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ABSTRACT 
 

The electromagnetic propagation of angular momentum associated with photon spin has evolved into a subject of much 
broader remit, following the theoretical and experimental realization of optical beams that can convey quantized orbital 
angular momentum.  The possibility of transmitting such information over nanoscale distances raises numerous issues.  
For example, it is known that electron spin can be relayed by near-field communication between exciton states in 
quantum dot assemblies; the question arises, can orbital angular momentum be conveyed in a similar way?  There are 
fundamentally important technicalities surrounding such a prospect, representing potentially serious constraints on the 
viability of angular momentum transfer between electronically distinct components in structured nanomaterials.  To 
resolve these issues it is necessary to interrogate the detailed form of near-field electromagnetic coupling of the relevant 
transition multipoles.  The emerging results exhibit novel connections between angular momentum content in the near-
field.  The analysis leads to a conclusion that there are specific limitations on the nanoscale transmission of quantum 
angular momentum, with challenging implications for quantum optical data transmission. 
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1. INTRODUCTION 
 

Over the past twenty years the understanding of optical angular momentum has undergone a huge development, 
producing nothing short of a paradigm shift in its conceptualization and opening up whole new areas of study [1,2].  This 
resurgence of interest was given a major stimulus by a realization [3] that it is possible to optically engineer structured 
beams of light that can convey azimuthal (orbital) angular momentum, as a result of phase singularities and associated 
vortex structures in the beam wavefront [4].  This form of angular momentum is quite distinct from the well-known 
connection of integer spin angular momentum with circularly polarized light.  Indeed, with suitably engineered twisted 
beams it proves possible to convey significant integer multiples of the fundamental unit of angular momentum, , per 
photon [5].  As in the pioneering original study, most of the research in this area has focused on Laguerre-Gaussian 
modes of light, although the same principles operate for a variety of vortex mode structures.   
 
The capacity of structured beams to carry angular momentum that is independent of any circularity of polarization has 
been thoroughly established by the development of studies to elicit such features, the experiments often based on 
interferometric interrogation with differently structured beams [6].  This led to a realization of the astonishing possibility 
of conveying more information per photon than was previously thought possible, prompting suggestions for a variety of 
quantum communication and information applications [7].  In connection with free space propagation, these possibilities 
are very much the subject of active investigation – but there are numerous questions concerning transmission over 
nanoscale distances.  For example, although it is known that exciton spin can be communicated by near-field resonance 
energy transfer between neighboring quantum dots [8], is it conceivable that orbital angular momentum information 
might be conveyed by similar optical means?  The answer is not obvious, and the question not very easy to address, since 
most of the existent theory on structured light addresses free-space propagation.  There are, indeed, serious issues to 
resolve concerning angular momentum transfer by nanoscale transmission within structured materials, their significance 
amplified by the goals of much current research. 
 



A very important and influential study by Leach et al. [9] showed that it is possible to distinguish between even and odd 
values of the azimuthal quantum number at the single-quantum level.  However, in this and similarly-directed research, it 
is notable that the status of the observed field as comprising a single photon is a retrospective inferral rather than 
measurement.  Indeed one cannot expect to secure unequivocal information on both photon number and phase (the latter 
being intimately associated with orbital angular momentum) due to the number-phase uncertainty relationship that holds 
for optical states [10].  It is a little surprising that this principle, which is particularly relevant to low-number states, has 
seemingly received very little consideration in the literature to date.  Certainly, there are numerous other practical issues 
to consider alongside this fundamental limitation; a very useful survey has recently been provided by Franke-Arnold and 
Jeffers [11]. 
 
As a particularly relevant context for such considerations, it is interesting to note that there have recently been theoretical 
advances in the tensor formulation of multipolar light, accommodating its near-field behavior and fully identifying the 
form of longer range retardation effects.  In establishing a connectivity with short-range behavior, this form of analysis 
has also identified novel features in the angular momentum content of the electromagnetic near-field [12, 13].  Building 
on this work, the present study addresses specific technical constraints connected with the nanoscale transmission of 
quantum angular momentum.  The results present challenging implications for quantum optical data transmission 
between electronically distinct components, over the scales of distance that are most actively sought for miniaturized 
devices and metamaterials. 
 
 

2. PHOTON INTERACTIONS IN QUANTUM OPTICAL INFORMATION TRANSFER 
 

In the development of quantum optical communication and informatics, attention generally focuses upon relatively low 
photon number Fock states of the radiation field.  Whilst some of the classic effects that elicit the quantum nature of 
radiation, such as the Hong-Ou-Mandel effect [14], entertain fundamental interactions that can engage the combined 
effect of two input photons, these are not in general optically nonlinear processes.  Rather, they are effects that occur 
only as a result of relatively rare correlations in the arrival of input photons: the intensities are far too low to significantly 
engage optically nonlinear properties of a material medium.   
 
