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ABSTRACT

Macromolecular systems comprised of many light-sensitive centres (the photosynthetic unit, dendrimers, and other
highly symmetric multichromophore arrays) are important structures offering challenges to theoreticians and synthetic
chemists alike. Here we outline novel photophysical interactions predicted and observed in such arrays. Using the
tools of molecular quantum electrodynamics (QED) we present quantum amplitudes for a variety of higher-order
resonance energy transfer (RET) schemes associated with well-known nonlinear optical effects such as two- and three-
photon absorption. The initial analysis is extended to account for situations where the participant donor species are
identical and exist in a highly symmetric environment, leading to the possible formation of excitons. It emerges from
the QED theory that such excitons are closely associated with the higher-order RET processes. Genera results are
interpreted by analyzing particular molecular architectures which offer interesting features such as rate enhancement or
limitation and exciton pathway quenching. Applications in the areas of photosynthesis, molecular logic gates and |ow-
intensity fluorescence energy transfer are predicted.
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1. INTRODUCTION

In highly symmetric systems which comprise many similar chromophore centres the absorption of light can result not
only in site-specific species excitation, but also in the formation of excitons. Many suitable environments — both natural
and synthetic — exhibit these phenomena. Of these, the most well-known are the beautiful light harvesting centres in
photosynthesising bacteria such as Rhodopseudomonas (Rps.) acidophila, Rhodospirillum molischianum and
Rhodospirillum rubrum* For example, the peripheral light-harvesting complexes (LH2) in Rps. acidophila exhibit Cq
symmetry in both 800 and 850 nm absorbing bacteriochlorophyll sub-units? These structures collect photons and
transfer them (via resonance energy transfer, RET) to the reaction centre (RC). Until recently, the RC was considered
to be another highly symmetric superstructure; however recent investigations have shown it to be squashed into a
dightly oval configuration,® raising questions about the enforcement of physical symmetry arguments in accompanying
theoretical studies.

Photosynthetic systems do not have a monopoly on fulfilling the pre-requisites for exciton formation; other organic and
bioinorganic supermolecules are equally suitable. These synthesized structures offer the advantage of being
controllablein both composition and structure. This high degree of synthetic management is advantageous as it offersa
challenge for the molecular architect and surety for the theoretician. Excellent examples of these systems are offered by
dendrimers and multichromophore arrays. It has long been known that dendrimers (highly symmetric, usually self-
assembling molecular superstructures) provide an ideal environment for energy transfer studies;*® as the field has
progressed the properties of the constituent chromophore sub-units and core have been chosen to facilitate studies of
energy hopping behaviour (each hop being an RET event). A further group of compounds suitable for exciton
formation are covalently linked, metalloporphyrin-based chromophore centres.® These have been successfully designed
to mimic behaviour observed in actual photosynthetic systems,”® and also as the basis for optical molecular switches.”

In thiswork we highlight theoretical studies into the formation and subsequent transfer of both excitons and bi-excitons
within the above systems. Using the tools of molecular quantum e ectrodynamics (QED),™ a recently devel oped state-
sequence technique™ alows the correct formulation of the behaviour of both types of exciton transfer within an
artificial three-fold symmetric edifice. New ingght is offered into the behaviour of excitonic relaxation and a thorough
investigation into the effect of molecular architectureisgiven.



2. EXCITON AND BI-EXCITON FORMATION

Our investigation is based on a modd light-harvesting system comprising three identical donor chromophores A, B and
C, potentially coupled to an acceptor species D which may or may not be chemicaly identical to the donors, a
chemically distinct acceptor obviates problems of direct excitation aong with the donors. Since the majority of
dendrimers exhibit three-fold symmetry, and this is also a symmetry element present in the light-harvesting system of
Rps. acidophila, it is an obvious structural element for a general model. As such we assume that each donor sits at the
corner of an equilateral triangle with the acceptor in the middle (see figures 1 and 2). All system components arein the
electronic ground state prior to photoexcitation.
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Figure 1: Three-fold symmetric model Figure 2: Inter-chromophore vectorsin the
photosystem model photosystem

