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Abstract  

The global atmospheric iron (Fe) cycle is parameterized in the global 3-D chemical 

transport model TM4-ECPL to simulate the proton- and the organic ligand-promoted 

mineral Fe dissolution as well as the aqueous-phase photochemical reactions between the 
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oxidative states of Fe (III/II). Primary emissions of total (TFe) and dissolved (DFe) Fe 

associated with dust and combustion processes are also taken into account, with TFe 

mineral emissions calculated to amount to ~35 Tg-Fe yr
-1

 and TFe emissions from 

combustion sources to ~2 Tg-Fe yr
-1

. The model reasonably simulates the available Fe 

observations, supporting the reliability of the results of this study. Proton- and organic 

ligand-promoted Fe-dissolution in present-day TM4-ECPL simulations is calculated to be 

~0.175 Tg-Fe yr
-1

,
 
approximately half of the calculated total primary DFe emissions from 

mineral and combustion sources in the model (~0.322 Tg-Fe yr
-1

). The atmospheric 

burden of DFe is calculated to be ~0.024 Tg-Fe. DFe deposition presents strong spatial 

and temporal variability with an annual flux of ~0.496 Tg-Fe yr
-1

, from which about 40% 

(~0.191 Tg-Fe yr
-1

)
 
are deposited over the ocean. The impact of air-quality on Fe 

deposition is studied by performing sensitivity simulations using preindustrial (year 

1850), present (year 2008) and future (year 2100) emission scenarios. These simulations 

indicate that an about 3 times increase in Fe-dissolution may have occurred in the past 

150 years due to increasing anthropogenic emissions and thus atmospheric acidity. Air-

quality regulations of anthropogenic emissions are projected to decrease atmospheric 

acidity in the near future reducing to about half the dust-Fe dissolution relative to the 

present-day. The organic ligand contribution to Fe dissolution shows an inverse 

relationship to the atmospheric acidity, thus its importance has decreased since the 

preindustrial period but is projected to increase in the future. The calculated changes also 

show that the atmospheric DFe supply to the globe has more than doubled since the 

preindustrial period due to 8-fold increases in the primary non-dust emissions and about 

3-fold increase in the dust-Fe dissolution flux. However, in the future the DFe deposition 

flux is expected to decrease (by about 25%) due to reductions in the primary non-dust 

emissions (about 15%) and in the dust-Fe dissolution flux (about 55%). Over the global 

ocean in present atmospheric deposition of DFe is calculated to be about 3 times higher 

than for 1850 emissions and about 30% decrease is projected for 2100 emissions. These 

changes are expected to impact most on the High Nutrient Low Chlorophyll oceanic 

regions. 
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1 Introduction 

Atmospheric deposition of trace constituents, both of natural and anthropogenic origin, 

can act as a nutrient source into the open ocean and therefore can affect marine ecosystem 

functioning and subsequently the exchanges of CO2 between the atmosphere and the 

global ocean (Duce et al., 2008). In surface waters, the phytoplankton photosynthetic 

activity uses CO2 and nutrients to produce biomass and is responsible for nearly half of 

annual CO2 exchange with the deep-ocean that contains ~85% of Earth’s mobile carbon 

(Shao et al., 2011). This is the so-called ‘biological pump’, where the deeper the carbon 

sinks, the longer it will be removed from the atmosphere (Falkowski et al., 2000). The net 

result of the biological pump is a continual atmospheric carbon transfer to the deep ocean. 

Aeolian dust deposition, calculated to be ~1257 Tg yr
-1

 (median of 15 global models by 

Huneeus et al., 2011), contains ~3.5% iron (Fe) on average, and it is the most significant 

external supply of Fe (as a micronutrient) in surface waters (Taylor and McLennan, 1985; 

Mahowald et al., 2005; 2009). Fe scarcity limits phytoplankton productivity in High-

Nutrient-Low-Chlorophyll (HNLC) regions (i.e. the Southern Ocean, the Eastern 

equatorial and the Subarctic Pacific; Boyd et al., 2005) and thus primary productivity in 

large portions of the global ocean, affecting significantly the biological carbon export at 

global scale (Maher et al., 2010). The correlation of Fe supply and atmospheric CO2 

trapping to the ocean, forms the so-called “Iron Hypothesis” (Martin and Fitzwater, 1988) 

that initiated significant scientific debate on the potential use of Fe to fertilize the global 

ocean (i.e. geo-engineering) and consequently increase CO2 storage in the ocean (e.g. 

Moore and Doney, 2007). 

The bioavailable form of Fe that is acquired by phytoplankton is associated with the 

soluble fraction of Fe, which experimentally is measured as the fraction filterable through 

0.2-0.45 μm filters (Kraemer, 2004). Aerosols are emitted or formed, transported and 

deliquesce in the atmosphere (Raes et al., 2000). Processes that occur in the water 

associated with aerosols can change aerosol properties. There is experimental evidence 

that atmospheric acidity is increasing dust solubility (e.g. Nenes et al., 2011) and that 

present-day atmospheric acidity is mainly driven by air pollution (Seinfeld and Pandis, 
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1998 and references therein). Although the fraction of soluble Fe in soil is low (~0.1%; 

Mahowald et al., 2009 and references therein); atmospheric chemical processes are 

responsible for Fe conversion to more soluble forms (Mahowald et al., 2009), and thus 

bioavailable form for the ocean biota. Dust coating by acidic–soluble materials (e.g. 

nitrates, sulphates) alters also the global pattern of Fe deposition (Fan et al., 2004).  

Significant scientific effort has been made to understand the impact of anthropogenically 

driven atmospheric acidity on dust and parameterise it in global models. To study the 

aforementioned changes in dust-Fe solubility driven by human activities, atmospheric 

models need to account for both i) the composition of the Fe source and ii) the 

atmospheric aging of dust. However, the atmospheric chemical aging of dust with respect 

to dissolved/bioavailable Fe (hereafter DFe) production is parameterized in chemistry-

transport models (CTMs) in different ways. In the modelling study of Meskhidze et al. 

(2005) hematite (Fe2O3) was considered as the only Fe-containing mineral in dust (5% 

mass fraction of hematite in dust) and the proton-promoted Fe dissolution was described 

using the empirical parameterisation developed by Lasaga et al. (1994). That study 

simulated the production of DFe in the ferric oxidation state (Fe(III)) but did not account 

for any photochemical cycling between Fe(III) and Fe(II). Luo et al. (2008) using the 

same approximation considered the formation of DFe in the ferrous form (Fe(II)) during 

Fe-containing minerals dissolution. In support of the proton-promoted Fe dissolution 

hypothesis, a positive correlation of Fe solubility (hereafter SFe; SFe = 100×DFe/TFe) 

and sulphur emissions has been observed for acidic atmospheric samples collected at 

urban sites (Oakes et al., 2012). The simulations by Solmon et al. (2009) suggest that 

doubling of sulphur emissions can increase the proton-promoted dissolution and 

deposition of dissolved Fe to the remote Pacific Ocean by ~13%. 

Fe dissolution from minerals under acidic conditions occurs on different timescales; from 

hours to weeks depending on the size and the type of the Fe-containing mineral (Shi et 

al., 2011a). However, the buffering capacity of minerals like CaCO3 and MgCO3 which 

reside in coarse dust particles may regulate mineral-Fe proton-promoted dissolution, 

contributing, among others together with combustion emissions of DFe on fine particles 
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and atmospheric transport, to the observed an inverse relationship between SFe and 

particle size (Ito and Feng, 2010). A recent CTM study (Ito and Xu, 2014) simulated the 

present-day SFe over the Northern Hemisphere oceans reasonably well, and calculated 

the proton-promoted dissolution of Fe in the year 2100, considering three pools of Fe-

containing minerals depending on their timescale of potential for Fe dissolution based on 

the findings of Shi et al. (2011b; 2012). 

