1	Is there a role for vitamin C in preventing osteoporosis and fractures? A review of the
2	potential underlying mechanisms and current epidemiological evidence
3	
4	Authors:
5	Henriette Finck, Andrew R. Hart, Amy Jennings and Ailsa A. Welch
6	
7	Institution:
8	Norwich Medical School, University of East Anglia, Norwich, NR4 7TJ
9	
10	Corresponding author:
11	Dr Ailsa Welch, Norwich Medical School, University of East Anglia, Norwich, NR4 7TJ, tel 01603
12	591950, email a.welch@uea.ac.uk
13	
14	Shortened title:
15	Vitamin C in osteoporosis prevention
16	
17	Key words:

18 Vitamin C: Ascorbic acid: Bone mineral density: Fracture risk: Collagen

19 Abstract

Osteoporosis and related fractures are a major global health issue, but there are few preventative 20 strategies. Previously reported associations between higher intakes of fruits and vegetables and 21 skeletal health have been suggested to be partly attributable to vitamin C. To date, there is some 22 evidence for a potential role of vitamin C in osteoporosis and fracture prevention but an overall 23 consensus of published studies has not yet been drawn. This review aims to provide a summary of 24 the proposed underlying mechanisms of vitamin C on bone and reviews the current evidence in the 25 literature, examining a potential link between vitamin C intake and status with osteoporosis and 26 fractures. The Bradford Hill criteria were used to assess reported associations. Recent animal studies 27 have provided insights into the involvement of vitamin C in osteoclastogenesis and 28 osteoblastogenesis; and its role as a mediator of bone matrix deposition, affecting both the quantity 29 and quality of bone collagen. Observational studies have provided some evidence for this in the 30 general population showing positive associations between dietary vitamin C intake and supplements 31 32 and higher bone mineral density or reduced fracture risk. However, previous intervention studies were not sufficiently well designed to evaluate these associations. Epidemiological data are particularly 33 limited for vitamin C status and for fracture risk and good quality RCTs are needed to confirm 34 previous epidemiological findings. This review also highlights that associations between vitamin C 35 and bone health may be non-linear and further research is needed to ascertain optimal intakes for 36 osteoporosis and fracture prevention. 37

38 Introduction

Osteoporosis is a "progressive systemic skeletal disease characterised by low bone mass and 39 microarchitectural deterioration of bone tissue, with a consequent increase in bone fragility and 40 susceptibility to fracture"⁽¹⁾. The condition has been estimated to affect 75 million people in Europe, 41 Japan and the United States⁽²⁾. Moreover, fragility fractures, the clinical manifestation of 42 osteoporosis, are a major global health issue with an annual prevalence of 8.9 million fractures 43 worldwide⁽³⁾. The elderly are the most at-risk population⁽⁴⁾ and as the world's population aged 60 and 44 80 years plus is estimated to increase three and seven fold by 2100, respectively⁽⁵⁾, osteoporosis and 45 related fractures will become an increasingly bigger health burden. 46

Risk factors for the development of osteoporosis and fragility fractures include genetic and 47 biological factors, although environmental factors, including diet, are of great interest for developing 48 preventative strategies, as they are modifiable. To date, a wide range of nutrients, foods and food 49 groups have been studied in relation to bone health, including fruits and vegetables with every 50 increased serving or intakes of 1-4 portions per day, on at least three days per week, being positively 51 associated with increased bone mass or a reduction in bone loss⁽⁶⁻⁹⁾. The mechanisms underlying these 52 positive associations have not been fully elucidated but one such explanation is the potential buffering 53 effect of the overall dietary acid load constituents in fruits and vegetables⁽¹⁰⁾. Moreover, 54 epidemiological studies have suggested that these beneficial effects may also be due to micronutrients 55 such as vitamin C which may have mechanisms independent of these buffering effects^(11,12). Vitamin 56 C, an essential nutrient to humans found in citrus and soft fruits^(13,14), has previously been linked to 57 bone health, particularly bone structure. For example, in previous animal studies vitamin C 58 deprivation resulted in a marked reduction in bone formation⁽¹⁵⁻¹⁷⁾; and superoxide-induced bone loss 59 in mice was restored by oral administration of 1% vitamin C in drinking water, as evidenced by 60 significant improvements in BMD, bone weight, bone strength and collagen cross-links⁽¹⁸⁾. In the last 61 two decades, observational and intervention studies have investigated a potential role for vitamin C 62 63 in osteoporosis and fracture prevention; however, an overall consensus of the results of published studies does not exist. 64

This article provides a review of the potential underlying mechanisms of vitamin C in bone 65 metabolism. The current evidence in the literature investigating a potential role for vitamin C in the 66 prevention of osteoporosis and related fractures will be discussed and avenues for future research 67 highlighted. Databases, including MEDLINE (Ovid), PubMed and Google Scholar, were used to 68 identify relevant observational and clinical studies published up to August 2013. As neither laboratory 69 70 nor epidemiological studies can infer causality, criteria established by Sir Austin Bradford Hill in 1965 were used to assess whether vitamin C is causal in the prevention of osteoporosis and associated 71 fractures⁽¹⁹⁾. The structure of the review will be discussed around these criteria. 72

73

74 Bradford Hill criteria

The Bradford Hill criteria (BHC) are a set of guidelines used to assess causality of hypotheses and associations from trial, laboratory and epidemiological research⁽¹⁹⁾. In brief, the nine criteria assess (1) biological plausibility, (2) coherence between laboratory and epidemiological studies, (3) temporality, (4) consistency, (5) strength, (6) analogy, (7) specificity, (8) dose-response effect, and (9) evidence from intervention studies. The criteria may not confirm the absence or presence of causality unconditionally, but are considered to be a useful tool for understanding associations between an exposure and a risk of disease.

82

83 Potential mechanisms of vitamin C in bone health

Scurvy, the clinical manifestation of vitamin C deficiency, is associated with wounds and fractures that fail to heal. The discovery of vitamin C in the early 20th century and subsequent animal studies lead to the suggestion that scurvy symptoms result from impaired collagen formation in vitamin C deficiency⁽²⁰⁾. Collagen is an essential component of bone tissue; and more recently, many cell and animal studies reported that vitamin C may also mediate osteoclastogenesis and osteoblastogenesis⁽²¹⁻²⁴⁾, although the precise biological mechanisms have not been fully established yet.

90

91 Osteoclastogenesis

Vitamin C has been suggested to mediate osteoclast differentiation and possibly apoptosis^(22,25) and 92 93 findings have been relatively consistent. In cell cultures containing both osteoblasts and osteoclasts, vitamin C promoted osteoclastogenesis⁽²⁶⁻²⁸⁾ and this was associated with an increase in RANKL 94 expression⁽²⁷⁾. In concordance with these findings, vitamin C deficiency resulted in a decrease in 95 osteoclast differentiation^(26,27). However, in cultures containing only osteoclasts, stimulatory 96 effects⁽²⁹⁾ as well as inhibitory effects^(22,28,30) of vitamin C on osteoclast differentiation have been 97 98 reported. Recent in vitro findings have helped explain these contradictory results by showing that vitamin C at a concentration of 50 µg/ml initially exhibited pro-oxidant activity resulting in an 99 increase in the number, size and nucleation of osteoclasts, although vitamin C also initiated 100 accelerated osteoclast death at later stages⁽²⁵⁾. Deficiency studies are in agreement with most previous 101 findings, indicating that vitamin C deficiency in animal models stimulated osteoclastogenesis via the 102 up-regulation of the RANKL/RANK pathway^(22,23). Moreover, vitamin C deficient mice 103 supplemented with vitamin C had a reduction in RANKL expression⁽²³⁾. Although there is some 104 105 consistency of previous cell and animal studies reporting on the effects of vitamin C on 106 osteoclastogenesis, the current discrepancies require further investigation in humans to help decide if vitamin C may be involved in osteoclastogenesis via mediating the RANK/RANKL pathway. 107

108

109 Osteoblastogenesis

110 Vitamin C may be involved in accentuating osteoblastogenesis. For example, a decrease in the number of osteoblasts and suppressed osteoblast differentiation has previously been observed in 111 vitamin C deficient mice⁽²³⁾. In concordance with these findings, an increase in the number of 112 osteoblasts following vitamin C treatment has been reported from *in vitro* work⁽³¹⁾. Furthermore, 113 studies using osteoblast-like cell cultures including human tissue have shown that osteoblast 114 proliferation and differentiation was enhanced with the addition of vitamin $C^{(21,24,31-33)}$. 115 Concentrations of 50 µg/ml and 200 µg/ml vitamin C have previously been suggested as optimal and 116 maximum concentrations for this $effect^{(21,24)}$. 117

Initially, work suggested that the effects of vitamin C on osteoblastogenesis may be through 118 stimulating collagen synthesis^(31,32), although more recent evidence suggests the underlying 119 mechanisms are more complex. For example, vitamin C has been reported to mediate gene expression 120 121 of a number of genes involved in pre-osteoblast cell activities including growth, metabolism, communication and death⁽³⁴⁾. Furthermore, animal studies have shown that the expression of PPAR-122 γ may mediate osteoblast differentiation resulting in bone loss^(35,36). Recently, these findings have 123 been investigated further and a link to vitamin C has been established. An in vivo study reported that 124 PPAR-y expression in osteoblasts was significantly up-regulated in vitamin C deficient mice and was 125 accompanied by suppressed osteoblast differentiation; whereas treatment with vitamin C mediated 126 PPAR- γ expression to almost normal levels⁽²³⁾. To date, there is consistent experimental evidence for 127 a beneficial role of vitamin C in osteoblastogenesis. Recent work suggesting that vitamin C may 128 mediate PPAR- γ expression has provided more insight in to the mechanisms, and further 129 experimental studies are needed to confirm these findings. 130

