
three dimensions.

4.2 Our Custom Dataset

In addition to the dataset described in Section 4.1, we collected a data corpus. The

primary purpose of this was to have the same utterance spoken in multiple styles,

rather than neutral plus one additional expressive style as in the BiWi corpus.

Therefore we opted to produce a posed dataset giving tight control over delivery

and sentence content. A single male actor was recorded uttering 15 sentences each

in Happy, Sad, Angry, Surprised and Neutral styles. Each sentence was recorded

twice in each expressive style so that audio could be held out, meaning that during

testing, no video was shown alongside its originally recorded audio, thus eliminating

a source of bias.

The sentences where chosen so as to make as much sense in each of the required

expressive styles. A back story was created for each to provide context for the
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Figure 4.3 Setup of the capture session for our custom dataset.

actor to base their emotional response. The sentences and backstories are listed in

appendix B. As was mentioned at the top of this chapter, a problem with posed

datasets is that the output can only be as plausible as the actor(s) performing the

lines. It should be noted that the actor used in this dataset was not professional

therefore this should be taken into account when considering subjective opinions

of system output later on in this work.

The video was recorded on a JVC GY-HM750E professional video camera with a

14x Canon lens. The frame rate was 25 fps, captured in 720 progressive scan mode.

The camera captured the video in XDCAM EX format, wrapped into Quicktime

mov files. Audio was collected via a clip microphone, attached to the camera’s

external XLR interface. Lighting was supplied by two 500W floodlights pointed

at a white screen directly opposite the actor behind the camera as shown in figure

4.3. All sentences were captured in a single session to avoid any issues arising

from differences in lighting, camera position, actor clothing etc. Figure 4.4 shows

some example frames from the training set. Since the data capture session was
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Figure 4.4 Example frames from our custom dataset.

continuous and lasted around an hour, each full video had to be manually edited

into sentence long chunks. This was was done using Final Cut Pro Apple [2014].

Each sequence was then separated into its component frames using FFmpeg Bellard

[2014] and then tracked with a custom AAM tracker written at the University of

East Anglia Theobald [2014].
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4.3 Conclusion

This section has introduced the two datasets used for all the experiments in this

thesis. Initial work used the dataset described in Section 4.1 is a re-acted database

with neutral and a single expressive version of each sentence. Each frame is pre-

sented as a point cloud leading to easy manipulation, transformation and visual-

isation. For some experiments this was found to be too limited since the same

sentence was required in neutral and multiple expressive styles. Therefore a sec-

ond corpus was recorded in a posed manner to allow tight control of the expressive

style and sentence content. The frames from this dataset were projected to numer-

ical features using Active Appearance Modelling. The next section of this thesis

provides context for the work and introduces the current state of the art.



Chapter 5

Literature Review

This review gives an overview of the main families of techniques for producing

expressive speech animation, their advantages and disadvantages, and finally a

detailed description of Cao et al. [2003] which provides the foundation to the work

presented in this thesis.

5.1 Blendshape Approaches

Blendshapes are the extreme facial posses within a training set e.g. mouth fully

open and mouth tightly shut. Novel facial expressions and posses can be created as

linear combinations of these blendshapes. Alternatively, delta blendshape models

are used where the blendshapes represent an offset from a neutral reference mesh.

To generate a mesh, combinations of delta blendshapes are added to the reference

neutral. Figure 5.1 shows a simple two blendshape example.

In Parke [1972], a mesh was painted onto a model’s face, and then front and

side photographs were taken of a variety of different poses. The points were hand

16
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(a) Blendshape A (b) A and B (c) Blendshape B

Figure 5.1 A simple blendshape example mixing two meshes

measured from the photographs and transferred into a coordinate system. During

animation, an approximation of the target pose was found by linearly combining

different meshes. One drawback was that usability for the animator reduced as

these multi-combinatorial models increase in complexity. Blendshape interpolation

was quickly adapted to a region based model with the lower portion of the face

representing speech and the upper portion representing expression Kleiser [1989].

Arai et al. [1996] presented a bilinear model to implement a system where one

mixing coefficient is used to blend between actor meshes, and the other is used to

blend between expression meshes.

In Yu and Liu [2014], a regression based approach to blendshape modelling is

taken. Based on an analogy of FACS (Facial Action Coding System) Action Units

(AUs) and blenshapes, the system takes hand-sketched facial expressions, with

important facial features labelled (thus giving the overall impression of the facial

expression being depicted). A training set of AUs is preformed by professional

FACs trained actors and is tracked and transferred onto an intermediate graphics

model. The hand sketched facial expression is also transferred onto the model.

Using a least squares optimisation, linear combinations of AUs are solved for,

allowing for an approximation of the sketched face to be produced on the model.

To avoid blendshape interference (where AUs/blendshapes have non-orthogonal

areas of influence) a course optimisation is first performed, which determines and
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fits the major AUs, then a finer grained fit is performed on the less influential

AUs. The AU interpolated mesh can then be retargeted to a different model if

required. Thus novel shapes can be produced using this regressive technique using

a low dimensional representation. Since the technique was only reported to be

working on single frames, it is unclear whether the system would model the timing

dynamics which would be encountered in animated sequences of frames.

As mentioned above, blendshape interference can be a problem, where the re-

gion of influence of different blend shapes is non-orthogonal. The animator must go

back and edit previous blendshapes to adjust for the interference. The problem has

traditionally been solved using additional blend shapes known as correctives. In

the “The Lord of the Rings” movies, the character “Gollum” was constructed with

64 blendshapes. Interference had to be corrected with 946 additional blendshapes

Lewis et al. [2005b]. An alternative solution is to allow a user to draw onto the

model where vertices are in the correct position. These vertices are then shielded

from further movement due to additional blendshapes. Another technique is to di-

vide the face into blendshape regions. Points across blendshape space are mapped

into areas of similar deformation (i.e. points in the same area which move a similar

amount across blendshapes). Segmenting this map gives a logical breakdown of

where to divide the blendshapes into areas of separate control Joshi et al. [2005].

Blendshape techniques have also been combined with mocap data. Mocap frames

describing the full range of motion are paired with video frames recorded simulta-

neously. For each of these pairs, blendshape weights are manually tuned so that

the output subjectively matches the video frame. Using these correspondences, a

radial basis function regression model is used to predict new blendshape weights

for novel mocap input Deng et al. [2006].
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5.2 Physically Based Approaches

Physically based systems describe how a geometric face mesh is deformed by

“pseudo-muscles” which are geometric representations of the movements of the

face under the influence of real facial muscles. Platt and Badler [1981] describe a

system which uses “tension nets”. These are networks of adjacent points in the

face mesh. Each point is a three dimensional coordinate, and each has a spring

constant which represents a type of tissue (muscle, fat etc.). A muscle vector is

attached to a point in the network and to a static point which represents bone.

When the muscle vector is contracted, the movement is propagated out along the

tension net according to the spring constants at each edge, intuitively like a net-

work of interconnected springs. Tension nets are directly correlated to Ekman’s

FACS Action Units Ekman and Friesen [1977], meaning that if a movement can

be notated using FACS, then it should be representable with the corresponding

tension nets. Tension nets give fine grained control over the face surface, but large

numbers of these are required, leading to high computational complexity.

Waters [1987] attempts to simplify muscle based approaches. Three types of

muscles are used; linear, radial and sheet muscles. A linear muscle is a vector,

which is inserted into a geometric facial mesh and defines an area of influence.

When activated, all points within this area are moved towards the origin of the

muscle. Sheet muscles differ from linear muscles in that there is no single point

source. Instead they act like a rectangle which contracts along one of its axes.

Finally, radial muscles define an ellipsoid shape where points within the region of

influence contract towards a centre point. In all cases, the activation applied to

a point is scaled according to its location within the area of influence, to prevent

mesh tearing at the edges of the area of influence. Although these simplified

psuedo-muscles reduce computational complexity, they also reduce the anatomical
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fidelity of the face mesh. For instance, wrinkling and buckling of the skin cannot

be modelled.

Edge and Maddock [2001] present a system based on the work of Waters [1987].

Linear, radial and sheet muscles are inserted into a graphical face model. The

activations are hand tuned to match exemplar lip shapes for each of 56 visemes.

Ekman’s six universal expressions Ekman [1992] are also approximated in muscle

activation space by creating a single set of activations for each expression. During

synthesis, a phoneme to viseme mapping is used to look up the required muscle

activation parameters for key speech targets. These are then interpolated to pro-

duce the final concatenation of muscle activations. The key targets can also be

linearly mixed with the expressive parameter sets to produce expressive looking

output. The author acknowledges that during subjective evaluation, certain lip

shapes scored poorly in preference testing. This is probably due to co-articulation

not being modelled resulting in inappropriate viseme shapes being selected.

In Terzopoulos and Waters [1990] a tri-layered geometry of the face is imple-

mented to produce a more anatomically realistic model. Different layers attempt

to reproduce the characteristics of the epidermis, the sub-cutaneous fat layer, and

the stiffer muscular layer just above the bones of the face. Each layer is a tetra-

hedral mesh of varying stiffness and deformability connected to the adjacent layer

meshes. The lowest layer is deformed by muscle activations, which in turn deform

the layer above it, and so on. Movements from an actors face were transferred

onto the geometry by integrating “deformable contours” to match captured video

The model is extended in Lee et al. [1995] by using laser scanned geometry and

photometry to automatically build a model of the underlying bone structure, and

insert muscles into the tri-layer mesh in correct positions.

Choe et al. [2001b] presents another system which uses modified versions of
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Waters’ muscles. Captured mocap video is transferred to a dense point mesh with

a muscle rig using reference points and affine transforms. The muscle activations

required to produce each frame (or pose) are then automatically found using a

steepest descent algorithm. Fitted activation trajectories in time for each muscle

can then be edited using spline interpolation, and optionally constrained using

keyframe points. The transformations to the skin surface are then represented

using a finite element model.

Albrecht et al. [2005] presents an enhanced muscle based approach which at-

tempts to model the complex mix of expressions observed in expressive speech. A

tri-layer geometric model is implemented into which muscle functions are inserted.

A text-to-speech system is used to map between text and muscle activation space

for speech. Then Cohen and Massarro’s dominance function approach Cohen and

Massaro [1993] is used to account for coarticulation (a phenomenon whereby the lip

shapes produced for a given phoneme utterance can be different depending on the

surrounding phonemes). The input was also provided as audio which was mapped

to the “Activation/Evaluation/Power” space Cowie et al. [2000]. A mapping is

defined relating this space to a large set of complex exressive types such as dis-

tress, gloating, gratitude and shame, as well as the more fundamental expressions.

Static mappings between these expressive types and muscle activation space are

defined. The articulatory features are then combined with linear combinations of

the expressive activations to produce expressive output on the mesh based face

model. Supplied panels in the paper show convincing expression although no sub-

jective evaluation is provided. One drawback is that the input data needs to be

supplied as both text and audio. Additionally, the audio-expression correlates used

to predict expression are known to be unreliable.

In an attempt to extend the physical analogy still further, Sifakis et al. [2005]

model the face as a complicated tetrahedral mesh on top of a rigid bone structure.
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Magnetic Resonance Imaging data is used to estimate the structure of the face be-

neath the skin, and adjust the stiffness of the mesh according to whether an area

is bone, muscle, fat or dermis matter. A high resolution outer mesh is constructed

using point data from a depth scanner. Muscles are inserted into the tetrahe-

dral mesh. Muscle activations which fit the model to reference mocap data points

are automatically found using a Gauss-Newton algorithm and then clustered into

groups which correspond to phonemes which they call “physemes”. Once learned,

these physemes can be concatenated to provide new speech. Additionally, activa-

tions for muscles associated with expression such as the Zygomatic Major muscles

(responsible for smiling) can be added in to provide emotional context. The system

they describe does require large amounts of post-processing to overcome errors in

the initial transcription of audio into phonemes during synthesis and blending of

physemes to overcome co-articulation problems, although this is a general problem

not only encountered in this technique. The approach is extended to expressive

synthesis in Sifakis et al. [2006], where static expressive poses are mapped from

mocap points to muscle activations and blended with the activations generated for

mouth articulation. Although this is a flexible approach that in theory should al-

low for blending of many different expressions, being a static linear blend of speech

and expressive muscle activations, and does not attempt to dynamically model the

interaction between expression and mouth articulation.

In Kahler et al. [2001], the face model is simulated as a tri-layer geometry repre-

senting skin, muscles and bone. Facial muscles are modelled as strings of piecewise

linear segments with ellipsoids fitted to each segment to simulate volume. Con-

tractions are achieved by performing affine transforms on the ellipsoid segments.

Although this is a novel approach to modelling the physics of the face, it makes

no attempt at automatic speech articulation or portrayal of expression.

In Rumman and Fratarcangeli [2014] a similar approach is used employing vol-
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ume preserving position based dynamics, which impose non-linear constraints on a

deformable geometric model. Pseudo-muscles are inserted into the mesh to mimic

the major facial muscles in the human face. Each muscle has its own stiffness

coefficient. The layered mesh is deformed using radial basis functions. The major

contribution of the work is that the facial model is mesh independent. Different

mesh configurations and numbers of layers can be used, and the response to the

inserted pseudo-muscles is solved using the Gauss-Seidel (Liebmann) method. The

authors note that this convergence can sometimes be unstable, the method makes

not attempt at mouth articulation (only expressive poses) and takes upward of 1

second to process the the mesh (on an Intel Core 2 Duo 2.4 Ghz CPU) for a single

frame therefore is not real-time.

Other techniques model muscle movements by abstracting away from an exact

physical analogy. Magnenat-Thalmann et al. [1988] describe facial poses as com-

binations of “Abstract Muscle Action” procedures or AMAs. Each AMA controls

a combination of muscles which may for example open the jaw, or pucker the lips.

The overall movement of the face is viewed as a set of AMA trajectories through

time. Keyframes are modelled by hand, and the trajectories between them are

constructed using b-spline interpolation. Liu et al. [2001] present a technique for

transferring geometric representations of expression between faces and also the

consequent changes in lighting. Firstly, expressions are transferred between faces.

Offsets are calculated between landmarks on neutral and expressive faces. Since all

human faces are roughly similar in size and shape, it is assumed that applying the

same offset (altered with an affine transformation), should be able to warp a novel

neutral face into an expressive pose. Further image processing is applied to warp

the texture map to the new shape of the landmarks. The novelty of this work lies

in the transferring of lighting intensities between poses. They describe what they

term the “Expression Ratio Image” (ERI). This is essentially the ratio of light in-



CHAPTER 5. LITERATURE REVIEW 24

tensity across all points in the source neutral and expressive images. The ERI takes

into account surface normals, number of light sources and their relative intensities

and colour of light. Once the target image has been warped to its new pose, the

corresponding ERI is then applied to each pixel in the image. This allows details

like skin wrinkling (such as that caused by brow furrowing) to be reproduced in

the output. Provided results look impressive although the authors acknowledge

that the technique has difficulty in mapping features between scenes recorded with

very different lighting conditions. Also the range of expressions is limited and all

provided examples are shown with the mouth closed. More recently, Yu et al.

[2014] describe a system for transferring facial expressions between models. A li-

brary of different facial poses is collected from human actors according to different

FACs requirements. These poses are then transferred onto a template mesh. A

correspondence between the template mesh and a target mesh is established. The

template is aligned to the target mesh using a laplacian coordinate system and

1-ring vectors and is therefore invariant to pose and scale. Once the meshes are

aligned, the target mesh is then warped to the exact shape of the template mesh

using a system of vertex projection and barycentric coordinate calculation. They

then create what they call “morph functions” which are strings of FACs units pa-

rameterised by things like acceleration, peak latency and peak amplitude. Morph

functions output can then be used as key frames allowing for strings of animation

showing changing face pose to be produced. Although supplied panels in the pa-

per look convincing in terms of expressive realism, the technique does not attempt

to model articulatory speech so cannot be considered a visual speech synthesis

technique.

Mazzei et al. [2012] was an interesting hybrid attempt at producing realistic

facial expressions on both an animatronic robot and a graphical model. A human-

like face was created out of a patented rubberised compound into which 32 servo
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actuators were inserted to mimic the movement of real facial muscles. A map-

ping was created between FACS parameters and actuator control, allowing for the

continuous gamut of expressive space to be displayed on the face. Preset com-

binations of activations were created which mapped from Ekmann’s fundamental

expressions, and also from valance/arrousal space, to the servo inputs. A rule

based conflict resolution module prevented incompatible movements from being

sent to the servos (e.g. eyebrows raised and frown), and another module added

nuances such as eye gaze and head movement. For the graphical output, a mesh

based psuedo-muscle model was created with the pseudo-muslces inserted into the

mesh at the same place as the servo activators were inserted in the rubber face.

Mesh responses were hand-crafted and the graphical model was then driven by the

same input parameters as the animatronic model. The technique and models were

used in a therapeutic setting to treat children with Autism Spectrum Disorders

(ASDs). The authors report half of the expressions produced by the model as

being correctly identified (by both children with ASDs and those without). The

technique made not attempt to model speech.

Bermano et al. [2014] present a novel approach to generalising the input to

a geometry based facial synthesiser with functionality to alter the dynamics of

delivery. A database of facial geometry is created capturing the full range of poses

captured from an actor. The database is processed with a low pass filter to make

low frequency versions of each frame. The differences between the low frequency

and original versions of each frame are then calculated. Input to the system then

takes the form of land marked tracked video frames, rigged blend shape models

or Xbox Kinect captured face parameters. These undergo an affine transform to

align them to the training data and are used to warp the low frequency mesh.

Appropriate high frequency details are the added from the pre-calculated offsets

and texture patches applied thus allowing high definition output on the model
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in a computationally inexpensive way from different sources. The technique is

untested on dissimilar input and output data however, since the same actor was

used to create the training set and provide the input frames.

5.3 Concatenative Approaches

Concatenative speech synthesis works by concatenating individual video frames,

visual features or some other representation of visual speech, from a corpus which

ideally contains all shapes, appearances and expressions needed in a synthesised

sequence. Typically some kind of mapping is established between text/audio and

unit selection. Often a cost function is used to calculate a suitability metric for

each concatenation unit based on the unit’s initial distance from the target unit and

any processing the unit will require after concatenation. The synthesiser chooses

units by minimising the sum of these cost functions. One of the first problems one

encounters with this approach is coarticulation. This is when the same sound pro-

duces multiple mouth shapes. To account for co-articulation Pelachaud et al. [1991]

describe a system where each phoneme is given a deformability rank. Forward and

backwards coarticulation rules are then applied and more deformable phonemes

are morphed towards the shapes of less deformable phonemes. Bregler et al. [1997]

use a triphone selection method where the cost function is a distance based on a

combination of phoneme context distance and lip shape distance. Phoneme context

difference is scored according to whether the candidate phoneme and the target

phoneme are the same, are a different phoneme but the same viseme class (e.g.

/b/ and /m/), or whether they are different phonemes. The lip shape distance is

the distance between lip shapes in overlapping phonemes at the beginning and end

of each triphone. During concatenation, triphones are overlapped to find the best

match of lip shapes between the end of one and the beginning of the next. Thus
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accounting for co-articulation artefacts occurring within one frame of the target.

Distances between candidate and target units can be calculated in a variety of

ways such as with Principal Components Analysis (PCA) coefficients of feature

shapes and pixel luminance Theobald [2007], geometric features such as mouth

width and height Bevacqua and Pelachaud [2004], or phonetic/prosodic informa-

tion. In Cosatto and Graf [2000a] the text-to-speech module Festival Clark et al.

[2004] is used to tokenise a text input into phonemes and durations. For each

phoneme, a number of candidate mouth shapes are selected from a corpus. This

creates a lattice with several frames at each time point, each with a cost. The

Viterbi algorithm Forney [1973] is used to find the path of minimum cost through

the lattice. To minimise coarticulation errors, they also use the triphone selec-

tion method from Huang et al. [2002]. By considering phonemes at the triphone

level, there is a better chance that the middle phoneme will have a phonetically

appropriate context with the surrounding phonemes.

For flexibility in unit selection, a corpus of images may be decomposed into their

component parts i.e. mouth, eyes, nose etc. and labelled. When an utterance is

synthesised, the corpus is searched for the most appropriate features for the target

face. The individual face parts are selected, stitched together and processed to pro-

duce a candidate frame Cosatto and Graf [2000a]. Because the synthesised frames

are created from actual images of the original speaker, they are photorealistic.

However in common with other concatenative synthesisers, the output is depen-

dant on a large corpus of labelled image samples from which to generate novel

output. All generated content will look like the actor in the training database.

Approximations are made where no matching frames can be found. Adding addi-

tional emotional contexts will increase data storage requirements. There is also the

issue of changing between emotional states. A smile doesn’t instantly appear on

a person’s face, so intermediate frames between neutral and emotional expressions
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would also be needed or the categorical expressions blended.

Deng and Neumann [2006] use a novel projection to a 2D manifold which they

term “isomaps”. They claim that isomaps are a more intuitive and useful dimen-

sionality reduction than other comparable techniques such as PCA. The training

corpus of expressive visual speech is subjected to a forced alignment in audio space,

and the corresponding phoneme isomaps are clustered into phoneme groups and

expressive groups. A novel phoneme transcript can then be synthesised by con-

catenating isomaps using a dynamic programming algorithm to minimise a cost

function. Additionally, soft constraints in the form of expressive groups and hard

constraints in the form of isomap phoneme groups can be specified by the user,

thus allowing the addition of expression into the output. However, only categorical

expressions can be achieved, and there is no control of expression intensity. The

authors also acknowledge their lack of subjective evaluation.

Kshirsagar et al. [2001] attempt to produce expressive visual animation us-

ing PCA. They capture expressive visual speech from an actor using optical fa-

cial markers placed to imitate the MPEG-4 FAPs standard Ostermann [2002].

PCA is then applied to the raw captured co-ordinates of these markers. They

term the resulting features “expression/viseme” space. To synthesise novel speech,

phonemes in the training data are mapped to visemes in expression/viseme space.

The visemes are then concatenated in this space, projected into FAPs space and

then applied to a model which can be driven with FAPs parameters. Single frames

of Anger, Fear, Happines, Surprise, Sadness and Disgust are also projected into the

viseme/expression space. When a novel utterance is required in an expressive style,

the visemes are linearly combined with the expressive features in expression/viseme

space. The novel sequence is then subjected to cubic spline smoothing. Given that

there is no consideration of surrounding phonemic context, there is presumably

a problem with coarticulation which is not addressed in the paper. Cubic spline
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smoothing will attenuate output somewhat, and it is not clear how the linear ad-

dition of expression is managed to give dynamic expressive output.

