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ABSTRACT 
 

We analyze lottery-choice data in a way that separately estimates the effects of risk aversion 
and complexity aversion.  Complexity is represented by the number of different outcomes in 
the lottery.  A finite mixture random effects model is estimated which assumes that a proportion 
of the population are complexity-neutral. We find that around 33% of the population are 
complexity-neutral, around 50% complexity-averse, and the remaining 17% are complexity-
loving.  Subjects who do react to complexity appear to have a bias towards complexity 
aversion at the start of the experiment, but complexity aversion reduces with experience, to 
the extent that the average subject is (almost) complexity-neutral by the end of the experiment. 
Complexity aversion is found to increase with age and to be higher for non-UK students than 
for UK students.  We also find some evidence that, when evaluating complex lotteries, subjects 
perceive probabilities in accordance with Prospective Reference Theory.   
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That complexity matters in economic decisions and other realms of human life is neither 
surprising nor new. Previous studies have mainly focused on understanding how complexity 
affects the accuracy of choices (Bruce and Johnson 1996), how this may be exploited by firms 
(Ellison and Ellison, 2004), how complexity leads to a lower evaluation of lotteries (Mador et 
al., 2000), and how complexity avoidance can lead to suboptimal portfolio selection (Sonsino 
et al. 2002). 

Theoretical research on preferences towards complexity appears predisposed to an 
assumption of complexity aversion.  Stodder (1997) uses complexity aversion to explain the 
Allais paradox.  Gale and Sabourian (2005) show that complexity aversion can lead to a 
preference for competitive over non-competitive outcomes in market games.  In order for these 
theoretical models to be at least plausible, it is important to establish how widespread the 
phenomenon of complexity aversion is in the population.   

This is the primary aim of the present paper, in which experimental data is used to estimate 
the distribution of preferences towards complexity in the population.  We do this in conjunction 
with the estimation of preferences towards risk.  Thus we pursue one of the secondary goals 
of the paper: to assess the relationship, if any, between preferences towards complexity and 
preferences towards risk.  

Some previous empirical work on complexity preferences appears to favour complexity 
aversion.  Huck and Weizsäcker (1999) and Sonsino et al. (2002) both find evidence of 
complexity aversion in lottery choice.  Bruce and Johnson (1997), however, find no evidence 
of complexity aversion in horse-track betting decisions.  Some evidence of complexity aversion 
has been found in choices over products (Rouse, 2008) and choices over energy tariffs 
(Garrod et al., 2008; Sitzia et al., 2012).  Sitzia and Zizzo (2011) find experimental evidence 
that consumers are exploitable (i.e. buy greater quantities at higher prices) when products are 
complex. 

Alongside this evidence of complexity aversion, some counter-evidence exists which raises 
the possibility that a proportion of the population is complexity-neutral or even complexity-
loving.  Complexity neutrality is naturally implied by standard theories of decision making 
under risk, including expected utility theory.  Complexity lovingness is a potential explanation 
for the “event splitting” effect.  The event splitting effect, observed by Starmer and Sugden 
(1993), Humphrey (1995, 2001) and Weber (2007), is the phenomenon of a lottery becoming 
more appealing to subjects when one of the outcomes is presented as two different identical 
outcomes.  Such evidence leads us to conjecture that more complex lotteries might be 
preferred because they are perceived as offering “more ways to win” (Weber, 2007). 

To anticipate our key finding, we are able to estimate a posterior distribution of complexity 
preferences in our experimental sample while controlling for risk preferences, with some 50% 
of the sample being complexity-averse, 33% being complexity-neutral and 17% complexity-
loving, but also with complexity-averse subjects tending to converge towards complexity 
neutrality with experience. We find that our preference distribution helps explain choice 
switches in our experiment.  

The paper is organized as follows. Section 1 describes Sonsino et al.’s (2002) experiment. 
The reason why we focus on that experiment is because our experimental design extends 
theirs. Sections 2 and 3 describe the experimental method and present the experimental 
design.  Section 4 presents exploratory data analysis, including non-parametric tests for 
complexity aversion.  Section 5 briefly outlines the econometric model.  Section 6 presents 
and discusses the estimation results.  Section 7 concludes. 
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1. Sonsino et al.’s (2002) experiment 
 

Sonsino et al. (2002) designed an experiment to study the effects of complexity on lottery 
choices, with complexity being measured in terms of the number of outcomes in the lottery.  
Lotteries all have the same expected value (107 experimental points) but different complexity 
levels.   

Our own design (see Section 3) directly reproduces two of the choice tasks in Sonsino et al.’s 
design (2002, pp. 950-952; Problems 11 and 12).  These two tasks are presented in Table 1 
below.  The first task was to choose between a sure win (labelled SW in our design) and a 
“simple” lottery with three outcomes (S3 in our design); the second was to choose between 
that same “simple” lottery (S3) and a “complex” lottery with 6 outcomes (C3 in our design).  
The two tasks are presented in Table 1. 

(Insert Table 1 about here) 

These two tasks provide a useful example for drawing attention to two important and closely 
related features of the design.  Firstly, Sonsino et al. (2002) have used a particular procedure 
to derive the “complex” lottery C3 from the “simple” lottery S3.  The procedure is best described 
by imagining that S3 is played twice in succession, with the total outcome from both plays then 
being divided by 2.  This procedure inevitably results in a more complex lottery; however, it is 
also the case that the complex lottery is less risky than the simple lottery, in the sense of 
having a smaller variance.  In our own design (see next section), this procedure is generalised, 
and used to derive “very complex” lotteries (with 27 outcomes) from “complex” lotteries. 

Secondly, the presence in the design of complex lotteries that are less risky than simple 
lotteries is essential for separating the effect of complexity aversion from that of risk aversion.  
Consider the two tasks presented in Table 1.  If a subject is both risk-averse and EUT 
maximizing, she should prefer SW over S3, and C3 over S3.  If she is risk seeking and EUT 
maximizing, she should prefer S3 in both tasks.  However, a subject who chooses SW in the 
first task, and S3 in the second, is signalling that she is complexity-averse, since she is 
apparently being put off by the complexity of C3 in the second task. 

