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A microscopic quantum electrodynamical (QED) theory is developed for representing the dynamics of
excitation transfer in a dielectric medium between individual species, such as atoms or molecules, at
various separations, including both near- and far-zone distances. The theory, built on explicit QED con-
sideration of the time evolution, fully incorporates medium-induced energy renormalizations and damp-
ing corrections for the transfer species. In addition, it embodies the local field and screening contribu-
tions which have already been featured in a previous paper devoted to the rate description. The
influence of the medium is also manifest in the relativistic time-lag (reflecting the delay of the initial ar-
rival of the excitation at the acceptor molecule), which is now shown to be characterized by the group
velocity of the light. The phase velocity features in the distance-dependent retardation in phase of the
transition matrix element. The theory extends to different transfer regimes. Following a general
analysis, the paper reexamines the rate regime, where not only the transition matrix element but also the
molecular excitation frequencies for the transfer species are modified by the medium. Another non-
rate-regime, occurring in situations that lack an intrinsic molecular density of states, displays oscillatory
dynamics over short transfer distances. These oscillations are suppressed by monomolecular damping in
the long-range case: here the transfer process is cast in terms of transfer probabilities, rather than rates.
In all situations the characteristic parameters of the process properly reflect the influence of the medium,
though it is apparent that in the limiting case of an infinitely dilute medium the present results are con-
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sistent with those previously obtained for the vacuum case.

I. INTRODUCTION

The resonance transfer of electronic excitation is a
phenomenon familiar from its manifestations at various
ranges. For transfer distances R exceeding the appropri-
ate (reduced) wavelength of light, A, the process is often
understood as being a two-stage event involving emission
of a real light quantum by one initially excited molecule
(atom, ion, or chromophore group) and its subsequent re-
capture by another moiety. It leads to the well-known
far-zone R ~? distance behavior for the pair transfer
probability, the latter being enhanced by the large num-
ber of absorbing molecules surrounding the emitter. On
the other hand, over distances R below A there is another
type of transfer, kinetically in competition with the natu-
ral decay of the excited states. In dense media, that may
lead to fast and effective migration of the photoexcitation
energy among the molecules during their excited-state
lifetime.! This is the feature exploited in photosynthetic
light harvesting.? The latter near-zone transfer is tradi-
tionally considered as being induced by an instantaneous
Coulomb interaction and is therefore generally referred
to as radiationless."”*> For dipole-dipole allowed transi-
tions, the rate of such a radiationless process has the fa-
miliar R ~® distance dependence first predicted by
Foster.*

Since the 1960s, the formalism of quantum electro-
dynamics (QED) has been used to address, in a number of
publications, the problem of resonance excitation
transfer, primarily in order to explore the crossover from
near- to far-zone behavior.’”! Under the QED ap-
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proach both far- and near-zone transfer may be equally
treated as concerted radiative processes involving the
emission of a transverse virtual photon by one molecule
and its recapture by another.®'°=2 From application of
the Fermi golden rule, pair transfer rates have been ob-
tained displaying both R ~® and R ~2 terms, as well as an
extra R ~* contribution,!! ™'7 the latter featuring at criti-
cal retardation distances R~A. In other develop-
ments,>%%21723 the explicit QED time evolution of the
energy transfer has been examined for the case of a pair
of two-level species, level broadening arising exclusively
due to radiative damping. The result is characterized by
damped oscillatory behavior of the transfer kinetics.
Although a sporadic handful of attempts to accommo-
date medium effects in excitation transfer has ap-
peared,”!*17 most existent QED theories totally ignore
the influence of such effects. The 1989 treatment by
Craig and Thirunamachandran,'* cast in terms of third-
body mediation, led to a new discussion of the way to in-
corporate dielectric characteristics. It was suggested
from macroscopic arguments'* that the vacuum dielectric
permittivity €, entering the equation for the rate of exci-
tation transfer in vacuo should be replaced by its medium
€ to represent the screening. Nevertheless, in using this
prescriptive approach other important medium effects,
such as local fields, energy losses, and changes in charac-
ter of the medium-induced rate modifications on passing
from the near to far zone, have not been considered. It
was the main objective of our previous paper?* to develop
a QED theory which systematically dealt with these is-
sues entirely on the basis of a microscopic many-body
framework. In contrast to conventional QED theories
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(see, e.g., Refs. 8~19) in which energy transfer is cast in
terms of the intermolecular propagation of virtual pho-
tons, the new theory has been formulated by invoking the
concept of bath polaritons (“medium-dressed” photons)
mediating the process.”> To this extent, the approach
resembled that employed by Knoester and Mukamel?®
with respect to the related problems of intermolecular
forces and superradiance, in which a lossless medium was
modeled by an ensemble of two-level species. In our
work?* an arbitrary number of energy levels for each
medium molecule has been accommodated, the ensuing
mathemetical complications being resolved through a de-
velopment of Green’s-function techniques in order to
bypass the explicit eigenvalue problem.

