Evidence of microbial regulation of biogeochemical cycles from a study on methane flux and land use change

Nazaries, Loïc, Pan, Yao, Bodrossy, Levente, Baggs, Elizabeth M., Millard, Peter, Murrell, J. Colin and Singh, Brajesh K. (2013) Evidence of microbial regulation of biogeochemical cycles from a study on methane flux and land use change. Applied and Environmental Microbiology, 79 (13). pp. 4031-4040. ISSN 0099-2240

Full text not available from this repository. (Request a copy)

Abstract

Microbes play an essential role in ecosystem functions, including carrying out biogeochemical cycles, but are currently considered a black box in predictive models and all global biodiversity debates. This is due to (i) perceived temporal and spatial variations in microbial communities and (ii) lack of ecological theory explaining how microbes regulate ecosystem functions. Providing evidence of the microbial regulation of biogeochemical cycles is key for predicting ecosystem functions, including greenhouse gas fluxes, under current and future climate scenarios. Using functional measures, stable-isotope probing, and molecular methods, we show that microbial (community diversity and function) response to land use change is stable over time. We investigated the change in net methane flux and associated microbial communities due to afforestation of bog, grassland, and moorland. Afforestation resulted in the stable and consistent enhancement in sink of atmospheric methane at all sites. This change in function was linked to a niche-specific separation of microbial communities (methanotrophs). The results suggest that ecological theories developed for macroecology may explain the microbial regulation of the methane cycle. Our findings provide support for the explicit consideration of microbial data in ecosystem/climate models to improve predictions of biogeochemical cycles.

Item Type: Article
Uncontrolled Keywords: sdg 15 - life on land ,/dk/atira/pure/sustainabledevelopmentgoals/life_on_land
Faculty \ School: Faculty of Science > School of Environmental Sciences
University of East Anglia Research Groups/Centres > Theme - ClimateUEA
UEA Research Groups: Faculty of Science > Research Centres > Centre for Ecology, Evolution and Conservation
Faculty of Science > Research Groups > Environmental Biology
Depositing User: Pure Connector
Date Deposited: 02 Dec 2015 12:00
Last Modified: 20 Mar 2023 14:39
URI: https://ueaeprints.uea.ac.uk/id/eprint/55631
DOI: 10.1128/AEM.00095-13

Actions (login required)

View Item View Item