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Abstract

Approximately 20% of patients with acute myeloid leukaemia (AML) have a mutation
in FMS-like-tyrosine-kinase-3 (FLT3). FLT3 is a trans-membrane receptor with a
tyrosine kinase domain which, when activated, initiates a cascade of phosphorylated
proteins including the SRC family of kinases. Recently our group and others have
shown that pharmacologic inhibition and genetic knockdown of Bruton’s tyrosine
kinase (BTK) blocks AML blast proliferation, leukaemic cell adhesion to bone marrow
stromal cells as well as migration of AML blasts. The anti-proliferative effects of BTK
inhibition in human AML are mediated via inhibition of downstream NF-kB pro-
survival signalling however the upstream drivers of BTK activation in human AML
have yet to be fully characterised. Here we place the FLT3-ITD upstream of BTK in
AML and show that the BTK inhibitor ibrutinib inhibits the survival and proliferation of
FLT3-ITD primary AML blasts and AML cell lines. Furthermore ibrutinib inhibits the
activation of downstream kinases including MAPK, AKT and STATS5. In addition we
show that BTK RNAI inhibits proliferation of FLT3-ITD AML cells. Finally we report
that ibrutinib reverses the cyto-protective role of BMSC on FLT3-ITD AML survival.
These results argue for the evaluation of ibrutinib in patients with FLT3-ITD mutated
AML.



Introduction

Acute myeloid leukaemia (AML) is primarily a disease of the elderly with a median
age at diagnosis of 72 years. Many elderly patients tolerate current intensive
cytotoxic chemotherapy regimens poorly and therefore treating the older less fit
patient with AML presently remains challenging . Accordingly despite considerable
improvements in the outcomes for younger fitter patients with AML over the past 50
years we have seen little improvement in survival for the majority group of older
patients with the disease. It is envisaged that improvements in survival for all patients
with AML will eventually come from targeted therapies that evolve from an improved
understanding of the biology of the disease.

Drug targeting of pro-tumoral tyrosine kinases has resulted in considerable progress
in outcomes for patients with chronic myeloid leukaemia 2, chronic lymphocytic
leukaemia and mantle cell lymphoma 3#. Furthermore tyrosine kinase inhibition in
these diseases is associated with a favourable side effect profile, which has
permitted successful use in both younger and older patients alike. A number of
receptor and non-receptor tyrosine kinases have been identified as functionally
important in the biology of acute myeloid leukaemia (AML) ® &7, Protein Kinase B
(AKT), phosphatidylinositol 3-kinase isoform pl10delta (P13-K), Signal Transducer
and Activator of transcription 5 (STAT5), Mitogen-Activated Protein Kinase (MAPK)
and Bruton’s tyrosine Kinase (BTK), have all been shown to be part of pathways that

regulate AML survival 811,

Various receptor tyrosine kinase mutations have been identified in AML patients?©,
20% of patients with AML are affected by internal tandem duplication (ITD) of the
juxtamembrane region of the FMS-like tyrosine kinase-3 receptor (FLT3) 1213 14, The
activating FLT3-ITD mutations in AML regulate downstream pro-leukaemic pathways
15 making FLT3 an attractive drugable target in this disease 16. However to date
drugs targeting FLT3 have demonstrated limited clinical efficacy suggesting that
FLT3 inhibitors alone are unlikely to be effective 7, and that other downstream

targets in this pathway may be more relevant.



Bruton’s tyrosine kinase (BTK) is a non-receptor tyrosine kinase which is functionally
important in a spectrum of benign and malignant haematopoietic cells of both the
lymphoid and myeloid compartments!®?2, Recently the oral BTK inhibitor ibrutinib
has been shown to inhibit AML blast proliferation, migration and leukaemic cell
adhesion to bone marrow stromal cells in approximately 80% of primary samples
tested, leading to the initiation of early phase clinical trials of ibrutinib in AML ° 23,
The anti-proliferative effects of BTK inhibition in human AML are mediated via
inhibition of downstream AKT, MAPK, ERK and Nuclear Factor-KappaB (NF-kB) pro-
survival signalling however the upstream drivers of BTK activation in human AML

have yet to be characterised.