Laboratory studies have also shown the occurrence of photoinduced reductive Fe 

dissolution under rather acidic conditions (e.g. pH < 4), suggesting a steady state Fe(II) 

production during exposure of dust to solar radiation and thus, increased daytime 

dissolution rate of hematite compared to standard kinetics (Zhu et al., 1993; Jickells and 

Spokes, 2001 and references therein). However, the dust-Fe dissolution through 

photoreduction has only limited impact (<1%) on the DFe concentration (Zhu et al., 

1993). Moreover, experimental data also support that both inorganic (e.g. sulphuric and 

nitric acid) and organic (e.g. oxalic and acetic acid) acids can increase Fe dissolution 

(Paris et al., 2011; Paris and Desboeufs, 2013). Laboratory investigations (Chen and 

Grassian, 2013) also indicate that the relative capacity of oxalic acid in acidic solution 

(pH = 2) is by far the most important for Fe dissolution in dust and combustion aerosols 

compared to sulphuric acid due to the formation of mononuclear bidentate ligand with 

surface Fe, in contrast to the weaker complexes formed from HSO4
-
 and SO4

2-
.
 

Oxalic acid/oxalate (hereafter OXL) is globally the most abundant dicarboxylic acid, 

formed via chemical oxidation of both biogenic and anthropogenic gas-phase precursors 

in the aqueous-phase of aerosols and cloud droplets (e.g. Carton et al., 2007; Lim et al., 

2010). Johnson and Meskindze (2013) calculated that the ligand (OXL)-promoted Fe 

dissolution and Fe(II)/Fe(III) redox cycling of Fe-content of mineral dust in both aerosol 

and cloud water, increased total annual calculated DFe deposition to global oceanic 

regions by ∼75%, compared to only proton-promoted Fe dissolution simulations. 

However, the aforementioned study used sulphate aerosol as a proxy for the occurrence 

of OXL and took into account three Fe-containing dust-minerals (i.e. goethite, hematite 

and illite) as studied by Paris et al. (2011). A recent modelling study by Ito (2015), 
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published after the submission of the present work, focusing on the atmospheric 

processing of Fe-containing combustion aerosols by photochemical reactions with 

inorganic and organic acids indicates that ligand (OXL)-promoted Fe dissolution more 

than doubles the calculated DFe deposition from combustion sources over certain regions 

of the global ocean.  

Besides proton- and ligand- promoted mineral-Fe dissolution, primary emissions of Fe, 

especially from combustion processes can lead to an increase in the SFe fraction. 

Mineral-Fe represents ~95% of the global atmospheric TFe source, with combustion Fe 

sources responsible for the remaining ~5% (Luo et al., 2008; Mahowald et al., 2009). Luo 

et al. (2008) accounted for both soluble and insoluble forms of Fe emissions from 

biomass burning and anthropogenic combustion processes in relation to Black Carbon 

(BC) emissions and they estimated (based on observed Fe/BC ratios) that ~1.7 Tg-Fe
.
yr

-1
 

are emitted to the atmosphere via combustion processes. Mahowald et al. (2009) also 

indicate that humans may significantly impact DFe deposition over oceans by increasing 

both the acidity of atmospheric aerosol, as well as the DFe emissions from combustion 

processes. Model projections for the year 2100 suggest that fossil fuel combustion 

aerosols from shipping could contribute up to ~60% of DFe deposition to remote oceans 

(Ito, 2013).  

In the present study, the 3-D chemical transport global model TM4-ECPL that explicitly 

calculates aqueous-phase chemistry of OXL and the photochemical cycle of the 

atmospheric Fe cycle is used to simulate the Fe deposition over land and oceans, 

accounting for five Fe-containing dust minerals and for anthropogenic emissions of Fe. 

Following the scheme of Ito and Xu (2014), dissolution of Fe (Section 2) from 3 pools of 

minerals (Shi et al., 2012) is here considered to occur by proton-promoted dissolution at 

three characteristic time scales and by ligand (OXL)-promoted dissolution (as 

demonstrated by Paris et al., 2011 and parameterized by Johnson and Meskindze, 2013). 

The calculated TFe and DFe global atmospheric budgets and distributions are presented 

and compared to observations in Section 3. The importance of air-pollutants for DFe 

atmospheric concentrations and deposition is investigated in Section 4, based on 
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simulations using past and future anthropogenic and biomass burning emissions 

scenarios. The significant contribution of anthropogenic sources to the dissolution of Fe-

containing minerals, their impact on DFe deposition over oceans and the implications of 

the findings for the biogeochemistry of marine ecosystems are summarized in section 5. 

 

2 Model description 

The TM4-ECPL global chemistry – transport model (Myriokefalitakis et al., 2011; 

Daskalakis et al., 2015 and references therein) is able to simulate oxidant 

(O3/NOx/HOx/CH4/CO) chemistry, accounting for non – methane volatile organic 

compounds (NMVOCs, including isoprene, terpenes and aromatics), as well as all major 

aerosol components, including secondary aerosols like sulphate (SO4
2–

), nitrate (NO3
–
), 

ammonium (NH4
+
) using ISORROPIA II thermodynamic model (Fountoukis and Nenes, 

2007) and secondary organic aerosols (SOA) (Tsigaridis and Kanakidou, 2003, 2007). 

Compared to its parent TM4 model (van Noije et al., 2004), the current version has a 

comprehensive description of chemistry (Myriokefalitakis et al., 2008) and organic 

aerosols (Myriokefalitakis et al., 2010). It also accounts for multiphase chemistry in 

clouds and aerosol water that produces OXL and affects SOA formation 

(Myriokefalitakis et al., 2011).  

For the present study, TM4-ECPL is driven by ECMWF (European Center for Medium – 

Range Weather Forecasts) Interim re–analysis project (ERA – Interim) meteorology (Dee 

et al., 2011). Advection of the tracers in the model is parameterized using the slopes 

scheme (Russell and Lerner, 1981 and references therein). Convective transport is 

parameterized based on Tiedke (1989) and the Olivie et al. (2004) scheme. Vertical 

diffusion is parameterized as described in Louis (1979). For wet deposition, both large 

scale and convective precipitation are considered. In-cloud and below cloud scavenging 

is parameterized in TM4-ECPL as described in detail by Jeuken et al. (2001). In-cloud 

scavenging of water soluble gases is calculated accounting for the solubility of the gases 

(effective Henry law coefficients; Tsigaridis et al., 2006; Myriokefalitakis et al., 2011 and 
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references therein). Dry deposition for all fine aerosol components is parameterized 

similarly to that of nss-SO4
2-

, which follows Tsigaridis et al. (2006). Gravitational settling 

(Seinfeld and Pandis, 1998) is applied to all aerosol components and is an important dry 

deposition process for coarse particles like dust and sea-salt. The current model 

configuration has a horizontal resolution of 3
o
 in longitude by 2

o
 in latitude and 34 hybrid 

layers in the vertical, from surface up to 0.1 hPa. All simulations have been performed 

with meteorology of the year 2008 and a model time-step of 30 min. 

2.1 Emissions 

TM4-ECPL uses the anthropogenic and biomass burning emissions (NMVOC, nitrogen 

oxides (NOx), CO, SO2, NH3, particulate organic carbon (OC) and black carbon (BC)) 

from the ACCMIP database (Lamarque et al., 2013; 

http://eccad.sedoo.fr/eccad_extract_interface/JSF/page_meta.jsf). Biogenic emissions 

(isoprene, terpenes, acetaldehyde, acetone, ethane, ethene, propane, propene, 

formaldehyde, CO, methyl – ethyl ketone, toluene, methanol) come from the MEGAN – 

MACC Biogenic Emission Inventory for the year 2008 (Sindelarova et al., 2014). Soil 

NOx and oceanic emissions (CO, ethane, ethene, propane, propene) are taken from the 

POET (Granier et al., 2005) inventory database (http://eccad.sedoo.fr). Oceanic emissions 

of primary organic aerosol, isoprene, terpenes and sea – salt particles are calculated 

online driven by meteorology following Myriokefalitakis et al. (2010). Dust emissions 

are obtained from the daily AEROCOM inventories (Aerosol Comparison between 

Observations and Models; Dentener et al., 2006) updated to the year 2008 (E. Vignati, 

pers. com., 2011). The anthropogenic and biomass burning emissions (NMVOC, NOx, 

CO, SO2, NH3, OC and BC) from the ACCMIP database (Lamarque et al., 2013) for the 

years: 1850 (hereafter PAST), 2008 (hereafter PRESENT) and for the year 2100 based on 

the RCP6 emission scenario (hereafter FUTURE), have been used for the different 

simulations as further explained. A summary of the emissions considered in the model is 

given in Table S1 in the supplementary material.  