A variety of clever schemes have been envisaged for the transmission of quantum information using light endowed with 
orbital angular momentum [11].  Generally, such approaches focus upon states of the radiation field, rather than the 
electrodynamics of their interactions with matter.  However, at the photon level, the only means of eliciting encoded 
information – whether of an intense beam of a single photon – is ultimately by engagement with matter, and it is this 
aspect that will concern us here.  Even interferometric methods of beam interrogation require detector material for the 
formation or registration of images.  Certainly, at the level where genuinely quantum effects might be manifest, the types 
of fundamental photonic process that can be involved in producing a signal are relatively few, being generally limited to 
the realm of linear optics: they are photon emission, absorption, and scattering.  In connection with twisted optical 
beams, spontaneous photon emission is not relevant for consideration: these beams are in practice produced by the 
passage of conventional light through suitably designed optical elements – moreover, such types of light cannot be 
spontaneously generated from the vacuum [15].  Stimulated emission and photon absorption are of interest as they are 
likely candidates for coding and decoding processes.   
 
As has been shown previously [16], orbital angular momentum exchange through the single-photon interaction of 
structured light with atoms or molecules occurs primarily in electric dipole coupling, and that angular momentum 
engages only local centre of mass motions.  When higher order electric multipole interactions are entertained, it 
transpires that a limited degree of orbital angular momentum exchange with internal electronic transitions can occur – 
permitting the gain or loss of one unit in the case of electric quadrupole transitions, for example.  Crucially, however, 
there is no possibility of a one-to-one mapping between the angular momentum content of the beam and the internal 
electronic motions; there are no selection rules on which to base atomic or molecular protocols for unequivocally 
decoding orbital optical angular momentum.  Self-evidently, the same principles apply to both photon absorption and 
emission. 
 



To proceed with a more general analysis, it is expedient to expand the focus of enquiry to other photon-level processes, 
entailed in the progress of structured radiation through an optical system.  In connection with nanoscale transmission, a 
key phenomenon is scattering, in the quantum electrodynamical sense that couples the removal of a photon from one 
optical mode with the installation of a photon into another (or indeed the same) mode.  In the course of passage through 
any optical element each photon generally experiences a sequence of scattering interactions (including forward elastic 
scattering); in the absence of absorption and emission there is nothing else that can change the state of the light at the 
level of low photon numbers.  The following development of theory therefore focuses on angular momentum issues that 
arise first in the case of an isolated scattering event, and then a sequence of two such events.  The implications that are 
thereby drawn are readily generalized to accommodate a succession of scattering events.  It is the character of the 
electromagnetic propagation between these events, and the information that can thereby be conferred, that are of central 
interest. 
 
For these initial studies, attention is focused upon cases where there is an unequivocal correlation between a specific 
input and output (or detected) photon.  In principle this allows for the complete representation of photon transit through 
an optical system, in the same spirit as Jones calculus or ray transfer matrix analysis.  Subsequent studies will entertain 
cases where there is a possibility of quantum interference between alternative photon histories.  However, if the present 
analysis can identify any constraint or compromise of information fidelity emerging in the study of a single-thread 
photon history, it is certain that no lesser problems and frustrations are likely to beset more intricately designed systems. 
 
 

3. THE ELECTRODYNAMICS OF PHOTON PROPAGATION AND SCATTERING EVENTS 
 

The premise of the following analysis is that high-fidelity transmission over nanoscale distances can become meaningful 
only when information is retrievable from a single-photon input state necessarily within the optical near-field, i.e. for a 
distance R where kR « 1, with k = 2/ for an appropriate wavelength .  This does not constrain the means of 
electromagnetic information transfer; even the so-called ‘radiationless’ (Förster) transfer, which occurs over much more 
severely restricted distances (typically tens of nanometers), operates on a basis of near-field coupling (which, in the 
context of a quantum electrodynamical description [17], is cast in terms of virtual photon propagation).  The theoretical 
framework for addressing excitation propagation by such means can therefore also elicit the issues that arise in 
connection with angular momentum.  Indeed, this principle has been demonstrated in connection with the local 
transmission of exciton spin, referred to earlier [8].  In that study, it was shown that the transfer of excitation along a 
column of quantum dots with a common orientation preserves spin information, absolutely. 
 