2.1 Single Photon Exciton

When the model photosystem absorbs a photon of sufficient energy hv to excite one of the donor species an exciton is
formed, consistent with the system symmetry, signifying an uncertainty in localisation of the excitation. The energy of
excitation is essentially accommodated in a state written as a superposition of chromophore molecular orbitals. Itisthis
which constitutes the initial matter state for subsequent energy transfer, as compared to the localised excited donor state
in conventional RET. We may express the photophysi ¢cs through the non-chemical equation;

A®+B° +C° + D +hy OFFITEIHY (A +B+C) +D° OFFBITHE A° +B° +C° +D" (1)

where superscripts indicate the state in which a species resides (0 — ground state; * — group excited state, u — single
species excited state). In (1) the exciton is represented by (A+B+C)" and the single asterisk indicates that one,
undetermined donor isexcited. Note that the process of exciton formation need not be immediate and can be associated
with intramolecular relaxation following photoabsorption.

2.2 Two-Photon Exciton (Bi-Exciton)

Here two photons of approximately hv are absorbed at different sites, forming the bi-exciton. The probability of
achieving the necessary condition for bi-exciton formation is determined by the laser flux, and both the absorption
cross-section ¢ and the excited date lifetime of the donor, 7. Generaly, with N donors and a laser delivering an
irradiance I, the efficiency of bi-exciton formation is quantified by the ratio Nl orrhv. With a very modest pulsed laser
irradiance of 10" W cm™, an absorption cross-section of 10 cm? and a lifetime of 100 fs, an bi-exciton formation
efficiency of about 10% can be expected; obvioudly the exact figure is sensitive to the details of the system. Here the
overall photophysics of bi-exciton formation and transfer is embodied in the equation;

A® +B°+C° +D° +2hy 0 BEIPTER. (A +B+)? +0° 0 TEHMIRTE, Acvpo+c+D* (2



In (2) the bi-exciton is represented by (A+B+C)%"; the superscript indicates that two, undetermined donors are excited.
Again exciton formation need not be immediate.

In many photosystems, bi-excitonic energy transfer can compete directly with other possible relaxation processes.™
Those manifest at the exciton creation stage of (2) jeopardise the formation of (A+B+C)% by offering other absorption
locations for the two input photons, e ectronic structure permitting. These alternatives could also serve as precursors to
the desired acceptor excited state. For example, direct two-photon absorption (TPA) at the acceptor needs to be
discounted. Furthermore, if the excitations were not absorbed by two donors but by one donor and the acceptor, singlet-
singlet (S-S) annihilation between the two chromophores would also result in the observed fluorescence; however, this
option is precluded when acceptor el ectronic states are not amenable to single photon absorption of hv. Thishighlights
the advantage of having donor and acceptor chromophores which are either chemically different, or are rendered
electronically so by fieldsin their local environment. Finally, TPA at a donor followed by two-centre energy transfer to
the acceptor might also account for the requisite energetics. This can be discounted by ensuring that donor
chromophores exhibit no absorption band a approximately 2hv. Loss of excitation at the energy transfer stage is
limited to S-S annihilation between two donors. Clearly, the acceptor would not experience the required excitation as
the S-S annihilation precludes it. For the anadysis in this paper we assume the satisfaction of these criteria which
discount S-S annihilation and TPA effects. In systemswhere S-S annihilation and TPA are observed, bi-exciton energy
transfer represents a competing process that must be accommodated into any rate analyses.

