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Abstract 

A new method of modelling molecular orientational dynamics is presented and illustrated by application to optical second 
harmonic generation (SHG). The method highlights the intricate dependence of the harmonic signal on the form and 
evolution of the molecular orientational distribution, and reference is made to some examples taken from the recent 
literature. Specifically, the cases considered relate to SHG in (a) poled polymers, (b) molecules oriented within molecular 
sieves and (c) molecules in films or adsorbed on surfaces. The technique invokes rotational averages weighted by static or 
time-dependent distribution functions expressed in terms of Legendre polynomials. Rotational diffusion is used to model the 
decay of second harmonic intensity associated with a growth or recovery of bulk isotropy, the results allowing several 
discrete contributions associated with different time constants to be characterised. For polarisation studies using surfaces and 
films, it is shown that caution is required in how the results are interpreted to reflect molecular orientation, approximations 
in commonly employed theory readily producing spurious results. 

1. Introduction 

It is well known that coherent second harmonic generation (SHG) cannot occur in single-phase molecular  
fluids possessing macroscopic isotropy [1]. In situations where such isotropy can be removed or is naturally 
lacking, SHG is allowed and can hence provide a very sensitive tool for detecting preferential molecular  
orientation. For example SHG has been used to gauge molecular  orientation: at fluid interfaces [2,3]; within cell 
membranes [4,5]; of  dipolar chromophores in poled polymers [6,7] and of  molecules within molecular  sieves [8]. 
In circumstances where preferential orientation arises, theory requires the application of suitably weighted 

three-dimensional rotational ensemble averages in order to arrive at the nett media response. 
The weighting of orientational averages by phase factors of  the form e x p ( i h - ~ , ) ,  where h and ~, are 

laboratory and molecule-f ixed vectors respectively, is important for consideration of pairwise interactions of  
molecules with radiation, and has been treated in some detail [9]. As indicated in Ref. [9] the form of  the 
derivation is easily extended to cover averages weighted by a Boltzmann factor and may be used, for example,  
to derive an expression for steady state electric field induced second harmonic generation (EFISHG).  In this 
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paper we consider how use may be made, under appropriate conditions, of rotational averages weighted by 
Legendre polynomials. The specific application to SHG is considered, and detailed comparisons are made with 
various experimental results in the recent literature. 

2 .  W e i g h t e d  r o t a t i o n a l  a v e r a g e s  

Let ~, define a unit reference vector fixed within the molecule of interest and fi be a unit laboratory-fixed 
reference vector. We shall consider the case of an ensemble of molecules such that the distribution of molecular 
orientations may be specified at any time t by the function f(O,t) where 0 is the angle between the two 
reference directions fi and ~, so that f(O,t)dO is the fractional number of molecules with their ~, vector set at 
an angle between 0 and 0 + d 0 with respect to the laboratory fixed vector ~. A time dependence is included to 
accommodate the situation in which preferentially oriented molecules suddenly become free of their orientating 
influence and undergo reorientation back to an isotropic distribution. We shall assume that the relaxation occurs 
via rotational diffusion and may therefore be described by [10] 

- - -  sin 0 ( I )  kT Ot sin 0 O0 00 ] '  

where k is Boltzmann's constant, T is the absolute temperature and ~ is a quantity referred to as the "inner 
friction" by Debye. Making the substitution 

c = c o s  0 ,  ( 2 )  

this equation may be transformed to 

~ O f _  0 ((1 ~Of) 
k r 0 t  0c - c 2 ) o ~  " (3) 

The parameter c is restricted to the interval [ -  1,1] over which the Legendre polynomials form a complete basis 
set, and so we can expand f in the form 

z c  

f(c,t) = E a,(t)P,,(c), (4) 
n = 0  

where P,(c) is the Legendre polynomial of order n. This expansion is quite general and should be applicable to 
any distribution where the probability of a certain molecular orientation depends only on the angle between that 
orientation and a fixed laboratory direction. Substituting (4) into (3) and using the defining relations for the 
Legendre polynomials, 

d2P,(c) d P . ( c )  
( 1 - c  2) dc 2 2c d~+n(n+l)P.(c)=O, (5) 

we obtain the differential equation for the coefficients a.(t); 

d a , ( t )  n(n + 1)k r  
- -  - a . ( t ) ,  ( 6 )  

dt ~c 

with the solution 

a'(t)=a'(O)exp ( n(n+ l)kTt)=an(O)exp( n(n+ l) ) 
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Table 1 
Legendre polynomial weighted rotational averages of direction cosines products; n is the rank of the tensor to be averaged and m the order 
of the weighting Legendre polynomial 
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introducing a characteristic relaxation time r defined as r = ~/2kT. The coefficients thus " re l ax"  at different 
rates except for a 0 which is time independent. The expression for f now becomes 

f ( c , t )  = Y'. a~(O)exp n(n + 1) . = o  -2-; t e.(c).  (8)  

