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Abstract  19 

Osteoporosis and related fractures are a major global health issue, but there are few preventative 20 

strategies. Previously reported associations between higher intakes of fruits and vegetables and 21 

skeletal health have been suggested to be partly attributable to vitamin C. To date, there is some 22 

evidence for a potential role of vitamin C in osteoporosis and fracture prevention but an overall 23 

consensus of published studies has not yet been drawn. This review aims to provide a summary of 24 

the proposed underlying mechanisms of vitamin C on bone and reviews the current evidence in the 25 

literature, examining a potential link between vitamin C intake and status with osteoporosis and 26 

fractures. The Bradford Hill criteria were used to assess reported associations. Recent animal studies 27 

have provided insights into the involvement of vitamin C in osteoclastogenesis and 28 

osteoblastogenesis; and its role as a mediator of bone matrix deposition, affecting both the quantity 29 

and quality of bone collagen. Observational studies have provided some evidence for this in the 30 

general population showing positive associations between dietary vitamin C intake and supplements 31 

and higher bone mineral density or reduced fracture risk. However, previous intervention studies were 32 

not sufficiently well designed to evaluate these associations. Epidemiological data are particularly 33 

limited for vitamin C status and for fracture risk and good quality RCTs are needed to confirm 34 

previous epidemiological findings. This review also highlights that associations between vitamin C 35 

and bone health may be non-linear and further research is needed to ascertain optimal intakes for 36 

osteoporosis and fracture prevention. 37 
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Introduction 38 

Osteoporosis is a “progressive systemic skeletal disease characterised by low bone mass and 39 

microarchitectural deterioration of bone tissue, with a consequent increase in bone fragility and 40 

susceptibility to fracture”(1). The condition has been estimated to affect 75 million people in Europe, 41 

Japan and the United States(2). Moreover, fragility fractures, the clinical manifestation of 42 

osteoporosis, are a major global health issue with an annual prevalence of 8.9 million fractures 43 

worldwide(3). The elderly are the most at-risk population(4) and as the world’s population aged 60 and 44 

80 years plus is estimated to increase three and seven fold by 2100, respectively(5), osteoporosis and 45 

related fractures will become an increasingly bigger health burden.  46 

Risk factors for the development of osteoporosis and fragility fractures include genetic and 47 

biological factors, although environmental factors, including diet, are of great interest for developing 48 

preventative strategies, as they are modifiable. To date, a wide range of nutrients, foods and food 49 

groups have been studied in relation to bone health, including fruits and vegetables with every 50 

increased serving or intakes of 1-4 portions per day, on at least three days per week, being positively 51 

associated with increased bone mass or a reduction in bone loss(6-9). The mechanisms underlying these 52 

positive associations have not been fully elucidated but one such explanation is the potential buffering 53 

effect of the overall dietary acid load constituents in fruits and vegetables(10). Moreover, 54 

epidemiological studies have suggested that these beneficial effects may also be due to micronutrients 55 

such as vitamin C which may have mechanisms independent of these buffering effects(11,12). Vitamin 56 

C, an essential nutrient to humans found in citrus and soft fruits(13,14), has previously been linked to 57 

bone health, particularly bone structure. For example, in previous animal studies vitamin C 58 

deprivation resulted in a marked reduction in bone formation(15-17); and superoxide-induced bone loss 59 

in mice was restored by oral administration of 1% vitamin C in drinking water, as evidenced by 60 

significant improvements in BMD, bone weight, bone strength and collagen cross-links(18). In the last 61 

two decades, observational and intervention studies have investigated a potential role for vitamin C 62 

in osteoporosis and fracture prevention; however, an overall consensus of the results of published 63 

studies does not exist. 64 

This article provides a review of the potential underlying mechanisms of vitamin C in bone 65 

metabolism. The current evidence in the literature investigating a potential role for vitamin C in the 66 

prevention of osteoporosis and related fractures will be discussed and avenues for future research 67 

highlighted. Databases, including MEDLINE (Ovid), PubMed and Google Scholar, were used to 68 

identify relevant observational and clinical studies published up to August 2013. As neither laboratory 69 

nor epidemiological studies can infer causality, criteria established by Sir Austin Bradford Hill in 70 

1965 were used to assess whether vitamin C is causal in the prevention of osteoporosis and associated 71 

fractures(19). The structure of the review will be discussed around these criteria. 72 
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 73 

Bradford Hill criteria 74 

The Bradford Hill criteria (BHC) are a set of guidelines used to assess causality of hypotheses and 75 

associations from trial, laboratory and epidemiological research(19). In brief, the nine criteria assess 76 

(1) biological plausibility, (2) coherence between laboratory and epidemiological studies, (3) 77 

temporality, (4) consistency, (5) strength, (6) analogy, (7) specificity, (8) dose-response effect, and 78 

(9) evidence from intervention studies. The criteria may not confirm the absence or presence of 79 

causality unconditionally, but are considered to be a useful tool for understanding associations 80 

between an exposure and a risk of disease.  81 

 82 

Potential mechanisms of vitamin C in bone health 83 

Scurvy, the clinical manifestation of vitamin C deficiency, is associated with wounds and fractures 84 

that fail to heal. The discovery of vitamin C in the early 20th century and subsequent animal studies 85 

lead to the suggestion that scurvy symptoms result from impaired collagen formation in vitamin C 86 

deficiency(20). Collagen is an essential component of bone tissue; and more recently, many cell and 87 

animal studies reported that vitamin C may also mediate osteoclastogenesis and osteoblastogenesis(21-88 

24), although the precise biological mechanisms have not been fully established yet. 89 

 90 

Osteoclastogenesis 91 

Vitamin C has been suggested to mediate osteoclast differentiation and possibly apoptosis(22,25) and 92 

findings have been relatively consistent. In cell cultures containing both osteoblasts and osteoclasts, 93 

vitamin C promoted osteoclastogenesis(26-28) and this was associated with an increase in RANKL 94 

expression(27). In concordance with these findings, vitamin C deficiency resulted in a decrease in 95 

osteoclast differentiation(26,27). However, in cultures containing only osteoclasts, stimulatory 96 

effects(29) as well as inhibitory effects(22,28,30) of vitamin C on osteoclast differentiation have been 97 

reported. Recent in vitro findings have helped explain these contradictory results by showing that 98 

vitamin C at a concentration of 50 µg/ml initially exhibited pro-oxidant activity resulting in an 99 

increase in the number, size and nucleation of osteoclasts, although vitamin C also initiated 100 

accelerated osteoclast death at later stages(25). Deficiency studies are in agreement with most previous 101 

findings, indicating that vitamin C deficiency in animal models stimulated osteoclastogenesis via the 102 

up-regulation of the RANKL/RANK pathway(22,23). Moreover, vitamin C deficient mice 103 

supplemented with vitamin C had a reduction in RANKL expression(23). Although there is some 104 

consistency of previous cell and animal studies reporting on the effects of vitamin C on 105 

osteoclastogenesis, the current discrepancies require further investigation in humans to help decide if 106 

vitamin C may be involved in osteoclastogenesis via mediating the RANK/RANKL pathway.  107 
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 108 