3. EXCITONIC AND BI-EXCITONIC INITIAL STATES
The total Hamiltonian H for the exciton-forming donor speciesis;

H = Z H,+ Z Ve (3)

&=A,B,C £,é'=A,B,C

where H is the Hamiltonian for donor ¢ and V.- is the interaction between {and £'. The explicit representation of the
Vz coupling can, if required, be cast in quantum electrodynamical form, however such detail is necessary only in
connection with the excitation transfer detailed below. The ground-state from which both the exciton and bi-exciton are
elicited isrepresented as;

R les ) =|acB%C?) @
where z//? isthe ground-state wavefunction of & The ground-state displacement energy E, isgiven by;
E, =(A°B°C’V|A°BC’) (5)

where V is a short-hand for the second term in (3). In writing equation (5) we assume that the ground-state energy for
any isolated donor species is zero; only interactions between the chromophores displace the absolute ground-state
energy. The Heitler-London approximation delivers exciton eigenstates as linear combinations of donor eigenfunction

products. Thuswavefunctions for (A+B+C)" and (A+B+C)% (| j> and |lP' J.>) can be written as the superpositions;

| W) =c,|AUB°C®) +c,,|A%B'C") +¢ | A°BCY) ; (6)
W) =c|AYBUC) +¢ ,|AUBCY )+ s |A%BCY) . ©
In the above, the constants ¢, and ¢, are normalized and constitute an orthogonal set. The energy of the ™ exciton and

bi-exciton states, E;, are given by the time-independent Schrédinger equation; assuming that species self-interactions are
negligible, these are explicitly given in Table 1, which highlights a Davydov splitting of 3v between the j =1 and



j =2 and 3 states of either quasi-particle.®** The assumptions made above are valid for our idealized structure; in

other cases, local variations in chromophore orientation and/or steric effects may shift state and transition energies (as
for examplein aprotein environment).

Energy Exciton Bi-exciton
E; E+2v 2E + 2v
E,=E; E-v 2E-v

Table 1. Exciton state energies, <E !

H,
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Using theresultsin Table 1 we write the exciton and bi-exciton states in the general forms;

%GA“B°C°D°> +C*|A°BUC°D) +¢7 A°B°C“D°>) : ©®
%QA“B“COD°>+C* A'B°C'D°) +c A°B“C“D°>) . 9)

We also introduce coefficients ¢* and c¢* asameansto generate each relevant state where;™
c* =1+c'(—%ii@) . (10)

Putting ¢'=0 givesthe |W,) and |¥') states; with ¢'=1 the upper signsin (10) yield |¥,) and |¥',) and the lower,
|W;) and |W';). Note that the multiplicative coefficients form the characters of the table for representations of the
cyclic group C;, the rotational sub-group for the point group Dg, which describes the overall idealized dendrimer
symmetry. For example the coefficients of |W,) are identical to the irreducible representation A whilst those of |W,)
and | ¥;) match the degenerate irreducible representations E.

4. EXCITONIC ENERGY TRANSFER

We now employ molecular QED to calculate the rate of energy transfer I from the (single exciton) donor exciton states
to the central acceptor. To begin, we address the simplest case, the exciton. Therate can be devel oped from a quantum

amplitude M’ which carries superscripts i;j to denote an i-fold symmetric system containing j excitations. For
transfer from an initia state | r01> , given by the linear combination shown in (8), the coupling of each of the threeinitial

state component parts to the final state |r21> must be accounted for. Any system basis state is a product of matter and

radiation components, the matter part necessarily entailing a product of electronic states from all participant species. In
the exciton case the quantum amplitude is given by the second-order time-dependent perturbation theory equation;*

. <r21|| Iint r1m><r1m|| Iint r01>
31 2
M= m ( t r1m) | o

where the total energy (both matter and radiation) of a state |r> is represented by E,. In calculations that entail more
that one radiation-matter interaction, energy non-conserving intermediate states are manifest as virtual molecular and/or
radiation states. In (11) they take are represented by |rk’“>, where m is a label to distinguish between them (see



reference 11 for a full explanation of the significance of the m values). Also present in (11) is the interaction
Hamiltonian which is given by;

Hy = &' u(E)d"R,) (12)

in the eectric dipole approximation. In (12), p($) is the eectric dipole moment operator for & and dD(R{) is the
transverse electric field displacement operator evaluated a the position of &, R, . In order to account for the effects of

any intervening medium a modification to the vacuum form of dD(R ‘,) must be used. Accordingly the energy transfer,

which in vacuo is mediated by a virtual photon coupling, is now cast in terms of an exchange of virtual polaritons
(medium-dressed virtual photons) which act as quanta of a dynamical sub-system comprising the radiation and normal
modes of the host medium. Thus accounting for local field and other media corrections, the electric field displacement
operator isgiven by;!’

