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Abstract
This work proposes a method to exploit both audio and vi-

sual speech information to extract a target speaker from a mix-
ture of competing speakers. The work begins by taking an ef-
fective audio-only method of speaker separation, namely the
soft mask method, and modifying its operation to allow visual
speech information to improve the separation process. The au-
dio input is taken from a single channel and includes the mix-
ture of speakers, where as a separate set of visual features are
extracted from each speaker. This allows modification of the
separation process to include not only the audio speech but also
visual speech from each speaker in the mixture. Experimen-
tal results are presented that compare the proposed audio-visual
speaker separation with audio-only and visual-only methods us-
ing both speech quality and speech intelligibility metrics.
Index Terms: Speaker separation, soft mask, visual features,
audio-visual correlation

1. Introduction
The aim of this work is to address the problem of single chan-
nel speaker separation by using both audio and visual informa-
tion. Humans are very good at extracting a target speaker from
a mixture of interfering speakers. Having two ears is beneficial
but humans also exploit visual speech information from a target
speaker. Many audio-only methods of speaker separation have
been proposed and have varying levels of success [1, 2, 3, 4].
A smaller number of visual-only methods of speaker separation
have also been proposed [5, 6, 7]. However, few approaches
have examined whether the audio and visual information can be
combined to further improve separation of speakers.

Audio-only speaker separation can be very effective when
multiple microphones are used. Techniques such as deconvolu-
tion and blind source separation (BSS) make assumptions that
the signals in the mixture are independent and exploit the input
signals to extract the individual audio sources [8, 1]. Speaker
separation from just a single audio channel is substantially more
difficult making it necessary to employ knowledge of the way
humans perceive speech and to make various assumptions about
the speech signals. Most methods exploit the masking prop-
erty of human speech perception and aim to identify and ex-
tract time-frequency regions of the speech mixture that are dom-
inated by the target speaker and mask or attenuate other re-
gions. Binary masking involves determining whether each time-
frequency component represents the target speaker or not and is
subsequently retained or removed [9, 10]. Soft masking can
be better as uncertainty in the mask is allowed, where rather
than retaining or removing a time-frequency component, a frac-
tion of the component is retained, generally in proportion to the
local signal-to-noise ratio (SNR) [2, 3]. With both methods a
major challenge is to estimate accurately the mask and identify

time-frequency components to be retained and those which are
to be masked. Many approaches have been employed and these
typically operate by grouping time-frequency regions according
to various criteria. One of the most effective is computational
auditory scene analysis (CASA) which groups regions percep-
tually, making use of cues such as harmonicity and onset and
offset times [1]. Alternative approaches have used statistical
approaches whereby dependencies between time-frequency re-
gions are established and used to form the mask [4].

There are substantially fewer visual-only methods of
speaker separation. These rely on correlation existing between
the visual and audio speech features to provide an estimate of
the audio feature given a visual feature [11, 12]. Visually-
derived audio feature estimates have been used to form a per-
ceptually motivated filter that can extract a target speaker from
the mixture [5]. An alternative method uses visually-derived au-
dio features from both speakers in a mixture to estimate a binary
mask that extracts the target speaker from the audio mixture [6].
In other applications visual features have been used to improve
hidden Markov model (HMM) decoding of input speech sig-
nals where the HMMs provide statistics on the speech to be
separated [7].

Some work on using both audio and visual speech informa-
tion for speaker separation has been reported although this is
applied to multiple audio channels rather than to a single chan-
nel which is the focus of this work. In [13] a target speaker is
first extracted from a speech mixture using audio BSS. Visual
information from speakers is then used to address permutation
and scaling ambiguities present after BSS.

This work proposes combining the audio-only soft mask
method with visual speech information to improve speaker sep-
aration. A review of the soft-mask method is presented in Sec-
tion 2. The combination of this with visual speech information
is presented in Section 3. Section 4 explains how the necessary
audio features are estimated from visual features. Experimental
results evaluating the quality and intelligibility of the processed
speech are presented in Section 5.

2. Audio-only speaker separation
The soft mask method of speaker separation has been shown to
outperform both binary masking and Wiener filtering methods
for single channel speaker separation [4]. Consequently this
forms the basis for the proposed combined audio-visual method
of speaker separation.

In the time-domain, speech from the target speaker, x1(n),
and competing speaker, x2(n), are assumed to be additive to
create the time-domain mixture, y(n). From the time-domain
signals, short-time log spectral vectors are extracted, where
(adopting the same notation as in [4]) x1d and x2d are the dth el-
ements in theD=128 dimensional vectors extracted from speak-



ers 1 and 2 respectively, and yd is the dth element extracted from
the mixture of the two speakers.

