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Abstract On seasonal and inter-annual time scales,1

vertically integrated moisture divergence provides a use-2

ful measure of the tropical atmospheric hydrological cy-3

cle. It reflects the combined dynamical and thermody-4

namical effects, and is not subject to the limitations5

that afflict observations of evaporation minus precipi-6

tation. An Empirical Orthogonal Function (EOF) anal-7

ysis of the tropical Pacific moisture divergence fields8

calculated from the ERA-Interim reanalysis reveals the9

dominant effects of the El Niño-Southern Oscillation10

(ENSO) on inter-annual time scales. Two EOFs are11

necessary to capture the ENSO signature, and regres-12

sion relationships between their Principal Components13

and indices of equatorial Pacific sea surface tempera-14

ture (SST) demonstrate that the transition from strong15

La Niña through to extreme El Niño events is not a lin-16

ear one. The largest deviation from linearity is for the17

strongest El Niños, and we interpret that this arises18

at least partly because the EOF analysis cannot eas-19
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ily separate different patterns of responses that are not20

orthogonal to each other.21

To overcome the orthogonality constraints, a Self22

Organizing Map (SOM) analysis of the same moisture23

divergence fields was performed. The SOM analysis cap-24

tures the range of responses to ENSO, including the25

distinction between the moderate and strong El Niños26

identified by the EOF analysis. The work demonstrates27

the potential for the application of SOM to large scale28

climatic analysis, by virtue of its easier interpretation,29

relaxation of orthogonality constraints and its versatil-30

ity for serving as an alternative classification method.31

Both the EOF and SOM analyses suggest a classifica-32

tion of “moderate” and “extreme” El Niños by their dif-33

ferences in the magnitudes of the hydrological cycle re-34

sponses, spatial patterns and evolutionary paths. Clas-35

sification from the moisture divergence point of view36

shows consistency with results based on other physical37

variables such as SST.38

Keywords El Niño Southern Oscillation · Self-39

organizing map · Hydrological cycle40

1 Introduction41

Globally around 60 % of the terrestrial precipitation di-42

rectly originates from moisture transported from the43

ocean (Trenberth et al, 2007; Gimeno et al, 2012). The44

variability of the oceanic water supply greatly influ-45

ences water availability for all regions. Excessive trans-46

ports are usually major causes for extreme weather and47

flood events (Knippertz and Wernli, 2010; Galarneau48

et al, 2010; Chang et al, 2012; Knippertz et al, 2013),49

while interrupted transports can lead to droughts and50

subsequent socioeconomic stresses (Cai et al, 2012, 2014).51

Hence, a clear understanding of the mechanisms that52
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force observed changes to the hydrological cycle is of53