2.2 Dust iron-containing minerals emissions 

http://eccad.sedoo.fr/eccad_extract_interface/JSF/page_meta.jsf
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Various Fe-containing clay minerals (illite, kaolinite and smectite), oxides (hematite and 

goethite) and feldspars can be found in mineral dust (Nickovic et al., 2013). In the present 

study, the global soil mineralogy dataset developed by Nickovic et al. (2012) at 30” 

resolution (~1 km) has been initially re-gridded to 1
o
x1

o
 global resolution and applied to 

the 1
o
x1

o
 daily dust emissions taken into account by TM4-ECPL. The percentage content 

in Fe of the different Fe-containing minerals of dust that are considered in the model has 

been taken from Nickovic et al. (2013) (illite 4.8%, kaolinite 0.7%, smectite 16.4%, 

goethite and hematite 66% and feldspar 2.5%). Given this, the annual global mean Fe 

content of emitted dust particles in TM4-ECPL is calculated to be ~3.2%. Despite 

differences in the chemical reactivity and iron content of goethite and hematite (e.g. see 

http://webmineral.com), these minerals are here considered as one surrogate species, the 

hematite, used as proxy for Fe oxides as suggested by Nickovic et al. (2012).  

Based on the aforementioned soil mineralogy database (FMIN_DUST), the daily dust 

emissions (DustEmi) in the model and the Fe content of the minerals (FFe_MIN), TM4-ECPL 

calculates the TFe emissions (FeEmi) from soils as: 

MinFeDustMinEmiEmi FFDustFe __                                                                              (1) 

Thus, the model accounts for the following annual Fe emissions from soils: ~8.473 Tg-Fe 

yr
-1

 from illite, ~0.871 Tg-Fe yr
-1

 from kaolinite, ~17.154 Tg-Fe yr
-1

 from smectite, 

~5.663 Tg-Fe yr
-1

 from hematite and goethite and ~2.761 Tg-Fe yr
-1

 from Feldspars 

(Table 1), total ~35.048 Tg-Fe yr
-1

. The DFe emissions in the form of impurities in soils 

are prescribed in the initial dust sources as 4.3% on kaolinite and 3% on feldspars as 

suggested by Ito and Xu (2014) and account for ~0.125 Tg-Fe yr
-1

. A summary of dust 

and Fe-containing minerals emissions used in the TM4-ECPL model is provided in Table 

1. The annual mean spatial distributions of dust (Fig. S1a) and emissions of Fe contained 

in different minerals (Fig. S1b-f) as calculated by the model are also shown in the 

supplement.  

2.3 Anthropogenic and biomass burning iron emissions 

http://webmineral.com/
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TFe emissions from combustion sources have been estimated at 1.07 Tg-Fe yr
-1

 from 

biomass burning, 0.66 Tg-Fe yr
-1

 from coal combustion (Luo et al., 2008) and ~0.016 Tg-

Fe yr
-1

 from shipping (Ito et al., 2013), all for the year 2001. For this work, global and 

monthly mean scaling factors of TFe emissions to those of BC (Fe/BC) for each of the 

above mentioned emission sectors have been derived based on emission estimates 

provided by Luo et al. (2008) and the BC sources from the ACCMIP database for the 

year 2001. Furthermore, to calculate the DFe in primary emissions (both in fine and 

coarse particles), the DFe emission estimates by Ito (2013) of 0.127 Tg-Fe yr
-1

 from 

biomass burning, 0.055 Tg-Fe yr
-1

 from coal combustion and 0.013 Tg-Fe yr
-1

 from 

shipping, have been used together with the TFe emissions above mentioned for the year 

2001 (Luo et al., 2008) to derive mean solubility for each of these three emission 

categories. These are ~12% for biomass burning Fe sources, ~8% for coal combustion 

and ~81% for shipping. The derived Fe/BC emission ratios and the mean Fe solubility per 

source category are then applied to the BC emissions from the ACCMIP database for the 

respective year, to compute the PAST, PRESENT and FUTURE emissions of TFe and 

DFe. The computed annual mean surface distributions of the TFe emitted by 

anthropogenic emissions (including shipping), and biomass burning used in the model 

(~1.983 Tg-Fe yr
-1

 for the year 2008) are depicted in Fig. S1g and S1h, respectively. 

2.4 Mineral dissolution scheme 

The model calculates the dissolution of Fe-containing minerals in the aerosol water and in 

the cloud droplets. TM4-ECPL treats the Fe dissolution as a kinetic process that depends 

on the concentrations of i) H
+
 (proton-promoted Fe dissolution) and ii) OXL (organic 

ligand-promoted Fe dissolution) in the solution (Fig. 1).  

2.4.1 Proton-promoted iron dissolution  

The proton-promoted dissolution rate of minerals in aerosol and cloud water is calculated 

by applying the empirical parameterization developed by Lasaga et al. (1994), taking into 

account the saturation degree of the solution, the type of each mineral (MIN), as well as 

the reactivity of Fe species and the ambient temperature. 
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MINMIN

m

MINMINFe AfHaTKNFeR   )()(                                                                    (2) 

where RFe is the Fe-containing mineral dissolution rate (moles of Fe per gram of MIN per 

s), NFeMIN is the number of moles of Fe per mole of mineral, KMIN is the temperature (T) 

dependent dissolution reaction coefficient of the mineral (mol m
-2 

s
-1

), α(H
+
) is the H

+
 

activity in the solution, m is the reaction order with respect to aqueous-phase protons, 

AMIN is the specific surface area of the mineral (m
2
 g

-1
) and ƒMIN accounts for the variation 

of the rate when deviating from equilibrium. For the present study the above formulation 

is applied to each mineral concentration [MIN] (and not to the bulk mass of dust aerosol), 

since the model describes each mineral with a different tracer in the chemical scheme. 

For the calculation of the deviation from equilibrium ƒMIN, the Eq. (3) given by Ito and 

Xu (2014) is used: 

MIN

n

HFeMIN Keqaaf MIN /)(1 3


                                                                                           (3) 

where 3Fe
a is the concentration of Fe(III) in the aqueous solution (mol L

-1
), nMIN is the 

stoichiometric ratio (number of moles mobilized per mole of mineral) and KeqMIN is the 

equilibrium constant for iron oxides formation (Fe(OH)3). Mineral dissolution rates and 

the related factors used in this study are listed in Table 2, separating between the DFe 

(attributed to the emissions), fast released iron (Fef), intermediate released iron (FeI) and 

refractory iron (FeR) (Shi et al., 2011b; 2012) as explicitly parameterized by Ito and Xu 

(2014). Aerosol water pH is calculated by the ISORROPIA II thermodynamic model 

which solves the K
+
–Ca

2+
–Mg

2+
–NH4

+
–Na

+
–SO4

2−
–NO3

−
–Cl

−
–H2O aerosol system. 

Based on the composition of mineral dust and sea-salt elements, ISORROPIA II in TM4-

ECPL takes into account the following mean percent mass content of particles: Na
+
: 

30.6% on sea-salt and 1.7% on dust, Ca
2+

: 1.2% on sea-salt, K
+
: 2.4% on dust and 1.1% 

on sea-salt and Mg
2+

: 1.5% on dust (as magnesite; Ito and Feng, 2010 - consistent with 

Formenti et al., 2008 observations) and 3.7% on sea-salt 

(http://geology.utah.gov/online_html/pi/pi-39/pi39pg9.htm), Cl
-
: 55% on sea-salt and 

SO4
2-

:
 
7.7% on sea-salt. The global soil mineralogy dataset (Nickovic et al., 2012) has 

http://geology.utah.gov/online_html/pi/pi-39/pi39pg9.htm
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been applied on dust emissions to calculate the concentrations of Ca
2+

 on dust particles 

(i.e. calcite (CaCO3) and gypsum (CaSO4)).  