The soft mask method makes an element-wise mixture-
maximisation assumption of the log spectral vectors from the
speakers in the mixture [14]

yd = max (x1d, x2d) + ed d = 1, ..., D (1)

where ed is the error in the mixmax approximation.
An MMSE estimate of each element of the target speaker’s

log spectral vector, x̂1d, is made from the conditional expecta-
tion given y

x̂1d = E (x1d|y) =

∫
x1d

x1dp(x1d|y)dx1d d = 1, ..., D

(2)
The log spectral features of each speaker are modelled us-
ing a Gaussian mixture model (GMM) that comprises I Gaus-
sian subsources for speaker 1 and J subsources for speaker 2.
Each subsource from the target speaker has a prior probabil-
ity, ps1(s1 = i|i = 1, 2, . . . , I) and for the competing speaker
ps2(s2 = j|j = 1, 2, . . . , J). The subsources are modelled
using Gaussian distributions as

px1|s1 (x1|s1 = i) =
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N
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)
(3)
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j
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j
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)
(4)

where µi1d, µj2d, Σi1d and Σj2d are the means and variances of
speakers 1 and 2 and subsources i and j respectively.

Modelling the subsources allows the MMSE estimate of
equation 2 to be conditioned on each combination of the sub-
sources, i and j

x̂1d =
∑
i,j

∫
x1d

x1dp(x1d|y, s1 = i, s2 = j)dx1d

×p(s1 = i, s2 = j|y)

(5)

This comprises two factors. The first is a MMSE estimate of x1d
given y for a particular combination, i and j, of the subsources.
The second factor is the posterior probability of the two sub-
sources given y. This can be viewed as a weighted summation,
according to the probability of each pair of subsources, of the
conditional estimate of x1d from y according to the subsources
i and j which, following [4] is evaluated as

x̂1d = E(x1d|y)

=
∑
i,j

p(s1 = i, s2 = j|y)

×

{
σ2i
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+σ2
d
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+σ2
d

µi1d if µi1d ≥ µj2d
µi1d if µi1d < µj2d

(6)

where σ2i
1d and σ2

d are the variances of speakers 1 for subsource
i and the mixture respectively. For the reduction of computa-
tional complexity, it was further shown in [4] following [15]
that instead of using the weighted summation of all the sub-
sources, the MMSE estimate can be made from the two most
probable subsources that maximize p(s1 = i, s2 = j|y) and is
computed as
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1d

+σ2
d

yd +
σ2
d

σ2i∗
1d

+σ2
d

µi
∗
1d if µi

∗
1d ≥ µj

∗

2d

µi
∗
1d if µi

∗
1d < µj

∗

2d

(7)

where i∗ and j∗ are representing the two most probable sub-
sources that maximize p(s1 = i, s2 = j|y).

{i∗, j∗} = arg max
i,j

p(s1 = i, s2 = j|y) (8)

The conditional estimate is computed in two ways depend-
ing on whether the mean component of the target speaker from
the i∗th subsource, µi∗1d, is greater or less than the mean of the
competing speaker from the j∗th subsource, µj∗2d. This can be
likened to binary masking which would set the output to yd or
zero.

3. Audio-visual speaker separation
The audio-only soft mask method can be extended to utilise vi-
sual information with the aim of improving estimation of the
target speaker’s spectral component, x̂1d, from the mixture.
Following on from equation 7 this has been done in two stages
where the first considers just the situation where the target mean
component is less than the competing speaker component (i.e.
µi∗1d < µj∗2d). Secondly, the situation where the target mean
component is greater than the competing speaker component
(i.e. µi∗1d ≥ µj∗2d) is considered.

3.1. Target mean less than competing mean : µi∗1d < µj∗2d

In binary masking when the target mean is less than the com-
peting mean it is assumed that no information about the target
can be obtained from the audio mixture and the estimate is set
to zero. The soft mask improves on this by setting the estimate
to the target mean, µi∗1d. The inclusion of visual information
allows a further modification to the estimate. In this situation
equation 7 is modified by making the estimate a weighted com-
bination of the target mean and an estimate of the target, xV1d,
that is derived from a visual speech feature, v1, extracted from
video of the target speaker’s mouth

x̂1d =
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1d
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d
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∗
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(9)

The weighting term, α, adjusts the contributions made by the
target mean and visual component in the estimate, x̂1d. The
procedure for obtaining the audio estimate xV1d from a visual
speech feature, v1, extracted from video of the target speaker’s
mouth is explained in Section 4.