Of course, such “preference reversals” may simply be a consequence of noisiness in choice.  
In order to detect the presence of complexity aversion, it is necessary also to consider the 
number of reversals in the opposite direction (i.e. from S3 in task 1 to C3 in task 2).  If the 
number of subjects choosing SW and S3 is significantly greater than the number choosing S3 
and C3, this may be interpreted as evidence of complexity aversion in the population.    A non-
parametric test appropriate for making this comparison formally is the McNemar test (Siegel 
and Castellan, 1988).  Sonsino et al. find that, of their 120 subjects, 36 switched from SW to 

S3, while only 19 switched from S3 to C3.  The McNemar test statistic (2(1)) obtained from 
these numbers is 6.90, and the p-value is 0.0086, indicating strong evidence of complexity 
aversion on the basis of these two sets of choices.  The McNemar test will be applied more 
extensively to our own data in Section 4. 

 

2. Experiment 

The experiment was run at the University of East Anglia in February 2013.1 

                                                           
1 The experiment was programmed and conducted with the experiment software z-Tree (Fischbacher, 

2007). 
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A sample of 80 subjects took part in the experiment.  After their arrival, subjects were asked 
to read the instructions and then to complete a questionnaire to check whether they 
understood the type of task encountered in the experiment.2  Subjects were then given an 
opportunity to ask questions of clarification.  Then the experiment commenced.  
 
The experiment consisted of two phases.  In each phase, subjects faced 27 tasks in which 
they were asked to choose between two lotteries with the same expected value of 107 
experimental points (10 points = £1), but with differing degrees of complexity and risk.  The 
same set of 27 tasks was presented in both phases; this is for the purpose of investigating the 
effect of experience on complexity preferences.  However, the order in which the 27 tasks 
were presented changes between the two phases.  Also, the way in which individual lotteries 
were presented, in terms of the order of the outcomes, changed between the two phases. 
 
The random lottery incentive mechanism was employed.  That is, at the end of the experiment 
one of the 54 tasks was randomly selected, and the lottery chosen by the subject in the 
selected task was played out to determine the earnings.  Average earnings were around 11 
pounds. 
 
 

3. Experimental Design 
 
Our experimental design is built on the pair of tasks used by Sonsino et al. (2002), presented 
in Table 1.  We chose this task because it is the simplest that Sonsino et al. employ in their 
paper and, in particular, it is a single period task (some of their tasks involve multi-period 
lotteries, which we avoid).   

(Insert Tables 2a and 2b about here: if possible facing each other) 

Tables 2a and 2b show the 18 lotteries, other than the sure win SW of 107 points, that we 
used in the experiment.  Six lotteries are simple (S), 6 are complex (C), and 6 are very complex 
(VC).  We derived the complex and the very complex lotteries from the simple lotteries using 
the same procedure as used in Sitzia and Zizzo (2011), which is an extension of the procedure 
used by Sonsino et al. (2002).  An intuitive explanation of the procedure, in terms of averaging 
the outcomes from two independent plays of the same lottery, was provided in Section 2.  The 
importance of this procedure is that it provides a way of making a lottery considerably more 
complex, while at the same time making it safer.  This feature of the design – complexity and 
risk (sometimes) moving in opposite directions – is what enables us, in estimation, to separate 
the effect of complexity aversion from that risk aversion.   
 
A formal explanation of the procedure is as follows.  We will first show how we can generate, 

from a simple lottery 𝑆𝑎 with 3 outcomes, a complex lottery 𝐶𝑎 lottery with 9 outcomes, and 
then how we can generate a very complex lottery from the same simple lottery.  Consider the 
following simple lottery:  
 

 

 

                                                           
2  The instructions and questionnaire are provided in Appendix A. 

      1 2 3 1 2 3, ', 'aS p p p x x x p x
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Note that p and x are 31 (column) vectors of probabilities and outcomes respectively.  p is 

such that .  A more complex lottery Ca can be generated from Sa using the following 

formula: 
 

  (0) 

 

where  is a 31 (column) vector consisting only of ones, and vec(A) is the function that 

transforms a nn matrix A into a n21 (column) vector consisting of the elements of A.  Note 
that this complex lottery is equivalent to playing the simple lottery twice in succession and 
using the arithmetic mean outcome from the two plays as the outcome.  Note also that the 

expected value of Ca is the same as that of Sa: . 

 
From a complex lottery, using a procedure similar to the one just described, it is possible to 
create very complex lottery, with 27 outcomes.  Let us consider the following complex lottery, 
Cb, similar to Ca defined in (0), but with different (smaller) weights in the second argument:  
 

 

 
Intuitively, Cb is equivalent to two independent plays of Sa, with a weighted average being 
taken of the two outcomes, with weights 0.07 and 0.03.  However, note that, because the 

weights sum to 0.10, .  We then combine Sa and Cb, with the weights 0.9 

and 1, to obtain the very complex lottery VCb:  
 

 

where  is a 91 (column) vector consisting only of ones.  Note that the two vectors defining 

VCb are of order 271, implying that this very complex lottery has 27 outcomes.  Note also 

that . 

Note that the procedure employed to generate complex and very complex lotteries does not 
guarantee that the actual numbers of outcomes are 9 and 27 respectively. The reason for this 
is that some outcomes may be the same. This is in fact the case for the complex lotteries 
(where the number of outcomes is 6 instead of 9) while for the very complex lotteries this does 
not happen and the number of outcomes is always 27. 
 
Table 2a shows the 3 simple lotteries, S1, S2 and S3, and the lotteries derived from them.  As 
previously noted, S3 is identical to one of the lotteries in Sonsino et al. (2002).  S1 and S2 
have been designed by us.  They have the same expected value as S3 but more extreme 
lowest and highest outcomes, and also different middle outcomes.  The procedures described 
above were used to obtain 3 complex (C1-C3) and 3 very complex (VC1-VC3) lotteries from 
the three simple lotteries (S1-S3).  
 
Table 2b shows our “safe” versions of the lotteries shown in Table 2a.  These are designated 
by the subscript “s” in the lottery name.  The “s”-type lottery is derived by decreasing the 
spread of the extreme outcomes while leaving unchanged the middle outcome.  Complex and 
very complex lotteries are then derived from the “s”-type simple lotteries using the procedures 
described above, and they are also given the “s” label.  The “s”-type lotteries are only used in 

3
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following choice tasks: Ss-S, Cs-C, VCs-VC.  The reason for using them in this way is to 
investigate whether risk attitude is influenced by task complexity.  For example, if the 
propensity to choose VCs over VC is higher than that of choosing Ss over S, this would simply 
indicate that subjects become more risk-averse when tasks become more complex. 
 