131

132 Bone collagen synthesis

Vitamin C is essential for collagen type I synthesis by osteoblasts. For example, early *in vitro* work 133 reported that collagen synthesis increased more than four fold in the presence of ascorbate⁽³⁷⁾ and 134 more recently, greater amounts of collagen were shown to be present at vitamin C concentrations of 135 200 μ g/ml compared to 100 μ g/ml and 25 μ g/ml⁽²⁴⁾. The underlying mechanisms for this are thought 136 to relate to the role of vitamin C in stimulating collagen synthesis and as a cofactor of hydroxylation 137 reactions within collagen fibres. For the former, vitamin C is an important initiator of collagen 138 synthesis in osteoblasts⁽³⁸⁾, possibly via stimulating pro-collagen type I mRNA^(39,40); whereas for the 139 140 latter, vitamin C is an essential activator of enzymes involved in the hydroxylation of proline and lysine residues within collagen fibres⁽⁴¹⁻⁴⁴⁾. The hydroxylation reaction enables the formation of 141 covalent bonds between the amino acid residues, increasing overall collagen strength. Early in vitro 142

and *in vivo* studies found that the lack of ascorbic acid resulted in the formation of underhydroxylated and unhydroxylated collagen⁽⁴⁵⁻⁴⁹⁾, thus decreasing bone matrix stability and weakening bone structure. In contrast, the presence of vitamin C increased the hydroxylation of amino acid residues *in vitro*⁽⁵⁰⁾. The hydroxylation of amino acid residues may occur while the collagen polypeptide chain is still being synthesised and attached to the ribosome^(51,52). However, more recent work suggested that this hydroxylation reaction takes place in the endoplasmic reticulum⁽⁵³⁾.

Experimental evidence for a role of vitamin C in bone collagen synthesis is well established. Vitamin C is important for the quality of collagen via its cofactor role in hydroxylation reactions in collagen fibres. Future studies should focus on the importance of vitamin C for the quantity of collagen synthesis via stimulating procollagen type I mRNA as there are currently only limited data on this potential link.

154

In summary, a range of mechanisms of vitamin C in maintaining bone health have been suggested in a number of experimental studies. Thus, there is some good evidence for the BHC of biological plausibility for vitamin C deficiency and osteoporosis. The evidence for a role of vitamin C in osteoblastogenesis and in quality aspects of bone collagen synthesis is consistent. In contrast, the links between vitamin C and osteoclastogenesis as well as quantity aspects of collagen synthesis are currently less well defined and require further investigation.

161

162 Measures of vitamin C intake and status

Vitamin C intake may be measured from dietary assessment methods such as food diaries and 163 FFQs⁽⁵⁴⁾. Food diaries assess habitual intake through a detailed description of foods and drinks 164 consumed typically in the preceding three to seven days and FFQs make use of a food list with a 165 166 frequency response section estimating intake usually from the previous 12 months. The mean vitamin C intake in the UK is 90 mg/d (calculated using food records) ⁽⁵⁵⁾, reflecting sufficient intake 167 according to the Reference Nutrient Intake (RNI) of 40 mg/d⁽¹³⁾ and in comparison to the US 168 recommendations of 90 mg/d and 75 mg/d for men and women, respectively⁽⁵⁶⁾. The Lower Reference 169 170 Nutrient Intake (LRNI) has been set in the UK at 10 mg/d and is based on the prevention and cure of scurvy⁽¹³⁾. Currently, there is no upper limit for vitamin C intake. However, very high intakes of 1000 171 mg/d and above, achieved through the use of supplements, may present with side effects including 172 gastrointestinal discomfort and diarrhoea⁽⁵⁷⁾ and have previously been shown to increase the risk of 173 174 renal stones⁽⁵⁸⁾.

The ability to accurately assess vitamin C intake varies between the different dietary methods, with the correlation coefficients between blood vitamin C concentrations and dietary intake being higher for food diaries, dietary recalls (both r 0.46; 95% CI 0.41, 0.52) and weighed records (r 0.39;

95% CI 0.25, 0.53) compared to the correlation coefficient between blood vitamin C concentrations 178 and dietary intake estimated from FFQs (r 0.35; 95% CI 0.29, 0.40)⁽⁵⁴⁾. Despite the ability to estimate 179 vitamin C intake, the measurement of vitamin C status from blood may be more accurate than dietary 180 intake assessments as it avoids human recall error and variations in individual bioavailability of the 181 182 nutrient and accounts for factors that affect the vitamin C composition of food including length of storage of food items and cooking practises⁽⁵⁹⁾. However, vitamin C in blood is influenced by a 183 number of biological and lifestyle factors including age⁽⁶⁰⁾, sex^(61,62), BMI⁽⁶⁰⁾, body fat distribution⁽⁶³⁾, 184 smoking^(64,65) and infection⁽⁶⁶⁾ which should be accounted for when evaluating its association with 185 disease risk. 186

Dietary intake and plasma concentrations of vitamin C, when plotted against each other, show 187 a sigmoidal relationship^(67,68). Average vitamin C intakes (60-100 mg/d) reflect plasma levels of 188 around 40-60 µM/l. Higher intakes result in a progressive flattening of the curve and very high intakes 189 of 400 mg/d and above appear to saturate vitamin C in plasma at concentrations of 70-85 µmol/l, 190 leading to the excretion of the vitamin⁽⁶⁸⁾. The mean plasma vitamin C concentration of the general 191 UK population is 53 μ mol/L⁽⁶⁹⁾. Vitamin C status may be categorised as severely deficient at plasma 192 levels below 11 µmol/L indicating biochemical depletion; and 1% of men and 2% of women in the 193 UK are classified as such⁽⁶⁹⁾. 194

195

196 Current evidence on vitamin C, osteoporosis and fracture prevention

197 There is evidence from epidemiological studies for a potential role of vitamin C in maintaining 198 different aspects of bone health, although the results have varied between studies. In the next section, 199 randomised controlled trials (RCTs) as the best indicator of causality will be discussed first and this 200 will be followed by observational studies in hierarchical order of decreasing ability to determine 201 causality. All types of studies will be evaluated against the BHC.

202

203 Intervention studies

RCTs are the only studies that can definitively infer causality and determine factors influencing 204 disease, making them the gold standard in limiting selection bias and confounding. To our knowledge, 205 there is only one such published RCT with a double-blind design that has examined the effects of 206 207 vitamin C supplementation on indicators of bone health (Table 1). The study involving 30 men and women compared bone density of one group taking a placebo with that of two groups receiving 400 208 IU of vitamin E daily and either 500 mg/d or 1000 mg/d of vitamin C for 12 months⁽⁷⁰⁾. The group 209 210 with the highest vitamin C intake had significantly less hip bone loss compared to the placebo group (effect sizes and P-values not shown), although no such observations were made at the lumbar spine. 211 However, this study did not investigate the effects of vitamin C independently and the inclusion 212

criteria allowed for smokers and for participants with controlled chronic disease which may have biased the study outcomes. Thus, it remains unclear to what extent vitamin C was involved in preventing bone loss in this study.

Two intervention studies used a combination of an exercise programme and supplementation 216 with vitamin C and $E^{(71,72)}$. The first study was a randomised placebo-controlled pilot study in 34 217 women who followed an intervention of 60 minutes of resistant training three times per week and 218 daily supplementation with vitamin C (1000 mg/d) and E (600 mg/d) for six months. Women were 219 randomised into four treatment groups of placebo, vitamins, exercise and placebo, or exercise and 220 vitamins⁽⁷²⁾. BMD of the lumbar spine but not the femoral neck decreased significantly by 1% in the 221 placebo group over six months (BMD pre: 1.01 ± 0.17 g/cm²; BMD post: 1.00 ± 0.16 g/cm²; P<0.05) 222 and was maintained in the other groups. No additive effects of the exercise intervention and the 223 vitamin supplementation were found. However, the results may have been biased by changes in 224 225 dietary habits as a reduction in vitamin C intake over the course of the study period was reported for 226 the vitamin intervention group. Moreover, the study did not report on blinding in the protocol. The second study, a two month intervention in 13 men and women, included an hour of aerobic exercise 227 three times per week and the daily use of vitamin C (500 mg/d) and vitamin E (100 mg/d) supplements 228 for all subjects⁽⁷¹⁾. Although markers of calcium homeostasis improved significantly (effect sizes not 229 reported), the bone formation marker BSALP decreased unexpectedly by 14.5% (P-value not 230 reported). However, this study lacked a control group, was undertaken in only 13 individuals, and 231 since it was a mixed intervention, the effects of vitamin C could not be distinguished. Moreover, both 232 233 studies were of short duration of only two to six months, although changes in BMD are more likely to be observed after a longer duration of treatment. 234

In summary, evidence from current trials investigating potential preventative effects of 235 236 vitamin C in osteoporosis remains equivocal, even though the doses were greater than with diet alone. There are limitations regarding study design, inclusion and exclusion criteria, limited duration of 237 238 treatment, small sample sizes and dietary intake that was not controlled for. Moreover, published intervention studies have used vitamin supplements containing vitamin E in addition to vitamin C 239 and have included exercise programmes during treatment. Future trials should consider having more 240 participants, stricter inclusion and exclusion criteria and interventions consisting of vitamin C 241 242 supplementation only. The BHC of evidence from intervention studies is therefore not met.