In this study we place BTK activation downstream of mutated FLT3 in primary AML
cells and furthermore show how inhibition of BTK (by ibrutinib and RNA interference)
targets FLT3 mutated AML cells by inhibiting cell survival. We also report how
ibrutinib synergises in combination with daunorubicin, and how ibrutinib functions in
part by reducing the cyto-protection provided to FLT3-ITD AML cells by bone marrow
stromal cells. Here we provide a biologic rationale for the targeting of BTK in FLT3
mutated AML.



Materials and methods

Materials

Anti-phosphorylated and total FLT3, AKT, BTK, STAT5 and MAPK antibodies were
purchased from Cell Signalling Technology (Cambridge, MA). Anti-CD34-PE, anti-
CD90-FITC, anti-CD73-PE, anti-CD105-APC antibodies were purchased from
Miltenyi Biotec (Auburn, CA). lbrutinib was obtained from Selleck Chemicals. All
other reagents were obtained from Sigma-Aldrich (St Louis, MO), unless indicated.

Methods

Cell lines and primary cells.

The AML-derived cell lines were obtained from the European Collection of Cell
Cultures and DMSZ where they are authenticated by DNA-fingerprinting. In the
laboratory they are used at low passage number for a maximum of 6 months post-
resuscitation, testing regularly for Mycoplasma infection. AML blasts were obtained
from patients’ bone marrow or blood following informed consent and under approval
from the UK National Research Ethics Service (LRECref07/H0310/146). Moreover,
all aspects of the study were carried out in accordance with the approved guidelines.
For primary cell isolation, heparinized blood was collected from patients and human
peripheral blood mononuclear cells (PBMCs) isolated by Histopaque (Sigma-Aldrich,
UK) density gradient centrifugation. AML samples that were less than 80% blasts
were purified using the CD34 positive selection Kit. FLT3-ITD analysis was
performed by the haemato-oncology diagnostic service (Cambridge University
hospitals NHS trust, Cambridge) as previously described and 5 patients with FLT3-
ITD and 6 with no FLT3 mutation were selected for this study 1424,

Human bone marrow stromal cells (BMSC) were isolated from bone marrow
aspirates of AML patients. Mononuclear cells were collected by gradient
centrifugation and plated in growth medium containing RPMI and 20% FBS and 1%
I-glut. The non-adherent cells were removed after 2 days. When 60%-80% confluent,
adherent cells were trypsinised and expanded for 3-5 weeks. BMSCs were checked
for positive expression of CD105, CD73, and CD90 and the lack of expression of
CD45 and CD34 by flow cytometry as previously described °.



Western immunoblotting.

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blot
analyses were performed as described previously. Briefly, whole cell lysates were
extracted and sodium dodecyl sulfate-polyacrylamide gel electrophoresis separation
performed 2°. Protein was transferred to nitrocellulose and Western blot analysis

performed with the indicated antisera according to their manufacturer’s guidelines.

Survival and apoptosis assays

Cells were treated with different doses of ibrutinib then viable numbers measured
with CellTiter-Glo (Promega, Southampton, UK). Flow cytometry for measuring
apoptosis was performed on the Accuri C6 flow cytometer (BD Biosciences, Oxford,
UK). Samples were collected and stained with annexin- V and propidium lodide (PI)
(Abcam), followed by detection. For the AML-BMSC co-cultures AML cell viability
was measured using flow cytometry. After exclusion of BMSC by electronic gating
using negative for CD45 expression the extent of AML cells apoptosis was measured

using annexin-V.

Transfections

AML cell line transfections were carried out with 1x10° cells using the Amaxa
Nucleofactor Kit Il. Control siRNA and BTK siRNA 1-3 were purchased from
Invitrogen were transfected in at a concentration of 50nm. For all gene expression
experiments the cells were incubated for 24 hours post transfection before RNA
extraction. For the Western blot and cell viability assays AML cell were incubated for

48 hours post transfection.