Risk is sufficiently measured in our setting in terms of variance of the lotteries.  For the time 
being it suffices to say that, for every simple lottery S, and the complex (C) and very complex 
(VC) lotteries derived from it, it is the case that 0=V(SW)<V(C)<V(VC)<V(S). 
 
 
 

4. Exploratory Data Analysis 
 
In this section we will present some descriptive statistics, ahead of the more rigorous 
econometric modeling in the later sections.  
 
Our sample consists of 80 subjects.  Table 3 contains information about the sample.  Almost 
2/3 of our subjects are female (last column in Table 3). We also notice (last row in Table 3) 
that about 37% are from China, 25% from the UK, 10% from Hong Kong and the remainder 
from other countries (the proportions are sufficiently small for these countries to be grouped 
together). It is interesting to see that most of our Chinese participants (83%) are female, and 
this is true also for other nationalities except participants from Hong Kong, of which there is 
an equal number of males and females, and participants from the UK, of which 60% are male. 
The sample is spread over many different fields of study, with the most commonly observed 
fields being Accounting and Finance (11% of sample) and Political, Social and International 
Studies (8%). Finally, 53% of our participants are enrolled in Bachelor’s degrees, 38% in 
Master’s degrees, with the remaining 9% in other postgraduate programs. The average age 
of our sample is 22.63. 

(Insert Table 3 about here) 
 
There are 9 types of choice problem; these are defined in the second column of Table 4.  All 
choice problems are represented as two lotteries separated by a hyphen, with the first lottery 
being the safer.  Each of the 9 types consists of 3 particular choice problems (for example, 
type 1 is labelled SW-S, and consists of the 3 choice problems: SW-S1; SW-S2; SW-S3).  This 
explains why the total number of tasks (within each phase) is 27. 
 
The third column of Table 4 shows the total number of decisions made for each of the 9 types 
of choice problem.  For most problem types3 this is 480, being the product of: the number of 
different lotteries within the type (3); the number of subjects (80); and the number of phases 
(2).   
 
The final column of Table 4 shows the proportion of decisions in which the safe choice is made.  
This information is also presented in Figure 1, with white bars used for tasks involving the sure 
win, black bars for tasks with lotteries of the same complexity level, and grey bars for the 
remaining tasks. 
 

(Insert Table 4 about here) 
(Insert Figure 1 about here) 

                                                           
3 Note that task types 1 and 5 have only 440 observations, while all other task types have 480.  The 

reason for this difference is a minor programming bug that led to the loss of data on 40 of the 80 

subjects’ choices on each of the two choice problems: VC3-S3 and SW-S3. 
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With respect to Table 4 and Figure 1, a number of comments are in order.  Firstly, on more 
than 70% of occasions the sure win (SW) is preferred to the other lottery (white bars in Figure 
1) and this does not appear to be affected by the complexity of the latter.  When lotteries have 
the same complexity level (black bars), the safe lottery is chosen more frequently than the 
riskier one, indicating overall risk aversion, but these bars are not as high as the white bars, 
indicating that risk aversion is highest when one of the alternatives is a sure win.  Note also 
that the black bars do not appear to be very different from each other, indicating that risk 
attitude does not change when task complexity increases.  However, when lotteries of differing 
complexity levels are employed (grey bars), the proportion of safe choices seems to fall as the 
complexity level of the task (i.e. again taking both complexity levels into consideration) rises.  
Taken together, these results lead us to conclude that there is mixed evidence on the 
relationship between task complexity and risk aversion.  
 
Some of the individual tasks can be paired in such a way as to allow pure tests of complexity 
aversion, in the manner of the example used in Section 2.  The results of these tests are 
presented in Table 5. 

 
(Insert table 5 about here) 

 
The first two columns of Table 5 show the two tasks used in the test.  For example, the first 
test compares the choices made in the two tasks SW-VC1 and VC1-S1.  Using the same 
reasoning as used in the example of Section 2, if any subject switches from SW (the sure win) 
in the first task to S1 (the simple lottery) in the second task, they are signalling complexity 
aversion, because S1 has a higher variance than VC1 despite being less complex.  Such a 
subject is committing a “safe-to-risky” (SR) reversal.  The direct test of complexity aversion 
simply compares, for each task-pair, the number of SR reversals with the number of RS 
reversals (shown in the 5th and 6th columns of Table 5).  If the number of SR reversals is 
significantly greater, there is evidence of complexity aversion.  As with the example in Section 
2, the McNemar test (Siegel and Castellan, 1988) is used to formalise this comparison.  The 
last three columns of Table 5 show the test statistic, the p-value, and the conclusion of the 
test.  We see that around half of the tests result in either evidence or strong evidence of 
complexity aversion.  We also see that the evidence of complexity aversion appears to be 
weaker in the second phase (since p-values in the second round tend to be larger than the 
corresponding ones in the first round).  The exception is the last two pairs, but here the 
evidence is stronger in the second round because the test is based on 80 observations instead 
of 40.  The difference between phases suggests a reduction in complexity aversion with 
experience. 
 
These simple tests clearly provide some evidence of complexity aversion.  In the next section 
we go a step further, by allowing complexity aversion to vary between individuals, and in 
particular we allow a positive proportion of the population to be complexity-neutral.  This is 
achieved within the context of a finite-mixture random-effects model.  The framework also 
allows estimation of the correlation between complexity aversion and risk aversion, and 
(formal) estimation of the effect of experience on complexity aversion. 
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5. Econometric Models of Complexity Aversion 
 
In this section we outline the econometric models whose estimates are reported in the next 
section.  Technical details, such as the construction of the log-likelihood, are provided in 
Appendix B. 
 