major importance.54

Most of the major oceanic source regions of atmo-55

spheric moisture are confined to the tropics and sub-56

tropics, where the high sea surface temperature (SST)57

and anticyclonic circulations provide favorable condi-58

tions for evaporation to occur under clear sky condi-59

tions. The surplus evaporation (E) over precipitation60

(P) provides a useful estimate of the net water input to61

the atmosphere (E - P). However, large scale estimates62

of this flux are largely limited to reanalysis datasets,63

which suffer from model biases and data inhomogene-64

ity issues (Hegerl et al, 2014; Wang and Dickinson,65

2012; Trenberth et al, 2007, 2011). Evaporation from66

reanalysis is not constrained by precipitation and ra-67

diation (Hartmann et al, 2013), spurious trends and68

biases can be introduced by changing satellite obser-69

vations (e.g. Bosilovich et al, 2005; Robertson et al,70

2011), which also contribute considerably to budget er-71

rors over land (Pan et al, 2012). Similarly, precipitation72

from reanalysis also depends strongly on the parame-73

terization schemes adopted by a specific model (i.e. it74

is a “type C” variable: Kistler et al, 2001; Kalnay et al,75

1996). Moreover, E and P computed oceanic freshwa-76

ter fluxes show poorer performance in closing the water77

budget, compared with atmospheric moisture fluxes de-78

rived values (Rodŕıguez et al, 2010).79

Therefore, like many studies (e.g. Trenberth and80

Guillemot, 1998; Trenberth and Stepaniak, 2001) we81

use the moisture divergence fields computed from “type82

B” variables (i.e. ones that are more dependent on as-83

similated observations and less dependent on model pa-84

rameterizations) to balance the water budget. This in-85

direct approach is more reliable and consistent among86

observations (Trenberth, 1997b; Roads, 2002, 2003; Gi-87

meno et al, 2012). Moreover, it is the large-scale con-88

vergence rather than locally enhanced evaporation that89

controls the precipitation patterns in the tropics (Mo90

and Higgins, 1996; Soden, 2000; Su and Neelin, 2002;91

Trenberth et al, 2003; Zahn and Allan, 2011), and anal-92

ysis of the moisture divergence provides insights into93

the major modes of precipitation variability, as well as94

the moisture sources themselves.95

On interannual time scales, large-scale atmospheric96

variability is closely associated with the El Niño South-97

ern Oscillation (ENSO). Associated with the altered98

Walker circulation (Bjerknes, 1966, 1969) and strength-99

ened and shifted Hadley cell (Oort and Yienger, 1996;100

Quan et al, 2004; Hu and Fu, 2007; Wang, 2002) the101

atmospheric hydrological cycle is also reorganized. Re-102

cently, there have been investigations of different types103

of ENSO events and their corresponding mechanisms104

and impacts (Capotondi et al, 2014). Most of them105

take the SST anomaly (SSTA) patterns as the starting106

point, and emphasize the different zonal SSTA struc-107

tures (Larkin and Harrison, 2005a,b; Ashok et al, 2007;108

Kao and Yu, 2009; Kug et al, 2009; Fu et al, 1986; Tren-109

berth and Stepaniak, 2001; Trenberth and Smith, 2006;110

Giese and Ray, 2011; Capotondi, 2013). Although each111

uses a different index definition and separation crite-112

rion, and gives different names to the El Niño types and113

emphasizes somewhat different aspects of these events,114

it appears that there is some correspondence bewteen115

these parallel studies:116

– the “1972 type ENSO” in Fu et al (1986), the “con-117

ventional El Niño” in Larkin and Harrison (2005a)118

and Ashok et al (2007), the “Eastern Pacific (EP)119

type ENSO” in Kao and Yu (2009) and Yu and Kao120

(2007), and the “Cold Tongue (CT) El Niño” in Kug121

et al (2009), all refer to those events associated with122

anomalously warm SSTs over the eastern equatorial123

Pacific;124

– the “1963 type ENSO”, the “dateline El Niño” and125

“El Niño Modoki”, the “Central Pacific (CP) type126

ENSO”, and the “Warm Pool (WP) El Niño” in the127

aforementioned studies define the counterpart with128

its warming centered closer to the central equatorial129

Pacific.130

The events identified by these studies are generally131

consistent when their data periods overlap (see Fig. 1132

in Singh et al (2011) for a summary), suggesting that133

these diverse interpretations all point to essentially the134

same phenomena (Kug et al, 2009). Studies starting135

from spatial patterns in other variables find a similar136

east-central contrast in the El Niño categorizations: sur-137

face salinity (Singh et al, 2011), the first occurrence of138

significant SSTA (Xu and Chan, 2001; Kao and Yu,139

2009), sea level anomalies (Bosc and Delcroix, 2008)140

and outgoing longwave radiation (OLR) in the equato-141

rial Pacific (Chiodi and Harrison, 2010).142

Empirical Orthogonal Function (EOF) analysis is143

a commonly used technique in studies that describe144

ENSO. However the orthogonality constraint on the re-145

sultant patterns and time-series means that they do not146

necessarily have direct physical interpretations. This147

sometimes hampers the ability of this technique to cap-148

ture non-linear features embedded in the data, particu-149

larly when there is a relative spread of variances across150

multiple EOFs all related to the same forcing. Previous151

studies suggest that a complete description of different152

characters and evolutionary features of El Niños cannot153

be captured fully by a single index, and a second mode154

reflecting the zonal SST contrast is a necessary comple-155

ment (Trenberth and Stepaniak, 2001; Trenberth and156

Smith, 2006; Kao and Yu, 2009). These complemen-157
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tary modes broadly correspond to the two flavours of158

El Niños, but have serious deficiencies when considering159

individual events (Johnson, 2013). In such cases addi-160

tional efforts and other techniques, like regression anal-161

yses, are required to enable a clear interpretation of the162

EOF results.163

Similar to EOF analysis, Self-Organizing Maps (SOM)164

is a powerful dimension reduction tool, but is free from165

orthogonality constraint. Introduced into the geography166

community in the 1990s, it has been more commonly167

used for determining synoptic circulation patterns and168

downscaling (Hewitson and Crane, 1994, 2002; Crane169

and Hewitson, 1998; Reusch et al, 2007; Verdon-Kidd170

and Kiem, 2009; Verdon-Kidd et al, 2014). Here, we171

explore its potential applications in large scale climatic172

analysis. In this study, we first use conventional EOF-173

correlation analysis to illustrate how the tropical atmo-174

spheric moisture circulation responds to different fla-175

vors of El Niños. Then, noting that the different types176

of El Niños are associated with different patterns of177

anomalous moisture divergence which may not be or-178

thogonal, but EOF analysis imposes orthogonality, we179

obtain a new perspective from a neural network al-180

gorithm (SOM). More details on the SOM algorithm181

are described in Section 2, including data preprocessing182

procedures, and the El Niño phase separation method.183

Sections 3.1, 3.2 and 3.3 show the distinct moisture di-184

vergence responses to extreme and moderate El Niños,185

which is validated by the SOM results described in Sec-186

tion 3.4. A summary and discussion is given in Section187

4.188

2 Methods and Data189

2.1 Moisture divergence190

In this study we use the ERA-Interim (ERA-I) reanal-191

ysis data [Dee and Uppala 2009], a third generation192

atmospheric reanalysis product (Trenberth et al, 2011).193

ERA-I has some major improvements over its predeces-194

sor (ERA-40) in hydrological components (Trenberth195

et al, 2011), and outperforms NCEP I, II and MERRA196

in depicting the global ocean-land moisture transports197

(Trenberth et al, 2011). The near surface fields in ERA-I198

are better correlated with buoy observations (implying199

more faithful air-sea water fluxes) compared to NCEP200

products (Praveen Kumar et al, 2011). And it repre-201

sents the latest and best reanalysis for reproducing and202

interpreting the atmospheric branch of the hydrological203

cycle (Trenberth et al, 2011; Lorenz and Kunstmann,204

2012).205

Horizontal moisture divergence was computed fol-206

lowing Trenberth and Guillemot (1998):207

5 ·Q = 5 · 1

g

∫ Ps

0

qvdp (1)208

Specific humidity (q), horizontal winds (v) and sur-209

face pressure (Ps) were obtained from ERA-I for the210

period of 1st January 1979 to 31st December 2012. Hor-211

izontal moisture fluxes were computed on each of the212

60 sigma levels using 6-hourly data, to capture as much213

covariance of q and v as possible. The original full reso-214

lution (0.75 ◦×0.75 ◦) divergence anomaly (with respect215

to the 34-year mean annual cycle) was temporally av-216

eraged into calendar months, and spatially filtered to a217

lower 3 ◦ × 3 ◦ resolution, before passing into the EOF218

analysis.219

2.2 ENSO events and phase separation220

ERA-I SST data during the same time period were used221

to compute the Nino 3.4 index (Trenberth, 1997a). Af-222

ter filtering with a 5-month running mean to remove223

intra-seasonal variability, the time-series was normal-224

ized by its standard deviation. El Niño (La Niña) events225

are determined by the criterion that the Nino 3.4 in-226

dex exceeds +0.75σ (−0.75σ) for at least six consec-227

utive months. If this criterion is met, the beginning of228

the event is defined as the first month that exceeded229

±0.75σ.230

Tracking the evolution of El Niño events through a231

sequence of phases could be achieved by defining phases232

according to either their calendar months or their tim-233

ing relative to the magnitude of the SSTA. Using Nino234

3.4 SSTA as the index, Xu and Chan (2001) suggested235

a 3-month delay in the onset time of “Summer” type236

El Niños compared with “Spring” type El Niños, which237

also show distinct warming structures. Considering this238

time shift in the evolutionary pathways, the calendar-239

month approach (e.g. using Aug-Oct as the starting240

phase for both types) might end up comparing events241

at different evolution stages, particularly for the pre-242

mature phases.243

Therefore, taking into account the irregularity of244

El Niño events, we defined a relative-amplitude-based245

method to split each event into five evolutionary phases:246

1. “Pre-event” phase: three preceding months before247

the Nino 3.4 index reaches the El Niño criterion (de-248

fined above);249

2. “Starting” phase: from the beginning of an event250

to the time when the Nino 3.4 index rises 70 % of251

the way up to its maximum (See Appendix for an252

illustration);253
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3. “Peak” phase: the phase in between the “Starting”254