Let fo represent the distribution function at t = 0 so that 
~c 

fo=f (c ,O)  = Y~ a.(O)P.(c):  (9) 
n = O  

by using the orthogonality relations 

2 
fl-, P " ( c ) P ' ( c ) d c  2 m + 1 6 , . "  (10) 

we can deduce that 

2n + 1 
f l  foe.( c) dc. (1 l) a.(O) 2 _,  

We are particularly interested in averaging properties S that are generally expressible in the form 

S=Ti  . ingil., i ,  (12) 

where T~, ... i. is a rank-n tensor representing the external conditions applied to a typical molecule of  the fluid 
ensemble, Vi, ... i, is a rank-n tensor representing the molecular response, and repeated tensor indices imply 
summation over a three-dimensional Cartesian set. The property S, therefore, is generally dependent on 
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molecular orientation. Due to the chosen form of f ,  rotational averaging will therefore involve the evaluations 
of 

(Ti ,  . . .  i V , ,  . . .  i Pm( ~t . ~ ) ) f t  = Ti t ... i Vxt ... z I~".;.'~]°;~, ... A,( ~,~'), (13) 

where, by an obvious adaptation of the standard terminology, the weighted average contributions F " '")  are 
defined by 

• . ; . . . .  = . . . l , . ~ P , , ( g t  ~')>n, (14) I~" "I,.A, ... z,( fi, ~' ) (li~A, 

lir~ being the direction cosine between the i~ component of the laboratory fixed axes and the A~ component of 
the molecule fixed axes. In Eqs. (13) and (14) the subscript f~ is used to denote an orientational average; a 
distributional average taken over the positions of the molecular centres will be denoted by a subscript R. The 
form of these polynomial weighted averages may be gleaned from Ref. [9] and are given in Table 1 for tensors 
up to rank 4. These averages may now be used to evaluate the necessary ensemble averages, the process being 
illustrated by considering SHG from oriented molecules. 

3. Second harmonic generation from oriented molecules 

The general expression for the intensity 12 0, of optical second harmonic generation from a collection of N 
molecules may be derived using quantum electrodynamics [1]: 

R~) 2, 
12<o =~(2) ~ f l i t j ~ ) - ~ e j e k e x p ( i A k  " (15) 

where A k = 2 k -  k' is the wave vector mismatch between the fundamental input beam (wave vector k, 
frequency to= c[kl ,  irradiance I,o) and the emergent second harmonic beam (wave vector k', frequency 
to' = 2to, irradiance 12,o). In Eq. (15), R t is the position vector of the molecule ~, /3 (¢) is the associated 
molecular hyperpolarisability symmetrized in its last two indices, e and e' are the polarisation vectors of the 
fundamental and harmonic beams respectively (an overbar being used to represent the complex conjugate); 
finally, _~(2) is a beam parameter given by 

k '41~g~ 2) 

~ ( 2 )  = 32rr2CE3o , ( 1 6 )  

with g~) the input degree of second order coherence. 
Eq. (15) can be written in the form 

12<o =~(2) E E/3(~)  e ' ie jek  ~t(~',) e ) e , , - e , e x p (  i A k  . R¢¢, ) , (17) 

where Rt¢, = Re - Re,. The expression (17) can now be written as the sum of two terms, 

_ i.c icoh ( 1 8 )  12o, -- 12`o + "2,o , 

with 

i~.~ =.q~(2) wijk ~i i I ,w, , . , ,~ l~ . ,  ,,] (19) 
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representing the incoherent SHG from individual molecules and 

• 2,o'c°"=~2> ~ ~i(~)-~,ieje,~t~')e)-~m~,exp(iAk. R~¢,) (20) 
¢.¢, ¢, 

the coherent SHG associated with interference between photons generated at different molecular centres. 
Assuming that the variables describing the orientation of different molecules are independent of one another and 
that the molecules are identical, the ensemble average of (19) becomes 

~ijkeiejekl )~ (21) tJlmn I 

the angular brackets now representing an average over the orientational coordinates of a single molecule. Taking 
the ensemble average of the coherent SHG signal, and assuming the spatial and orientational degrees of freedom 
are also separable, we have 

,'2o~"tc°h'>- =~(2) E E (  flg)~'iejek)a( Bi~2)e)em-e,)a(exp(iAk'Ree'))R 
~ '  ~' 

N N 
-, 2 =.~(2)[( ~ijkeiejek)o I ~_~ E (exp(iAk" R¢~'))R" (22) 

~ '  ~' 

To proceed further, we first define the following beam parameter, which fully accommodates features of the 
beam input and the experimental geometry; 

N N 
, ~ ( 2 ) ( A k  ) : ~ ( 2 )  E E (exp(iAk.R~¢,))R, (23)  