Osteoblastogenesis 109 

Vitamin C may be involved in accentuating osteoblastogenesis. For example, a decrease in the 110 

number of osteoblasts and suppressed osteoblast differentiation has previously been observed in 111 

vitamin C deficient mice(23). In concordance with these findings, an increase in the number of 112 

osteoblasts following vitamin C treatment has been reported from in vitro work(31). Furthermore, 113 

studies using osteoblast-like cell cultures including human tissue have shown that osteoblast 114 

proliferation and differentiation was enhanced with the addition of vitamin C(21,24,31-33). 115 

Concentrations of 50 µg/ml and 200 µg/ml vitamin C have previously been suggested as optimal and 116 

maximum concentrations for this effect(21,24).  117 

Initially, work suggested that the effects of vitamin C on osteoblastogenesis may be through 118 

stimulating collagen synthesis(31,32), although more recent evidence suggests the underlying 119 

mechanisms are more complex. For example, vitamin C has been reported to mediate gene expression 120 

of a number of genes involved in pre-osteoblast cell activities including growth, metabolism, 121 

communication and death(34). Furthermore, animal studies have shown that the expression of PPAR-122 

γ may mediate osteoblast differentiation resulting in bone loss(35,36). Recently, these findings have 123 

been investigated further and a link to vitamin C has been established. An in vivo study reported that 124 

PPAR-γ expression in osteoblasts was significantly up-regulated in vitamin C deficient mice and was 125 

accompanied by suppressed osteoblast differentiation; whereas treatment with vitamin C mediated 126 

PPAR-γ expression to almost normal levels(23). To date, there is consistent experimental evidence for 127 

a beneficial role of vitamin C in osteoblastogenesis. Recent work suggesting that vitamin C may 128 

mediate PPAR-γ expression has provided more insight in to the mechanisms, and further 129 

experimental studies are needed to confirm these findings.  130 

 131 

Bone collagen synthesis 132 

Vitamin C is essential for collagen type I synthesis by osteoblasts. For example, early in vitro work 133 

reported that collagen synthesis increased more than four fold in the presence of ascorbate(37) and 134 

more recently, greater amounts of collagen were shown to be present at vitamin C concentrations of 135 

200 µg/ml compared to 100 µg/ml and 25 µg/ml(24). The underlying mechanisms for this are thought 136 

to relate to the role of vitamin C in stimulating collagen synthesis and as a cofactor of hydroxylation 137 

reactions within collagen fibres. For the former, vitamin C is an important initiator of collagen 138 

synthesis in osteoblasts(38), possibly via stimulating pro-collagen type I mRNA(39,40); whereas for the 139 

latter, vitamin C is an essential activator of enzymes involved in the hydroxylation of proline and 140 

lysine residues within collagen fibres(41-44). The hydroxylation reaction enables the formation of 141 

covalent bonds between the amino acid residues, increasing overall collagen strength. Early in vitro 142 
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and in vivo studies found that the lack of ascorbic acid resulted in the formation of underhydroxylated 143 

and unhydroxylated collagen(45-49), thus decreasing bone matrix stability and weakening bone 144 

structure. In contrast, the presence of vitamin C increased the hydroxylation of amino acid residues 145 

in vitro(50). The hydroxylation of amino acid residues may occur while the collagen polypeptide chain 146 

is still being synthesised and attached to the ribosome(51,52). However, more recent work suggested 147 

that this hydroxylation reaction takes place in the endoplasmic reticulum(53). 148 

Experimental evidence for a role of vitamin C in bone collagen synthesis is well established. 149 

Vitamin C is important for the quality of collagen via its cofactor role in hydroxylation reactions in 150 

collagen fibres. Future studies should focus on the importance of vitamin C for the quantity of 151 

collagen synthesis via stimulating procollagen type I mRNA as there are currently only limited data 152 

on this potential link.  153 

 154 

In summary, a range of mechanisms of vitamin C in maintaining bone health have been suggested in 155 

a number of experimental studies. Thus, there is some good evidence for the BHC of biological 156 

plausibility for vitamin C deficiency and osteoporosis. The evidence for a role of vitamin C in 157 

osteoblastogenesis and in quality aspects of bone collagen synthesis is consistent. In contrast, the 158 

links between vitamin C and osteoclastogenesis as well as quantity aspects of collagen synthesis are 159 

currently less well defined and require further investigation.  160 

 161 

Measures of vitamin C intake and status 162 

Vitamin C intake may be measured from dietary assessment methods such as food diaries and 163 

FFQs(54). Food diaries assess habitual intake through a detailed description of foods and drinks 164 

consumed typically in the preceding three to seven days and FFQs make use of a food list with a 165 

frequency response section estimating intake usually from the previous 12 months. The mean vitamin 166 

C intake in the UK is 90 mg/d (calculated using food records) (55), reflecting sufficient intake 167 

according to the Reference Nutrient Intake (RNI) of 40 mg/d(13) and in comparison to the US 168 

recommendations of 90 mg/d and 75 mg/d for men and women, respectively(56). The Lower Reference 169 

Nutrient Intake (LRNI) has been set in the UK at 10 mg/d and is based on the prevention and cure of 170 

scurvy(13). Currently, there is no upper limit for vitamin C intake. However, very high intakes of 1000 171 

mg/d and above, achieved through the use of supplements, may present with side effects including 172 

gastrointestinal discomfort and diarrhoea(57) and have previously been shown to increase the risk of 173 

renal stones(58). 174 

The ability to accurately assess vitamin C intake varies between the different dietary methods, 175 

with the correlation coefficients between blood vitamin C concentrations and dietary intake being 176 

higher for food diaries, dietary recalls (both r 0.46; 95% CI 0.41, 0.52) and weighed records (r 0.39; 177 
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95% CI 0.25, 0.53) compared to the correlation coefficient between blood vitamin C concentrations 178 

and dietary intake estimated from FFQs (r 0.35; 95% CI 0.29, 0.40)(54). Despite the ability to estimate 179 

vitamin C intake, the measurement of vitamin C status from blood may be more accurate than dietary 180 

intake assessments as it avoids human recall error and variations in individual bioavailability of the 181 

nutrient and accounts for factors that affect the vitamin C composition of food including length of 182 

storage of food items and cooking practises(59). However, vitamin C in blood is influenced by a 183 

number of biological and lifestyle factors including age(60), sex(61,62), BMI(60), body fat distribution(63), 184 

smoking(64,65) and infection(66) which should be accounted for when evaluating its association with 185 

disease risk. 186 

Dietary intake and plasma concentrations of vitamin C, when plotted against each other, show 187 

a sigmoidal relationship(67,68). Average vitamin C intakes (60-100 mg/d) reflect plasma levels of 188 

around 40-60 µM/l. Higher intakes result in a progressive flattening of the curve and very high intakes 189 

of 400 mg/d and above appear to saturate vitamin C in plasma at concentrations of 70-85 µmol/l, 190 

leading to the excretion of the vitamin(68). The mean plasma vitamin C concentration of the general 191 