243

244 **Prospective and longitudinal studies**

Prospective cohort studies may be used to investigate the aetiology of a disease as the exposure is measured prior to the condition occurring, making studies less prone to recall bias than case-control studies. They may thus also be used to evaluate the BHC of temporality. Furthermore, as cases and

9

controls are drawn from the same population, there is less selection bias. To date, only one prospective 248 and two longitudinal studies have investigated potential vitamin C and bone associations (Table 2). 249 One study of 944 men and women from the UK with a mean age of 72 years reported significantly 250 less total hip BMD loss of up to 54% for higher dietary intakes of vitamin C (99-363 mg/d) compared 251 to lower intakes (7-57 mg/d)⁽⁷³⁾. Another study using a US cohort of 606 subjects with a mean age of 252 75 years reported that lumbar spine and trochanter BMD loss, but not femoral neck and radial shaft 253 BMD loss, decreased significantly across tertiles of dietary vitamin C intake in men but not in 254 women⁽⁷⁴⁾. However, as highlighted above, the findings were not consistent across these two studies 255 256 with results varying mainly for gender and bone site. Potential explanations for this might be that the first study used 7-day food diaries and did not adjust for important confounders including age, gender 257 and smoking⁽⁷³⁾, in contrast to the second study which used a semiguantitive FFO and measured BMD 258 via two different types of bone scans (i.e. DPA at baseline and DXA at follow-up)⁽⁷⁴⁾. However, DXA 259 260 scans have been shown to produce lower results than DPA scans⁽⁷⁵⁾, hence the effect size in this study 261 may be more modest than the true result.

A potential role for vitamin C in fracture prevention has only been investigated in one previous 262 prospective study of 918 US men and women with a mean age of 75 years. There was a risk reduction 263 in hip fracture of 44% for supplemental vitamin C intake (mean: 260 mg/d compared to 0 mg/d) and 264 of 69% for total (dietary and supplemental) vitamin C intake (mean: 313 mg/d compared to 94 mg/d) 265 after 15-17 years of follow-up (RR and 95% CI not reported), although no significant risk reductions 266 were found at other fracture sites⁽⁷⁶⁾. As this study was comparatively small, further large prospective 267 cohort studies of older men and women with long follow-up, which investigate fractures as the 268 clinical endpoint of osteoporosis, are needed. 269

In summary, there are only limited data from three prospective and longitudinal studies 270 271 investigating potential associations between vitamin C and bone health. Although these prospective studies meet the BHC of temporality, it is difficult to assess the strength of the associations and the 272 273 potential for a dose-response relationship as not all studies reported effect sizes. Moreover, issues regarding analogy, inferring the absence of another confounder related to the predictor variable, and 274 275 consistency were present. A greater number of prospective and longitudinal studies and more 276 concordant adjustment for confounding factors may help establish more consistent findings of the 277 relationship between vitamin C intake and osteoporosis and associated fractures. Moreover, the lack of evidence for a relation between vitamin C status and bone health needs to be investigated further 278 279 as the only study investigating this did not adjust for age, gender and smoking $(^{(73)}$.

280

281 *Case-control studies*

Case-control studies, summarised in Table 3, are used to examine specific exposures as potential risk 282 factors of a disease in people with and without the condition. Recall bias, where case subjects tend to 283 have a better recollection of specific exposures than the controls, and selection bias, resulting from 284 both outcomes being pre-defined, are common issues of these studies. To date, three case-control 285 286 studies have consistently shown that osteoporosis and fracture patients had lower serum vitamin C concentrations (cases: 17-37 µmol/L; controls: 23-54 µmol/L) and lower plasma vitamin C 287 concentrations (cases: 30 µmol/L; controls: 55 µmol/L) than controls⁽⁷⁷⁻⁷⁹⁾. Only one study reported 288 differently, but the authors inferred that their findings reflected most recent changes in food intake⁽⁸⁰⁾. 289

In contrast to vitamin C status measures, findings for potential differences in dietary vitamin 290 C intakes between cases and controls are less consistent^(79,80). Differences in measures of dietary 291 292 intake and relatively small sample sizes may explain some of these inconsistent findings. However, associations with osteoporosis and fracture risk were reported when population intakes were stratified 293 294 into quartiles of dietary vitamin C intake. For example, one case-control study showed a marginally 295 significant fracture risk reduction for participants in the second quartile of vitamin C intake compared to the first (OR 0.39, 95% CI 0.15, 1.00; vitamin C intake range: 204-247 mg/d compared to \leq 203 296 mg/d)⁽⁷⁹⁾. This was not significant for higher vitamin C intakes, possibly due to the high vitamin C 297 intake of the study population (mean: 200 mg/d). Moreover, another case-control study reported that 298 those in the third quartile of vitamin C intake had a significantly reduced risk of osteoporosis referent 299 to the lowest quartile (OR 0.29, 95% CI 0.09, 0.96; vitamin C intake range: 137-176 mg/d compared 300 to $\leq 92 \text{ mg/d}^{(81)}$. Recall bias in this study was low due to the diagnosis of osteoporosis at screening 301 302 and the subsequent reporting of current vitamin C intake.

In conclusion, published case-control studies of osteoporosis and fracture patients have reported consistently lower blood vitamin C concentrations but not dietary intake of vitamin C. Thus, the BHC of consistency is currently not fulfilled. Although reported effect sizes appear to be large, this evidence is currently limited to only two studies. More case-control studies are needed to help clarify the discrepancies in vitamin C intake between osteoporosis and fracture patients and matched controls currently reported in the literature.

309

310 Cross-sectional studies

Cross-sectional studies are used to report the prevalence of a disease in a defined population at a specific point in time. Whether the exposure predated the disease or not cannot be determined. Previous cross-sectional studies are summarised in Table 4. Positive associations indicated that higher dietary vitamin C intake was associated with 3-5% higher $BMD^{(6)}$ and every 100 mg/d increment in vitamin C intake was associated with 0.01-0.02 g/cm² higher $BMD^{(11,12)}$, although there is currently limited understanding of this clinical relevance. Moreover, users of vitamin C supplements (mean

[range] = 745 mg/d [70-5000 mg/d]) had 4% higher BMD and users of supplement doses of ≥ 1000 317 mg/d had 14% higher BMD than non-users⁽⁸²⁾. Although positive associations between dietary 318 vitamin C intake and supplements and bone density have previously been reported, findings have 319 been inconsistent^(8,9,74,83-85). The use of different dietary assessment methods as means of measuring 320 321 vitamin C intake and differences in the adjustment for confounding factors may explain some of these discrepancies. Dietary methods have included semiquantitative FFQs with 97-126 food 322 items^(6,8,11,74,84,86,87), three to seven-day food diaries^(9,88) and 24-hour recalls^(12,83). Moreover, total 323 (dietary and supplemental) vitamin C intake has not been linked with BMD in women^(83,84,88); and 324 both positive and negative associations have been reported in men⁽⁷⁴⁾, although the latter findings 325 may have been biased by the population's smoking behaviour. Dietary intakes of vitamin C have 326 previously been shown to be significantly lower in smokers than non-smokers⁽⁶⁵⁾ and serum vitamin 327 C levels are lower in smokers independent of dietary intakes^(64,65). Hence, the exclusion of smokers 328 329 to the study may have led to more consistent findings.

Potential associations between vitamin C from the diet or in serum and fracture risk have currently been examined in only one cross-sectional study of more than 13000 men and women aged 20-90 years⁽¹²⁾. Findings were non-significant, although men with mean dietary vitamin C intakes of 200 mg/d reported fewer fractures than men with higher or lower intakes. One may be critical about the large age range of the study population. As osteoporosis and associated fractures are known to be more prevalent in the elderly population⁽⁴⁾, the inclusion of very young participants may be an explanation for the non-significant findings.

337 Cross-sectional data on vitamin C and markers of bone homeostasis are sparse with only two 338 studies investigating potential associations. One study found that higher intakes of vitamin C were 339 associated with lower excretion of deoxypyridinoline (*no effect size shown*), indicating reduced bone 340 resorption⁽⁸⁾. Similarly, the other study reported a significant association between the duration of 341 vitamin C supplement use and markers of bone resorption, with serum CTX concentrations being 342 0.022 pg/mL lower for every 1-year supplement use increment⁽⁸⁵⁾.

Although there are data from a number of cross-sectional studies investigating vitamin C and bone health associations, the BHC of consistency, analogy and temporality were not fulfilled. The effect sizes of present cross-sectional studies are comparable to those previously reported for other dietary factors including potassium, although many studies did not report effect sizes. The limited number of Bradford Hill criteria currently fulfilled by cross-sectional studies may indicate that the reported associations between vitamin C intake and osteoporosis and fractures are less reliable evidence than relationships reported by prospective cohort studies and RCTs.