~ '  ~' 

such that the expression for the coherent second harmonic signal ..7 is 

s =  Cob _ ~ , ~ 2 ) ( A k ) l (  - ,  2 ( 12,o ) (24) -- flijk eiejek )nl • 

The dependence of ,.~2)(Ak) on the wave vector mismatch is written as a reminder that Eq. (24) will correctly 
account for the polarisation variation of the intensity of the second harmonic signal for a fixed wave vector 
mismatch. The weighted average in Eq. (24) is given by 

zc 

E a,( t)( ~qkO'iejekP,( c))o 
( l~ijk~,iejek)f l  = ( l ~ i j k ~ , i e j e k f ( c , t ) ) n / ( f ( c , t ) )  ~ = n=0 :¢ , (25) 

E a . ( t ) (e . (c ) ) .  
n=0 

where Eq. (4) has been used for the weighting function f .  Using Eq. (13) and Table l the expression for the 
second harmonic intensity becomes 

I - '  3 U,I¢) 2. 
<ff='~(2)(Ak) ~xu~eiejek E an(t)l(3;n) ( (26) 

*ijk;A#u\ 
a0 n=0 

In the case of relaxation due to rotational diffusion this may be written 

S=<~'(2)(21k) Y'~ a~(0)B~(~,~,)exp ~ -  t , (27) 
n~0 
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Table 2 
Explicit form of the terms B,(fi ,&) contributing to second harmonic generation as given by Eq. (27), revealing their polarisation dependence 

n B.(fi,~,) 

0 
1 

1 
-~ exu, fl~u,Cv ~'~( e .  fi)(-W X e ). ft 

1 
~ ( 5 / 3 8 ~ , , ~ , , ~ '  ~ - 2/3x~uv~; - / 3 z  u~ff~)[5(~' • f i)(e,  fi)2 _ 2(~'. e ) (e-  fi) - ( e .  e)(~"- fi)] 
70 ' -  

where 

B n ( U , l ¢ )  : l (3 ;n)  [ "i;k :~.~t a,~')/3~.~ e'i e;ek' (28) 

Table 1 may now be used to evaluate these coefficients - the results are shown in Table 2. Note immediately 
that the n = 0 term disappears; the sum in Eq. (27) therefore contains, at most, three exponential decay terms 
relaxing at rates in the ratio 1 :3 :6 .  This corresponds to a second harmonic signal in whose relaxation it is 
possible to identify (at most) six contributions with rate constants in the ratio 2 : 4 : 6 : 7 : 9 : 1 2 .  The number of 
distinct relaxation rates would be smaller if any of the coefficients a,  or B,(fi,~,) became equal to zero. The 
representation of experimentally measured data in terms of multiple exponential form is thus given a sound 
theoretical basis. Note also that all the B,(~,~,) of Table 2 vanish identically if fi, k and k' are collinear, as 
follows from ( k .  e) = (k '  • e ')  = 0. Thus, no coherent second harmonic will emerge from a molecular system 
whose direction of preferred orientation is aligned with the radiation throughput. 

To illustrate the above theory we now consider three examples taken from the literature and show, in 
particular, how the theory can be used to derive the dependence of SHG on the polarisation of the second 
harmonic and fundamental beams. 

4. Applications 

4.1. Relaxation after alignment in an electrostatic f ield 

On application of an electrostatic field E and subsequent attainment of equilibrium conditions, the 
orientational distribution may be found by solving the time independent version of Eq. (3) (Sf /Ot  = 0). The 
result obtained is 

x e  xc 

f0 2 sinh x '  (29) 

where, x = tzELoc/kT, tz being the magnitude of the permanent molecular dipole moment, E~oc is the local 
static field strength expressible in terms of the applied field through the usual Lorentz factor and c now the 
cosine of the angle between the electrostatic field and dipole moment vectors. Use of Eqs. (11) and (27) now 
provides an expression for the second harmonic signal from the relaxing molecules, assuming that the molecules 
relax via rotational diffusion: 

S =5~'(~)(Ak) [3(coth x - l / x )  B l ( f f , ,~x )e - ' / "  + 5(1 - 3 coth x l x  - 3 1 x 2 ) B 2 ( / ~ . ~ ) e  -3 ' / "  

+ 7(coth x -  6 / x  + 15 coth x / x  2 - 1 5 / x 3 ) B 3 ( l ~ , ~ x ) e - 6 ' / ' l  2. (30) 
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Fig. 1. Experimental arrangement that could be utilised to observe the SHG arising from the B2(E, /2) term in Eq. (31). 

In most molecular systems the strength of the applied electric field and the magnitude of the molecular dipole 
moment are such that x << 1. For such cases, Eq. (30) reduces to 

j~ = ~,~2>(Ak) I xB~ ( /~ ,~)e  -t/'~ + (x2/3)  B2 ( /~ ,~)e  -3'/7 

- - ( X 3 / 1 5 )  [ Bl( f f~ ,~)e  - t / r -  B 3 ( / ~ , ~ ) e - 6 t / r ] 1 2 ,  (31) 

where expansion terms involving the fourth and higher powers of x are safely ignored. Generally the field is 
applied perpendicularly to the beam propagation direction to maximise the output, as follows from detailed 
consideration of the B,(~,a,) given by Table 2 (see also Ref. [14]). 

