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Abstract

A microscopic QED theory is presented featuring dipole dipole energy transfer between molecules at arbitrary
distances in a dielectric medium. The medium is shown to produce modifications of the transfer rates due to screening
contributions. (1,2)%, local field effects, [(¢ + 2)/3]* and energy losses in the medium, exp( — 2 Imz'"2KR), hcK being the

transfer energy.

1. Introduction

The resonance transfer of electronic excitation
energy is a phenomenon which occurs in a wide
variety of systems, perhaps the most familiar mani-
festation being photosynthetic energy migration.
For intermolecular separations R« (1 1s a re-
duced wavelength corresponding to the transfer
energy), the process is generally considered to be
induced by an instantaneous Coulomb interaction
which produces the Forster R ™ ¢ dependence of the
dipole-dipole transfer rate [1]. The quantum elec-
trodynamic (QED) approach to the problem ori-
ginating from the pioneering studies by Avery [2]
and Gomberoff and Power [ 3], extends the Forster
theory to arbitrary distances, thus establishng
a connection to radiative transfer. The approach
does not differentiate the process by the radiative
and radiationless mechanisms as they respectively
correspond to the far and near zone limits of a
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unified theory [2- 5]. Throughout the whole range
of distances, energy transfer is treated as a con-
certed second-order process mediated by a virtual
photon [4,5]. Here the pair rate of dipole dipole
transfer has both the Forster R © and the radiative
R * terms. as well as an R~ * contribution which
features in the intermediate region of distances
where R ~ 4.

However. the normal QED approach involves
a quantised electromagnetic field and a pair of
molecules or atoms between which the energy is
transferred, with no consideration of the other spe-
cies which constitute the medium. Consequently.
the R ° contribution present in the pair rates
might appear to lead to potentially infinite en-
semble rates. For instance. the total rate of energy
transfer from an initially excited molecule to any of
its surrounding counterparts, calculated as a sum
of the corresponding pair rates. would linearly
increase with the system dimensions and could
therefore grow to infinity. In our previous paper
[5]. it was proposed that the distance dependence
of pair rates be modified via the phenomenological
introduction of exponential decay factors in order
to account for energy losses associated with the
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media molecules. Although that resolved the prob-
lems of potentially infinite decay rates and produ-
ced physically reasonably rate equations for the
ensemble, the phenomenological approach lacked
Justification at the fundamental microscopic level
of QED.

Here a reformulated microscopic QED theory is
presented which systematically deals with these
issues and thus fully accounts for dipole—dipole
energy transfer in a dielectric medium. A more
detailed analysis will appear elsewhere [9].

2. Theory

To begin with, the multipolar formulation of
QED [6,7] is employed. The main advantage of
this formulation is that, except for the Coulombic
binding within individual molecules, electromag-
netic intermolecular interations are fully retarded,
induced by the intermolecular propagation of
transverse virtual photons. To deal with energy
transfer between molecules A and B (to be referred
to as guest species), the total system is divided into
the guest subsystem and the bath consisting of the
radiation field and the host (medium) molecules.
Considering the operator V' = V, + V5 for the in-
teraction between the guest species and the radi-
ation field as a perturbation, the energy transfer
rate reads, in terms of the second perturbation
order

W = Q2n/h)[<T®)26(AEx — AEg), (1)
(T = (B¥AIKO|V(E; — H — Hpg
— Hyan +i8)7 V|0 4*>|B) 2

(s » + 0), where the asterisk refers to electronically
excited molecules, AE, and AEy are the excitation
energies of A and B, E;=E} + Eg + E, is the
energy of the initial state; 0> and E, are, respective-
ly, the state vector and the energy of the bath
ground-state. The radiation-matter coupling is
fully incorporated in the above bath Hamiltonian
Hpan- Thus, the guest—guest energy transfer is me-
diated by the bath excitations (polaritons) rather
than pure photons.

To exploit the polariton concept for the bath
representation, the host molecules are first assumed

to occupy the sites of a simple cubic lattice and to
be characterised by isotropic polarisability. Fol-
lowing Orrit and Kottis [7], the second quantised
polariton (bath) Hamiltonian is expressible in the
following compact form involving the newly de-
fined matrix Hamiltonian hy,,:

Huoan = (B/2)(B* A* BA| hpu|BAB* A™), 3)

Q C 0 c*

'cx Q 'C* 0
hoan = 4
we=l o ¢ o cn (4)
'‘C 0 ‘'C Q

where |[BAB* A¥) and (B* A* BA| are the row and
column matrix vectors, their components
B,s, i+ 6.2 Bag and g, . ; being the molecular and
radiative Bose creation and annihilation operators;
A = 1,2 is the photon polarisation index, k is the
first Brillouin zone wave vector, G is the inverse
lattice vector, and the indexes (n, 8) label, respect-
ively, the molecules in the lattice and the molecular
excited states. The above Q, and € are the diagonal
matrices of molecular and radiative frequencies,
wop and w, . ¢; the matrix elements of C express the
coupling between the transition dipole (n, f) and
the radiation mode (K + G, A) [7]; and the asterisk
and the index t refer to the complex conjugated and
transposed matrices, respectively.

