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Multi-voxel pattern analysis (MVPA), or ‘decoding’, of fMRI activity has gained popularity in the

neuroimaging community in recent years. MVPA differs from standard fMRI analyses by focusing on

whether information relating to specific stimuli is encoded in patterns of activity across multiple

voxels. If a stimulus can be predicted, or decoded, solely from the pattern of fMRI activity, it must mean

there is information about that stimulus represented in the brain region where the pattern across

voxels was identified. This ability to examine the representation of information relating to specific

stimuli (e.g., memories) in particular brain areas makes MVPA an especially suitable method for

investigating memory representations in brain structures such as the hippocampus. This approach

could open up new opportunities to examine hippocampal representations in terms of their content,

and how they might change over time, with aging, and pathology. Here we consider published MVPA

studies that specifically focused on the hippocampus, and use them to illustrate the kinds of novel

questions that can be addressed using MVPA. We then discuss some of the conceptual and

methodological challenges that can arise when implementing MVPA in this context. Overall, we hope

to highlight the potential utility of MVPA, when appropriately deployed, and provide some initial

guidance to those considering MVPA as a means to investigate the hippocampus.

& 2012 Elsevier Ltd. Open access under CC BY license.
1. Introduction

It has been clear for many decades that the hippocampus is
critical for memory. Lesions to this structure leave afflicted patients
with dense anterograde amnesia and significant retrograde memory
loss for their personal experiences (Scoville & Milner, 1957; Mayes,
1988; Spiers, Maguire, & Burgess, 2001; Mayes & Montaldi, 2001;
Mayes & Roberts, 2001; Mayes, 2008; Winocur & Moscovitch, 2011).
While it is now widely accepted that these episodic memories are
supported by a distributed set of brain regions (Maguire, 2001;
Svoboda, McKinnon, & Levine, 2006), nevertheless, the hippocampal
contribution is still regarded as key.

Computational models posit the existence of some form of
memory representation within the hippocampus that is vital for
retrieving an entire memory, the constituent elements of which may
be distributed in cortical areas (Marr, 1971; Treves & Rolls, 1994;
O’Reilly & McClelland, 1994; McClelland & Goddard, 1996; O’Reilly &
Rudy, 2000). The theoretical nature of this hippocampal memory
trace has been modelled over the years, and related computations
such as pattern separation and pattern completion have been
extensively studied in the rodent hippocampus (Vazdarjanova &
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Guzowski, 2004; Lee, Yoganarasimha, Rao, & Knierim, 2004; Leutgeb,
Leutgeb, Treves, Moser, & Moser, 2004; Wills, Lever, Cacucci, Burgess,
& O’Keefe, 2005; Leutgeb, Leutgeb, Moser, & Moser, 2007). Overall,
this body of work has produced detailed predictions regarding the
expected nature of memory representations within the hippocam-
pus. To date, however, it has proved difficult to conduct compelling
tests of these predictions in the human hippocampus, and so it
remains unclear precisely how individual episodic memories are
represented by neuronal populations in the human hippocampus.

This dearth of knowledge concerning human hippocampal
memory representations is in part a result of the dominant
methodological approaches in human cognitive neuroscience.
Neuropsychological studies have been invaluable for mapping
out the specific patterns of mnemonic sparing and deficits that
arise following damage to the hippocampus and other structures
(Scoville & Milner, 1957; Mayes, 1988; Spiers et al., 2001; Mayes
& Montaldi, 2001; Mayes & Roberts, 2001; Maguire, Nannery, &
Spiers, 2006; Mayes, 2008; Winocur & Moscovitch, 2011), but
cannot inform directly about the neuronal representation of
specific memory traces. Functional neuroimaging, and particu-
larly functional MRI (fMRI), has also proved effective for localising
a wide range of cognitive functions to specific brain regions whilst
also highlighting the importance of network activity (e.g.,
Bullmore & Sporns, 2009; Yarkoni, Poldrack, Nichols, Van Essen,
& Wager, 2011). The standard method of fMRI analysis, and one
that has dominated this field, is the mass-univariate approach.
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Mass-univariate analysis involves creating a model of the experi-
mental design that is fitted to the fMRI BOLD response at each
voxel independently (a voxel is the smallest unit we can measure
in a 3D brain image volume), the aim being to find activity in
voxels that consistently shows a relationship with the experi-
mental design. This activity is spatially smoothed for every
subject, and the activity from each individual is normalized to
the same template in order to discover regions that show global
changes in BOLD in response to the experimental variable at the
group level (Frackowiak et al., 2004). This method is highly
effective for investigating many types of brain function, but is
generally insensitive to fine-grained levels of representation such
as individual memory traces.

To illustrate this point further, consider a paradigm where a
participant is recalling two individual episodic memories and two
individual semantic memories (we will assume that one trial of each
memory provides sufficient power for this hypothesised analysis,
although this in not actually the case in reality). Using a mass-
univariate analysis, we first compare the hippocampal BOLD
response evoked by the two episodic memories to that evoked by
the semantic memories and, as expected, discover that episodic
retrieval produces a greater fMRI response (Maguire, 2001; Svoboda
et al., 2006). Next we want to look for activation that is specific to
each episodic memory, so we directly contrast one episodic memory
with the other. However, when we compare them, we find no
difference, as each memory has evoked a similar increase in BOLD
response across the hippocampus. Consequently, while this method
has proved invaluable for establishing the involvement of various
regions in memory encoding and retrieval, including the hippocam-
pus, it does not permit the investigation of individual memory
representations.
Fig. 1. An illustration of MVPA classification. (A) In this example, the analysis involves

hippocampus. Each memory is recalled five times, and the activity related to each recall

each trial, labelled as either Memory A or B. The full dataset is split into a ‘‘training’’ set

training set, an MVPA classifier is trained to differentiate memories A and B based on th

this example the test trial was classified as Memory B, which was a correct prediction.

time leaving out a different trial as the test dataset. This cross-validation therefore yield

against the real labels to produce an overall classification accuracy.
In recent years, an alternative approach to fMRI analysis has
emerged which exploits the intrinsically multivariate nature of fMRI
data. The motivation for this change stems from the belief that there
may be information present in the distributed pattern of activation
across voxels that is missed when looking at each voxel indepen-
dently as in the mass-univariate method (Haynes & Rees, 2006;
Norman, Polyn, Detre, & Haxby, 2006). This type of multivariate
method is commonly known as multi-voxel pattern analysis
(MVPA), or decoding. A clear demonstration of the potential of
MVPA was provided by Haxby et al. (2001), who found that neural
representations of object categories, such as places and faces, were
more widely distributed and overlapping within the ventral tem-
poral cortex than had been thought previously. Importantly, they
examined specific regions where the individual voxels (using a
mass-univariate approach) responded strongly to one category or
another, and found that within these supposedly category-selective
regions, there still existed considerable information in the distrib-
uted pattern of activation about the non-preferred category. This
illustrates the complementary nature of the information offered by
mass-univariate and MVPA analyses, and suggests that MVPA may
be more sensitive to the presence of information about specific
representations such as object categories. Since this early study,
MVPA has been applied in a wide range of cognitive domains
including perception (Haynes & Rees, 2005; Kamitani & Tong,
2005), emotion (Peelen, Atkinson, & Vuilleumier, 2010; Baucom,
Wedell, Wang, Blitzer, & Shinkareva, 2011), and decision-making
(Kahnt, Heinzle, Park, & Haynes, 2011).

A simplified example of a standard MVPA analysis is shown in
Fig. 1, which is loosely based on the study by Chadwick, Hassabis,
Weiskopf, and Maguire (2010). In this instance, the participant
has vividly recalled two episodic memories (Memories A and B)
trying to classify two episodic-like memories from patterns of voxel activity in the

trial is extracted. The string of letters represents activity from the hippocampus on

and a ‘‘testing’’ set, in this case assigning a single trial to the test dataset. Using the

e patterns of activation in the hippocampus, and then tested on the test set. (B) In

In a leave-one-out cross-validation, this process would be repeated ten times, each

s a predicted label for every data trial in the analysis, which can then be compared
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five times each during scanning. The aim of the analysis is to try
and find unique patterns of voxel activation that consistently map
on to each of the two memories across the different recall trials. In
order to do this, the standard MVPA approach involves setting
aside a portion of the data (in this case a single trial) to be the
‘‘testing’’ dataset. The remaining nine trials are used to train an
MVPA algorithm (such as a support vector machine (SVM)
classifier or linear discriminant function—there are many choices
of algorithm, which we discuss in more detail in Section 3). This
training process involves finding an optimal ‘‘decision boundary’’
within the high-dimensional space of the features (the individual
recall trials), which best separates the Memory A trials (in green)
from the Memory B trials (in blue). The trial which was kept aside
from the training set can now be given to the trained MVPA
algorithm, which produces a predicted class label based on which
side of the decision boundary the trial falls on. In this example the
test trial was classified as Memory B, which was a correct
prediction. In order to assess the information contained within
the entire dataset, the standard approach used is cross-validation,
whereby the procedure described above is repeated many times,
each time leaving out a different portion of the data as the test
set. In this example, we would repeat the process ten times in
total, each time leaving out one of the ten trials in the test set.
Overall this produces a set of ten predicted class labels, one for
each of the data trials. This predicted set can then be compared to
the actual class labels of the data, producing a percent correct
accuracy score for the entire dataset. This is then compared to
chance level performance, which in this example is 50% as there
are two memories.