N

s A=l

i(s) 2 . .
[(ﬂ )3 + 2][6(/1) (q)Pq,s,/l gldRe _ é(/l) (q)PqT,s,/l e-'qRé] (13)
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accommodating a summation over polariton modes, within a quantisation volume V,, characterized by wave-vector q,
polarisation A and disperson branch number s. Equation (3.5) aso introduces the polariton polarisation unit vector e
(and complex conjugate € ), boson annihilation and creation operators P and P' respectively, and two quantities related

to the polariton frequency a)(gs) ; the complex refractive index of the molecular medium n® and the group velocity v

It isimportant to note that the media corrections concern the electronic influence of matter other than the chromophore
set A, B, C, D and are therefore not the same as the interspeci es interactions embodied in v.

The quantum amplitude is concisgly expressible as follows (using the implied summation convention for repeated
Cartesian indices);

M3 = (#0” AN (KR o J12°®) +6° OV (K, R )20+ OV (K, R Ju2P)) (14)

]
Here p'" <E' |u |E > is the transition dipole of & from state |r) to |r’) and we introduce the interspecies vector

displacements R, =R, —R,. Also contained in (14) is a second-rank, index-symmetric tensor representing the
media-corrected eectric dipole-electric dipole coupling, explicitly;

il R)= (T2 sl -8 -l -4 ®

describing the transfer of zicK between the pre-excited donor and ground-state acceptor. The eectronic influence of
the intervening medium is evident in the Lorentz pre-multiplier and in the refractive index n for the optical frequency
cK. In real dispersive media n carries an imaginary part, imposing an exponential decay through the phase factor.
Necessarily, (15) reduces to the vacuum case as n - 0. Also note the sign ambiguity in (15) which addresses
problems associated with the outgoing wave approximation — a device widely used by previous authors to bring the
quantum model into line.®* Here we are dealing with a quantum system and (15) correctly describes both incoming and
outgoing waves — accommodating both time-orderings as a correct quantum description should. It isimportant not to
lose sight of the fact that the interaction tensor is part of a quantum amplitude, a convenient construct but not a
measurable. So long as the observable offers an accurate model of experimental data, then ambiguity at the quantum
amplitude level is perfectly acceptable.



Continuing, equation (14) exhibits three separate parts, one each for transfer from each donor involved in the exciton
transfer to the acceptor. Previous work from this group has shown that these quantum relaxation routes are interlaced at
the quantum level;*® the concise representation of equation (14) is only possible because it is cast in terms of the QED
interaction tensor (15) that fully accommodates €l ectronic effects of the intervening medium over all space.

5. BI-EXCITONIC ENERGY TRANSFER

A similar approach to that of the one-photon exciton discussed in section 4 can be adopted for the two-photon case,
where two out of the three donors are excited in theinitial state. The bi-exciton initial state is described by (9) and, due
to the extra excitation present in each state, we use fourth-order time-dependent perturbation theory to describe the
photophysics. Each contribution corresponds to a quantum amplitude for three-centre energy transfer (3CET).

Here three pathways exist — one so-called cooperative (coop)™® and two accretive (accl and acc2).”’ Taking the first
term in (9) as an example, we can seethat A and B are the two excited species (C is essentialy dormant throughout this
channel) — the three transfer pathways, in the context of the idealized dendrimer, areillugtrated in figure 2.

@ (b) ©

Figure 2; 3CET pathways contributing to M QB (&) coop, (b) accl, (c) acc2. Here dotted lines join interaction-pairs. Cis passive.