As a result of these deliberations,?* the theory is now at
a stage where it can address both transparent and absorb-
ing media. In the absorbing case, an exponential (Beer’s-
law) factor appears as an intrinsic part of the microscopic
analysis, thus taking account of the associated energy
losses. This solves from first principles the problem of
ensemble rates which are potentially infinite due to the
divergent far-zone R ~2 behavior. On the other hand, the
medium modifications in the near zone agree with those
familiar from the theory of radiationless energy transfer.
It is to be pointed out that the previous theory?* has been
based on a rate description, employing the Fermi golden
rule, which left other dynamical aspects out of considera-
tion.

It is the purpose of the current paper to present a de-
tailed study of the transfer dynamics through explicit
consideration of the QED time evolution. A distinctive
aspect of the theory is that it affords a combined analysis
of rate and nonrate regimes in the context of examining
the influence of the dielectric medium. The theory is
built on the foundation established in our previous
work.?* Again, the approach exploits the concept of
transfer mediated by bath polaritons. The theory also
makes use of the previously derived tensor for the retard-
ed (electromagnetic) dipole-dipole coupling in a medi-
um,** now more with regard to the dynamical behavior.
The present study not only extends consideration beyond
the rate description, but also reexamines the rate regime
itself. It leads to incorporation of an energy renormaliza-
tion for both the ground and excited states of the transfer
species, as a result of the interaction of these species with
the medium molecules and also with each other. Thisis a
feature not reflected in direct application of the ordinary
Fermi golden rule.

The paper is organized as follows. In Sec. II A the
Heitler-Ma method?”?® for describing the quantum time
evolution is first briefly outlined and subsequently refor-
mulated to suit our current purposes. Consequently, the
basic equations for time evolution acquire a form more
symmetric with respect to the initial and final states. Sec-
tion II B defines the Hamiltonian of the system compris-
ing the selected pair of transfer species and a bath consti-
tuted from the other (medium) molecules and the quan-
tized radiation field. Section III concentrates on the
transfer dynamics, starting from general considerations
and leading to an analysis of both the rate regime and
beyond. The nonrate regime features in situations lack-
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ing an intrinsic density of molecular states for the partici-
pating species. Section IV summarizes the results.

II. FORMULATION

A. General description of time evolution

Consider the quantum dynamics of a system with a
time-independent Hamiltonian separable as the sum of a
zero-order Hamiltonian H° and an interaction term V:

H=H’+V, (2.1)

where the eigenvectors of H® include, inter alia, both the
initial state |I) and the final state |F) of the process.
For reasons which will become apparent later, we shall
commence work in the Schrodinger representation rather
than the more common interaction representation. The
state vector of the system then evolves at positive times
from the state |I) at t=+0 as

S()|I)Y=06(t)e H/HT) 2.2)
= —# _+°cdee_""/ﬁ(e—H—Hn)wlU)
(n—+0), (2.3)

O(t) being the unit step function. The Heitler-Ma
method?”?® may now be employed, giving

(Flte—H+in) Y1)
_ Up(€)
" (e—Ep+in)e—E;+LifAil (e)+in]

(2.4)

Here Ug;(€) and T(€) are, respectively, the matrix ele-
ments of the off-diagonal transition operator U(e) and
the diagonal damping operator I'(€), both determined by
the recurrent relation