RNA extraction and real time PCR (RT-PCR)

Total RNA was extracted from 1 x 10° cells by use of the Nucleic acid PrepStation
from Applied Biosystems, according to the manufacturer's instructions. Reverse
transcription was performed using the RNA PCR core kit (Applied Biosystems). Real-
time PCR primers for glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and
BTK were purchased from Invitrogen. Relative quantitative real-time PCR used

6



SYBR green technology (Roche) on cDNA generated from the reverse transcription
of purified RNA. After pre-amplification (95°C for 2 minutes), the PCRs were
amplified for 45 cycles (95°C for 15 seconds and 60°C for 10 seconds and 72°C for
10 seconds) on a 384-well LightCycler 480 (Roche). Each mRNA expression was

normalized against GAPDH mRNA expression via use of the standard curve method.

Statistical analyses

Mann-Whitney test was performed to assess statistical significance from treated
sample compared to controls. Results with P < 0.05 were considered statistically
significant (*). Results represent the median and in some instances mean + SD of 3
independent experiments. For Western blotting, data are representative images of 3

independent experiments.



Results

Ibrutinib inhibits survival of FLT3-ITD positive AML blasts and AML cell lines.
We have previously shown that ibrutinib inhibits factor induced AML blast
proliferation and downstream AKT and MAPK signalling pathways °. Here we looked
to characterise whether FLT3-ITD mutated primary AML and AML cell lines, which
accounts for approximately 20% of all AML'4, responds to BTK inhibition by ibrutinib
treatment. First we identified 5 AML patients with FLT3-ITD mutation and 6 AML
patients with no FLT3 mutation. Next we treated the primary AML blast with
increasing concentrations of ibrutinib for 48 hours followed by analysis of cell
survival. AML with FLT3-ITD mutations show increased sensitivity to increasing
doses of ibrutinib compared to non-FLT3 mutated AML (Figure 1A), Similar
experiments in AML cell lines shows that MV4-11 (FLT3-ITD), but not OCI-AML3 or
THP-1 (non- FLT3-ITD), have reduced survival in response to increasing
concentrations of ibrutinib up to a maximum of 5000nM (Figure 1B). Finally we used
colony forming cell assay to determine the effect to ibrutinib on FLT3-ITD primary
AML colony formation compared to normal CD34+ HPC and non-FLT3 mutated AML
blasts. Figure 1C shows that AML with FLT3-ITD showed increased sensitivity to
ibrutinib compared to normal CD34+ HPC and non-FLT3 mutated AML.
Supplementary figure 1 shows that our positive control AC220 can also inhibit
proliferation in MV4-11 and FLT-ITD primary AML. Moreover, AC220 in combination
with ibrutinib showed no additive inhibitory effect on MV4-11 suggesting that these
inhibitors are working through the same pathway (supplementary figure 2). To
confirm the expression of pBTK in human FLT3-ITD AML compared to AML blasts
without mutation we examined pBTK and total BTK in primary AML and AML cell
lines. Figure 1D shows that pBTK is highly expressed in FLT3-ITD AML compared
to no FLT3-ITD mutation. Furthermore, analysis of pBTK in AML cell lines confirms
that FLT3-ITD mutated cells have high pBTK expression (Figure 1E). However we
did observe expression of pBTK in non-FLT3 mutated AML cell lines. Together these
results suggest that ibrutinib is particularly effective at inhibiting FLT3-ITD mutated

AML cell survival.

Ibrutinib inhibits downstream signalling in FLT3-ITD AML



To determine if ibrutinib inhibits downstream signalling in FLT3-ITD mutated primary
AML blasts, we compared AML with FLT3-ITD to AML without FLT3-ITD in response
to increasing concentrations of ibrutinib for 3 h. Figure 2A shows that in primary AML
associated with FLT3-ITD mutations showed decreased expression of pBTK in
response to ibrutinib when compared to total BTK expression. Figure 2B shows that
ibrutinib inhibits downstream phosphorylated proteins, including AKT and MAPK in
primary AML cells with FLT-ITD. Comparing AML cell lines, MV4-11 (FLT3-ITD) but
not OCI-AML3 (non-FLT3-1TD) show reduced activity of downstream phosphorylated
AKT, MAPK and STATS5 in response to ibrutinib treatment (Figure 2C). Moreover, to
determine if ibrutinib can target FLT3 directly we examined the effect of ibrutinib on
FLT3 phosphorylation and figure 2C shows that ibrutinib does not target FLT3
directly. Supplementary Figure 3 shows that AC220 can also inhibit pPSTAT5 in MV4-
11 cells. Together, these results confirm that ibrutinib inhibits FLT3 mutation

associated downstream signalling in FLT3-ITD AML.