Let us first consider a single photon scattering event.  The theory has been well-rehearsed elsewhere [10]; suffice it to 
begin with the following expression for the matrix element; 
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Here,  00 ;ij k k  is the dynamic polarizability, a molecular counterpart to the conventional linear susceptibility; 
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In the scattering process the input light has n photons of wave-vector k and polarization vector    e k ; what emerges is 

differentiated by primes.  Whereas coherent optical processes such as forward Rayleigh scattering, surface reflection and 
second harmonic generation (SHG) owe much of their high efficiency to the constructive interference of signals from 
different locations [18], this is a feature whose significance is lost at very low levels of intensity.  Nonetheless, when the 
emergent light continues to propagate in the forward direction, and with unchanged polarization, then the factor of n½ in 
(1) is squared.  In this single-centre scattering case, it is trivially evident that an optical input with a given angular 
momentum – whether spin or orbital – can generate an onwardly propagating output with the same angular momentum 



character; the application of time-reversal symmetry [19] to equation (1) shows it by inspection.  In particular it is 
instructive to observe that the polarizability tensor (2) is cast in terms of products of the time-inverse transition electric 
dipole moments for ‘up’ and corresponding ‘down’ transitions, 0  r.  Although (2) is specifically limited to the electric 
dipole approximation, it is reasonable to suppose that these transitions must be electric dipole allowed if forward-directed 
propagation is to be efficient.  The restrictions of the electric dipole approximation will be removed in the ensuing 
development of theory, once the formalism of method is established. 
 
For the special case of a topologically charge (optical vortex) input beam, the arriving photons have an orbital angular 
momentum that is quantized azimuthally.  Forward propagation processes retain this orbital angular momentum 
absolutely – indeed this is true both for forward Rayleigh and forward harmonic generation [20].  As regards the spin 
angular momentum that is uniquely quantized in circular polarizations, the same rule applies for forward Rayleigh 
propagation in an isotropic environment.  Such retention of spin is not possible in forward harmonic generation because 
the single emitted photon can convey away only one quantum [21], and so angular momentum could not be conserved as 
Noether’s theorem [22] would require.  However, if deflection occurs – where the emergent, detected light emerges in a 
direction that differs from the input; then, the one-to-one mapping of angular momentum content is entirely lost, both for 
Rayleigh and harmonic scattering.  Again, this is readily shown by casting the emergent light in terms of the incident 
mode set, a procedure that scrambles the topological charge and also any spin angular momentum.  
 
Next we consider the case of a double-scattering event.  This represents the crux of this investigation, for it addresses 
electromagnetic propagation between two material interactions, neither of which is limited to the role of absorber or 
emitter.  This is important for two reasons.  First, this detaches propagation issues from others associated with photon 
creation or annihilation.  Secondly, it elicits the distance-dependent characteristics of such propagation, supporting the 
present focus on nanoscale transmission.  It might be considered that there is nothing further to analyze, given the simple 
outcome of the above consideration of single-center scattering.  However a moment’s reflection shows that this is far 
from the case.  Over nanoscale dimensions, and certainly in the optical near-field, one cannot presume a specific causal 
sequence of these scattering events.  Consistent with the basic tenets of quantum theory – and reflecting quantum 
uncertainty – one has to sum over all possible sequences of the fundamental photon events.  Quantum electrodynamical 
calculation of the quantum amplitude for double-scattering (at sites to be labeled A and B) thus entails the consideration 
of an unobserved state of the radiation field, cast in terms of virtual photons.  There is a total of four photonic 
interactions (input photon annihilation, virtual photon creation, virtual photon annihilation and output photon creation) 
constrained only by the coupling necessity that the sites of creation and annihilation of the virtual photon are different.  It 
is also simplest to assume that the sites of real input and output differ; in the following it will be assumed that a real 
photon enters at A and one emerges from B.  There are twenty-four time-orderings that contribute to the overall matrix 
element for the process – corresponding to twenty-four Feynman graphs [23] of the form illustrated in Fig. 1, or the same 
number of routes across a more comprehensive state-sequence construct, as in Fig. 2 [24]. 
 
 

 
 
Fig. 1.  One of 24 distinct time-ordered diagrams (time progressing upwards) for photon double-scattering, with an incident photon of 

mode (k,), virtual photons (p,) and an emergent photon (k,). 