The example above involves a categorical MVPA problem,
where the algorithm is required to produce a categorical decision
(is it Memory A or B?). This is currently the most common type of
MVPA used in fMRI analysis, and is generally referred to as MVPA
classification. This is the form of MVPA used in all of the
experiments we describe in Section 2. However, it is also possible
to use MVPA for the investigation of continuous variables,
although generally this requires the use of different algorithms
(such as support vector regression).

One important point to clarify is precisely what type of analysis
constitutes MVPA as opposed to more general multivariate analyses,
such as independent or principal component analysis (ICA/PCA). As
already mentioned, there are many types of MVPA analysis avail-
able, and what links these types of analysis is not the specific
classification procedure outlined above, as some analyses such as
representational similarity analysis (Kriegeskorte, Mur, & Bandettini,
2008a; Kriegeskorte et al., 2008b) or multivariate Bayesian decoding
(Friston et al., 2008) do not require this protocol. Rather, the critical
defining factor is that all MVPA methods aim to find an explicit
mapping between an experimental variable and the multivariate
data (thus, like all other methods of fMRI, it is based on correlational
evidence). This stands in contrast to multivariate methods like ICA
or PCA in which there is no explicit mapping. Interestingly, this
means that in theory one could consider a simple multiple regres-
sion analysis to be a form of MVPA, if it were used to map
multivariate voxel responses to an experimental variable. However,
in practice this is rarely possible, as multiple regression is only
viable when the number of explanatory variables (in this case
voxels) is less than the number of data points. This is highly limiting
when dealing with fMRI data, where we are likely to want to mine
information from (at the very least) hundreds of voxels. Hence the
reason for the extensive use of more complex MVPA algorithms
such as the SVM, which deal very well with cases where there are
many more data features than stimulus trials.

Overall it is clear that MVPA provides a potentially powerful
method for investigating neural information at the level of
individual memory representations, and thus far a few studies
have used this approach to investigate cortical memory repre-
sentations (see Rissman and Wagner (2012) for a comprehensive
review). Despite the important insights gained from these studies
of the neocortex, to date, there have been few studies using MVPA
to investigate memory traces specifically within the hippocampus.
Given the extensive theoretical frameworks that exist for the
hippocampus, we argue that the hippocampus provides an excellent
target for hypothesis-driven MVPA studies. Indeed, such an approach
may prove to be vital for forming an empirical bridge between the
detailed computational accounts of memory (Marr, 1971; Treves &
Rolls, 1994; O’Reilly & McClelland, 1994; McClelland & Goddard,
1996; O’Reilly & Rudy, 2000) and the biological substrates of more
complex forms of human memory.

The purpose of this review is two-fold. First, we will review the
small number of published studies that have so far used MVPA to
investigate memory representations within the human hippo-
campus. The aim of this section (Section 2) is to demonstrate that
MVPA can be used to investigate important, hypothesis-driven
questions that are not amenable to standard mass-univariate
fMRI analysis. Following this, in Section 3 we discuss some of
the conceptual and methodological challenges that can arise
when implementing MVPA in this context by addressing fre-
quently-asked-questions that we typically experience in relation
to our MVPA research. This section is primarily aimed at hippo-
campal researchers who wish to try MVPA analysis, although the
issues discussed in this section are in fact applicable to any study
utilising MVPA with fMRI. Overall, our goal is to promote greater
application of MVPA to the study of the hippocampus, as we
believe that appropriate deployment of this method has the
potential to provide important new perspectives on the function
of the human hippocampus.
2. Using MVPA to investigate the hippocampus

Here for convenience, but primarily because there are just so few
published MVPA studies that have investigated the hippocampus
specifically, we now consider four of our own experiments to
illustrate that novel insights can arise from application of MVPA in
this context. In all cases we acquired high-resolution fMRI data
(Carr, Rissman, & Wagner, 2010) using a 3T MRI scanner. High-
resolution data result in smaller and more numerous voxels which,
if the interest is in examining patterns of activity across voxels,
allows one to discern finer patterns more readily. The resolution of
our images was 1.5 mm (isotropic voxels) which we acquired by
focusing on the medial temporal lobes (MTL).

2.1. Decoding spatial information in the human hippocampus

The first use of MVPA to explore representations specifically in
the human hippocampus was in a study by Hassabis et al. (2009).
The hippocampus has long been known to play a crucial role in the
representation of space, and particularly allocentric spatial location
as exemplified by the existence of ‘‘place cells’’ in both rodents
(O’Keefe & Dostrovsky, 1971; O’Keefe & Nadel, 1978; see also
Burgess, Maguire, & O’Keefe, 2002) and humans (Ekstrom et al.,
2003). The central aim of the Hassabis et al. (2009) study was to
determine the feasibility of using MVPA to decode the location of
participants in a virtual environment. Participants controlled their
movement within a virtual room (Fig. 2A) while undergoing scan-
ning, and were required to navigate between all four corners of the
room in a pseudo-random order. This was repeated across multiple
blocks within two separate virtual rooms (Fig. 2B). Importantly,
whenever the participants reached a target location, there was a
period where their view within the virtual room automatically tilted
down to look at a patch of carpet which was visually matched across



Fig. 2. Decoding spatial locations in the hippocampus (Hassabis et al., 2009). (A) Two separate and distinct virtual environments were used, a blue room and a green room.

Each room was 15 m2 and contained four ‘‘target’’ positions, which participants were instructed to navigate between as quickly and accurately as possible following

extensive pre-scan training. (B) Schematic of the room layouts with the four target positions, labelled A, B, C, and D (these were not labelled in the experiment). These

targets were visually delineated by identical cloth rugs placed on the floor at those positions. Single objects (door, chair, picture, and clock with different exemplars per

room but of similar size and colour) were placed along the centre of each wall to act as orientation cues. Identical small tables were placed in each of the four corners in

order to help visually delineate the wall boundaries. (C) Results for each of the four participants, showing the classification accuracies of the voxels at the centre of

searchlights that discriminated between all four target positions in the same room significantly better than chance (25%). The red bar indicates percentage accuracy values.

These results clearly demonstrate that voxels in the body-posterior hippocampus contained a significant degree of spatial location information for each participant. (For

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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the four target locations; there was then a visual countdown to the
start of the next trial. The activity from these periods was extracted
and used in the MVPA analysis, meaning that the direct visual input
was exactly matched for each of the four locations within each
room. Nevertheless, using an MVPA analysis constrained to the MTL,
it was possible to decode these four locations from patterns of fMRI
activity across voxels in the hippocampus in each of four partici-
pants (Fig. 2C).

In a second analysis, Hassabis et al. (2009) found that informa-
tion about the two different virtual environments (regardless of
specific spatial location) was present within the posterior para-
hippocampal cortex, but not the hippocampus, suggesting that
these two regions may play dissociable roles in the representation
of spatial information. A subsequent study by Rodriguez (2011)
applied an MVPA classifier to data collected from participants
navigating around a circular virtual environment, and also found
evidence for the existence of specific spatial representations
within the hippocampus. Put together, these results demonstrate
that highly abstracted representations of space are present and
detectable from patterns of fMRI activity in the human hippo-
campus. More generally, these studies demonstrated that the
hippocampus is a viable target for MVPA studies.

It is important to note that Hassabis et al. (2009) conducted an
equivalent mass-univariate analysis of these data, and found no
significant results even at liberal statistical thresholds. As out-
lined in Section 1, this failure to find a result is not surprising, as
we would expect the hippocampus to show a similar global
change in activation across the four individual locations, and so
be unable to differentiate between them. The same point applies
to each study described in this section, where a mass-univariate
analysis failed to produce significant results, in contrast to MVPA
of the same data. This difference demonstrates the potential
power of the MVPA method for certain types of question.