Ibrutinib enhances daunorubicin induced apoptosis

We next examined the effect of ibrutinib in combination with front line AML
chemotherapy daunorubicin by using increasing concentrations of daunorubicin,
alone and then in combination with Ibrutinib at 500nM. Figure 3A and B shows that
ibrutinib enhances daunorubicin induced apoptosis in FLT3-ITD AML cell line but not
non-FLT3-ITD mutated cell lines. From this observation we hypothesise that in FLT3-
ITD AML ibrutinib may permit a dose reduction in daunorubicin treatment while

maintaining anti-leukaemic cytotoxicity.

We and others have shown that BMSC provide a level of protection for AML blast
cells from chemotherapy treatments®142326 therefore we assessed the efficacy of
ibrutinib at overcoming this stroma associated cyto-protection in combination with
daunorubicin treatment. Primary AML blasts (FLT3-ITD) when co-cultured on BMSC
show increased apoptotic/annexin V positive cells when treated with daunorubicin in

combination with ibrutinib (Figure 3C).

BTK targeted siRNA inhibits survival of MV4-11 but not OCI-AML3
It has been reported that ibrutinib has other kinase targets?’. Therefore to establish
an anti-BTK role for ibrutinib in FLT3-ITD AML we evaluated the survival of AML cell
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lines using BTK KD siRNA experiments. Figure 4A and B show the BTK mRNA and
protein expression of AML cell lines, after transfection with sSiRNA targeted to
different parts of the BTK gene. It shows that BTK siRNA3 and 4 are the most
effective at BTK gene knockdown in both MV4-11 (FLT3-ITD) cells and OCI-AML3
(non-FLT3-ITD) mutated cells. Figure 4C shows that BTK siRNA4 can inhibit
downstream pAKT in MV4-11 but not OCI-AML3. BTK-KD with BTK siRNA3 and 4
compared to control siRNA results in decreased cell survival in MV4-11 (FLT3-ITD)
but not in OCI-AML3 (non-FLT3-ITD) mutated cells (Figure 4D). Finally, in results
similar to those observed with ibrutinib, BTK-KD with siRNA3 enhanced daunorubicin
induced cell death (Figure 4E). These data confirm that BTK plays a key role in the
survival of MV4-11 FLT3-ITD mutated cells.
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Discussion

The FLT3-ITD mutation is present in circa 20% of patients with AML*?4 and
furthermore its presence in standard risk cytogenetic AML confers an inferior
prognosis in response to treatment with intensive cytotoxic chemotherapy 282°, FLT3
is a member of the platelet-derived growth factor receptor (PDGF-R) subfamily of
receptor tyrosine kinases and is functionally important in haematopoietic progenitor
cells®. Furthermore the FLT3-ITD represents a driver mutation in human AML 32,
Taken together the FLT3-ITD mutation and its downstream signalling represent a

valid therapeutic target.

To date a number of FLT3 inhibitors have been assessed in vitro and in vivo. The
FLT3 inhibitor AC220 (quizartinib) has shown good efficacy in in vitro studies 2. In
patients with relapsed AML initial response rates appear high (circa 50%) in keeping
with the biologic importance of this pathway. However results of AC220 in relapsed
AML have thus far failed to demonstrate significant long-term disease free survival in
the absence of consolidative allogeneic transplant. CEP701 (Lestaurhas) has been
assessed in clinical studies of relapsed AML but likewise clinical responses when
seen appeared short lived and failed to result in long-term disease free survival 333,
Similarly PKC412 (Midostaurin) exhibits clinical activity in patients with FLT3
mutation but despite significant numbers of patients with a reducing blast count the
drug has no patients which have achieved complete response 3¢. The limited clinical
success of FLT3 inhibition to date has been attributed to a failure to achieve
sufficient FLT3 inhibition in patients. This may be occurring through a number of
mechanisms including increased plasma clearance of the drug and the presence of
point mutations in the kinase domain or ATP binding pocket of FLT3, which confer
drug resistance !’. More potent FLT3 inhibitors are now in development and under
evaluation for the treatment of AML to see if these results can be improved upon.
However an alternative strategy would be to target other kinases downstream of the
FLT3 mutations.