Beskow and Nordenberg [2005] use a similar approach where data is captured

using reflective markers placed on the face to simulate MPEG-4 FAPs feature

points. Sentences are recorded in the six universal expressions Ekman [1992] and

neutral. A FAPs drivable graphics model was developed. PCA was applied to the

raw coordinate values of the collected feature points. A separate PCA model was

trained for each expression. Forced alignment was performed on the audio and

a mapping of phonemes to visemes was established in PCA space. Visemes were

concatenated, and the blending technique described in Cohen and Massaro [1993]

was used, employing minimisation of error using dominance functions to account

for coarticulation. The PCA features were projected back into FAPs space by

multiplying the principal components by one of the expressive PCA models, thus

allowing novel speech to be projected into an expressive modality. The resulting

FAPs parameters could be applied to the face model to produce visual speech. A

subjective evaluation showed that expression identification was significantly better

than chance. The model was however not able to create blends of expression and

could only output categorical expressive speech. Complete phonemic training sets

were required for each expression.

In Bevacqua and Pelachaud [2004], seven phonetically relevant parameters de-

fine lip shapes. During synthesis, a phonetic transcript is used to select viseme

control points for each parameter and b-spline curves are used to interpolate be-

tween such points. Coarticulation error is avoided by taking each consonant shape

in the context of each vowel, and then carefully selecting which consonant shape to

use for each control point. Additionally the dominance based coarticulation rules

described in Cohen and Massaro [1993] are used. A database of consonantal tar-

gets is created for each expressive type and can be specified to allow for expressive
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synthesis. Weighted combinations of these database units can be specified to allow

for mixes of expressions and modulation of expressive intensity. This approach

relies on having a full corpus of training speech in each expressive style. B-spline

interpolation may lead to over smoothed output. Furthermore although the plots

of ground truth and synthesised trajectories look convincing, no subjective eval-

uation is offered. In Bevacqua et al. [2007] the system is extended. The face is

divided into 8 separate regions. A mapping between FAPs parameters and different

expressive styles is created allowing for an expressive style to be controlled as a sin-

gle parameter. Keyframes for speech and expressions are defined during synthesis

where the expressive parameter is subject to an attack, decay, sustain and release

window. B-splines are again used to interpolate between the keyrames. Output

is provided by a FAPs drivable graphics model. A framework is presented which

allows for the combining of two expressions, where expressive dominance functions

deal with the relative application of the two expressions and conflict resolution in

the case where control points are manipulated non-orthogonally. A technique for

synthesising head position and eye gaze is also presented in the paper. Objective

evaluation was offered via the “copy-synthesis” method Buisine et al. [2006], where

synthesised movies are subjectively compared with hand crafted animation. Re-

sults indicate that the automatic approach is “satisfactory” and that participants

were able to identify at least some of the expressions displayed.

More recently Liu and Ostermann [2011] built an image based concatenative

synthesiser heavily influenced by Cosatto and Graf [2000b]. A training corpus

of neutral and happy speech was recorded. The mouth part of each frame was

located, extracted and then subjected to PCA. Each mouth patch was stored as a

PCA feature vector, along with its corresponding phoneme and phoneme context.

Natural expressive speech was then analysed to discover certain rules governing

the interaction of smiling and speech. Synthesis is achieved by using a text-to-
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speech program to generate a phoneme stream from audio which is used to select

frames taking into account phonemic context (as in Cosatto and Graf [2000b]).

The discovered rules are used to decided when to switch between smiling frames

and neutral frames. The string of selected mouth images is stitched back into the

face image, and head movement is applied. A subjective evaluation showed that

participants were not able to reliably tell the synthsised happy faces from ground

truth. Mean opinion scores were lower for synthesised sequences that ground truth.

Although this technique appears to produce high quality output, it is only able to

produce happy and neutral sequences. Since it only models the mouth region, it is

very limited in its ability to produce other expressions such as surprise and anger,

which rely on the upper part of the face.

In Serra et al. [2012], a concatenative approach is described which uses a straight

forward text-to-speech audio synthesiser or audio analysis module to create a

phonemic transcript from either textual or audio input. A one-to-many mapping is

created between phonemes and visemes and used to translated between phoneme

transcription and concatenations of viseme selections. The viseme selections are

then mapped to animation curves which have been manually crafted by an ani-

mation artist. Finally the concatenation is passed into a Maya rig for rendering.

While this system is extremely simple and easy to implement, it makes no attempt

at co-articulation resolution. Output movies hosted on YouTube also show that

inappropriate plosive lip shapes are produced.

Although concatenative based synthesis has produced some impressive results,

there are several reasons why it is not suitable for emotional synthesis. For each

new emotional context to be added to the corpus, an actor is required to repeat the

same sentences in a different emotional context. Much of the data being recorded

will be redundant. For the so-called six basic emotions (anger, joy, surprise, dis-

gust, sadness and fear) each sentence must be recorded seven times (one extra for
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neutral). The speech signal of each of these emotionally expressed sentences is ap-

proximately the same. Only the emotion portion of the signal varies between them.

Therefore separating the speech and emotion into separate modalities, would re-

duce storage requirements. Of course, the expression of human emotion must be

considered as a complex mix of different feelings. Reducing it to six basic emotions

is an unacceptable simplification if realistic synthesis is to be achieved. Having dis-

crete emotional contexts doesn’t allow for subtle mixes of emotional context which

make up the rich texture of human facial expression.

5.4 Statistcal Approaches

Statistical models provide a framework where an input signal (typically text or au-

dio) can be parameterised and used to drive a model which in turn produces visual

output. Ideally the model would be flexible enough to account for co-articulation,

mixes of expression and changes of actor or output model.

5.4.1 Decompositional Models

Deng et al. [2004] describe a system in which a low dimensional representational

of expression is used, which they term PIEES Phoneme Independent Expression

Eigen-space. Matching sets of expressive and neutral sequences are recorded using

motion capture. They are time aligned and a simple subtraction is performed, leav-

ing a set of expressive residuals which are phoneme independent. PCA is performed

on these residuals which yields a low dimensional expressive surface. Neutral vi-

sual speech is then synthesised (how is not described) and blended with expressive

styles derived from the PIEES. Intensity of expression is controllable. This could

be a promising approach providing a mixed space which might be capable of pro-
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ducing subtle mixes of expression. However it is an over simplification to simply

subtract neutral speech from expressive speech, in the hope of completely remov-

ing phoneme contribution. For instance speech articulation affects the production

of a smile, so subtracting articulation contributions from smile contributions will

lead to an irregular signal. Also as the authors accept, a large amount of training

data is required. No subjective evaluation for the technique is offered. Chan and

Tsai [2010] extend this technique by using PCA with expectation maximsation to

create their PIEES space. The PCA algorithm then predicts the most likely posi-

tion for missing data in a sample, thus making the technique robust to occluded

landmarks.

Du and Lin [2003] describe a system for synthesising expressive face images

given neutral input images. A training set of 213 images of 10 female participants

make up a training set. Each frame is shown in neutral and 6 basic emotions and

is given an “emotional parameter” score which is how much of the 6 component

expressions in the training set is observed in the image and is therefore a 6D vector.

The emotional parameters are the mean opinions of 60 students. The images are

labelled using a landmarking technique and PCA is applied. Each expressive image

is then subtracted from its neutral equivalent to produce a set of expressive deltas.

To add expression to a novel neutral image, the corresponding landmarks are found

and the deltas for the required expression are applied. This provides an expressive

shape. The appearance patch is then subjected to the same process described in

Liu et al. [2001] and is warped to the new shape. This creates a patch which

contains the correct lighting and appearance for the new expression. A polynomial

function is derived which maps between the emotional parameters and the PCA

coefficients used to encode the shape component of the model. Therefore the

technique allows expression to be added according to a given emotional parameter

and is interesting in that it allows the expressive gamut of training images to be
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modelled. However it makes no attempt to produce time varying strings of frames

so cannot be considered an animation or visual speech synthesis technique.

Hong et al. [2002] offer a Neural Network (NN) based approach. Their NN maps

between audio blocks and expressive visual parameters they term “Motion Units”

(MUs). A training set is acquired from video by tracking points on an actor’s

face. The training set consists of all the English phonemes spoken in neutral,

happy and sad and amounts to around 1000 frames. Each frame is tracked and the

landmarks on the face are aligned to and subtracted from a neutral reference frame.

PCA is then applied. These residual deformations in PCA space are the MUs.

The audio in the training set is then clustered into groups defined by Gaussian

Mixture Models. A separate audio to MU Neural Network is trained for each

cluster using context for the three preceding and following frames to account for

output discontinuities and some level of coarticulation. During synthesis, audio

input is designated to one of the training clusters, and the corresponding Neural

Net is selected and used to predict the MU output given the audio input. A

further set of Neural Nets is trained to map between neutral MUs to Happy and

Sad MUs. The synthesised neutral MUs are then passed into one of the expressive

NNs in order to produce expressive output. Objective numerical testing shows

that the technique produces output comparable to ground truth. In a subjective

test, participants were able to identify the expression produced, although no test

statistic was provided. The participants were shown the sequences with expressive

audio, therefore the experiment must be considered biased since the audio would

have given cues as to the expressive style. Additionally, they were only choosing

between happy and sad, so it is difficult to attach much significance to the result.

Since the training set only contained examples of English phonemes and no bi-

phones, tri-phones or any other higher order representation of speech, it is unclear

how coarticulation was modelled although the use of recurrent neural nets could
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potentially solve such problems. Since the expression prediction Neural Nets are

discrete, the system is unable to produce blends of expression.

Chuang [2002] describes an expression retargeting system, where video is tracked

and keyframes (in coordinate space) are picked which describe extremes of varia-

tion. A set of linear weights describing the correct combination of keyframes to

match each frame of a video is then obtained (it is assumed this interpolation works

since the keyframes describe extremes). To retarget the expression, corresponding

keyframes in a target model are crafted by hand, and the weights discovered in

the previous step are applied to recreate the source video on the target mesh. In

later work Chuang and Bregler [2005] describe a technique based on Active Ap-

pearance Models, where a training set models variation in face shape under the

influence of speech and also expression. Input parameters are factorised using a

bilinear model, into those representing speech articulation and those representing

expression. Since expression affects the way the lips move when producing speech,

a weighting function is used to modulate the contribution of the speech and ex-

pression parameters to the final frame. The bi-linear factorisation however is a

difficult problem which is simplified by either holding the expression or speech

component constant, and solving for the other component. This is obviously an

oversimplification since signals by their nature vary and should not be considered

static for any window larger than a few milliseconds.

Vlasic et al. [2006] describe another technique based on statistical factorisation

using higher order multilinear algebra. A tensor (a matrix of dimension higher

than 2), is used to arrange a dataset of dense 3D face scans, displaying 16 actors

articulating 5 visemes in 5 expressions. A Singular Value Decomposition is used

to reduce the dimensionality of the data and provide controls for manipulating

identity, expression and mouth shape. Face movements can then be tracked in

video, and the resulting features mapped to tensor coefficients. These coefficients
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may be manipulated to alter either the identity or expression of the actor and is

therefore a movement transfer method. Only modelling five visemes seems unlikely

to produce enough variation in lip shape to create convincing articulation and no

subjective or objective evaluation is supplied.

5.4.2 Hidden Markov Models

One application of Hidden Markov Models (HMMs) is to predict hidden states

given a sequence of observations. The model is an arrangement of state sequences

each with an emission probability and transition probabilities. Emission probabili-

ties govern the likelihood of seeing a particular observation given a particular state.

Transition probabilities govern the likelihood of moving to the another state given

the current state Stamp [2004]. As a basic example applied to speech recogni-

tion, some parameterised form of audio speech is obtained (such as Mel Frequency

Cepstral Coefficients), and grouped into phonemes (or some other type of unit).

Each group is used to train an HMM model to recognise the optimum parameter

set for that group as a Gaussian distribution. During recognition, observations

for a unit are passed through each trained model, to calculate the probability of

the unit corresponding to that model. The unit is classified as that whose model

probability is highest Rabiner and Juang [1986]. Figure 5.2 shows a simple three

state HMM with transition and emission probabilities.

More recently Tokuda et al. [2000], HMMs have been used for synthesis where

observations are predicted from a sequence of known states as opposed to predicting

hidden states from observations. The HMM sequences and gaussian distributions

are trained in the same way as for recognition. During synthesis, a sequence of

phoneme level HMM models is concatenated according to an input sequence. As

the HMM concatenation is traversed, observation parameters are output accord-
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Figure 5.2 A simple three state HMM with transition probabilities. At each state,
the model either stays in the same state or transitions right to the next state.

ing to each state’s Gaussian distribution. The deltas and delta-deltas are usually

computed in addition to the current feature which allows for the dynamics (accel-

eration, attack, decay etc.) of speech to be modelled. The generated features and

deltas are then passed into some visual output generator for rendering.

Cox and Simons [1990] present an early HMM based speech synthesiser, de-

signed for transmission of Facial Action Codes (FACs) across a wire. In training,

speech audio is quantised into speech vectors and labelled. Corresponding video

frames are labelled using image codes which encode only the mouth shape. A fully

connected Markov Model is trained in which each state represents one of the image

codes and has associated emission probabilities (the likelihood of observing each of

the quantised speech vectors), and transition probabilities. During synthesis, the

model produces the most likely sequence of mouth shape states, given the input

speech vectors using the Viterbi algorithm. The mouth shape states are converted

to FACs to be transmitted or to drive a graphics model.

Brooke and Scott [1994] present another early HMM synthesiser. Greyscale

video footage of a talking mouth is used as input to the system. The images

are projected onto a PCA model to reduce dimensionality. The PCA parameters

are then clustered into triphone groups and used to train HMM models. The
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number of states in each model is set to be the average number of non coincident

peaks and troughs across plotted PCA coefficients for the corresponding triphone,

thus allowing for the different durations of triphones. The triphone models are

trained using the Baum-Welch algorithm. During synthesis, triphone models are

concatenated according to an input triphone string. The models are traversed left

to right, with no skips. At each time point, a feature vector of PCA coefficients

is generated according to the current state’s Gaussian distribution. These feature

vectors are constrained using quadratic curves and then smoothed using a five

point window. The smoothed PCA coefficients are then projected back onto the

PCA model to create output greyscale images. A problem with this approach is

the fact that each state produces feature vectors independently of the surrounding

states. Although the output is smoothed in order to reduce jerkiness, it doesn’t

allow for coarticulation corrections, and the smoothing will attenuate the motion

of the output. There is also no timing model meaning that dynamics cannot be

realistically produced.

Masuko et al. [1998] designed an HMM based synthesiser which attempts to

model the dynamics of speech and coarticulation. A training set of images is

phonetically labelled at syllable level. Features for each training image are auto-

matically extracted. These are the height and width of the mouth, and discrete

cosine transforms of some other lip measurements. Additionally, deltas are cal-

culated for each feature vector simply as ∆ct = ct − ct−1. These feature vectors

and their deltas are used to train three state, syllable level HMMs. Transition

probabilities are then calculated by aligning the training data to the models with

the Viterbi algorithm. This ensures that the fixed length HMM models produce

the correct number of observations for a given syllable. Since the delta coefficients

provide each observation with some context of the surrounding observations, the

output of the HMMs takes some consideration of coarticulation and does not re-
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quire smoothing. Tamura et al. [1998] extend the technique by driving it from

audio. Another HMM is trained using MFCCs to recognise input speech audio

and output a text syllable string. This syllable string is used as the input to an

HMM as described above.

Brand [1999] developed another HMM based approach to visual synthesis. An

HMM is trained where the hidden states represent different face configurations.

This model is combined with synchronised audio to give a combined HMM capa-

ble of observing audio features and representing the hidden states as visual face

configurations. During synthesis, novel audio is analysed and the most likely HMM

face configuration state sequence is calculated. From this, face configuration out-

put probabilities are generated which can be used to select frames of video or drive

a parameterised model. The model is constrained such that the output features

require no smoothing and coarticulation is handled by virtue of the contextual

nature of HMMs.

Tao et al. [2009] describe an HMM based expressive visual synthesiser which

uses Gaussian Mixture Models to add expression to the outputs. A large corpora

of 700 neutral sentences and 300 sentences each in neutral, happy, angry, sad and

surprised states was captured using mocap markers placed on the actors face to

replicate MPEG-4 FAPs parameters. The data was then considered in 150ms

blocks of audio, and the corresponding 7 frames of visual data, meaning that for

each audio chunk, a degree of context was modelled in the visual domain thus

accounting for coarticulation. A fused HMM was trained which modelled the

interaction of the audio and visual domains. During synthesis, novel audio was

passed into the fused HMM which produced costs for the candidate visual sub-

sequences. The Viterbi algorithm was used to find the minimum path through the

sub-sequences and the best ones were concatenated to produce neutral output. To

introduce expression, GMMs were trained on time aligned neutral and expressive
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data to model a joint probability distribution between speech and expression. One

GMM was trained per expression. The neutral synthesised output was passed

into one of the expression predicting GMMs which then produced the most likely

expressive output. Objective trajectory comparisons with ground truth and other

methods show this technique appears to work well. No subjective evaluations were

reported. Some drawbacks of the method are that a large amount of training data

is required, and although the GMMs will model the variation within an expressive

class, the technique is unable to produce blends of expression. Furthermore, the

neutral synthesis component is relatively complicated.

In Anderson et al. [2013] an Active Appearance Model is trained, and modes

encoding head rotation and blink are identified and removed. A static model and

texture are used to represent the teeth. Quinphone HMM states are trained for all

the data in the training set composed of 6925 sentences split between six expres-

sions. Cluster Adaptive Training is used and search trees are created containing the

mean and covariance for each quinphone HMM state. A separate tree is used for

each expression. During synthesis quinphone HMM models are selected (based on

the output of a text-to-speech system) and concatenated. Their emission parame-

ters are a matrix containing the quinphone in all the different expressive styles in

AAM space which is then multiplied by an expressive modulation vector allowing

for a synthesis of the quinphone across the continuous gamut of expression. The

AAM parameters are then projected back onto the AAM model to produce visual

output. A large crowd-sourced evaluation was executed. The technique scores an

expressive realism score of 3.7 (out of 5) surprisingly low, considering that the

output is ostensibly photorealistic. Expressive recognition rates are significantly

better than chance but interestingly are also better than scores for ground truth

footage. A drawback of the approach is the very large training corpus required

(over 1000 sentences in each of the expressive styles).
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5.4.3 Other Techniques

Jia et al. [2011] use a technique based on PAD (Pleasure/Displeasure, Arrousal/Non-

Arrousal, Dominance/Submissiveness). These can be seen as a high level descrip-

tion of emotion. The system takes text and PAD parameters as input. Neutral

audio is synthesised, and then expression is added by a system of “boosting GMMs”

which model the difference between neutral and expressive speech. An intermedi-

ate coding of expressive features called Partial Expression Parameters (PEPs) are

presented. These are a middle state between PAD parameters and the MPEG-4

FAPS parameters which are the output of the system. PEP features are converted

into FAP parameters by a linear interpolation. The mapping between PAD and

PEP is done subjectively by asking participants to mark various training images

according to how they perceive them. Once the neutral audio is synthesised, a

static mapping between phonemes and visemes is used to produce visual output

FAPs. For non-mouth portions of the face, these are replaced by the PEP mapped

FAP parameters, the magnitude of which is modulated by the F0 pitch of the

speech. For mouth FAPs, a simple linear mix is applied between PEP mapped

FAP parameters and FAP parameters for articulation. The mixing coefficient is

static at 0.8 in favour of articulation viseme. This approach has several draw-

backs. Firstly the problem of static visemes and coarticulation does not appear to

be addressed. Secondly, it relies on subjective opinions of expression in the PAD

to PEP mapping. Thirdly modulating expression based on the F0 pitch of speech

is invalid, as the frequency of certain emotions (such as sadness) are invariant to

voice pitch. Forthly a static blend of expression and speech is invalid. For in-

stance, when one puckers the lips in the articulation of words such as “why” and

“fortune”, the stretching of the lips for a smile must be relaxed somewhat in order

for the articulation to take place. Therefore the blend coefficient should model the

dominance of articulatory movement which it does not.
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Yu et al. [2012] present a system for synthesising facial expressions and eval-

uating the correlations between FACS action units (AUs) and subjective infer-

ence of expression. 4 FACs trained actors were filmed performing various AUs.

Their performances were tracked using optical flow techniques and their move-

ments transferred onto a graphics model. Random selections from the transferred

AUs were then played to untrained participants. The participants were asked to

categorise the facial expression they were seeing in terms of Ekmann’s fundamen-

tal expressions, and in terms of expression intensity. By performing this type of

noisy sampling (producing random AUs to be performed), an unbiased correlation

between AU and perceived expression was learned. A statistical evaluation showed

significant correlations between AU and perceived expression across participants.

An interesting rule based system for expressive pose creation was presented in

Seif El-Nasr et al. [1999]. An intelligent agent is modelled, which is able to react

to external events and produce appropriate expressive responses. The agent has

a series of predetermined goals. External events when perceived by the system

are given a desirability rating based on their impact upon the agent’s goals. The

desirability for an event is then combined with the expectation of that event based

on recent history. In this manner, the agent is able to learn from its experience,

and will respond less to frequently occurring events. A linear mapping is created

between the expressive scoring given to an event and the controls of a 2D cartoon

baby face on which the expressive output is modelled. Although not a technique

for synthesis of expressive visual speech animation, it is nevertheless interesting in

that it attempts to intelligently react to external stimulus. However the model’s

rule based system which is used to decide on output expressions is an unacceptable

over-simplification of human emotion and can only be considered an early prototype

for a more sophisticated model of expressive intelligence.

Mlakar and Rojc [2011] is an attempt to create another rule based approach. A
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unit based synthesiser relying on FAPs units, the system takes such units as inputs

to create speech articulation, expression and other more subtle movements such as

blinking and head movement due to breathing. A sophisticated set of rules governs

temporal, spatial and power components allowing for changes in the speed and

attack of delivery. A further set of “fluidity” rules govern the transition between

action units to ensure that movements are smoothly contiguous and that non-

linear dynamics can be modelled. Another set of rules governs conflict resolution

of units with overlapping areas of influence and their relative dominance. Output

is rendered via a graphical model. No evaluation is provided and it is unclear how

co-articulation is handled. However, this is a full-body synthesiser, so accurate

speech articulation may not be the author’s first priority.

5.5 Conclusion

So far in this chapter the major techniques for visual speech animation have been

explored. Although many of these techniques are capable of producing convincing

results, there are themes in the literature representing major drawbacks which will

now be summarised.