UK population is 53 µmol/L(69). Vitamin C status may be categorised as severely deficient at plasma 192 

levels below 11 µmol/L indicating biochemical depletion; and 1% of men and 2% of women in the 193 

UK are classified as such(69).  194 

 195 

Current evidence on vitamin C, osteoporosis and fracture prevention  196 

There is evidence from epidemiological studies for a potential role of vitamin C in maintaining 197 

different aspects of bone health, although the results have varied between studies. In the next section, 198 

randomised controlled trials (RCTs) as the best indicator of causality will be discussed first and this 199 

will be followed by observational studies in hierarchical order of decreasing ability to determine 200 

causality. All types of studies will be evaluated against the BHC. 201 

 202 

Intervention studies 203 

RCTs are the only studies that can definitively infer causality and determine factors influencing 204 

disease, making them the gold standard in limiting selection bias and confounding. To our knowledge, 205 

there is only one such published RCT with a double-blind design that has examined the effects of 206 

vitamin C supplementation on indicators of bone health (Table 1). The study involving 30 men and 207 

women compared bone density of one group taking a placebo with that of two groups receiving 400 208 

IU of vitamin E daily and either 500 mg/d or 1000 mg/d of vitamin C for 12 months(70). The group 209 

with the highest vitamin C intake had significantly less hip bone loss compared to the placebo group 210 

(effect sizes and P-values not shown), although no such observations were made at the lumbar spine. 211 

However, this study did not investigate the effects of vitamin C independently and the inclusion 212 
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criteria allowed for smokers and for participants with controlled chronic disease which may have 213 

biased the study outcomes. Thus, it remains unclear to what extent vitamin C was involved in 214 

preventing bone loss in this study.  215 

Two intervention studies used a combination of an exercise programme and supplementation 216 

with vitamin C and E(71,72). The first study was a randomised placebo-controlled pilot study in 34 217 

women who followed an intervention of 60 minutes of resistant training three times per week and 218 

daily supplementation with vitamin C (1000 mg/d) and E (600 mg/d) for six months. Women were 219 

randomised into four treatment groups of placebo, vitamins, exercise and placebo, or exercise and 220 

vitamins(72). BMD of the lumbar spine but not the femoral neck decreased significantly by 1% in the 221 

placebo group over six months (BMD pre: 1.01 ± 0.17 g/cm2; BMD post: 1.00 ± 0.16 g/cm2; P<0.05) 222 

and was maintained in the other groups. No additive effects of the exercise intervention and the 223 

vitamin supplementation were found. However, the results may have been biased by changes in 224 

dietary habits as a reduction in vitamin C intake over the course of the study period was reported for 225 

the vitamin intervention group. Moreover, the study did not report on blinding in the protocol. The 226 

second study, a two month intervention in 13 men and women, included an hour of aerobic exercise 227 

three times per week and the daily use of vitamin C (500 mg/d) and vitamin E (100 mg/d) supplements 228 

for all subjects(71). Although markers of calcium homeostasis improved significantly (effect sizes not 229 

reported), the bone formation marker BSALP decreased unexpectedly by 14.5% (P-value not 230 

reported). However, this study lacked a control group, was undertaken in only 13 individuals, and 231 

since it was a mixed intervention, the effects of vitamin C could not be distinguished. Moreover, both 232 

studies were of short duration of only two to six months, although changes in BMD are more likely 233 

to be observed after a longer duration of treatment.  234 

In summary, evidence from current trials investigating potential preventative effects of 235 

vitamin C in osteoporosis remains equivocal, even though the doses were greater than with diet alone. 236 

There are limitations regarding study design, inclusion and exclusion criteria, limited duration of 237 

treatment, small sample sizes and dietary intake that was not controlled for. Moreover, published 238 

intervention studies have used vitamin supplements containing vitamin E in addition to vitamin C 239 

and have included exercise programmes during treatment. Future trials should consider having more 240 

participants, stricter inclusion and exclusion criteria and interventions consisting of vitamin C 241 

supplementation only. The BHC of evidence from intervention studies is therefore not met. 242 

 243 

Prospective and longitudinal studies 244 

Prospective cohort studies may be used to investigate the aetiology of a disease as the exposure is 245 

measured prior to the condition occurring, making studies less prone to recall bias than case-control 246 

studies. They may thus also be used to evaluate the BHC of temporality. Furthermore, as cases and 247 
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controls are drawn from the same population, there is less selection bias. To date, only one prospective 248 

and two longitudinal studies have investigated potential vitamin C and bone associations (Table 2). 249 

One study of 944 men and women from the UK with a mean age of 72 years reported significantly 250 

less total hip BMD loss of up to 54% for higher dietary intakes of vitamin C (99-363 mg/d) compared 251 

to lower intakes (7-57 mg/d)(73). Another study using a US cohort of 606 subjects with a mean age of 252 

75 years reported that lumbar spine and trochanter BMD loss, but not femoral neck and radial shaft 253 

BMD loss, decreased significantly across tertiles of dietary vitamin C intake in men but not in 254 

women(74). However, as highlighted above, the findings were not consistent across these two studies 255 

with results varying mainly for gender and bone site. Potential explanations for this might be that the 256 

first study used 7-day food diaries and did not adjust for important confounders including age, gender 257 

and smoking(73), in contrast to the second study which used a semiquantitive FFQ and measured BMD 258 

via two different types of bone scans (i.e. DPA at baseline and DXA at follow-up)(74). However, DXA 259 

scans have been shown to produce lower results than DPA scans(75), hence the effect size in this study 260 

may be more modest than the true result. 261 

A potential role for vitamin C in fracture prevention has only been investigated in one previous 262 

prospective study of 918 US men and women with a mean age of 75 years. There was a risk reduction 263 

in hip fracture of 44% for supplemental vitamin C intake (mean: 260 mg/d compared to 0 mg/d) and 264 

of 69% for total (dietary and supplemental) vitamin C intake (mean: 313 mg/d compared to 94 mg/d) 265 

after 15-17 years of follow-up (RR and 95% CI not reported), although no significant risk reductions 266 

were found at other fracture sites(76). As this study was comparatively small, further large prospective 267 

cohort studies of older men and women with long follow-up, which investigate fractures as the 268 

clinical endpoint of osteoporosis, are needed. 269 

In summary, there are only limited data from three prospective and longitudinal studies 270 

investigating potential associations between vitamin C and bone health. Although these prospective 271 

studies meet the BHC of temporality, it is difficult to assess the strength of the associations and the 272 

potential for a dose-response relationship as not all studies reported effect sizes. Moreover, issues 273 

regarding analogy, inferring the absence of another confounder related to the predictor variable, and 274 

consistency were present. A greater number of prospective and longitudinal studies and more 275 

concordant adjustment for confounding factors may help establish more consistent findings of the 276 

relationship between vitamin C intake and osteoporosis and associated fractures. Moreover, the lack 277 

of evidence for a relation between vitamin C status and bone health needs to be investigated further 278 

as the only study investigating this did not adjust for age, gender and smoking(73). 279 