The leading term in Eq. (31) leads us to expect a second harmonic signal that decays exponentially, and with 
a pre-exponential factor that is inversely proportional to the square of the absolute temperature. However, it is 
not difficult to arrange an experiment in which the first term cannot contribute to the SHG. For example, 
consider the arrangement shown in Fig. 1. Here the fundamental propagates at a (non-zero) angle a to the 
direction ~ =/~ in which the static field was previously applied and is plane polarised in the (/~,k) plane 
formed by the static field and propagation directions. The second harmonic signal is observed in the forward 
direction such that only photons polarised perpendicularly to the aforementioned plane are detected. Evaluating 
the expressions for the B~(&~,) terms in Table 2 shows that in this configuration both B~(E,~) and B3(/~',~) 
disappear and we are left with 

,Y=.~'(2~(Ak) 3(1 - 3coth x / x  - 3/x2)sin2a ~ a u r / 3 , , ~ / 2 , e  -3'/~ 2 

-~,~(2)(Ak)l(x2/30)sin2a ea,,/3a,v/2v/2,e- 3'/~ 12. (32) 

Here the SHG decays exponentially with a rate constant three times larger than in the more usual beam 
geometry, ( E  perpendicular to k), as indicated by Eq. (31) and we also expect to find a pre-exponential factor 
whose temperature dependence now varies as T -4. 

One possible application of this theory lies in polymer dynamics. Polymers containing dipolar chromophores 
may be "po led"  at elevated temperatures by the application of a strong electrostatic field. Cooling the polymer 
in the presence of the field traps the chromophores so that the polymer retains its nonlinear optical character. It 
is thought that polymers treated in this way could serve as useful materials for construction of electrooptic 
devices; the large hyperpolarisabilities of well chosen organic molecules and formation of components of 
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Fig. 2. Defining geometry for the reflection SHG expressions. The reference direction fi (coincident with E for poled polymers) is taken to 
be normal to the surface and ¢ is the angle of incidence (reflection) of the fundamental (second harmonic) beam. The angles ~, ~' are 
positive in the sense of an anti-clockwise rotation from the (k, k') plane about the positive k, k' directions. 

complex shape being just some likely advantages [11]. However, the stability of a poled polymer is a major 
concem, the "freezing in" technique suffering from random diffusional processes which degrade the SHG 
efficiency over a period of time. Methods which permanently link the oriented chromophores via chemical 
bonds are obviously desirable in this respect. Clearly the representation of the signal's time evolution discussed 
in Section 2 will not apply to such poled polymers - free rotational diffusion hardly being an appropriate model 
for solid polymers in which chromophores are entangled and trapped. However, over a period of time short 
enough for orientational stability to be assumed, the chromophore distribution will be effectively static and, 
whatever its form, amenable to expansion in terms of Legendre polynomials. Thus it is appropriate to use Eq. 
(3), with ~f/~t = 0, provided the chromophore distribution only depends on the angle 0, the angle between the 
chromophore molecular dipole moment and the poling direction. Following the analysis through with a time 
independent distribution therefore shows that the SHG from the poled polymer should have the polarisation 
dependence indicated by Eq. (27) with t = 0. Polarisation studies on such a polymer should therefore enable one 
to confirm or refute the validity of the assumption of a distribution dependent only on 0. 

At higher temperatures, for example at the temperature at which such a polymer is poled, some correspon- 
dence might be expected between the theory of temporal development given here and the experimentally 
observed relaxation. By studying the polarisation of second harmonic emissions during poling-relaxation cycles 
at the poling temperature, information may be available regarding the relaxation processes and prove useful in 
developing poled polymers of greater stability. One particular study [7] made at temperatures near the glass 
transition temperature of poled N-(4-nitrophenyl)-(S)-prolinoxypoly(p-hydroxystyrene) films is interesting be- 
cause it reports SHG data for a variety of poling conditions. Adopting the surface geometry shown in Fig. 2, 
defining ~ as the angle of incidence and with ~b, ~b' as shown, the expression for the second harmonic intensity 
from Eq. (30) is 

,~(2)(Ak) 8(coth x -  1/x)sin ¢[(2/3huu/2 a - rang/2~,)cos th' 
S = 16O0 

+ (3/3 x a~./2~ -/3a ~../2~ )cos 4~( sin th sin ~b' - cos 4~ cos 4~' cos 2 ¢ ) ] e - ' /~ 

- 20(1 - 3coth x / x -  3/x2)[  E~,7/3~.~/2~/x~cos ~b sin(th + ,;b')sin2¢]e -3'/~ 