It is commonly accepted that there are fewer visemes than phonemes. This

is because there is simply not the same level of information contained in the vi-

sual signal. This can be intuitively proved by considering that it is possible to

completely understand speech when one can hear the speech but cannot see the

speaker’s face. However, when one can see the speaker’s face but cannot hear the

speech the same cannot be said. This is partly because some articulators cannot

be seen such as the teeth and tongue which are responsible for some of the plosive

consonants such as /k/, /t/, /d/ and /g/. It is also impossible to see the produc-

tion of nasal phonemes such as /n/ and /ng/, as well as unvoiced sounds such as
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/s/ and /sh/ and affricates such as /ch/. Certain phoneme groups look identical on

the mouth such as the (/p/, /b/, /m/) group and the (/f/, /v/) group. Software

such as Nuance’s Dragon, and Apple’s Siri show that audio recognition, although

not perfect, is now a mature technology achieving very acceptable accuracy. If

there was a one-to-one mapping between audio phonemes and visual visemes, then

the accuracy of visual recognition would be high and visual speech synthesis would

be trivial. There is no such one-to-one mapping which makes both problems very

difficult. Since there are multiple phonemes for each viseme, one might think that

it makes the task of selecting visemes to match a string of phonemes easier. Then

one encounters the major issue in visual speech synthesis, coarticulation. This is

where the lip shape used to articulate a phoneme changes depending on the sur-

rounding phonemes. Taylor et al. [2012] show that there are at least 6 lip shapes

corresponding to the phoneme /t/ depending on what word the phoneme appears

in meaning the assumption of a static one-to-one relationship between phonemes

and visemes is invalid. Since many of the techniques described above make this

assumption, they must be considered to have issues of coarticulation.

Although some of the techniques described above attempted to produce expres-

sive visual speech, most are only capable of producing categorical expressive styles.

The human face is a window onto the complex gamut of feelings and thoughts that

run through all our minds. It is rare to feel categorically happy or sad or surprised

etc. More commonly we feel ambivalence e.g. a musician might feel happy, excited

and nervous before a concert; or a soldier might feel fear, anticipation and boredom

before a battle. In order to simulate these subtle complexities, a synthesis tech-

nique must either have examples of all these emotions in its training set or must be

able to interpolate between the more limited expressive examples it does have to

create new expressions. Furthermore, it must be able to modulate the magnitude

of the expression displayed in a realistic manner. Very few existing techniques are
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able to account for both these things.

Other techniques (particularly concatenative methods) require very large train-

ing sets. These are time consuming to collect and label for neutral speech. This

problem is multiplied when considering a collection of expressive speech. For con-

catenative methods, either complete corpora must be collected and labelled for

each expression, or some kind of transform must be used on the neutral speech

which is likely to lead to noise and/or degradation of realism. Furthermore, the

problem of categorical expressions described above still apples.

Some of the techniques described above are computationally complex such as

the partial derivative based gradient descent training described in Sifakis et al.

[2006], the tuning of dominance functions described in Cohen and Massaro [1993],

or the resolution of mass spring weighted tetrahedral meshes under the influence

of multiple activation inputs described in Terzopoulos and Waters [1993]. These

kind of computational complexities will cause bottlenecks in an industrial work-

flow. Although computers have and should (at least for the foreseeable future)

continue to grow in speed and capacity, so grows the complexity, realism and vi-

sual quality demanded by the animation industry and the consumers of digital

media. Therefore, the argument that as computers grow in power, the techniques

become more feasible does not necessarily hold. In comparison, it will be seen in

this work that the proposed solution, although not an entire synthesis pipeline,

is at least computationally cheap and should work in real-time, this on consumer

level hardware using Matlab with its relatively slow performance (when compared

to compiled low-level languages such as C / C++).

Another issue with many of the existing techniques is their lack of a robust

and consistent evaluation. If any evaluation is offered at all, it is usually of an

objective type e.g. comparing feature trajectories between synthesised and ground
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truth data, or calculating RMS error between synthesised and ground truth meshes

etc. However, Theobald and Matthews [2012] show that objective measures are

not necessarily a good indicator of the subjective perception of naturalness in a

synthesis technique. RMS error seems a particularly poor choice since it averages

across an entire sequence, whereas the authors show that an artefact in a single

frame of a sequence can lead to the entire sequence being perceived as bad. They

report that using the DTW distance between a synthesised and a ground truth se-

quence provides the highest correlation with subjective opinions, a technique which

is not used in any of the literature. When subjective evaluations are provided, they

tend to be mean opinion score based, sometimes do not compare to ground truth

or ask the participant a trivially simple question (such as “is this sequence happy

or sad?”), unlike the forced choice turing test presented later in this thesis.

5.6 Desiderata

Having investigated the current state of expressive visual speech synthesis and

outlined the major problems, it is possible to produce a list of aims for a proposed

system.

1. Coarticulation: Since coarticulation is the major issue in this area, any ex-

pressive visual speech technique must produce coarticulation free output,

that is the lip shapes produced must plausibly match the audio phoneme to

which it corresponds.

2. Training Data: Since large corpora are difficult and time consuming to collect,

a technique which requires only a comparably moderate amount of training

data is highly desirable.
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3. Expressive Controls: The system should have controls providing an animator

with a means to control the expression produced.

4. Expression Blending: Since facial expression is a physical manifestation of

the complex emotional gamut of human expression, our feelings are usually a

mix of more “fundamental” emotions. Being able to reproduce this blending

of emotion is necessary to realistically model facial expression.

5. Time Complexity: Geometric modelling of facial geometry is highly processor

intensive. A system which can produce frames of animation in real-time is

desirable as it lends itself to useful functions such as real-time actor expression

retargeting.

6. Flexibility: Ideally any proposed system should not be tied to a particular

dataset, output model or actor. This increases the usefulness allowing the

technique to be used by more people for a greater variety of tasks.

7. Simplicity: A system which is easy to understand and implement is more

likely to be useful to people. Busy professionals don’t have the time or incli-

nation to learn complicated function calls or statistical techniques. Therefore

the proposed system should be simple for the end user to use and should ob-

fuscate complexity.

8. Subjective Testing: As has been stated, most existing techniques have not

been subjectively evaluated by the viewing public. Since people are the

consumers of this kind of media, it is their opinion which ultimately counts.

Therefore the proposed system must stand up to subjective testing.

What follows is a detailed description of the techniques on which the rest of this

work is based.



Chapter 6

Technical Background

6.1 Introduction

The task of Expressive Visual Speech Synthesis is to create a smoothly varying

visual representation of speech, with convincing lip movements accurately syn-

chronised to an audio track, coupled with recognisable facial expressions to convey

to the observer an emotional context. Since expressive speech as it is perceived by

humans is a mix of signals some conveying speech and some conveying expression,

it can be seen as a two part problem. If this mixed signal can be factored into

its component parts of speech and expression, then separate models can be built

to synthesise each signal, and the factorisation can be inverted to recombine these

separate signals into novel expressive visual speech. Our research aims are there-

fore to discover a robust and reliable factorisation which is applicable to multiple

data types and produces reproducible results, and use it to build generative models

of expression.

In order to accomplish this, we rely on several well known statistical, algorithmic

and machine learning techniques which will be covered in the rest of this chapter.

48
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6.2 Principal Component Analysis

Central to this work is the technique of Principal Component Analysis (PCA)

Pearson [1901]. Here PCA is used to reduce the dimensionality of complex point

cloud data representations of facial geometry, and to build Active Appearance

Models Cootes et al. [2001]. PCA allows the dimensionality of strongly correlated

data to be reduced whilst retaining some predetermined amount of variation. Any

example in a training set can be approximated by:

x ≈ x̄ + Pb, (6.1)

where x is the approximation, x̄ is the mean, P = (p1 | p2 | · · · | pt) is the set of t

orthogonal eigenvectors describing some predetermined proportion of the original

variance, and b is a t dimensional vector given by:

b = PT (x− x̄). (6.2)

Therefore it can be seen that x and b are equivalent. The process is carried out

as follows Cootes [2000]:

• Compute the mean:

x =
1

s

s∑
i=1

xi. (6.3)

• Compute the covariance:

S =
1

s− 1

s∑
i=1

(xi − x)(xi − x)T. (6.4)
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• Compute the eigenvectors pi and the corresponding eigenvalues λi, (sorted

so that λi ≤ λi+1).

• Each eigenvalue describes the variance about the mean of its corresponding

eigenvector. Therefore calculate the total variance in the eigenvalues thus:

VT =
∑
i

λi. (6.5)

• Now choose the t largest eigenvectors such that:

t∑
i=1

λi ≥ fvVT (6.6)

where fv is the proportion of the original variance to be kept (typically 95-

98%).

For certain types of data e.g. speech signals, it can be shown that a large

proportion of the variance in a signal can be captured in a very few eigenvectors.

In one of our PCA models, each example frame consisted of stacked coordinate

data x = {x0, y0, x1, y1, . . . , xn−1, yn−1}T , where n = 51. 150 training images of a

male subject’s face were labelled with these 51 landmarks marking prominent areas

such as around the lips, eyes and nose (see Figure 6.4). After PCA was applied,

plotting the values of the resulting eigenvalues yielded Figure 6.1. Note how the

variance drops to near 0 after the 20th eigenvalue. Therefore nearly all the variance

was captured by the first 20 eigenvectors. By reducing the retained proportion of

variance to 0.95, only 12 eigenvectors were required as shown in Figure 6.2. Since

vector b is a t dimensional approximate encoding of vector x retaining nearly all

the variance from the mean in only a fraction of the dimensionality, PCA can be
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Figure 6.1 Plot of eigenvalues after PCA with 99.999% of variance remaining.

Figure 6.2 Plot of eigenvalues after PCA with 95% of variance remaining.

viewed in this case as a form of lossy data compression.
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Figure 6.3 Example training images for an AAM displaying extreme facial poses

6.3 Active Appearance Models

Active Appearance Models (AAMs) are a standard way of encoding and compress-

ing images in computer vision. As described in Cootes et al. [2001], AAMs are

an amalgamation of two different PCA based models. One is a model describing

the distribution of pixel intensities across a set of training images. The other is a

point distribution model, encoding the variation of shapes appearing in the train-

ing images. An AAM must be trained by marking points (or landmarks) on a set

of training images. The training images should be selected in order to capture the

extremes of variation encountered across the entire set. See Figure 6.3 for some

example training frames. In the case of facial images (see Figure 6.4), one must

mark prominent feature outlines such as the outline of the face, and those of the

lips (inner and outer), the nose, eyes, eyebrows etc. During the training phase,
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Figure 6.4 Labelling of an image with landmarks, prior to training an AAM. Green
markers show primary points which should always be in correspondence i.e. should
always mark the same part of the face. Red markers are those whose position is
simply interpolated by the position of the green markers.
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the landmarks for each training image are aligned using procrustes analysis and

then stacked such that s = s(x1, y1, x2, y2 . . . , xn, yn). A compact representation

(as descrbed in Section 6.2) of the distribution of landmarks across the training

set can be described by:

s ≈ s̄ + Sbs, (6.7)

where s is the concatenated vector of landmarks, s̄ is the mean vector of concate-

nated landmarks, and S is the set of n orthonormal basis vectors describing some

given amount of variation. bs is the low dimensional vector describing each basis

vector’s contribution to s and is defined as:

bs = ST (s− s̄). (6.8)

Figure 6.5 shows the result of taking the mean lip shape and adjusting various

modes by ± 3 standard deviations from the mean of samples seen in the training

set. The appearance component of the AAM is modelled in a similar way. Each

training image is warped from its landmarked shape s to the mean shape s̄, thus

creating a shape normalised image. The pixel intensities for the colour planes are

then concatenated and a PCA model is trained such that:

a ≈ ā + Aba, (6.9)

where a is the shape normalised image, ā is the mean normalised image, A is the

set of n orthogonal basis vectors describing a predetermined proportion of variance

and ba is a k dimensional vector describing the contribution of each basis vector

to the encoded appearance described by:

ba = AT (a− ā). (6.10)
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Mode 1 Mode 2 Mode 3

Mode 4 Mode 5 Mode 6

Figure 6.5 The first six shape modes showing the range of shapes captured in ± 3
standard deviations from the mean. Mode 1 appears to capture puckering of the
lips as in a kiss. Mode 2 appears to capture an /oo/ shape as in “book”. Mode
3 appears to shows a general parting of the lips, whereas mode 4 clearly shows a
smile as does mode 5. Mode 6 shows little variation at all and could arguably have
been left out of the model.
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−3σ mean +3σ

Figure 6.6 The first 2 appearance modes show the range of appearance images
(warped to the mean shape) captured in ± 3 standard deviations from the mean
appearance of the training data.

Figure 6.6 shows the result of adjusting the first two modes of appearance by ±

3 standard deviations from the mean. Concatenating the results of Equations 6.8

and 6.10 gives:

b =

bs

ba

 , (6.11)
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a compact representation of shape and appearance in PCA space. The landmarks

for unseen images, which are required for computing the parameters b, can be

obtained using one of many AAM fitting algorithms. In this work we use the inverse

compositional fitting algorithm Matthews and Baker [2004]. For convenience we

project the shape and appearance components of the AAM into a combined space

by first concatenating the shape and appearance parameters:

bsa = [wb′s b′a]
′, (6.12)

where w is used to weight the shape parameters so the overall energy in the shape

and the appearance are equal. The weight is computed using:

w =

√
ta
ts
, (6.13)

where ta is the trace of the covariance matrix for the appearance and ts is the trace

of the covariance matrix for the shape. Applying PCA to the concatenated vectors

provides the combined model of shape and appearance:

b = P′bsa. (6.14)

Once trained, the AAM can be used as a generative model. Given the parameters

in Equation 6.11, the shape component can be projected from PCA space into

the equivalent landmarks. The appearance component can likewise be projected

into the equivalent mean normalised appearance image. This appearance image can

then be warped from the mean shape to the shape of the landmarks. In this manner

it is possible to create any combination of shape and appearance observed in the

training data. Synthesis is achieved by a generative model creating appropriate

parameters in the form of Equation 6.11.
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6.4 Independent Component Analysis

As described in Hyvarinen [1997], the goal of Independent Component Analysis

(ICA) is to express a set of random variables as a linear combination of statistically

independent variables. Independence in this case means that the value of one

variable tells us nothing about another variable. Whereas the related technique of

PCA tries to find linear combinations where the data co-vary as much as possible,

ICA tries to find linear combinations of the data which specifically do not co-vary.

Consider the following Equation:

x = Qγ, (6.15)

where x is a random multivariate normally distributed variable, and γ is a set

of component signals which combine to make x. Q then is an unknown (m × n)

matrix, called the mixing matrix. ICA provides a framework for estimating the

mixing matrix Q using only the data observed in x such that the independent

components in a mixed signal can be calculated using:

γ = Wx, (6.16)

where γ are the independent components and W is the pseudo inverse of Q. To

accomplish this, ICA makes some assumptions about the natural world. Firstly

that signals measured from discreet physical entities should be statistically inde-

pendent. Secondly, such signals should have non-Gaussian distributions. This

leads to three interesting observations:

• Source signals from different physical processes are independent, however,

mixes of such signals are not independent.
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• According to the central limit theory, the distribution of the sum of inde-

pendent random variables should tend towards Gaussian. Therefore if inde-

pendent non-Guassian signals are mixed, their sum should tend towards a

Gaussian distribution.

• The temporal complexity of any mixed signal should be greater than the

complexity of its simplest source signal.

These observations form the basis of ICA theory. Independent sources are found

in a mix of data in the following ways:

• Maximisation of non-guassianity in the histograms of outputs.

• Minimisation of mutual information between outputs.

• Finding of the least complex signals in a mix.

ICA has a few notable drawbacks. The assumption made (that signals from

different physical entities are independent) is arguable. There are certainly cases

where this may not be entirely true. Let us examine for example foetal heart

monitoring. The heart beats of the foetus and the mother are clearly from separate

physical processes and are largely independent, but cannot be considered entirely

independent since the physical condition of the mother will inevitably effect the

heart beat of the foetus. Similarly, in the case of our work where ICA is used to

estimate some signals representing expression and some representing speech, the

signals are largely independent, but not completely. They are independent enough

however for ICA to produce some useful estimates. PCA returns components

based on the magnitude of the eigenvector’s associated eigenvalues. That is, the

first returned mode describes the axis of greatest variance, the second describes

the axis of second greatest variance orthogonal to the first etc. Since ICA finds
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the independent modes by maximising kurtosis and therefore non-Gaussianity, it

cannot order these independent components by ranked variance. Therefore ICA

makes no guarantees of the returned ordering or magnitudes of independent signals

and indeed is unable to deduce the real number of independent signals in a mix

instead relying on being instructed how many signals to find.

In this work we use the open source implementation of FastICA Gavert et al.

[2005]. Figures 6.7, 6.8, 6.9 and 6.10 show a simple example of its operation. Three

observations of a mix of three sine waves at different frequencies is shown in Figure

6.7. FastICA is able to separate this wave into its components seen Figures 6.8,

6.9 and 6.10.

Figure 6.11 shows how the FastICA algorithm transformed the first four PCA

modes representing real expressive visual speech into independent modes by kur-

tosis maximisation. As previously said, signals in nature tend to a non-Gaussian

distribution. Therefore by finding transforms of the data which yield non-Gaussian

distributions, we tend to find independent signals. The kurtosis of the normal

distribution is 3. Distributions that are more outlier-prone than the normal distri-

bution have kurtosis greater than 3; distributions that are less outlier-prone have

kurtosis less than 3 Mathworks [2015]. The actual kurtosis values for these modes

are shown in Table 6.1. The mean kurtosis over all the modes for the PCA and

ICA features is 3.8946 and 6.5290 respectively. The Matlab kurtosis function was

used and is defined by:

k =
E(x− µ)4

σ4
, (6.17)
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Figure 6.7 ICA Demonstration: Three mixes of the same three sine waves each
with a different frequency. Each mix has a different contribution from each wave.

Mode / Component Kurtosis in PCA Kurtosis in ICA
1 2.9916 1.5625
2 2.7284 18.3728
3 2.7223 6.3689
4 3.8124 11.8785

Table 6.1 Kurtosis for principal components and independent components.
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Figure 6.8 ICA Demonstration: ICA recovered sine wave (blue) against ground
truth (black).
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Figure 6.9 ICA Demonstration: ICA recovered sine wave (blue) against ground
truth (black).
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Figure 6.10 ICA Demonstration: ICA recovered sine wave (blue) against ground
truth (black).
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where µ is the mean of x, σ is the standard deviation of x and E(t) is the expected

value of the quantity t.

6.5 Retargeting of Animation using Scattered Data

Interpolation

Scattered Data Interpolation (SDI) is the process of constructing new data points

given the observations of a set of known data points, where the known points have

no particular structure or pattern. Since the process needs no knowledge of how

the known points are organised, it provides a convenient method of interpolation

for irregular geometry such as that seen in computer models of the face. As pre-

sented in Pighin et al. [2006], the movement of a set of landmarks as described in

Section 6.3 can be transferred to another model, so long as the configuration of

both model and landmarks is not too dissimilar. It is entirely possible to transfer

the movements of 2D landmarks to a 3D model. Firstly either the landmarks or

the model must be aligned using affine parameters to eliminate differences in scale,

translation and rotation. Then pairs of corresponding vertices between the land-

marks and model are identified such as those defining the corners of the mouth,

line of the lips, corners of the eyes etc. The movement of the landmarks from frame

to frame is directly transferred to the corresponding (constrained) model vertices

and the movement of the remaining (unconstrained) vertices is interpolated. More

formally, a set of known displacements is described thus:

ui = τi − τ 0i (6.18)
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Figure 6.11 Histograms of first four PCA modes and independent components of
expressive speech data before and after ICA transformation.
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where τi is the new position and τ 0i is the original position. The task then is to

construct a smooth function fitted to the known data:

ui = f(τi) (6.19)

which gives uj the displacement for every unconstrained vertex thus:

uj = f(τj) (6.20)

In this work, the interpolant is a set of radial basis functions (RBF) of the form:

f(τ) =
∑
i

ciφ(||τ − τi||) (6.21)

where c is a vector of weights describing each RBF’s contribution to the interpola-

tion, τ is the current unconstrained point to be interpolated and τi is the current

contained point. After experimentation, we define φ(r) = e−r/(3/32) as this gives

a smooth interpolation, particularly across areas where the constrained points are

sparse.

6.6 Nelder-Mead Downhill Simplex Optimisation

The Nelder-Mead downhill simplex optimisation Nelder and Mead [1965a], is a

commonly used optimisation technique which is useful for solving for functions

for which the derivatives are unknown. Since it is heuristic in nature, it is not

guaranteed to always converge to a stable/optimal solution, but works well when a

close approximation of the optimal solution is good enough and is a fair compromise

in cases where an exhaustive method would be computationally infeasible. In the

Nelder-Mead algorithm, a multivariate function with n inputs is represented by a
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simplex in k dimensional space whose k + 1 vertices represent different inputs to

the function. At each iteration, the function is sampled at each of the simplex’s

vertices and the vertex with the worst error is replaced with an improved position.

More precisely, at each iteration one of four actions takes place:

• Start of iteration:

The simplex is made of k + 1 vertices where n is the dimensionality of the

function to be optimised. In Figure 6.12 the points of the triangle represent

the inputs to a two dimensional function and the red dot represents the

optimal input.

Figure 6.12 Nelder-Mead: Initial State

• Reflection:

The vertex with the worst error is reflected through the centroid of the other

vertices and the error at the new position is sampled, show in Figure 6.13.

Figure 6.13 Nelder-Mead: Reflection
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• Expansion:

If the error of the function sampled at the reflected vertex is smaller than

the error at the original worst point, then it is likely that interesting values

lie along this reflected axis, so the simplex is expanded further as shown

in Figure 6.14. If the expanded vertex is better than the reflected vertex,

the current worst vertex is replaced by the expanded vertex. Otherwise, if

the reflected vertex is better than the expanded vertex, the worst vertex is

replaced by the reflected vertex. In either case, this completes the current

iteration.

Figure 6.14 Nelder-Mead: Expansion

• Contraction: If the reflected vertex is worse than the current worst vertex,

then the minimised solution must lie either within the simplex, or within its

mirror image. Therefore two new vertices are calculated, one in the middle

of the simplex and one in the middle of the simplex’s mirror image as shown

in Figure 6.15. If the errors at either one of these new contracted vertices

is less than the worst vertex, the worst vertex is replaced by that with the

smaller error. This ends the iteration.

• Reduction:

If neither of the errors at the vertices calculated in the contraction stage are

better than the error at the worst vertex, then all vertices other than the
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Figure 6.15 Nelder-Mead: Contraction

best are divided in half, thus collapsing the simplex in on itself and towards

the optimised solution as shown in Figure 6.16. This ends the iteration.