Aerosol pH and water are here calculated for each aerosol mode (Fig. S2a for the fine 

mode and Fig. S2b for the coarse mode). The pH values for each aerosol mode are 

calculated by the thermodynamic equilibrium model ISORROPIA II assuming internal 

mixing of the aerosols (Fountoukis and Nenes, 2007). Briefly, for each mode (fine and 

coarse) sulphate, nitrate, ammonium and sea-salt (i.e. K
+
; Ca

2+
; Mg

2+
; Na

+
; SO4

2−
; Cl

−
) 

aerosols are assumed to be internally mixed. Carbonates (CaCO3, MgCO3) and gypsum 

(CaSO4) are considered to be present in the silt soil particles (Meskhidze et al., 2005), 

with their impact on the coarse particulate H
+
 and H2O, to be calculated interactively by 

the ISORROPIA II. The dissolved Ca
2+

 and Mg
2+

 is distributed by the thermodynamic 

model among all possible solids. 

In TM4-ECPL, in-cloud pH (Fig. S2c at ~850hPa and Fig. S2d for zonal mean) is 

controlled by strong acids (sulphates, SO4
2-

; methanesulphonate, MS
-
; nitric acid, HNO3; 

nitrate ion, NO3
-
), bases (ammonium ion, NH4

+
), as well as by the dissociations of 

hydrated CO2, SO2, NH3 and of oxalic acid (Myriokefalitakis et al., 2011). Crustal and 

sea-salt elements are not considered for pH calculations in the cloud chemical scheme.  

2.4.2 Organic ligand-promoted iron dissolution 

Recent laboratory studies show a positive linear correlation between iron solubility and 

organic ligands concentrations (e.g. Paris and Desboeufs, 2011 and references therein). 

Two mechanisms have been proposed concerning the mineral dissolution in the presence 

of organic ligands: i) the non-reductive (Stumm and Morgan, 1996) and ii) the reductive 

(Stumm and Sulzberger, 1992) ligand-promoted dissolution. Experimental studies by 

Paris and Desboeufs (2013) indicate that certain organic ligands (including OXL) 

enhance Fe dissolution from mineral dust. This ligand-promoted dissolution was 

accompanied by increased concentrations of dissolved Fe(II) and was probably related to 

the ability of organic ligands to act as electron donors.  
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In the present study, we follow the recommendations of Johnson and Meskhidze (2013) 

based on the experiments by Paris et al. (2011) for OXL–promoted Fe dissolution of 

hematite, goethite and illite in cloud droplets and rainwater. Because the mineral database 

used for this study considers the average iron oxides (the goethite and hematite content) 

as a single iron oxide species (hematite), we take into account the fractional OXL-

promoted Fe dissolution rates for hematite (α-Fe2O3) and goethite (α-FeO(OH)) proposed 

by Johnson and Meskhidze (2013), as presented in Table 3. The average values of 

relative proportions of Fe in the form of hematite and goethite to total iron oxide are 

based on experimental data for dust sources, compiled by Formenti et al. (2014), with 

their abundance in total iron oxide to be ~36% and ~64%, respectively. 

DFe production during the organic ligand-promoted Fe dissolution is here considered to 

be in the form of Fe(II)-oxalato complexes in the aqueous-phase (i.e. in the ferrous 

oxidation state) and it is only applied to water droplets following the recommendations of 

the laboratory studies of Paris et al. (2011) and Paris and Desboeufs (2013). The 

aforementioned experiments have been performed with OXL concentrations found 

typically in rainwater and cloud droplets (0-8 μM), pH of 4.5 and dust concentrations of 

about 15 mg L
-1

. Indeed, properties of the aqueous solution of clouds differ significantly 

to those of aerosols, with higher pH values (e.g. > 4), lower aqueous-phase dust 

concentrations (<50 mg L
-1

) and lower ionic strength (Shi et al., 2012). On the other 

hand, the liquid aerosol content of typical continental aerosols can vary between ∼10
−12

 

and 10
−11

 cm
3
 cm

−3
 air, depending on the relative humidity, and the aerosol pH can vary 

between 1-4 (McNeill et al., 2012). Aqueous-phase OXL concentrations are significantly 

related to the transfer of small gas-phase polar compounds (e.g. glyoxal) to the liquid-

phase (Carlton et al., 2007), a process that depends proportionally on the volume of the 

aqueous medium and on the pH of the solution. On the other hand, high acidic pH in the 

condense phase tends to favour the production of oligomeric structures rather than OXL 

(e.g. Lim et al., 2010; 2013). Thus, under such conditions of low aqueous-phase OXL 

concentrations, the ligand-promoted Fe dissolution may be suppressed significantly.  

2.5 Aqueous-phase chemistry scheme 
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The global model simulates aqueous-phase chemistry in aerosol water and cloud droplets 

as described in Myriokefalitakis et al. (2011). To parameterize the Fe-speciation through 

the photochemical cycling of Fe(III)/Fe(II), the aqueous-phase chemical scheme has been 

further developed to account for the mineral-Fe dissolution processes and the ferric- and 

ferrous- oxalato complexes speciation (Fig. 1), taking into account recent global 

modelling studies (Johnson and Meskhidze, 2013; Lin et al., 2014 and references 

therein). Here, we use both the proton-promoted dissolution scheme as presented by Ito 

and Xu (2010) together with the ligand-promoted dissolution scheme as experimentally 

proposed by Paris et al. (2011). In Table S2 the updates in the chemical scheme of TM4-

ECPL concerning Fe aqueous-phase chemistry that are adopted for the present study are 

listed. Fe aqueous-phase chemistry affects OXL net chemical production in two different 

ways: it reduces OXL by its oxidation to CO2 (Ervens et al., 2003; Lin et al., 2014) during 

the rapid photolysis of ferrous-dioxalato complexes (Table S2), while it increases OXL 

production due to the enhancement in OH radical production via Fenton reaction (Table 

S2). These also affect modelled OXL concentrations that are re-evaluated in the 

supplementary Fig. S3 by comparison with observations compiled by Myriokefalitakis et 

al (2011). 

2.6 Iron dissolution scheme 

Johnson and Mekhidze (2013) have concluded that protons effectively promote Fe-

containing minerals dissolution at rather acidic pH values (pH < ~2), while the OXL-

promoted dissolution happens at higher pH values (pH > 3). To investigate the sensitivity 

of our chemical scheme to pH and OXL levels, we have performed box-model 

simulations to compare the iron solubility from our iron dissolution scheme in different 

acid and oxalate-load cases. The box-model calculations have been performed for dust 

concentrations 1 mg L
-1

, pH values of 1.5, 4.5 and 8.5 and for initial oxalic acid 

concentrations of 0 μM, 4.5 μM and 8 μM. The percentage content of Fe in dust has been 

taken from Nickovic et al. (2013) as in the global TM4-ECPL model. Moreover, to take 

into account the Fe speciation due to aqueous-phase photochemical reactions, the box 

model also considers initial concentrations of [H2O2] = 1 μM, [O3] = 10
-6

 μΜ, [OH] = 10
-
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7 
μM and [HO2] = 10

-7 
μM. Note that during the simulation pH values remains constant, 

but iron, oxalic acid as well as all other species concentrations change following the 

chemical scheme as described in Table S2. In Fig. S4, the SFe and the corresponding 

ferrous (SFe(II); SFe(II)=100*Fe(II)/TFe) and ferric (SFe(III); SFe(III)=100*Fe(III)/TFe) 

solubility fractions calculated for each simulation are presented.  