 280 

Case-control studies 281 
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Case-control studies, summarised in Table 3, are used to examine specific exposures as potential risk 282 

factors of a disease in people with and without the condition. Recall bias, where case subjects tend to 283 

have a better recollection of specific exposures than the controls, and selection bias, resulting from 284 

both outcomes being pre-defined, are common issues of these studies. To date, three case-control 285 

studies have consistently shown that osteoporosis and fracture patients had lower serum vitamin C 286 

concentrations (cases: 17-37 µmol/L; controls: 23-54 µmol/L) and lower plasma vitamin C 287 

concentrations (cases: 30 µmol/L; controls: 55 µmol/L) than controls(77-79). Only one study reported 288 

differently, but the authors inferred that their findings reflected most recent changes in food intake(80).  289 

In contrast to vitamin C status measures, findings for potential differences in dietary vitamin 290 

C intakes between cases and controls are less consistent(79,80). Differences in measures of dietary 291 

intake and relatively small sample sizes may explain some of these inconsistent findings. However, 292 

associations with osteoporosis and fracture risk were reported when population intakes were stratified 293 

into quartiles of dietary vitamin C intake. For example, one case-control study showed a marginally 294 

significant fracture risk reduction for participants in the second quartile of vitamin C intake compared 295 

to the first (OR 0.39, 95% CI 0.15, 1.00; vitamin C intake range: 204-247 mg/d compared to ≤203 296 

mg/d)(79). This was not significant for higher vitamin C intakes, possibly due to the high vitamin C 297 

intake of the study population (mean: 200 mg/d). Moreover, another case-control study reported that 298 

those in the third quartile of vitamin C intake had a significantly reduced risk of osteoporosis referent 299 

to the lowest quartile (OR 0.29, 95% CI 0.09, 0.96; vitamin C intake range: 137-176 mg/d compared 300 

to ≤92 mg/d)(81). Recall bias in this study was low due to the diagnosis of osteoporosis at screening 301 

and the subsequent reporting of current vitamin C intake. 302 

In conclusion, published case-control studies of osteoporosis and fracture patients have 303 

reported consistently lower blood vitamin C concentrations but not dietary intake of vitamin C. Thus, 304 

the BHC of consistency is currently not fulfilled. Although reported effect sizes appear to be large, 305 

this evidence is currently limited to only two studies. More case-control studies are needed to help 306 

clarify the discrepancies in vitamin C intake between osteoporosis and fracture patients and matched 307 

controls currently reported in the literature. 308 

 309 

Cross-sectional studies 310 

Cross-sectional studies are used to report the prevalence of a disease in a defined population at a 311 

specific point in time. Whether the exposure predated the disease or not cannot be determined. 312 

Previous cross-sectional studies are summarised in Table 4. Positive associations indicated that higher 313 

dietary vitamin C intake was associated with 3-5% higher BMD(6) and every 100 mg/d increment in 314 

vitamin C intake was associated with 0.01-0.02 g/cm2 higher BMD(11,12), although there is currently 315 

limited understanding of this clinical relevance. Moreover, users of vitamin C supplements (mean 316 
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[range] = 745 mg/d [70-5000 mg/d]) had 4% higher BMD and users of supplement doses of ≥1000 317 

mg/d had 14% higher BMD than non-users(82). Although positive associations between dietary 318 

vitamin C intake and supplements and bone density have previously been reported, findings have 319 

been inconsistent(8,9,74,83-85). The use of different dietary assessment methods as means of measuring 320 

vitamin C intake and differences in the adjustment for confounding factors may explain some of these 321 

discrepancies. Dietary methods have included semiquantitative FFQs with 97–126 food 322 

items(6,8,11,74,84,86,87), three to seven-day food diaries(9,88) and 24-hour recalls(12,83). Moreover, total 323 

(dietary and supplemental) vitamin C intake has not been linked with BMD in women(83,84,88); and 324 

both positive and negative associations have been reported in men(74), although the latter findings 325 

may have been biased by the population’s smoking behaviour. Dietary intakes of vitamin C have 326 

previously been shown to be significantly lower in smokers than non-smokers(65) and serum vitamin 327 

C levels are lower in smokers independent of dietary intakes(64,65). Hence, the exclusion of smokers 328 

to the study may have led to more consistent findings. 329 

Potential associations between vitamin C from the diet or in serum and fracture risk have 330 

currently  been examined in only one cross-sectional study of more than 13000 men and women aged 331 

20-90 years(12). Findings were non-significant, although men with mean dietary vitamin C intakes of 332 

200 mg/d reported fewer fractures than men with higher or lower intakes. One may be critical about 333 

the large age range of the study population. As osteoporosis and associated fractures are known to be 334 

more prevalent in the elderly population(4), the inclusion of very young participants may be an 335 

explanation for the non-significant findings.  336 

Cross-sectional data on vitamin C and markers of bone homeostasis are sparse with only two 337 

studies investigating potential associations. One study found that higher intakes of vitamin C were 338 

associated with lower excretion of deoxypyridinoline (no effect size shown), indicating reduced bone 339 

resorption(8). Similarly, the other study reported a significant association between the duration of 340 

vitamin C supplement use and markers of bone resorption, with serum CTX concentrations being 341 

0.022 pg/mL lower for every 1-year supplement use increment(85). 342 

Although there are data from a number of cross-sectional studies investigating vitamin C and 343 

bone health associations, the BHC of consistency, analogy and temporality were not fulfilled. The 344 

effect sizes of present cross-sectional studies are comparable to those previously reported for other 345 

dietary factors including potassium, although many studies did not report effect sizes. The limited 346 

number of Bradford Hill criteria currently fulfilled by cross-sectional studies may indicate that the 347 

reported associations between vitamin C intake and osteoporosis and fractures are less reliable 348 

evidence than relationships reported by prospective cohort studies and RCTs.  349 