The modeling strategy is similar in some ways to that of Sonsino et al. (2002).  Let the two 
lotteries in the choice problem be defined as: 
 

riskier:     1 1, ,J Jp p x xp x  

  

safer:     1 1, ,K Kq q y yq y  

 
Importantly in the context of measuring complexity aversion, the two lotteries are permitted 
have different numbers of outcomes (J and K).  The two lotteries have expected values: 
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and variances: 
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The riskier lottery is defined as the one with the higher variance. Hence: 
 

   (3) 

 
Since all lotteries have the same mean, but differing variances, a natural and convenient basic 
framework in which to operate is that of the mean-variance utility function.  We will assume 
that the choice between two lotteries is based on the difference between the (mean-variance) 
utilities of the two lotteries.  Within this framework, we assume the existence of four types.  
Indexing individuals by i, and letting Ui be the utility function for individual i, the four types are 
defined as follows: 
 

Type 1 (RN and CN):   (4a) 

 

Type 2 (CN):    (4b) 

 

Type 3 (RN):     (4c)  

 

Type 4 (neither RN nor CN):  (4d) 
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RN stands for “risk-neutral”, that is, non-responsive to variance; CN stands for “complexity-

neutral”, that is, non-responsive to complexity. The parameter  is closely related to the 

coefficient of absolute risk aversion (see Chavas and Pope, 1983). is the chosen 

measure of the complexity of the lottery (operationalized as: C=0 for Sure Win; C=1 for Simple; 

C=2 for complex; C=3 for very complex).    is a parameter representing the degree of 

complexity aversion. We expect  > 0. Note further that we will be assuming between-subject 

heterogeneity both in risk aversion () and in complexity aversion (); hence the i-subscripts 
on these parameters.  
 

The distribution we will assume for risk aversion () and in complexity aversion () is: 
 

    (5) 

 

Hence the parameters of principal interest are the two means, 1 and 2, the two standard 

deviations, 1 and 2, and the correlation .  We shall also allow the means (1 and 2) to 
depend on experience and subject characteristics.  Since there are four types (defined in 4a-

4d), we also require the estimation of a set of mixing proportions which we shall label 1 - 4.  

There is also a parameter , whose sign will indicate whether the magnitude of computational 

errors increases (>0) or decreases (<0) over the course of the experiment.  The former will 
be interpreted as a “boredom” effect, and the latter as an “experience” effect. 
 
Finally, we will allow for the possibility that agents do not take the stated probabilities at face 
value.4  One hypothesis that is of particular relevance for compex lotteries is that agents act 
as Bayesians, and view the prior probability of each outcome as 1/J (where J is the number of 
outcomes in the lottery).  A way of modelling this is to assume that agents act on transformed 

probabilties ( ), given by: 

 

     (6) 

 
(6) is, in fact, a form of Prospective Reference Theory (Viscusi, 1989).  The important quantity 

in (6) is the parameter .  If =0, probabilities are correctly interpreted (  for all j).  If  

is large and positive, all probabilities5 become equal (  for all j).  Hence, in order 

to test this form of Prospective Reference Theory, we shall incorporate (6) in our model, and 

test the null hypothesis  = 0 against the alternative  > 0. 
 
The likelihood function is constructed by appending a stochastic term to the utility difference 
pertaining to each choice problem and deducing choice probabilities.  Estimation is performed 
using the method of Maximum Simulated Likelihood (MSL) (Train, 2003).  See Appendix B for 

                                                           
4 We thank Kip Viscusi for suggesting this extension to our model. 

5 It is important to realise that (6) does not apply when J=1.  In this case, ; that is, the 

probability of the certain outcome is correctly interpreted as 1. 
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further details.  Maximization of the simulated likelihood function is performed using the ml 
routine in STATA.6 

 

6. Estimation Results 

In the data, all money amounts are divided by 107, so that the expected value of all lotteries 
is 1. 
 
Six sets of results are presented in Tables 6a and 6b.  All sets of results are from maximisation 
of a log-likelihood function based on (A6) in Appendix B.  We start off with the “homogeneous” 
model (Model 1), in which it is assumed that all individuals have the same risk aversion and 
complexity aversion.  These are estimated respectively as +2.964 and +0.031, both 
significantly greater than zero, implying (overall) significant risk aversion (RA) and complexity 
aversion (CA).  We then estimate the finite mixture model (Model 2) which leads to a major 
improvement statistically, but for which the results are dubious.  Both RA and CA are estimated 
as very large, but from the mixing proportions, we see that a large proportion of subjects are 
irresponsive to risk and/or complexity.  For example, the proportion who are complexity- 
neutral is 0.289 + 0.554 = 0.843.  The problem with this model is that all subjects who respond 
to complexity are being “forced” to have the same CA, with the result that a very small 
proportion are identified as extremely complexity-averse, with the remainder being complexity-
neutral.  This leads us to Model 3, which is the finite mixture random effects model.  Here, we 

notice firstly that the two heterogeneity parameters (1 and 2) are both strongly positive, 
indicating that RA and CA both vary continuously between subjects who are responsive.  

Secondly, we note that the parameter  is significantly negative, indicating a negative 
association between RA and CA: subjects who are more risk-averse tend to be less 

complexity-averse.  Thirdly, we notice that the proportion (1) of subjects who are of type 1 
has fallen all the way to zero.  This is a promising result, since it implies that there are no 
subjects in the sample who respond to neither risk nor complexity.  The change in the estimate 
of this parameter between Models 2 and 3 is a direct result of the introduction of continuous 
heterogeneity in RA and CA.  Models 4-6 exclude types 1 and 3 because of their apparent 
absence from the population. 
 

(Insert Tables 6a and 6b about here, if possible facing each other) 

Model 4 introduces the effect of experience (represented by position of task in sequence, ) 
in two places: CA and the error variance are both assumed to depend on experience.  The 
effect of experience on RA was found to be insignificant.7  Experience does have a significantly 
negative effect on CA, with the estimated equation (from Model 4) being: 
 

   (7) 

 
(7) essentially implies that a typical (type 4, i.e. not complexity-neutral) subject is moderately 
averse to complexity at the start of the experiment, but becomes less complexity-averse in the 
course of the experiment, and becomes complexity-loving after 37 tasks (recall that there are 
a total of 54 tasks in the experiment).  Model 4 also allows the computational error variance, 
which represents the behavioral noise in our models, to change with experience, in 

                                                           
6  The STATA code used for estimation is available from the authors on request. 

7 When  is added as a determinant of risk aversion to Model 4, its asymptotic t-statistic is -0.40 and 

the p-value is 0.69. 

 2
ˆ 0.224 0.006   
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accordance with (A3) in Appendix B.  The significantly negative estimate of the parameter  
indicates that this error variance falls with experience, and this is consistent with an experience 

effect rather than a boredom effect.  Another feature of model is that the correlation () 
between RA and CA is again negative, but not significantly different from zero.  It appears that 
the significant value seen in Model 3 was the manifestation of a misspecification bias caused 
by neglecting the effect of experience. 
 