According to our calculations after 10 days (240 hours of simulation), in the absence of 

OXL concentrations but in highly acidic pH values of 1.5, the SFe is calculated to reach 

~10% (Fig. S4a), while at pH = 4.5 the SFe reached only ~0.2% in the form of Fe(II) 

(Fig. S4b) but at basic pH values of 8.5 the SFe was close to zero (Fig. S4c). In the 

presence of an initial OXL concentration of 4.5 μΜ, the box-model calculates no 

significant change of SFe for highly acidic pH of 1.5 (Fig. S4d) compared to the absence 

of OXL (since pH values remain constant during the simulation), while for pH=4.5 the 

SFe reached ~0.05% in the form of Fe(II) (Fig. S4e), and for pH=8.5 the SFe increased 

up to ~3.5% (also in the form of Fe(II)). This can be explained because in rather basic pH 

the mole fraction of oxalic acid (pKa1 = 1.27 and pKa2 = 4.27) is higher compared to 

acidic pH conditions and thus, the organic ligand-promoted dissolution tends to be more 

effective (Johnson and Meskhidze, 2013). In the case of high oxalic acid concentrations 

of 8 μΜ (Fig. S4g-i), the box-model calculates that Fe dissolution is effectively promoted 

by ligands. Indeed, for pH=8.5 and initial [OXL] = 8 μΜ (Fig. S4g), the box model 

calculates that SFe reaches ~6%. However, for pH=1.5 and [OXL] = 8 μM the SFe 

reaches also high values, although this can mainly be attributed to the proton-promoted 

dissolution since the mole fraction of oxalate is extremely low at these pH values. In 

contrast, for the case of a mid-range pH value (4.5), SFe reaches ~6% as a result of 

mainly ligand promoted dissolution (Fig. S4h) and to a lesser extend to the proton 

promoted one consistent with the no-OXL case as shown in Fig. S4b).  

Although the aforementioned sensitivity box-modeling studies show the significance 

between the proton- and ligand- promoted Fe dissolution depending on the chemical 

conditions, the proton-promoted dissolution is expected to be more important under 

atmospheric conditions. While high basic pH values are associated with dust alkalinity 
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(Ito and Feng, 2010) located close to dust sources, no significant oxalic acid sources, 

which are controlled mainly from biogenic NMVOC emissions and cloudiness 

(Myriokefalitakis et al., 2011), are expected to be found near the desert regions (e.g. the 

Sahara).  

 

3 Results and Discussion 

3.1 Primary and secondary sources of dissolved iron 

In Fig. 2, the annual mean primary DFe emissions from fossil fuel combustion processes 

(including oil combustion from ships) (Fig. 2a), biomass burning (Fig. 2b) and from Fe-

containing minerals (Fig. 2c) sources are shown together with the annual mean total 

mineral Fe-dissolution flux (sum of proton- and organic ligand- promoted Fe dissolution 

fluxes; secondary DFe sources) as calculated by the model (Fig. 2d). The model takes 

into account ~0.070 Tg-Fe yr
-1

 of DFe anthropogenic emissions with most of them 

occurring over densely populated regions of the globe (the mid-latitudes of the northern 

hemisphere, e.g. China, Europe and the US; ~0.1-1 ng-Fe m
-2

 s
-1

), but also in the remote 

oceans (e.g. Northern Atlantic Ocean, Northern Pacific Ocean), due to oil-combustion 

processes downwind of shipping lanes (up to 0.05 ng-Fe m
-2

 s
-1

). Primary emissions of 

DFe from biomass burning (Fig. 2b) peak over tropical forested areas (~1 ng-Fe m
-2

 s
-1

) 

and according to model calculations, biomass burning contributes about ~0.127 Tg-Fe yr
-

1
, showing maxima over Central Africa and Amazonia during the dry season. DFe 

emissions associated with mineral dust (Fig. 2c) of ~0.125 Tg-Fe yr
-1

, are emitted mainly 

over the Saharan desert region however, important emissions are also found over other 

desert areas of the globe (e.g. the Gobi Desert, Middle East and Australia). 

The secondary sources of DFe in the atmosphere result from both the proton- and ligand-

promoted dissolution processes of Fe-containing mineral in the model (Fig. 2d). The total 

annual mineral Fe-dissolution flux is calculated to be ~0.175 Tg-Fe yr
-1

 of DFe by TM4-

ECPL. As shown in Fig. 2d, most of the dissolution occurs downwind of the dust source 

region, where long- and regional- range transport of natural and anthropogenic pollution 
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sources enhance the release of DFe from the minerals. Thus, the model calculates 

maximum dissolution fluxes over the Persian Gulf, downwind of the Sahara and Beijing, 

downwind the Gobi Desert (~1 ng-Fe m
-2

 s
-1

). However, enhanced mineral-Fe dissolution 

fluxes (~0.1 ng-Fe m
-2

 s
-1

) are calculated over the whole area of the Middle East, the 

Eastern Mediterranean basin, as well as over the remote oceans like the tropical Atlantic 

Ocean, and India and the outflow of Asia to the Pacific Ocean. 

3.2 Proton- versus organic ligand-promoted mineral iron mobilisation 

The proton- and the organic ligand- promoted dissolution of Fe-containing minerals are 

compared in Fig. 3a and 3b respectively. According to TM4-ECPL calculations on a 

global scale, almost 80% of dust Fe dissolution occurs through proton-promoted 

dissolution (Fig. 3a; ~0.137 Tg-Fe yr
-1

), where high proton concentrations destabilize Fe-

oxygen (Fe-O) bonds in the crystal lattice of the Fe-containing minerals. Proton-

promoted Fe dissolution dominates downwind of dust source areas and heavy population 

regions (e.g. Beijing; ~1.00 ng-Fe m
-2

 s
-1

) where atmospheric acidity is high due to SOx 

and NOx anthropogenic emissions. On the other hand, because of long-range transport, 

relatively high rates of organic ligand-promoted dissolution (~0.1 ng-Fe m
-2

 s
-1

) are 

calculated over Central Africa, Amazonia and the equatorial Atlantic Ocean (Fig. 3b), 

where biogenic NMVOC oxidation and cloudiness lead to enhanced OXL aqueous-phase 

formation (Myriokefalitakis et al., 2011).  

3.3 Iron concentrations 

The calculated global annual mean TFe and DFe atmospheric surface distributions are 

shown in Fig. 4a and Fig. 4b (note differences in scales), respectively (the dissolved 

Fe(III) and Fe(II) in Fig. S5a-b and S5c-d in the Supplement, respectively), and the 

fractions of Fe(II) to DFe are presented in Fig. 4c. Maxima annual mean concentrations 

of more than 100 μg-Fe m
-3

 are calculated to occur over the Sahara and Gobi deserts near 

the surface (Fig. 4a). However, the outflow from these source regions transports TFe over 

the global ocean, with the highest impact to be calculated for the Northern Hemisphere 

(Fig. 4a). The DFe concentrations (sum of Fe(III) and Fe(II)) are calculated to be about 
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three orders of magnitude lower than the TFe (Fig. 4b). As for TFe, the outflow from the 

continental source regions is clearly seen in the calculated DFe distributions. The 

enhanced concentrations of Fe (III) over polluted regions, determine the importance of 

atmospheric acidity and anthropogenic DFe emissions (Fig. S5a). Over Central South 

America, Asia and Indonesia, high concentrations of DFe (~50-100 ng-Fe m
-3

) are 

calculated both due to biomass burning DFe emissions but also due to organic ligand-

promoted dissolution, which is enhanced in these areas by the OXL produced from 

oxidation of emitted biogenic NMVOCs via clouds.  

African Fe sources also affect the middle tropospheric DFe concentrations through 

atmospheric transport along the tropical Hadley cell. Model calculations show that Fe(III) 

(Fig. S5b) and Fe(II) (Fig. S5d) have significant concentrations in the middle troposphere 

owing to transport from the source regions. Note, however, that in-cloud and in aerosol 

water aqueous phase chemical processing transforms also a significant part of TFe to DFe 

in the upper troposphere.  