U(e)—éﬁl‘(e)= V+V(e—HO+in) " 'Ue) . (2.5)

For present purposes it is more convenient to represent
the above in a nonrecursive format as

[Ule)—(i/2)A(€e)]II)

=[V+VP,(e—H—P, VP, +in) 'P,V]II), (2.6)
where the idempotent operator
P,=1—|1)(I| 2.7)

identifies the exclusion of contributions by the initial
state in the perturbation expansion of Eq. (2.6). Recast-
ing the transition matrix element in a form where the per-
turbational contribution by the final state is no longer ex-
plicitly featured, one arrives at

e—Ep+in
€e—Ep+(i/2)il+in

Up (€)= Up 2.8)

where the newly defined quantities on the right, Uy, and
I'%, both have implicit € dependence and are given by
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Up;=(F|[V+VPPr(e—H’—P,PVP,Pr+in) " 'P,PV]|I) ,
——éhl“};=(F|[V+ VP, Pp(e—H®—P,P VP, Pp+in) PP V]|F),

with
Pr=1—|F){F| .
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(2.9)
(2.10)

(2.11)

Finally, using Egs. (2.3), (2.4), and (2.8), one finds, for the transfer probability amplitude,

r —iet/h
Une

____1_ + o
(FIsiID=—5—[""d

o Te—Ep+(i /AT, +inlle—E; +(i /DA +in]

which is still an exact result. Here the presence of both
I'; and I'y in the energy denominators explicitly accom-
modates the damping corrections and energy renormal-
ization to the initial and final states. Consequently, the
transfer amplitude as presented above has a form more
obviously symmetric with respect to the initial and final
states than would result from direct substitution of Eq.
(2.4) into (2.3). Still, there is some asymmetry with
respect to these states, reflected by the prime on I'. The
retention of this asymmetry will be of vital importance in
the case of sharp energy levels where the transfer species
lack an intrinsic density of molecular states; this aspect is
to be considered in the final part of Sec. III.

B. Definition of the system

The dynamical system of interest comprises an ensem-
ble of molecules (atoms or chromophoric groups) and the
quantized radiation field. To deal with excitation transfer
between a selected pair of molecules 4 and B, the full
system will be divided into two parts, one subsystem con-
sisting of species 4 and B and the other the bath. The
latter, in turn, is comprised of the quantized electromag-
netic field and the remaining molecules which constitute
the surrounding medium. Note that the molecules of the
medium may, but do not necessarily, differ in type from
A and B.

In the multipolar QED formulation to be employed
here, the electromagnetic coupling entails an interaction
between the molecules and radiation field, there being no
instantaneous (Coulombic) intermolecular contribu-
tion.” 3! With regard to the chosen partitioning of the
system, the zero-order and interaction Hamiltonian terms
in the electric dipole approximation are then

H°=H,+Hy+H,,, , (2.13)
V=Hi+Hint 2.14)
where
Hyw=Ho g+ 3 (Hy+H, (2.15)
X#A4,B
with
HP'=—e5 'w(X)-d* (Ry) . 2.16)

Here H\,, is the bath Hamiltonian, Hy is the Hamiltoni-
an for molecule X positioned at Ry, and HY™ represents
the radiation-molecule coupling; u(X) is the electric di-

(2.12)

II;Je operator, and in each case the molecular index X
spans both 4 and B as well as medium species. Finally,
H,_,4 and d' are, respectively, the radiation Hamiltonian
and the electric displacement operator, for both of which
the explicit mode expansions are given elsewhere (see, for
instance, Refs. 15—18, 24, and 31).

For the representation of energy transfer from A4 to B,
the initial- and final-state vectors are

l1)=|47,B,;0), |F)=[4,,B;;0), (2.17)
the corresponding energies being
E;=e, . tegz te, EF=9A,+93-+e0v (2.18)
n m 4

where |0) is the ground-state vector of the bath, e, the
corresponding energy, and the asterisk refers to a mani-
fold of the electronically excited state of the transfer
species 4 and B. In the following, the vibrational, rota-
tional, etc., sublevels (if any) of the molecules are mostly
kept implicit, but are where necessary explicitly denoted
by the indices n, m, I, and p. Having defined the system,
we now turn our attention to the transfer dynamics.