Figure 6.16 Nelder-Mead: Reduction

This process continues until either a pre-specified number of iterations has oc-

curred, or some minimum error threshold is achieved, therefore finding an approx-

imation of an optimised solution to the multivariate function.
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6.7 Dynamic Time Warping

Dynamic Time warping Rabiner et al. [1978] has long been used in the speech

recognition community for the tasks of alignment and recognition. More recently

the technique has been used in the information retrieval community for tasks such

as music classification (the basis for technologies such as Shazam) Müller [2007]

Barton and Inghelbrecht [1999], and in the machine learning community for vari-

ous classification tasks Ratanamahatana and Keogh [2004]; Keogh and Ratanama-

hatana [2005]; Lines et al. [2011]. In this work, we use the algorithm for aligning

two sequences of different lengths, namely two sequences which have the same pho-

netic content but spoken in different styles e.g. happy and neutral. All expressive

sequences were warped to their neutral equivalent. The path was calculated be-

tween Mel Frequency Cepstral Coefficient features of the sequences audio tracks,

which were produced by HTK’s HCOPY function Young and Woodland [2009].

The output from the DTW algorithm was then quantised from the audio frame

rate of 44,100 Hz to the video frame rate of 25 Hz to produce frame sequence

numbers required to align the two video sequences corresponding to the warped

audio tracks.

6.7.1 Overview of DTW

Suppose there are two sequences Sx and Sy of lengths χ and ψ respectively such

that:

Sx = (Sx1, Sx2, Sx3, . . . Sxχ) (6.22)

Sy = (Sy1, Sy2, Sy3, . . . Syψ) (6.23)

The sequences may be aligned by constructing M, a (χ×ψ) matrix, where M(i, j)

contains the euclidean distance between the two points d(Sxi, Syj) = (Sxi − Syj)2.
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A warping path is defined which maps Sx and Sy by the minimising the distance

through the matrix M such that:

DTW (Sx, Sy) = min
{ √∑G

g=1 φg (6.24)

where φg is the gth element of the warping path. The warping path is calculated

at each step as:

φ(i, j) = d(Sx, Sy) +min{M(i− 1, j − 1),M(i− 1, j),M(i, j − 1)} (6.25)

Figure 6.17 shows an example DTW warping path through a matrix of euclidean

Happy Sequence
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Figure 6.17 A DTW warping path through the matrix of euclidean distances. Out-
putting the frames for each sequence indicated by the warping path yields two new
sequences which are time aligned.

distances between a happy and a neutral sequence. By concatenating the frames

for each sequence as indicated by the warping path (in red), two new sequences
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are obtained which are time synchronised and the same length.

6.8 Unsupervised Learning for Speech Motion

Editing

The research described in this thesis is heavily influenced by the work of Cao et al.

[2003, 2005]. In their work they describe an initial attempt to factorise speech

and emotion, theorising that expressive speech is a linear combination of these

independent components. What follows is a review of their initial findings.

Firstly, they captured a corpus of training data. A male actor was recorded

issuing an unknown number of sentences, each in four different emotional styles

(happy, angry, sad and frustrated). The movement of the actor’s face was tracked

using a Vicon8 optical motion capture system. Using 109 facial markers produced a

fairly sparse mesh representation of the face, but retained enough detail to project

the lip movement and emotional content of each sentence. The sample rate was

120 fps.

The coordinates of the facial markers were stacked such that:

x = x(x1, y1, x2, y2 . . . xn, yn)T (6.26)

They then applied PCA to the stacked coordinates before projecting into ICA

space thus:

x = E{x}+ PAu (6.27)

where E{x} is the expectation of x, P is the set of orthonormal basis vectors

obtained by applying PCA, A is the mixing matrix obtained during ICA training

and u are the independent components. Since ICA is unable to determine the
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actual number of independent components, it is reliant upon the user to instruct the

FastICA implementation how many independent components to return. Cao chose

this to be equal to the number of PCA components and was therefore dependent

on the remaining proportion of variance retained by the PCA process (typically

between 95% and 98%).

ICA makes the assumption that a mixed signal is a linear combination of in-

dependent components and is able to estimate an un-mixing matrix to decompose

such a signal into these components. Expressive speech is such a mixed signal,

since the same utterance can be said with different emotions. The emotional con-

tent and the speech content can be viewed as approximately independent from

each other. Therefore it is reasonable to hypothesise that ICA should be able to

decompose an expressive speech signal into its independent components, speech

and expression. To test this hypothesis they chose two utterances of the same sen-

tence with two different emotions (happy and frustrated) and aligned them using

a DTW algorithm. These were then used to train an ICA model and using this

model, were projected into ICA space giving a pair of corresponding independent

components (u,v). They computed the root mean squared (RMS) error between

these components using:

demotion,j =
1∑
qi

(

qi∑
k=1

(uij − vij)
2)

1
2 (6.28)

where qi the number of samples in each independent component. Since the two

sentences share the same speech content, and have been time aligned, if a mode

represents speech, the error in equation 6.28 ought to be small. However if the

mode represents emotion then the error should be large since this represents the

difference between the sentences. Their results can be seen in figure 6.18.
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Figure 6.18 Cao’s results from taking the RMS error between two time aligned
expressive sentences in ICA space (copied from Cao et al. [2003]).

Figure 6.19 Swapping every other ICA element on the suspected emotional mode
with the corresponding element from the other sentence (copied from Cao et al.
[2003]).

Note how mode three appears to contain the largest error. In order to confirm

that this mode contains emotional content, they took one of the sentences in ICA

space swapped every other element of this mode with the corresponding element in

the same mode from the other sentence in ICA space as seen in figure 6.19. Upon

inverting the ICA transform, projecting from PCA space into coordinate space and
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playing the frames back in sequential order, it was found that the configuration of

points did indeed seem to show the face oscillating between the two expressions in

the training set every other frame.

6.9 Summary

This chapter has broadly outlined the main families of techniques used in the rest of

the work presented in this thesis. Principal Component Analysis is used extensively

to project point cloud data into a low dimensional representation. This is essential

to make computation feasible and timely. The related statistical technique of Ac-

tive Appearance Modelling utilises PCA to perform an analogous task of projecting

image data into a low dimensional representation. Independent Component Anal-

ysis, a form of blind-source separation, is used to split mixed data into independent

modalities (expressive visual speech into speech and expression). Scattered Data

Interpolation is used to warp template meshes onto novel, unseen geometric repre-

sentations of the face. The Nelder-Mead downhill simplex optimisation is used to

solve for multi-variate functions whose the derivatives are unknown, and Dynamic

Time Warping is used to align sequences of different lengths by similarity. The

next two chapters demonstrate how by combining various use cases of the tech-

niques described in this section, we are able to modulate an existing neutral speech

signal with a learned expression signal to produce realistic and smoothly varying

expressive visual speech.



Chapter 7

Simple Model Modulation

7.1 Introduction

As was talked about previously, Cao et al. [2005, 2003] reported promising initial

results detailing the factorisation of a statistical representation of expressive visual

speech into linearly independent components (speech and expression). In Cao et al.

[2003], the expressive style from one sentence was copied into another expressive

sentence by training an ICA model on the data in the two sentences, allowing for

the identification of modes representing expression, and then copying the values

from these modes to the corresponding modes of another sentence with different

expressive style. Whilst interesting, it is not clear how this is useful to an animator

in the movie or computer games industries. Firstly the sentences manipulated were

the same as those used in ICA training, meaning that the technique is not shown

to work on unseen data and cannot therefore be said to be a generalised method.

Secondly, simply changing the expressive style from one to another is not a task

an animator is likely to want to perform. Thirdly, since one ICA model was

necessary for each pair of sentences, the number of ICA models required would

77
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grow as the square of the number of expressions one wishes to approximate. It

was also reported that the expressive components of two different ICA models

could be added together in order to create a mix of expressive styles. However,

no results were provided, and there is no guarantee that such an addition would

create plausible facial poses.

The rest of this chapter is structured as follows: firstly we discuss why ICA

was chosen as a factorisation method and then describe our replication of results

reported in Cao et al. [2003], followed by a description of work to generalise the

method by applying it to unseen data. We then demonstrate a technique which

would make the method of practical use to animators. We show how the original

method can be improved so the model complexity goes from O(n2) to O(n) as

a function of the number of expressions. Finally we present the results of an

evaluative turing test and discuss the significance and limitations of this result.

7.2 Justification for ICA

There are several techniques which can be used for multivariate data factorisation

such as Non-negative Matrix Factorisation, Multi-linear subspace learning or Ten-

sor model learning. Some of these will be discussed. However, our first attempt

was a novel Principal Component Analysis based approach. A PCA model was

trained on neutral only visual speech features. Then frames of expressive speech

were projected onto this neutral only model, the idea being that it would be able

roughly approximate the expressive speech but using only the neutral variance on

which it was trained. This neutral approximation could then be subtracted from

the expressive, to create an expressive residual. The expressive residual would then

be used as features to train some sort of generative model. The technique worked

well for certain expressive styles. Sadness and Anger were particularly well fac-
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torised. However when it came to Happiness, the technique failed. Whereas with

the Sadness and Anger, the neutral approximations had simply looked like normal

neutral speech, the neutral approximations of Happiness had a strange grimace

type expression. This is probably because Happiness is an expression which re-

quires mouth movement thus the influence of speech (moving of the lips and jaw),

and movements associated with Happiness (curling of the lips) are non-orthogonal.

In contrast, the movements associated with Sadness and Anger tend to be raising

of the eyes and eyebrows, and furrowing of the brow and will therefore not effect

the mouth movements produced in speech.

Non-negative Matrix Factorisation (NNMF) is a statistical technique which has

been used amongst other things to separate mixed audio of multiple speakers

Schmidt and Olsson [2006]. This technique seeks to represent data as sparse linear

combinations of basis vectors. These basis vectors must be orthogonal and non-

negative. Additionally there must be discrete classes from which to learn these

basis vectors (or dictionaries) e.g. a large training corpus of phonetically discrete

audio segments. In the case of our work, we have zero mean PCA coefficients as

features meaning that there is lots of negative data. As has just been mentioned,

speech and expression are not orthogonal, so finding orthogonal basis vectors will

at best be sub-optimal. There is also not necasarilly a clean separation between

expressions meaning that training the dictionaries will be problematic as discrete

expression classes will probably not exist with real data.

Chuang et al. [2002] use bilinear subspace learning. By using a Singular Value

Decomposition (SVD) a number of weighting matrices are estimated and can be

used to combine speech and expression. However, it is stated that the estimation

is difficult and therefore as a computational simplification, during training either

the expression or the speech is held constant. Although this makes a good ap-

proximation of expressive speech, it fails to account for the dynamic interactions
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occurring between speech and expression. There are multiple weight matrices re-

quired meaning that calculation is further complicated. Additionally a model is

trained for every frame, meaning that the technique is unlikely to work in real-time.

Vlasic et al. [2006] describes a similar technique based on multilinear algebra and

N-mode SVD. The technique looks promising, but as it models identity as well as

expression and viseme, it is overly complicated for our purposes.

ICA then, was tried next as it is completely unsupervised, requiring no a priori

knowledge of the data. Therefore the discrete classes required in NNMF to train

dictionaries of basis vectors are not required. Being unsupervised, ICA simply

returns components based on the underlying structure of the data as discovered

by kurtosis. ICA also handles negative input matrices unlike NNMF. ICA returns

a single model which is general enough for matrix factorisation and multiplication

of unseen visual speech data, therefore computationally simplifying the synthesis

stage of an animation technique by not requiring a new model for each frame.

Additionally, linear transformations by the same matrix are guaranteed to produce

smooth concatenations of output frames given that the input features themselves

are smooth. This cannot be said if the transformation matrix is retrained for each

frame.

7.3 Reproduction of Cao’s work

To reproduce Cao’s original work we use our own dataset (see Section 4.2). This

is because the BiWi corpus described in 4.1 does not contain the same sentence

spoken in different styles, rather, each sentence only appears in its own style and

neutral. As mentioned in Section 6.8, the purpose of this reproduction is to show

that the expressive style from one sentence can be transferred to another sentence,

where the style is different but the speech content is the same.
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Firstly, a PCA model was trained using the features output by our AAM tracker

using Equations 6.12, 6.13 and 6.14. Therefore the AAM shape and appearance

features were projected into a single space representing combined shape and ap-

pearance. If this step is not preformed, the ICA process tends to separate the

shape and the appearance into different modes (since these are largely indepen-

dent from one another). The shape features were first normalised in order that

they did not dominate the appearance features (since the shape co-ordinate values

output by the tracker vary from 100-850 whereas the pixel intensities vary from

0-255). Then two sequences of the same utterance, but in different styles (happy

and angry, happy and surprised or angry and surprised etc.) were projected onto

the principal components of the mixed PCA model thus:

b = PT ([wbsba]− [wbsba]) (7.1)

where P is the set of orthonormal basis vectors describing 90% of the variance in

the scaled AAM feature vectors, bs are the shape features as described in Equation

6.8 and are chosen from a random selection of held out training frames, and ba are

the appearance features described in equation 6.10 from the corresponding held

out frames. w is the square root of the ratio between the traces of the covariance

matrices of bs and ba as shown in equation 6.13. The resultant features for the

happy and angry sentences were then time aligned using dynamic time warping.

At this stage an ICA model is trained. As mentioned previously, ICA is simply a

linear transform the general form of which is:

x = Qγ, (7.2)

where x is a linear combination of independent signals, Q is the mixing matrix

and γ is the independent signals.
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To perform this task, we used the open source FastICA algorithm Gavert et al.

[2005]. The AAM features corresponding to the two expressive time aligned styles

were arranged into a matrix thus:

b =

∣∣∣∣∣∣ b
11
a . . . b1na b11h . . . b1nh

bm1
a . . . bmna bm1

h . . . bmnh

∣∣∣∣∣∣ (7.3)

where ba are the angry features, bh are the happy features, n is the number of

frames (or samples) and m is the number of principal components retained after

the PCA transformation. FastICA uses these stacked features as input and returns

the estimated mixing and unmixing matrices A and W.

The time aligned PCA features were then projected into ICA space using the

inverse of equation 7.2 thus:

sh = Wbh (7.4)

sa = Wba (7.5)

where W = A−1 is the pseudo inverse of A, sh and bh are the independent

components and AAM features respectively for the happy style sentence, and sa

and ba are the independent components and AAM features respectively for the

angry style sentence. Since the speech component of the two sentences is very

similar (the phonemic content of the sentence is the same and they have been time

aligned based on audio features), there should be ICA modes which contain very

similar information. However, the modes which contain the expression information

should be less similar. Since FastICA provides no ordering to the modes which

are returned, to identify the potential expressive mode/s, the root mean squared

(RMS) error is calculated between corresponding modes of the happy and angry

sentence. If the RMS error is small between two modes, it is reasonable to assume
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this is a speech mode since the speech content is largely the same. However if

the RMS error is large between two such modes, then we assume that this is an

expressive mode. The RMS error is calculated as:

εi =

√√√√ n∑
k=1

(sh(i, k)− sa(i, k))2 (7.6)

where εi is the RMS error between ith independent components, sh are the indepen-

dent components of the happy sentence, and sa are the independent components

of the angry sentence. Figure 7.1 shows a plot of the RMS error between the

two sentences. Plots of the trajectories of the independent components are shown

in Figures 7.2 through 7.6. From Figure 7.1 it is clear that component one con-

tains the largest RMS error. Examination of the trajectory of this mode for both

sentences (Figure 7.2) indeed shows that the mode is quite different in the two

sentences.

To reproduce the experiment in Cao et al. [2003], we take mode one of the

happy independent components and copy over values from mode one from the

angry independent components. This is done every other frame, therefore the new

expressive component contains alternating happy and angry values. Figure 7.7

shows the output from the AAM model for a test sentence after projecting the

ICA components back into AAM space and projecting these AAM features onto

the AAM.
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Figure 7.1 A plot showing the absolute RMS errors between independent compo-
nents from two time aligned sentences, one happy and one angry.



CHAPTER 7. SIMPLE MODEL MODULATION 85

Figure 7.2 IC mode 1 for a particular ICA model: red is happy, black is angry.

Figure 7.3 IC mode 2 for the same model: red is happy, black is angry.



CHAPTER 7. SIMPLE MODEL MODULATION 86

Figure 7.4 IC mode 3: red is happy, black is angry.

Figure 7.5 IC mode 4: red is happy, black is angry.



CHAPTER 7. SIMPLE MODEL MODULATION 87

Figure 7.6 IC mode 5: red is happy, black is angry.

Figure 7.7 Frames from a happy sentence (top) and the same frames after replacing
the expressive ICA mode values with those from an angry sentence (bottom), using
the technique described in Cao et al. [2003].
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7.4 Modulation of Neutral Speech

The steps in this section are summarised in Appendix A. What follows is a de-

scription of a novel method which attempts to generalise the contribution of Cao

et al. [2003], and in so doing to form the basis of new tools which could be of

potential interest to the animation industry. We show how it is possible to train

an ICA model using only a few training examples. The model is able to separate

expressive speech into its component parts of speech and expression. We then ap-

ply this model to unseen expressively neutral data, showing that it then becomes

possible to manipulate this neutral data in ICA space in order to effectively mod-

ulate the mouth movements in the test sentence with an expressive style present

in the training set.

When transforming parameters that encode neutral visual speech into those

which encode expressive visual speech, the dynamics of the expression must appear

natural and the mouth movements corresponding to speech must remain valid. If

all of the assumptions of ICA held, some of the independent components would cor-

respond exactly to speech and some exactly to expression. However, we have found

that a ‘clean’ separation of the signals does not occur, and each component tends

to represent both speech and expression to varying degrees. An additional problem

is that in general ICA cannot guarantee an ordering to the returned independent

components. Whereas PCA orders principal components based on eigenvalue, no

such easy metric exits in ICA. Ordering components by change in kurtosis is one

solution but is imperfect since certain distributions have a kurtosis value close to

zero but are far from gaussian. Therefor it is usually left up to the user to make

sense of the returned components. One must resort to empirical methods (such

as RMS calculations or frequency domain analysis), to discriminate between those

components which predominantly represent speech and those which predominantly
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represent expression.

Figure 7.8 shows what we refer to as the energy signatures for neutral and ex-

pressive speech. The black bars in the figure represent the mean absolute deviation

(MAD) in the components, computed using:

ej =
k∑
t=1

|uj(t)|2, (7.7)

where ej represents the MAD across the jth independent component and uj(t)

represents the value of the jth independent component at time t. The independent

components themselves are derived from the combined PCA model of shape and

appearance. The red bars in Figure 7.8 show the amplitude of the components,

computed using:

aj =
k∑
t=1

uj(t). (7.8)

Although no component is fully responsible for expression, the distribution of

the energy in the components is different for neutral speech and expressive speech.

This is illustrated in Figure 7.9. Here we see how two independent components,

one representing speech, the other expression might move through time. e1n is the

mean energy of the expressive component in a neutral sentence, e1e is the mean

energy of the expressive component in an expressive sentence. e2n and e2e then are

the mean energies of the speech component for the neutral and expressive sentences

respectively.

The main differences between the neutral and expressive energy signatures in

this particular ICA model, is that one component for neutral speech tends to be

positive, whereas it tends to be negative for happy speech (in this case component

1), and that another component tends to have more overall energy in happy speech
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(A)

(B)

Figure 7.8 The energy (black) and amplitude (red) in the ICA components of (A)
four neutral speech sequences and (B) four expressive speech sequences.
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en2nd

Component 2 (Speech)

Component 1 (Expressive)
Negative is Happy, Positive is Neutral

ee2nd

Neutral Speech
Expressive Speech
Static Face
Changing Expression (no speech)

en1stee1st

Figure 7.9 Illustration of independent component time series for neutral speech,
expressive speech, changing facial expression and a static face.
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(in this case component 4). The task then is to redistribute the energy in the ICA

components computed from novel neutral speech so that they better match those

observed in expressive speech. This involves rescaling the values of the components

and (possibly) changing the sign. The weights used to transform the neutral speech

components are computed using:

wj =
eje
ejn

(7.9)

where wj is the scaling for the jth component, eje is the energy in the jth component

of expressive speech and ejn the energy in the jth component of neutral speech.

Referring back to Figure 7.9 as an example, it can be seen how the scaling factor

would be the ratio of e1e
e1n

, giving a large scaling factor, and e2e
e2n

giving a scaling factor

close to one.

Thus, given a sequence of novel neutral speech projected into ICA space, the

parameter values are adjusted according to:

sj(t) =

 wjuj(t) sgn(aje) = sgn(ajn)

(−wj(uj(t)− µj)) + µj otherwise
(7.10)

where µj is the mean value of the jth component over the novel utterance, and

sgn is +1 if the amplitude is positive and −1 if the amplitude is negative. The

value sj(t) represents the new value of the jth independent component at time t.

Figure 7.10 illustrates this transform, where the blue line represents a time series

on a speech mode and an expressive mode for input neutral speech, the green line

represents the neutral speech after scaling, and the red dashed line indicates the

time series on the same two modes of a ground truth equivalent expressive sentence.



CHAPTER 7. SIMPLE MODEL MODULATION 93

Component 2 (Speech)

Component 1 (Expressive)
Negative is Happy, Positive is Neutral

Ground Truth Neutral
Modulated Neutral
Ground Truth Expressive

Scaling Factor

Figure 7.10 An illustration of the scaling process showing time series plotted on a
speech and an expressive independent component. Blue is the input neutral, green
is the scaled neutral, and red is the ground truth expressive equivalent.
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7.5 Results

Five sequences from the B3D(AC)2 corpus were chosen for each expressive style

and paired with their equivalent neutral speech. To maximize the limited data

available cross-validation was used, where five ICA models for an expressive style

were trained using four of the sequence pairs, with a fifth sequence held-out for

testing. Figures 7.11 and 7.12 show example time-varying trajectories in two of

the five independent components for ground truth expressive, ground-truth neutral

and the corresponding transformed neutral visual speech. Note that the transform

is not attempting to recreate the expressive sequence exactly, rather the style of

the expressive speech is being imposed onto the content of the neutral speech.

Sequences transformed from neutral to expressive styles using the process de-

scribed in Section 7.4, not only show the correct change in facial expression, but

also display the dynamics which are seen in the training set because real ICA

data is being scaled rather than a style being statically imposed. Sample frames

from video sequences containing real neutral speech, the same speech after trans-

forming to an expressive style, and the corresponding real expressive sequences

time-aligned to the neutral sequence are shown in Figure 7.13. Further examples

of output created using this technique can be seen in Appendix C.