Model calculations also demonstrate the importance of photochemical redox cycling of 

Fe(III)/Fe(II) in the aqueous-phase (aerosols and clouds) of the atmosphere. Fig. 4c 

shows the percentage contribution of Fe(II) to DFe as computed by the model, denoting 

that the calculated Fe(II) concentrations are an important part of DFe atmospheric 

burden; regionally reaching up to 20% of the total dissolved mass far from the dust 

source areas e.g. the remote ocean. This ratio also exceeds 10% at several other locations 

around the globe, in particular over the tropical Pacific and the Southern Ocean; implying 

that chemical aging of dust due to atmospheric processing and long-range transport 

enhances significantly the production of Fe(II). As also discussed in Sec. 2.6, in relatively 

basic pH environments (e.g. the Southern Ocean due to the buffering capacity of sea-salt 

particles; see Fig. S2a,b) and due to high OXL concentrations (e.g. tropical Pacific ocean) 

the production of Fe(II) is favoured (Fig. S4e and Fig. S4h, respectively). Thus, our 

model calculations indicate that the enhanced fraction of Fe(II) over the remote oceans 

(Fig. 4c), characterized by low concentrations of dust and non-negligible OXL 

concentrations (see Fig. S3) due to the aqueous-phase oxidation of organic compounds of 
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marine origin NMVOCs (e.g. isoprene) could be attributed to the production of ferrous-

oxalato complexes. 

TM4-ECPL calculates a global TFe atmospheric burden of ~0.857 Tg-Fe and almost 35 

times lower atmospheric burden of the DFe ~0.024 Tg-Fe (~0.023 Tg-Fe as Fe(III) and 

~0.001 Tg-Fe as Fe(II)). This also indicates the existence of a large TFe reservoir that can 

be mobilized under favourable conditions. The total SFe (Fig. S6a) is calculated to vary 

spatially with minima over the dust sources (~1%) and maxima over the south equatorial 

regions (~5%). SFe due to dust aerosols is attributed primarily to the atmospheric 

processing and to the (low) initial dust solubility. These low SFe values over dust source 

regions can be also explained by the suppressed mineral Fe-dissolution because of the 

enhanced buffering capacity (as well as the low water associated with dust aerosols near 

their sources), the low acidity because of the low amounts of acidic inorganic compounds 

from anthropogenic pollution and the lack of organic ligands (e.g. OXL) over large dust 

outbreaks (e.g. the Sahara) (Fig. S6b). On the other hand, the model calculates higher SFe 

values (~2.5-5%) of dust aerosols over regions characterized by low dust concentrations 

but high amounts of anthropogenic pollution (e.g. over the Indian Ocean). However, the 

co-existence of relatively high dust concentrations and high amounts of anthropogenic 

pollutants tends to enhance significantly Fe-mineral atmospheric processing and thus SFe 

(~5%), as in the case of the Persian Gulf and Eastern Mediterranean (Fig. S6b). Fe-

containing combustion aerosols of anthropogenic origin (Fig. S6c) are also calculated to 

contribute significantly to SFe (~2.5%) over high population regions (e.g. the US, central 

Europe and China). Due to the long-range transport in the Northern Hemisphere, 

enhanced SFe is simulated also over the Northern Atlantic and Pacific Oceans (~1.5%). 

Additionally, biomass burning processes are calculated to increase SFe, especially over 

the Southern Hemisphere. The atmospheric transport of dissolved Fe containing 

combustion aerosols from the Central Africa, Amazonia and Indonesia over the Southern 

Pacific, Atlantic and Indian Oceans (from the equator to ~50S) is found to increase 

significantly the SFe (~5%). Overall, model calculations denote that from the computed 

global average SFe of about 2.8%, 1.3% comes from dust, 1.2% from biomass burning 

aerosols and 0.3% from fossil fuel combustion processes. The average lifetime of TFe is 
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calculated to be about 5 days while that of DFe is found to be longer (~6 days on 

average) due to DFe association with atmospheric aerosol that has been transported and 

processed in the atmosphere and thus resides overall in smaller size aerosols than TFe. In 

our model, DFe resides mostly in small particles (~ 60%) and thus is more effectively 

transported in the atmosphere reaching the global ocean compared to the bulk TFe mass 

that is carried mainly by coarse aerosols (~80%).  

3.4 Model iron concentration evaluation 

Observations of total and dissolved Fe concentrations in ambient aerosols near the 

surface are valuable to evaluate our understanding of the Fe cycle as parameterized in the 

models. TM4-ECPL daily mean results are here validated against daily observations of 

total (Fig. 5a) and dissolved Fe (Fig. 5b) associated with atmospheric aerosols over the 

Atlantic Ocean (Baker et al., 2013) and the Indian Ocean (Witt et al., 2006) as compiled 

by Sholkovitz et al. (2013). Figure 5c also presents the comparison of daily solubility 

fractions of the above observations versus the respective calculated fractions by the 

model. In addition, Fe aerosol data compiled by Mahowald et al. (2005) are compared 

with model results in Fig. 5d. The seasonality of TFe in the Eastern Mediterranean as 

measured and compiled by Koulouri et al. (2008) at Finokalia station 

(http://finokalia.chemistry.uoc.gr/) is also compared to monthly model results (Fig. 5e).  

The comparisons presented in Fig. 5 show that the model reasonably simulates the 

observed concentration of total and dissolved Fe in the ambient aerosols over oceans 

(scatter plots in Fig. 5a, 5b and 5c). In the East Mediterranean, when comparing to 

ambient aerosol observations at Finokalia monitoring station (Fig. 5e), the model seems 

to underestimate the observations of TFe with the largest differences calculated for 

January-February, May and July-September. These are the periods of the year that 

Finokalia station can be occasionally affected by strong dust outbreaks from Africa 

(Kalivitis et al., 2007) that are better represented in the observations than in the model 

results due to their episodic character. All evaluations (see supplementary material Table 

S3) are based on statistical parameters of correlation coefficient (R; Eq. S1), normalised 

http://finokalia.chemistry.uoc.gr/
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mean bias (NMB; Eq. S2), root mean square error (RMSE; Eq. S3), and normalised mean 

error (NME; Eq. S3). 

3.5 Iron deposition 

TM4-ECPL calculates that ~37 Tg-Fe yr
-1

 of TFe are deposited to the Earth’s surface 

(Fig. 6a). The highest annual deposition fluxes of TFe of ~100 ng-Fe m
-2 

s
-1

 (i.e. ~3.2 g-

Fe m
-2

 yr
-1

) are calculated to occur over the Sahara and Gobi deserts. Significant 

deposition fluxes up to ~10 ng-Fe m
-2 

s
-1

 are also calculated at the outflow from these 

source regions over the Atlantic and Pacific Oceans. The computed global DFe 

deposition is ~0.496 Tg-Fe yr
-1

 of which ~0.191 Tg-Fe yr
-1

 is deposited over the ocean 

(Fig. 6b). This oceanic DFe deposition estimate is lower than an earlier reported DFe 

deposition flux to the ocean of 0.26 Tg-Fe yr
-1

 (Johnson and Meskhidze, 2013). However, 

that study used dust emissions of ~1900 Tg yr
-1

, about 60% larger than the dust sources in 

the present study (~1091 Tg yr
-1

 for the year 2008). In addition, at least a 50% of 

uncertainty in the calculated deposition fluxes was found to be associated with the 

applied horizontal resolution of the model, with higher fluxes calculated by the higher 

model resolution. 

Figures 6c-6f present the seasonal variability of DFe deposition as calculated by TM4-

ECPL (in parenthesis the deposition fluxes over the oceans are also provided). The 

maximum global seasonal DFe deposition flux of ~0.132 Tg-Fe season
-1

 is calculated to 

occur during JJA (June-July-August; Fig. 6e), followed by fluxes of ~0.128 Tg-Fe 

season
-1 

during DJF (December-January-February; Fig. 6c) and ~0.127 Tg-Fe season
-1

 

during MAM (March-April-May; Fig. 6d). The enhanced photochemistry during 

summertime over the Northern Hemisphere increases the atmospheric acidity due to NOx 

and SOx oxidation, and thus enhances proton-dissolution of mineral dust. However, 

combustion emissions from biomass burning and oil combustion of anthropogenic origin 

also contribute significantly to the DFe tropospheric concentrations. Moreover, OXL 

aqueous-phase formation and therefore organic ligand-promoted Fe dissolution is 

favoured due to the high biogenic NMVOC emissions during the warm season 

(Myriokefalitakis et al., 2011). On the contrary, during SON (September-October-
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November; Fig. 6f) the model calculates lower DFe deposition fluxes, of ~0.109 Tg-Fe 

season
-1

 due to the weaker photochemical activity and therefore the lower Fe dissolution 

fluxes both from proton- and organic ligand- promoted dissolution. Note, also, that most 

dust and TFe emissions occur in the mid-latitudes of the Northern Hemisphere where the 

majority of anthropogenic emissions of acidity precursors also occur (Fig. S1). 