3.2. Target mean greater than competing mean : µi∗1d ≥
µj∗2d

When the target mean is greater than the competing mean in
equation 7 the estimate of the target is made from a Wiener-type
weighting of the target mean and input mixture of speakers, yd.
Similar to equation 9 the visually-derived estimate of the target,
xV1d, can be introduced as

x̂1d =
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(10)

A second weighting term, β, is introduced to adjust the contri-
bution made by the visual information.

4. Audio estimation from visual features
Several studies have shown high levels of correlation to exist
between audio and visual speech features [11, 12]. With a com-
bination of log filterbank audio features and 2D-DCT visual



features an audio-visual correlation of R=0.8 is reported. The
existence of this correlation has been exploited in both robust
speech recognition and audio speech enhancement [12, 16].

For the purpose of audio-visual speaker separation, equa-
tions 9 and 10 require an estimate of the dth component of
the log spectral vector from the target speaker, xV1d, that is to
be provided by a visual feature vector, v1. Many different vi-
sual features have been proposed that have high correlation to
audio spectral features and include active appearance models,
2-D DCT and cross-DCT [17, 12]. The 2-D DCT visual fea-
ture has been chosen in this work given its high correlation
to log spectral features [12]. The 2D-DCT features are com-
puted from 100×100 pixel blocks that are centred around the
speaker’s mouth and truncated to 15 components in a zig-zag
pattern [18].

4.1. Estimation of audio features

Estimation of the log spectral vector begins by creating a GMM
to model the joint density of the audio and visual feature vec-
tors from a speaker. A joint feature vector, z1, is first created
by augmenting log spectral audio vectors and 2D-DCT visual
vectors, a1 and v1, from speaker 1

z1(t) = [a1,v1] (11)

Using a training set of joint feature vectors extracted from
speaker 1, expectation maximisation (EM) clustering is applied
to create a GMM, Φ1, that models the joint density of the audio
and visual features for speaker 1

Φ1 =

C∑
c=1

γc1φ
c
1 =

C∑
c=1

γc1 N (z1;µc1,Σ
c
1) (12)

The GMM comprises C = 32 clusters with the cth cluster hav-
ing a prior probability, γc1 , Gaussian probability density func-
tion, φc1 with mean vector, µc1, and covariance matrix, Σc

1

Given the model of the joint density of audio-visual vectors,
Φ1, an estimate of the log spectral audio vector, â1, can be made
from a 2D-DCT visual vector extracted from speaker 1’s mouth
region, v1

â1 = arg max
a

(p (a1|v1,t,Φ1)) (13)

The log spectral component, xV1d, is extracted from the dth ele-
ment of the estimated vector, â1.

5. Experimental results
The performance of audio-visual speaker separation is evalu-
ated in this section. The audio-visual speech database used for
evaluation is described first. Second, three metrics to measure
the quality and intelligibility of the separated speech are de-
fined. Speaker separation results are then presented.

5.1. Audio-visual databases

The GRID audio-visual speech databases is used in these ex-
periments [19]. A male speaker (speaker 1) is used as the target
and a female speaker (speaker 4) is the competing speaker. Of
the 1000 utterances spoken by each speaker, 800 are used for
training and the remaining 200 for testing. The audio in both
databases was downsampled to a sampling frequency of 8kHz
and log spectral vectors extracted at 10ms intervals. The video
was upsampled to 100 frames per second to match the audio
frame rate.

The test scenario assumes that the two speakers are talking
simultaneously and are located close together. Video is cap-
tured from each speaker with a separate camera. The mixed
audio is created by taking speech from the target speaker and
mixing it with speech from the competing speaker that is scaled
to create the desired SNR. Other SIRs were also evaluated with
similar results obtained. For the tests reported, the male speaker
is the target and the female the competing speaker. Each of the
200 test utterances from the male speaker was mixed with a
randomly selected utterance from the female speaker with the
restriction that no mixture used the same two sentences. Exper-
iments were also undertaken with the speakers reversed so the
female became the target and no significant differences were
observed in the results.

5.2. Speech quality and intelligibility

Three measures are used to examine the effectiveness of speaker
separation. The quality of the target speaker’s speech is esti-
mated using the signal-to-interference ratio (SIR) [20]

SIR = 10 log10

‖starget‖2

‖ecomp‖2
(14)

where starget and ecomp refer to speech from the target speaker
and competing speaker respectively. The level of distortion in
the target speech is measured using the speech distortion ratio
(SDR) as

SDR = 10 log10

‖starget‖2

‖einterf + enoise + eartif‖2
(15)

where einterf , enoise and eartif are the interference, noise and
distortion artefacts present in the speech [20].