 350 
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In summary, support for studies, which have investigated the potential underlying mechanisms 351 

between vitamin C and osteoporosis prevention, has come from a variety of epidemiological studies, 352 

although differences in study populations, dietary exposure, outcome measures and use of 353 

confounding factors in statistical analyses may have resulted in inconsistent findings. Current 354 

observational data are particularly limited for men as most studies have consisted of only women and 355 

for biological markers of vitamin C status which may be less subjective to recall bias and factors 356 

influencing the vitamin C content of food(89). More observational studies in the general population 357 

are needed to address these limitations.  358 

 359 

Moderate versus high vitamin C intakes 360 

Results from three observational studies have indicated that significant associations with bone health 361 

were surprisingly stronger for moderate rather than higher vitamin C intakes(6,79,81). For example, 362 

vitamin C intake was significantly associated with higher bone density or a reduction in fracture risk 363 

for the second quartile(79) or for the third quartile(6,81) of vitamin C intake rather than the highest intake 364 

levels. Similar cross-sectional observations have been reported for associations with serum vitamin 365 

C levels(12). This may suggest that vitamin C may be related to bone density in a bell-shaped dose-366 

response fashion with intakes below and above the optimum not being beneficial. The potential 367 

underlying mechanisms for this may relate to the properties of vitamin C rather than bone tissue itself. 368 

It has previously been suggested that vitamin C may not only have antioxidant properties, but may 369 

also exhibit pro-oxidant traits at higher concentrations, as supplementation of men and women with 370 

500 mg of vitamin C per day was shown to promote oxidative DNA damage(90) which may also be 371 

relevant to osteoporosis. Moreover, there is evidence from in vitro studies of a vitamin C dose-372 

dependent suppression of bone cell growth and differentiation as well as collagen type I 373 

synthesis(21,24,91). For example, vitamin C concentrations of 50 µg/ml were optimal for stimulation of 374 

human osteoblast-like cell lines and collagen type I synthesis, whereas higher levels resulted in the 375 

inhibition of cell differentiation(21). Another experimental study investigating  bovine osteoblast-like 376 

cell proliferation observed similar effects, although vitamin C concentrations of 200 µg/ml were 377 

found to be most effective(24). As suggested by the authors, the use of different cell types may be an 378 

explanation for the inconsistencies in optimal vitamin C concentrations in these cell culture studies. 379 

The potential bell-shaped dose-response relationship between vitamin C and indicators of bone health 380 

may also further explain the lack of positive results reported in the intervention studies discussed 381 

above which included high supplement doses of 500–1000 mg/d. The potentially detrimental effects 382 

of higher vitamin C concentrations on the skeleton need to be investigated further; and this is a crucial 383 

step towards establishing optimal vitamin C intake levels. 384 

 385 
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Discussion and conclusions 386 

Evaluating the current evidence for a potential role of vitamin C in osteoporosis and fracture 387 

prevention according to the Bradford Hill criteria (BHC) in the absence of RCTs provides some 388 

clarity regarding causality(19). The BHC of specificity, inferring that a cause leads to a single effect, 389 

cannot be met as biological functions of vitamin C are versatile. However, there is emerging 390 

experimental evidence for a potential role of vitamin C in bone health, thus fulfilling the BHC of 391 

biological plausibility. The mechanisms include the involvement of vitamin C in osteoclastogenesis 392 

via RANKL expression, osteoblastogenesis via PPAR-γ expression(22,23) and collagen synthesis via 393 

stimulation of pro-collagen mRNA expression and the hydroxylation of collagen fibres(38-40). A 394 

number of observational studies support these findings, thus the BHC of coherence between 395 

laboratory and epidemiological studies is met. However, differences in study populations, different 396 

methods of measuring dietary exposure, outcome measures and use of confounding factors in these 397 

observational studies may have resulted in inconsistent findings. Consequently, the BHC of 398 

consistency and analogy are currently not fulfilled. Addressing these limitations in future 399 

epidemiological studies may help establish more consistent results.  400 

Most observational studies published to date were of a cross-sectional nature. Thus, the BHC 401 

of temporality, inferring that the exposure preceded the disease outcome, was not met, and more 402 

cohort studies in the general population are needed to overcome this problem. Moreover, evaluating 403 

the BHC of the strength of the association based on the evidence currently available in the literature 404 

leads to equivocal conclusions as a large number of studies did not report effect sizes of their findings. 405 

Future studies should report effect sizes to help understand the overall clinical relevance of vitamin 406 

C for the prevention of osteoporosis and fractures.  407 

The present review has highlighted that potential associations between vitamin C and bone 408 

health may not follow an expected dose-response curve due the vitamin exhibiting antioxidant 409 

properties at lower and pro-oxidant traits at higher concentrations. Potentially detrimental effects on 410 

the skeleton from higher vitamin C concentrations need to be investigated further, as this may be an 411 

issue with vitamin C supplementation, and understanding this is a crucial step towards establishing 412 

optimal vitamin C intake levels for the general population.  413 

The final BHC of evidence from intervention studies is currently not fulfilled; although the 414 

conventional hierarchy of the validity of study designs may be less applicable to nutritional research, 415 

as cross-sectional studies tend to capture long-term dietary intake more so than intervention studies. 416 

Nevertheless, published intervention studies were not designed to evaluate the independent effects of 417 

vitamin C supplementation on potential improvements in bone health as interventions included 418 

additional supplementation with vitamin E and exercise programmes. Overall, the data are limited as 419 

only one double-blind RCT and two intervention studies have investigated this and dietary intake was 420 
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not controlled for. Moreover, further issues regarding study design, inclusion and exclusion criteria, 421 

duration of treatment and sample size were present. To our knowledge, published RCTs investigating 422 

the potential link between vitamin C and bone that use a supplement containing vitamin C only are 423 

still lacking and are urgently needed. 424 

 425 

In conclusion, over the last few decades, in vitro and in vivo studies have provided insights and 426 

knowledge as to how vitamin C may influence the mechanisms that benefit the skeleton; and 427 

observational studies have provided some evidence for a potential role of vitamin C in osteoporosis 428 

and fracture prevention. However, data are limited as good quality studies are scarce and more 429 

investigations, particularly well-designed RCTs, are urgently needed to address the limitations 430 

outlined in this review.  431 
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Table 1. Summary of intervention studies investigating the effects of vitamin C on bone mineral density and markers of bone turnover.  

Study Subjects 
Duration; 

study design 
Age (yrs) 

Primary 

outcome 
Intervention Results* Comments 

Maimoun(71) 

2008 

France 

n 13 

(4 men,  

9 women) 

2 months; 

/ 

69 - 79 BSALP, OC 

and CTX 

 

No groups. All participants received the 

following treatment: 60 min of aerobic exercise 

3 times/wk, vit. C (500 mg/d) & vit. E (100 

mg/d) 

 

M BSALP concentration decreased sig. by 14.5% 

(P=Data not reported). 

 

Chuin(72) 

2009 

Canada/France 

n 34 

(women) 

6 months; 

randomised, 

controlled 

pilot study 

61 - 73 FN and LS 

BMD 

4 groups. 