3.6 Model iron deposition evaluation 

In Fig. 7, TM4-ECPL deposition fluxes of TFe and DFe (this work) are compared to the 

estimates over four Atlantic Ocean regions (Fig. S7a-d) based on the observations of 

Baker et al. (2013) as well as the deposition fields from the modelling studies of 

Mahowald et al. (2009) and Johnson et al. (2010) as compiled and presented by Baker et 

al. (2013). Both of these modelling studies assumed a constant Fe content of 3.5% in dust 

and a proton-promoted Fe dissolution. DFe deposition fluxes have been calculated for 4 

regions as described in Baker et al. (2013), with Region 2 corresponding to North 

Atlantic dry regions, Region 3 corresponding to intertropical convergence zone (ITCZ), 

Region 4 to South Atlantic dry regions and Region 5 to South Atlantic storm rainfall (Fig. 

S7a-d).  

In the South Atlantic (Region 4) during AMJ (April-May-June) TM4-ECPL calculations 

of TFe deposition show a broad agreement with the measurements and also agree with 

the other modelling studies, when taking into account the large uncertainty associated 

with these estimates. On the other hand, the model overestimates the measurements of 

TFe in Region 2 and Region 3 during AMJ, similarly to the modelling study by 

Mahowald et al. (2009). These regions are both strongly affected by Sahara dust outflow. 

Thus the model overestimate of TFe observations by Baker et al. (2013), while DFe 

observations are much better captured by the model, could be due to a longer lifetime of 

TFe in the model than in the atmosphere resulting from smaller size distributions of TFe 

in the model than in reality. During SON (Fig. 7b), TM4-ECPL overestimates the 

measured values from Baker et al. (2013), similarly to the modelling study by Mahowald 

et al. (2009). For Region 4 during SON the model agrees well with the Baker et al. (2013) 

estimates and calculates lower TFe deposition fluxes compared to Mahowald et al. (2009) 
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but very close to the estimation from Johnson et al. (2010). Overall, TM4-ECPL model 

overestimates the observed DFe deposition over Regions 2, 3 and 4 during both studied 

periods, while it underestimates DFe deposition over Region 5, similarly to other model 

estimates (Fig. 7c,d). 

 

4 Sensitivity of dissolved iron to air-pollutants 

The response of mineral-Fe dissolution to the changes in emissions is here assessed by 

comparing simulations performed using anthropogenic and biomass burning PAST and 

FUTURE emissions (see Sect. 2). Atmospheric acidity strongly depends on SOx and NOx 

anthropogenic emissions and Fe solubility is impacted by atmospheric acidity as 

discussed above. Minerals dissolution is therefore expected to be significantly affected by 

anthropogenic emissions. Iron anthropogenic and biomass burning emissions also vary as 

shown in Table 1 and explained in Sect. 2.3. Note, however, that meteorology, dust 

emissions and biogenic NMVOC emissions (and thus OXL precursors from biogenic 

sources) are kept constant for both PAST and FUTURE simulations, corresponding to the 

year 2008 (i.e. PRESENT simulation). Thus, the computed changes for species that 

regulate the mineral-Fe proton- and ligand-dissolution (e.g. SO4
2-

, NH4
+
, NO3

-
 and OXL), 

as presented in Fig. S8, are due to the respective anthropogenic and biomass burning 

emission differences between PAST, PRESENT and FUTURE simulations. 

4.1 Past and future changes in iron dissolution 

For the PAST simulation, the anthropogenic emissions (e.g. NOx, NHx and SOx) are a 

factor of 5-10 lower than present day emissions (Lamarque et al., 2010). Thus, compared 

to the present day, the model calculates significant changes in the aerosol-phase pH in the 

PAST simulation with less acidic (aerosol and cloud) pH over the surface Northern 

Hemisphere oceans but a more acidic pH, over Europe due to extensive coal combustion 

in 1850 (Fig. S2e,g,i). FUTURE simulation projects in general a less acidic aerosol pH 

(Fig. S2f,h,j) when compared to the present-day simulation, owing to lower NOx and SOx 

emissions. Indeed, for the FUTURE simulation, anthropogenic emissions for most of the 
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continental areas are projected to be lower than the present-day and to almost return to 

pre-1980 levels due to air quality regulations (Lamarque et al., 2013).  

Past and future changes of the atmospheric acidity (Fig. S2) have a significant effect on 

mineral-Fe dissolution (Fig. 8a and Fig. 8b respectively). For the PAST simulation the 

model calculates about 80% lower proton-promoted mineral Fe dissolution (~0.025 Tg-

Fe yr
-1

) compared to PRESENT simulation (~0.137 yr
-1

). As far as the FUTURE 

simulation is concerned, proton-promoted mineral Fe dissolution (~0.036 Tg-Fe yr
-1

) is 

also projected to be about three times lower than at present. In contrast to these changes 

due to atmospheric acidity, higher contribution of organic-ligand to the total mineral-Fe 

dissolution is computed; for the PAST and FUTURE simulations the model calculates 

higher global-scale organic ligand-promoted mineral Fe dissolution (~0.040 Tg-Fe yr
-1

 

and ~0.045 Tg-Fe yr
-1

, respectively) compared to the PRESENT (~0.038 yr
-1

). Thus, the 

contribution of organic ligand-promoted mineral-Fe dissolution process to the total 

dissolution flux is calculated to show an inverse pattern compared to the proton-promoted 

one (Fig. 8c,d). Differences in the pH of atmospheric (aerosol and cloud) water and 

oxidant levels can affect significantly OXL aqueous-phase chemical production 

(Myriokefalitakis et al., 2011). According to TM4-ECPL calculations the increase in 

OXL levels enhances the organic-ligand promoted Fe-mineral dissolution in remote 

oceanic regions with very low dust load. However, dust load over the remote oceans 

could increase if dust outbreaks become more important in the future (Goudie, 2009). 

One other aspect of the organic ligand-promoted mineral-Fe dissolution is also the effect 

on the speciation of dissolved and bioavalable Fe. According to the chemical scheme 

used in this work, the production of Fe(II)-oxalato complexes increases significantly the 

ferrous content in the DFe, in contrast to the proton-promoted mineral-Fe dissolution 

where Fe(III)-complexes dominate total DFe production. Indeed, when only the proton-

promoted Fe dissolution is considered in our model, the ferrous-complexes are produced 

during the day, when the Fe(III) is converted into Fe(II) as a result of the Fe(III) 

photolysis (e.g. Deguillaume et al., 2004). However, when the organic ligand Fe-

dissolution is taken into account, the Fe(II) is increased, since there is production of 

ferrous complexes even under dark conditions. This may explain also the observed high 
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Fe(II) content compared to Fe(III) in the DFe in precipitation over the Mediterranean 

(Theodosi et al., 2010). However, our model calculates much lower Fe(II) content in DFe 

(Fig. 4c) compared to that study indicating a model underestimate of Fe(II) source 

potentially those associated with the organic ligand promoted contribution to DFe. TM4-

ECPL calculates that the decrease in the atmospheric acidity both in the PAST and in the 

FUTURE compared to the PRESENT simulations increases the importance of organic-

ligand mineral-Fe dissolution and thus leads to a significant enhancement of the Fe(II) 

surface concentrations and thus its content in DFe (Fig. S9 a,b) and a simultaneous 

reduction of Fe(III) (Fig. S9 c,d). 