and the “Decaying” phases;255

4. “Decaying” phase: from the time when the Nino 3.4256

index drops 30 % from its maximum value to the El257

Niño criterion, until the end of the event;258

5. the “Post-event” phase: three subsequent months259

after the Nino 3.4 index drops below the El Niño260

criterion.261

The Nino 3.4 index experiences fastest changes dur-262

ing “Starting” and “Decaying” phases (whereby we as-263

sume swift changes in the overlying atmosphere, which264

is proved to be the case later). As monthly mean Nino265

3.4 SST is used, linear interpolation was used to esti-266

mate the timing of the phases more precisely (i.e. in267

days). The same interpolating factors are later applied268

to other variables (e.g. moisture divergence) in creat-269

ing the phase composites. More details are given in the270

Appendix.271

Unlike other El Niños that have a single maximum272

in the Nino 3.4 time-series, the 1986/87 case features a273

dual peak, with its first peak occurring in January 1987274

and the second, larger, peak in August 1987. In the275

phase separation procedure described above, only the276

second peak was identified as the maximum, and the277

presence of the first peak was not accounted for. How-278

ever, computations with the 1986/87 event excluded279

give very similar results, and suggest that the major280

conclusions are insensitive to its inclusion.281

2.3 Self-organizing maps282

SOM is a type of neural network algorithm that intro-283

duces a specified number of neurons into the spatio-284

temporal space of the input dataset, and through an285

iterative, unsupervised learning process, locates these286

neurons in such a way that they collectively represent287

the data values within the entire data space, but in-288

dividually represent local variability (Kohonen, 1990,289

2001). Unlike EOF analysis, there are no linear or or-290

thogonal constraints, and the neuron distribution is de-291

termined solely by the distribution of the input data.292

These characteristics allow SOM to represent the di-293

mensions of the input variables along which the vari-294

ance in the sequence of inputs is most pronounced (Cava-295

zos, 1999; Liu et al, 2006).296

In addition to positioning the neurons within the297

multi-dimensional data space, the neurons are them-298

selves laid out in a “map” that topologically links them299

so that neighbouring neurons tend to be more simi-300

lar than non-neighbouring neurons. This map is most301

commonly a 2D grid with a hexagonal or rectangular302

layout that determines how many neighbours each neu-303

ron has (Kohonen, 2001), though other options are pos-304

sible. The topological links between neighbours facili-305

tates examination of evolutionary paths of a physical306

phenomenon across the map’s neurons, as well as effec-307

tively visualizing high-dimensional data and serving as308

an alternative classification method, as will be shown309

in the results section.310

Even if it is non-linear, the transition from extreme311

El Niño states to strong La Niña states is nevertheless312

a continuum and we can represent this using SOM with313

a simplified 1D map. Thus, each neuron is topologically314

related only to its immediate neighbours in the 1D ar-315

ray of neurons (of course, each neuron still represents316

a location in the multi-dimensional data space). A de-317

scription of the initialization and training formulation318

to obtain the SOM is given in the Appendix.319

The size of the SOM array is usually an arbitrary320

choice made by the user. Analogous to other statistical321

methods, there is a trade-off between the degree of gen-322

eralization, the amount of detail to represent, and the323

capacity of the available data sample to adequately rep-324

resent the variance and distribution of the data. There-325

fore some trial and error experiments are usually rec-326

ommended to determine an appropriate SOM size. In327

this case, a 1D array with five neurons gives results that328

can be easily related to ENSO variability. Using seven329

neurons (not shown) yields similar patterns with large330

differences only occurring in the neutral and moderate331

ENSO states, where the influence of other climate vari-332

ability is relatively larger. This is consistent with John-333

son (2013), who suggested that no more than nine SOM334

neurons could be distinguished in patterns of equatorial335

Pacific SSTA.336

3 Results337

3.1 El Niño - La Niña transitions338

The two leading EOFs of the moisture divergence anoma-339

lies field are found to be ENSO-related, and they ex-340

plain 15 % and 11 % of total variance, respectively. Fig. 1341

displays the patterns and principal components of EOF342

#1 and #2, together with the climatological average343

moisture divergence (negative values indicate moisture344

convergence or P > E).345

The first EOF (Fig. 1a) features a westward-pointing346

horseshoe structure over the tropical Pacific region that347

is in good agreement with the typical ENSO SSTA pat-348

tern. Anomalous convergence collocates with the warm349

SST anomalies during the mature phase of an El Niño,350

and the encompassing divergent anomalies corresponds351

to the negative SSTAs over the warm pool and South352
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Fig. 1 Subplots (a) and (b) show the EOF#1 and EOF#2 of tropical Pacific moisture divergence (mm/day), respectively.
(c) shows their principle component time-series (PC#1 in blue and PC#2 in red). (d) is the climatological mean moisture
divergence (1979-2012).

Pacific Convergence Zone (SPCZ). This suggests the353

influences of thermally driven circulation changes on354

the moisture divergence patterns, and the climatologi-355

cal convergence/divergence regions (Fig. 1d) are shifted356

eastward following the zonal movement of warm SST.357

Significant correlations (p < 0.01) with Nino 4 (r =358

0.68), Nino 3.4 (r = 0.85), Nino 3 (r = 0.85) and359

Nino 1+2 (r = 0.70) indices lend further support to360

the ENSO attribution. All warm events can be easily361

recognized in the PC#1 time-series (Fig. 1c), except362

the 1994/95 event (which is also the weakest judging363

by the Nino 3.4 amplitude; not shown).364

Although this horseshoe-like spatial pattern of EOF#1365

resembles that in the EOF#2 of Ashok et al (2007),366

from which they diagnosed the “El Niño Modoki”, the367

correlation between PC#1 and the El Niño Modoki In-368

dex is not particularly high (r = 0.31, p < 0.01). This369

is partly due to the different fields used in Ashok et al370

(2007) (SST) and in this study (moisture divergence),371

and the non-linear responses of atmospheric circulation372

to the surface forcing. Therefore this pattern does not373

effectively distinguish Modoki-associated moisture di-374

vergence fields from other warm events, but rather rep-375

resents the broad structure of ENSO cycles in general.376
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Fig. 2 Scatter plot of PC#2 against Nino 3.4 index with all
El Niño (circles) and La Niña (triangles) events color coded.
Non-ENSO months are denoted by small black dots. Evolu-
tionary pathways of the 1982/83 (red), 1991/92 (blue) and
1997/98 (purple) El Niño events are illustrated by solid lines,
with the final month being represented with a solid square.