7.6 Evaluation

To assess the feasibility of this approach as a method of synthesising expression,

small subjective evaluation involved a forced choice Turing test, where 14 viewers

were each shown 8 sequence pairs (n=112 samples). The viewers were a mixture
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Figure 7.11 Time-varying independent components from an expressive like mode for
a ground-truth neutral sequence (green dashed curve), the time aligned expressive
equivalent sequence spoken in a happy style (red dotted curve), and the neutral
sequence transformed into a happy style (black solid curve).
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Figure 7.12 Time-varying independent components from a speech like mode for a
ground-truth neutral sequence (green dashed curve), the time aligned expressive
equivalent sequence spoken in a happy style (red dotted curve), and the neutral
sequence transformed into a happy style (black solid curve).
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Ground-truth Expressive Transformed Expressive Ground-truth Neutral

Figure 7.13 Each row corresponds to an equivalent video frame for (left) real ex-
pressive speech time-aligned to (right) real neutral speech. The neutral versions
transformed to expressive (center) display the style of the expressive sequences,
but with intact visual speech gestures from the neutral sequences.
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of graduate Computer Science students and faculty staff, some with experience of

animation and visual synthesis techniques and some with little previous exposure.

Sequences of time aligned real and transformed expressive speech were shown as

visual only to ensure that acoustic artefacts due to time aligning the sequences

had no influence on the results. The left-right ordering of the pair was randomised

and viewers were asked to identify the real sequence in the pair. Of the 112

samples, 43 of the responses were correct. Using a binomial significance test we

find that viewers cannot reliably identify the real sequences from the transformed

sequences (p>0.3). In several cases, viewers stated that they found it difficult to

choose between sequences in terms of realism, and so therefore chose their favourite.

Responses tended to be biased in favour of transformed sequences being identified

as real so we observe more false positives than false negatives. This is perhaps

explained by the fact that transformed sequences tend to be slightly attenuated

and thus smoother than the corresponding ground truth data.

7.7 Discussion

We have described a method for transforming sequences of neutral visual speech

into expressive visual speech. Independent component analysis is used to decom-

pose time aligned neutral and expressive visual speech, and weights are learned to

distribute the energy in the independent components of (novel) neutral speech to

better match the energy observed in expressive visual speech. This transformation

results in expressive utterances that appear to display the same kinds of expres-

sion as seen in the expressive training set, and importantly the integrity of mouth

shapes remains intact. Our approach uses ICA to separate neutral from expressive

speech, unlike previous attempts which are trained to separate expressive data of

different types (e.g. happy from sad). The advantage over the original technique
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described in Section 7.3 of this is that the number of models grows linearly as we

train for new expressions, whereas separating different expression types requires a

model for each pair of expressions. This technique is flexible in that it allows any

arbitrary neutral visual speech to be transformed into an expressive style using

only a small training set of expressive and neutral speech.

The focus of the next chapter is to show that the technique described in this

chapter can be further generalised. We show that a single model can be used to

represent multiple expressions, therefore reducing the original data complexity of

O(n2) to O(1). We then demonstrate how the generalised technique is versatile

enough to work on a different representation of facial data (a rigged animation

model with movements defined in terms of the rig’s controllers), and finally show

how it is possible to represent expressive data as mixes of the ICA training data

in order to produce subtle expressions which were not in the original training set.



Chapter 8

Mixed Model Modulation

8.1 Motivation

The work in this Chapter is an attempt to further generalise and utilise the ideas

presented in Chapter 7. As was mentioned in Section 7.3, Cao et al. [2003] pro-

posed that it is possible to project two time aligned sentences of the same speech

content but different expressive styles onto an Independent Component Analysis

(ICA) model which has been trained on the same two sentences. It is then pos-

sible to manipulate the expressive style of one of the sentences by identifying the

independent component responsible for expression and transferring the expressive

values from the same component in the other therefore allowing expressive style to

be changed independently of the speech data. While interesting, Cao et al. [2003]

does little to exploit this useful characteristic of ICA.

The work in Chapter 7 demonstrated generalisations to the original technique

which not only make it of potential usefulness in the animation industry, but also

offer significant improvements in terms of the technique’s complexity. Whilst the

approach in Cao et al. [2003] requires the same sentence in multiple expressive

100



CHAPTER 8. MIXED MODEL MODULATION 101

styles and an ICA model was trained for each pair of expressions, the generalised

approach only requires a neutral and an expressive example of the speech. There-

fore for n styles, our approach requires n trained ICA models. Its real utility lies

in the fact that the relationship between the speech and the expression is mod-

elled. Using Independent Component Analysis, a projection space is learned in

which it is possible to manipulate speech and expression independently of one an-

other. We introduced a method where once an ICA model was trained using a

very limited amount of training data (less than 100 frames), an arbitrary amount

of expressively neutral test data could be projected onto the ICA model, and the

independent components of the neutral test data could be manipulated in isola-

tion. By redistributing the energy in the modes to match the energy distribution of

expressive training data, it is possible to remix or modulate the neutral test data

with the expression contained in the ICA model’s training data. An evaluation

showed favourable subjective viewer preferences.

Human expression and interpretation of emotion is highly complex and rarely

contains “categorical” expressions (e.g. happiness, anger). Instead, our outward

displays of emotion are the combined mix of many complicated internal factors.

For any expressive modulation to be considered plausible, an attempt to model this

complex mix of expression must be made. A limitation of the method described

previously is that it still requires a different model to be trained for each expressive

style and that neutral data can only be modulated with the categorical and discrete

expressive modalities contained within the training set. Attempting to combine

the outputs of multiple ICA models trained on different expressive styles is not

guaranteed to produce plausible output.

This chapter therefore demonstrates how a combined ICA model trained on

multiple expressive styles can be produced. We show its use in modulating neutral

test data into the various styles on which the mixed ICA model was trained. A non-
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trivial data transform is presented to show how the technique works on different

representations of visual speech data. Different visual outputs are shown along

with their subjective evaluations. Finally we show how the technique can be used

to reasonably approximate the complex mixes of expressions which we as humans

use to communicate not only our reasoning but also our emotions.

8.2 Modulating Neutral Speech in many styles

using ICA

To further generalize the approaches in Chapter 7 we construct a single ICA model

from several different expressive styles such that:

sMixed = WbMixed (8.1)

where sMixed are the independent components from a set of expressive sequences

of various styles (happy, angry, sad and surprised) together with their time aligned

neutral equivalents, and W is the estimated un-mixing matrix. Only the mixing

and un-mixing matrices W and W−1 ⇔ Q (returned in the FastICA implementa-

tion) are of importance, and therefore sMixed, the calculated independent compo-

nents are discarded. bMixed is a set of training sequences in AAM space representing

all the training data in various styles and their time aligned neutral equivalents

(except the neutral sequence to be modulated and its expressive equivalents) such

that.

bMixed =

∣∣∣∣∣∣ bangry bangry/neutral bhappy bhappy/neutral . . .

bsad bsad/neutral bsurprised bsurprised/neutral

∣∣∣∣∣∣ (8.2)
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The neutral equivalents for each expressive style are required in the training

set. Including only the neutral corresponding to one of the expressive styles leads

to FastICA converging to a non-optimal separation of speech and expression. It is

unclear if this is because the exact timing between expressive and neutral versions

of a sentence is required in training or whether there simply isn’t enough training

data without including the larger amount of neutral training data. Experimenting

with the amount of data in the training set shows that the convergence does indeed

improve as the amount of training data is increased. Training on between 10 to

14 sentences of four expressive styles and neutral (around 10,000 samples) seems

to give the best convergence. Therefore it is likely to be a question of providing

the ICA training process with enough training data. Since the test expressive and

neutral sentence were never included in the training set, it is unlikely to be a cause

of training bias. This linear projection is able to capture the range of expressive

styles in different positive/negative regions of the independent components (modes)

of the model. This is shown in Figures 8.1, 8.2, 8.3, 8.4 and 8.5 where the energy in

each of the independent components is computed as the summed amplitude over

time thus:

ej =
k∑
t=1

sjt, (8.3)

where ej represents the energy in the jth component and sjt represents the value

of the jth component at time t.

Note how mode three is very positive for angry, very negative for happy and has

relatively little energy for neutral speech. This is the mode which the ICA model

uses to discriminate between these two expressive styles. Mode five also shows
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Figure 8.1 The distribution of the energy across the independent components for
visual speech spoken in a neutral style.

Figure 8.2 The distribution of the energy across the independent components for
visual speech spoken in an angry style.
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Figure 8.3 The distribution of the energy across the independent components for
visual speech spoken in a happy style.

Figure 8.4 The distribution of the energy across the independent components for
visual speech spoken in a surprised style.
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Figure 8.5 The distribution of the energy across the independent components for
visual speech spoken in a sad style.

a similar pattern but to a lesser extent indicating that mode five contains more

speech-related information than mode three. On the other hand, mode four stays

much the same for all examples, indicating that it contains information related to

speech. Mode two is highly positive for surprise and negative elsewhere, indicating

that the ICA model uses this mode to discriminate surprise. Sad and angry show

a similar energy distribution (the actor in our dataset does indeed look similar

portraying these styles), except that mode five is positive for anger and negative

for sad, indicating the ICA model discriminates between these subtly different

expressions on this mode.

To transform synthesized neutral visual speech into an expressive style, the

neutral speech can be projected on to the ICA model, and then the appropri-

ate expressive modes manipulated to adjust the expression. When transforming

parameters that encode neutral visual speech into those which encode expressive

visual speech, the dynamics of the expression must appear natural and the mouth

movements corresponding to speech must remain valid.
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Figures 8.1, 8.2, 8.3, 8.4 and 8.5 show that no component is fully responsible

for expression, but the distribution of the energy in the components is different for

neutral speech and various expressive styles. So, the problem of manipulating the

expressive style of speech involves redistributing the energy across the respective

independent components for the unseen speech. To do this we first compute the

ICA components for a novel neutral speech utterance then offset each ICA mode

into the respective range, and then scale the energy in the speech-like components

to account for the higher velocity movements observed in expressive visual speech.

To compute the offset we first calculate the mean values for the components

using:

µjx =
1

n

n∑
i=1

sx(ji) (8.4)

µjn =
1

n

n∑
i=1

sn(ji) (8.5)

where µjx is the mean value for the jth expressive component and µjn is the mean

value for the jth neutral component, and finally:

oj = µjx − µjn. (8.6)

This can then be applied to the independent components for a new sequence using:

sjnModulated = sjn + oj, (8.7)

where sjnModulated is the resulting expressive speech, composed of neutral speech

modulated with expression.

The original variations of the neutral ICA time series are maintained by virtue

of this constant offset which ensures that there is some variation in the modulated

expression and that it is not simply a fixed grin or frown etc. However, since
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neutral speech is naturally less animated than expressive speech, the output of the

modulated neutral speech appears attenuated when compared with the original

expressive ground truth, particularly with regard to mouth articulation. To address

this problem, the speech-related components are scaled by computing the power

in each component using 8.8 and 8.9:

pjx =
1

n

n∑
i=1

sx(ji)
2 (8.8)

pjn =
1

n

n∑
i=1

sn(ji)
2, (8.9)

where pjx is the power in the jth mode of the expressive training sequences and pjn

is the power in the jth mode of the neutral test sequence. The ratio between the

two powers is computed using:

rj =
pjx
pjn

. (8.10)

This ratio tends to be very large when the corresponding mode is an expressive

mode, and much smaller when the corresponding mode is a speech mode. It makes

intuitive sense that a mode encoding expression would have high energy in an ex-

pressive sequence and low energy in a neutral sequence, therefore the ratio between

the two should be large. Conversely a speech mode should have high energy in

both a neutral and an expressive sequence (although slightly higher in the expres-

sive sequence due to the more animated nature of expressive speech), therefore the

ratio is small. It can be seen that this is the case by studying modes three and

four in Figures 8.1, 8.2, 8.3, 8.4 and 8.5, for examples of the energy in a speech

mode and an expressive mode respectively. A scaling vector was calculated from

this ratio, where if the ratio exceeded some threshold, we assume it corresponds

to an expressive mode, so set it to 1 so it will have no effect on the scaling. The
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scaling is calculated using:

scalej =

 1 if rj >= threshold

rj if rj < threshold,
(8.11)

where threshold = 2, because it was observed that, for our data, the ratio between

two speech modes never exceeded this value. Since this is an empirical choice

it would probably not generalise to all datasets. We then scaled the transposed

neutral sequence as shown in Equation 8.12

sjnModulated = sjnModulated · scalej, (8.12)

which has the effect of amplifying the speech like articulatory movements whilst

leaving the expression like movements unchanged. The resulting ICA modes are

then inverted to combined shape and appearance parameters thus:

bModulated = W−1sModulated, (8.13)

where W−1 is the pseudo-inverse of the un-mixing matrix calculated in equation

8.1. The AAM parameters can then be applied to the respective components of

the model and the video frames rendered by warping the resulting appearance

image from the mean shape to the generated shape. Finally, the video frames are

compiled into a movie file at 25fps, and audio is added.

8.3 Results for Mixed Model with AAM output

To test this new approach 15-fold cross validation from 14 sentences of all four ex-

pressive types and their time aligned neutral equivalents was conducted by holding
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out all the data for the test sentence (i.e. the training set consisted of everything

except the test sentence in all its forms of neutral, happy, angry, sad and sur-

prised). Therefore each cross validation training set contained 112 sequences with

an average length of around 60 frames, giving an total of around 6720 frames of

training data. The mixing and unmixing matrices, Q and W, were re-calculated

for each training fold, and the time aligned neutral and expressive sequences were

projected onto the independent components. The neutral test sentence was modu-

lated with each of the four expressive styles. The output was rendered, along with

the original ground truth neutral and expressive sequences.

Figure 8.6 Energy distribution of a neutral test sequence before modulation.

Figure 8.7 Energy distribution the neutral test sequence after modulation with
anger.
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Figure 8.8 Energy distribution the neutral test sequence after modulation with
happiness.

Figure 8.9 Energy distribution the neutral test sequence after modulation with
surprise.

Figure 8.10 Energy distribution the neutral test sequence after modulation with
sadness.
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This shows the correlation learned by the ICA decomposition between the re-

turned modes and the different expressive training types. By learning a single ICA

model across a range of expressions, neutral speech can be transformed into dif-

ferent styles by varying the style from which we calculate the offset. A single ICA

model is capable of separating independent components of speech and expression

for multiple expressive styles. Figures 8.1, 8.2, 8.3, 8.4 and 8.5 show how an ICA

model trained on all four expressive styles and neutral discriminates between happy

and angry movements on mode three, between neutral and surprised movements

on mode two and between neutral and sad movements on mode one.

The expressive and neutral video had been time aligned to another set of held

out expressive sequences. Therefore both expressive and neutral video had un-

dergone some time alignment and were aligned to the left out expressive audio.

This left out expressive audio was then added into the output movies. An example

of neutral and expressive ICA modes before and after modulation are shown in

Figure 8.15, where the top plot shows how component three (an expressive mode)

has been shifted into the correct range for angry speech, but still displays a similar

shape to the ground truth neutral speech. The second plot shows the same data

but transposed to the correct range for happy speech. The third plot shows the

model distributing surprise onto mode two. The forth plot shows shows sad speech

distributed onto mode one, and the last plot shows how component four (a speech

mode) maintains its original shape, but has higher amplitude after modulating

(with angry) and scaling. It can be seen that all these shifts correspond with the

energy distributions in Figures 8.1, 8.2, 8.3, 8.4, 8.5 and 8.6, 8.7, 8.8, 8.9 and 8.10

. These shifts were all made with the same mixed emotion ICA model.
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Figure 8.11 Time-varying independent components for a ground-truth neutral sequence (green solid curves), expres-
sive equivalent sequences (red dashed curves), and neutral after expressive modulation (black dashed curves).
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Figure 8.12 Time-varying independent components for a ground-truth neutral sequence (green solid curves), expres-
sive equivalent sequences (red dashed curves), and neutral after expressive modulation (black dashed curves).
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Figure 8.13 Time-varying independent components for a ground-truth neutral sequence (green solid curves), expres-
sive equivalent sequences (red dashed curves), and neutral after expressive modulation (black dashed curves).
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Figure 8.14 Time-varying independent components for a ground-truth neutral sequence (green solid curves), expres-
sive equivalent sequences (red dashed curves), and neutral after expressive modulation (black dashed curves).
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Figure 8.15 Time-varying independent components for a ground-truth neutral sequence (green solid curves), expres-
sive equivalent sequences (red dashed curves), and neutral after expressive modulation (black dashed curves).
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Figure 8.16 shows some example frames from rendered output, with expressive

ground truth and neutral ground truth on the left and right respectively, with

modulated neutral in the middle. Further examples of output created using this

technique can be seen in Appendix D

8.4 Evaluation of AAM Output

Three subjective experiments were used to evaluate the approach for transforming

neutral to expressive speech. A forced choice test was used to evaluate recognition

of expressions, a mean opinion score (MOS) test was used to confirm whether

speech articulation was still acceptable after modulation, and a turing test was

used to see if participants were able to tell the difference between ground truth

and synthesized sequences.

8.4.1 Forced Choice Test

Following the procedure described in Beskow and Nordenberg [2005], a perceptual

test was conducted using 7 participants. Participants were each shown 40 synthe-

sized expressive sequences in a random order and asked to classify each as either

happy, angry, sad or surprised. The sequences were presented without audio to

remove any audible cues that participants might use to identify the emotion. Par-

ticipants were allowed to see sequences as many times as they needed to. Overall

average recognition rate for all expressions was 88.2%. Average recognition for each

expression was 100% for happy, 91.5% for surprise, 87.3% for angry and 74.3% for

sad. All of these are well above chance (25%). The reason for the lower recognition

for sad and angry is that the actor used for data capture looked similar displaying

these two expressions. The main differences were in attack and volume of delivery,
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Ground-truth Expressive Transformed Neutral Ground-truth Neutral

Figure 8.16 Each row corresponds to an equivalent video frame for (left) real ex-
pressive and (right) real neutral speech. Row 1 shows anger, and row 2 shows
surprise and row 3 shows happiness and row 4 shows sadness. The neutral versions
transformed to expressive (center) display the style of the expressive sequences,
but with intact visual speech gestures from the neutral sequences.
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attributes which are lost without audio.

8.4.2 Mean Opinion Score Test

A second experiment was conducted to show that the modulation of expression

onto neutral speech leaves the speech component intact. Eight participants were

each shown 56 sequences in a random order, half of which were ground truth expres-

sive, the other half of which were modulated neutral. Participants were instructed

to pay particular attention to the mouth articulation and how well this matched

the audio as well as how convincing they thought the facial expression displayed

was. The audio tracks were from the left out expressive sequence (as described in

Section 8.3), therefore none of the video was from the same sequence as the audio.

This was done to remove possible bias which would occur if the ground truth ex-

pressive video was played synchronized with the corresponding audio. Participants

were told to assign a score to each sequence from 1 to 5, 1 being very poorly syn-

chronized with inappropriate mouth movements or implausible facial expressions,

and 5 being perfectly synchronized with excellent facial expressions. Participants

were only allowed to see each sequence once. The overall MOS for ground truth

expressive was 3.94 and for modulated neutral was 3.45. A Wilcoxon signed-rank

test Wilcoxon [1945] was used to calculate significance, and this shows that the

difference in the MOS is statistically significant (p < .05). It is thought that this

difference occurred because although both neutral input data and ground truth

expressive data had been warped to the left out expressive audio, it is inevitable

that the neutral will have been warped slightly more, since the already expres-

sive ground truth would have needed less processing when warping to a similar

soundtrack, whereas the neutral input had more dissimilar dynamics to the target

soundtrack.
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8.4.3 Turing Test

To evaluate the overall performance of this approach, a Turing Test experiment was

conducted. 16 participants were each shown 120 sequences in a random order. Half

were ground truth expressive and half were modulated neutral. The participants

were told that half the sequences were real and half were synthesized. They were

asked to decide for each sequence whether it was real or synthesized. Sequences

were all shown alongside the held out expressive audio. Participants were allowed

to see each sequence twice. Following the example of Geiger et al. [2003], we

calculated the mean contingency table, as shown in Table 8.1. A Chi Square test

Ground Truth
R F

Response
R 33.6 22.4
F 28 36.4

Table 8.1 Contingency table

with Yates correction and a Fisher’s exact test shows that participants are not

able to reliably identify the modulated sequences from the ground truth sequences

(p = 0.0983).

8.5 Discussion

The expression recognition experiment showed that this approach is successful in

modulating the expressions in the training set with neutral visual speech. However

recognition scores were slightly lower for angry and sad. Indeed these two expres-

sions were confused for one another on several occasions and account for nearly all

the error in this result. Participants reported finding these two expressions difficult
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to separate from one another. Inspection of the ground-truth recordings show that

they appear very similar. Further testing with a broader range of expressions, and

perhaps using different actors would help to demonstrate that this is an issue with

the data rather than the approach.

It is less easy to say why the mean opinion scores of the synthesized sequences

were lower than for ground-truth sequences. The mean score of 3.45 at least

suggests that the speech articulation is left intact, but the fact that it is lower

than the ground truth score means that it is not perfect. Although participants

were instructed to judge the video sequences on the basis of mouth shape and

lip sync, several particpants stated that they had rated movies lower for things

like a lack of sharpness in the appearance, or graphical rendering artefacts. Other

participants cited greater variance in the expression of some sequences.

It is likely that the output from the Active Appearance Model is at least in part

to blame for the lower mean opinion scores and the significant difference observed in

the Turing test for two reasons. Firstly, AAM output often suffers from artefacts

which are a bi-product of poor fitting during the initial AAM video encoding.

Unless lighting is perfect during filming, there is usually a very smooth gradient

defining the inner lips. AAMs are poor at fitting to smooth gradients (performing

better when there is a sharp definition), meaning that the inner lips are usually not

well tracked. This often leads to interference between the shape and appearance

portions of the model, resulting in blurring of the inner lips. It is possible that

some people may be particularly sensitive to this blurring and therefore perceive

the quality of the final output to be degraded. Secondly there is the phenomenon

of the uncanny valley Mori et al. [2012]. First proposed in the 1970’s, the uncanny

valley is the idea that as representations of humans (such as robots or avatars)

become closer to being indistinguishable from real humans, at some point there is

a sudden drop in viewer’s familiarity with the subject material, eliciting a feeling
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of “eeriness” or even revulsion. Various explanations have been offered for the

effect such as instinctive preference in terms of mate selection, mortality salience

and pathogen avoidance. It is possible that the near photorealistic output of the

AAM lies within this uncanny valley and therefore adversely effects results.

One obvious way of overcoming this limitation is to retarget the output an-

imation to a graphics model. That is to take the movements from one type of

animation model, and have them displayed on another. In this case, taking the

animation parameters produced by the procedure described above, and retarget-

ing them to a more pleasing type of graphical model may overcome the issue of

the “uncanny valley”. Various approaches have been used to achieve retargeting

(Sumner and Popovic [2004] Choe et al. [2001a] Theobald et al. [2007a] Kholgade

et al. [2011]). The algorithm used in this work is based on Pighin et al. [2006] and

is described in Section 6.5.