III. TRANSFER DYNAMICS

Because of the two-center character of the interaction
operator (2.14), it is convenient to carry out a corre-
sponding partitioning in Eqgs. (2.6) and (2.10), writing

i i i
—;ﬁFz(6)=Ae,+Aes—;ﬁ7,,-—5ﬁl““ , (3.1)

[ _ i .
-—;ﬁl";(e)—AeA +Ae,. zﬁyB. ZﬁFAB. , (3.2)

where the one-center contributions, denoted by a single
index A or B, have already been separated into real ener-
gy shifts and imaginary damping terms; the other (com-
plex) quantities I' ., and T, . are two-center contribu-
tions resulting from cross terms (containing both ¥, and
V) in the perturbation expansion of (2.6) and (2.10).
Here, for instance, Ae ,. and y ,. represent, respectively,
the bath-induced level shift (energy renormalization) and
the decay factor for the excited molecular state | 4*).
Each such energy renormalization (Ae ,., Aeg, Ae 4, and
Ae,.) embodies not only the radiative (Lamb) shift,”> but
also the dispersion energy contribution (together with
higher-order energy corrections) arising from the interac-
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tion of A4 or B with the medium molecules. Note that the
dispersion energy now appears in the second order of per-
turbation, rather than the usual fourth order,’"3%34 as
the coupling of the radiation field with the medium has
already been included in the zero-order Hamiltonian H°.

|
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In this paper we shall not consider the explicit structure
of these energy shifts, which are to be treated as the pa-
rameters of the theory.

By making use of Egs. (3.1) and (3.2), the transfer prob-
ability amplitude (2.12) becomes

, »'-i(w‘wB')t
Ug(w)e

: @
2mifi 7 — e [0—wp +(i/2)y p. +(i/2)T 5 Fin'llo—w , +(i/2)y , +(i/2)T . +in']

0 e
where
w=(e—e —eg—Ae,—Aeg—ey)/h (3.4)
is the new variable and
w,=le, the, —e,—Aey)/t, (3.5)
wg.=(ey. +Ae, —ep—Aeg)/f (3.6)

are the excitation frequencies of 4 and B. These now in-
corporate the level shifts both for the molecular ground
and excited states. Finally, in Eq. (3.3) the transformation
to a modified interaction representation has been carried
out as

(FISO|I)Y=(FI|S(t)|I) exp[ —i(Ep+AEp)t /%],
3.7

the term “modified” referring to the medium renormal-
ization of the final-state energy Ey by the amount
AEp=Ae +Ae,..

Now we turn our attention to the transition matrix ele-
ment Up(w), which, in the present study, will be
represented through an effective second-order contribu-
tion as’*

U,'q(w)z UI(’%)(w)=IJ’B,-9ij“Aj > (3-8)
with
‘9.:__1_2 (0ldi(rp)lo){oldj(r)]0)
v hel < o—T,+in
(0ldi(r 4)lo ) (ald}(rg)|0)
| Soldytr o di(r )| . (3.9)

o=, —w, — I, +iy

where p,=( A|u(A)|A*) and pgy=(B*|u(B)|B) are
the transition dipole moments of 4 and B (chosen to be
real), fill,=e_ —e, is the bath excitation energy, and the
index o denotes excited (single-polariton) states® of the
bath accessible from the ground state |0) by single ac-
tions of the operator d'(r). Equation (3.8) is cast in a
form which entails the convention of implied summation
over repeated indices. Within the range of frequencies @
close to molecular transition frequencies @ " and © B the

energy denominator (w—w wy —Il,+in') may be

4

(n’'—0), (3.3)

-
replaced by (—w—II,+i%’) in the nonresonant term of
Eq. (3.9).%¢ The tensor (3.9) then reduces to that con-
sidered in our previous paper, giving?*