The second EOF pattern (Fig. 1b) features a southwest-377

northeast dipole mode over the western Pacific (west378

of the dateline), and a north-south gradient over the379

eastern Pacific similar to that found in EOF#1 but380

shifted 6 ◦ equatorward. The PC#2 time-series (Fig. 1c)381

shows more month-to-month variability than PC#1,382

but some ENSO signatures are still recognizable, with383

the 1982/83 and 1997/98 El Niño cases being most384

prominent, similar to the Eastern Pacific index time-385

series in Kao and Yu (2009). A closer look at the two386

spikes reveals that during these two events they lag387

their PC#1 counterparts by about one season, but ex-388

perience fast changes, suggesting a quick restructuring389

of the moisture circulation patterns.390

Besides greater warming magnitudes, these two warm391

events (1982/83 and 1997/98) differ from the others392

from a number of additional perspectives (see next sec-393

tion). It has previously been noted that two leading394

EOFs are required to describe different evolutions of395

ENSO events (Trenberth and Stepaniak, 2001; Kao and396

Yu, 2009). Therefore we also attribute EOF#2 to ENSO,397

representing the non-linear responses not captured by398

EOF#1. This non-linearity is illustrated by the outly-399

ing dots in the scatter plot of PC#2 against Nino 3.4400

(Fig. 2). In general, PC#2 and Nino 3.4 are negatively401

correlated. However, the 1982/83 and 1997/98 events,402

and to a lesser extent the 1991/92 case, contaminate403

this negative correlation and make the otherwise strong404

correlation rather poor (r = −0.3, p < 0.01). Not all of405
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Fig. 3 Scatter plot of PC#1 and PC#2 with all El Niño
(circles) and La Niña (triangles) events color coded. Non-
ENSO months are denoted by small black dots. Data points
for the extreme El Niño group are enclosed by a red ellipse;
the moderate El Niño group by green circles, and the La
Niña group by blue circles. Square-boxed numbers show the
locations of the five SOM neurons in PC#1, PC#2 space, i.e.
regressed onto EOF#1 and EOF#2 using least squares fit.

the months during these three warm cases are outliers,406

therefore to reveal the evolutionary paths of these ex-407

ceptional events, we linked the points of these events in408

a chronological order. Consistent for all three of them,409

as the El Niño event emerges and rises in amplitude410

(Nino 3.4 increasing), PC#2 decreases, following the411

linear path defined by the negative relationship. When412

Nino 3.4 approaches its maximum value, PC#2 swiftly413

deviates away from the negative relationship and be-414

comes strongly positive. During this period (which will415

be shown to be the peak-to-decaying phases), there is416

no further rise in the SST amplitude, yet the moisture417

divergence field experiences fast changes. Subsequently,418

both Nino 3.4 and PC#2 decrease towards zero.419

A scatter plot of PC#1 against PC#2 summarizes420

the complete El Niño-La Niña response (Fig. 3). Two421

linear relationships are required to fully capture the422

moisture divergence responses to ENSO effects:423

1. The negative La Niña-neutral-moderate El Niño cor-424

relation (r = −0.46, p < 0.01);425

2. The positive moderate-extreme El Niño correlation426

(r = 0.64, p < 0.01);427

Although both are statistically significant, these two428

linear relationships represent very different time sub-429

sets (97 % and 3 % of the data, respectively). Despite430

extreme El Niños only constituting around 3 % of the431

total time (14 out of 408 months exceeding 2σ in Nino432
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3.4), both PC#1 and PC#2 show high positive values,433

