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A TWO-CHROMOPHORE MODEL FOR TWO-PHOTON CIRCULAR DICHROISM 
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A discussion of two-photon circular dichroism due to dissymmetrically placed chromophores is presented. Using quan- 
tum electrodynamics, expressions are derived for the differential rates of absorption associated with an electronic transition 
which is electric dipole forbidden to a one-photon interaction. A complex field formulation enables effective interaction 
operators to be derived which are formally equivalent to those arising in the theory of induced circular dichroism. For non- 
equivalent chromophores, it is shown that a coupling mechanism provides the necessary cbiral discrimination, yhilst for 
equivalent chromophores there is an additional contribution from an interference term which becomes more important as 
the chromophore separation is decreased. 

1. Introduction 

With the development of high intensity laser sources, there has recently been much interest in non-linear effects 
such as two-photon absorption by atoms and molecules. One of the interesting features is that the rate of absorp- 
tion for chiral molecules is dependent upon the handedness of the incident light. This effect is known as two-pho- 
ton circular dichroism, and has recently been discussed by Power [l] and Tinoco [2]. 

Although the exhibition of circular dichroism is dependent upon an overall dissymmetry in the molecule, the 
electronic absorption bands are frequently associated with transitions in individual chromophores which are not in- 
herently chiral. Consequently it is instructive to consider a model for two-photon absorption in which chiral dis- 
crimination is provided by a pair of achiral chromophores placed dissymmetrically relative to each other, and in 
which the electronic transition of interest is confined to one of these chromophores. This model is therefore adopt- 
ed for the theory below, and since we are concerned with two-photon absorption, it is assumed that one-photon 
interactions are electric dipole forbidden by virtue of the local symmetry. 

In the following account, we begin with a general development of the theory within the framework of quantum- 
electrodynamics. A complex field formulation is employed which facilitates dealing with circularly polarised pho- 
tons, and which enables a formal equivalence to be demonstrated between the effective interaction operators used 
here and those which arise in the theory of induced circular dichroism. The theory is then applied to the two spc. 
cific cases where the chromophore pairs are either chemically equivalent or non-equivalent, and the dependence of 
the differential absorption rate upon the chromophore separation is examined. Finally, the practical likelihood of 
observing two-photon circular dichroism is discussed, on the basis of the results obtained for the two-chromophore 
model. 

2. Theory 

We may begin by writing down the hamiltonian for the system as 

H = Hmolecules +*radiation + Hintemction~ 

where it is assumed that the molecular hamiltonians are hewn, and the radiation hamiltonian is given by 
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timd =&-j$2 + b2) d3r, 

in which e’ and b are the electric and magnetic field operators, respectively. Since we shall be dealing with only 
circularly polarised photons, it is convenient to employ complex fields in writing down the interaction hamiltonian. 
Following Power and Thirunamachandran [3], we define the following field operators: 

d=p +im, (3) 

f =e”+ib, w 

and their hermitian conjugates dj, ft. Here p and m are the electric polarisation and magnetisation fields respec- 
tively. The interaction hamiltonian in dipole approximation is 

where the sum is over all molecules g at position RE. The cozmplex radiation fields may now be expanded in the 
usual way in terms of annihilation a@)(k) and creation Q 0)’ (k) operators for the mode of wavevector k and 

nolarisation h: 

(6) 

(7) 

Since the overall process involves a change of two photons, only even orders in Hint contribute to the matrix 

element, which is given by 

Mfi=(f I H- --%l+ Hint & 4nt& Hill, & mt E-H, 
Hh,+...li), (8) 

- 0 0 0 

where I i) is the initial state of the system and If) the final state. The second order contribution, which we shall 
write asM#), corresponds to a two-photon process involving only one chromophore (A); the fourth order con- 
tributionMj:) involves two chiomophores (A and B) dynamically coupled by a virtual photon. As the former re- 
sult is easily evaluated, we concentrate for the present upon the coupled term. 

Let us suppose that both the incident photons are derived from the same beam, of wavevector k and polarisation 
vector ecLpR), and that the two chromophores are coupled by a virtual photon of wavevector K and polarisation 
vector e(3. The calculation of the coupled contribution to the matrix element is facilitated by construction of a 
full set of time-ordered graphs of which fig. 1 (a) is an example. For any given polarisations of the photons involved, 
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Fig. 1. Typical time-ordered diagrams for two-photon absorption involving two chromophores. 
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there are 24 such diagrams to be taken into account, each representing different time sequences; twelve have the 
virtual photon propagating from A to B, as shown, and the other twelve the reverse. If.we add together the twelve 
beIonging to the first set, the summed matrix element contracts to a form which is obtainable from a single time- 
ordered diagram such as that shown in fig. 1 (b). (Similar situations are encountered in the study of Rayleigh and 