An estimate of speech intelligibility is made us-
ing a whole word speech recogniser trained on the
GRID database [19]. Each utterance follows a gram-
mar containing six words of the following structure
command→colour→preposition→letter→digit→adverb.
From the estimates of the target speaker’s speech, MFCC
vectors were extracted in accordance with the ETSI XAFE
standard [21] and the resulting word accuracy used as an esti-
mate of intelligibility. It should be noted that these recognition
tests are used to provide an indication of intelligibility. The
methods presented in this work are not a proposed method
of speaker separation for speech recognition. For this task,
effective methods have been developed that operate on the
features themselves without the need to reconstruct an audio
signal [22].

5.3. Target mean less than interfering mean

This section examines the effect of introducing visual informa-
tion into the audio soft mask when the target mean is less than
the interfering mean as described by equation 9. The target and
competing speakers were mixed to give an initial, uncompen-
sated SNR of 0dB. The variable α controls the ratio of target
mean, µi∗1d, to visual information, xV1d. With α = 1 no visual
information is used and so the estimate is purely the soft mask
result, while with α = 0 the output is purely the visual estimate.

Figure 1 shows the SIR, SDR and recognition accuracy
when varying α from 0 to 1. A-only in the figure is repre-
senting the audio only soft-mask method of equation 7 while
AV is representing the audio-visual method of equation 9. The
A-only method is not affected by α or in other words α = 1



all the time. For AV method, SIR peaks with α = 0.2 and
begins to drop with α > 0.3 which equates to highest qual-
ity when the estimate is based largely (80%) on the visual es-
timate of the target speech. The SDR peaks with α around 0.4
although varying the contributions of the visual estimate and
target mean has less effect than observed with the SIR. Recog-
nition performance peaks at α=0.35 with an accuracy of 72% –
in clean conditions recognition accuracy for the target speaker
is 94%. For all three metrics, including visual information in
the AV method, has improved performance over the audio-only
case (α = 1).

Figure 1: Comparison of SIR, SDR and recognition accuracy
for AV and A-only methods. The circles are indicating the peak
values.

5.4. Target mean greater than competing mean

The effect of adjusting the contribution made from visual in-
formation to the target estimate when the target mean is greater
than the competing mean is now investigated as described in
equation 10. Figure 2 shows the SIR, SDR and recognition ac-
curacy when varying the visual contribution, β, from 0 to 1. In
these tests the optimal value of α=0.35 is used when the tar-
get mean is less than the competing mean. In the figure, AV-
AlphaBeta is representing the variation of AV method according
to equation 10.

With β=1 the target spectral estimate is made from audio
only which is the original soft mask. As β reduces the visual
information makes more contribution to the estimate. For SIR,
SDR and recognition accuracy as more visual information is
included, and thereby audio information reduced, performance
falls. All three metrics reach minimum levels when the target
estimate is based only on visual information. Therefore an op-
timal value of β is one. Hence it is concluded that the introduc-

Figure 2: Comparison of SIR, SDR and recognition accuracy of
AV and AV-AlphBeta methods. For AV-AlphBeta, the value of α
is constant and is 0.35. For AV, the optimal constant values of
α are used as indicated by the circles in Figure 1.

tion of β does not give any improvements and is dropped from
further investigation.

6. Conclusions
This work has shown that the performance, both in terms of
estimates of quality and intelligibility, of soft mask audio-only
speaker separation can be improved by including visual speech
information. When considering the results from both set of ex-
periments the performance of the audio-only soft mask is im-
proved by including visual information in the condition when
the target mean is less than the competing mean. However,
when the target mean is greater than the competing mean, vi-
sual information has no positive effect and instead reduces per-
formance. This suggest that in times when the soft mask is con-
fident that the target speaker is dominant then it is preferable to
make full use of the audio information through the mixed au-
dio, yd, and target mean, µi1d. Conversely, when the soft mask
indicates that the competing speaker is dominant, then a better
estimate of the target speaker in that situation is to use a sub-
stantial proportion of the visual information and a smaller part
of the target mean – a ratio of 2 to 1 was found to be optimal.
Further analysis found that the target mean was less than the
competing mean for approximately 43% of time-frequency re-
gions meaning that the improvement gained by including visual
information was widespread across the target speech.
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