and the associated reorganization of atmospheric con-434

vection and related global disruptions (Cai et al, 2014),435

mean that special attention to these extreme cases is436

well deserved.437

Three groups of nearby points are circled in Fig. 3438

to represent typical patterns for extreme El Niño state439

(1983-1, 1983-2, 1998-1), moderate El Niño state (1991-440

11, 1997-8, 2002-11) and strong La Niña state (1988-12,441

2007-12, 2010-11), respectively. Other states can be ap-442

proximated by the linear relationships defined above.443

The composite for each group was generated by aver-444

aging the linear combinations of EOF#1 and #2 from445

the corresponding months, and the results are shown in446

Fig. 4. The spatial pattern of the strong La Niña com-447

posite (Fig. 4a) is similar to that of EOF#1, and the448

moderate El Niño composite (Fig. 4c) but with opposite449

sign. This is a result of both PC#1 and PC#2 switch-450

ing sign but remaining approximately the same mag-451

nitude (Fig. 3). The extreme El Niño group (Fig. 4e)452

displays distinct spatial patterns and stronger magni-453

tudes (note the different color scale). Both the max-454

imum convergence and divergence in the extreme El455

Niño composite reach 13.0mm/day or above, which is456

more than twice the December to Feburary (DJF) cli-457

matology (not shown). A zonally elongated convergence458

band occurs over the eastern Pacific, which co-locates459

with enhanced precipitation anomalies (Kug et al, 2009;460

Cai et al, 2012). The climatological SPCZ swings equa-461

torward by a larger amount than during moderate El462

Niños (the zonal SPCZ feature will be discussed in the463

next section). A sharp meridional gradient covers the464

entire tropical Pacific. This is suggested to be the re-465

sponse to the weakened meridional SST contrast over466

the eastern Pacific (Cai et al, 2014), and the descent467

anomalies to the north of the equator, mostly caused468

by dry advection (Su and Neelin, 2002). Lastly, the NH469

branch of the Hadley cell intensifies in both the ascend-470

ing and descending branches and shifts equatorward by471

a larger magnitude (Hu and Fu, 2007; Quan et al, 2004).472

These expressions in the space defined by EOFs #1473

and #2 of the anomalous moisture divergence during474

these three event composites are a good representation475

of the anomaly fields in the full dimensional space (com-476

pare Fig. 4a,c,e with Fig. 4b,d,f). This is especially so477

for the strong La Niña and extreme El Niño composites,478

while the moderate El Niño composite (Fig. 4d) shows479

moisture divergence anomaly features in the South Pa-480

cific that are not represented by only EOFs #1 and #2481

(Fig. 4c). Note that some anomalous features are ex-482

pected when using a composite formed from only three483

monthly fields.484

3.2 El Niño classification485

Given the unusualness of the three warm events, it is486

justified to make the following El Niño classification487

from a moisture divergence perspective:488

1. Extreme El Niño: represented by 1982/83, 1991/92489

and 1997/98 cases;490

2. Moderate El Niño: represented by 1986/87, 1994/95,491

2002/03 and 2009/10 cases.492

The 1982/83 and 1997/98 events have been found493

to be exceptional in various El Niño classification stud-494

ies, either from an SSTA zonal contrast point of view495

(Kug et al, 2009; Kao and Yu, 2009; Larkin and Har-496

rison, 2005a,b; Giese and Ray, 2011), or by the SSTA497

onset timing differences (Xu and Chan, 2001), or us-498

ing variables other than SST (Singh et al, 2011; Chiodi499

and Harrison, 2010). The results presented above sug-500

gest distinct features from a moisture divergence per-501

spective, and therefore differentiates El Niños on a new502

dimension.503

Unlike the unambiguity in the 1982/83 and 1997/98504

cases, the 1991/92 event falls into different groups in505

different studies: Kug et al (2009) classified it into the506

“Mix group” (mix of Cold Tongue and Warm Pool El507

Niño), and in Kao and Yu (2009) and Singh et al (2011)508

it was grouped into the EP category. Similarly in the509

case of moisture divergence responses it diverges from510

the linear transitions between La Niña and moderate511

El Niños, but not as much as the other two extreme512

events (Fig. 2).513

To examine the relationship between different El514

Niño responses to the SSTA zonal structure, we also515

created scatter plots of PC#2 against Nino 4, Nino 3516

and Nino 1+2 indices (not shown). The negative corre-517

lation among non-El Niño and moderate El Niño points518

becomes weaker as the index moves from west to east.519

This suggests better correspondence between the mod-520

erate ENSO cycle and central-western Pacific SST vari-521

ations, while extreme El Niños are more related to the522

east-west SSTA contrast. Moreover, Kao and Yu (2009)523

and Capotondi (2013) also found consistent east-west524

differences in the subsurface temperature structures as-525

sociated with the two types of El Niños. Zonal SST526

gradient, ocean heat content propagation and the ther-527

mocline feedback are key to explaining the observed528

differences in the atmospheric circulation, moisture di-529

vergence and subsequently precipitation responses.530

3.3 El Niño phase comparison531

To examine the El Niño differences in more detail, each532

event is broken into five evolutionary phases accord-533
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Fig. 4 Composites of moisture divergence anomaly fields (mm/day) for (a,b) La Niña group. (c,d) moderate El Niño group
and (e,f) extreme El Niño group, reconstructed from only EOF#1 and EOF#2 (a,c,e) compared with composites of the actual
fields during the same calendar months.

ing to their relative Nino 3.4 amplitudes, and the phase534

composites for extreme and moderate El Niños are shown535

in Fig. 5 and Fig. 6, respectively.536

“Pre-event” and “Post-event” are both 3 months in537

duration by definition. With the dual-peaked 1986/87538

case excluded, “Starting” phase has an average dura-539

tion of 2.9 months, “Peak” phase around 4.0 months540

and “Decaying” phase 1.7 months. Therefore an El Niño541

would typically experience fast SSTA changes in central542

Pacific within one season, then meander for a slightly543

longer time in its “Peak” phase, followed by an even544

faster drop in SSTA in the “Decaying” phase.545

Although their onset timings and overall durations546

differ, the “Peak” phases always occur during the Nov-547

Dec-Jan season (with the dual-peaked 1986/87 case be-548

ing exceptional, where the second peak started in July-549

Aug of 1987). This has been suggested to be the result550

of a phase-locking mechanism with the seasonal SST cy-551

cle (Xu and Chan, 2001; see also Fig. 4 in Wang, 2002),552

and such a feature would help eliminate the obstacles553

in inter-comparing the amplitude-based approach and554

calendar-month-based approach, and promises relation-555

ships being made with results from other studies.556

Notable differences between moisture divergence anoma-557

lies associated with the extreme and moderate groups558

start to emerge in the “Starting” phase (Fig. 5 b, 6b),559

reach a maximum in “Decaying” phase (Fig. 5d, 6d),560

and persist into the “Post-event” phase (Fig. 5 e, 6e).561
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Fig. 5 Phase composites of moisture divergence anomalies (mm/day) for moderate El Niños in (a) “Pre-event” phase, (b)
“Starting” phase, (c) “Peak” phase, and (e) “Post-event phase. Green hatch overlay denotes areas where the anomaly reverses
the sign of the climatology. Surface pressure composite fields are plotted as contour lines with a contour interval of 4hPa, and
850hPa horizontal wind anomalies (m/s) are plotted as vectors.

In addition to anomalies that are both larger and have562

a maximum convergence anomaly further east in the563

extreme El Niño composite, an important new finding564

is that the extension of the anomalous moisture con-565

vergence to the eastern Pacific moves on to the equa-566

tor during the peak and decaying phases (Fig. 6c,d),567

whereas it stays north of the equator throughout mod-568

erate El Niños (Fig. 5). Shoaling of the thermocline569

and the resultant influence on SST is very sensitive to570

the latitude of the anomalous moisture convergence and571

its associated wind stress. This latitudinal difference572

and the stronger westerly wind anomalies that accom-573

pany it may contribute to the extension of SSTA fur-574

ther into the eastern Pacific during extreme El Niños.575

The anomalous convergence also exists in balance with576

a more zonally symmetric Southern Hemisphere (SH)577

surface pressure field and stronger southerlies east of578

the dateline in the peak and decaying phases, displac-579

ing the SPCZ to a more zonal orientation (see Cai et al580

2012).581

In contrast, easterly anomalies occur over equatorial582

eastern Pacific during a moderate El Niño. Together583
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Fig. 6 Same as Fig. 5 but for extreme El Niños.