+ (coth x - 6 / x  + 15coth x/x 2- 15/X3)[(513A#vfgAf£1xf_zu-- &..&) 
×cos th' sin g(1 + 5 cos2~b - 2cos2& cos2g - 4 s i n 2 4 ~  t a n ~ ' ) ] e - 6 t / r l 2 .  (33) 
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Firestone et al. [7] measured SHG using a Q-switched Nd:YAG laser using p -p  polarised geometry 
(4, = 4; = 0) in which case Eq. (33) predicts for the harmonic intensity 

~(2)( Ak) 
4(coth x -  1/x)sin¢[(2flA~,~x;,- fl~A~z~)- ( 3 f l ~ / 2 ~  - fl, t~,~x~)cos2~]e -t/r "~PP -- 400 

+ (coth x -  6/x + 15 coth x/x  2 - 15//x 3) 

× [(5/3~,~/~/~/2~ - 2/3aa~, ~,-/3a~.. /2~)sin ¢(3 - cos2¢)]e-6t/~12. (34) 

Instead of the intensity, the authors prefer to consider a second harmonic coefficient d33(t) defined by their own 
terms as 

d33(0) 1Jpp (0) ' (35) 

where t = 0 is taken as the moment that the external field is cut and relaxation begins. Comparing this to Eq. 
(34) we would expect the data to relax as a bi-exponential function with components whose exponents are in the 
ratio of 1 : 6. The reported experimental relaxation times, for data fitted to a bi-exponential form, are r 1 = 0.37 
min and ~'2 = 2.84 min, giving a ratio of 1 : 7.7. This is in broad agreement with the theoretical value predicted 
here, considering that the second harmonic signal is stated as being reproducible to _+ 10%. Of course the 
similarity may be coincidental - more accurate data, perhaps at higher temperatures where a diffusional model 
may be more appropriate, are called for. The development of polarisation studies may also prove fruitful in such 
experiments. 

4.2. Second harmonic generation from a normal distribution of orientations 

The poled polymers discussed above may produce useful nonlinear optical devices but will always be 
restricted to low temperature applications. Recent experiments involving composites of organic molecules and 
molecular sieves suggest the possibility of producing nonlinear devices with a high thermal stability due to the 
mineral nature of the sieves [8]. Organic molecules trapped within sieves can become preferentially orientated 
by, for example, intermolecular hydrogen bonding; this is thought to be the case for p-nitroaniline (PNA) which 
forms very well aligned dipole chains within sieves. We shall consider the case of molecules aligned but with 
their dipole moments having a normal distribution of orientations about a mean orientation at an angle 00 to the 
laboratory fixed direction. In other words the energetically most favoured orientations generate a conical locus 
of semi-angle 00 about the axis ~. Hence, the orientational distribution function is given by 

f ( 0 )  = e x p ( - [ (  0 -  Oo)/a]2}, (36) 

where the constant a could be taken as temperature dependent if thermal effects need to be considered. Using 
Eq. (11), the second harmonic intensity in Eq. (27) becomes 

3 2, 
j = ~,~2)( A k ) I . ~ A , B ,  (fl,~) (37) 

where the coefficients A, are given by 

3(£'rr exp( 2} 0//fo "~ exp(  00)//a]2}d0), A l = -  ~ sin20 - [ (O-Oo) /a  ] d sin0 - [ ( 0 -  (38) 

= (f0 - 2 0 / fo~ exp(-[(O-O°)/a]Z}do)  5 15 "~ 3 0 e x p ( - [ ( 0 0 o ) / a  ] }d sin0 8 A 2 y sin , (39) 
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Fig. 3. Graph showing the effect of tightening up the normal distribution of orientations on the coefficients A, of Eqs. (38)-(40). The value 
of 0 o has been taken as zero and smaller a values correspond to a more tightly aligned set of molecules. 

2 0/,o exp , 0 00,,a,2 ) 7 A 3 - ~  - ~ A , .  

These coefficients clearly depend on the " t ightness"  of the alignment, as dictated by a, and on the mean 
preferred direction 0 0. A graphical illustration of their variation with a is shown in Fig. 3 for the case 0 0 = 0. 
We see that in the limit as a becomes large the coefficients all tend to zero, i.e. no SHG occurs when the 
molecules are not preferentially aligned. As a tends to zero the molecules become perfectly aligned and the 
limits 

lim A 1 = 3cos 0 o = 3Pj (cos  00) 
a - - + 0  

lim A 2 = ~(3 cos200 - 1) = 5P2(cos 00) (41) 
a ..-+ 0 

lim A 3 = ~cos 00(5 cos200-  3) = 7P3(cos 00) 
a - - + 0  

are obtained. In the perfectly aligned case, with 0 o = 0, we therefore have 

g = . _ ~ ( 2 ~ ( A k ) 1 3 B l ( ~ , # )  + 5 B 2 ( ~ , # )  + 7B3( ~,#)12.  (42) 

In passing, we can also note that results for a completely isotropic distribution of orientations can be 
recovered by averaging over 00 in the limits of Eq. (41), giving A l = A 2 = A 3 = 0. 