 
Fig. 2. State-sequence diagram for double scattering 

 
In the ensuing calculation, with the requisite virtual photon summations necessarily to be effected over all possible states 
of the radiation field, any complete basis set will suffice.  Thus, if the two scatterers are labeled A and B, on summing the 
quantum amplitudes the matrix element emerges as follows [24] (now dropping the superscript implied labels 00 on the 
polarizability tensors):  
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the same result is also deliverable by a more direct route that circumvents the lengthy virtual photon calculus [23].  Here, 
V is the retarded resonance electric dipole-electric dipole coupling interaction [17, 25] which accommodates both near-
field and wave-zone limits.  However, in the near-zone, that limit is identifiable with the usual formula for the coupling 
of static dipoles.  In equation (3), each molecular polarizability again entertains a sum over states – for each such state r 
it is again reasonable to suppose that the transitions are electric dipole allowed.  The matrix element (3) thus 
accommodates a sum of terms of the form:  
 

  
A A B B

A B

0 0

B AA B
0 0

,
r r
j k

jk
r r r r

V k
E ck E ck

    
       

  
R R  , (4) 

which has been shown to allow the near-field transfer of spin angular momentum through the V, as shown in the work 
with Scholes [8].  
 
A comparison of equations (1) and (3) shows that it is reasonable to interpret the electric near-field impinging upon B, 
associated with scattering at A, as follows; 
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subject to a phase factor.  The physical interpretation of (5) is therefore the field associated with a collectivity of the 
virtual photon modes coupling A with B.  Although, when the initially incident light is endowed with orbital angular 
momentum, there is no specific need to cast the virtual photon sums in terms of specifically structured modes, it is 
perfectly admissible to do so – and in this case it is expedient to do so, because of the angular momentum properties that 
can then be inferred.  Essentially one is effecting a transformation over three degrees of freedom, between optical mode 



sets: in the conventional basis these degrees of freedom are the Cartesian components of the wave-vector, whilst in a 
Laguerre-Gaussian basis for example they are the axial magnitude of the wave-vector and the Laguerre polynomial 
indices l and p. 
 
Attention now focuses on the symmetry of the coupling tensor V in equation (5).  However, present purposes demand a 
result of wider applicability than the electric dipole approximation allows.  It has recently been shown [12] that the 
simplest virtual photon transit engages a generalized V tensor expressible as: 
 

    
1 1 2 2 1 1 1 1

2
... ...

0

1
( , ) ... ...

4m n m n

m ikR

i i j j i i j j i j i j

e
V k

R





       R .   (6) 

where m and n denote the electric multipolar order of the source and detector.   It then transpires that the engagement and 
high fidelity transfer of orbital angular momentum, desirable because of the higher (in principle unlimited) number of 
quanta that each photon might convey, is indeed possible in the near-field – but it is frustrated by the necessity of 
engaging higher multipoles.  Detailed analysis has, for example, demonstrated the dominance of a weight 3 character in 
electric quadrupole – electric dipole transfer in the near-zone, i.e. over nanoscale distances; the short-range contribution 
(decaying with the fourth power of distance) with three units of angular momentum engages two from the source with 
one at the detector.  However, when scattering events are concerned then the associated reduction in efficiency with 
every additional order will still compromise the viability of usage for the propagation of quantum information.  It may be 
recalled that for each unit increment in multipolar order, the associated quantum amplitude for a single photon event 
(creation or annihilation, whether of a real or a virtual photon) is diminished by a factor of typically 10-3; the quadratic 
involvement of such moments in the corresponding multipolar polarizabilities [12] means a 60dB loss per scatterer – 120 
dB for the pair – even if only electric quadrupoles and no higher multipoles needed to be invoked.   The only alternative 
that could preclude such a loss of efficiency is that the engaged 0  r transitions are additionally allowed by lower 
multipoles – which would critically undermine any fidelity in angular momentum information transfer.  Thus it is in 
practice impossible to circumvent the key obstacle observed earlier – that it is not possible to secure fidelity of angular 
momentum transfer from light to matter in any of the 0  r transitions connected with the resonance coupling tensor V.  
Again, therefore, it emerges that there are considerable, perhaps insurmountable difficulties in attempting to achieve the 
unambiguous nanoscale transmission of orbital angular momentum information. 
 
 

4. CONCLUSION 
 
Issues associated with the fidelity of conveying photon orbital angular momentum information over nanoscale distances 
have been addressed by identifying relevant symmetry properties in the tensor for photon propagation between arbitrary 
interactions with matter, accommodating all orders of electric multipole coupling.  The results of this analysis indicate 
that one cannot assume a one-to-one mapping between the input and output, a conclusion that has significant 
implications for some of the sought developments in quantum information technology.  
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