1 [ n?42 vac | n@
6,-]-—;1—2 3 0 1= | » (3.10)
3,iyR
\% _Je 1 I
Oi(y)="— | (8, —3R,R;) PR
1
(5,1.—@,.12,-)}; , (3.11)

where n=n'~+in" =¢€!’?, with €, being the complex rela-
tive dielectric permittivity satisfying the Clausius-
Mossotti relation, as explicitly presented in Ref. 24; here
also R=rz—r, is the A4-B separation vector, a caret
referring to the corresponding unit vector. The above 6;;
represents the tensor for the retarded dipole-dipole elec-
tromagnetic interaction in the medium, 6;7°(y) being its
vacuum counterpart: the argument (y =nw/c) of the
latter is now scaled by the complex refractive index
n=n(w). The electromagnetic tensor 6;; also manifestly
accommodates both screening and Lorentz local field fac-
tors. It is to be noted that such a description in terms of
the macroscopic dielectric constant as featured above is
applicable for A-B separations R exceeding the inter-
molecular distances characteristic of the medium.?* Also
note that, although the derivation of the tensor 6,; given
by Eq. (3.10) has for mathematical convenience invoked a
regular lattice arrangement of the medium species, the re-
sults are applicable to a wide variety of energetically and
positionally disordered media as previously discussed.**
In the context of time evolution, the » dependence in
the exponential phase factor exp(inwR /c) of the transi-
tion matrix element U?(w), through (3.8), (3.10), and
(3.11), will lead to appearance of the time lag in the initial
arrival of the excitation at molecule B, as a result of the
finite speed of the signal propagation. The remainder of
the transition matrix element, together with other w-
dependent parameters in Eq. (3.3), will at this stage be

evaluated at the resonant transfer frequency, o=ow,..
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Linearizing the exponent,
1_4d |ne , (3.13)
e do | ¢ w=ap
n(w)oR /c=[n(wglogR /c]+[(0—wp)R /v,], (3.12)
and defining 7=(¢—R /v,), the transfer amplitude (3.3)
with | then takes the form
—ilo—w_ )7
UP(w,.)e B
P 1 + FI B
=== , (3.14)
(FISWII) 2mhii Y - do o=@y +(i2)y . +in'llo—w . +(i/2)y ;. +in']
exp(—iy .7)—exp{[—1y , tilw, —w )]}
="' (w,.)0() bt -4 — , (3.15)

which takes account of damping for both sites 4 and B.
Here the two-center contributions I' 4-p and I‘A' - are for
the present omitted; the physical basis of this approxima-
tion will be clarified in due course.

To make a brief comment on Eq. (3.15), the radiative
group velocity v, is here featured in the delay time for
the initial arrival of the excitation at molecule B, whereas
the phase velocity v, =c /n, entering the exponential fac-
tor exp(iwy.R/vy) of the transition matrix element

U}%’(ws. ), characterizes the distance-dependent retarda-

tion in phase. It is also to be noted that incorporation of
the time lag in the above manner implies that the refrac-
tive index, and hence also the group velocity, takes real
values. Nonetheless, the following general expressions
(3.16) and (3.17) for the transfer rates hold both for loss-
less and absorbing media.

A. Transfer rates

Let us consider first the case where the spectral widths
of the species participating in the transfer exceed the
magnitude of the corresponding transition matrix ele-
ments. The overall migration is then incoherent, de-
scribed as a multistep process involving uncorrelated
events of excitation transfer between the molecules of the
system. With regards to the selected pair 4-B, by omit-
ting the relaxation terms y ,. and vy . in Eq. (3.14) and
for times in excess of the transit time R /ug, the resultant
rate equation reads

WF1=%|<Fl§(t)|I)|2

27
=5 Ui @, )80 . ~Ho, ) . (3.16)
The pair transfer rate W,__ . is subsequently obtained by

means of the standard procedure involving averaging
over initial and summing over final molecular states, as in
Refs. 1 and 16:

Wee i =2PiWpr -
IF

(3.17)

As discussed previously,?*37 |U{%|? entering Eq. (3.16)
is obviously influenced by the surrounding medium