Adopting the language of interaction-pairs® we can correctly describe the three 3CET pathways. Firstly the
cooperative mechanism can be denoted by AD BD (figure 2a). The notation indicates that transfer occurs between the
pairs A and D and between B and D. It isa concerted interaction, i.e. the acceptor D has no energy level amenableto a
single energy transfer from a single donor; only the combination of the two excitation transfers satisfies energy
conservation. However D till undergoes a transition of two-photon character (vide infra), as is shown by the dua
registration of D in the transfer-pairs AD BD. Similarly the accretive mechanisms are given by BA AD (figure 2b) and
AB BD (figure 2c) respectively. In both these casesthe total excitation in the system is fleetingly accrued by the donor
species common in the two transfer pairs (A in accl and B acc2) with the sum energy being deposited at the acceptor.
Hereit isthe bridging donor (A or B) that undergoes the two-photon transition.

The total quantum amplitude for the dual excitation exciton transfer M 3% can be written as;
M2 =M +c* M +cTMEC (16)

where each contributor exhibits a dormant donor species (one which remains unchanged, in the ground-state,
throughout the interaction) and two excited participants £and &'. In generdl;

M =M 4+ 452 a



illugrating that a quantum amplitude comprises three parts, one for each transfer pathway, as in the examples given
above. Using previously established techniques™* each quantum amplitude component in (17), and consequently the

total M 3%, may be calculated. Explicitly, the general form of the matrix element for each relaxation route is;

2P\ & = 1N (K )arg®) (- ek, —eK W, (K, F)e ") (18)
M & = OV (K )€ (2eK, —ek WV (201K 1)) (19)
=2\ & = N (nK e € (20K ek )V, (K ) (20)

where r =r, —r,, r'=sr, —r., r'"=r. —r, and n' is the refractive index at the optical frequency 2cK. Also present
here are two manifestations of the two-photon interaction tensor, given by;

re(e), arle) r¢(e) (&)
alOrongor)= S K A AL (21)
| E¢ hck Ef thck

which aso plays a controlling role in other photophysical processes such as two-photon absorption and Raman
scattering. Equation (4.6) properly accommodates the finite lifetime of the virtual state of species & (depicted by ()
through a phenomenological correction to the corresponding energy such that;

ES =Ef -ir, (22)

where the state assumes a Lorentzian profile I, representing its HWHM linewidth. The two-photon interaction tensor

(22) plays different roles in the different mechanisms of 3CET; the cooperative pathways requires a to adopt the
characteristics of a two-photon absorption process as the acceptor smultaneously “receives’ two excitations (one from
each participant donor). Conversely, in the accretive pathways, the behaviour of a isakin to the transtion polarisability
which mediates single-photon scattering processes.’® The donor species it relates to transiently acquires the excitation
energy of a second photon during the process, the sum of both excitations being deposited at the acceptor.

6. APPLICATION TO A PLANAR PHOTOSYSTEM
6.1: Single Photon Exciton
We next adapt the above results to facilitate elucidation of the geometric dependence. Enforcing the necessary

condition nKR <<1, signifying transfer-pair distances substantially less than the input optical wavelength, we reduce
the transfer tensor, and hence the general results of (14), to their short-range form;

u“o(D)|(K +CH K+ CIK") : (23)

. 1 n+1
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To most readily interpret the angle-dependence of the results in genera form, in the magnitude of the trandtion
moments for all three donor species are now assumed to be identical, |u°“(A)| :|u°“(B)| :|u°“(c)| :|u | , each centered on the

apex of an equilateral triangle. Also the system architecture dictates that R=R,, = R,; = R,c . Introduced here are
three variants on the well-known feature of conventional RET studies, the orientation factor kappa, here given by:;

Kap =C0SO,, —3C0s@, COsg,



Kgp =C0SO,, —3cosé, cosd,
Kep =C0SO¢, —3C0S) COSYy,

The angles subtended by the various unit vectors involved are defined as;
uE I = [ coso,
e R, :|I1"||RDA|COS(05
né Rpg :|I1"||RDB|00595

né R = |u"||R DC|COSy{

where p¢ is short-hand for the transition moment of the species & Analysis of the above equations must accommodate
the intrinsic symmetry of the donors. This is achieved by ensuring that the donor transition dipoles are mutualy
arranged asin figure 4 such that;

=0 =yc - (24)