We can now use Eq. (37) to predict the polarisation characteristics of the second harmonic produced by 
molecules whose orientations are normally distributed, comparing our predictions with studies that have been 
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fi 

288 

It, k' 

Fig. 4. Diagram to show the geometry used in experiments measuring the SHG from molecules trapped in a molecular sieve. Both 05 and 05' 
are positive in the sense of an anti-clockwise rotation from the direction of preferred molecular orientation fi about the positive k direction. 

performed on molecules contained within sieves. We shall adopt the beam configuration shown in Fig. 4, setting 
00 = 0 from now on to coincide with the experimental arrangement used by these authors [8]. The second 
harmonic signal is measured in the forward direction and we take the plane polarised beams to be such that the 
fundamental makes an angle 4, to the orientation direction (the molecular sieve axis), the second harmonic 
making an angle 4'' with respect to the same axis. Eq. (37) now yields 

Ak) A1 J=.N'(2 ' (  -i-~ [(2/3Au. ~a - j3aau /2. )cos 4,' + (3/344./3.~, -/3Au. ~a)cos 4, cos ( 4, - 4,')] 

A3 2, 
+ -~--~ (5/3au~ ~ x/3../~ - 2/3aa"/~ -/3A.~,/3.z) [5 cos24, cos 4 ' ' -  2cos 4' cos( 4 ' -  4'') - cos 4''1 

(43) 

where A 1 and A 3 are  given by Eqs. (38) and (40) respectively. This expression, (43), allows us to calculate the 
second harmonic intensity for any combination of angles 4' and 4''. For comparison to the work of Marlow et 
al. we shall define ~¢',(4') as the intensity of the second harmonic light polarised parallel to the orientation 
direction ~ when the incident laser polarisation is at an angle 4,, J ±  (4,) as the second harmonic intensity 
perpendicular to ~ for the same input radiation and J4/( 'rr/4) as the SHG at an angle 4'' when the incident 
light is set at an angle of w / 4  to ~. Our expressions for these quantities are easily found from Eq. (43): 

=.~'~2>(Ak) Aj ~1(4 ' )  i 5  [ (2/3a,~ */2a -/3as**/2~ *) + (3/3as,/2u - / 3 , , . / 2 a )  c°s24, ] 

A3 --  1) 2, 2e**. + (44) 

Al 
,.7± (4,) = @(2)( A k)sin24, cos24' ~ (3]3aat./~u -/3a**o/2a) 

2 

A3 (5/3a.~/2a/2,/2 ~ - 2/3axe./2, -/3au~./3.a) (45) 
35 
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"rr A I ^ -+- A 3 fl,x~u/~A)) cos  q~, 

2 

+ (A,_~ (3 fl,xau/2, _/3~,~,/2~)- -~A3(5flx~,~a~l, f z , , - 2 f l ; ~ , ~ f t u - f l x u u t z a ) ) s n q S . ( 4 6  ) ^ i ' 

Marlow et al. [8] have carried out experiments using a frequency doubled Nd:YAG laser and (dimethyl- 
amino)benzonitrile (DMABN) trapped in A1PO4-5 molecular sieves, empirically fitting their data to expressions 
of the form 

ill(4>) = a2cos4~b + besin 4& -- ( a z + b2)cosg~b - 2 b2cos2th + b 2 , (47) 

J ±  ( 6 )  = c(cos 4' sin ~b) 2 =- c sin26 cos26, (48) 

(4) $40, = A 2 sin 2 ( 4 ¢ + 3,) + B 2 sin24¢ 

=- A2sin2y cos24; + A2sin 2y cos <b' sin4¢ + ( A2cos2"/+ B2)sin24/, (49) 

where their parameters a, b, c, A, B and 3, necessarily have real values to be determined. We see that the form 
predicted by Eq. (45) for ~ ±  tallies directly with the expression (48) used by Marlow et al., and fits their data 
well. The expressions for ~n and S4+(n-r/4), do not so obviously tally unless certain relationships hold amongst 
the hyperpolarisability components. Fig. 5 showsa comparison of the polarisation behaviour given by Marlow 
et al. with that predicted here, on the assumption that all hyperpolarisability components are real. We note that 
the data obtained by Marlow et al. fits their expressions reasonably well, but its accuracy is unlikely to offer a 
basis for differentiating the two suggested forms for SII. More obviously there is a large discrepancy between 
the experimental data for ~/4y(~/4) and our proposed form given by Eq. (46), the experimental data of Ref. [8] 
clearly not going to zero for particular values of 4¢. The resolution of this problem proves to shed new light on 
the nature of the nonlinear optical response at the molecular level, as we shall now demonstrate. 