8.6 Data Transformation

Next the dataset described in Section 4.2 was transformed. Since AAM features

are based on Principal Component Analysis, each element of an AAM feature is

a global in nature. That is, a change to an element of an AAM feature will have

an effect on every part of the face model. Considering the earlier proposition that

speech and expression are largely independent, a feature which cannot discrimi-

nate between expressive movement (such as furrowing of the brow) and articulatory

movement is undesireable. Rather it would be better to have a feature allowing

geo-spatially discrete parts of the face to be manipulated independently. For ex-

ample, consider the expressing of surprise, the key characteristic of which is the

raising of the eyebrows. Ideally an animator requires independent control over the

eyebrows and the mouth. In an Active Appearance Model, the first orthogonal
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mode accounts for the largest variation from the mean. For expressive speech, this

is usually some combination of the mouth opening and the eyebrows raising and is

therefore not an appropriate method of control to animate speech movements and

surprised movements simultaneously. Although Independent Component Analysis

does a reasonable job of separating out these different movements (those relat-

ing to speech and those relating to expression), it can be seen from Figures 8.1,

8.2, 8.3, 8.4 and 8.5, that no ICA mode is entirely responsible for expression (or

speech). However, if the data were to be transformed into a geo-spatially discrete

type (where each element of a feature is responsible only for a spatially discrete

area of facial control), then it is likely that ICA will perform better in its task of

separating speech from expression.

The following section details work to implement such a data transform and to

address the problems with using AAMs described in the previous section (arte-

facts such as blurring or mesh tearing and the uncanny valley). An animation rig

was acquired, onto whose controls the movements originally captured by the AAM

could be transferred. For this work we chose the Morpheus rig Burton [2010],

which is an open source freely available blend shape based rig created in the Au-

todesk Maya software package. It consists of facial geometry and controllers for

deforming the geometry. See Figure 8.17 for some examples of how Morpheus can

be manipulated. In overview, the Morpheus geometry was warped to each AAM

landmark configuration from the training set. Then the Morpheus rig controls

were optimised to best match the rig to the warped geometry therefore transfer-

ring the AAM captured video into rig control space, where each frame of animation

was simply represented by a vector of activations for the rig controllers and was

consequently no longer a global representation.

First the geometry and triangulation data for Morpheus were exported from
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Figure 8.17 Examples of posing the Morpheus facial rig into different poses. The
controllers are visible.

Figure 8.18 A visualisation of the Morpheus geometry having been imported into
Matlab, plotted with the “patch” function and illuminated appropriately. Note
that the geometry for the ears, hair and eyebrows has not been exported from Maya,
leading to a slightly different appearance. This was done to reduce complexity.

Maya into Matlab where they could be manipulated more easily. See Figure 8.18

for an example of the geometry visualised using Matlab’s “patch” function. Next,
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an appropriate affine transformation was calculated to align the mean landmarks

from the AAM model to the Morpheus geometry in the form:

p′k = pk ·T ·R · S (8.14)

where pk is the kth AAM landmark, T is the translation matrix, R is the rotation

matrix, S is the scaling matrix and p′k is the aligned position of point pk. Since

the AAM features originally returned by the tracking algorithm were already nor-

malised for scale, rotation and translation, the affine transformation needed to be

calculated once only and could be used to align every frame in the training set.

Figure 8.19 shows the mean AAM landmarks superimposed on top of the Morpheus

geometry after alignment. At this stage the alignment did not have to be perfect

and not all points were used as warping correspondences, therefore the fact that

the AAM points marking the eyes were not aligned over the eyes of the Morpheus

geometry was of no consequence. The Morpheus geometry was deformed to match

the landmark configuration of every frame of AMM captured video data. Corre-

sponding pairs of points on the AAM landmarks and the Morpheus geometry were

established. All AAM landmarks for the mouth and eyebrows were paired with

points in the Morpheus geometry as well as points at the top and bottom of the

head. For each AAM tracked frame, the landmarks were aligned with the Mor-

pheus geometry using the pre-calculated affine transform. Then the positions of

the paired points in the AAM landmarks were copied to the corresponding points

in the Morpheus geometry. These Morpheus vertices were therefore constrained

and contain the essential characteristics of the pose since they described the posi-

tions of the facial features in AAM space. Scattered Data Interpolation was then

applied to calculate new positions for the unconstrained vertices in the Morpheus
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Figure 8.19 The mean AAM landmarks superimposed over the Morpheus geometry
after alignment.
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geometry thus:

uj = f(pj) (8.15)

where uj is the displacement describing unconstrained vertex j’s movement, and

f(pj) is the interpolant, a set of radial basis functions (RBF) of the form:

f(p) =
∑
i

ciφ(||p− pi||), (8.16)

where c is a vector of weights describing each RBF’s contribution to the inter-

polation, p is the current unconstrained point to be interpolated and pi is the

current constrained point Pighin et al. [2006]. After experimentation, we define

φ(r) = e−r/(3/32) as this gives a smooth interpolation. Figure 8.20 shows an ex-

ample of the process where the Morpheus geometry has been warped to the mean

landmark configuration in the AAM. Figure 8.21 shows various frames after warp-

ing the Morpheus geometry to different landmark positions captured by the AAM

tracker.

The Morpheus mesh was warped to the landmarks from each frame of the

original dataset and then saved in a form readable by Autodesk Maya (Wavefront

OBJ). The movements from the original video had effectively been transferred onto

the geometry of the Morpheus rig. The controllers were solved for, providing a set

of activations which minimised the euclidean distance between the rig deformed

to the AAM features and the rig deform by the Maya controls. The Nelder-Mead

downhill simplex optimisation Nelder and Mead [1965b] was used as it is more

efficient than an exhaustive approach, is relatively simple to implement and does

not require the derivatives of the function being minimised (which in this case would

be the instantaneous change between the controller movement and the movement

of vertices in the mesh, information which Maya does not provide). Each n + 1
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Figure 8.20 The Morpheus geometry warped to the mean AAM landmarks using
scattered data interpolation. Note how the geometry (red) now matches the AAM
points (green) around the mouth, eyebrows, top of the head and bottom of the chin.
The eyes and nose are disregarded as they provide no articulatory or emotional
information.

Figure 8.21 The Morpheus geometry warped to various shape configurations as
captured by the AAM tracker.
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vertex of the Nelder-Mead simplex in n dimensional space represented the inputs

to the n dimensional function to be optimised. In this case, the inputs were the

continuous activations for the 30 controllers of the Maya rig, and the output was

the mean squared error between the rig deformed by the Maya controllers and

the rig deformed by AAM features and SDA. The algorithm was implemented as

a C++ plugin for Maya. See Figures 8.22, 8.23, 8.24 and 8.25 for examples of

the rig after having been fitted to the warped geometry. Further examples can

be seen in Appendix E. The original movements from the AAM tracked data were

therefore encoded in a geo-spatially discrete feature which was potentially useful in

that such features would allow independent control over movements which relate to

expression (e.g. movements of the eyebrows and certain types of mouth movement

such as curling of the lips), and those which relate to speech i.e. the articulatory

movement of the lips.

8.7 Modulation of Neutral Speech in Rig Space

A similar approach to Section 8.2 was used to modulate neutral speech with ex-

pressive styles, but instead of AAM features, rig activation features were used. An

ICA model was trained on a collection of happy, sad, angry, surprised and Neutral

time aligned rig activation features using Equation 8.1 and training data arrange

thus:

rm =

∣∣∣∣∣∣ rangry rangry/neutral rhappy rhappy/neutral . . .

rsad rsad/neutral rsurprised rsurprised/neutral

∣∣∣∣∣∣ (8.17)
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Figure 8.22 Results of fitting the Morpheus rig controls to the AAM fitted geometry.
The grey mesh is the AAM fitted geometry having been warped with SDA to AAM
captured landmarks, the textured mesh is the Maya rig controlled geometry with
controller activations discovered by Nelder-Mead optimisation.



CHAPTER 8. MIXED MODEL MODULATION 132

Figure 8.23 Results of fitting the Morpheus rig controls to the AAM fitted geometry.
The grey mesh is the AAM fitted geometry having been warped with SDA to AAM
captured landmarks, the textured mesh is the Maya rig controlled geometry with
controller activations discovered by Nelder-Mead optimisation.
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Figure 8.24 Results of fitting the Morpheus rig controls to the AAM fitted geometry.
The grey mesh is the AAM fitted geometry having been warped with SDA to AAM
captured landmarks, the textured mesh is the Maya rig controlled geometry with
controller activations discovered by Nelder-Mead optimisation.
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Figure 8.25 Results of fitting the Morpheus rig controls to the AAM fitted geometry.
The grey mesh is the AAM fitted geometry having been warped with SDA to AAM
captured landmarks, the textured mesh is the Maya rig controlled geometry with
controller activations discovered by Nelder-Mead optimisation.
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where r are the various styles of rig activation features. Appropriate modula-

tion offsets were calculated and applied by projecting time aligned expressive and

neutral sequences into ICA space using the model in Equation 8.18

rica = Wrigr, (8.18)

and calculating the difference between the mean values of corresponding modes

in the neutral and expressive styles as in Equations 8.4, 8.5 and 8.6. After these

offsets were applied, the modes thought to represent speech were boosted as in

Equations 8.10 and 8.11 to account for the increased amplitude associated with

expressive speech. The outputs from this process could then be directly applied to

the Morpheus model for rendering.

8.8 Results

Since the Nelder-Mead optimisation solved for the positions of 30 different rig

controllers, each feature in the dataset representing a single frame was a 30 dimen-

sional vector containing the corresponding activations for each rig controller. In

order to avoid any loss of data in the ICA projection (a linear transform), the Fas-

tICA algorithm was instructed to return 30 independent components, and square

transformation matrices Q and W of dimension [30× 30]. Figures 8.26, 8.27, 8.28

and 8.29 show some time trajectories of various ICA modes of decomposed neutral

and expressive test sentences. Speech related components and expression related

components are shown for each expressive style. Interestingly, mode six appears to

be responsible for expression in all expressive styles in the dataset. Each expres-

sion also has one or two additional modes which appear to be responsible for the

characteristic movements of that style. Expressive modes for different styles are
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as follows: for sad expressions, modes 6, 7 and 17; for happy expressions, modes 6

and 11; for angry movements, modes 6 and 18; for surprised movements, modes 6

and 12.

For each frame, the activations for the feature were applied to the corresponding

Morpheus rig controllers. This set the rig into the correct pose for each time step.

A keyframe was then set so that the controller positions would be saved. The

whole animation was then rendered using Maya’s builtin rendering module. Figure

8.30 shows the results of the expressive modulations applied to the Morpheus rig.

Corresponding frames are shown for Neutral, happy, sad, surprised and angry

expressions. Further examples can be seen in Appendix F.
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Figure 8.26 Top: Mode 17 capturing sad movements, Bottom: Mode 2 capturing
speech movements. Black is neutral ground truth, red is expressive ground truth,
green is modulated neutral.
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Figure 8.27 Top: mode 11 capturing happy movements, Bottom: Mode 2 capturing
speech movements. Black is neutral ground truth, red is expressive ground truth,
green is modulated neutral.
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Figure 8.28 Top: Mode 18 capturing angry movements, Bottom: Mode 2 capturing
speech movements. Black is neutral ground truth, red is expressive ground truth,
green is modulated neutral.
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Figure 8.29 Top: Mode 12 capturing surprised movements, Bottom: Mode 2 cap-
turing speech movements. Black is neutral ground truth, red is expressive ground
truth, green is modulated neutral.
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Figure 8.30 First row is neutral ground truth frames showing different mouth
shapes, the second row shows the same fames after modulation with happy, third
row sadness, forth row surprise and fifth row anger.
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8.9 Evaluation of Graphical Output

8.9.1 Turing Test

To evaluate the overall performance of this approach, a Turing Test was con-

ducted. Eight participants were each shown 40 sequences in a random order. Half

were ground truth expressive and half were modulated neutral. The participants

were told that half the sequences were real and half were synthesised. They were

simply asked to decide for each sequence whether it was real or synthesised. Se-

quences were all shown alongside the held out expressive audio. To determine the

statistical significance of this result, we performed Wilcoxon’s Signed Rank test.

This showed that participants were not reliably able to discriminate between real

and synthesised sequences. A p-value of >0.8, means we and cannot reject the null

hypothesis that the population mean ranks are the same.

8.9.2 Mean Opinion Score Test

A second experiment was conducted to show that the modulation of expression

onto neutral speech leaves the speech component intact. Eight participants were

each shown 45 sequences in a random order, a third of which were ground truth

expressive, another third of which were ground truth expressive having been time

aligned to a different audio track, and the final third of which were modulated

neutral. Participants were instructed to pay particular attention to the mouth

articulation and how well this matched the audio. The audio tracks for the second

and third treatments were from the left out expressive sequences (as described

in Section 8.3). This was done to remove possible bias which would occur if the

ground truth expressive video was played with its original audio (since this matched

perfectly). The ground truth played alongside its original audio was added to the
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experiment as a control. Participants were told to assign a score to each sequence

from 1 to 5, 1 being very poorly synchronized with inappropriate mouth movements

and 5 being perfectly synchronized. The experiment was conducted using a custom

test application which randomised the ordering of the movies, and allowed scoring

via the use of a slider. The slider ranged from 1 to 5 and recorded the response

to 3 decimal points. Participants were only allowed to see each sequence once.

The overall mean opinion score for ground truth expressive with time alignment

was 3.28 and for the modulated neutral was 3.20. Surprisingly the mean opinion

score for for the ground truth with no time alignment and its original audio was

2.75. It is thought that this counter intuitive result is due to the fact that the

time alignment process smoothes the animation slightly and that people find this

pleasing. This also corresponds to the result reported in section 7.6. An ANOVA

(Analysis of Variance) test was used to calculate significance. A p-value of <0.01

means we reject the null hypothesis that the group means are the same. Further,

using Tukey’s honestly significant difference criterion, we find that there is no

significant difference between the synthesised and time aligned treatments, and

that there is a significant difference between these two treatments and the ground

truth with no alignment. Figure 8.31 shows the mean opinion scores and their 95%

confidence intervals.

8.10 Blending of Expression in ICA Space

As was mentioned in Section 8.1, human feeling is much more complicated than

the so-called six universal emotions of anger, disgust, fear, happiness, sadness

and surprise which Ekman [1992] proposed are common to all human societies, a

proposition which is refuted in Jack et al. [2012], where is stated that there is more
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Figure 8.31 Mean Opinion Scores with 95% confidence intervals

variation in the expressions of East Asians than there is in Caucasians. At the

very least there are degrees or magnitudes of emotion, from mild contentment to

stunning euphoria, passing despondency to heart-breaking despair. But usually,

instead of simple categorical emotions, we feel many different things at once. In

reality emotion is a subtle mix of many different feelings, thoughts and stimuli.

Indeed it is entirely possible to feel two seemingly contradictory emotions simulta-

neously e.g. happiness at the birth of a child, coupled with sadness that a deceased

relative is not present to share in such joy. Consequently, human expression of such

mixed emotions is equally intractable. Any technique aiming to synthesise expres-

sive speech animation must attempt to model this gamut of expression. If not, it is

condemned to simply create idiosyncratic caricature likely to inspire derision and

irritation in its viewers.

This section details an experiment which shows that the ICA techniques de-

scribed previously are capable of modulating neutral visual speech sequences with
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expressions within the gamut of expression on which the ICA model was trained,

and not just with the categorical extremes.

This work again used the BiWi audiovisual expressive corpus Fanelli et al.

[2010b], chosen for the extremes of its expressive gamut, but also the subtle,

emotionally ambiguous sequences which also appear. Firstly a PCA based point

distribution model was trained to capture the variance across the entire dataset.

Then three different ICA models were produced. One was trained on time aligned

matching pairs of neutral and sad sequences another on time pairs of neutral and

angry sequences and another on matching pairs of neutral, angry, sad, happy and

surprised sequences. Test sentences were selected (held out from the training data)

for their unusual or particularly strong expressive content. The dataset contained

each sentence in both an expressive and a neutral style, time aligned to account for

slight differences in phonetic alignment. For each test sentence, the most expres-

sive frame(s) in the expressive version were considered. The corresponding neutral

frames were projected into the ICA space of each of the three models thus:

ssad = Wsad ·PT (x− x̄) (8.19)

sangry = Wangry ·PT (x− x̄) (8.20)

sMixed = WMixed ·PT (x− x̄) (8.21)

where Wsad, Wangry and WMixed are the estimated un-mixing matrices for the

three training sets, P are the orthogonal basis vectors of the point distribution

model describing 99% of the variance from the mean, x is the current neutral test

frame, x̄ is the mean test frame from the training set, and s are the independent

components of x.

The ICA parameters encoding the neutral frame were then used as input to
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an implementation of the Nelder-Mead downhill simplex optimisation (see Section

6.6), in which the error between the ground-truth expressive equivalent frame and

the neutral modulated frame was optimised for each model thus:

εsad = f(ssad,Wsad) (8.22)

εangry = f(sangry,Wangry) (8.23)

εMixed = f(sMixed,WMixed) (8.24)

where εsad, εangry, and εMixed are the minimum RMS errors describing the fidelity

with which each of the corresponding ICA models Wsad, Wangry and WMixed, is

able to modulate the neutral frame to approximate the ground-truth expressive

equivalent frame.

The expectation was that the mixed model would be able to better approximate

a wider range of expressive styles and magnitudes of emotion than either of the

simpler models since this greater range of expressive variance was present in its

training gamut. Producing intermediate poses within this gamut should be possible

by regulating the projected ICA components. This is an important feature of the

technique as it means that it would be possible to create expressive interpolations

which are subtle mixes of the expressions in the training gamut, as opposed to

simply creating categorical and unrealistic caricatures of expression.
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8.11 Results

The optimised ICA features returned from the Nelder-Mead algorithm can be in-

verted and projected back into point distribution space thus:

xsad = x̄ + P ·Asad · ssad (8.25)

xangry = x̄ + P ·Aangry · sangry (8.26)

xMixed = x̄ + P ·AMixed · sMixed (8.27)

where xsad, xangry and xMixed are the best approximations for the corresponding

ICA models in point distribution space, x̄ is the mean configuration in the point

distribution model, P is the set of orthogonal basis vectors, A is the corresponding

ICA mixing matrix for each expressive ICA model, and ssad, sangry and sMixed are

the set of ICA features optimised by Nelder-Mead to best approximate the expres-

sion in the test expressive equivalent. Figures 8.32 and 8.33 show the renderings

of several approximations. Note how although the single expression ICA models

have reasonably approximated the ground-truth frame, they still maintain some of

the expressive characteristics of the data on which they were trained, whereas the

approximation produced by the mixed model is much closer to the ground-truth.

We believe that this demonstrates that the mixed ICA model approach is capable

of producing the subtle mixes and magnitudes of different expressions required

for a realistic representation of human visual speech. See Appendix G for more

examples.
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Figure 8.32 Clockwise from top-left: Expressive ground-truth, mixed model ap-
proximation, sad model approximation, angry model approximation
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Figure 8.33 Clockwise from top-left: Expressive ground-truth, mixed model ap-
proximation, sad model approximation, angry model approximation
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8.12 Summary

This chapter has described further extensions to the the work described in Chapter

7, which in turn was based on the work of Cao et al. [2003]. It was shown that when

an Independent Component Analysis model is trained on many expressive styles,

it discriminates between speech and the component expressions by redistributing

the energy within a visual speech sequence onto various modes. The fact that it

does this means that speech and the various expressive styles are to a large degree

independent from one another. ICA therefore provides controls which allow the

independent manipulation of these different characteristics of expressive animation.

However, there will inevitably be some co-variation between speech and expression.

For example, when a person expresses surprise, the eyebrows often raise at the onset

of the sentence which will invariably coincide with some prominent articulatory

movement. Therefore, the signals are not entirely independent and ICA is not

capable of completely factorising speech from expression. However, it does a good

enough job to be useful as shown in the subjective testing reported in Sections

8.9.1 and 8.9.2.

The chapter went on to show that it is possible to project a neutral sequence onto

the independent components of an ICA model trained on a variety of expressive

styles, and then manipulate the sequence in ICA space in order to modulate the

neutral sequence with any of the expressive styles in the original training set. This

was demonstrated firstly on video data by using an Active Appearance Model,

where AAM features were the input and output to the modulation process. The

modulated neutral outputs were subsequently projected back onto the AAM model

in order to make video sequences. Subjective tests were carried out which showed

that viewers were not able to significantly tell which videos were ground truth

and which had been subjected to the modulation process. However, lower than
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ground truth mean opinion scores are accounted for by the fact that AAM output

is prone to various types of visual distortion such as blurring and mesh tearing. It

is possible that it was the AAM output which was responsible for this difference.

To tackle this problem the technique was retargeted to an animated rig. The

geometry from a facial rig was warped to the shape of the aligned AAM tracked

landmarks for each frame of the entire training set. Then the facial movements

of the training set were transferred into the facial rig’s controller space using a

Nelder-Mead downhill simplex optimisation. This had the interesting effect of

transforming the features from a global transform feature, where each element of

the feature affects the entire facial pose, to a localised transform feature where each

element affects only a localised region of the facial geometry. It is possible that ICA

would work more effectively on such a feature set since certain types of expression

are only conveyed through localised areas of the face (surprise for example is largely

conveyed with the eyebrows) and would therefore only ever manifest through cer-

tain rig controllers. After this data transformation was complete and the dataset

was in the rig controller activation space, the same procedure was carried out, the

ICA modulation taking place on the raw rig controller activations. This time there

was no significant difference in the user’s preferences during the evaluative testing,

meaning that participants were unable to tell the difference between the expres-

sive ground truth and the modulated neutral outputs and displayed no particular

preference for ground-truth or modulated output.

To show that the technique is able to produce facial poses representing mixes

of different expressions and not just categorical facial expressions (an important

feature of any expressive synthesiser), a further experiment was conducted. Three

ICA models were trained, one on a neutral/sad training set, one on a neutral/angry

training set, and an third on a neutral/happy/sad/surprised/angry training set. A

neutral frame from a test sequence was projected onto the independent components
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of each ICA model, and the Nelder-Mead downhill simplex optimisation was used

to derive the ICA coefficients which minimised the error between the neutral frame

and its expressive equivalent. The frames were chosen for either their unusual or

their strong expressive content. It was found that the mixed ICA model was

much better able to manipulate the neutral frame to approximate the expressive

equivalent frame than either of the single expression models. Whilst the single

expression models were able to approximate the reference expressive frame with

regard to mouth shape, a residual of the single expression on which the ICA model

had been trained was still apparent. This demonstrates that the mixed model is

able to modulate neutral speech within the gamut of the different expressions on

which it was trained at least for static frames. There is however the possibility

that temporal effects may come into play if the technique were for video.