Models 5 and 6 introduce some subject characteristics to the CA equation.  These variables 
were found to be insignificant when also added to the RA equation.8  We will return to the 

subject characteristics shortly.  Model 6 introduces the reference-dependence parameter  

defined in (6).  We see that the estimate of  is positive and significant.  We also see that the 

AICs clearly indicate that Model 6 is the best of the six models.  However, the estimate of   is 
small in magnitude at +0.020.  The interpretation, in accordance with (6), is that subjects 
perceive probabilities as slightly different from the true probabilities, in a direction towards an 
equal probability for all outcomes in the lottery.     
 
Returning to the subject characteristics, and focusing on the results of Model 6, males appear 
to be less complexity-averse than females, although this effect is not statistically significant.  
Age and “non-UK” both have positive and (in the first case) significant effects on complexity 
aversion.  In the sample, 66% are female, 75% are “non-UK”, and the mean of age is around 
23 (see Table 3).  We will therefore use Model 6 to obtain an equation similar to (7) for a 23-
year-old, female, non-UK student.  The equation is: 
 

   (8) 

  
(8) implies that, for this type of subject, CA reaches zero after 60 tasks (i.e. roughly by the end 
of the experiment). 
 
Based on Model 6, it seems that there exist subjects (around 33% of the population) who are 
complexity-neutral throughout, while the remaining 67% are (on average) complexity-averse, 
with complexity aversion falling fairly rapidly with experience, to the extent that they are (on 
average) almost complexity-neutral by the end of the experiment. 
   
Although we already have an estimate of the proportion of the population who are complexity-
neutral (33%), we can go further by classifying individual subjects on the basis of posterior 
estimation.  Figure 2 shows a frequency histogram of the posterior probability of being type 2 
(complexity-neutral), obtained using (A9) in Appendix B, following estimation of Model 6.  We 
see that, although a large number of subjects appear very unlikely to be complexity-neutral, 
few have a very high posterior probability of being so.  In order to be true to our estimate of 
33% being complexity-neutral, it seems sensible to classify as complexity-neutral the 33% of 
subjects (26 out of 80) with the highest posterior probabilities of being so.  The cut-off appears 
to be 0.51; 26 subjects (33%) have posterior probabilities of greater than 0.51, and we shall 
classify these 26 as complexity-neutral. 
 

(Insert Figure 2 about here.) 
 

                                                           
8 When the three explanatory variables male, (age-18), and non_UK are all added to the risk-aversion 

equation in Model 5, the LogL rises very slightly to -2410.25, but the associated AIC is 4848.5, which 

is vastly inferior to Model 5. 

 2
ˆ 0.423 0.007    
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Figure 3 shows posterior estimates of  and  obtained from Model 6, using a formula such 
as (A10) in Appendix B.  Observations on the horizontal axis are the 26 subjects whose 

posterior type probabilities indicate that they are of type 2 (CN), and hence with  = 0.  Based 
on the information displayed in Figure 3, Table 7 classifies subjects by risk and complexity 
preferences.  In particular, we find that 17%, 33% and 50% of the subjects are complexity-
loving, neutral and averse, respectively. 
  

(Insert Figure 3 and Table 7 about here.) 
 

7. Conclusion 

 
An understanding of complexity preferences is important both in assessing the relevance of 
theoretical models that assume complexity-averse populations, and in evaluating previous 
experimental evidence on the phenomenon.   
 
Using lotteries that vary in terms of both complexity and variance, we have conducted a choice 
experiment, and then estimated a model which allows heterogeneity in both risk aversion and 
complexity aversion. 
 
Both types of heterogeneity are seen to be important.  The need for a finite mixture approach, 
with different types of subject, is clear, since the population seems to divide between subjects 
who respond to complexity, and those who are complexity-neutral.  However, we have found 
that a model which only assumes a mixture of types, while far superior to the homogeneous 
model, gives misleading results, because of the failure to allow variation in complexity 
preferences.  Our preferred model was one which contained both a finite mixture structure, 
and also continuous between-subject variation in both complexity aversion and risk aversion.  
For this model – the finite-mixture random-effects model - the results seemed much more 
plausible.  Further useful extensions of the model included allowance for the effects of 
experience and subject characteristics, and also the introduction of a parameter capturing 
prospective reference theory, which allows for misperceptions of probabilities in the direction 
of equal probabilities for all outcomes. 
  
The main findings are that around 33% of the population are complexity neutral.  Of the 67% 
who respond to complexity, the typical subject displays a moderate level of complexity 
aversion, but in the course of the experiment, this complexity aversion falls all the way towards 
zero, implying complexity neutrality at the end of the experiment.  These results are consistent 
with the results of simple non-parametric tests for complexity aversion reported in Section 4.  
There is also an effect of experience in reducing the variance of computational error.  Both of 
the experience effects may be interpreted as forms of learning.  These results have important 
implications in real life decisions. When decisions are infrequent9 (such as buying a house, 
choosing a retirement plan or a health plan, choosing a tariff plan) and learning opportunities 
are scarce, decision makers are more likely to be complexity-averse.  They might avoid 
making a decision altogether; they might stick with the default option (Iyengar and Lepper 
2000, Thaler and Sunstein 2007); they might procrastinate; or they might choose a simple but 
worse option.  In any of these cases, there are opportunites for policies to be designed to 
make the decision environment simpler and hence to ‘nudge’ individuals to better outcomes.  
However, when decisions are complex but made frequently, decision makers may become 

                                                           
9 Changing an energy tariff, a mobile phone tariff, or a bank account are decisions that can in principle 

be made frequently.  However, in practice such decisions are typically seen to be quite infrequent (Sitzia 

et al. 2014).  In addition, frequent changes in tariffs are likely to impede learning.  Hence we expect 

complexity aversion to play an important role in these situations. 
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accustomed to the decision environment, hence becoming less complexity-averse, and 
reducing the need for policy interventions.  We further conjecture that, if feedback on decisions 
were available (unlike in our experiment), one could expect a faster convergence towards 
complexity neutrality, better decisions, and therefore less need for policy intervention (Thaler 
and Sunstein, 2003).  We leave this for future research. 
 
Complexity aversion also depends on subject characteristics such as age and nationality.  It 
is very interesting that risk aversion, in contrast, does not appear to depend on either 
experience or subject characteristics. 
 