Placebo group (n 7): placebo (lactose); 

Vit. group (n 8): ascorbic acid (1,000 mg/d) & 

α-tocopherol (600 mg/d); 

Exercise & placebo group (n 11): 60 min of 

resistance training 3 times/wk & placebo 

(lactose); 

Exercise & vit. group (n 8): 60 min of 

resistance training 3 times/wk & ascorbic acid 

(1,000 mg/d) & α-tocopherol (600 mg/d) 

 

M LS BMD decreased sig. by 1% in the placebo 

group (BMD pre: 1.01 ± 0.17 g/cm2; BMD post: 

1.00 ± 0.16 g/cm2; P<0.05) but remained stable in 

the three intervention groups. 

 

Ruiz-Ramos(70) 

2010 

Mexico 

n 90 

(25 men,  

65 women) 

12 months;  

double-blind 

RCT  

68 TH and LS 

BMD 

3 groups: 

Placebo group (n 30): placebo (no details); 

Low vit. group (n 30): ascorbic acid (500 

mg/d) & α-tocopherol (400 IU/d); 

High vit. group (n 30): ascorbic acid (1000 

mg/d) & α-tocopherol (400 IU/d) 

M The high vit. group lost sig. less TH bone 

compared to the placebo group (Details not 

reported).  

BSALP, alkaline phosphatase; OC, osteocalcin; CTX, collagen type 1 cross-linked C-telopeptide; vit., vitamin; sig., significant(ly); FN, femoral neck; LS, lumbar spine; BMD, bone mineral density; 

RCT, randomised placebo-controlled trial; TH, total hip. 

* Results were significant (S), non-significant (NS) or of mixed nature (M). 
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Table 2. Prospective and longitudinal studies assessing associations between vitamin C intake or status and bone mineral density or fracture risk. 

Study 
Follow-

up 
Subjects 

Age 

(yrs) 

Dietary 

assessment 
Vit. C intake (mg/d)* 

Outcome measures 

and analyses 
Results† Comments 

Kaptoge(73) 

2003 

UK 

2-5 yrs n 944 

(470 men;  

474 women) 

 

72 

(67-79) 

7dD Median (range) dietary intake: 

Tertile 1 = 73 (7-57) 

Tertile 2 = 78 (58-98) 

Tertile 3 = 132 (99-363) 

Data for plasma levels not shown. 

 

2-5 year change in 

TH BMD stratified 

by tertiles of either 

dietary vit. C 

intake or plasma 

vit. C levels 

 

Diet: M 

Plasma: NS 

Women in tertile 2 and 3 of dietary vit. C 

intake had approx. 52% and 54% less TH 

BMD loss, respectively (P=0.015 and 

P=0.010; P-trend=0.016). 

Sahni(74)  

2008 

US 

4 yrs n 606 

(213 men; 

393 women) 

75 FFQ Mean (SD) dietary intake: 

Men = 141 (73) 

Women = 158 (83) 

Mean (SD) suppl. intake: 

Men = 82 (235) 

Women = 95 (248) 

Group 1 = 0 

Group 2 < 90 / 75‡  

Group 3 ≥ 90 / 75‡ 

Mean (SD) total intake: 

Men = 223 (259) 

Women = 253 (267) 

Intake data for tertiles not shown. 

 

4-year change in 

LS, FN, T and RS 

BMD stratified by 

tertiles of dietary 

or total vit. C 

intake or 

categories of 

suppl. vit. C intake 

and either calcium 

intake, vit. E 

intake, smoking or 

oestrogen use 

Diet: M 

Suppl.: NS 

LS and T BMD loss was sig. less with 

higher dietary vit. C intakes in men (P-

trend≤0.05). FN and T BMD loss was sig. 

less for higher total vit. C intake among 

men with low calcium intakes and with low 

total vit. E intakes (P-trend≤0.03). A 102% 

reduction in T BMD loss between extreme 

tertiles of total vit. C intake among men 

with low calcium intakes (P<0.05). 

Sahni(76) 

2009 

US 

15-17 yrs n 918 

(39.1% men;  

60.9% women) 

75 FFQ Median (range) dietary intake: 

Tertile 1 = 86 

Tertile 2 = 133 

Tertile 3 = 208 

Suppl. intake: 

Tertile 1 = 0 

Tertile 2 < 75 

Tertile 3 ≥ 75 

Median (range) total intake: 

Tertile 1 = 94 / 95§ 

Tertile 2 = Data not shown 

Tertile 3 = 313 / 308§ 

Risk of hip 

fracture or non-

vertebral fracture 

stratified by 

tertiles of dietary, 

suppl. or total vit. 

C intake in the 

combined sample 

of men and women 

Diet: NS 

Suppl.: M 

Total: M 

A reduction in hip fracture of 69% between 

extreme tertiles of suppl. vit. C intake 

(P=0.007; P-trend=0.02) and of 44% for 

total vit. C intake (P=0.04; P-trend=0.04).  

Vit., vitamin; 7dD, 7-day food diary; TH, total hip; BMD, bone mineral density; approx., approximately; FFQ, food frequency questionnaire; suppl., supplement(al); LS, lumbar spine; FN, femoral neck; 

T, trochanter; RS, radial shaft; sig., significant(ly). 

* Total intake is the sum of dietary intake and intake from supplements. 

† Results were significant (S), non-significant (NS) or of mixed nature (M). 

‡ Data shown for men / women. 

§ Data shown for hip / non-vertebral fracture analyses. 
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Table 3. Case-control studies assessing vitamin C intake or status in osteoporosis and fracture patients in comparison to controls. 

Study Subjects Age (yrs) 
Dietary 

assessment 

Mean or range vit. C intake or blood 

conc. 

Outcome measure(s) 

and analyses 
Results* Comments 

Falch(77) 

1998 

Norway 

n 40 hip fracture 

cases; 102 controls 

(men and women) 

83 N/A Serum conc.: 

CA = 37 µmol/L, CO = 50 µmol/L 

Serum conc. in 20 age-matched case-

control pairs: 

CA = 34 µmol/L, CO = 54 µmol/L 

 

Serum vit. C conc. in 

cases and controls or 

in 20 case-control 

pairs matched for age 

Serum: S Serum vit. C conc. were significantly 

lower in cases than in controls (P<0.01). 

Lumbers(80) 

2001 

UK 

n 75 hip fracture 

cases; 50 controls 

(women) 

80 

(61-103) 

 

three 24hR Dietary intake: 

CA = 60.7 mg/d, CO = 55.2 mg/d 

Plasma conc.: 

CA = 42.7 µmol/L, CO = 20.8 µmol/L 

 

Vit. C intakes or 

plasma conc. in cases 

and controls 

Intake: NS 

Plasma: S 

Plasma conc. were significantly higher 

in cases than in controls (P<0.001).  