2.2. Decoding episodic memories

In addition to its role representing space and in navigation, the
hippocampus is also crucial for episodic/autobiographical memory
(Scoville & Milner, 1957; Mayes, 1988; Spiers et al., 2001; Mayes &
Montaldi, 2001; Mayes & Roberts, 2001; Mayes, 2008; Winocur &
Moscovitch, 2011). FMRI studies using mass-univariate analyses
have demonstrated robust activation of the hippocampus during
autobiographical memory recall (see Maguire (2001), Svoboda et al.
(2006) for reviews), but do not inform about the representation of
each individual memory. Due to this constraint, we know little
about the underlying neural code of episodic memories within the
hippocampus, although numerous theories abound (Marr, 1971;
O’Reilly & McClelland, 1994; McClelland & Goddard, 1996; O’Reilly
& Rudy, 2000). A critical question, therefore, is whether it is possible
to use MVPA to differentiate individual episodic memories from
patterns of activity. If so, this could open up new opportunities for
exploring the neural code underlying human episodic memory.

Chadwick et al. (2010) explored this question using a simple
paradigm where ten participants were shown three short video clips
of everyday events in a pre-scan session (Fig. 3A). They then
practised vividly recalling each of these clips until they could do
so vividly and consistently on each recall. Once fully trained, the
participants repeatedly recalled each of the three clips as vividly as
possible during fMRI. On each trial of scanning, one of the three
memories was cued verbally, and the participant was then
instructed to close their eyes and recall that memory (see Fig. 3B
for timeline of an example trial). Following this recall period, the
participant was asked to provide a rating of the vividness and
accuracy of that recall trial on a five point scale, and any trials with
ratings lower than 3/5 were discarded from the analysis, ensuring
that all trials entered into the MVPA analysis were vivid memories.
In addition to this cued condition, a free recall condition was also
included, in which the participants themselves decided which
memory to recall on each trial. Notably, the results were highly
consistent across both cued and free recall conditions.

Three regions of interest (ROIs) were defined within the
MTL—the hippocampus, entorhinal cortex, and posterior para-
hippocampal cortex. The data related to each recall trial were
extracted from each of these ROIs, and assigned a label based on
the particular memory being recalled on that trial (e.g., Memories
A–C). Chadwick et al. (2010) then applied an MVPA algorithm



Fig. 3. Decoding episodic-like memories in the hippocampus (Chadwick et al., 2010). (A) Still photographs taken from one of the film clips viewed during pre-scan training.

The clip depicted a woman taking a drink from a disposable coffee cup and then putting it in a bin (trashcan). (B) Timeline of an example trial during fMRI scanning.

(C) Group mean MVPA classification accuracy as a proportion, with standard error bars for the hippocampus (HC), entorhinal cortex (EC), and posterior parahippocampal

cortex (PHC). Classification accuracy for all three areas was significantly above chance level performance (0.33), with HC accuracy significantly greater than both EC and

PHC (*po0.05). (D) Frequency heatmap showing the overlap in the location of episodic information in the hippocampus across participants. Regions in bilateral anterior

hippocampus and posterior right hippocampus had significantly more overlap than would be expected by chance.
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incorporating a searchlight feature selection step to this labelled
data. The purpose of feature selection is to try and reduce the
noise within the dataset, and boost the power of the MVPA
analysis (see Section 3.4 for more details). Overall this analysis
produced a single accuracy value for each ROI, which was then
compared against the accuracy expected by chance (33% in this
case, as there were three memories). In the first instance they
found that all three MTL regions produced classification results
that were significantly above chance, showing that it is possible to
detect information about individual episodic-like memories from
activity patterns within the hippocampus and surrounding MTL
regions (Fig. 3C). Importantly, they also found that classification
accuracy for the hippocampus was significantly better than for the
other MTL regions, suggesting that episodic-like memories may be
more distinct within the hippocampus than the surrounding cortex,
in line with evidence from non-humans and computational model-
ling (O’Reilly & McClelland, 1994; Treves & Rolls, 1994; McClelland
& Goddard, 1996; O’Reilly & Rudy, 2000).

In addition to looking at the overall classification accuracy within
each ROI, it was also possible to investigate whether there was intra-
hippocampal bias in terms of where information about specific
memories was located across our group of participants. To do this
Chadwick et al. (2010) took the voxels considered to be most
informative from the feature selection step of the classification,
and used these to form an ‘‘information map’’ for each participant.
Visual inspection of the data suggested a degree of consistency in
the location of information across individuals, particularly in the
anterior hippocampus. To investigate this they normalized the
individual information maps and added them together to create a
frequency heatmap (Fig. 3D), where the colour of each voxel
represented the number of participants’ information maps that
overlapped on that voxel. They found significantly more overlap
than would be expected by chance in three regions—bilateral
anterior and right posterior hippocampus. This result suggests that
episodic information is not randomly distributed across the hippo-
campus, but instead is focused within certain regions. Overall, the
results of this study demonstrate that MVPA can be applied to
hippocampal representations of episodic-like memories.

2.3. Overlapping episodic memories and pattern separation

The previous study involved episodic-like memories but did not
allow any conclusions to be drawn regarding the specific represen-
tational content of the underlying memories. This is because each
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memory differed along a variety of dimensions, including the
identity of the people involved, the actions performed and the
spatial contexts. Consequently it was not possible to determine
exactly how the episodes were represented within the hippocam-
pus, or precisely what aspect of the episodes was being detected by
the MVPA classification technique. In a further study, MVPA was
used to probe the representational properties of episodic-like
memories within the hippocampus, and in particular when those
memories contained a high degree of overlap in terms of their
constituent elements (Chadwick, Hassabis, & Maguire, 2011).

Given that our daily lives usually involve encounters with a
relatively limited range of experiences, the episodic memories
that we form often contain a large degree of overlap. Never-
theless, most of the time we are able to remember each event as a
distinct episode. The hippocampus has long been posited as the
critical brain structure involved in separating overlapping epi-
sodes into unique representations, which then allows them to be
Fig. 4. Decoding overlapping episodic-like memories (Chadwick et al., 2011). (A) The sti

clip was 7 s long and involved a short series of actions performed by a single female act

her arm. In the second, a woman walked into shot, took out and put up an umbrella. Th

uppermost panels) in order to create four movies which included all four combination

ensured that the memories would be dynamic and episodic-like in nature, whilst being

(B) Timeline of an example trial during fMRI scanning. On each trial, one of the four ep

participants were instructed to close their eyes and recall the episode as vividly and accu

one of the participants shown in the coronal plane (upper panel) and sagittally (lowe

perirhinal cortex (PRC) in green, and the posterior parahippocampal cortex (PHC) in ma

are displayed for the four-way classification analysis (upper graph), and the spatial c

accuracy above chance (*po0.05), with standard error bars. In both analyses, only the

color in this figure legend, the reader is referred to the web version of this article.)
stored as distinct episodic memory traces (Marr, 1971; Treves &
Rolls, 1994; O’Reilly & McClelland, 1994; McClelland & Goddard,
1996; O’Reilly & Rudy, 2000). This idea has a strong grounding in
the anatomy of the hippocampus and in the rodent literature
(Vazdarjanova & Guzowski, 2004; Lee et al., 2004; Leutgeb et al.,
2004; Wills et al., 2005; Leutgeb et al., 2007), but empirical
evidence for the involvement of pattern separation in complex
episodic memory in the human hippocampus remains scarce.

Chadwick et al. (2011) applied MVPA methods to the study of
highly overlapping episodic-like memories in order to determine
whether it is possible to detect unique memory traces from
patterns of activity within the human hippocampus. The over-
lapping information in the episodes was a critical aspect of this
study, as it was important to ensure that no episode could be
uniquely specified by any single constituent element within it. In
order to create such fully controlled stimuli, two brief action
events were filmed against a green-screen background. Each of
muli: two events were filmed against a green-screen background (left panels). Each

ress. In the first, a woman walked into shot, removed her jacket and placed it over

e two events were superimposed on two different spatial contexts (see contexts in

s of event content and spatial context (see panels Memories A–D). These stimuli

fully controlled in terms of the event content and spatial context of each memory.

isodes was cued with a still photograph taken from the movie. Following this cue,

rately as possible. (C) Segmented regions of interest in the medial temporal lobe of

r panel). The hippocampus (HC) is shown in red, entorhinal cortex (EC) in blue,

genta. (D) Group mean MVPA classification results for each of the four MTL regions

ontext classification analysis (lower graph). Results are displayed as percentage

HC results are significantly above chance. (For interpretation of the references to
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these events was then superimposed onto two spatial contexts,
creating four episodes which included every combination of both
events and both contexts (Fig. 4A). As the four episodes comple-
tely overlapped with one another in terms of their constituent
elements, any successful differentiation of the four memories
from patterns of activation must be due to the presence of some
unique, conjunctive representation of each episode.