One possible cause for the differences apparent in Fig. 5 is that our results were there based on the 
assumption that all components of the molecular hyperpolarisability were real. Such a supposition would only 
be valid if there were no resonance behaviour coming into play. It is interesting that of the three Eqs. (44)-(46), 
only (45) has the same polarisation dependence irrespective of the complex or real nature of the hyperpolaris- 
ability components therein. Before pursuing the possible effects of resonant behaviour further it is worth 
considering whether this might be a possibility for the experiments of Marlow et al. For DMABN excited states 
are reported at 32100 and 34780 cm-1; as the latter has an approximate full width at half maximum [12] of 
4000 cm -~, it substantially overlaps the second harmonic frequency of 37594 cm -I .  Indeed these absorption 
frequencies should be treated with some caution because they relate to DMABN dissolved in a 1 : 1 mixture of 
2-methylbutane and 2,2,4-trimethylpentane, rather than subjected to the conditions used in the SHG experi- 
ments. Bearing these points in mind, it appears a realistic proposition that the hyperpolarisabilities may have 
some resonant character and thereby acquire complex character. To accommodate this possibility we now note 
that the polarisation characteristics of Eqs. (44) and (46) can in general be expressed in the form 

~1(4>) = Ic~ + c2e~cos24,12, (50) 

and 

[ ~ rr th' ,t,'~ ~ ) =  [c3c°s +ca  eia'sin ~b'[2' (51) 

where the coefficients c i and relative phase factors 6 and 8' are real. If the hyperpolarisability components 
were themselves real, these phase factors would vanish, non-zero values being permitted if the hyperpolarisabil- 
ity components are complex. In this sense, Fig. 5 represents the best fit for 8 = 6' = 0. Fig. 6 shows the effect 
that complex hyperpolarisability can have on the polarisation characteristics of ~'~1 and J~ , (~ /4 ) .  Clearly the 
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Fig. 5. A graphical comparison of  the polarisation characteristics predicted by Eq. (44) and (46) to those based on the expressions of  Marlow 
et al., Ref. [8]. In both cases a solid line represents out model and the dashed line that of  Marlow et al. The graphs show (a) JII, arranged so 
that both traces are normalised to unity and agree at 4' = -rr/2, and (b) ,Y',V(~/4), arranged so that both share common maxima at the 
experimentally observed values of  4". 

inclusion of near-resonance behaviour can properly account for the experimentally obtained polarisation 
characteristics. One corollary is that we would expect polarisation studies to provide the means for separating 
out the real and imaginary parts of the hyperpolarisability. 
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Fig. 6. The change of the polarisation characteristics of  the quantities JII and J ,~ , (¢r /4)  on allowing for complex hyperpolarisabilities. The 
graphs show (a) JII,  arranged so that all traces are normalised to unity and agree at ~b = "rr/2, and (b) J , / , , (~ /4 ) ,  arranged so that all share 
common maxima at the ~b' values observed experimentally by Marlow et al., Ref. [8]. The phase factors 6 and 6 '  are those appearing in 
F_~s. (50) and (51), zero values corresponding to the predictions obtained for real hyperpolarisabilities. 
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4.3. Second harmonic generation from molecules on surfaces 

To conclude, we consider application of our theory to surface SHG. Since a coherent second harmonic signal 
cannot be generated within the bulk of an isotropic or centrosymmetric medium, the observation of such signals 
by surface reflection is a technique widely employed for the characterisation of molecules at, or adsorbed on, 
surfaces. To develop the theory we consider again the configuration shown in Fig. 2, taking the reference 
direction fi to be normal to the surface, ~ as the angle of incidence and with 4', 4" as shown. The full 
expression for the second harmonic intensity is again given by Eq. (27), which, assuming a normal distribution 
of molecular orientations, now takes the form 

aj 4" S=. .~ '2 ) (Ak)  -~s in  ¢[(2/3,~,u~ a -/3,a~,~,)cos 

+ (3/3a,,, ~j, -/3,~,~, q ) cos  4'( sin 4, sin 4 ) ' -  cos 4, cos 4" cos 2g )] 

A2 
10 ea"~/3a~'~g<c°s 4' sin( 4' + 4")sin 2~ 

A3 
+ 280 4" 

× sin ¢(1 + 5cos24' - 2cos24' cos 29 - 4sin 24' tan 4") 2. (52) 

The coefficients Ai(a,O o) are, in general, given by Eq. (38) to (40), with a representing the extent of 
orientational distribution and 00 the mean orientation of the molecules on the surface. If polarisation studies can 
elucidate the values of these coefficients A i then it may be possible to deduce a value for 00 provided we have 
knowledge of the orientational distribution factor a. This may be possible by expressing the temperature 
dependence of the distribution through the factor a. Hence we might expect that coupled polarisation and 
temperature studies are necessary to gain the fullest information about molecular orientation at surfaces. 