We found some evidence of a negative association between risk aversion and complexity 
aversion, although the correlation parameter representing this association was estimated as 
positive but insignificant in our preferred model.   
   
When we use posterior estimation to classify subjects, we find that around 17% of subjects 
are complexity-loving.  This is an important finding, of which theorists who construct models 
on the assumption of complexity aversion should be aware.  This is particularly important if 
the theoretical models are intended to represent the behavior of agents with repetition and 
learning opportunities.  
 
In the presence of inexperienced agents, our results suggest that making a general 
assumption of complexity aversion may indeed be an adequate way of reflecting aggregate 
behavior, since the proportion of complexity-averse agents is likely to be larger than that of 
complexity-loving agents. That said, further research should be targeted at gaining a better 
understanding of complexity-loving preferences.  
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APPENDIX A 

Experimental Instructions 
 
In the course of this experiment, over a number of periods you will be asked to choose between 
lotteries that pay returns in experimental points with given probabilities. 
 
In the table below you see an example of a lottery of the kind a unit of which you can choose 
each period:  
 

 
Table 1: Example of Product 

 
In this example, the lottery will give you the chance to earn the following returns at the end of 
the experiment: 50 points with a probability of 35% (Outcome 1); 15 points with a probability 
of 15% (Outcome 2); 80 points with a probability of 18% (Outcome 3); and so on. 
 
If you see a lottery which provides a given return with a probability of 100%, this means that, 
if you choose this lottery, you will get that return for sure. 
 
Earnings 
 
At the end of the experiment the computer will randomly select one of the periods that will be 
used to determine your earnings. The computer will then randomly select one outcome of the 
lottery you have chosen in that period based on the probabilities. This outcome determines 
the return of that lottery and the points you have earned in the experiment.  Every 10 points 
you own are converted into 1 pound, and so for example 80 points are worth 8 pounds. 
 
Before starting to take decisions, we ask you to fill the enclosed questionnaire, with the only 
purpose of checking whether you have understood these instructions. Raise your hand when 
you have completed the questionnaire. 
 
Questionnaire 
 
1) Your earnings in the experiment are the sum of your earnings each period? 
 
Yes ______   No ______ 
 
2) Consider the example lottery in Table 1. What is the probability of obtaining a return of 80? 
 
_________ 
 
 

PLEASE RAISE YOUR HAND WHEN YOU HAVE FINISHED. 
THANK YOU FOR ANSWERING THE QUESTIONNAIRE 
  

OUTCOME PROBABILITY RETURN

1 35% 50

2 15% 15

3 18% 80

4 22% 139

5 10% 10
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APPENDIX B 

Construction of log-likelihood function. 
 
For a given subject (i), who is of type j, facing a given choice problem (t), we define: 
 

    (A1) 

 
where the two terms on the right are defined according to one of (4a)-(4d), depending on the 
type of subject i.   
 

Subject i (of type j) chooses lottery  over lottery  if the following inequality 

holds: 
 

   (A2) 

 
where εit is a stochastic term with distribution: 
 

    (A3) 

 
The stochastic term ε may be interpreted as computational error, and its variance is assumed 

to depend on it, which is the position of task t in subject i’s sequence of tasks (=1,…,54). 
According to (A3), this variance is 1 at the start of the experiment—a normalization that is 

required for identification of the model.  A negative sign of the parameter  will indicate that 
the magnitude of errors tends to decrease as the experiment progresses (an experience 
effect), while a positive sign will indicate an increase in errors over the course of the 
experiment (a boredom effect). 
 

We define the binary variable yit as follows.  yit = +1 if subject i chooses  over ;  

yit = -1 if subject i chooses  over .  By (A2) and (A3): 

 

 

 (A4) 
 

Where “ ” denotes that subject i is of type j. Note that we are assuming that there are in 

total n subjects each facing T choice problems. 
 
As noted in (5) in the main text, we are assuming between-subject heterogeneity both in risk 

aversion () and in complexity aversion (), and their joint distribution will be assumed to be: 
 

    (A5) 

 
ρ is the correlation coefficient between risk aversion and complexity aversion. 
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The likelihood contribution associated with subject i is: 
 

  (A6) 

 

where  is the joint density function of  and , and the parameters j, 

j=1…4 are mixing proportions, representing the proportion of the population who are of each 
type.   
  
A further extension to the model allows risk aversion and complexity aversion to depend on 
experience within the experiment, and also on demographics.  In Models 5 and 6, we assume 
that: 
 

 (A7) 

 

where it is, as in (A3), the position of task t in subject i’s sequence of tasks (=1,…,54).  (A7) 
allows the means (over the population) of the coefficients of risk aversion and complexity 
aversion, to change with experience and demographics.  For example, the mean of the 

coefficient of complexity aversion (for an 18-year-old, female, UK subject) is at the start of 

the sequence, and changes by an amount  with each task undertaken. 

 
A yet further extension allows misinterpretation of stated probabilities in accordance with 
Prospective Reference Theory.  If the transformed probabilities defined in (6) are used in place 
of true probabilities, we may rewrite (A1) as: 
 

    (A8) 

 

where and are vectors of transformed probabilities.  Then the likelihood function is 

constructed using  defined in (A8) in place of  in (A6). 

 
If Prospective Reference Theory were assumed, and specification (A7) were used, there 

would be a total of 15 parameters to estimate: 10, 11, 1, 20, 21, 22, 23, 24, 2 , , , , and 

three of the four mixing proportions: 1, 2, 3.  The models we in fact estimate contain 
somewhat fewer parameters since they are restricted versions of the general model. 
 
Estimation is performed using the method of Maximum Simulated Likelihood (MSL) (Train 
2003). This requires the use of two sets of Halton draws, which, when converted to normality, 

represent simulated realizations of the random parameters  and .  Maximization of the 
simulated likelihood function is performed using the ml routine in STATA.10  
 

                                                           
10  The STATA code used for estimation is available from the authors on request. 
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Having estimated the model, posterior type probabilities can be obtained, and also posterior 
subject-specific estimates of risk aversion and complexity aversion.  To obtain the posterior 
type probabilities, we use a version of Bayes’ rule: 
 

   (A9) 

 

Where hats indicate MLEs, and  is the likelihood contribution for subject i as defined in (A6), 

with parameters replaced by MLEs. 
 