BTK is a non-receptor tyrosine kinase that belongs to the Tec kinase family and
plays an important role in both benign and malignant cells of the haematopoietic

system °37-40, BTK is an essential mediator of B-cell receptor (BCR) signalling and is
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therefore fundamental to the development of normal B-cells 442, However other
receptors including Toll-like receptors (TLRs) also appear to signal through BTK in
some non-lymphoid cells 3. In the BCR signalling pathway BTK is positioned early
on along with three other non-receptor tyrosine kinases PI3-K, LYN and SYK 44, LYN
and SYK have been shown to activate BTK in B cells 446, Furthermore LYN and
SYK have also been identified as important in AML survival signalling >4 and BTK
activation via phosphorylation is evident in the blasts from the majority of patients
with AML °. In addition, it is becoming apparent that ibrutinib inhibits kinases other
than BTK including mutant epidermal growth factor receptor and interleukin-2-
inducible T-cell kinase 48 4°. However, we and others have shown that BTK KD using
siRNA or shRNA mimics the ibrutinib effects in AML °. Therefore, with the advent of
ibrutinib, BTK is a drugable target in AML however the upstream drivers of BTK

activation in AML are presently not well characterised.

In this study we demonstrate BTK is activated downstream of the FLT3-ITD in AML
and that BTK inhibition targets FLT3-ITD induced survival and proliferation pathways
including AKT, STAT5 and MAPK. In addition when we used the FLT3 inhibitor
AC220 in combination with ibrutinib there was no additive effect on AML survival,
thus supporting the hypothesis that these two inhibitors are working on the same
survival pathway/s in FLT3-ITD AML. Furthermore we have shown that treatment of
FLT3-ITD AML with ibrutinib or BTK knockdown in combination with daunorubicin
increases tumour apoptosis over daunorubicin alone. We show in vitro that ibrutinib
permits dose reduction of daunorubicin to achieve a given rate of cytotoxicity. As
daunorubicin toxicity presents a clinical challenge in the treatment of older less fit
patients with AML ibrutinib may allow protocols in the future to dose reduce
daunorubicin while maintaining clinical efficacy but improving tolerability. This may
result in effective but reduced dose daunorubicin containing treatment regimens
being offered with curative intent to patients not currently deemed fit enough for a

standard daunorubicin/ cytarabine intensive schedule.

Resistance to FLT3 inhibitors can occur through mutations at the drug binding site in
the target molecule 3%, Resistance to ibrutinib has been observed in a small
number of patients with CLL through acquired mutations in the BTK drug binding site

and gain of function mutations in the down-stream signalling molecule PLCgamma2

12



52 If ibrutinib shows clinical efficacy in trials in AML it seems likely that similar
resistance mechanisms will be seen in a subset of the patients treated. Clinical
studies will ultimately determine the efficacy and duration of response of ibrutinib
containing regimens in AML and only thereafter will they establish the frequency of

drug resistance and its mechanisms.
In summary this study links a common genetic mutation found in AML to a specific

clinically available downstream kinase (BTK) inhibitor, ibrutinib. Furthermore we

have identified the potential efficacy of combination therapy with daunorubicin
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Legends
Figure 1. Ibrutinib inhibits survival of FLT3-ITD positive AML. Primary AML