350

In summary, support for studies, which have investigated the potential underlying mechanisms 351 between vitamin C and osteoporosis prevention, has come from a variety of epidemiological studies, 352 although differences in study populations, dietary exposure, outcome measures and use of 353 confounding factors in statistical analyses may have resulted in inconsistent findings. Current 354 355 observational data are particularly limited for men as most studies have consisted of only women and for biological markers of vitamin C status which may be less subjective to recall bias and factors 356 influencing the vitamin C content of food⁽⁸⁹⁾. More observational studies in the general population 357 are needed to address these limitations. 358

359

360 Moderate versus high vitamin C intakes

Results from three observational studies have indicated that significant associations with bone health 361 were surprisingly stronger for moderate rather than higher vitamin C intakes^(6,79,81). For example, 362 vitamin C intake was significantly associated with higher bone density or a reduction in fracture risk 363 for the second quartile⁽⁷⁹⁾ or for the third quartile^(6,81) of vitamin C intake rather than the highest intake 364 levels. Similar cross-sectional observations have been reported for associations with serum vitamin 365 C levels⁽¹²⁾. This may suggest that vitamin C may be related to bone density in a bell-shaped dose-366 response fashion with intakes below and above the optimum not being beneficial. The potential 367 underlying mechanisms for this may relate to the properties of vitamin C rather than bone tissue itself. 368 It has previously been suggested that vitamin C may not only have antioxidant properties, but may 369 also exhibit pro-oxidant traits at higher concentrations, as supplementation of men and women with 370 500 mg of vitamin C per day was shown to promote oxidative DNA damage⁽⁹⁰⁾ which may also be 371 relevant to osteoporosis. Moreover, there is evidence from in vitro studies of a vitamin C dose-372 dependent suppression of bone cell growth and differentiation as well as collagen type I 373 synthesis^(21,24,91). For example, vitamin C concentrations of 50 µg/ml were optimal for stimulation of 374 human osteoblast-like cell lines and collagen type I synthesis, whereas higher levels resulted in the 375 inhibition of cell differentiation⁽²¹⁾. Another experimental study investigating bovine osteoblast-like 376 cell proliferation observed similar effects, although vitamin C concentrations of 200 µg/ml were 377 found to be most effective⁽²⁴⁾. As suggested by the authors, the use of different cell types may be an 378 explanation for the inconsistencies in optimal vitamin C concentrations in these cell culture studies. 379 The potential bell-shaped dose-response relationship between vitamin C and indicators of bone health 380 may also further explain the lack of positive results reported in the intervention studies discussed 381 above which included high supplement doses of 500-1000 mg/d. The potentially detrimental effects 382 383 of higher vitamin C concentrations on the skeleton need to be investigated further; and this is a crucial 384 step towards establishing optimal vitamin C intake levels.

385

386 **Discussion and conclusions**

Evaluating the current evidence for a potential role of vitamin C in osteoporosis and fracture 387 prevention according to the Bradford Hill criteria (BHC) in the absence of RCTs provides some 388 clarity regarding causality⁽¹⁹⁾. The BHC of specificity, inferring that a cause leads to a single effect, 389 390 cannot be met as biological functions of vitamin C are versatile. However, there is emerging experimental evidence for a potential role of vitamin C in bone health, thus fulfilling the BHC of 391 biological plausibility. The mechanisms include the involvement of vitamin C in osteoclastogenesis 392 via RANKL expression, osteoblastogenesis via PPAR- γ expression^(22,23) and collagen synthesis via 393 stimulation of pro-collagen mRNA expression and the hydroxylation of collagen fibres⁽³⁸⁻⁴⁰⁾. A 394 number of observational studies support these findings, thus the BHC of coherence between 395 laboratory and epidemiological studies is met. However, differences in study populations, different 396 methods of measuring dietary exposure, outcome measures and use of confounding factors in these 397 observational studies may have resulted in inconsistent findings. Consequently, the BHC of 398 399 consistency and analogy are currently not fulfilled. Addressing these limitations in future epidemiological studies may help establish more consistent results. 400

Most observational studies published to date were of a cross-sectional nature. Thus, the BHC of temporality, inferring that the exposure preceded the disease outcome, was not met, and more cohort studies in the general population are needed to overcome this problem. Moreover, evaluating the BHC of the strength of the association based on the evidence currently available in the literature leads to equivocal conclusions as a large number of studies did not report effect sizes of their findings. Future studies should report effect sizes to help understand the overall clinical relevance of vitamin C for the prevention of osteoporosis and fractures.

The present review has highlighted that potential associations between vitamin C and bone health may not follow an expected dose-response curve due the vitamin exhibiting antioxidant properties at lower and pro-oxidant traits at higher concentrations. Potentially detrimental effects on the skeleton from higher vitamin C concentrations need to be investigated further, as this may be an issue with vitamin C supplementation, and understanding this is a crucial step towards establishing optimal vitamin C intake levels for the general population.

The final BHC of evidence from intervention studies is currently not fulfilled; although the conventional hierarchy of the validity of study designs may be less applicable to nutritional research, as cross-sectional studies tend to capture long-term dietary intake more so than intervention studies. Nevertheless, published intervention studies were not designed to evaluate the independent effects of vitamin C supplementation on potential improvements in bone health as interventions included additional supplementation with vitamin E and exercise programmes. Overall, the data are limited as only one double-blind RCT and two intervention studies have investigated this and dietary intake was not controlled for. Moreover, further issues regarding study design, inclusion and exclusion criteria,
duration of treatment and sample size were present. To our knowledge, published RCTs investigating
the potential link between vitamin C and bone that use a supplement containing vitamin C only are
still lacking and are urgently needed.

425

In conclusion, over the last few decades, *in vitro* and *in vivo* studies have provided insights and knowledge as to how vitamin C may influence the mechanisms that benefit the skeleton; and observational studies have provided some evidence for a potential role of vitamin C in osteoporosis and fracture prevention. However, data are limited as good quality studies are scarce and more investigations, particularly well-designed RCTs, are urgently needed to address the limitations outlined in this review.

432

433 Financial support

This research was supported by a PhD studentship funded by the postgraduate funding office, of Faculty of Medicine and Health Sciences at the University of East Anglia, and received no specific grant from any funding agency in the commercial sectors. The Faculty of Medicine postgraduate funding office had no role in the design, analysis or writing of this article.

438

439 **Conflicts of interest**

440 There are no conflicts of interest.

441

442 Authorship

A. A. W. was the principal investigator and initiated the study. H. F. conducted the literature review
and drafted the manuscript. A. A. W. and A. R. H. directed the preparation of the manuscript and A.
A. W., A. R. H and A. J. contributed significantly to the drafting and critical reviewing of the article.

446 All authors read and approved the final manuscript.

447

References

1. Consensus development conference (1993) Diagnosis, prophylaxis, and treatment of osteoporosis. *Am J Med* **94**, 646-650.

2. European Foundation for Osteoporosis and National Osteoporosis Foundation (1997) Who are candidates for prevention and treatment for osteoporosis? *Osteoporos Int* **7**, 1-6.

3. Johnell O and Kanis JA (2006) An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. *Osteoporos Int* **17**, 1726-1733.

4. Kanis JA, Borgstrom F, De Laet C *et al.* (2005) Assessment of fracture risk. *Osteoporos Int* **16**, 581-589.

5. United Nations (2013) *World Population Prospects: The 2012 Revision, Highlights and Advance Tables.* ESA/P/WP.228.

6. New SA, Bolton-Smith C, Grubb DA *et al.* (1997) Nutritional influences on bone mineral density: a cross-sectional study in premenopausal women. *Am J Clin Nutr* **65**, 1831-1839.

7. Tucker KL, Hannan MT, Chen H *et al.* (1999) Potassium, magnesium, and fruit and vegetable intakes are associated with greater bone mineral density in elderly men and women. *Am J Clin Nutr* **69**, 727-736.

8. New SA, Robins SP, Campbell MK *et al.* (2000) Dietary influences on bone mass and bone metabolism: further evidence of a positive link between fruit and vegetable consumption and bone health? *Am J Clin Nutr* **71**, 142-151.

9. Prynne CJ, Mishra GD, O'Connell MA *et al.* (2006) Fruit and vegetable intakes and bone mineral status: a cross sectional study in 5 age and sex cohorts. *Am J Clin Nutr* **83**, 1420-1428.

10. Lanham-New SA (2008) The balance of bone health: tipping the scales in favor of potassium-rich, bicarbonate-rich foods. *J Nutr* **138**, 172S-177S.

11. Hall SL and Greendale GA (1998) The relation of dietary vitamin C intake to bone mineral density: results from the PEPI study. *Calcif Tissue Int* **63**, 183-189.

12. Simon JA and Hudes ES (2001) Relation of ascorbic acid to bone mineral density and self-reported fractures among US adults. *Am J Epidemiol* **154**, 427-433.

13. Department of Health (1991) *Dietary reference values for food energy and nutrients for the United Kingdom: report of the panel on dietary reference values of the committee on medical aspects of food policy.* London: H.M.S.O.

14. McCance RA and Widdowson EM (2002) *McCance and Widdowson's the composition of foods*. 6th summary ed. [Food Standards Agency and Institute of Food Research, editors]. Cambridge: Royal Society of Chemistry.