with the off-equator position of the moisture conver-584

gence anomaly, these act to confine surface warming585

to the central and western Pacific, and deep convection586

does not occur in the east (consistent with smaller OLR587

reductions, Chiodi and Harrison 2010).588

To the north of the equator, northwesterly anoma-589

lies are stronger in the extreme El Niños. Associated590

with a more compact NH Hadley cell, this dry advec-591

tion helps maintain the sharp meridional gradient in592

the moisture divergence field (Su and Neelin, 2002),593

which is strong enough to reverse the climatology (in-594

dicated by the green hatching in Fig. 6) in the “Decay-595

ing” phase. Moreover, such a peak-to-decaying phase596

differentiation is not confined to the moisture diver-597

gences observed here: the pattern correlations of SSTA598

from CT El Niños and WP El Niños in corresponding599

phases (calendar-month-based) were strongly positive600

during the peak phases of these two types of El Niños,601

but swiftly become negative one season later (Kug et al,602

2009). Similar results were also found for precipitation603

and pressure velocity fields (Kug et al, 2009).604

3.4 SOM analysis605

Although two EOFs capture much of the time-varying606

ENSO signal, their physical interpretation is hampered607
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by their lack of independence. Both the EOFs and the608

PC time-series are constrained, by definition, to be or-609

thogonal, but that does not mean that they are un-610

related. This can be seen in Fig. 3, where despite an611

overall zero correlation between PC#1 and PC#2, a612

non-linear relationship clearly exists between the two613

PC time-series. Furthermore, the pattern of EOF#2614

will have been constrained so that (a) it is orthogonal615

to EOF#1; and (b) it has the precise characteristics616

such that the projection of moisture divergence onto it617

during the few extreme El Niño months when there is618

a positive relationship with PC#1 exactly counterbal-619

ances the projections during all the other months when620

there is a negative relationship with PC#1, so that the621

overall correlation with PC#1 is zero. It is unlikely that622

EOF#2 will have been unaffected by these constraints,623

and some ENSO-related information would likely have624

been spread into higher order EOFs as a result.625

This provides the motivation for our SOM analy-626

sis of the same moisture divergence field, to explore its627

utility in easily capturing this non-linear behaviour. By628

quantifying the distances between a carefully chosen629

number of SOM neurons, an equivalent El Niño classi-630

fication is also achieved.631

Fig. 7 displays the five SOM neurons we obtained.632

The 1st neuron (Fig. 7a) shows a good agreement with633

the extreme El Niño group composite in Fig. 4e, both634

in terms of spatial patterns and the anomaly strengths.635

The 2nd (Fig. 7b) and 5th (Fig. 7e) neurons resemble636

the moderate El Niño group (Fig. 4c) and the La Niña637

group (Fig. 4a), respectively. Moving from neuron-1 to638

neuron-5, one observes a gradual transition of the mois-639

ture divergence field, therefore the remaining two neu-640

rons (neuron-3 and -4) could be expected to represent641

the neutral and weak La Niña ENSO states.642

This attribution is substantiated by the locations of643

each neuron in the space defined by EOFs #1 and #2,644

by least squares estimation of the PC#1 and PC#2645

coefficients that best replicate each neuron (shown by646

the red numbered squares in Fig. 3). The sequence of647

neurons follows the pathway defined by the two cor-648

relations. Fig. 8 shows the number of months in each649

sliding 13-month window allocated to each neuron. The650

allocation is based upon selecting the closest neuron, in651

a Euclidean distance sense, to each monthly field. The652

time-series of neuron-1 displays non-zero values only653

during the 1982/83 and 1997/98 El Niños, and for a654

shorter period in the 1991/92 case. The La Niña neuron655

(neuron-5) shows good correspondence with La Niña656

years (1983/84, 1988/89, 1999/2000/2001, 2007/08 and657

2010/11). Neuron-2 becomes active either during a mod-658

erate El Niño (1986/87, 1994/95, 2002/03 and 2009/10)659

or in the early phase of an extreme El Niño (1982/83660

Table 1 Inter-neuron distances and the means and standard
deviations of intra-group distances (mm/day). Distance be-
tween neuron i and j is denoted by the matrix element at
row i, column j. The mean and standard deviation of the
distances between all training samples and the neuron they
are allocated to are listed in the “Mean” and “SD” columns,
respectively. Column “Size” shows the size of each group (i.e.
number of months).

Neuron 1 2 3 4 5 Mean SD Size

1 0 97.6 112.8 105.2 120.6 84.7 7.5 15
2 0 46.1 62.3 81.2 71.4 11.0 50
3 0 31.8 47.6 60.7 7.4 157
4 0 32.4 58.7 7.9 111
5 0 62.6 7.7 75

Table 2 Correlation matrix between the 5 SOM neurons.
Correlation between neuron i and j is denoted by the matrix
element at row i and column j. Note that all correlations are
significant at 0.01 level except for the one denoted by asterix
(p = 0.33).

Neuron 1 2 3 4 5

1 1 0.34 -0.51 −0.03∗ -0.34
2 1 0.29 -0.70 -0.82
3 1 -0.61 -0.48
4 1 0.48
5 1

and 1997/98). The rest of the time period is mostly661

represented by neutral and weak La Niña neurons (-3662

and -4). Instead of the discrete and selection-exclusive663

sample counting method used here, one could also use a664

spatially weighted correlation time-series to reveal more665

subtle features in the temporal variations of each neu-666

ron.667

To validate the El Niño classifications, we computed668

inter-neuron distances (Table 1), defined as the Eu-669

clidean distance between every two neuron pair, and the670

mean and standard deviation of intra-group distances.671

Intra-group distances refer to the distances between all672

training samples and the neuron they are allocated to.673

The average and standard deviation of the intra-group674

distances serve as a measure of how closely the train-675

ing samples are clustering around the neuron (though676

note that the distances cannot simply be averaged or677

summed to represent distances across multiple groups678

because the distances will be based on different direc-679

tions in the high dimensional space).680

As is shown in Table 1, the extreme El Niño neu-681

ron (N1) shows increasingly larger distances from the682

moderate El Niño (97.6, N2), neutral (112.8, N3), weak683

La Niña (105.2, N4) and strong La Niña (120.6, N5)684

neurons. The separation (97.6) between extreme and685

moderate El Niño neurons is larger than the direct dis-686

tance from moderate El Niño to strong La Niña (81.2687

from N2 to N5). Table 2 shows the pattern correla-688
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Fig. 7 Self-Organizing Map (SOM) neurons on moisture divergence anomalies (mm/day); (a) to (e) are SOM neurons 1 to 5.
Note that (a) uses a different color scale than others.
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Fig. 8 Stacked time-series of SOM training sample counts, defined as the number of training samples allocated to each neuron
in each sliding 13-month time window.
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tions between the neurons, thus removing the effects of689