Figure 4: System geometry illustrating the case of gh=6=)¢

Now we describe free, in-plane rotation of the acceptor transition moment with respect to model architecture in terms of
theangle ¢. Recognising that the criterion of (24) holds, recognize that;

2 _ ar . (25)

Furthermore the angles between the donor and acceptor transition moments are expressible in terms of the angle Oap;

2 4
Oap = Ogp Y =0Ocp ey (26)

Using (24), (25) and (26) we may re-express (23) as,

\/5 uO(D)
M3 = -%{ c* +c™ -2)cos®,, - 3cosg, cosg, )+ 3(c* —csin®,, ~3sing, cosg, ) } . (27)
0




In the excitonic state |W;) we have c*=c"=1, in which case equation (27) deliversanull result. Thus, energy transfer is

forbidden from this excitonic state, no matter what the angular configurations in the planar dendrimer. For the
degenerate states |W,) and |W;) the quantum amplitude takes two forms, one for each state, given by;

Ao,
M3 = _—BLHJT;RS {ei'% —-3et% cos(pA} (28)

where M3 is the quantum amplitude for |W,), and M{** that for |W;). The Fermi Golden Rule leads to the rate
result;

2 2
u | el o,
r=————————f C] 29
32557#1R6 (%,%, AD) (29)
where g isthe densty of acceptor fina sates and;
f(g, 00,0u0) = |e*i9AD -3 cos¢1A|2 = (1— 6cos @, cos(@, — O ,p )+ 9cos? %) , (30)

proving that the observabl e for the degenerate excitons is independent of the £ sign. It is revealing to produce three-
dimensional plots exhibiting the variation of f(goD,goA,G)AD) with ¢ and O,p at fixed @.*® It is obvious that when

=712, f(goD,goA,G)AD):l regardless of ¢ and ©ap. Also, it isclear that the function in equation (30) is symmetrica

about any ¢ - ©ap = constant diagonal for any ¢. Asin conventiona RET, orientations can be found to produce a
zerorate, effectively “turning off” the transfer. The result of equation (24) is zero when;

cosg, = éei(% “Op0) (31)

which yields a real solution only when ¢ = ©xp. Thus, the configuration of ¢ = cos™(1/3) and ¢ = Oap precludes
energy transfer in the exciton system described above.

In fact thisfully planar case affords further physical insight, as the principles it establishes can be extended to a system
where the donor transition moments are no longer constrained to the system plane, given that threefold symmetry till
applies amongs them. Here the donor moments comprise components both in and perpendicular to the plane. The
above analysis shows that, for the totally symmetric donor exciton, the quantum amplitude for energy transfer to an in-
plane acceptor moment has a vanishing contribution from in-plane donor moment components. Furthermore
contributions from perpendicular donor moment components must aso vanish because they are orthogona to both the
acceptor dipole and each of the chromophore displacement vectors, as in the case of the out-of-plane acceptor moment.
Consequently the principle of exclusion, concerning energy transfer from the totally symmetric exciton to an in-plane
acceptor dipole, isgeneraly valid and not limited to the case where all chromophore moments liein the plane.™®

6.2 Bi-Exciton

We now adapt the results for the bi-exciton, encapsulated in equation (16), to elicit geometric dependence. Here the
conditions to reduce each transfer tensor to its short-range form are 2n'KR=nkKR<<1. Furthermore, for calculationa
simplicity, we assume both that all transition moments associated with individua species (either rea or virtual) are
collinear and n = n'. Using techniques anal ogous to those in section 6.11 we can re-write the nine contributions to (16)
in terms of angles rather that tensors/vectors;



2 &y € D
A M
oy @ = L [nz + 2]2 |“{||‘:D||“F|K ff':(f'D (32b)
nl 3 3 (475, R°)
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where we employ the intermolecular lengths of figure 2 and the short-hand notation ") =p¢ and a "¢ =a?.
Obvioudly, due to the added complexity of the system, extra « factors are required to describe the behaviour. In
addition to those in section 6.2 we define;

K g =C0SO,5 —3C0sA , COSAg

Kpc =C0SO,- —3cos®P, cosd

Kge =00SOg. —3C0S= COS=

where;