In a pre-scan session, fifteen participants viewed the four
movies, and then practiced vividly recalling all four of them until
they could do so vividly and accurately each time. Following
training, they vividly recalled each episode numerous times
during fMRI scanning (Fig. 4B). The critical analysis involved
determining whether it was possible to differentiate the four
overlapping memories based on patterns of activity within the
hippocampus, which would therefore provide evidence that the
hippocampus supports unique representations of highly over-
lapping episodes. Four ROIs within the MTL were delineated, the
hippocampus, entorhinal cortex, perirhinal cortex, and posterior
parahippocampal cortex (Fig. 4C), and a four-way MVPA classifi-
cation analysis was applied to each. Only the classifier operating
on hippocampal voxels showed significant levels of classification
when compared to chance (Fig. 4D), demonstrating that even
when memories are completely overlapping with one another in
terms of their constituent elements, the hippocampus still con-
tains distinct representations. This result is consistent with the
idea that the hippocampus plays a central role in pattern
separating overlapping episodes into distinct representations.
Notably, when the analysis was repeated after controlling for
the different number of voxels in each ROI, the same results
pertained, demonstrating that this is not merely an artefact of
MTL regions differing in size.

An important aspect of this particular paradigm was that it
allowed further inferences to be made about the representations
in the hippocampus, in particular, about the representation of
spatial context. Although it is well established that the hippo-
campus plays a central role in spatial representation O’Keefe &
Dostrovsky, 1971; O’Keefe & Nadel, 1978; Burgess et al., 2002;
Hassabis, Kumaran, Vann, & Maguire, 2007; Hassabis et al., 2009),
little is known about the representation of spatial information
that forms part of a discrete episodic memory, particularly when
that spatial information might be shared across different mem-
ories. In order to investigate this issue, Chadwick et al. (2011)
performed a further analysis to determine whether there was any
evidence that the hippocampus contains general representations
of the spatial context of events during episodic recall. As each
spatial context was shared by two different memories in this
study, this question could be addressed by training an MVPA
classifier to differentiate two memories which had the same event
content, but different spatial context, and then testing this
classifier on the remaining two memories. The only information
in common between these two sets of memories was the back-
ground spatial context, so any successful classification must be
due to some kind of generalised spatial representation. This
analysis was applied to all four ROIs, and again, the only significant
classification result was for the hippocampus (Fig. 4D). This finding
is consistent with evidence suggesting that the hippocampus is
critical for spatial representation, but is the first to demonstrate
that even during the recall of episodic memories, the hippocam-
pus maintains a distinct representation of relevant spatial envir-
onments that might be shared across different episodes. Put
together, this set of findings suggests that the hippocampus is
capable of supporting at least two different types of
representation—each memory has a unique representation cre-
ated through a process of pattern separation, and at the same
time, spatial backdrops that are common to different memories
are also represented in the hippocampus.
2.4. Decoding overlapping scene representations

In the previous study, the hippocampus was found to be
involved in pattern separation processes for overlapping episo-
dic-like memories, but also with supporting general representa-
tions of spatial context shared across different memories. This
latter result is consistent with a second important computational
role of the hippocampus whereby ambiguous or partial inputs
automatically induce the retrieval of the complete neural pattern
through pattern completion (Marr, 1971; Treves & Rolls, 1994;
O’Reilly & Rudy, 2000). Bonnici et al. (2012), set out to further
investigate the role of the hippocampus in pattern separa-
tion and pattern completion in a simple decision-making task
involving highly overlapping scenes. Their first question was
whether the hippocampus maintains distinct representations of
scenes that are highly overlapping in terms of their perceptual
features, which would provide further support for the role of the
hippocampus in pattern separation. In order to address this
question, two similar scenes (A and B) were created, which
permitted total control over the perceptual features of the two
stimuli. As can be seen in Fig. 5A, the two scenes were highly
similar.

The second question was whether there was evidence for
pattern completion processes in the hippocampus. In order to
investigate this, a series of morphs spanning a range of simila-
rities between original scenes A and B were created (Fig. 5A).
The morphed stimuli allowed Bonnici et al. (2012) to probe the
pattern of activity expressed within the hippocampus to each
morph, and whether responses were consistent with pattern
completion processes. Prior to scanning, sixteen participants
learnt which of two actions was rewarded (e.g., a right button
push) in relation to each of the two scenes A and B, receiving
monetary feedback for the correct responses. Once they had
learned this discrimination, participants were scanned while they
performed a new discrimination task involving the original scenes
A and B plus all of the morphed scenes. Although the morphed
scenes themselves were not linked to reinforcement at any stage,
the participants were instructed to select the action most likely to
yield monetary reward for each scene, and then to make a
confidence rating in that decision. During this phase there was
no feedback following the decisions (Fig. 5B).

The first question of interest was whether it was possible to
differentiate the two original scenes A and B based on patterns of
activity within the hippocampus and surrounding MTL. In order
to do this, the hippocampus, entorhinal cortex, and posterior
parahippocampal gyrus were delineated as ROIs, and MVPA
analysis applied to each. The particular MVPA algorithm used
was the same as that described above in Chadwick et al. (2010).
Evidence for distinct scene representations was found within all
three regions of interest, despite the high level of similarity
between the two scenes, demonstrating that information about
specific scenes is widely distributed throughout the MTL. How-
ever, the classification accuracy in the hippocampus was signifi-
cantly higher than the other MTL regions (Fig. 5D). These results,
therefore, provide evidence that the hippocampus maintains
distinct representations of complex scenes through pattern
separation, dovetailing with previously observed scene discrimi-
nation deficits in rodents and humans with hippocampal damage
(Graham et al., 2006; McHugh et al., 2007). It should be noted that
an earlier MVPA study by Diana, Yonelinas, and Ranganath (2008)
failed to find evidence for scene representations within the
hippocampus, but did find it within parahippocampal cortex,
which might appear to be at odds with the Bonnici et al. (2012)
study. However, there is an important difference between these
two studies—Diana et al. (2008) analysed information at the
level of stimulus categories, rather than the individual scene



Fig. 5. Decoding scene representations in the medial temporal lobe (Bonnici et al., 2012). (A) The two original scenes are displayed at the top, along with full set of morph

stimuli below (note the labels A and B were never used in the actual experiment). (B) Timeline of a single trial comprised a stimulus duration of 2.5 s during which the

participant registered their decision. Participants then indicated their confidence in that decision during the next 3 s, from a choice of sure, fairly sure, and very sure. There

was then a 2 s rest before the start of the next trial. (C) Group data showing the choice behaviour for each of the morph stimuli, which clearly followed a sigmoid profile.

(D) Average classification accuracy values for the original (100%) scenes displayed for the hippocampus (HC), entorhinal cortex (EC) and posterior parahippocampal gyrus

(PHG). For all three regions classification accuracy was significantly above chance, although the HC classifier performed significantly better than the EC and PHG classifiers

(*po0.05). (E) Average classifier accuracy values for the 50% morphed scenes (i.e., perceptually ambiguous). Classifier performance was significantly above chance in all

three regions, with the HC and PHG classifiers both out-performing that of the EC (*po0.05).
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representations which was the focus of Bonnici et al. (2012) (for
further discussion of this point, see Section 3).

The second question was whether pattern completion was
detectable in fMRI responses to the set of morphed scenes. The
first test of this was based on the 50% morphs, where the
perceptual properties of the stimulus were equidistant from both
of the original scenes. Behaviourally, the participants tended to
categorise these morphs as scenes A and B equally often (Fig. 5C),
but interestingly, these choices were accompanied by a relatively
high level of confidence in the decisions, suggesting that they
were not merely guesses. This is important, because it allowed
Bonnici et al. (2012) to investigate whether there was any
information in the hippocampus that permitted differentiation
of the decision states A and B when the visual properties of the
stimulus were exactly matched (i.e., it was always the same 50%
morph). If there were distinct patterns of activity for these
decision states, then this would provide evidence for a pattern
completion process, whereby a perceptually ambiguous stimulus
was ‘‘pattern completed’’ into one of two decision categories,
leading to a participant confidently asserting that the stimulus
belongs to one category over the other. For this analysis, Bonnici
et al. (2012) looked exclusively at the 50% morphs, and attempted
to classify them based on the participants’ choices. Interestingly,
all three MTL regions contained a significant amount of informa-
tion about the participants’ choices even when the stimuli
themselves were exactly the same. A comparison of the accuracy
values across the three regions found that both the hippocampus
and parahippocampal gyrus performed significantly better than
the entorhinal cortex (Fig. 5E).