magnitudes in constituting the inter-neuron distances.690

The moderate El Niño neuron (N2) has a much bet-691

ter (but opposite) pattern match with La Niña neurons692

(N4 and N5), than with the extreme El Niño neuron693

(N1). Therefore the distinction bewteen extreme and694

moderate El Niños suggested by the SOM analysis is695

justified. On the other hand, differences between mod-696

erate El Niño and neutral (46.1 from N2 to N3) is much697

smaller, which is consistent with the relatively clustered698

data distribution in EOF #1, #2 space (Fig. 3).699

4 Conclusions and Discussion700

We have used EOF and SOM analyses to characterize701

the spatial patterns of inter-annual variability in the702

atmospheric moisture divergence over the tropical Pa-703

cific, a key component of the hydrological cycle that704

is linked directly to anomalies in the surface water bal-705

ance (E−P ). This variability is of course dominated by706

ENSO influences, with the moisture divergence shifting707

eastwards to follow the eastward shift of the warmest708

equatorial SST during moderate El Niños, accompa-709

nied by an equatorward rotation of the SPCZ. The710

moisture divergence anomalies associated with La Niña711

events have similar spatial patterns and magnitudes as712

moderate El Niños, but with opposite sign. Our anal-713

ysis finds, however, that the moisture divergence pat-714

terns during extreme El Niño events are not simply a715

strengthening of the moderate El Niño pattern but ex-716

hibit distinct characteristics: the tropical convergence717

centre moves much further east, the NH Hadley Cell718

is more compact and the SPCZ swings further towards719

the equator. These differences from moderate El Niño720

behaviour are particularly apparent from the peak of721

the event through the decaying phase, which is consis-722

tent with previous studies using other climate variables723

(Kug et al, 2009; Xu and Chan, 2001).724

This complex behaviour is evident in the EOF re-725

sults, with a clear non-linear relationship found between726

the leading two PC time-series even though they are727

constrained by EOF analysis to have no linear depen-728

dence. This motivated our use of the SOM technique,729

which is not constrained by the spatial and tempo-730

ral orthogonality requirements of EOF decomposition.731

The SOM analysis simplifies the non-linear relationship732

between two EOF patterns into a simple sequence of733

five patterns (SOM neurons) representing the range of734

states from La Niña to extreme El Niño. SOM neuron735

count time-series and inter-neuron distance/correlation736

statistics further validate the classification of extreme737

and moderate El Niños.738

Our findings have a number of implications. First, a739

single index such as Nino 3.4 is insufficient to measure740

the range of atmospheric moisture divergence responses741

to ENSO, consistent with the prior findings for other742

variables (Trenberth and Stepaniak, 2001; Trenberth743

and Smith, 2006; Chiodi and Harrison, 2010; Kao and744

Yu, 2009). An index is required to represent the SST745

zonal contrast that distinguishes different types of El746

Niño, and is likely to be the key factor that causes differ-747

ences in moisture divergence patterns. Our results sug-748

gest that alternatives to the conventional EOF method749

that are free from orthogonal constraints, such as SOM,750

deserve more attention when determining additional751

ENSO indices.752

Second, analyses of ENSO behaviour need to con-753

sider more ENSO classes than the basic La Niña, neu-754

tral and El Niño classification. Our analysis of atmo-755

spheric moisture divergence demonstrates that this dis-756

tinction is present in the atmospheric branch of the757

hydrological cycle too, providing a new perspective to758

the existing literature, and confirms the coupled ocean-759

atmosphere signature of this ENSO difference that is760

not necessarily implied by the SST-based analyses. The761

consistency with SST-based studies is not a coincidence.762

The sensitivity of ocean temperature and atmospheric763

convection is reversed between the central and east-764

ern Pacific: central Pacific SSTAs are much more effec-765

tive at inducing anomalous convection than their east-766

ern counterpart, due to the warmer background SSTs767

(Kug et al, 2009; Hoerling et al, 1997; Capotondi et al,768

2014), while subsurface temperature below the mixed769

layer has a stronger response to the thermocline changes770

over the eastern Pacific (Capotondi et al, 2014). There-771

fore once the warm SST anomalies develop over the772

eastern Pacific or get advected from the west in an ex-773

treme El Niño, possibly modulated by the seasonality of774

Kelvin wave propagation (Harrison and Schopf, 1984),775

or a proper timing of Australia and Asian monsoon776

(Xu and Chan, 2001), the induced thermocline feed-777

back could trigger large magnitudes of deep convection778

over the eastern Pacific, as manifested by OLR troughs779

(Chiodi and Harrison, 2010), and the moisture diver-780

gence changes presented in this study for extreme El781

Niño (e.g. the first SOM neuron, Fig. 7a).782

Similar concerns relate to the use of EOF analyses783

to classify ENSO behaviour – due to EOF orthogonality784

constraints, the pattern of variation covering La Niña to785

moderate El Niño events is mostly captured by EOF#1786

but also partly represented in EOF#2, which in turn787

partly represents the contrasting moisture divergence788

response to moderate and extreme El Niños. Classifica-789

tions need to consider this complexity and ideally use790

methods, such as the SOM presented here, that can rep-791
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resent them as separate patterns rather than the mixed792