Raman scattering [4] .) Now there are two photons associated with each contracted vertex, and the effective inter- 
action energy may be written as 

flHLL 
eff.int 

(11) 

(12) 

(13) 

Here 71 is the label for the chromophore at which the two-photon process occurs. This has ground state IO>, 
summed intermediate states Ir>, and a final state In> which is the ground state when 9 refers to the unexc$ed 
chromophore B. From the properties of the field operators, we find that each of the four terms in eq. (9) has a 

simple interpretation; H?@ is responsible for absorption of a real photon of polarisation &‘I, and either emission 
of a virtual photon of polarisation eQ, or absorption of a virtual photon of polarisation E(p),. These terms are of 
exactly similar form to those which arise in the theory of induced circular dichroism [5]. 

Now since we are here concerned with treatment of a system in which A and B are not inherently chiral, we 
are justified in taking only the leading electric dipole terms in d, d’. The interaction energy for the contracted 
graphs becomes quite simply _ 

“%f.int = - 
c[ “$ ‘4” + “‘i” ““] ef(K) $(k), 

r,, ET0 -Tick Ez + fick 
(14) 

which may be represented as 

qHeff.int = - qa$o(k) ei (K) e;(k). (15) 

The overall matrix element M$!) for the dynamically coupled absorption process is now given by the sum of the 
matrix element for the graphs represented by fig. 1 (b), and the corresponding matrix element for graphs in which 
the virtual photon passes from B to A. Assuming real wavefunctions, and summing over the polarisations and 
wavevector of the virtual photon, we obtain 

llfp = - 8n 2W~@--l)11’* A no R oo v “im (k) ain (k) Vm n (k, R) eiej eik * R’, 06) 

where V is the volume of the quantisation box containing n photons, Vmn (k, R) is the usual retarded resonance 
elect&electric dipole interaction [6] given by 

mn - 3&,&) (COS kR + kR sin kR) - (6,, -&I?,) k2R2 cos kR], (17) 
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and R is the vector As. The origin of the molecular coordinate system has been arbitrarily chosen to be coincident 
with A. 

Having completed the derivation of the result for the fourth order contribution to the matrix element for two- 
photon absorption, we now proceed to evaluate the rate expressions required for a description of the associated 
circular dichroism. From Fermi’s golden rule, the required rate expression for a system of randomly oriented 
molecutes is given by 

where pi is the initial density of states, and the angular brackets denote a rotational average over the Euler angles 
relating the molecular frame to the laboratory frame. The expression for M$) is as given in eq. (16), and it is a 
simple matter to show that the second order term is given by 

277?Mc[?z(?z-l)]t’2 
M)f) = v *#O(k) e#) e&k). (19) 

The dominant contribution to the rate obviously comes from the square of this term, and is readily shown to be 

‘2-2’r(L/R) = $ (1 M~~)(L/R) 12)~~ = 
8~r~ficW,(n-1)~. 

15v2 
l (3 

A n0 A 
%J 

n0 
%Lp - A&E %$), cw 

in which the implied summation convention for repeated indices has been employed. The first correction term re- 
sults from the second-fourth order cross terms in eq. (18). I-f owever, in this case, the result differs according to 
the handedness of the incident radiation, and we find that 

(2-+0) _ ~2-4)~(~) = 
-256in4Trc2k2n(n-1)p. 

V* 
i V,,(k.R)Q&q 

x [(6hp _ @,) q (kR) +R,&, g2(kR)] (“a;; *ano Baoo 
LIP on+ %1, * no *ano B O” np %J (21) 

where 9I and g2 are functions which arise from the rotational averaging. These have been discussed in another 
context [4], and are given by 

glCUj=’ COSQ 
( 

2sina 3cosa+3sina ----_ 
8i a 1 $ a3 a4 ’ 

(22) 

(23) 

It is now convenient to define a dimensionless differential rate as 

D = V’(L) - r(R)1 I r, 
where r is the mean rate given by 

r = f [r(L) + r(a)]. 

(24) 

(25) 
The quantity D provides a more absolute measure of the circular dichroism than the rate difference itself, since 
the former is clearly independent of the intensity and statistical properties of the incident radiation [l J. From the 
above considerations, we find that the leading term in the expression for the differential rate is as follows; 
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Whilst this expression holds true for any interchromophore distance R, it is interesting to note the asymptotic 
behaviour for the regions in which R is either large or small compared to the reduced wavelength X (= I/k). The 
first case corresponds to kR S- 1 and the second ro kR Q I. 

In the firs? case, it may be shown that V(k, R) and 9, (kR) both tend to a (cos kR)jkR dependence, whilst the 
C$ term can be ignored. Hence D falls off with a modulated inverse square dependence upon R in this region. 