 

Maggio(78)  

2003 

Italy 

n 75 osteoporosis 

cases; 75 controls 

(women)  

 

60+ N/A Plasma conc.: 

CA = 30.0 µmol/L, CO = 55.5 µmol/L 

Plasma vit. C conc. in 

cases and controls 

Plasma: S Cases had sig. lower plasma vit. C conc. 

than controls (P<0.001). 

Martinez-

Ramirez(79) 

2007 

Spain 

n 167 fracture 

cases; 167 controls 

(20% men; 80% 

women) 

65+ FFQ Intake: 

CA = 268 mg/d, CO = 275 mg/d 

Quartile 1 ≤ 203 mg/d  

Quartile 2 = 204-247 mg/d 

Quartile 3 = 248-334 mg/d 

Quartile 4 > 334 mg/d 

Serum conc.: 

CA = 17.6 µmol/L, CO = 23.3 µmol/L  

Quartile 1 ≤ 8.4 µmol/L 

Quartile 2 = 8.5-19.6 µmol/L 

Quartile 3 = 19.7-34.1 µmol/L 

Quartile 4 > 34.1 µmol/L 

 

Vit. C intakes or 

serum conc. in cases 

and controls and in 

association with 

fracture risk 

Intake: M 

Serum: S 

A marginal sig. fracture risk reduction 

for quartile 2 versus 1 of vit. C intake 

(OR 0.39, 95% CI 0.15, 1.00; P-

trend=0.87). Mean serum conc. were 

sig. lower in cases than in controls 

(P=0.012). A sig. reduction in fracture 

risk for quartile 4 versus 1 of serum 

conc. (OR 0.31, 95% CI 0.11, 0.87; P-

trend=0.03). 

 

Park(81) 

2011 

South Korea 

n 72 osteoporosis 

cases; 72 controls 

(women) 

50-70 FFQ Dietary intake: 

Quartile 1 ≤ 91.5 mg/d 

Quartile 2 = 91.5-136.9 mg/d 

Quartile 3 = 136.9-176.3 mg/d 

Quartile 4 > 176.3 mg/d 

Dietary vit. C intake & 

risk of osteoporosis 

Intake: S A sig. reduction in the risk of 

osteoporosis for quartile 3 versus 1 of 

dietary vit. C intake (OR 0.29, 95% CI 

0.09, 0.96; P-trend=0.24). 

Vit., vitamin; conc., concentration(s); N/A, not applicable; CA, cases; CO, controls; 24hR, 24-hour dietary recall; FFQ, food frequency questionnaire. 

*Results were significant (S), non-significant (NS) or of mixed nature (M). 
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Table 4. Cross-sectional studies assessing associations between vitamin C intake or status and bone mineral density, markers of bone turnover or fracture risk. 

Study Subjects 
Age 

(yrs) 

Dietary 

assessment 

Mean (SD); range vit. C intake* or blood 

conc. 

Outcome measures 

and analyses 
Results† Comments 

Sowers(83) 

1985 

US 

n 324 

(women) 

67 

(55-80) 

24hR Total intake: 

Low calcium group = 211 (351) mg/d 

Low calcium group = 268 (309) mg/d 

 

Association between 

MR BMD and vit. C 

intake 

Total: NS Vit. C intake was only marginally associated 

with MR BMD (Effect size not shown; 

P=0.051). 

Leveille(86) 

1997 

US 

n 1892  

(women) 

72 

(55-64) 

FFQ 

 

Dietary intake = 113 (52); 12-399 mg/d 

Suppl. intake = 294 (447); 0-2500 mg/d 

Duration of suppl. use: 

Group 1 = non-user 

Group 2 = 1-5 yrs 

Group 3 =5-10 yrs 

Group 4 ≥ 10 yrs  

Total intake = 407 (454); 13-2560 mg/d 

FN BMD stratified 

by vit. C intake or FN 

BMD stratified by 

duration of vit. C 

suppl. use and either 

age groups (55-64yrs, 

65-74yrs and 75+) or 

oestrogen use 

Diet: NS 

Suppl: M 

Total: NS 

Approx. 6.7% and 3.2% higher FN BMD for 

longest supplement users compared to non-users 

in women aged 55-64yrs (P=0.02; P-

trend=0.01) and in women who had never taken 

oestrogen (P=0.02; P-trend=0.02), respectively. 

New(6) 

1997  

UK 

n 994  

(women) 

47 

(44-50) 

FFQ Dietary intake = 126 (96); 16-1164 mg/d 

Intake data for quartiles not shown. 

 

LS, FN, T and WT 

BMD stratified by 

quartiles of dietary 

vit. C intake 

Diet: S Dietary vit. C intake correlated sig. with LS 

BMD (r2 0.10; P<0.001). Approx. 4.5% higher 

LS BMD (P<0.002), 3% higher FN BMD 

(P<0.01) and higher T and WT BMD (Effect 

sizes not shown; P<0.02) for quartile 3 versus 1 

of dietary vit. C intake.  

 

Hall(11) 

1998 

US 

n 775  

(women) 

56 

(45-64) 

FFQ Dietary intake = 140 (76) mg/d  

Note: dietary calcium intake: 

Low (n 199) < 500 mg/d 

High (n 574) > 500 mg/d 

 

LS, FN and TH BMD 

stratified by 100mg/d 

increments of dietary 

vit. C intake with and 

without additional 

stratification by low 

and high dietary 

calcium intake 

Diet: M FN and TH BMD were 0.017 g/cm2 higher for 

each 100 mg/d increase in dietary vit. C intake 

(P=0.002 and P=0.005). For every 100 mg/d 

increment in dietary vit. C intake, LS, FN and 

TH BMD increased sig. by 0.0199 g/cm2 

(P=0.024), 0.0190 g/cm2 (P=0.002) and 0.0172 

g/cm2 (P=0.010), respectively, in those with 

high calcium intakes. 

 

New(8) 

2000 

UK 

n 62  

(women) 

47 

(45-54) 

FFQ Dietary intake = 103 (66); 24-453 mg/d 

Intake data for quartiles not shown. 

LS, FN, T, WT and 

forearm BMD and 

PYD, DPD and OC 

stratified by quartiles 

of dietary vit. C 

intake 

 

Diet: M Sig. lower mean DPD excretion across quartiles 

of dietary vit. C intake (Effect size not shown; P-

trend<0.02).  