Ry :|u{||RBA|COS/\{
né R, :|u{||RCA|COS¢{

ué Rep :|u{||RCB|COSE{ :

Analysis of the above equations must again accommodate the intrinsgc symmetry of the equilateral triangle formed by
the donors — ensuring that equation (24) holds. In the co-planar architecture we may describe the system in terms of
only three angles. We portray free, in-plane rotation of the acceptor transition moments with respect to the donor-
acceptor intermolecular vectors in terms of the angle ¢ and the angles between the donor and acceptor transition
moments can be expressed in terms of the angle ©,p done.

21T 4
& =6p ‘?:VD T3 (33)
4 21T
©ap =Ogp _?:eco _? . (34)

Finally we define all other relevant angles (those between donor transition moments and donor-donor intermol ecular
vectors) in terms of ¢;

™
6

5n  _
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@y =N\, _E:AB+
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i
B_E:_ t— . (35)

Noting that, due to the planarity of the system;

Kap ¥ Kep = Kcp

_ _ _ 2 . _ 5
Kap =Kac =Kgc =3C0S" @ —3

we may write the total quantum amplitude as;
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L
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{KCDKAD (ci -c* - 1) -c'k, - K,fD} {KCD (ci - 1) +K (ci - ci} (36)

where the first term exclusively addresses the cooperative contributions, the second describes the accretive. Again, in
the excitonic state |W,) we observe that c*=c"=1, and the accretive part of equation (36) vanishes. Thisimplies that bi-

excitronic transfer from the symmetrical state only proceeds via coop-based mechanisms.  Substituting in the explicit
relationships for the kappa factors, (36) becomes;

Al? D
M?iiz(qu): _#u | |: | f(%v¢Av@AD) . (37)
81 R

Thisresult mirrorsrate results for the degenerate sates of the single-photon exciton states.

Calculation of the rate expressions using the Fermi Golden rule entails modulus squaring the sum of the relevant
guantum amplitude contributions. As the results for the single photon exciton contain only a single « factor in the
relevant quantum amplitudes, the corresponding rate expressions go as ° , the behaviour seen in the quantum amplitude
of (23). Even though the number of angles needed to describe the bi-excitonic system is greater than those required for
the single-photon exciton, the system symmetry dictates a directly comparable geometric dependence. However in
single-photon excitons, energy transfer from the totally symmetric exciton to an in-plane acceptor dipole is forbidden.
Thisselection rule is broken for the bi-exciton. Interestingly, transfer emanates from the cooperative mechanism, where
symmetry is preserved, and not from the symmetry-breaking accretive pathways.

For the degenerate hi-exciton states |W,) and |W;) , the quantum amplitude of (36) takes the form;

I+

—{KéD(% +i %)—KED +KCDKAD(—1i |\/§} + MK_%

3 i
2Ry " oo 1300 (30

M 32(w2)=

Here M?;Z(HJ*) and M?;Z(HJ‘) represent the quantum pathways for energy transfer from |W,) and | W) respectively. In

(26) the first term again reports information on cooperative mechanisms and the second the accretive. From (38) and
(27) we have;

2 3
F?’;Z(LIJi = |Ej;|%|(;:)| . {K;‘D +KE K ep FKApK Sy +KapKED +KéD} + \/§|HA|2(|E;|C|OG;|;(:D|KAB (3/(ka o T HKapkep 3K éo)
2 2 2 2 39
' |uA|‘1|(ZjT|«€!(;:) i (% &+ Ko +2KADKCD) )

where the first and third terms represent pure cooperative and accretive contributions respectively, and the second term
guantifies their quantum interference. Concentrating on the angular dependences in eguation (28), we may ascertain
values that equate to optimum transfer probabilities for each contribution. We observe that it is the cooperative
contribution that has the greatest influence, with the cross-term offering a small (but not insubstantial) input, with the
accretive contribution being effectively negligible. Thisisto be expected, as a donor separation angle of 2773 gives a
significant bias toward cooperative transfer. More detailed results are to be presented e sewhere.”
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