They then further probed the specific computations involved
in the representations of the morphed scenes within the hippo-
campus. One possibility is that the hippocampal representations
expressed during the 50% morph trials reflect reinstatements of
the original learnt scenes A and B, a process consistent with the
operation of a bistable attractor network (i.e., a neural network
where new inputs will be categorised as one of two possible
representations based on their similarity to each). Neural network
models of hippocampal function have often proposed the view
that memories are stored as discrete local attractors (Hopfield,
1982; Treves & Rolls, 1994), with partial or ambiguous inputs
inducing the network to abruptly move into one of those discrete
states through ‘‘global’’ pattern completion. In order to test this
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idea, an MVPA classifier was trained to differentiate the original
scenes A and B, and tested it on the 50% morphs. If the ambiguous
morph stimuli are inducing hippocampal ensembles to shift into
one of two discrete attractor state representing scene A or B, then
this should produce significant decoding results within the
hippocampus. However, this analysis did not produce significant
results in any of the three MTL regions, which argues against this
interpretation.

The failure to find evidence of discrete, bistable attractor
networks within the hippocampus may not be entirely surprising
given previous work in rodents where the operation of attractors
may depend on the exact experimental parameters imposed
(Leutgeb, Leutgeb, Moser, & Moser, 2005; Wills et al., 2005).
Bonnici et al. (2012) therefore investigated an alternative scenario
in which hippocampal ensembles respond to ambiguous inputs
(50% morphs) by transitioning to intermediate attractor config-
urations through a more limited form a pattern completion. An
MVPA classifier was trained to differentiate the 50% morph trials
based on the decisions made on each trial, and then tested on all
of the other morph trials (i.e., the 55%, 60%, and 70% morphs—see
Fig. 5). The results of this analysis showed that the hippocampus
could successfully generalise between the subjective decision
made on viewing the 50% morphs, and those made on the other
morph scenes (55–70% morphs), while this was not the case in
the other MTL regions.

This result suggests that in this simple binary decision task,
hippocampal ensembles may have configured into one of four
distinct attractor states, which appeared to correspond to some-
thing like ‘scene A’, ‘scene B’, ‘A-like’, and ‘B-like’. The first two
states were induced by the original scenes A and B which were
over-learned prior to scanning, and therefore were highly stable
representations. The second two states were induced by the
morphs, and would seem to suggest that the hippocampus
‘‘knew’’ that the morphs were not exact replications of scenes A
and B, and therefore did not simply assign them to these two pre-
existing attractor states. Instead, it appears that two new attractor
states were created based on whether the morphs were most
‘‘like’’ scene A or scene B. These attractor states were subse-
quently applied to all the morphs, including the completely
perceptually ambiguous 50% morphs, leading to the result that
Bonnici et al. (2012) could decode these morphs based on the
decision of the participants. Thus, they ended up with two
‘‘absolute’’ attractor states for the original scenes A and B, and
two ‘‘intermediate’’ attractor states where the ambiguous scenes
were known to be distinct from the original two scenes, but
nevertheless could be accurately categorised based on similarity
to one or the other.

This insight into the computational operations of the hippo-
campus suggests that attractor dynamics may be more complex
than simply assuming that the number of attractors will be equal
to the number of perceptual decisions a subject has to make (in
this case, is the scene more like A or B?). Instead, there may be
multiple attractor states based on the interaction of the percep-
tual properties of stimuli and the motivations and goals that are
relevant to the task at hand. Altogether this raises the interesting
possibility that hippocampal attractor states could play a more
active role in decision-making than previously thought, and may
act as intermediate representations between purely perceptual
states and the goal or decision states required for high-level
decision-making.

2.5. Interim summary and conclusions

To date, MVPA analyses have revealed that it is possible to decode
complex, realistic information such as allocentric spatial locations
within a virtual environment (Hassabis et al., 2009; Rodriguez, 2011)
and episodic-like memories (Chadwick et al., 2010) from patterns of
activity across voxels in the human hippocampus. Using MVPA to
probe the nature of hippocampal representations more closely,
evidence emerged that the hippocampus maintains distinct repre-
sentations of highly overlapping episodic-like memories, providing a
link between theories of pattern separation and complex episodic
memories (Chadwick et al., 2011). Similarly, Bonnici et al. (2012)
found that the hippocampus maintains representations of highly
similar scenes, and furthermore, that even when perceptual inputs
were held entirely constant (in the 50% morph trials), the patterns of
hippocampal activity showed a robust relationship with participants’
decisions, suggesting the hippocampus may play a more active role
in decision-making than previously thought.

This set of studies gives a flavour of the kinds of questions that
can be addressed with the use of MVPA analyses when focused on
the hippocampus and MTL. As alluded to previously, it is impor-
tant to note that standard mass-univariate analyses were con-
ducted on all of the data sets described above and none provided
any significant results, demonstrating that MVPA may be an
important alternative approach for interrogating the informa-
tional content of brain regions like the hippocampus in some
circumstances. As such, while the number of MVPA studies
investigating information in the hippocampus is currently small,
we hope that the results so far will encourage greater use of this
approach in the future, as it may prove valuable for gaining new
leverage on some long-standing debates within the hippocampus
literature.
3. Frequently-asked-questions about MVPA

Having outlined some examples of MVPA in action, in this
section we consider a variety of questions that have cropped up in
the course of the studies described in Section 2. The hope is that we
may offer some guidance to others in the use of MVPA to study the
hippocampus and memory (and indeed in other domains as well, as
the issues discussed here have general relevance to MVPA and
fMRI). Several excellent reviews of MVPA analysis in theory and
practice already exist (Haynes & Rees, 2006; Norman et al., 2006;
Mur, Bandettini, & Kriegeskorte, 2009; Pereira, Mitchell, & Botvinick,
2009; Weil & Rees, 2010; Rissman & Wagner, 2012), so we do not
offer another here. Rather, the purpose of this section is to give a
practical overview of the types of issues that may need to be
considered when implementing MVPA.

3.1. Which MVPA method should I use?

There are many different MVPA algorithms to choose from,
prompting the obvious question, which one is best? One of the
most widely used algorithms is the linear support vector machine
(SVM) as it is a powerful and sensitive multivariate tool and easily
accessible. This is the type of algorithm used in the studies
described in Section 2. The particular implementation was libsvm,
which is a freely available, easy to use library of SVM tools
compatible with multiple platforms (Chang & Lin, 2011). Other
algorithms include: linear discriminant analysis, nearest neigh-
bour, naı̈ve bayes, multinomial logistic regression, and classifica-
tion trees, to name just a few. Several studies have directly
compared the performance of different MVPA algorithms (Cox &
Savoy, 2003; Mitchell, Hutchinson, Niculescu, Pereira, & Wang,
2004; Ku, Gretton, Macke, & Logothetis, 2008; Misaki, Kim,
Bandettini, & Kriegeskorte, 2010), the most comprehensive of
which was a comparison of classification algorithms and pre-
processing methods by Misaki et al. (2010). While slight advan-
tages of some algorithms over others were found, there was not a
great deal of consistency between the findings, suggesting that
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algorithm performance may depend on the particular dataset
used. Overall, there is no clear evidence suggesting a strong
benefit for any type of MVPA algorithm over others at this time.
One notable limitation of all these techniques is the need to train
the algorithm, which necessitates the repetition of the stimulus
classes multiple times during the experiment. In many cases, this
is not a problem, as the representations themselves are expected
to remain relatively stable over multiple repetitions. However, in
domains such as learning/encoding, where the dynamic change in
representations over time is important, it would be desirable to
investigate the representational properties of individual stimuli
without having to present them multiple times. This is currently
not easily accomplished using MVPA algorithms such as SVM.

Another commonly used MVPA approach is representational
similarity analysis (Kriegeskorte et al., 2008a, 2008b). This is
based on the simplest kind of multivariate inference one can
make—taking the pattern of voxel activation elicited by two
different stimuli, and measuring the multivariate distance
between these two patterns using a simple measure such as a
correlation. Despite the simplicity of this method, when appro-
priately applied, this type of analysis can reveal information about
the structure of representations with a good deal of flexibility.
Kriegeskorte et al. (2008b) demonstrated this in a comparative
study of object representations within human and monkey
inferior temporal cortex. In addition to comparing different
species, different techniques were used in both species, with fMRI
data collected from the human participants, and electrophysiolo-
gical data from the monkeys. A large number of stimuli were
presented to both species, and a correlation was calculated for
each pair of stimuli. This was derived from the pattern of voxels in
inferior temporal cortex in humans, and from the spiking activity
across multiple electrodes in the monkeys. This step effectively
abstracted the information from data that was species and
technique-specific, to data that was coded in terms of the
similarity relationship between each pair of stimuli. This abstrac-
tion allowed them to compare the representational structure of
the many stimuli (now represented as a correlation matrix, or
‘‘similarity matrix’’) across the species. They found a striking
correspondence in the similarity matrices between the species,
indicating that both humans and monkeys may code visual
stimuli in a similar way within inferior temporal cortex, thus
demonstrating the potential power of this approach.