To obtain the posterior subject-specific estimates of risk aversion, we use: 
 

  (A10) 

 
Note that we are conditioning on the subject being of type 4 (responsive to both variance and 
complexity) when computing their posterior risk aversion.  Posterior subject-specific estimates 

of complexity aversion, denoted , are computed using a formula similar to (A10). 
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Table 1 – Sonsino et al. Binary Choices 

      
  

  
Choice 
1         

  SW             S3   

Outcome Probability Return         Outcome Probability Return 

1 1 107         1 0.4 80 

              2 0.3 100 

              3 0.3 150 

                    

     
  

  
Choice 
2         

  C3             S3   

Return Probability Return         Outcome Probability Return 

1 0.16 80         1 0.4 80 

2 0.24 90         2 0.3 100 

3 0.09 100         3 0.3 150 

4 0.24 115               

5 0.18 125               

6 0.09 150               
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Table 2a. Lotteries Employed in the Experiment 
              

  S1 S2 S3 

Outcome Probability Return Probability Return Probability Return 

1 0.5 57 0.5 50 0.4 80 

2 0.2 112 0.2 113 0.3 100 

3 0.3 187 0.3 198 0.3 150 

  C1  C2 C3 

Outcome Probability Return Probability Return Probability Return 

1 0.25 57 0.25 50 0.16 80 

2 0.2 84.5 0.2 81.5 0.24 90 

3 0.04 112 0.04 113 0.09 100 

4 0.3 122 0.3 124 0.24 115 

5 0.12 149.5 0.12 155.5 0.18 125 

6 0.09 187 0.09 198 0.09 150 

  VC1  VC2 VC3 

Outcome Probability Return Probability Return Probability Return 

1 0.125 57 0.125 50 0.064 80 

2 0.05 58.65 0.05 51.89 0.048 80.6 

3 0.05 60.85 0.05 54.41 0.048 81.4 

4 0.075 60.9 0.075 54.44 0.036 82 

5 0.02 62.5 0.02 56.3 0.048 82.1 

6 0.03 64.75 0.03 58.85 0.036 83.5 

7 0.075 66.1 0.075 60.36 0.048 84.9 

8 0.03 67.75 0.03 62.25 0.036 85.5 

9 0.045 70 0.045 64.8 0.036 87 

10 0.05 106.5 0.05 106.7 0.048 98 

11 0.02 108.15 0.02 108.59 0.036 98.6 

12 0.02 110.35 0.02 111.11 0.036 99.4 

13 0.03 110.4 0.03 111.14 0.027 100 

14 0.008 112 0.008 113 0.036 100.1 

15 0.012 114.25 0.012 115.55 0.027 101.5 

16 0.03 115.6 0.03 117.06 0.036 102.9 

17 0.012 117.25 0.012 118.95 0.027 103.5 

18 0.018 119.5 0.018 121.5 0.027 105 

19 0.075 174 0.075 183.2 0.048 143 

20 0.03 175.65 0.03 185.09 0.036 143.6 

21 0.03 177.85 0.03 187.61 0.036 144.4 

22 0.045 177.9 0.045 187.64 0.027 145 

23 0.012 179.5 0.012 189.5 0.036 145.1 

24 0.018 181.75 0.018 192.05 0.027 146.5 

25 0.045 183.1 0.045 193.56 0.036 147.9 

26 0.018 184.75 0.018 195.45 0.027 148.5 

27 0.027 187 0.027 198 0.027 150 
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Table 2b. Lotteries Employed in the Experiment (continued) 
              

  S1s S2s S3s 

Outcome Probability Return Probability Return Probability Return 

1 0.5 75 0.5 68 0.4 95 

2 0.2 112 0.2 113 0.3 100 

3 0.3 157 0.3 168 0.3 130 

  C1s C2s C3s 

Outcome Probability Return Probability Return Probability Return 

1 0.25 75 0.25 68 0.16 95 

2 0.2 93.5 0.2 90.5 0.24 97.5 

3 0.04 112 0.04 113 0.09 100 

4 0.3 116 0.3 118 0.24 112.5 

5 0.12 134.5 0.12 140.5 0.18 115 

6 0.09 157 0.09 168 0.09 130 

  VC1s VC2s VC3s 

Outcome Probability Return Probability Return Probability Return 

1 0.125 75 0.125 68 0.064 95 

2 0.05 76.11 0.05 69.35 0.048 95.15 

3 0.075 77.46 0.075 71 0.048 95.35 

4 0.05 77.59 0.05 71.15 0.036 95.5 

5 0.02 78.7 0.02 72.5 0.048 96.05 

6 0.03 80.05 0.03 74.15 0.036 96.4 

7 0.075 80.74 0.075 75 0.048 97.45 

8 0.03 81.85 0.03 76.35 0.036 97.6 

9 0.045 83.2 0.045 78 0.036 98.5 

10 0.05 108.3 0.05 108.5 0.048 99.5 

11 0.02 109.41 0.02 109.85 0.036 99.65 

12 0.03 110.76 0.03 111.5 0.036 99.85 

13 0.02 110.89 0.02 111.65 0.027 100 

14 0.008 112 0.008 113 0.036 100.55 

15 0.012 113.35 0.012 114.65 0.027 100.9 

16 0.03 114.04 0.03 115.5 0.036 101.95 

17 0.012 115.15 0.012 116.85 0.027 102.1 

18 0.018 116.5 0.018 118.5 0.027 103 

19 0.075 148.8 0.075 158 0.048 126.5 

20 0.03 149.91 0.03 159.35 0.036 126.65 

21 0.045 151.26 0.045 161 0.036 126.85 

22 0.03 151.39 0.03 161.15 0.027 127 

23 0.012 152.5 0.012 162.5 0.036 127.55 

24 0.018 153.85 0.018 164.15 0.027 127.9 

25 0.045 154.54 0.045 165 0.036 128.95 

26 0.018 155.65 0.018 166.35 0.027 129.1 

27 0.027 157 0.027 168 0.027 130 
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Table 3 – Demographic Composition of the Sample 
 

Gender Country 

  UK China Hong Kong Other Unknown Sample 

Female 40% 83% 50% 72% 100% 66% 

Male 60% 17% 50% 28% 0% 34% 

Sample 25% 37% 10% 25% 3% 100% 

       

 N mean s.d min max  

Age 80 22.63 2.88 18 34  
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Table 4 – Proportions of Safe Choices 
       