15. Togari A, Arai M, Nakagawa S *et al.* (1995) Alteration of bone status with ascorbic acid deficiency in ODS (osteogenic disorder Shionogi) rats. *Jpn J Pharmacol* **68**, 255-261.

16. Sakamoto Y and Takano Y (2002) Morphological influence of ascorbic acid deficiency on endochondral ossification in osteogenic disorder Shionogi rat. *Anat Rec* **268**, 93-104.

17. Hasegawa T, Li M, Hara K *et al.* (2011) Morphological assessment of bone mineralization in tibial metaphyses of ascorbic acid-deficient ODS rats. *Biomed Res* **32**, 259-269.

18. Nojiri H, Saita Y, Morikawa D *et al.* (2011) Cytoplasmic superoxide causes bone fragility owing to low-turnover osteoporosis and impaired collagen cross-linking. *J Bone Miner Res* **26**, 2682-2694.

19. Hill AB (1965) The Environment and Disease: Association or Causation? *Proc R Soc Med* **58**, 295-300.

20. Robertson WV (1961) The biochemical role of ascorbic acid in connective tissue. *Ann N Y Acad Sci* **92**, 159-167.

21. Pradel W, Mai R, Gedrange T *et al.* (2008) Cell passage and composition of culture medium effects proliferation and differentiation of human osteoblast-like cells from facial bone. *J Physiol Pharmacol* **59**, Suppl. 5, 47-58.

22. Hie M and Tsukamoto I (2011) Vitamin C-deficiency stimulates osteoclastogenesis with an increase in RANK expression. *J Nutr Biochem* **22**, 164-171.

23. Park JK, Lee EM, Kim AY *et al.* (2012) Vitamin C deficiency accelerates bone loss inducing an increase in PPAR-gamma expression in SMP30 knockout mice. *Int J Exp Pathol* **93**, 332-340.

24. Urban K, Hohling HJ, Luttenberg B *et al.* (2012) An in vitro study of osteoblast vitality influenced by the vitamins C and E. *Head Face Med* **8**, 25.

25. Le Nihouannen D, Barralet JE, Fong JE *et al.* (2010) Ascorbic acid accelerates osteoclast formation and death. *Bone* **46**, 1336-1343.

26. Ragab AA, Lavish SA, Banks MA *et al.* (1998) Osteoclast differentiation requires ascorbic acid. *J Bone Miner Res* **13**, 970-977.

27. Otsuka E, Kato Y, Hirose S *et al.* (2000) Role of ascorbic acid in the osteoclast formation: induction of osteoclast differentiation factor with formation of the extracellular collagen matrix. *Endocrinology* **141**, 3006-3011.

28. Takarada T, Hinoi E, Kambe Y *et al.* (2007) Osteoblast protects osteoclast devoid of sodiumdependent vitamin C transporters from oxidative cytotoxicity of ascorbic acid. *Eur J Pharmacol* **575**, 1-11.

29. Tsuneto M, Yamazaki H, Yoshino M *et al.* (2005) Ascorbic acid promotes osteoclastogenesis from embryonic stem cells. *Biochem Biophys Res Commun* **335**, 1239-1246.

30. Xiao XH, Liao EY, Zhou HD *et al.* (2005) Ascorbic acid inhibits osteoclastogenesis of RAW264.7 cells induced by receptor activated nuclear factor kappaB ligand (RANKL) in vitro. *J Endocrinol Invest* **28**, 253-260.

31. Harada S, Matsumoto T and Ogata E (1991) Role of ascorbic acid in the regulation of proliferation in osteoblast-like MC3T3-E1 cells. *J Bone Miner Res* **6**, 903-908.

32. Otsuka E, Yamaguchi A, Hirose S *et al.* (1999) Characterization of osteoblastic differentiation of stromal cell line ST2 that is induced by ascorbic acid. *Am J Physiol Cell Physiol* **277**, C132-C138.

33. Siggelkow H, Rebenstorff K, Kurre W *et al.* (1999) Development of the osteoblast phenotype in primary human osteoblasts in culture: comparison with rat calvarial cells in osteoblast differentiation. *J Cell Biochem* **75**, 22-35.

34. Carinci F, Pezzetti F, Spina AM *et al.* (2005) Effect of Vitamin C on pre-osteoblast gene expression. *Arch Oral Biol* **50**, 481-496.

35. Ali AA, Weinstein RS, Stewart SA *et al.* (2005) Rosiglitazone causes bone loss in mice by suppressing osteoblast differentiation and bone formation. *Endocrinology* **146**, 1226-1235.

36. Liu ZP, Li WX, Yu B *et al.* (2005) Effects of trans-resveratrol from Polygonum cuspidatum on bone loss using the ovariectomized rat model. *J Med Food* **8**, 14-19.

37. Geesin JC, Darr D, Kaufman R *et al.* (1988) Ascorbic acid specifically increases type I and type III procollagen messenger RNA levels in human skin fibroblast. *J Invest Dermatol* **90**, 420-424.

38. Franceschi RT and Young J (1990) Regulation of alkaline phosphatase by 1,25-

dihydroxyvitamin D3 and ascorbic acid in bone-derived cells. J Bone Miner Res 5, 1157-1167.

39. Chan D, Lamande SR, Cole WG *et al.* (1990) Regulation of procollagen synthesis and processing during ascorbate-induced extracellular matrix accumulation in vitro. *Biochem J* **269**, 175-181.

40. Franceschi RT and Iyer BS (1992) Relationship between collagen synthesis and expression of the osteoblast phenotype in MC3T3-E1 cells. *J Bone Miner Res* **7**, 235-246.

41. Hutton JJ, Tappel AL and Udenfriend S (1967) Cofactor and Substrate Requirements of Collagen Proline Hydroxylase. *Arch Biochem Biophys* **118**, 231-240.

42. Barnes MJ (1975) Function of ascorbic acid in collagen metabolism. *Ann N Y Acad Sci* **258**, 264-277.

43. Kivirikko KI and Myllyla R (1982) Posttranslational enzymes in the biosynthesis of collagen: intracellular enzymes. *Methods Enzymol* **82**, 245-304.

44. Myllyla R, Majamaa K, Gunzler V *et al.* (1984) Ascorbate is consumed stoichiometrically in the uncoupled reactions catalyzed by prolyl 4-hydroxylase and lysyl hydroxylase. *J Biol Chem* **259**, 5403-5405.

45. Stone N and Meister A (1962) Function of ascorbic acid in the conversion of proline to collagen hydroxyproline. *Nature* **194**, 555-557.

46. Gottlieb AA, Kaplan A and Udenfriend S (1966) Further evidence for the accumulation of a hydroxyproline-deficient, collagenase-degradable protein during collagen biosynthesis in vitro. *J Biol Chem* **241**, 1551-1555.

47. Manning JM and Meister A (1966) Conversion of proline to collagen hydroxyproline. *Biochemistry* **5**, 1154-1165.

48. Bates CJ, Prynne CJ and Levene CI (1972) The synthesis of underhydroxylated collagen by 3 T6 mouse fibroblasts in culture. *Biochim Biophys Acta* **263**, 397-405.

49. Peterkofsky B (1972) The effect of ascorbic acid on collagen polypeptide synthesis and proline hydroxylation during the growth of cultured fibroblasts. *Arch Biochem Biophys* **152**, 318-328.

50. Franceschi RT, Iyer BS and Cui Y (1994) Effects of ascorbic acid on collagen matrix formation and osteoblast differentiation in murine MC3T3-E1 cells. *J Bone Miner Res* **9**, 843-854.

51. Harwood R, Grant ME and Jackson DS (1974) Collagen biosynthesis. Characterization of subcellular fractions from embyonic chick fibroblasts and the intracellular localization of protocollagen prolyl and protocollagen lysyl hydroxylases. *Biochem J* **144**, 123-130.

52. Uitto J and Prockop DJ (1974) Hydroxylation of peptide-bound proline and lysine before and after chain completion of the polypeptide chains of procollagen. *Arch Biochem Biophys* **164**, 210-217.

53. Nabavi N, Pustylnik S and Harrison RE (2012) Rab GTPase mediated procollagen trafficking in ascorbic acid stimulated osteoblasts. *PLoS One* **7**, e46265.

54. Dehghan M, Akhtar-Danesh N, McMillan CR *et al.* (2007) Is plasma vitamin C an appropriate biomarker of vitamin C intake? A systematic review and meta-analysis. *Nutr J* **6**, 41.

55. Bates B, Lennox A, Bates C *et al.* (2011) *National Diet and Nutrition Survey: Headline results from Years 1 and 2 (combined) of the rolling programme 2008-9 - 2009-10.*

56. Food and Nutrition Board and Institute of Medicine (2000) *Dietary reference intakes for vitamin C, vitamin E, selenium and carotenoids: A report of the panel on dietary antioxidants and related compounds, subcommitties on upper reference levels of nutrients and of interpretation and use of dietary reference intakes, and the standing committee on the scientific evaluation of dietary reference intakes.* Washington, D.C.: National Academy Press.

57. Hoffer A (1971) Ascorbic acid and toxicity. N Engl J Med 285, 635-636.

58. Taylor EN, Stampfer MJ and Curhan GC (2004) Dietary factors and the risk of incident kidney stones in men: new insights after 14 years of follow-up. *Journal of the American Society of Nephrology : JASN* **15**, 3225-3232.