By applying this matrix formalism, the energy
transfer rate is then derived in terms of the Green’s
operator corresponding to the polariton matrix
Hamiltonian. That allows us to bypass the eigen-
state problem which commonly features in polar-
iton-related topics. Subsequent application of
the Green function techniques leads to the fol-
lowing:

[KTP? = e "[(e + 2)/3]**F(KR)
x exp(— 2Im KR), (5)

where K = ¢'?K, heK = AE, being the transfer
energy; F is the function

F(y) = (4neo) " 2pp2 | K3{o3[y 2 — iy~ 2]

— oy P (6)
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and
g, =exr ey — jlea-eg)leg-er) (j=1.3) (7)

are the orientational factors. The above ¢ is the
medium complex relative permittivity, e,, e, eg are
the unit vectors along the transition dipoles of
A and B and their separation vector R, and 4 and
g are the absolute values of the transition dipoles.
Equations (5)—(7). together with (1), define the en-
ergy transfer rate in the dielectric medium at arbit-
rary distances R. The subsequent standard aver-
aging over the initial and summing over the final
molecular states of A and B [1.5] smooths the
contributions by the delta function in Eq. (1).

3. Discussion

The present theory involves mediation of energy
transfer by bath polaritons. In contrast to the loss-
less polariton models normally considered in the
literature [ 7,8]. here an arbitrary number of excita-
tion frequencies wqy Is accommodated for each
medium (bath) molecule. This includes, in particu-
lar, the important case where the excitation energy
spectrum of the bath molecules is sufficiently dense
that 1t can be treated as a quasicontinuum in the
energy region of interest. In such a situation, the
photon ‘dressed’ by the medium polarisation (the
polariton) acquires finite lifetime, the role of the
dissipative subsystem being played by bath molecu-
les. It is this which leads to the appearance of the
exponential decay factor (Im¢'2 5 0) in the micro-
scopically derived pair transfer rates. The factor
coincides, in the limit of low densities of medium
molecules (|&| ~ 1), with that previously obtained
on a phenomenological basis [5]. In addition, the
medium produces extra modifications of the rates
due to screening contributions, (1/¢)%, and local
field effects, [(¢ + 2)/3]% as well as the ¢-depend-
ence of the energy transfer function F(¢''2KR). The
formalism addresses cases where the surrounding
medium is either absorbing or lossless over the
range of energies transferred. In the latter case the
exponential factor does not appear and the dielec-
tric effect in the near zone reduces to that which is
familiar from the theory of radiationless (Forster)
energy transfer [1].

Although the present polariton representation of
the bath may seem to be rather specific through its
embodiment of translational symmetry, the rate of
guest—guest energy transfer which is at issue is not
sensitive to the possible lack of this symmetry in
most important situations. That includes, first of
all, the case where the spectral widths of the host
electronic hines, hAwy,,. exceed the characteristic
energy b, of the resonant coupling between the
neighbouring host molecules. In this situation the
electronic excitations of the medium are incoherent
[1]. which implies non-sensitivity to the possible
introduction of some positional or energetic dis-
order in the bath molecules. In particular, our
assumption that these host molecules are charac-
terised by isotropic molecular polarisabilities can
approximately represent a situation where non-
1sotropic molecules are randomly oriented in their
sites.

On the other hand, the translational symmetry
may have essential importance for the opposite
{coherent exciton) case. which arises when
Vieaw > hAy,. Here the excitations are well rep-
resented in terms of spatially delocalised exciton
waves. and any destruction of the translational
order results in the scattering of such waves
ti.e. losses of the exciton coherence). However,
if the energy transferred between the guest spe-
cies i1s far removed from any exciton resonances
of the medium, the coherence does not play a
significant role and the transfer rate is once
again insensitive to the lack of translational regu-
larity.

In conclusion. this theory is applicable to a
wide range of both ordered and disordered ma-
terials, describing the transfer of electronic energy
between chromophoric entities in organic, in-
organic and biological systems. Its distinctive
features are incorporation of the dielectric ef-
fects of the supporting medium and also the
interplay between radiative and radiationless
transfer.
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