Problem 
type 

Lotteries Number of decisions Proportion of Safe choices 

1 SW-S 440 0.78 

2 SW-C 480 0.73 

3 SW-VC 480 0.76 

4 C-S 480 0.65 

5 VC-S 440 0.58 

6 C-VC 480 0.52 

7 Ss-S 480 0.69 

8 Cs-C 480 0.62 

9 VCs-VC 480 0.70 
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Table 5: Reversal patterns for selected task-pairs, and McNemar test results for 

complexity aversion 

 

pair a pair b n RR RS SR SS McNemar McNemar Conclude 

       2(1) p-value  

Phase 1          

SW-VC1 VC1 -S1 80 4 7 22 47 7.75 0.005 CA** 

SW-S1 C1-S1 80 8 7 14 51 2.33 0.126  

SW-VC2 VC2-S2 80 5 11 27 37 6.73 0.009 CA** 

SW-S2 C2-S2 80 10 6 14 50 3.2 0.073  

SW-VC3 VC3 –S3 40 4 7 17 12 4.17 0.041 CA* 

SW-S3 C3-S3 40 7 5 17 11 6.55 0.011 CA* 

          

Phase 2          

SW-VC1 VC1-S1 80 5 11 28 36 7.41 0.006 CA** 

SW-S1 C1-S1 80 6 9 15 50 1.5 0.220  

SW-VC2 VC2-S2 80 5 15 26 34 2.95 0.085  

SW-S2 C2-S2 80 9 11 19 41 2.13 0.144  

SW-VC3 VC3-S3 80 13 10 31 26 10.75 0.001 CA** 

SW-S3 C3-S3 80 12 9 25 34 7.52 0.006 CA** 

          

Notes: In final column, an empty cell indicates no evidence of complexity aversion or 
complexity lovingness; CA* indicates evidence of complexity aversion; CA** indicates strong 
evidence. 
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Table 6a.  Maximum Likelihood Estimates of Finite Mixture Random Effects Models. 

 Model 1 Model 2 Model 3 

10  risk av. 2.964**(0.153) 5.595**(0.243) 3.930**(0.532) 

1   3.521**(0.349) 

    

20  complex. av. 0.031*(0.015) 0.714**(0.076) 0.095(0.077) 

21 experience    

22 male    

23  (age-18)    

24 non-UK    

2    0.509**(0.065) 

    

   -0.333**(0.127) 

    

    

    

1  RN + CN  0.289**(0.050) 0.000(0.060) 

2  CN only  0.554**(0.060) 0.496**(0.120) 

3  RN only  0.088**(0.030) 0.026(0.070) 

4  neither 1 0.069*(0.030) 0.479**(0.120) 

    

n 80 80 80 

T (mean of) 53 53 53 

k 2 5 8 

LogL -2668.98 -2465.09 -2429.03 

AIC=-2(LogL-k) 5341.96 4940.18 4874.06 

Notes: Asymptotic standard errors in parentheses.  * indicates significance (p<0.05); ** indicates 
strong significance (p<0.01).  Model 1 (homogeneous) assumes all subjects have same RA and CA.  
Model 2 (finite mixture) assumes four different types; Model 3 (finite mixture random effects) 
assumes 4 types and continuous variation in both RA and CA.  Asymptotic s.e.s in parentheses.  k is 
the number of (estimated) parameters.  AIC is Akaike’s Information Criterion (preferred model has 
lowest AIC). 
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Table 6b.  Maximum Likelihood Estimates of Finite Mixture Random Effects Models (continued). 

 Model 4 Model 5 Model 6 

10  risk av. 3.138**(0.406) 3.289**(0.396) 2.388**(0.320) 

1 2.495**(0.336) 2.871**(0.303) 2.174**(0.252) 

    

20  complex. av. 0.224**(0.069) 0.003(0.088) 0.104(0.090) 

21 experience -0.006**(0001) -0.006**(0.001) -0.007**(0.001) 

22 male  -0.096(0.081) -0.096(0.102) 

23  (age-18)  0.029*(0.014) 0.037*(0.017) 

24 non-UK  0.154*(0.087) 0.134(0.107) 

2  0.349**(0.052) 0.291**(0.042) 0.321**(0.051) 

    

 -0.112(0.195) -0.143(0.107) 0.128(0.092) 

 -0.008**(0.002) -0.008**(0.002) -0.009**(0.003) 

   0.020**(0.003) 

    

1  RN + CN    

2  CN only 0.356**(0.118) 0.323**(0.120) 0.325**(0.100) 

3  RN only    

4  neither 0.644**(0.118) 0.677**(0.120) 0.675**(0.100) 

    

n 80 80 80 

T (mean of) 53 53 53 

k 8 11 12 

LogL -2418.39 -2410.45 -2362.35 

AIC=-2(LogL-k) 4852.78 4842.90 4748.7 

Notes: Asymptotic standard errors in parentheses.  * indicates significance (p<0.05); ** indicates 
strong significance (p<0.01).  Model 4 (finite mixture random effects with experience) assumes 2 
types, and allows for effect of experience in CA and error variance.  Model 5 (finite mixture random 
effects with experience and subject characteristics) allows CA to depend on subject characteristics as 
well as experience.  Model 6 assumes Prospective Reference Theory in place of EUT.  Asymptotic 
s.e.s in parentheses.  k is the number of (estimated) parameters.  AIC is Akaike’s Information 
Criterion (preferred model has lowest AIC). 
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Table 7. Preferences Distribution Classification of the 80 Subjects 

 

 Complexity-loving Complexity-neutral Complexity-averse 

Risk-loving 3 1 6 

Risk-averse 11 25 34 

Notes: each cell contains the number of subjects falling into each category on the basis of 
their posterior estimates of RA and CA obtained following estimation of model 6 in Table 6b. 
 
 

 

 

 

 

 

 

Figure 1 – Proportions of Safe Choices 
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Figure 2: A frequency histogram of the 80 subjects’ posterior probabilities of being 
type 2 (complexity-neutral) based on Model 6 in Table 6b 

  
Notes: A vertical line is drawn at 0.51.  33% of the sample (26 subjects) are to the right of this, and on 
this basis they are classified as complexity neutral.  

 
 
 
 
 
 
 
 
 
 

Figure 3: Posterior Estimates of  and  based on Model 6 in Table 6b   

 
Notes: Observations on the horizontal axis are subjects whose posterior probabilities indicate that they 
are complexity-neutral. 
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