59. Levine M, Rumsey SC, Daruwala R *et al.* (1999) Criteria and recommendations for vitamin C intake. *JAMA* **281**, 1415-1423.

60. Drewnowski A, Rock CL, Henderson SA *et al.* (1997) Serum beta-carotene and vitamin C as biomarkers of vegetable and fruit intakes in a community-based sample of French adults. *Am J Clin Nutr* **65**, 1796-1802.

61. Galan P, Viteri FE, Bertrais S *et al.* (2005) Serum concentrations of beta-carotene, vitamins C and E, zinc and selenium are influenced by sex, age, diet, smoking status, alcohol consumption and corpulence in a general French adult population. *Eur J Clin Nutr* **59**, 1181-1190.

62. Faure H, Preziosi P, Roussel AM *et al.* (2006) Factors influencing blood concentration of retinol, alpha-tocopherol, vitamin C, and beta-carotene in the French participants of the SU.VI.MAX trial. *Eur J Clin Nutr* **60**, 706-717.

63. Canoy D, Wareham N, Welch A *et al.* (2005) Plasma ascorbic acid concentrations and fat distribution in 19068 British men and women in the European Prospective Investigation into Cancer and Nutrition Norfolk cohort study. *Am J Clin Nutr* **82**, 1203-1209.

64. Chow CK, Thacker RR, Changchit C *et al.* (1986) Lower levels of vitamin C and carotenes in plasma of cigarette smokers. *J Am Coll Nutr* **5**, 305-312.

65. Schectman G, Byrd JC and Gruchow HW (1989) The influence of smoking on vitamin C status in adults. *Am J Public Health* **79**, 158-162.

66. Scrimshaw NS and SanGiovanni JP (1997) Synergism of nutrition, infection, and immunity: an overview. *Am J Clin Nutr* **66**, 464S-477S.

67. Levine M, Conry-Cantilena C, Wang Y *et al.* (1996) Vitamin C pharmacokinetics in healthy volunteers: evidence for a recommended dietary allowance. **93**, 3704-3709.

68. Levine M, Wang Y, Padayatty SJ *et al.* (2001) A new recommended dietary allowance of vitamin C for healthy young women. *Proc Natl Acad Sci U S A* **98**, 9842-9846.

69. Bates B, Lennox A, Prentice A *et al.* (2012) *National Diet and Nutrition Survey: Headline Results from Years 1, 2 and 3 (combined) of the Rolling Programme 2008/09 – 2010/11.*

70. Ruiz-Ramos M, Vargas LA, Van der Goes TIF *et al.* (2010) Supplementation of ascorbic acid and alpha-tocopherol is useful to preventing bone loss linked to oxidative stress in elderly. *J Nutr Health Aging* **14**, 467-472.

71. Maimoun L, Simar D, Caillaud C *et al.* (2008) Effect of antioxidants and exercise on bone metabolism. *J Sports Sci* **26**, 251-258.

72. Chuin A, Labonte M, Tessier D *et al.* (2009) Effect of antioxidants combined to resistance training on BMD in elderly women: a pilot study. *Osteoporos Int* **20**, 1253-1258.

73. Kaptoge S, Welch A, McTaggart A *et al.* (2003) Effects of dietary nutrients and food groups on bone loss from the proximal femur in men and women in the 7th and 8th decades of age. *Osteoporos Int* **14**, 418-428.

74. Sahni S, Hannan MT, Gagnon D *et al.* (2008) High vitamin C intake is associated with lower 4year bone loss in elderly men. *J Nutr* **138**, 1931-1938.

75. Holbrook TL, Barrett-Connor E, Klauber M *et al.* (1991) A population-based comparison of quantitative dual-energy X-ray absorptiometry with dual-photon absorptiometry of the spine and hip. *Calcif Tissue Int* **49**, 305-307.

76. Sahni S, Hannan MT, Gagnon D *et al.* (2009) Protective effect of total and supplemental vitamin C intake on the risk of hip fracture--a 17-year follow-up from the Framingham Osteoporosis Study. *Osteoporos Int* **20**, 1853-1861.

77. Falch JA, Mowe M and Bohmer T (1998) Low levels of serum ascorbic acid in elderly patients with hip fracture. *Scand J Clin Lab Invest* **58**, 225-228.

78. Maggio D, Barabani M, Pierandrei M *et al.* (2003) Marked decrease in plasma antioxidants in aged osteoporotic women: results of a cross-sectional study. *J Clin Endocrinol Metab* **88**, 1523-1527.

79. Martinez-Ramirez MJ, Palma Perez S, Delgado-Martinez AD *et al.* (2007) Vitamin C, vitamin B12, folate and the risk of osteoporotic fractures. A case-control study. *Int J Vitam Nutr Res* **77**, 359-368.

80. Lumbers M, New SA, Gibson S *et al.* (2001) Nutritional status in elderly female hip fracture patients: comparison with an age-matched home living group attending day centres. *Br J Nutr* **85**, 733-740.

81. Park HM, Heo J and Park Y (2011) Calcium from plant sources is beneficial to lowering the risk of osteoporosis in postmenopausal Korean women. *Nutr Res* **31**, 27-32.

82. Morton DJ, Barrett-Connor E and Schneider DL (2001) Vitamin C supplement use and bone mineral density in postmenopausal women. *J Bone Miner Res* **16**, 135-140.

83. Sowers MR, Wallace RB and Lemke JH (1985) Correlates of mid-radius bone density among postmenopausal women: a community study. *Am J Clin Nutr* **41**, 1045-1053.

84. Wolf RL, Cauley JA, Pettinger M *et al.* (2005) Lack of a relation between vitamin and mineral antioxidants and bone mineral density: results from the Women's Health Initiative. *Am J Clin Nutr* **82**, 581-588.

85. Pasco JA, Henry MJ, Wilkinson LK *et al.* (2006) Antioxidant vitamin supplements and markers of bone turnover in a community sample of nonsmoking women. *J Womens Health (Larchmt)* **15**, 295-300.

Leveille SG, LaCroix AZ, Koepsell TD *et al.* (1997) Dietary vitamin C and bone mineral density in postmenopausal women in Washington State, USA. *J Epidemiol Community Health* 51, 479-485.

87. Sugiura M, Nakamura M, Ogawa K *et al.* (2011) Dietary patterns of antioxidant vitamin and carotenoid intake associated with bone mineral density: findings from post-menopausal Japanese female subjects. *Osteoporos Int* **22**, 143-152.

88. Ilich JZ, Brownbill RA and Tamborini L (2003) Bone and nutrition in elderly women: protein, energy, and calcium as main determinants of bone mineral density. *Eur J Clin Nutr* **57**, 554-565.

89. Bates CJ, Thurnham SI, Bingham SA *et al.* (1997) Biochemical markers of nutrient intake. In *Design concepts in nutritional epidemiology*, 2nd ed., pp. 170-240 [BM Margetts and M Nelson, editors]. Oxford: Oxford University Press.

90. Podmore ID, Griffiths HR, Herbert KE *et al.* (1998) Vitamin C exhibits pro-oxidant properties. *Nature* **392**, 559.

91. Takamizawa S, Maehata Y, Imai K *et al.* (2004) Effects of ascorbic acid and ascorbic acid 2-phosphate, a long-acting vitamin C derivative, on the proliferation and differentiation of human osteoblast-like cells. *Cell Biol Int* **28**, 255-265.

Study	Subjects	Duration; study design	Age (yrs)	Primary outcome	Intervention	Results*	Comments
Maimoun ⁽⁷¹⁾ 2008 France	n 13 (4 men, 9 women)	2 months; /	69 - 79	BSALP, OC and CTX	No groups. All participants received the following treatment: 60 min of aerobic exercise 3 times/wk, vit. C (500 mg/d) & vit. E (100 mg/d)	М	BSALP concentration decreased sig. by 14.5% (<i>P=Data not reported</i>).
Chuin ⁽⁷²⁾ 2009 Canada/France	n 34 (women)	6 months; randomised, controlled pilot study	61 - 73	FN and LS BMD	4 groups. Placebo group (<i>n</i> 7): placebo (lactose); Vit. group (<i>n</i> 8): ascorbic acid (1,000 mg/d) & α -tocopherol (600 mg/d); Exercise & placebo group (<i>n</i> 11): 60 min of resistance training 3 times/wk & placebo (lactose); Exercise & vit. group (<i>n</i> 8): 60 min of resistance training 3 times/wk & ascorbic acid (1,000 mg/d) & α -tocopherol (600 mg/d)	М	LS BMD decreased sig. by 1% in the placebo group (BMD pre: 1.01 ± 0.17 g/cm ² ; BMD post: 1.00 ± 0.16 g/cm ² ; <i>P</i> <0.05) but remained stable in the three intervention groups.
Ruiz-Ramos ⁽⁷⁰⁾ 2010 Mexico	n 90 (25 men, 65 women)	12 months; double-blind RCT	68	TH and LS BMD	3 groups: Placebo group (<i>n</i> 30): placebo (<i>no details</i>); Low vit. group (<i>n</i> 30): ascorbic acid (500 mg/d) & α -tocopherol (400 IU/d); High vit. group (<i>n</i> 30): ascorbic acid (1000 mg/d) & α -tocopherol (400 IU/d)	Μ	The high vit. group lost sig. less TH bone compared to the placebo group (<i>Details not reported</i>).