Chapter 9

Conclusion

The aim of this project was to investigate methods of producing expressive visual

speech animation. Existing methods tended to focus on creating ever more accu-

rate articulatory mouth movements, yet opinion seemed to suggest that viewers

still thought animation produced with such methods lacked realism. It was thought

adding additional modalities to the animation, such as the synthesis of head move-

ment, eye gaze, gesture and in particular, expression, would improve the perceived

realism. Therefore, the automatic production and addition of expression for visual

speech became the research focus of this project.

9.1 Aims Addressed

As was stated back in section 5.6, this work sought to address several existing

problems with expressive visual speech synthesis. With reference to those sections,

the proposed systems solutions are as follows:

1. Coarticulation: Many existing techniques suffered from co-articulation arte-

153
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facts. The articulatory movements we make with our mouths are only loosely

correlated to the speech sounds they produce, and a particular sound may be

produced by many different lip shapes, depending on phonetic context. The

co-articulation problem then is where an inappropriate lip shape is selected to

articulate a particular sound. Many existing techniques made the assumption

that there is a one-to-one mapping between phonemes and visemes, which has

been shown to be invalid Taylor et al. [2012]. There is in fact a many-to-many

relationship between phoneme and viseme meaning that techniques which do

not model this mapping will often pick an inappropriate viseme to articulate

a particular phoneme, leading to a kind of “dubbed” effect. The technique

presented in this work circumnavigates the problem of co-articulation. The

mixed expressive speech signal is projected onto independent components

some of which represent mostly speech and some which represent mostly

expressions. By only manipulating those components representing expres-

sion, the speech is left intact (as shown by the earlier qualitative evaluation)

meaning that no co-articulation artefacts are introduced. Therefore, as long

as the input neutral speech signal is free from co-articulation, so will the

output expressive speech signal. Therefore in a complete system, the speech

component of a synthesis could be provided by an HMM based synthesiser

using state to account for sparseness, and providing an input signal to our

system which is free of co-articulation artefacts.

2. Training Data: Most techniques for producing expressive visual speech ani-

mation require large corpora of training data. For example Anderson et al.

[2013] collected 6925 sentences for their PCA based expressive synthesiser.

Given a conservative estimate of 5 seconds per sentence, that equals over 9

hours of footage. If the footage was recorded at 25 fps, then there would be

over 800,000 frames of input data to label and parameterise. Alternatively,
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Cosatto and Graf [2000b] use a much smaller training set of 14 sentences, but

the parameterisation process is relatively complex requiring image segmenta-

tion and measurement of strategic features. More typically, Tao et al. [2009]

describe an HMM based synthesiser which used 900 sentences of training

data. Even with this training set, a conservative estimate puts the number

of frames needing to be labelled and tracked at well over 100,000. Accu-

rate labelling of training data along with automated parameterisation is a

time consuming and error prone process, requiring considerable amounts of

tedious labour.

Our technique by contrast requires only very small amounts of data. The

experiments presented in this work used at most around 16,000 frames of

training data or 14 sentences in each of the expressive styles (based on time

aligned neutral, sad, angry, happy and surprised, recorded at 30 fps with

an average sentence length of 5 seconds). Indeed we have observed that the

system works with considerably less training data, with as few as three or

four pairs of expressive and neutral sentences producing realistic expressive

output.

3. Expressive Controls: As has been repeatedly shown throughout this work,

ICA provides the means to separate speech and expression into different

independent components. These components can then be manipulated in-

dependently of speech. Furthermore, in an ICA model trained on a mix

of different expressive visual speech styles, different modes can be manipu-

lated to provide a continuous mix of the expressions on which the model was

trained. This therefore provides the animator with a set of controls which

can be used to change the expressive style of unseen neutral footage.

4. Expression Blending: An important aspect of expressive visual speech syn-



CHAPTER 9. CONCLUSION 156

thesis is the ability to model the subtle mixes of human emotions which are

visible through our facial expressions. Humans rarely feel categorically happy

or sad or angry about something. More typically there is a mix of feelings.

By capturing the “extremes” of a categorical expressive gamut, we have

shown that it is possible to interpolate between these extremes to not only

create less intense versions of the categorical expressions, but to blend ex-

pressions within the gamut in order to output new expressions not originally

in the training set, which better mimic the way humans outwardly express

their complex internal set of mixed feelings and emotions.

5. Time Complexity: Another issue with examples of previous work in this

field is time complexity. For example, the system proposed by Sifakis et al.

[2005] solved for the position of 32 transversely isotropic pseudo muscles in

a mesh of 370,000 tetrahedrons using gauss-newton gradient descent. In

2005 on a single Xeon 3.06 Ghz CPU the technique took 8 minutes per

frame to solve the muscle activations. In Terzopoulos and Waters [1990] the

authors report that a Silicon Graphics Iris 4D-240GTX workstation was able

to render their system of tri-layered tetrahedral spring loaded meshes at 8 Hz

which is nothing like real time. Although computer technology has moved on

significantly, the techniques need to be judged in terms of the hardware that

was available at the time, since as the power of hardware increases, so does

the complexity of animation models and the demands of the viewing public.

By contrast, our technique is computationally straightforward. Estimating

the ICA mixing and unmixing matrices is the most computationally inten-

sive part of the process. The FastICA algorithm implemented in Matlab

completes this task on a training set of several thousand frames in a matter

of seconds on a Macbook pro with a 2.4Ghz Intel Core i5, with 8GB of RAM.
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Once the ICA model has been estimated, modulating neutral speech with ex-

pression simply involves two linear projections, operations for which Matlab

is highly optimised. For example, running on the hardware described above,

Matlab is able to multiply 2 randomly generated matrices of size (100 x 100),

twice in 0.001291 seconds. Doing this 25 times takes 0.025824 seconds (for

real-time applications, the process needs to be able to run at least 25 times

every second). Therefore statistical techniques such as these allow for appli-

cations to be run on standard consumer level equipment (i.e. laptops and

tablet computers) and for a broader range of applications such as retargeted

conversational agents in a therapeutic setting such as described in Leff et al.

[2013] and Huckvale et al. [2013].

6. Flexibility: Many of the existing techniques for producing expressive visual

speech animation are tightly coupled to their training data. For example,

a concatenative synthesiser selects either whole images or parts of images

to be stitched from a corpus of existing images. Therefore the output is

tightly coupled to the identity of the actor in the training data. If another

actor is required, a whole new training set of images is required or further

processing is needed for retargeting such as that described in Vlasic et al.

[2006]; Curio et al. [2006]. Similarly, for physically based geometry models,

outputs will always be in terms of the geometry. Although it is possible to

warp such geometry to the identities of different actors such as in Noh and

Neumann [2006]; Sumner and Popovic [2004]; Der et al. [2006], the process

can be complex, manual, computationally intensive and is not guaranteed to

produce valid output.

Since the method presented in this work is purely data driven, it is largely

agnostic to things like actor identity, expressive content type and data type.

As has been shown in chapters 7 and 8, the technique works on PCA reduced
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point cloud data, Active Appearance Model features, and continuous pseudo

muscle activation features. This therefore means that the technique can

be applied to a range of data types encoding actor identity, expression and

speech which may be encountered in an animation pipeline.

7. Simplicity: Overly complicated methods which are difficult to understand are

never popular in science. Particularly if they don’t demonstrably work. The

most popular ideas tend to be those which are simple, easy to understand,

modularly fit into existing problems and provide a more predictable solution

than existing methods. The work presented in this thesis is arguably one

such method. It is certainly easy to understand, simple to implement and

above all, it works as we have demonstrated with three different types of data

(AAM features, point cloud data and muscle activation features). It reliably

provides a method of converting neutral speech into expressive speech and

therefore can be used as a modular component in an animation pipeline.

8. Subjective Testing: Testing and evaluation is notably absent from much of

the literature in visual speech synthesis (both expressive and non-expressive).

Most commonly, authors simply provide still images as evidence that their

techniques work. Although these usually look at least expressive, often the

exact expression is ambiguous. It is possible that they would be less am-

biguous if full video was provided but this is usually not available. In any

case, this can hardly be considered rigorous evaluation. Other papers offer

objective evaluations for their techniques, usually comparing feature trajec-

tories or RMS error to ground truth. However as was stated in Section 5.5,

Theobald and Matthews [2012] show that there is often little correlation

between objective measures of output quality and the subjective opinions of

viewers. They found that the objective measure which correlated most highly
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with viewer opinion was Dynamic Time Warping (DTW) distance between

synthesised and ground truth data. The DTW metric is not used in any of

the expressive visual speech synthesis literature.

Visual speech animation and expressive visual speech animation (much like

other forms of synthesis such as music synthesis and computer graphics)

balance a tightrope between science and the arts. Scientific and technical

aspects combine to produce a final product which is consumed by humans,

often for pleasure. The most important test for such products is therefore

whether human beings find them pleasing or at least plausible. Since there

is no known correlate between an objective test and that which humans find

pleasing, the only way to properly evaluate expressive visual speech is to

produce a quantitive scientific test which is based upon subjective human

opinion.

Even in this regard, the literature generally takes a sub-optimal approach to

subjective evaluation, usually opting for mean opinion score measures and

expression identification. Mean opinion scores are somewhat unreliable. As

we observed carrying out our research, opinion for a single sequence can

vary wildly as different people tend to concentrate on different aspects of

the sequence. For example, although our viewers were asked to judge the

sequences based on lip synch and expressive realism, some people reported

having marked sequences poorly for things like lack of image sharpness or lip

artefacts which are a consequence of AAM output. We therefore put more

stock in our Turing test result where viewers were shown a sample of real and

modulated sequences and simply asked, for each sequence, which they were

watching. This is a simple question which covers all of the possible features of

the animation which the participants might be focussing on. Essentially the

question elicit’s the viewer’s gut feeling about the sequence, and eliminates
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issues to do with rendering artefacts since both ground truth and modulated

sequences were projected onto the same output model. We regard this simple

test as rigorous since it directly compares ground truth data to synthesised

data, and it should be noted that it is a test which very few others are willing

to perform.

9.2 Future Work

The work described in this thesis should be considered a proof of concept. We

have shown that it is possible to decompose an expressive visual speech signal

into components which mostly represent expression, and components which mostly

represent speech. This decomposition provides two things. Firstly it allows the

expressive components of the signal to be manipulated independently of the speech

components. This means that as long as the speech components are largely free

from co-articulation artefacts, any output from the system will also be free from

such artefacts. Secondly, it provides an intuitive set of controls (where the user can

quickly understand what a control will do), which can be adjusted which control

only expression. By varying the contribution of these controls, the expressive

gamut to which the model was trained may be traversed.

9.2.1 Improved Modulation

So far the work described has used simple techniques for adjusting the modes

responsible for expressive content (scaling and translating). These work well and

produce convincing expressive output, however this could probably be improved

by better learning the relationship between speech and expression in the training

data. For instance, a recurrent neural network could be trained to map between
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speech components and expressive components in ICA space, thus allowing for

temporal expressive contexts to be modelled. Some preliminary work towards

this was undertaken but the results obtained were “jerky” and not particularly

convincing and have therefore been left out of this report.

9.2.2 ICA Analysis

There are several avenues for further study. With ICA decomposition, it was ob-

served that the expressive modes would tend to represent a spectrum of a certain

type of expression. For example, altering a particular mode ±3σ from its mean

would yield expressions which looked either very happy or very distressed. This

makes intuitive sense since smiling and raised eyebrows are the characteristic ex-

pression of happiness, whereas curling the lips down slightly and frowning are the

characteristic expression of distress. So it seems that the ICA identified this type of

movement as independent from speech and projected it into a separate mode. More

study into exactly what the ICA algorithm is identifying as an independent signal

would be interesting and could lead to an enhanced control set for the expressive

components of an expressive visual speech synthesiser.

9.2.3 I-vector Analysis

In a similar vane, alternative factorisation techniques could be investigated. De-

Marco and Cox [2013] reported some success in discriminating between differ-

ent regional accents for native English speakers from the British Isles. The work

(conducted in the audio domain) used i-Vectors and Linear Discriminant Analysis

Fisher [1936] to factorise speech and accent information from a universal back-

ground model and then performed Gaussian Mixture Model based classification on

the accent information. Since this technique was successful in separating accent
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from speech, it is likely that it would also separate expression from speech in the

visual domain and could potentially be used instead of ICA to create a model in

which to analyse speech and expression independently.

9.2.4 Psychological Experiments

Techniques similar to this have been used in a Psychological context. For example,

Theobald et al. [2007b] used similar techniques to transfer facial movements from

an actor to a different face model. A participant sitting in another room then

had what they thought were several conversations with several people via a video

screen. They were in fact having several conversations with the same person, but

that person’s facial movements were retargeted to several different face models (i.e.

of varying gender and ethnicity). Therefore the psychologist was able to observe

how the participant behaved differently to what they believed were different types

of people, but in fact were all the control. This technique could be used in similar

psychological type experiments, for example to observe how people react to men

or women displaying different types of emotion.

9.2.5 Training

Another possible use and cause of further work could be training. For example,

intelligence agencies and police forces often have the difficult task of detecting

deception in suspects during interrogation. It would be possible to build a similar

model to ours which is trained on video of people talking truthfully and trying to

deceive. Therefore sequences of synthesised truth and deception could be produced

in order to train agents to better detect when a suspect is lying.
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9.2.6 Animation Pipeline

As has been alluded to throughout this thesis, the aim for this work was to stream-

line, automate and improve techniques used in the animation and computer games

industries to produce realistic talking heads with a particular focus on facial expres-

sion. Since the method takes neutral visual speech as input and gives expressive

visual speech as output it can be considered a modular tool and we envisage it

being used in the later stages of an animation pipeline. The pipeline would work

as follows. An actor would be recorded saying a pre-designed corpus of training

data. The corpus would have the same utterances spoken in extreme categorical

styles. From these training data, an ICA model could be trained. This would then

provide the controls needed to interpolate across the actor’s recorded expressive

gamut. In order to realistically capture a person’s expressive styles, real conversa-

tional data could be captured. This would require the actor to be filmed having

real conversations with people. The conversational material would be predesigned

to elicit certain types of natural expression from the actor. Of course only certain

types of expression could be captured in this way, for instance it would be uneth-

ical to genuinely elicit fear in the actor. Once this natural expressive information

has been collected, it can be projected onto the previously trained ICA model.

As was shown in Section 8.10. By segmenting the expressive modes which “fall

out” of the model by phonemic boundaries defined by the accompanying audio, it

should be possible to obtain phoneme level expressive features. These could then

be clustered into expressive groups and used to train a Gaussian Mixture Model

(GMM), or a Hidden Markov Model (HMM), modelling the mean and variance of

each expressive cluster. At the same time, the audio could be analysed in order to

establish a correlation between audio features and expressive ICA features. This

could be done either by analysing things such as fundamental frequency, attack,

decay, overall speed etc. or by attempting to perform some kind of factorisation
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in the audio domain. In either case, the end result would be a mapping from

audio space to the expressive clusters representing the natural expressive speech.

An audio-to-visual speech synthesiser Theobald and Wilkinson [2008], or text-to-

visual speech synthesiser Taylor et al. [2012] could be used as the first stage in

the pipeline. An actor would talk expressively to the audio to visual speech syn-

thesiser, which would produce neutral visual features based on dynamic visemes.

At the same time another module would analyse the speech for expressive con-

tent and map the audio to one or more of the expressive clusters. The neutral

speech features and the information on expressive style would then be passed to

the expression modulation module, which would project the neutral speech into

ICA space, and produce appropriate expressive features to be modulated with the

neutral speech. An overview of a potential expressive speech synthesiser is shown

in Figure 9.1. Such a system would provide a full automated pipeline to produce

expressive facial animation with realistic lip synchronisation from an expressive

audio input system. Each section of the pipeline could easily be implemented for

example as a Maya plugin and simply added to an existing project, trained with

the already collected data, and be ready to go in a production environment. We

think that with further development, this work could be of much use to the anima-

tion industry in helping to produce high quality automated expressive animation

with complex lip movements, saving time, money and more importantly freeing

animators from the drudgery of current techniques, allowing them the freedom to

make their artistic visions become reality.
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Figure 9.1 A proposed workflow for producing expressive visual speech from audio,
using an HMM based speech synthesiser and ICA expressive modulation.



Appendices

166



Appendix A

Experimental Technique

These are the steps in a condensed form needed to repeat either of the modulation

techniques described in Chapters 7 and 8.

1. Collect and Prepare Expressive Data.

The data can be of different types and in this work, was in the form of

1080p video, 3D point cloud data and rig controller activation vectors. The

data should display at least the extremes of expression to be modulated and

neutral with preferably an expressive / neutral pairing of each sentence. The

point cloud data and the video data was compressed using PCA models. All

these models used the general form of:

b = PT (x− x̄), (A.1)

for projection into PCA space, and:

x = x̄ + Pb (A.2)
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for projection out of PCA space.

(a) Obtain Features.

A parameterised representation of the features must be created.

i. Video.

The video in this work was tracked with an Active Appearance

model which had been trained on 22 frames from the captured

video representing the extremes of facial expression and neutral.

Each frame was landmarked with 156 points in 2D space. The

AAM was built leaving 95% of the variance in the shape and ap-

pearance. This yielded eigenmatrices which were of size [312x12]

and [22834x6] respectively. Therefore each shape feature was of

size [12x1] and each appearance feature was of size [6x1], giving

a joint AAM feature vector size of [24x1]. A combined model of

this joint feature was then made. Firstly the shape features were

normalised by multiplying each by a scaling factor thus:

w =

√
tra
trs

, (A.3)

where tra is the trace of the covariance matrix of the appearance

features and trs is the trace of the covariance matrix of the shape

features. Using this scaling factor a combined PCA model of shape

and appearance was trained. Leaving 95% of the variance, the

PCA process provided an eigenmatrix of size [24x5]. Therefore each

combined feature vector was of size [5x1].

ii. Point Cloud.

The 3D point cloud data was simply projected onto a PCA model.

The raw data was composed of 23370 vertices in three dimensions.
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These were stacked giving a vector of size [1x70110] per frame. The

model was trained on 39 frames covering the full expressive gamut

as well as neutral and retained 99% of the variance in the training

set. The returned eigenmatrix was of size [70110x18], therefore

providing a projected PCA feature of size [18x1].

iii. Controller Activations.

The third data type used in this work were vectors of rig controller

activations. These are simply the normalised (to the interval [0 1])

positions of each of the 30 controllers for each frame of training

data. Therefore each element of the [1x30] feature represents the

position of the same controller.

2. Dynamic Time Warping.

If using paired neutral and expressive sentences, then the expressive versions

should all be warped to the neutral using Dynamic Time Warping (DTW).

It is preferable to use the audio from the sequences if available, to create the

warping path since this is at a higher resolution than the video (e.g. 44,100

Hz for audio as opposed to 25-60 Hz for video).

3. Independent Component Analysis.

Independent Component Analysis (ICA) is critical to the workflow allowing

speech and expression to be factorised and independently manipulated. All

cases in this work use the general form of:

s = Wb, (A.4)

for projection into ICA space, and:

b = As, (A.5)
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for projection out of ICA space, where s are the recovered independent com-

ponents, b are the mixes of speech and expression contained in the PCA or

controller activation features, W is the orthogonal unmixing matrix and A

is the mixing matrix which is the pseudo-inverse of W. To train the model,

neutral and expressive time aligned PCA feature vectors were stacked and

passed into the FastICA Matlab function. The settings for FastICA were as

follows:

• Number of Independent Components (NumOfIC) - Equal to the number

of PCA components.

• Non-linearity function used (g) - Gaussian

• Approach (whether to find the independent components in parallel or

not) - deflate

• Maximum iterations before stop - 2000

• Epsilon (stopping criterion) - 0.001

• Stabilization (jolt out of local minima) - on

A random starting guess was used each time the models were estimated. This

step provided the mixing and unmixing matrices A and W.

4. Modulation

In the modulation step, a neutral / expressive pair was projected onto the

same ICA model. The resulting ICA components were used as input ei-

ther into the scaling technique described in Section 7.4, or the translation

technique described in Section 8.2

5. Rendering

After the ICA components have been altered with either of the techniques

above, they must be projected out of ICA space using Equation A.5. If a PCA
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model has also been used, these features must additionally be projected out

of PCA space and into their original graphical representation i.e. landmarks

and pixel intensities for video, or 3D co-ordinates for point cloud data, using

Equation A.2. This provides the original neutral visual signal, modulated

with expression.



Appendix B

Custom Dataset Sentences

The list of sentences used in the custom dataset. Each sentence was designed

to make as much sense in Happy, Sad, Angry and Surprised expressive styles.

This was done to try an minimise language bias i.e. we wanted to the user to be

able to understand the expression portrayed only by the facial characteristics, and

not through the linguistic meaning of the sentence. Each sentence and style was

shown to the performer with a short back story which provides context for why

each particular expression should be displayed.

1. “Why did you do that, what were you thinking?”

(a) Happy

Terry’s friend placed a bet for him but accidentally placed the money

on the wrong horse. Fortunately the horse came in anyway, and Terry

won 1000.

(b) Angry

Terry’s 14 yr old son has just been expelled from his second school for

fighting. You call him to you and demand to know what he was doing.

172



APPENDIX B. CUSTOM DATASET SENTENCES 173

(c) Sad

Terry’s father has cancer. He didn’t tell you before because he didn’t

want to worry the family and has been bottling up his anxiety inside.

(d) Surprised

After Terry have spent an hour looking for his wife’s car keys, they

discover that she threw them in the rubbish bin

2. “If I had a penny for every time I’ve heard that I’d be rich by now.”

(a) Happy

Hannah’s daughter has asked again for some money to buy clothes. She

promises to pay the money back as soon as she gets a job. Hannah has

a good job and has just received a bonus so doesn’t mind.

(b) Angry

Hannah’s son has yet again kicked in his bedroom door in a rage. A

few hours later he has calmed down and comes downstairs to sheepishly

apologise and promise never to do it again. Hannah however is not in a

forgiving mood.

(c) Sad

Hannah’s abusive husband has come (sober) after a two day drinking

binge. He promises never to do it again. Hannah suddenly realises that

she doesn’t love him anymore and their marriage is over.

(d) Surprised

Hannah works as a team leader in a creative PR company. Surprisingly,

given their usual mediocrity, one of her team has come up with a truly

original idea. She hopes they?ll get the joke when as she says it.

3. “You know there’s almost no difference between you and me.”
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(a) Happy

Janice notices that her 6 year old daughter loves plaiting her hair. Janice

has always loved playing with her own hair.

(b) Angry

Filled with self-loathing, Janice thinks her anti-psychotic drugs aren’t

working. She looks into the mirror and yells.

(c) Sad

Janice’s father dies five years ago from drink induced liver cancer. On

the anniversary of his passing, Janice stands and pours some whiskey

on his grave, and takes a good swig for herself.

(d) Surprised

Janice’s father is dying of a drink related liver condition. After years of

telling he father that he is a waste of space, Janice finally realises that

she has been a hypocrite for many years.