Eq. (52) is quite general. For its typical application, we now consider SHG experiments recently performed 
by Barnoski et al. [3] using monolayers of vitamin K 1 on the surface of an aqueous medium, these studies being 
conducted with the intention of determining the orientation of the vitamin on the surface. These workers 
collected data for the case when ¢ = v / 4 ,  the second harmonic signal having polarisations of either 4" = 0 
(p-polarisation) or 4" = ~r/2 (s-polarisation). Denoting the signal in the former case as Sp and in the latter as 

we have from Eq. (52) 

= q~(2)(Ak ) AI A2 
G 1-1-1-1-1-1-1-1-1-1-~ (2/3*u~ ,~'a -/3aa*,~'u) - ~ ea*'r/3** 'v~'~ ~'r sin 2 4' 

A3 ^ ^ ^ 5cos24') 2, + ~ ( 5 j S a ~ , , , w a w , , w  ~ -- 2/3aa,,~ a -/3au~,~,a)(1 + (53) 

and 

AI ^ A3 ^ ^ ^ -/3,j ,  u q ) } s i n 2 4  , 
l 

A2 2. 
20 Ea**"/3al*~ ~ ~ ( 1 + cos 2 4') (54) 

For the expanded monolayer Bamoski et al. observed both Jp  and ~ to be zero, indicating that the molecules 
are not preferentially aligned (as noted earlier, this is consistent with having all A i = 0.) On compression, 
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however, it was found that steric interaction between molecules engenders SHG with p-polarisation, though not 
with s-polarisation. In the light of Eqs. (53) and (54) this behaviour is at first sight somewhat puzzling. It 
suggests that in this particular case we must have the following identities: 

A2 Exu~/3,~;@ -= 0, 

_ A3 _/3au~,ffa)) = 0, 

(55) 

(56) 

without the trivial A 1 = A 2 = A 3 = 0 solution being admissible. Relations (55) and (56) in turn imply that (53) 
can be written in the form 

~,{2)(Ak) A 2 
g P =  1152 1(313*"~ -/3xx~'w~) + (313a~"~" -/3a""~'A)c°s 2 ~b12' (57) 

This form does indeed match that shown by the experimental data obtained by Barnoski et al.; the observed 
SHG is symmetrical about q~ = ~ / 2  where the signal takes on a minimum value, and the maximum signal 
occurs at 4, = 0 provided 

I/3,a~,~** +/3a~,j,~,l 2 > 41/3a,,,~, ~ - ^ 2 (58) 
Fitting experimental data to Eq. (57) will now yield information pertaining to the hyperpolarisability tensor of 
the molecule and not its orientation. 

At this juncture it is worth commenting on a commonly employed assumption concerning long, rod-like 
molecules like vitamin K ~. It is often approximated that such molecules should possess a single, dominating 
component in their hyperpolarisability tensor. If we were to assume this to be the case here, as indeed Bamoski 
et al. have in their analysis, denoting this component by ~:zz and taking the molecule fixed vector ~, to be 
along this direction so that ~,, = 3,,z, Eq. (57) would give 

,-,~(2)( a k) A~I/3z.=[ 2 
J P =  288 I1 + cos24,12. (59) 

This would require that the minimum value of the p-polarised signal should be zero, whereas it is clear from the 
data that this is not so. A less drastic assumption might be a consideration that there are three non-zero and 
independent components of the hyperpolarisability tensor, as is consistent with a molecule of C~ v symmetry 
[13], namely; 

3zzz = ~911, 

& x x  = & y y  = ~ .  , 

[~ x z x ~---- J~ x x z = J~ y z y = [~ y y z = ~ h_ Jff m j~ l . 

(60) 

(61) 

(62) 

Using these definitions the expressions for the p- and s-polarised second harmonic given in Eqs. (53) and (54) 
become respectively 

~,(2)(A k) i A 1 A 3  2, 
S o =  50 -~-(]311 + 213 . - 2 A / 3 . )  + ~-ff(]311- 313 . -2A/3±) (1  + 5cos2~b) (63) 

~(2)(Ak)  ~ A 3  2sin2 
~ =  50 ( / 3 , + 2 / 3 .  + 3 A / 3 . )  - --~--(/3,-  3/3± - 2 A ] 3 ± )  24.  (64) 

This still indicates that if we were to treat vitamin K~ as a rod-like molecule possessing C~ v symmetry we 
would nonetheless expect there to be an s-polarised second harmonic signal under appropriate input polarisation 
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conditions. For p- or s-polarised input (~b = 0 or q'r/2 respectively) the s-polarised harmonic here vanishes, as is 
commonly observed. 

5. Conclusion 

We have presented here a method of obtaining orientational averages of direction dependent molecular 
properties weighted by Legendre polynomial functions, showing by specific reference to second harmonic 
generation how the method may be applied. The examples that we have considered illustrate the diversity of 
information of both practical and theoretical interest that may be derived from application of the theory, which 
is readily adaptable to other experimental arrangements. Our results show that polarisation studies of SHG, 
ideally coupled with temporal and/or  temperature dependence studies, should be capable of yielding further 
insight into phenomena related to molecular orientation and the mechanisms underlying the molecular response. 
Finally, it is shown how great caution should be exercised in the application of over-simplistic models in the 
studies of SHG from surfaces. 
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