However, in the physically more interesting region with kR < 1, we have 

9, (a) z 92 (Q) c- ia/3Cl, (27) 

Vpo(k. RI - -& (~po - 3QtJ). 

Hence, in this region, the result of eq. (26) simplifies to the form 

D,4k ($7 
^_ A n0 Am n0 I3 00 A n0 B 00 

- 3@&,,$, oAV ( Q~ Q,, * 04rp Q,) 

2 
9 

3AanOALynO_A,9z.vA~n0 
u u w 

(28) 

(29). 

and there is still an inverse square dependence upon R. This asymptotic behaviour is directly analogous to that of 
the Raman circular intensity differential for non-identical achiral chromophores [4]_ 

The above theory may readily be extended to the case in which A and B are chemically equivalent, by adop 
tion of appropriate excited states. ‘Ihe stationary states for the molecular system in which only one centre is ex- 

cited are now 

In,)=~(l~~)lO,)~lO~)l~~)), (30) 

and the matrix elements have to be reformulated to give M*. The dominant rate contribution as usual comes from 
the square of the second order term, and is given by 

(2-2)r&.) 21 (*-*)&(R) II 

4n3fic2k*n(n-l)p. 1 

15v* 

x [3 (*a;; + “o;t$ (A,;; 5 “C$) - ( A& f “& (A&’ + B&Q]_ 
PM - IW (31) 

However, as a consequence of the equivalence of A and B, the interference terms in (2-2)1’, are in fact slightly 
different for left and right circularly polarised light. The difference in rates, which is much smaller than the mean 
rate of eq. (3 I), is 

(=)r+(L) - ‘*-*‘r,(R) = 2 
64ia3fic2k2n (fi - l)pi 

V* 

x %&((6,, - &&)~, (2kR) +&lip 9*(2kR)] A nOB 
%v 

n0 
al.nt . (32) 

In addition to this new term, there is once again a contribution to the rate difference coming from the second- 
fourth order matrix element cross terms, which is as fohows; 

(2-4)I-$) - ‘“-4’lY,(R) 

-128i&ic*k*n(~-1)~. 
= 

V* 
’ VP& R)~_l?,[(l& -&Ii,) 9, UcR) +@,, 92(kR)1 

X[(Aatz~AanOBaOO A nOAanOBaOO 
PP on+ %I" np op- %v pp 

B n0 BgOAJJO 
OH- 

(33) 
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The resulting approximate expression for D therefore has as its numerator the sum of eqs. (32) and (33), and as 
its denominator the expression of eq. (3 1). In discussing these cases we must remember that as the chromo- 
phore separation R increases, the difference in energy between the two states 1 rz?) will diminish until they are in- 
distinguishable. In that case, the observed rate difference will be the sum of the I’, and r_ rate differences, which 
means that the contribution from eq. (32) vanishes, as does the f term in eq. (33). 

As before, we may again examine the asymptotic behaviour for kR > 1 and kR G 1. In the first case, the lead- 
ing contribution from eq. (33) has a modulated R -z dependence, and that of eq. (32) a modulated R-I depen- 
dence. In the second case, usirrg the results of eqs. (27) and (28) w IC h- h are applicable in this region, we obtain the 
usual Rm2 dependence for the contribution of eq. (33), but we find that the lower order contribution of eq. (32) 
is now linearly dependent upon R. It therefore appears that in the region kR e 1, the differential rate is approx- 
imately given by 

(34) 

and this increases with the separation of the chromophores. Again, this parallels the well-established behaviour of 
the Raman circular intensity differential for identical achiral chromophores [4,7]. 

3. Discussion 

We may conclude with a brief discussion of the likelihood of observing two-photon circular dichroism due to 
dissymmetrically placed chromophores, as in the model adopted above. We shall be mainly interested in the region 
JcR Q 1, since it is here that D attains its highest values. Let us deal first with the case of non-identical chromo- 
phores. Order of magnitude estimates suggest that when the separation is small, the differential ratio for the sys- 
tem as represented by eq. (29) may reach a value in the region 10T3 to 10d4, a range similar to that for one-centre 
two-photon circular dichroism [ 11, and not much smaller than the corresponding value for ordinary one-photon 
circular dichroism, (lo-’ to 10m3). Perhaps more interesting, however, is the result eq. (34) for the identical 
chromophore situation. Here, it would appear that values just as large as those for ordinaty circular dichroism may 
indeed arise. In this case, because of the slightly different energies of the two states I n+ ), two-photon absorption 
should be observed at two closely similar frequencies, circular dichroism of equal magnitude but opposite sign 
being associated with each component of the doublet. 
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