Table 1. Summary of intervention studies investigating the effects of vitamin C on bone mineral density and markers of bone turnover.

BSALP, alkaline phosphatase; OC, osteocalcin; CTX, collagen type 1 cross-linked C-telopeptide; vit., vitamin; sig., significant(ly); FN, femoral neck; LS, lumbar spine; BMD, bone mineral density; RCT, randomised placebo-controlled trial; TH, total hip.

* Results were significant (S), non-significant (NS) or of mixed nature (M).

Study	Follow- up	Subjects	Age (yrs)	Dietary assessment	Vit. C intake (mg/d)*	Outcome measures and analyses	Results†	Comments
Kaptoge ⁽⁷³⁾ 2003 UK	2-5 yrs	n 944 (470 men; 474 women)	72 (67-79)	7dD	Median (range) dietary intake: Tertile 1 = 73 (7-57) Tertile 2 = 78 (58-98) Tertile 3 = 132 (99-363) Data for plasma levels not shown.	2-5 year change in TH BMD stratified by tertiles of either dietary vit. C intake or plasma vit. C levels	Diet: M Plasma: NS	Women in tertile 2 and 3 of dietary vit. C intake had approx. 52% and 54% less TH BMD loss, respectively (<i>P</i> =0.015 and <i>P</i> =0.010; <i>P</i> -trend=0.016).
Sahni ⁽⁷⁴⁾ 2008 US	4 yrs	<i>n</i> 606 (213 men; 393 women)	75	FFQ	Mean (SD) dietary intake: Men = 141 (73) Women = 158 (83) Mean (SD) suppl. intake: Men = 82 (235) Women = 95 (248) Group 1 = 0 Group 2 < 90 / 75‡ Group 3 \geq 90 / 75‡ Mean (SD) total intake: Men = 223 (259) Women = 253 (267) Intake data for tertiles not shown.	4-year change in LS, FN, T and RS BMD stratified by tertiles of dietary or total vit. C intake or categories of suppl. vit. C intake and either calcium intake, vit. E intake, smoking or oestrogen use	Diet: M Suppl.: NS	LS and T BMD loss was sig. less with higher dietary vit. C intakes in men (<i>P</i> - trend ≤ 0.05). FN and T BMD loss was sig. less for higher total vit. C intake among men with low calcium intakes and with low total vit. E intakes (<i>P</i> -trend ≤ 0.03). A 102% reduction in T BMD loss between extreme tertiles of total vit. C intake among men with low calcium intakes (<i>P</i> <0.05).
Sahni ⁽⁷⁶⁾ 2009 US	15-17 yrs	<i>n</i> 918 (39.1% men; 60.9% women)	75	FFQ	Median (range) dietary intake: Tertile 1 = 86 Tertile 2 = 133 Tertile 3 = 208 Suppl. intake: Tertile 1 = 0 Tertile 2 < 75 Tertile 3 \geq 75 Median (range) total intake: Tertile 1 = 94 / 95§ Tertile 2 = Data not shown Tertile 3 = 313 / 308§	Risk of hip fracture or non- vertebral fracture stratified by tertiles of dietary, suppl. or total vit. C intake in the combined sample of men and women	Diet: NS Suppl.: M Total: M	A reduction in hip fracture of 69% between extreme tertiles of suppl. vit. C intake (<i>P</i> =0.007; <i>P</i> -trend=0.02) and of 44% for total vit. C intake (<i>P</i> =0.04; <i>P</i> -trend=0.04).

Table 2. Prospective and longitudinal studies assessing associations between vitamin C intake or status and bone mineral density or fracture risk.

Vit., vitamin; 7dD, 7-day food diary; TH, total hip; BMD, bone mineral density; approx., approximately; FFQ, food frequency questionnaire; suppl., supplement(al); LS, lumbar spine; FN, femoral neck; T, trochanter; RS, radial shaft; sig., significant(ly).

* Total intake is the sum of dietary intake and intake from supplements.

† Results were significant (S), non-significant (NS) or of mixed nature (M).

‡ Data shown for men / women.

§ Data shown for hip / non-vertebral fracture analyses.

Study	Subjects	Age (yrs)	Dietary assessment	Mean or range vit. C intake or blood conc.	Outcome measure(s) and analyses	Results*	Comments
Falch ⁽⁷⁷⁾ 1998 Norway	<i>n</i> 40 hip fracture cases; 102 controls (men and women)	83	N/A	Serum conc.: $CA = 37 \mu mol/L$, $CO = 50 \mu mol/L$ Serum conc. in 20 age-matched case- control pairs: $CA = 34 \mu mol/L$, $CO = 54 \mu mol/L$	Serum vit. C conc. in cases and controls or in 20 case-control pairs matched for age	Serum: S	Serum vit. C conc. were significantly lower in cases than in controls (<i>P</i> <0.01).
Lumbers ⁽⁸⁰⁾ 2001 UK	<i>n</i> 75 hip fracture cases; 50 controls (women)	80 (61-103)	three 24hR	Dietary intake: CA = 60.7 mg/d, CO = 55.2 mg/d Plasma conc.: CA = 42.7 µmol/L, CO = 20.8 µmol/L	Vit. C intakes or plasma conc. in cases and controls	Intake: NS Plasma: S	Plasma conc. were significantly higher in cases than in controls (P <0.001).
Maggio ⁽⁷⁸⁾ 2003 Italy	n 75 osteoporosis cases; 75 controls (women)	60+	N/A	Plasma conc.: CA = 30.0 μmol/L, CO = 55.5 μmol/L	Plasma vit. C conc. in cases and controls	Plasma: S	Cases had sig. lower plasma vit. C conc. than controls (P <0.001).
Martinez- Ramirez ⁽⁷⁹⁾ 2007 Spain	<i>n</i> 167 fracture cases; 167 controls (20% men; 80% women)	65+	FFQ	Intake: CA = 268 mg/d, CO = 275 mg/d $Quartile 1 \le 203 \text{ mg/d}$ Quartile 2 = 204-247 mg/d Quartile 3 = 248-334 mg/d Quartile 4 > 334 mg/d Serum conc.: $CA = 17.6 \mu \text{mol/L}, CO = 23.3 \mu \text{mol/L}$ $Quartile 1 \le 8.4 \mu \text{mol/L}$ $Quartile 2 = 8.5-19.6 \mu \text{mol/L}$ $Quartile 3 = 19.7-34.1 \mu \text{mol/L}$ $Quartile 4 > 34.1 \mu \text{mol/L}$	Vit. C intakes or serum conc. in cases and controls and in association with fracture risk	Intake: M Serum: S	A marginal sig. fracture risk reduction for quartile 2 <i>versus</i> 1 of vit. C intake (OR 0.39, 95% CI 0.15, 1.00; <i>P</i> - trend=0.87). Mean serum conc. were sig. lower in cases than in controls (<i>P</i> =0.012). A sig. reduction in fracture risk for quartile 4 <i>versus</i> 1 of serum conc. (OR 0.31, 95% CI 0.11, 0.87; <i>P</i> - trend=0.03).
Park ⁽⁸¹⁾ 2011 South Korea	n 72 osteoporosis cases; 72 controls (women)	50-70	FFQ	Dietary intake: Quartile $1 \le 91.5 \text{ mg/d}$ Quartile $2 = 91.5-136.9 \text{ mg/d}$ Quartile $3 = 136.9-176.3 \text{ mg/d}$ Quartile $4 > 176.3 \text{ mg/d}$	Dietary vit. C intake & risk of osteoporosis	Intake: S	A sig. reduction in the risk of osteoporosis for quartile 3 <i>versus</i> 1 of dietary vit. C intake (OR 0.29, 95% CI 0.09, 0.96; <i>P</i> -trend=0.24).

Table 3. Case-control studies assessing vitamin C intake or status in osteoporosis and fracture patients in comparison to controls.

Vit., vitamin; conc., concentration(s); N/A, not applicable; CA, cases; CO, controls; 24hR, 24-hour dietary recall; FFQ, food frequency questionnaire.

*Results were significant (S), non-significant (NS) or of mixed nature (M).