4. “I need to go to Australia.”

(a) Happy

Harry has had an academic paper accepted in a prestigious journal. He

has been invited to a conference in Australia to present the work.

(b) Angry

Harry’s feckless son has gone travelling and has been arrested and jailed

for possession of drugs. Yet again, Harry will have to travel halfway

round the world to bail out his son, and deal with legal proceedings.

(c) Sad

Harry’s father (who emigrated to Australia after he retired) has just

passed away. He must go to claim the body and deal with his father’s

estate.
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(d) Surprised

Harry’s business meeting which was supposed to be in Bulgaria, has

been rearranged to be in Australia

5. “The carpet was covered in paint.”

(a) Happy

The insurance office which last week refused to pay out for Paul’s recent

claim has been flood damaged overnight. On looking in through the

window on his way to work, he saw the damage and recalls it to a friend

over coffee.

(b) Angry

Paul came home to find that his teenage sons have been spray painting

a model aeroplane. Even though they put newspaper down, the paint

has seeped through onto the carpet.

(c) Sad

Paul has no money to buy his children Christmas presents. After an

accident involving a can of plaint, he pleads to the insurance company

who don’t want to pay out.

(d) Surprised

Paul’s wife tells him his brother (normally a tidy freak and a DIY expert)

has been careless enough to paint the ceiling without putting a dust

sheet down. Paul’s reaction is one of surprise.

6. Hasn’t this just been the most memorable day we’ve had in years?

(a) Happy

Pauline and her husband have little money. Their children have clubbed

together to send them to Paris for their golden wedding. On the first
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day, after a visit to the Louvre and a boat trip along with Seine followed

by a candlelit meal at a good restaurant, Pauline gives her husband a

kiss and comments on the day.

(b) Angry

Robert and his wife have booked a hotel in Rome for a short holiday.

On the way to Rome, he mislays his boarding pass, loses the details of

their hotel and drops a heavy suitcase on his wife’s foot. After they have

unpacked, they go out for meal which turns out to be very expensive

and almost inedible. They return to the hotel to find that Robert has

lost the pass key. His wife had had enough and sarcastically lets off

steam.

(c) Sad

Melanie and her husband have been out dinner together for the first time

in years. They have a severely disabled child who takes all their time.

Although they love their child, they are keenly aware of the effect on

their relationship of constant care. On the way home, Melanie comments

to her husband.

(d) Surprised

Pat has worked at a boring job for three years. At the end of a supremely

boring training day, the managers announce that staff are to be given a

big bonus. Pat turns to her colleague.

7. She turned and looked straight at me; I couldn’t believe it.

(a) Happy

Shy young Henry who has been fancying a pretty colleague but believed

she had never noticed him, is delighted when she shows an interest.

(b) Angry
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Amy sees her ex-boyfriend out with the girl for whom he left her. The

new girlfriend gives Amy a triumphant stare. Amy later tells a friend

about the encounter.

(c) Sad

Jake is sure that someone is spreading an unpleasant rumour about

him. He believes it to be a colleague he has always tried to help and

cannot understand why she should be trying to cause him trouble. They

are in the canteen at lunchtime and he notices her, expecting her to

glance away embarrassed. He later returns to his desk and tells another

colleague about his suspicions.

(d) Surprised

Marion, now in middle age, has not seen her step-daughter in years.

On a day out Christmas shopping in London, Marion comes across her

working on the shop floor of Liberty’s and later tells her sister.

8. The doctor told me he can’t find anything wrong.

(a) Happy

Ed has been suffering from stomach pains, and has worried he has can-

cer. He goes to the surgery to get the results of the tests he has had and

is reassured that none of them has revealed anything wrong. He hurries

home to share the news with his wife.

(b) Angry

Gillian, who constantly complains about being ill, has gone to her GP

yet again. She is told that there is nothing wrong and is made to feel

she is being a time waster. She goes home feeling aggrieved and when

her husband asked her what happened at the surgery she reports the

gist of the conversation with considerable annoyance.
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(c) Sad

Hannah is worried that her one year old child may be autistic. Her

friends have suggested that perhaps he might have a hearing problem.

She has taken him to have his hearing tested but the paediatrician can

find no obvious physical cause for the child’s inability to relate to people.

One of the friends drops round to find out what the GP said.

(d) Surprised

Lily is about to move into sheltered accommodation. She has recently

been having chest pains and is convinced she has a heart condition. She

goes to her GP who listens to her heart and reassures her that it is fine,

and that the chest pains are most likely to be due to anxiety about the

coming change. She tells her daughter there is nothing to worry about.

9. Did you hear that the police have shot the dog?

(a) Happy

People have been confined to their homes for the past six hours while

police are hunting for a rabid dog who has already bitten a child. The

local news channel flashes a report that the police have been successful

and it is now safe to go out. Beth phones her husband at work to tell

him.

(b) Angry

The Lees are travellers. There are several dogs among the community

that look as though they might belong to proscribed breeds. They

are reported, and the police arrive. The Lees’ dog gets loose and runs

towards the police. It is shot. Patrick Lee says the dog was just being

friendly and was harmless. An hour later his son gets back from his job

at the nearby fruit farm and Patrick greets him with the news.
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(c) Sad

Fred has a fatal heart attack as he is out walking his dog. The dog

will let no-one near the body and bites a paramedic who gets too close.

Eventually the police call in a marksman who shoots the dog. Later

the man’s daughter is informed of her father’s death. She phones her

brother and as well as telling him about their father’s death also tells

him about the dog.

(d) Surprised

As above. A local vet speaks the next day to his colleague. He begins

with the given statement, and suggests that the dog could and should

have been sedated.

10. It was at that moment I realised what must have happened.

(a) Happy

Tanya loses her engagement ring. She goes over in her mind what she

had been doing that day and retraces her steps but she cannot find it.

The next day a flash of sunlight glints on something down the side of

her car seat. She slips her hand in and pulls out her ring. Then she

remembers pulling off her gloves in a hurry to put her credit card into

the toll road pay machine.

(b) Angry

Russell is contacted by the council about a loft extension he is supposed

to have had done. Although he has done a little work in his loft, it

does not amount to anything needing planning permission. He reads

the letter from the council again, and notices a phrase that only his

estranged brother uses. At this point he realises that his brother has

once again tried to cause trouble.
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(c) Sad

There is a family get-together and Laura and Diana are enjoying a drink

while they look at their parents’ wedding album. They notice a shadowy

figure on a photo they have never seen before and ask their parents who

it is. Their mother suddenly leaves the room. Their father looks at the

photo and breathes a man’s name before following their mother. One of

the sisters remembers a whispered story about their mother having once

been engaged to a man who turned out to be married. Together they

speculate that this man had learned of their parents’ wedding and had

secretly gone to the church. Later the sisters discuss the occurrence with

their brother and Diana explains how she worked out who the figure in

the photo must have been.

(d) Surprised

A teacher asks Jamie why he has not done his homework. He says he

handed it in the day before. She goes through the pile of essays for the

class, but his essay is nowhere to be found. She is about to demand that

he do the essay for the next day, when she remembers a fire drill had

taken place in the previous lesson. She realises that the essay was in her

hand when she left the classroom and that it must be inside the register.

At lunchtime she laughingly relates the incident to her colleagues.

11. Is this really you in the photograph?

(a) Happy

Joan shows her carer a photograph of herself when she was twenty years

old. She is very pretty, and the carer is delighted to be able to talk

about happier times.

(b) Angry
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Kevin is sent a grainy but compromising photo purportedly of his wife.

He immediately confronts her with it, and while she examines it, storms

out of the house without waiting for an explanation or denial.

(c) Sad

Ellis has spent half an hour arguing and telling his parents what he

thinks of them and their parenting skills. He leaves for school and

as his mother closes the front door behind him, her gaze fixes on the

framed photograph of a sweet smiling little boy. She wonders what ever

happened to her beautiful son.

(d) Surprised

A family looks at old photos. Lilian, a rather strict grandmother, sees

a photo of herself when she was young; she is wearing a very short skirt

and low cut top and enormous hoop earrings. She tries to hide it but

her grandson swoops on it ...

12. The board turned down their offer.

(a) Happy

A takeover bid that would have led to redundancies has been rejected.

Sam, an employee to whom news of the takeover had been leaked, in-

forms his colleagues that their jobs are safe.

(b) Angry

Nick, one of the owners of a manufacturing firm, is hoping to sell it off

and retire but is outvoted in a rancorous meeting by the other members

of the board of directors. He drives home after the meeting and his wife

appears as he opens the front door.

(c) Sad

As for ’Angry’. Nick’s wife, Esther, tells her friend that her husband
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won’t be retiring yet after all and that dreams of holidays in hot places

have been put on hold.

(d) Surprised

Wilsons, an old fashioned DIY firm, is approached by a larger firm for

a takeover deal. Justin, the regional manager for the larger firm, has

automatically assumed that their offer will be accepted. However, he

has not reckoned with old fashioned values of loyalty to employees, and

at the end of the meeting phones his boss with the news.

13. You never told me you worked here.

(a) Happy

Phil starts a new job and bumps into the husband of one of his wife’s

friends.

(b) Angry

Becky, a young teacher, starts a new post at a comprehensive school and

sees an ex-boyfriend working there. She would not have applied for the

post had she known he had also taken a job at this school because the

relationship had ended very badly. She bumps into him in the staffroom

on her first day.

(c) Sad

Trevor, a Health and Safety inspector has been called in to inspect a

restaurant which seems to be the focus of an outbreak of food poisoning.

He finds that the manager is the son of his golfing partner.

(d) Surprised

Roy has told his wife he is working late, but goes to a strip club with

some colleagues. A scantily clad waitress goes to their table to take a

drinks order and he sees it is the daughter of his next door neighbour
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who is supposed to be working evening shifts as a care assistant in an

old people’s home.

14. She’s pregnant again.

(a) Happy

Chris tells his mother that his dog is expecting a second litter of pups.

(b) Angry

Debs has recently learned that her IVF treatment has failed for the

third time. She bumps into an old schoolfriend who moans that she is

expecting her third child in four years. Debs feels that life is dreadfully

unfair and rushes round goes to see her mother and tell her of the

encounter.

(c) Sad

Verity has just lost her husband in a car crash and discovers she is six

weeks pregnant. She phones her mother who relays the news to her

husband when he returns from work.

(d) Surprised

Jess and Nathan have had two children and had not planned to extend

their family further. Jess is taking a contraceptive pill, but she had a

stomach bug and she learns that she is pregnant again. Nathan calls

round to see his parents to give them the news.

15. Of all people, you are the last one I’d expected to see here today.

(a) Happy

At a school reunion forty years on, Alec re-encounters Hilary, his first

girl friend. He had joined the army and she had gone to university and
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then to live abroad. He has been widowed for three years. Alec has

immediately recognised Hilary and goes over to speak to her.

(b) Angry

Susie experienced an acrimonious divorce when her husband told her

he wanted to marry another woman. She suffers from depression for

several months but eventually plucks up the courage to go to a singles

encounter group session and there she meets her ex-husband.

(c) Sad

After years of non-contact, Carl, the birth grandfather of an adopted

child, notices a young boy skateboarding who looks so like his son looked

when he was young, that he approaches the boy and asks whether his

name is Danny. The boy confirms his name and asks whether he was

his grandfather and Carl continues the conversation.

(d) Surprised

Sally friends meets an old school friend at a political rally. Although

she had always held radical beliefs, her friend had shown no interest in

social protest, and had always poured scorn on the usefulness of such

action. Sally greets her.
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Simple Modulation

Here are some example sequences using the technique described in Section 7.

C.1 Neutral

This is a sequence of neutral ground truth data.
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C.2 Modulation with sad

This is the sequence from Section C.1 after having been modulated with sadness.
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C.3 Sad Ground Truth

Here is the expressive ground truth for the original sad sentence which corresponds

to the sequence shown in Section C.1.
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C.4 Neutral

Here is another neutral sequence of ground truth data.
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C.5 Modulation with happy

Here is the sequence shown in Section C.4 after modulation with happiness.
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C.6 Happy Ground Truth

Here is the original ground truth happy sequence which corresponds to the neutral

sequence shown in Section C.4.
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Appendix D

Mixed Modulation with AAMs

D.1 AAM based Neutral

This is a sequence of ground truth neutral images.
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D.2 AAM based - modulation with happy

Here is the sequence shown in Section D.1 after DTW and modulated with happi-

ness.



APPENDIX D. MIXED MODULATION WITH AAMS 201



APPENDIX D. MIXED MODULATION WITH AAMS 202

D.3 AAM based - modulation with anger

Here is the sequence shown in Section D.1 after DTW and modulated with anger.
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D.4 AAM based - modulation with surprise

Here is the sequence shown in Section D.1 after DTW and modulated with surprise.
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D.5 AAM based - modulation with sadness

Here is the sequence shown in Section D.1 after DTW and modulated with sadness.
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Appendix E

Nelder-Mead Fitting

These frames show the results of fitting the rig controlled mesh to the AAM warped

mesh for an entire sequence.
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Appendix F

Mixed Model Modulation - Rig

Based

F.1 Rig based - Ground Truth Neutral

Here is a sequence of ground truth data transformed from AAM space and projected

onto the Morpheus rig.
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F.2 Rig Based - Modulation with Happy

Here is the sequence shown in Section F.1, after DTW and modulation with hap-

piness.
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F.3 Rig Based - Modulation with Angry

Here is the sequence shown in Section F.1, after DTW and modulation with anger.
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F.4 Rig Based - Modulation with Surprise

Here is the sequence shown in Section F.1, after DTW and modulation with sur-

prise.
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F.5 Rig Based - Modulation with Sadness

Here is the sequence shown in Section F.1, after DTW and modulation with sad-

ness.
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Appendix G

Expression Blending

Here are some examples of using a mixed model to interpolate of the gamut of

training expressions to create new expressions.
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Figure G.1 In clockwise order from top left: ground truth, mixed model approxi-
mation, angry model approximation, sad model approximation
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Figure G.2 In clockwise order from top left: ground truth, mixed model approxi-
mation, angry model approximation, sad model approximation
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Figure G.3 In clockwise order from top left: ground truth, mixed model approxi-
mation, angry model approximation, sad model approximation
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Figure G.4 In clockwise order from top left: ground truth, mixed model approxi-
mation, angry model approximation, sad model approximation
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Figure G.5 In clockwise order from top left: ground truth, mixed model approxi-
mation, angry model approximation, happy model approximation



APPENDIX G. EXPRESSION BLENDING 244

Figure G.6 In clockwise order from top left: ground truth, mixed model approxi-
mation, angry model approximation, happy model approximation
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Figure G.7 In clockwise order from top left: ground truth, mixed model approxi-
mation, angry model approximation, happy model approximation
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Figure G.8 In clockwise order from top left: ground truth, mixed model approxi-
mation, angry model approximation, happy model approximation



Bibliography

Albrecht, I., Schroder, M., Haber, J., and Seidel, H.-P. (2005). Mixed feelings:
expression of non-basic emotions in a muscle-based talking head. Virtual Reality,
8(4):201–212.

Anderson, R., Stenger, B., Wan, V., and Cipolla, R. (2013). Expressive Visual
Text-To-Speech Using Active Appearance Models. Conference on Computer
Vision and Pattern Recognition, pages 1–8.

Apple (2014). Final Cut Pro.

Arai, K., Kurihara, T., and Anjyo, K.-i. (1996). Bilinear interpolation for facial
expression and metamorphosis in real-time animation. The Visual Computer,
12(3):105–116.

Barton, C. and Inghelbrecht, P. (1999). Shazam.

Bellard, F. (2014). FFmpeg.

Bermano, A. H., Bradley, D., Beeler, T., Zund, F., Nowrouzezahrai, D., Baran,
I., Sorkine-Hornung, O., Pfister, H., Sumner, R. W., and Bickel, B. (2014).
Facial performance enhancement using dynamic shape space analysis. ACM
Transactions on Graphics (TOG), 33(2):13.

Beskow, J. and Nordenberg, M. (2005). Data-driven synthesis of expressive visual
speech using an MPEG-4 talking head. Proc. Interspeech - 2005, pages 793–796.

Bevacqua, E., Mancini, M., and Niewiadomski, R. (2007). An expressive ECA
showing complex emotions. In Proceedings of the . . . .

Bevacqua, E. and Pelachaud, C. (2004). Expressive audio-visual speech. Computer
Animation and Virtual Worlds, 15(34):297–304.

Brand, M. (1999). Voice puppetry. In the 26th annual conference, pages 21–28,
New York, New York, USA. ACM Press.

247



BIBLIOGRAPHY 248

Bregler, C., Covell, M., and Slaney, M. (1997). Video rewrite: Driving visual
speech with audio. In Proceedings of the 24th annual conference on Computer
graphics and interactive techniques, pages 353–360. ACM Press/Addison-Wesley
Publishing Co.

Brooke, N. M. and Scott, S. D. (1994). Computer graphics animations of talking
faces based on stochastic models. In ICSIPNN ’94. International Conference on
Speech, Image Processing and Neural Networks, pages 73–76. IEEE.

Buisine, S., Abrilian, S., Niewiadomski, R., Martin, J.-C., Devillers, L., and
Pelachaud, C. (2006). Perception of blended emotions: From video corpus to
expressive agent. In Intelligent virtual agents, pages 93–106. Springer.

Burton, J. (2010). Morpheus Facial Rig.

Cao, Y., Faloutsos, P., and Pighin, F. (2003). Unsupervised learning for speech
motion editing. In Proceedings of the 2003 ACM SIGGRAPH . . . .

Cao, Y., Tien, W. C., Faloutsos, P., and Pighin, F. (2005). Expressive speech-
driven facial animation. ACM Transactions on Graphics (TOG), 24(4):1283–
1302.

Chan, C. S. and Tsai, F. S. (2010). Computer animation of facial emotions. Cy-
berworlds (CW), 2010 International Conference on, pages 425–429.

Choe, B., Lee, H., and Ko, H. S. (2001a). Performance-driven muscle-based facial
animation. The journal of visualization and computer animation, 12(2):67–79.

Choe, B., Lee, H., and Ko, H. S. (2001b). Performancedriven musclebased facial
animation. The journal of visualization and computer animation, 12(2):67–79.

Chuang, E. (2002). Performance driven facial animation using blendshape inter-
polation. Computer Science Technical Report.

Chuang, E. and Bregler, C. (2005). Mood swings: expressive speech animation.
Transactions on Graphics (TOG, 24(2).

Chuang, E. S., Deshpande, F., and Bregler, C. (2002). Facial expression space
learning. In Computer Graphics and Applications, 2002. Proceedings. 10th Pa-
cific Conference on, pages 68–76. IEEE.

Cicconetti, C., Akyildiz, I. F., and Lenzini, L. (2009). FEBA: a bandwidth al-
location algorithm for service differentiation in IEEE 802.16 mesh networks.
IEEE/ACM Transactions on Networking (TON, 17(3).



BIBLIOGRAPHY 249

Clark, R. A. J., richmond, K., and King, S. (2004). Festival 2 – build your own
general purpose unit selection speech synthesiser. In Proc. 5th ISCA workshop
on speech synthesis.

Cohen, M. M. and Massaro, D. W. (1993). Modeling coarticulation in synthetic
visual speech. Models and techniques in computer animation, pages 139–156.

Cootes, T. (2000). An introduction to active shape models. Image Processing and
Analysis, pages 223–248.

Cootes, T., Edwards, G., and Taylor, C. (2001). Active appearance models. Pattern
Analysis and Machine Intelligence, IEEE Transactions on, 23(6):681–685.

Cosatto, E. and Graf, H. P. (2000a). Photo-realistic talking-heads from image
samples. Multimedia, IEEE Transactions on, 2(3):152–163.

Cosatto, E. and Graf, H. P. (2000b). Photo-realistic talking-heads from image
samples. Multimedia, IEEE Transactions on, 2(3):152–163.

Cowie, R., Douglas-Cowie, E., Savvidou, S., McMahon, E., Sawey, M., and
Schroder, M. (2000). ’FEELTRACE’: An instrument for recording perceived
emotion in real time. In ISCA Tutorial and Research Workshop (ITRW) on
Speech and Emotion.

Cox, S. J. and Simons, A. D. (1990). Generation of Mouthshapes for a Synthetic
Talking Head. In Proceesings of the Institute of Accoustics, pages 475–482.

Curio, C., Breidt, M., Kleiner, M., Vuong, Q. C., Giese, M. A., and Bülthoff,
H. H. (2006). Semantic 3D motion retargeting for facial animation. In APGV
’06: Proceedings of the 3rd symposium on Applied perception in graphics and
visualization. ACM Request Permissions.

DeMarco, A. and Cox, S. J. (2013). Native accent classification via i-vectors and
speaker compensation fusion. In Proc. Interspeech 2013, pages 1472–1476.

Deng, Z., Bulut, M., Neumann, U., and Narayanan, S. (2004). Automatic dynamic
expression synthesis for speech animation. Proc. of IEEE Computer Animation
and Social Agents 2004, pages 267–274.

Deng, Z., Chiang, P.-Y., Fox, P., and Neumann, U. (2006). Animating blend-
shape faces by cross-mapping motion capture data. In Proceedings of the 2006
symposium on Interactive 3D graphics and games, pages 43–48. ACM.



BIBLIOGRAPHY 250

Deng, Z. and Neumann, U. (2006). eFASE: expressive facial animation synthe-
sis and editing with phoneme-isomap controls. Proceedings of the 2006 ACM
SIGGRAPH/Eurographics symposium on Computer animation, pages 251–260.

Der, K. G., Sumner, R. W., and Popovic, J. (2006). Inverse kinematics for reduced
deformable models. SIGGRAPH ’06: SIGGRAPH 2006 Papers.

Du, Y. and Lin, X. (2003). Emotional facial expression model building. Pattern
recognition letters, 24(16):2923–2934.

Edge, J. D. and Maddock, S. (2001). Expressive visual speech using geometric
muscle functions. Proc. Eurographics UK. 2001, pages 11–18.

Ekman, P. (1992). An argument for basic emotions. Cognition & Emotion, 6(3-
4):169–200.

Ekman, P. and Friesen, W. V. (1977). Facial Action Coding System. Consulting
Psychologists Press, Stanford University, Palo Alto.

Fanelli, G., Gall, J., Romsdorfer, H., Weise, T., and Van Gool, L. (2010a). A 3-d
audio-visual corpus of affective communication. Multimedia, IEEE Transactions
on, 12(6):591–598.

Fanelli, G., Gall, J., Romsdorfer, H., Weise, T., and Van Gool, L. (2010b). Acqui-
sition of a 3d audio-visual corpus of affective speech. BIWI technical report no.
270, Computer Vision Lab, ETH Zürich, (270).
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