Because representational similarity analysis rests on a concep-
tually simpler approach than the more complex MVPA SVM algo-
rithms, it can lend itself to easier interpretation of the results, as well
as potentially providing more flexibility in exploring the relation-
ships between different representations. Another advantage is that
pair-wise correlations do not require multiple stimulus repetitions. It
is therefore possible to investigate the representational properties of
stimuli that are presented only once, which could potentially be an
advantage for certain experimental questions. On the other hand,
this approach is likely to be less sensitive than more complex
algorithms when investigating subtle differences in multivariate
data.

Another promising recent development is a Bayesian model-
based approach to decoding called Multivariate Bayes (MVB) that
is implemented in SPM. MVB maps multivariate voxel responses
to a psychological target variable (e.g., individual memories),
using a hierarchical approach known as Parametric Empirical
Bayes (Friston et al., 2008; Morcom & Friston, 2012). MVB uses
the same design matrix of experimental variables used in a
conventional SPM analysis. When a decoding contrast is specified,
a Target variable X is derived from this contrast, after removing
confounds. The multivariate voxel activity provides the predictor
variable Y, which the MVB model will try to fit to X, ultimately
producing a log model evidence, or Bayes factor for that model.
The log evidence can be considered as a measure of the mutual
information between the multivariate data and the psychological
variable. There are several potential advantages to the use of this
kind of model-based approach over other methods such as the
SVM. First, by explicitly modelling the mutual information in this
way, MVB is potentially more sensitive to the underlying neural
representations. Second, this method does not require the train-
test, cross-validation approach in order to assess the underlying
information, as this is provided by the log evidence for the model.
Third, because the multivariate data from a region is explicitly
formulated as part of the model in an MVB design, it becomes
possible to directly compare information across different regions,
as this now reduces to a model comparison (although note that it
may be necessary to adjust the log-evidence to account for
differences in ROI size). This point is particularly important for
MVPA analysis, as comparing the results of other MVPA methods
across different regions can be problematic. The reason for this is
that there may be regional differences in signal-to-noise ratio that
affect the decoding results. Thus, differences in classification
accuracy between two regions may not reflect genuine distinc-
tions in the underlying neural information in these brain areas.
MVB, on the other hand, incorporates such regional effects within
the model itself, thereby providing a valid means of directly
comparing information across different regions.

An important caveat is that MVB analysis uses an explicit prior
that there is a meaningful mapping between the experimental
variable and the data. If the aim is to explicitly compare the
information contained within different regions then this is not a
problem, as the evidence associated with the two models
(regions) can be directly compared. However, if the aim of the
analysis is simply to determine whether or not there is a
significant amount of information in the underlying multivariate
signal of a single region, then the log-evidence furnished by MVB
should not be used to assess this, as it may be biased in favour of a
positive result. In cases such as this a classical statistic can be
derived through permutation testing, or alternative MVPA meth-
ods can be used instead. Overall, however, the MVB approach is a
potentially attractive method for multivariate decoding of fMRI
data, particularly when it is desirable to directly compare infor-
mation between regions.

Gallant and colleagues (Kay, Naselaris, Prenger, & Gallant,
2008; Naselaris, Prenger, Kay, Oliver, & Gallant, 2009; Naselaris,
Kay, Nishimoto & Gallant, 2011) have developed another power-
ful model-based approach to decoding over the last few years.
This group uses a voxel encoding approach, whereby theories
about the activity of underlying neuronal populations are used to
model the response of each voxel to stimuli. For example,
Naselaris et al. (2009) modelled the response of voxels in early
visual cortex based on evidence that early visual cortex repre-
sents visual stimulation in three low-level domains—orientation,
spatial frequency, and spatial location. The tuning of each voxel to
these domains was modelled using a Gabor wavelet method.
Using the fully trained model, they were able to reconstruct novel
scenes solely on the basis of the pattern of activation across visual
cortex. In addition to being theoretically important for testing
models of neural representation, the ability to investigate the
neural response to novel stimuli provides a significant practical
advantage over MVPA approaches such as SVM which, as alluded
to above, must be trained on multiple repetitions of each stimulus
class. However, while the voxel encoding approach has proven
successful in early visual cortex where there are well-defined
models of neuronal population dynamics, it will be a significant
challenge to apply the same approach to higher-level regions such
as the hippocampus. The reason for this is that it is not clear
precisely what properties could be usefully modelled in a hippo-
campal voxel. While a V1 voxel has a relatively constrained set of
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variables that it can respond to, and can be modelled in terms of
just three dimensions (orientation, spatial location, spatial fre-
quency), the number and type of possible variables that a
hippocampal voxel could respond to is vastly more complex.
Thus, effective use of this method in the hippocampus will require
the definition of a much more constrained set of invariant
features that can comprehensively define the response of a single
hippocampal voxel.

Ultimately there is no right or wrong answer to the question of
what MVPA method to adopt, but a pragmatic approach would be
to consider how distinct the representations are likely to be—if
you expect them to be relatively distinct, then a simpler multi-
variate approach such as representational similarity analysis may
be suitable, due to its ease and flexibility of interpretation. If,
however, the differences between the representations are likely
to be quite subtle, then a more complex algorithm such as an SVM
will probably be more appropriate.

3.2. How should I pre-process my data?

As well as a choice of MVPA algorithms, there are also a variety
of approaches to data pre-processing. Early MVPA hippocampal
studies (e.g., Hassabis et al., 2009; Chadwick et al., 2010) gen-
erally extracted the raw BOLD signal (after correcting for linear or
nonlinear signal drift) at around 6 s following the onset of the
stimuli, and used this raw signal as the MVPA input. This
approach has had a good deal of success, but does not attempt
to model the haemodynamic response function (HRF), and may
therefore be ignoring important information. An alternative
approach is to explicitly model the HRF for each trial in a general
linear model (GLM), and use the resulting parameter (beta)
estimates as the MVPA input. This approach has also proved
successful in a number of studies including that of Bonnici et al.
(2012), described earlier. More recently, a comprehensive com-
parison of various MVPA analysis steps by Misaki et al. (2010)
suggested that using t-values based on GLM beta estimates (by
dividing the beta by its standard error estimate) produced
optimal MVPA results, and this was the approach adopted in the
Chadwick et al. (2011) study. For a comparison of different pre-
processing approaches to event-related MVPA, see Mumford,
Turner, Ashby, and Poldrack (2012), who also concluded that
using a form of t-value produced optimal results. In summary, the
pre-processing method of choice at present appears to be the use
of the GLM to produce t-values as the input to MVPA analyses.
However, it is important to note that this does not invalidate the
use of other approaches such as raw BOLD or betas, rather the
evidence suggests that these approaches may be sub-optimal,
reducing the power of the analysis, making it more difficult to
observe significant results.

Each of the procedures described above should first include a
motion correction processing step, whereby the individual func-
tional images are realigned to one another, as in mass-univariate
analysis. Additionally, slice time correction can be applied as in a
standard mass-univariate analysis. The choice of whether or not
spatial normalization is applied to the data depends on the
specific MVPA approach used. If the analysis is constrained to
anatomically-defined ROIs, then it is preferable to analyse the
data in each subject’s native-space, in order to miminise the
spatial distortion of the data. If, however, a searchlight approach
is used, then the data should be spatially normalized as in a
standard mass-univariate analysis, so that the location of infor-
mation can be assessed at the group level. The final pre-proces-
sing step usually applied in a mass-univariate analysis is spatial
smoothing. The majority of MVPA studies to date have either used
minimal smoothing, or omitted smoothing altogether, in order to
preserve the fine-grained spatial patterns of information. Some
have suggested that spatial smoothing does not harm MVPA
performance (Op de Beeck, 2010), but note that our experiences
suggest that this may depend on the particular dataset in
question (see Section 3.6 for more details on this point). Thus,
we would suggest a conservative approach with smoothing, using
minimal smoothing or none at all.

3.3. Should I use a whole-brain analysis, ROIs, or a searchlight

approach?

One of the critical choices to be made in an MVPA analysis
concerns the initial selection of data to be analysed. Broadly
speaking there are three main choices: (a) MVPA within a given
ROI (b) MVPA based on activity across the whole brain, and
(c) searchlight-based MVPA (Kriegeskorte, Goebel, & Bandettini,
2006). Each of these approaches is entirely legitimate, and the
optimal choice will depend on the particular dataset and the
question of interest.