form of the EOF analysis.793

Third, the observed non-linear response highlights794

the need for a coupled Hadley-Walker cell view in ex-795

plaining the different El Niño types. Although com-796

monly interpreted as a meridional circulation cell, the797

Hadley cell is not zonally symmetric, but rather a 3D798

helix circulation where the zonal asymmetry is modu-799

lated by the Walker circulation. In neutral ENSO con-800

dition, the warm pool low and the subtropical highs to801

the east form a triangular shape (Fig. 5a, see also Fig.1802

in Zhang and Song (2006)). In the mature phase of an803

extreme El Niño, strong eastern warming weakens or804

even reverses the Walker circulation, and compresses805

the equatorial-low-subtropical-high polarity (Fig. 6d);806

the pitch distance of the 3D Hadley-Walker helix circu-807

lation is reduced. As a result, the dry air intrusion from808

the subtropics becomes more effective, due to both a809

tighter pressure gradient and reduced opportunity for810

evaporation to replenish the moisture because of the811

shorter travel distance. The reduced trade winds and812

evaporation also play a role (Su and Neelin, 2002). As813

warming is more confined to the western-central Pa-814

cific in a moderate El Niño, the modulation of the815

Walker circulation is not strong enough to reverse the816

equatorial-low-subtropical-high polarity.817

Finally, we note limitations to this study. The lim-818

ited time span of ERA-I data allows only a small sam-819

ple of seven El Niño events to be included. Of the three820

extreme El Niños, two coincided with major volcanic821

eruptions (the March 1982 El Chichon and the June822

1991 Mt. Pinatubo), and we did not address the possi-823

ble role volcanic forcing may have on tropical moisture824

divergence. Moreover, Pacific exhibits distinct decadal825

(PDO, Pacific Decadal Oscillation) to inter-decadal (IPO,826

Inter-decadal Pacific Oscillation) variations, with largely827

consistent manifestations in SST, sea level pressure,828

wind stress, thermocline evolution, Hadley circulation829

and ENSO variability (Power et al, 1999; Mantua et al,830

1997; Folland and Renwick, 2002; Wang and Fiedler,831

2006; Quan et al, 2004; Trenberth and Stepaniak, 2001).832

The change in PDO/IPO phase around 1976/77 has833

been identified as a major “climate shift” (Trenberth,834

1990; Trenberth and Stepaniak, 2001), after which El835

Niño activity increased and the structure of the SPCZ836

changed (Folland and Renwick, 2002), possibly caused837

by the altered zonal SST structure (van der Wiel et al,838

2015). Therefore, the validity of the results presented839

here might be limited to positive PDO/IPO epochs.840

Further investigation with earlier datasets is needed to841

determine whether they hold in La Niña dominated pe-842

riods.843
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5 Appendix852

5.1 SOM algorithms853

The input moisture divergence anomaly data are orga-854

nized into an (n× p) matrix X:855

X =


x(1)

x(2)

...

x(n)

 (2)856

where x(i) = (x
(i)
1 , x

(i)
2 , x

(i)
3 , ..., x

(i)
p ) is the ith train-857

ing sample (at the ith time point).858

There are several initialization options, including859

using random vectors/training samples or using leading860

EOFs (Kohonen, 2001). Different initial neurons could861

converge to slightly different final states, but the same862

overall pattern emerges at the end of training. Here,863

neurons were initialized by taking the first five sam-864

ples from the training set X. Several SOM runs initial-865

ized with randomly chosen training samples were also866

performed, yielding very similar results. Therefore only867

results from the “first-5” initialized SOM are used here.868

The inital neurons are adjusted iteratively to obtain869

the final neuron locations. There are two basic meth-870

ods that neuron adjustments could use: incremental (or871

stochastic) adjustment and batch adjustment (Koho-872

nen, 2001). In the incremental approach, neurons are873

adjusted using each training sample individually and874

in sequence. This usually leads to stochastic behaviour875

in the convergence path and requires large numbers of876

iterations to reach convergence, but is more suitable for877

real-time processing when a complete training set is not878

available beforehand. The batch mode, used here, uses879

all training samples together to calculate each iteration880

of neuron adjustment.881

The training session consists of 300 iterations of882

neuron updates. In each iteration, each training sam-883

ple is allocated to its closest neuron (in a Euclidean884

sense), which is called the “winner” neuron for that885

data sample. The training samples allocated to a par-886

ticular “winner” neuron provide information on how to887

adjust that neuron, effectively moving its location in888

data space towards the weighted mean of the training889

samples allocated to it. However, these training samples890

http://apps.ecmwf.int/datasets/data/interim_full_daily/
http://apps.ecmwf.int/datasets/data/interim_full_daily/
http://apps.ecmwf.int/datasets/data/interim_full_daily/
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are also used to adjust the neurons that are neighbours891

of the “winner”, but subject to a weighting that de-892

pends on the topological distance between a neighbour893

and the “winner” neuron. This weighting is via a neigh-894

bourhood function, hij , between neurons i and j which895

ensures the topological relationships between neurons896

in the SOM. The location of each neuron i is therefore897

updated according to:898

mi :=

∑
j

hijx̄jnj∑
j

hijnj
(3)899

where the mean (x̄j) of all training samples allo-900

cated to a neighboring neuron mj is weighted by the901

corresponding number (nj) of training samples, and the902

neighborhood function between neurons i and j. This903

overall mean is then updated to mi.904

A Gaussian is a common choice for the neighbour-905

hood function, and is adopted here:906

hij(t) =

{
exp(−‖ri−rj‖

2

2σ2(t) ) σ > 0

1 σ = 0
(4)907

where ri and rj are the location vectors of the “win-908

ner” neuron i and the neighboring neuron j, respec-909

tively. A large kernel size, σ(t), is necessary in the early910

stages of the training session for the global order to take911

shape, but this is then decreased monotonically during912

each iteration, t, of the training session:913

σ(t) = [(σ0 + 1) ∗ (1− t

T
)] (5)914

where [] is the floor function, and T is the total915

number of iterations for the training session, 300 in this916

case.917

5.2 El Niño phase separation918

The phase definitions for El Niños identified using the919

Nino 3.4 time series are shown in Fig. 9. The fast changes920

to Nino 3.4 and to the overlying atmosphere mean that921

the 70 % criterion used to define the times of transi-922

tion between the “Starting”, “Peak”, and “Decaying”923

phases do not generally occur at a calendar monthly924

mean value. Instead, linear interpolation between monthly925

mean values was used to locate the transition time926

points:927 
f01 = T2−Tt

T2−T0

f12 = Tt−T0

T2−T0

tt = f01 · t0 + f12 · t2
(6)928

where T is the normalized Nino 3.4 index; t is the929

time point represented by the number of days since a930

given reference time; f01 and f12 are the linear interpre-931

tation factors; subscripts 0 and 2 denote the two ends932

of the interpolation domain, and subscript t represents933

the target time/data point. Variables (e.g. moisture di-934

vergence) used to create composites for each phase were935

then interpolated to time point t using the same inter-936

polation factors (f01 and f12).937
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