 

Morton(82) 

2001 

US 

n 994  

(women) 

72 

(50-98) 

N/A Suppl. intake: 

Non-users = 0 mg/d 

Users = 745 mg/d; 70-5000 mg/d  

Group 1 = 0 mg/d (non-users) 

Group 2 ≤ 500 mg/d 

Group 3 ≥ 1000 mg/d 

LS, FN, TH, MR and 

UR BMD stratified 

by use of vit. C suppl. 

with and without 

additional 

stratification by 

Suppl.: M 4.1% higher FN BMD for suppl. users compared 

to non-users (P=0.02). For current users of 

oestrogen, calcium and vit. C suppl., BMD was 

higher by approx. 6% at the TH (P=0.05), 9% at 

the FN (P=0.0001) and 12% at the UR (P=0.02) 

compared to non-vit. C users. Approx. 14% 
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 oestrogen use or by 

oestrogen and 

calcium use; and 

BMD stratified by 

dose of vit. C suppl. 

 

higher UR BMD for women with the highest vit. 

C suppl. dose compared to non-users (P<0.05; 

P-trend<0.04).  

Simon(12) 

2001 

US 

n 13080 

(6137 men;  

 6943 women); 

(n 11849 for 

BMD analyses) 

(20-90) 24hR Men: 

Dietary intake = 102 (104) mg/d 

Serum conc. = 38.0 (23.8) µmol/L 

Pre-menopausal women: 

Dietary intake = 81 (83) mg/d 

Serum conc. = 43.7 (25.6) µmol/L 

Post-menopausal women: 

Dietary intake = 88 (80) mg/d 

Serum conc. = 50.5 (27.8) µmol/L 

TH BMD or self-

reported fractures 

stratified by 100 

mg/d increments in 

dietary vit. C intake 

or by SD increments 

in serum ascorbic 

acid conc. 

Diet: M 

Serum: M 

In men, TH BMD was highest at serum ascorbic 

acid conc. between about 28.4-56.8 µmol/L and 

self-reported fractures were least common at 

dietary vit. C intakes of about 200 mg/d; 

whereas higher and lower conc. were associated 

with lower TH BMD (P<0.05) and a higher self-

reported fracture prevalence (P=0.01). In pre-

menopausal women, TH BMD was 0.01 g/cm2 

higher for every 100 mg/d increase in dietary 

vit. C intake (P=0.002). 

 

Ilich(88) 

2003  

US 

n 136  

(women) 

69 

(57-88) 

3dD Dietary intake = 128 (70); 23-402 mg/d Dietary vit. C intake 

as a predictor of WB 

BMD and BMC and 

of TH, FN, WT, T, 

RS, UR and hand 

BMD  

 

Diet: S Dietary vit. C intake was a predictor of BMD of 

more than 1% for TH (P=0.012), T (P=0.047) 

and RS (P=0.027) BMD and a marginally sig. 

predictor of WT BMD (P=0.052). 

Wolf(84) 

2005 

US 

n 11068  

(women) 

63 

(50-79) 

FFQ Dietary intake = 84 (49) mg/d 

Total intake = 170 (182) mg/d 

 

WB, LS, TH, FN and 

T BMD stratified by 

dietary or total vit. C 

intake with or 

without additional 

stratification by 

either calcium intake, 

smoking or HRT use 

 

Diet: NS 

Total: NS 

A sig. positive interaction effect between HRT 

use and total vit. C intake for WB (P=0.045), LS 

(P=0.03), TH (P=0.029) and FN (P=0.004) 

BMD. 

Pasco(85) 

2006 

Australia 

n 533  

(women) 

56-82 N/A Duration of suppl. use  

(vit. C + E): 

Group 1 = 0 yrs (non-user) 

Group 2 < 5 yrs 

Group 3 ≥ 5 yrs 

 

WB BMD, serum 

CTX and BSALP 

stratified by use or 

duration of vit. C and 

E suppl. 

Suppl.: M The duration of vit. C and E suppl. use (≥5 

years) was associated with sig. lower CTX conc. 

compared to non-suppl. users (P<0.05). CTX 

conc. were 0.022 pg/mL lower for each year of 

vit. suppl. use (P=0.05). 

 

Prynne(9) 

2006 

UK 

n 257 

(111 boys;  

 101 girls); 

n 67  

(older women) 

 

17 

(16-18); 

68 

(60-83) 

7dD Dietary intake: 

Boys = 96 mg/d 

Girls = 95 mg/d 

Older women = Data not shown. 

WB, LS, TH, FN and 

T BMD stratified by 

vit. C intake 

Diet: M In boys, each 100% change in vit. C intake was 

associated with a 3-5% change in BMD at all 

sites (P<0.05). 
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Sahni(74) 

2008 

US 

n 874 

(334 men;  

 540 women) 

75 FFQ Dietary intake: 

Men = 141 (73) mg/d 

Women = 158 (83) mg/d 

Suppl. intake: 

Men = 82 (235) mg/d 

Women = 95 (248) mg/d 

Group 1 = 0 mg/d 

Group 2 < 90 / 75 mg/d‡  

Group 3 ≥ 90 / 75 mg/d‡ 

Total intake: 

Men = 223 (259) mg/d 

Women = 253 (267) mg/d 

Intake data for tertiles not shown. 

 

LS, FN, T and RS 

BMD stratified by 

tertiles of dietary or 

total vit. C intake or 

categories of suppl. 

vit. C intake and 

either calcium intake, 

vit. E intake, smoking 

or oestrogen use 

 

Diet: NS 

Suppl.: M 

Total: M 

In men, total vit. C intake was positively 

associated with FN BMD among never-smokers 

(P-trend=0.04). In current smokers, total and 

suppl. vit. C intake were negatively associated 

with T BMD (P-trends=0.01). 

Sugiura(87) 

2011 

Japan 

n 293  

(women) 

60 FFQ Dietary intake = 170 (161-179) mg/d§ 

Tertile 1 = 47-139 mg/d| 

Tertile 2 = 140-214 mg/d| 

Tertile 3 = 215-625 mg/d| 

Risk of low radial 

BMD stratified by 

tertiles of dietary vit. 

C intake 

Diet: S Sig. lower risk of low radial BMD for tertile 3 

vs 1 of dietary vit. C intake (OR 0.25, 95% CI 

0.07, 0.82; P-trend=0.01). 

Vit., vitamin; conc., concentration(s); 24hR, 24-hour dietary recall; MR, mid radius; BMD, bone mineral density; FFQ, food frequency questionnaire; suppl., supplement(al); FN, femoral neck; approx., 

approximately; LS, lumbar spine; T, trochanter; WT, Ward’s triangle; sig., significant; TH, total hip; PYD, pyridinoline; DPD, deoxypyridinoline; OC, osteocalcin; N/A, not applicable; UR, ultradistal 

radius; 3dD, 3-day food diary; WB, whole body; RS, radial shaft; CTX, collagen type 1 cross-linked C-telopeptide; BSALP, bone-specific alkaline phosphatase; 7dD, 7-day food diary. 

* Total intake is the sum of dietary intake and intake from supplements. 

† Results were significant (S), non-significant (NS) or of mixed nature (M). 

‡ Data shown for men / women. 

§ Geometric mean (95% CI). 

| Intake range. 