(0p.—w )+3ily . —vp)

through local field and screening contributions, as well as
in the medium-induced (refractive) modifications to the
distance dependence. The latter include, inter alia, the
appearance of an exponential decay factor
exp(—2n"wR /c) in the case of a lossy medium (n''#0).
That regularizes the potentially divergent R ~? term.?* A
new feature arising from the present dynamical con-
sideration is that the excitation frequencies w ,. and @ 5

have now been modified (renormalized) as a result of the
interaction of the transfer species with the molecules of
the surrounding medium. The mutual interaction of 4
with B may also be taken into account by retaining the
omitted terms I ., and I"A' p- in Eq. (3.14). It alters the

molecular excitation frequences @ ,. and ® - featured in

the energy conservation 8 function of Eq. (3.16) by the
amounts ImI’ ., /2 and ImI‘A'B./Z, respectively: These

represent changes in the excitation energy of each
transfer species due to its interaction with the other.
Such corrections decrease with distance, and over the
separations of interest where R is greater than typical in-
termolecular distances within the medium, they contrib-
ute negligibly.

At this juncture, a remark should be made concerning
some asymmetry of the formalism with regard to the ini-
tial and final states, as reflected by the prime on I:;B..

The rate regime generally implies the presence of a dense
structure of (vibrational) molecular energy levels within
the electronic manifolds of 4 and B. Hence the asym-
metry in question vanishes, as either inclusion or ex-
clusion of the individual states (such as |I) or |F)) in the
intermediate-state summation does not significantly alter
I ,.pand I[,,.. It is a different story in the case where
there is no intrinsic density of molecular states for the
participating species, as is to be considered next.

B. Nonrate regime

Suppose now that each of the ground- and excited-state
manifolds of 4 and B is characterized by only one molec-
ular sublevel, so that the subsystem A-B may be treated
as a pair of two-level species. Ignoring contributions
from states with two or more mediating bath excitations
(polaritons), the exchange of energy between 4 and B
now occurs exclusively through intermediate states in



13 376

which both transfer species are either in their ground or
excited states, the bath being in a one-polariton excited
state. Under these conditions, T’ and T, of Egs.

(3.1) and (3.2) are
in [UP(0)]/#
2 4B w—w, +(i/20T . +in'

A'B

(3.18)
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r,, =0, (3.19)

where use has been made of Egs. (2.6) and (2.10). Substi-
tuting these results for I' ., and I‘A'B. into the general

dynamical equation (3.3), the probability amplitude be-
comes
—ilo—w_
U (w)e 5

~ _ 1 + o
(FISID==5— [ "do

— e [co-—coB.+(i/2)yB.+i17’][w—~mA.+(i/2)yA*+in’]—[U‘F%)/ﬁ]2'

To illustrate the precise form of the time evolution for
one specific application, one finds for the case of identical
species (0 ,.=w,., ¥ ,.=Y¥p.), and without regard to the
time delay R / vg,38 the following:

[(FIS()IT) [=1t[cosh(y 45t)—cos(2Q z1)]e  *
(3.21)

where the transfer frequency ) ,z and the inverse time
¥ 48> respectively, represent the real and imaginary parts
of the transition matrix element:
ﬁ‘lugkﬁ%.):aw—énB _ (3.22)
Equation (3.21) has a form familiar from the case of ener-

gy transfer between molecules in vacuo,®*'~?* although
the parameters y 45, v,., and Q,p here display the

influence of the medium. Note that although the transfer
species 4 and B have been modeled as two-level systems,
the formulation still allows each of the surrounding mole-
cules to possess an arbitrary number of energy levels,
thus accommodating the cases of both absorbing and
lossless media.

Expression (3.21) represents the oscillatory to and fro
exchange of excitation accompanied by damping. This
type of dynamical behavior is a direct consequence of the
absence of a density of final states, a feature which obvi-
ously makes the rate description inadequate. Nonethe-
less, a distinction should be made between the short-
range reversible Rabi-type oscillatory behavior, which
does not represent any real flow of energy from 4 to B,
and the long-range behavior. In the latter case, the exci-
tation energy of A is irreversibly passed to B. Under
such circumstances it is appropriate to introduce transfer
probabilities (rather than rates), as will be shown below.