The most common approach is to employ regions-of-interest,
where the multivariate information is assessed within a specific
brain region, which can be defined either anatomically or func-
tionally (e.g., using a functional localiser). Once the region is
designated, the activity is extracted from all voxels within that
ROI, and an MVPA analysis is applied in order to interrogate the
patterns of information present within this set of voxels. This
approach can be useful for hypothesis-driven research (e.g., in the
hippocampus), as it allows one to draw specific conclusions about
the informational content of a particular brain area. However, it is
important to note that ROI analyses, when based on functionally
defined regions-of-interest, require researchers to exercise care to
ensure that they do not fall foul of ‘‘double-dipping’’. This is
where the same data are used for selection and further in-depth
analyses in a biased fashion. For details on how to avoid this error,
see Kriegeskorte, Simmons, Bellgowan, and Baker (2009), and
Pereira et al. (2009). When used appropriately, ROI-based MVPA
analyses can provide evidence about localised information pro-
cessing in a way that is not possible with standard mass-
univariate analyses.

The second approach involves investigating multivariate infor-
mation that may be widely distributed across the whole brain. In
these analyses the voxel activity is extracted from the whole brain
(or a large part of it, such as the grey matter), and MVPA is applied
to this entire set of voxels. This type of analysis is therefore not
anatomically specific, but instead examines the multivariate
information present across patterns of voxels that may be widely
distributed across the brain. There are two potential problems
surrounding the use and interpretation of whole-brain decoding
analysis. First, because so many voxels are included in the
analysis, this approach will only be successful when the brain
states are quite distinct, and will likely not work as effectively for
more subtle information present in localised regions of the brain.
Second, determining the location of information from a whole-
brain MVPA is not straightforward, due to the inherently multi-
variate nature of the analysis (Friston, Frith, Frackowiak, & Turner,
1995). Therefore, this method is most appropriate when mapping
information between cognitive states and neural activity as a
whole, and where the precise location of that information is not
the critical question of interest. An excellent example of the type
of questions that are best addressed with whole-brain decoding
was a study by Polyn, Natu, Dohen and Norman (2005). Using
this method they found that information about stimulus category
was present in the brain-wide pattern of voxel activation during
free recall of individual stimuli. Furthermore, this category-level
information was actually present prior to the retrieval of indivi-
dual items, indicating that some form of context-dependent
retrieval may have helped the participants to recall the specific
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items. Importantly, the purpose of this study was to map brain-
wide activity patterns to cognitive states in order to inform
theories of cognition rather than to localise information within
the brain. It is precisely this kind of question that can be most
usefully informed by the application of whole-brain MVPA.

The third common method is known as ‘‘searchlight’’ analysis
(Kriegeskorte et al., 2006), which is a means of assessing local
multivariate information across large areas of the brain, or even
the whole brain. In a searchlight analysis, a ‘‘searchlight’’ region of
interest is created for every single voxel across the brain. Each
searchlight consists of a sphere of voxels (typically around 100
voxels, depending on the voxel resolution) surrounding the
central voxel. A separate MVPA analysis is applied to each of
these searchlights, creating an accuracy value for every single
voxel in the brain, which can be displayed as an ‘‘accuracy’’ or
‘‘information map’’. A statistical threshold can then be applied to
this map at either the single subject or group level in much the
same way as a mass-univariate analysis. This method therefore
allows one to search over the whole brain for information carried
in the local multivariate response patterns. This approach is in
some ways an intermediate between the other two forms of
analysis. Searchlight analysis (Kriegeskorte et al., 2006) effectively
applies local ROI-based MVPA analysis across the entire search
space, which could include the whole brain (or the cortical
surface as in recent surface-based searchlight approaches—see
Oosterhof, Wiesterl, Downing, & Diedrichsen, 2011). This method
is probably the most appropriate for exploratory analysis of
representations across the whole brain (or a portion of it), and
allows for the localisation of information in a way that whole-
brain MVPA does not. The major draw-back of the searchlight
approach is that the many thousands of MVPA analyses lead to
the problem of multiple comparisons that is also inherent in
mass-univariate analysis, and the same procedures should be
used to correct for this.

In summary, ROI-based analyses are often appropriate for
hypothesis-driven MVPA analyses or for additional MVPA ana-
lyses within the context of mass-univariate studies, but for more
exploratory analyses, searchlight MVPA is preferable for its ability
to accurately localise multivariate information across the whole
brain. Whole-brain MVPA is most useful when the question of
interest regards a mapping between cognitive states and widely
distributed neural activity.

3.4. Should I use feature selection?

Within a given dataset, it is likely that some voxels will not carry
any useful information about the representations of interest, only
adding noise to the MVPA analysis. A frequently used method
within MVPA research is ‘‘feature selection’’, whose purpose is to
reduce a set of voxels to those that are most likely to carry
information (or inversely, to remove those voxels most likely to
carry noise). There are many approaches to feature selection (Guyon
& Ellisseeff, 2003), that we cannot cover here, but the majority
involve two basic steps. In step 1, the informational content of each
voxel is assessed, and the set of voxels is ranked accordingly.
Step 2 then involves the application of a threshold criterion to these
ranked data in order to select the set of voxels most likely to contain
information. Finally, this reduced set is used as the input to the
MVPA analysis. The approach used in some of the studies described
in Section 2 involved a searchlight MVPA to assess the local
information at each voxel within an ROI. A related approach to
reducing noise in a dataset is ‘‘feature reduction’’, also known as
‘‘dimensionality reduction’’. In this approach, the aim is not to
remove individual voxels from the analysis, but instead to summar-
ise the dataset in a smaller number of features using approaches
such as principal component analysis or independent component
analysis. In this case, the input to the MVPA algorithm is no longer
the set of individual voxels, but instead the set of principal/
independent components, which may help to reduce noise. How-
ever, it is important to note that neither approach to feature
selection/reduction is perfect, and there is no guarantee that
important information will not be lost during a feature selection
or reduction step. Thus, it will not always be advantageous to use
feature selection. For a thorough discussion of this issue and related
methodological points, see Pereira et al. (2009).

3.5. Should I use MVPA or an fMRI adaptation paradigm?

Another method of fMRI analysis that has been used to probe
neuronal processes at the level of representations is fMRI adapta-
tion (fMRIa). This examines the effect of repeating stimuli over
time with the hypothesis that stimuli that activate overlapping
neuronal representations will elicit a reduced response, for which
there is substantial evidence (Grill-Spector, Kourtzi, & Kanwisher,
2001; Kourtzi & Kanwisher, 2001; Grill-Spector, Henson, &
Martin, 2006). Recent findings suggest that, while MVPA and
fMRIa may both provide a means of tapping into information at
the level of individual representations, they may be sensitive to
different types of neural signal. For instance, Drucker and Aguirre
(2009) directly compared MVPA and fMRIa in an object shape
task, and found a double dissociation within the lateral occipital
complex (LOC), with ventral LOC showing adaptation effects, and
lateral LOC showing decoding effects. The interpretation of these
results was that decoding analyses are more sensitive to informa-
tion coded by narrowly tuned neurons clustered by their response
properties, whereas adaptation is more sensitive to information
coded by broadly tuned neurons with no clustering principle.
Similarly, Epstein and Morgan (2012) found interesting distinc-
tions between MVPA and fMRIa analyses of scene and landmark
representations. Together, this evidence suggests that MVPA and
fMRIa are not simply interchangeable approaches, and may
provide complementary insights into information processing.

3.6. Is it better to use high-resolution fMRI for MVPA?

A current debate in the MVPA literature concerns the level of
information being detected by this technique (Kamitani &
Sawahata, 2010; Op de Beeck, 2010; Swisher et al., 2010;
Freeman, Brouwer, Heeger, & Merriam, 2011), and one of the
practical questions arising from this debate is whether high-
resolution fMRI is necessary for MVPA analysis. There are many
studies that have reported robust MVPA results using standard
resolution fMRI (e.g., 3 mm isotropic voxels), including some of
the earlier visual studies (e.g., Haynes & Rees, 2005; Kamitani &
Tong, 2005), which demonstrates that high-resolution is not a
prerequisite for all decoding analyses. However, the question of
whether high-resolution scanning can increase the power of
MVPA analyses is still an open question, and has not been fully
explored with regard to hippocampal representations. Another
complicating factor is that higher-resolution scanning necessi-
tates longer acquisition times, and a potential tradeoff with
signal-to-noise-ratio (Carr et al., 2010). Nevertheless, all of the
studies described in Section 2 used a high-resolution (1.5 mm
isotropic voxels) fMRI acquisition sequence focused on the MTL,
with the assumption that by maximising the spatial resolution
within a region of interest, information would be maximised. This
is only the case, of course, if there are significant sources of
information available at a finer spatial scale then are available in
coarser-resolution data. An indirect source of evidence comes
from Rodriguez (2011), who found evidence for some spatial
information within the hippocampus using a standard voxel
resolution. This suggests that high-resolution might not be a
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requirement for MVPA analyses of the hippocampus. However,
Chadwick et al. (2011) compared different levels of smoothing
(thus effectively altering the resolution of the underlying infor-
mation) in an MVPA analysis of episodic memories focused on the
hippocampus, and found that greater smoothing (i.e., coarser
resolution) adversely affected MVPA performance (while 3 mm
smoothing was still effective, 6 mm smoothing and above sig-
nificantly decreased MVPA performance). Altogether, there is no
clear answer to this question, as it appears that high-resolution
data are important in some circumstances and not in others. The
most parsimonious approach, therefore, would seem to be to
consider carefully whether the experimental hypothesis is anato-
mically specific (e.g., focused on the MTL), or whether it is more
exploratory in nature and/or is expected to involve more dis-
tributed neural regions. If it is the former, then it would seem
sensible to acquire high-resolution data in order to maximise the
information gathered from that region. If the latter, then it would
be more appropriate to acquire lower resolution data in order to
cover the whole brain.