blasts from 5 patients with FLT3-ITD and 6 patients with non FLT3-ITD were treated
with increasing doses of ibrutinib for 1 hour and then washed and cultured for 72
hours and then assessed by CellTiterGlo. Data were normalised to DMSO treated
cells. Line indicates median and *indicates statistical significance of P < 0.05 using
the Mann-Whitney test comparing ibrutinib treated samples compared to control. (B)
AML cell lines which were FLT3-ITD (MV4-11) and non FLT3-ITD (OCI-AML3 and
THP-1) were treated with increasing doses of ibrutinib for 1 hour and then washed
and cultured for 72 hours and then assessed by CellTiterGlo. *indicates statistical
significance using the Mann-Whitney test comparing ibrutinib treated samples
compared to control. (C) AML blasts and CD34+ control cells were treated with O,
500 and 1000 nM of ibrutinib and colony forming assays were performed to show the
number of colonies In all panels line indicates the median and * indicates statistical
significance of P < 0.05 between ibrutinib treated groups and control using the Mann-
Whitney test. (D) Untreated primary AML blasts which were FLT3-ITD and non
FLT3-ITD and (E) untreated AML cell lines were examined for the expression of
pBTK, total BTK and B-actin. The presented blots were derived from multiple gels.
The membranes were cut based on molecular weights and probed with the antibody
of interest

Figure 2. Ibrutinib inhibits downstream FLT3 signalling. (A) Primary AML blasts
which were FLT3-ITD and non FLT3-ITD were treated with increasing doses of
ibrutinib for 3 hour and then whole cell extracts were prepared and Western blot
analysis was conducted for pBTK, BTK. and (B) pAKT, AKT, pMAPK and MAPK
protein levels. (C) AML cell lines which were FLT3-ITD (MV4-11) and non FLT3-ITD
(OCI-AML3) were treated with 500nM of ibrutinib for 3 hour and then whole cell
extracts were prepared and Western blot analysis was conducted for pFLT3, FLT3,
pPAKT, AKT, pMAPK, MAPK, pSTAT and STAT protein levels. The presented blots
were derived from multiple gels. The membranes were cut based on molecular

weights and probed with the antibody of interest.
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Figure 3. Ibrutinib enhances daunorubicin induced apoptosis. (A) FLT3-ITD
(MV4-11) and non FLT3-ITD (OCI-AML3) cells were treated with 500nM of ibrutinib
for 1 hour and washed and daunorubicin was added in increasing doses and then
cultured for 48 hours and then assessed by CellTiterGlo. (B) FLT3-ITD (MV4-11) and
non FLT3-ITD (OCI-AML3) cells were treated with 500nM of ibrutinib for 1 hour and
washed and daunorubicin added in increasing doses and then cultured for 24 hours
and then assessed by annexin V and PI staining. (C) Primary AML (FLT3-ITD) were
pre-treated with ibrutinib for 1 h and then treated 50nM daunorubicin and then
cultured for 48 hours on BMSC and then assessed by CD45 and annexin V staining.
Cells expressed as percent Annexin V positive. *indicates P< 0.05 Mann Whitney
test comparing the ibrutinib plus daunorubicin to daunorubicin alone treated samples

Figure 4. BTK targeted siRNA inhibits survival of MV4-11 but not OCI-AML3.
(A) FLT3-ITD (MV4-11) and non FLT3-ITD (OCI-AML3) AML cell lines were
transfected with control siRNA and 4 BTK siRNA and then cultured for 24 h before
RNA extraction analysis for target gene expression using QRT-PCR. (B) Western
blot analysis for total BTK in response to transfected control, BTK3 and BTK4 siRNA
and (C) for pAKT and total AKT in response to transfected control and BTK4 siRNA.
The presented blots were derived from multiple gels. The membranes were cut
based on molecular weights and probed with the antibody of interest. (D) FLT3-ITD
(MV4-11) and non FLT3-ITD (OCI-AML3) cells were transfected with control siRNA
and BTK siRNA3 and 4 and then cultured for 48 h and then assessed by
CellTiterGlo. (E) FLT3-ITD (MV4-11) and non FLT3-ITD (OCI-AML3) cells were
transfected with control siRNA and BTK siRNA3 and then cultured for 24 h and then
daunorubicin was added in increasing doses and then cultured for a further 48 hours
and then assessed by CellTiterGlo. *Indicates P< 0.05 Mann Whitney test comparing

the BTK siRNA transfected samples to control sSiRNA samples.
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