Study	Subjects	Age (yrs)	Dietary assessment	Mean (SD); range vit. C intake* or blood conc.	Outcome measures and analyses	Results†	Comments
Sowers ⁽⁸³⁾ 1985 US	<i>n</i> 324 (women)	67 (55-80)	24hR	Total intake: Low calcium group = 211 (351) mg/d Low calcium group = 268 (309) mg/d	Association between MR BMD and vit. C intake	Total: NS	Vit. C intake was only marginally associated with MR BMD (<i>Effect size not shown</i> ; P =0.051).
Leveille ⁽⁸⁶⁾ 1997 US	n 1892 (women)	72 (55-64)	FFQ	Dietary intake = 113 (52); 12-399 mg/d Suppl. intake = 294 (447); 0-2500 mg/d Duration of suppl. use: Group 1 = non-user Group 2 = 1-5 yrs Group 3 =5-10 yrs Group 4 \ge 10 yrs Total intake = 407 (454); 13-2560 mg/d	FN BMD stratified by vit. C intake or FN BMD stratified by duration of vit. C suppl. use and either age groups (55-64yrs, 65-74yrs and 75+) or oestrogen use	Diet: NS Suppl: M Total: NS	Approx. 6.7% and 3.2% higher FN BMD for longest supplement users compared to non-users in women aged 55-64yrs (P =0.02; P - trend=0.01) and in women who had never taken oestrogen (P =0.02; P -trend=0.02), respectively.
New ⁽⁶⁾ 1997 UK	n 994 (women)	47 (44-50)	FFQ	Dietary intake = 126 (96); 16-1164 mg/d Intake data for quartiles not shown.	LS, FN, T and WT BMD stratified by quartiles of dietary vit. C intake	Diet: S	Dietary vit. C intake correlated sig. with LS BMD ($r^2 0.10$; $P < 0.001$). Approx. 4.5% higher LS BMD ($P < 0.002$), 3% higher FN BMD ($P < 0.01$) and higher T and WT BMD (<i>Effect</i> sizes not shown; $P < 0.02$) for quartile 3 versus 1 of dietary vit. C intake.
Hall ⁽¹¹⁾ 1998 US	n 775 (women)	56 (45-64)	FFQ	Dietary intake = 140 (76) mg/d Note: dietary calcium intake: Low (n 199) < 500 mg/d High (n 574) > 500 mg/d	LS, FN and TH BMD stratified by 100mg/d increments of dietary vit. C intake with and without additional stratification by low and high dietary calcium intake	Diet: M	FN and TH BMD were 0.017 g/cm ² higher for each 100 mg/d increase in dietary vit. C intake (P =0.002 and P =0.005). For every 100 mg/d increment in dietary vit. C intake, LS, FN and TH BMD increased sig. by 0.0199 g/cm ² (P =0.024), 0.0190 g/cm ² (P =0.002) and 0.0172 g/cm ² (P =0.010), respectively, in those with high calcium intakes.
New ⁽⁸⁾ 2000 UK	n 62 (women)	47 (45-54)	FFQ	Dietary intake = 103 (66); 24-453 mg/d Intake data for quartiles not shown.	LS, FN, T, WT and forearm BMD and PYD, DPD and OC stratified by quartiles of dietary vit. C intake	Diet: M	Sig. lower mean DPD excretion across quartiles of dietary vit. C intake (<i>Effect size not shown</i> ; <i>P</i> -trend<0.02).
Morton ⁽⁸²⁾ 2001 US	n 994 (women)	72 (50-98)	N/A	Suppl. intake: Non-users = 0 mg/d Users = 745 mg/d; 70-5000 mg/d Group 1 = 0 mg/d (non-users) Group 2 \leq 500 mg/d Group 3 \geq 1000 mg/d	LS, FN, TH, MR and UR BMD stratified by use of vit. C suppl. with and without additional stratification by	Suppl.: M	4.1% higher FN BMD for suppl. users compared to non-users (P =0.02). For current users of oestrogen, calcium and vit. C suppl., BMD was higher by approx. 6% at the TH (P =0.05), 9% at the FN (P =0.0001) and 12% at the UR (P =0.02) compared to non-vit. C users. Approx. 14%

Table 4. Cross-sectional studies assessing associations between vitamin C intake or status and bone mineral density, markers of bone turnover or fracture risk.

					oestrogen use or by oestrogen and calcium use; and BMD stratified by dose of vit. C suppl.		higher UR BMD for women with the highest vit. C suppl. dose compared to non-users (<i>P</i> <0.05; <i>P</i> -trend<0.04).
Simon ⁽¹²⁾ 2001 US	<i>n</i> 13080 (6137 men; 6943 women); (<i>n</i> 11849 for BMD analyses)	(20-90)	24hR	Men: Dietary intake = 102 (104) mg/d Serum conc. = 38.0 (23.8) μ mol/L Pre-menopausal women: Dietary intake = 81 (83) mg/d Serum conc. = 43.7 (25.6) μ mol/L Post-menopausal women: Dietary intake = 88 (80) mg/d Serum conc. = 50.5 (27.8) μ mol/L	TH BMD or self- reported fractures stratified by 100 mg/d increments in dietary vit. C intake or by SD increments in serum ascorbic acid conc.	Diet: M Serum: M	In men, TH BMD was highest at serum ascorbic acid conc. between about 28.4-56.8 μ mol/L and self-reported fractures were least common at dietary vit. C intakes of about 200 mg/d; whereas higher and lower conc. were associated with lower TH BMD (<i>P</i> <0.05) and a higher self-reported fracture prevalence (<i>P</i> =0.01). In premenopausal women, TH BMD was 0.01 g/cm ² higher for every 100 mg/d increase in dietary vit. C intake (<i>P</i> =0.002).
Ilich ⁽⁸⁸⁾ 2003 US	n 136 (women)	69 (57-88)	3dD	Dietary intake = 128 (70); 23-402 mg/d	Dietary vit. C intake as a predictor of WB BMD and BMC and of TH, FN, WT, T, RS, UR and hand BMD	Diet: S	Dietary vit. C intake was a predictor of BMD of more than 1% for TH (P =0.012), T (P =0.047) and RS (P =0.027) BMD and a marginally sig. predictor of WT BMD (P =0.052).
Wolf ⁽⁸⁴⁾ 2005 US	n 11068 (women)	63 (50-79)	FFQ	Dietary intake = 84 (49) mg/d Total intake = 170 (182) mg/d	WB, LS, TH, FN and T BMD stratified by dietary or total vit. C intake with or without additional stratification by either calcium intake, smoking or HRT use	Diet: NS Total: NS	A sig. positive interaction effect between HRT use and total vit. C intake for WB (<i>P</i> =0.045), LS (<i>P</i> =0.03), TH (<i>P</i> =0.029) and FN (<i>P</i> =0.004) BMD.
Pasco ⁽⁸⁵⁾ 2006 Australia	n 533 (women)	56-82	N/A	Duration of suppl. use (vit. $C + E$): Group 1 = 0 yrs (non-user) Group 2 < 5 yrs Group 3 \ge 5 yrs	WB BMD, serum CTX and BSALP stratified by use or duration of vit. C and E suppl.	Suppl.: M	The duration of vit. C and E suppl. use (\geq 5 years) was associated with sig. lower CTX conc. compared to non-suppl. users (<i>P</i> <0.05). CTX conc. were 0.022 pg/mL lower for each year of vit. suppl. use (<i>P</i> =0.05).
Prynne ⁽⁹⁾ 2006 UK	n 257 (111 boys; 101 girls); n 67 (older women)	17 (16-18); 68 (60-83)	7dD	Dietary intake: Boys = 96 mg/d Girls = 95 mg/d Older women = <i>Data not shown</i> .	WB, LS, TH, FN and T BMD stratified by vit. C intake	Diet: M	In boys, each 100% change in vit. C intake was associated with a 3-5% change in BMD at all sites (P <0.05).

Sahni ⁽⁷⁴⁾ 2008 US	n 874 (334 men; 540 women)	75	FFQ	Dietary intake: Men = 141 (73) mg/d Women = 158 (83) mg/d Suppl. intake: Men = 82 (235) mg/d Women = 95 (248) mg/d Group 1 = 0 mg/d Group 2 < 90 / 75 mg/d‡ Group 3 \ge 90 / 75 mg/d‡ Total intake: Men = 223 (259) mg/d Women = 253 (267) mg/d Intake data for tertiles not shown.	LS, FN, T and RS BMD stratified by tertiles of dietary or total vit. C intake or categories of suppl. vit. C intake and either calcium intake, vit. E intake, smoking or oestrogen use	Diet: NS Suppl.: M Total: M	In men, total vit. C intake was positively associated with FN BMD among never-smokers (<i>P</i> -trend=0.04). In current smokers, total and suppl. vit. C intake were negatively associated with T BMD (<i>P</i> -trends=0.01).
Sugiura ⁽⁸⁷⁾ 2011 Japan	n 293 (women)	60	FFQ	Dietary intake = 170 (161-179) mg/d§ Tertile 1 = 47-139 mg/d Tertile 2 = 140-214 mg/d Tertile 3 = 215-625 mg/d	Risk of low radial BMD stratified by tertiles of dietary vit. C intake	Diet: S	Sig. lower risk of low radial BMD for tertile 3 vs 1 of dietary vit. C intake (OR 0.25, 95% CI 0.07, 0.82; <i>P</i> -trend=0.01).

Vit., vitamin; conc., concentration(s); 24hR, 24-hour dietary recall; MR, mid radius; BMD, bone mineral density; FFQ, food frequency questionnaire; suppl., supplement(al); FN, femoral neck; approx., approximately; LS, lumbar spine; T, trochanter; WT, Ward's triangle; sig., significant; TH, total hip; PYD, pyridinoline; DPD, deoxypyridinoline; OC, osteocalcin; N/A, not applicable; UR, ultradistal radius; 3dD, 3-day food diary; WB, whole body; RS, radial shaft; CTX, collagen type 1 cross-linked C-telopeptide; BSALP, bone-specific alkaline phosphatase; 7dD, 7-day food diary. * Total intake is the sum of dietary intake and intake from supplements.

† Results were significant (S), non-significant (NS) or of mixed nature (M).

‡ Data shown for men / women.

§ Geometric mean (95% CI).

| Intake range.