3.7. Why are my classification accuracies not near 100%?

There is a large amount of variability in the level of classifica-
tion accuracy reported in the MVPA literature, with some studies
describing impressively high classification rates of 80% or more.
Thus, one common question concerns what level of accuracy
should be considered meaningful. It is important to note that the
level of accuracy that it is possible to achieve in any given study
depends heavily on the complexity of the information being
decoded. When two representations are highly separable, such
as faces and places, then it should be possible to classify them
with a high degree of accuracy. If, however, the representations
are more complex (such as autobiographical memories), or more
similar to one another (such as two very similar scenes) then the
patterns of activity relating to each representation may be more
difficult to separate, and the MVPA classification accuracy will be
lower. In some circumstances, therefore, it is not reasonable to
expect high levels of classification accuracy. Ultimately, however,
what is relevant is not so much the absolute level of accuracy
achieved, but whether the results are robust enough to be
statistically significant, and replicable.

3.8. Why does MVPA have to be multivariate?

The question here is whether in theory, and given sufficient
power, similar inferences could be drawn using the signal from a
single voxel? Theoretically, the answer is yes. Given a voxel which
is consistently active for one memory compared to another, we
could easily use this to differentiate two individual memories. We
could even ‘‘train’’ an algorithm on a portion of data and use it to
‘‘test’’ an independent test set, in a similar fashion to standard
MVPA classification (although in fact this would be unnecessary if
all we wish to do is to infer a significant mapping between
activity and the experimental variable, as we could use classical
statistics). Practically speaking, however, the use of a multivariate
approach can greatly enhance the sensitivity of the analysis to
underlying information, by combining information across many
voxels. This property is extremely advantageous when dealing
with real fMRI datasets that are likely to be noisy. Furthermore, if
one were searching for individually informative voxels within a
specific ROI (such as the hippocampus), one would have to test
many hundreds of voxels independently, and then correct the
subsequent p values for multiple comparisons. The MVPA equiva-
lent would only involve a single statistical test, thereby avoiding
the multiple comparisons problem. Overall, therefore, there are
clear practical reasons why MVPA methods have come to the fore
when investigating subtle cognitive representations.

3.9. Can I examine different levels of representation?

Beyond all of the methodological choices and challenges, the
most critical element of any MVPA study is proper consideration
of the level of representation being decoded, and from that,
making appropriate inferences about the underlying neural pro-
cesses. There are three levels of representation that have been
investigated using MVPA, the broadest of which we will term
‘‘cognitive state’’. MVPA analyses of cognitive states are those that
investigate processes rather than specific stimuli/representations.
An example of this is evident in a study by Rissman, Greely, and
Wagner (2010) who demonstrated that it is possible to decode
subjective mnemonic states (e.g., a feeling that a face is new or
old) from whole-brain patterns of voxel activity. This MVPA
analysis is not specific to any particular type of representation,
but instead is related to the cognitive states relating to recogni-
tion memory. It is worth noting that this level of representation is
not uniquely accessible to MVPA analyses, as the mass-univariate
approach was originally developed in order to differentiate
cognitive states, although MVPA may offer a more sensitive
measure of information in some circumstances.

Stimulus categories, such as faces or places (or nouns and
verbs) constitute another level of representation, and MVPA has
been useful for elucidating category-level information. Again, this
level of information is available to mass-univariate analyses, as
exemplified by studies investigating the ‘‘fusiform face area’’ and
‘‘parahippocampal place area’’ (Kanwisher, McDermott, & Chun,
1997; Epstein & Kanwisher, 1998). However, as originally demon-
strated by Haxby et al. (2001), there may be residual information
about non-preferred categories within each of these regions when
analysed with MVPA, which demonstrates that both approaches
are necessary for a full understanding of the neural representation
of categories.

The most detailed level of representation is the item-level, where
MVPA is used to investigate the representation of individual stimuli
(e.g., memories). This is the only level of representation where MVPA
is essential, as it is not usually possible to find a regional difference in
overall activation between two individual scenes or faces, using a
mass-univariate analysis. All of the MVPA analyses of the hippocam-
pus described in Section 2 involved investigating item-level repre-
sentations, whether it be specific spatial locations (Hassabis et al.,
2009), individual episodic memories (Chadwick et al., 2010, 2011), or
individual scenes (Bonnici et al., 2012). A comparison of two MVPA
studies of the MTL illustrates the different (but complementary)
interpretations that can be made from investigating different levels
of representation. Diana et al. (2008) used MVPA to investigate the
representation of various stimulus categories (including scenes) in
both the posterior parahippocampal gyrus and the hippocampus.
They found evidence of category-level information within the former
but not the latter. Bonnici et al. (2012) investigated the representa-
tion of individual scenes within the MTL, and found evidence for
scene representations within both the parahippocampal cortex and
the hippocampus. This suggests the hippocampus may contain more
distinct representations of individual scenes which are not organised
in a category-specific fashion, thereby allowing successful item
decoding but not category decoding.

3.10. What am I decoding?

Finally we want to emphasise that ultimately, as with any
neuroimaging approach, the interpretation of the results is always
constrained by the experimental design. The results of the two
studies investigating the representation of episodic-like memories
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(Chadwick et al., 2010, 2011) illustrate this point. In the first study, it
was possible to predict which of three episodic-like memories was
being recalled from patterns of activity within the hippocampus
(Chadwick et al., 2010). From this it was concluded that individual
episodic-like representations could be decoded from hippocampal
activity. While this is a legitimate conclusion, it does not tell us
precisely what information is allowing that decoding, as the three
episodes differed along a variety of dimensions, such as the spatial
locations and the people featured in each episode. In order to draw
more precise conclusions about the representational make-up of
episodic-like memories in the hippocampus, a more fully controlled
paradigm was required (Chadwick et al., 2011). The level of
additional control allowed Chadwick et al. (2011) to conclude that
there are at least two types of representation present in the
hippocampus during episodic recall: unique ‘bound’ representations,
and general spatial representations. Consideration of the experi-
mental design and what it can allow you to infer about the
information you want to decode should be considered at the outset
of any MVPA study.
4. Future directions

We conclude by highlighting some potential future applica-
tions of MVPA that may be particularly relevant to hippocampal
research. The first is the use of MVPA to revisit some of the major
debates in the hippocampus literature, in order to gain new
insights. For example, the ability to examine individual memory
representations may offer new leverage on the issue of systems-
level consolidation and the timescale of hippocampal involve-
ment in representing episodic/autobiographical memories. The
second development is the capacity to investigate activity within
the subfields of the human hippocampus using high-resolution
MRI (Carr et al., 2010) which, if combined with MVPA, could
greatly enhance our ability to interrogate the representations and
computations within the hippocampus. Computational theories of
the hippocampus make clear predictions about the representa-
tions we might expect within the different subfields of the
hippocampus. For example, regions CA3 and DG in particular
may contain distinct representations of very similar stimuli in line
with a role in pattern separation (Bakker, Kirwan, Miller, & Stark,
2008). We believe that the use of MVPA in the subfields of the
hippocampus will prove invaluable in our quest to understand the
computational underpinnings of episodic memory. Finally, it will
be important to consider how fMRI and MVPA can be applied in
neuropsychological settings (Mayes, 1988), for example, by test-
ing whether viable memory representations are detectable even
in damaged hippocampal tissue.

It is not always necessary or appropriate to employ MVPA to
study memory and the hippocampus; it is not better by default,
and to deploy fMRI MVPA paradigms properly can be challenging.
However, the judicious use of MVPA, where key questions cannot
be addressed effectively in other ways, in our view makes MVPA
an invaluable addition to the hippocampal armamentarium.
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