In the long-range limit, the contribution [ U}3']?, asso-
ciated with the mutual coupling between A4 and B, may
legitimately be omitted in the denominator of the in-
tegrand in Eq. (3.20). The system then again follows the
same time evolution as described through the earlier Eq.
(3.15), where the two-level species 4 and B are now not
necessarily identical. Here the transfer dynamics reflect
both the initial arrival of excitation at molecule B com-
mencing from time ¢ =R /v, and the subsequent decay of

(3.20)

the resulting excited state. The rate of the latter decay
may be considered the same as that for the free molecule
B,y g asat large distances the influence of A is minimal.
Accordingly, the total transfer probability P may be
defined as the probability for irreversible trapping of the
excitation by molecule B. Integrating the population-
weighted rate of decay of the excited state of B, we ob-
tain, for P,
S N 2
P= R/Ug|<FlS(t)iI)| Y p-dt (3.23)

(yAA+yB.) .
—o, H+y oty )4

=(Yp+vip )‘}’;1 (@

B

(3.24)

which is in agreement with the previous far-zone result
for the transfer of energy between a pair of molecules in
vacuo.® The explicit expression for the natural decay rates
featured in the above is, for the specific consideration at
this stage of a nonabsorbing medium,

| pioy.

3meyfic’

n2+2
3

(X=4,B). (3.25)

Yx

Hence, using Egs. (3.8), (3.10), (3.11), and (3.22), the
long-range result (3.24) assumes the form

=%<05)[(ﬁ,,-ﬁB)—(ﬁA-ﬁ)(ﬁB'ﬁ)]z/Rz, (3.26)

with
22
(g.)="1 n’+2 | %
B n 3 3eyfic
(y o Fvp)/2

X

5 5 (3.27)
(g~ )+ (y  ty,y) /4

Here, in addition to the appearance of the refractive
prefactors, the influence of the medium also extends both
to the transfer frequency w,. and to the decay parameters

v ,- and v ;. through Eq. (3.25). The above {0 5) may be
identified as the isotropic absorption section of B, 0 z(w),
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averaged over the normalized emission spectrum of 4*,
I A.(w):
(05)=[""as0) , (@)do, (3.28)

with o 3(w) and I , () given by

(o)=L [n2F2 ? phwy. ¥ p-/2
B n 3 3efic | (w—wp. )2+ (y,./2)?
(3.29)
and
Y /2
I,(0)=— 4 (3.30)

T | (0—0 P +(y ,./2)?

Finally, one obtains, for the orientationally averaged
probability,

P=(oy)/471R?, (3.31)

which is the ratio of the spectrally averaged isotropic ab-
sorption cross section to the spherical surface at distance
R, 47R% In the case of an absorbing medium, an ex-
ponential decay factor of the form exp(—2nrn"wR /c)
would also be featured in the above.

IV. CONCLUSION

A microscopic quantum electrodynamical (QED)
theory has been developed for representing the dynamics
of excitation transfer in both lossless and absorbing
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dielectric media. The theory, built on explicit QED con-
siderations of the time evolution, fully incorporates
medium-induced energy renormalizations and damping
corrections for the transfer species. In addition, it embo-
dies local field and screening contributions, together with
changes in the character of the medium influence on
passing from the near to the far zone. The effect of the
medium is also manifest in a modification of the relativis-
tic time lag, now shown to be characterized by the group
velocity of light. On the other hand, the phase velocity is
featured in the distance-dependent retardation in the
phase of the transition matrix element U%.

The theory extends to different transfer regimes. In
the rate regime, not only the transition matrix element,
but also the molecular excitation frequencies for the
transfer species are now modified by the medium. In oth-
er situations that lack an intrinsic molecular density of
states, a nonrate regime applies in which oscillatory
dynamical behavior is displayed over short transfer dis-
tances. Such oscillations are suppressed by monomolecu-
lar damping in the long-range case. Here the transfer
process is cast in terms of transfer probabilities,
P < |U|% rather than rates. In all the situations con-
sidered, the characteristic parameters of the transfer pro-
cess properly reflect the influence of the medium, al-
though it is apparent that in the limiting case of an
infinitely dilute medium the present results are consistent
with those previously obtained for the vacuum case.
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