4.2 Past and future changes in iron deposition 

The model calculates a DFe deposition flux of ~0.213 Tg-Fe yr
-1

 (with ~0.063 Tg-Fe yr
-1

 

over oceans) in the PAST that is about half (to one third over the oceans) (Fig. S9e, 

negative differences) compared to PRESENT (~0.496 Tg-Fe yr
-1

 with ~0.191 Tg-Fe yr
-1

 

over oceans). On the other hand, FUTURE DFe deposition is calculated to be ~0.369 Tg-

Fe yr
-1

 (with ~0.136 Tg-Fe yr
-1

 over oceans) which is about 25% lower than the simulated 

global PRESENT deposition (Fig. S9f). This can be explained by lower amounts of 

combustion DFe-containing aerosols simulated to be emitted in the PAST (~0.011 Tg-Fe 

yr
-1

 from fossil fuel combustion and ~0.013 Tg-Fe yr
-1

 from biomass burning aerosols) 

compared to the PRESENT simulation (~0.070 Tg-Fe yr
-1

 from fossil fuel combustion 

and ~0.127 Tg-Fe yr
-1

 from biomass burning aerosols), as well as in the FUTURE 

(~0.013 Tg-Fe yr
-1

 from fossil fuel combustion) compared to the PRESENT simulation. 

However, higher emissions of biomass burning Fe-containing aerosols are projected for 

the FUTURE (~0.155 Tg-Fe yr
-1)

 that (see also Table 1) that counteract the projected 

lower Fe emissions contained in fossil fuel aerosols and the weaker mineral Fe-

dissolution for the FUTURE simulation. The weaker acidification of mineral dust in the 

PAST and FUTURE compared to the PRESENT atmosphere (Fig. S7e,g,i and Fig. 

S7f,h,j respectively) can be also seen in SO4
2-

 and NO3
-
 surface concentrations, by the 

negative changes from present day shown in Fig. S8a,c and Fig. S8b,d, respectively.  
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4.3 Biogeochemical implications 

The determination of iron solubility is important to understand the carbon 

biogeochemical cycle. Okin et al. (2011) have shown that in HNLC areas, atmospheric 

deposition of Fe to the surface ocean could account for about 50% of carbon fixation, 

although they pointed to the large uncertainties in the speciation and solubility of 

deposited Fe that are associated with these estimates. Thus, the impact of Fe on ocean 

productivity, and subsequently on Earth’s climate system, is expected to be most 

important in HNLC areas such as the Southern Ocean (Boyd et al., 2000). However, 

because the DFe deposited from the atmosphere to the surface water follows the water 

flow inside the ocean, atmospheric deposition impact is expected to be geographically 

extended compared to the surfaces where this deposition occurs and can be only 

evaluated by an ocean biogeochemical model. For the characterization of HNLC oceanic 

regions in this study, the annual mean global NO3
-
 surface water concentrations from the 

LEVITUS94 World Ocean Atlas (http://iridl.ldeo.columbia.edu/SOURCES/ 

.LEVITUS94/) and the monthly chlorophyll-a (Chl-a) concentrations MODIS retrievals 

taken into account in the model (Myriokefalitakis et al., 2010) for the year 2008 are used. 

The model grid boxes corresponding to HNLC waters (Fig. S7e) are here defined based 

on the co-occurrence of surface seawater NO3
-
 concentrations of > 4 μM (Duce et al., 

2008) and Chl-a concentrations of < 0.1 mg m
-3

 (Boyd et al., 2007). 

The deposition fluxes of TFe and DFe over oceans are presented in Fig. 9a and Fig. 9b, 

respectively. The model calculates that ~1.052 Tg-Fe yr
-1

 of TFe are deposited over the 

HNLC ocean with the maximum deposition fluxes calculated over the Northern Pacific 

Ocean (~5-10 ng-Fe m
-2

 s
-1

) and the lowest over the Southern Ocean (~0.05-0.5 ng-Fe m
-2

 

s
-1

). The same pattern is also calculated for the DFe deposition, with maximum DFe 

deposition fluxes over the equatorial Atlantic Ocean (~0.5 ng-Fe m
-2

 s
-1

), relatively high 

deposition fluxes over the Northern Pacific Ocean (~0.01-0.05 ng-Fe m
-2

 s
-1

) and lower 

over the Southern Ocean (up to ~0.005 ng-Fe m
-2

 s
-1

). TM4-ECPL calculates a deposition 

flux of ~ 0.033 Tg-Fe yr
-1

 of DFe over the HNLC waters which represents ~17% of the 

total oceanic DFe deposition flux and ~7% of the global one. 

http://iridl.ldeo.columbia.edu/SOURCES/%20.LEVITUS94/
http://iridl.ldeo.columbia.edu/SOURCES/%20.LEVITUS94/
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The percentage differences of calculated PRESENT DFe deposition fluxes over oceans 

from the PAST and FUTURE simulations are depicted in Fig. 9c and 9d, respectively. 

The model in general calculates for both PAST and FUTURE simulations lower DFe 

deposition fluxes over oceans. DFe deposition fluxes are calculated to be ~80% higher in 

the PRESENT than in the PAST simulation (Fig. 9c), which can be attributed both to the 

increase of i) mineral Fe dissolution (almost 3-fold) and ii) primary DFe emission (from 

both fossil fuel combustion (6-fold) and biomass burning sources (almost an order of 

magnitude)). Furthermore, based on emission projections following air quality 

legislation, decreases of about 30-60% in DFe deposition are calculated for the FUTURE 

simulation over the Northern Pacific and Atlantic oceans, the Arabian Sea, the Bay of 

Bengal and the East Mediterranean Sea and lower reductions (less than 20%) over the 

remote tropical Pacific and Atlantic Oceans and the Southern Ocean. These smaller 

changes from the PRESENT simulation calculated for the FUTURE (globally about 45% 

reduction) than for the PAST (globally almost 3-fold change) are attributed to the 

projected increase of Fe biomass burning emissions (about 20%) that partially 

counterbalance the more than 5-fold reduction in anthropogenic emissions of Fe. Overall, 

these sensitivity PAST-to-FUTURE simulations clearly support that changes in i) 

atmospheric acidity and ii) Fe combustion sources, both driven by anthropogenic 

pollutants emissions, affect significantly DFe deposition over the oceans, and therefore 

they have the potential to also perturb open-ocean phytoplankton growth and thus the 

carbon biogeochemical cycling. 

 

5 Conclusions 

Primary Fe emissions from dust and combustion sources (fossil fuel and biomass 

burning) of TFe and DFe, as well as the atmospheric processing by proton- and organic 

ligand- promoted mineral Fe-dissolution together with aqueous-phase photochemical 

reactions between oxidation states of Fe (III/II), are taken into account in the state-of-the-

art chemistry transport model TM4-ECPL. The model calculates for present day 

conditions an atmospheric Fe dissolution flux of ~0.175 Tg-Fe yr
-1

 of which ~22% is 
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attributed to the impact of organic ligands on the Fe cycle. The atmospheric burden of 

DFe is calculated to be ~0.024 Tg-Fe and the dissolved Fe annual deposition flux over 

the oceans to be ~0.119 Tg-Fe yr
-1

. SFe (global mean of about 2.8%) is calculated to vary 

spatially with minima over the dust sources (~1%). This global mean solubility of Fe, 

originates from dust (1.3%), biomass burning aerosols (1.3%) and fossil fuel combustion 

(0.3%). Note that these model estimates are associated with large uncertainties in the 

kinetics of Fe dissolution as well as the primary total and dissolved Fe emissions. As 

earlier explained, model results depend on model resolution but more importantly depend 

on assumptions made in the model, such as neglecting any organic ligand dissolution of 

Fe in aerosol water and treating biomass burning and fossil fuel burning DFe as primary.  

Sensitivity simulations show that increases in anthropogenic and biomass burning 

emissions since 1850 resulted in both enhanced Fe combustion emissions and a more 

acidic environment and thus more than double DFe deposition (~0.213 Tg-Fe yr
-1

 in the 

year 1850 against ~0.496 Tg-Fe yr
-1

 nowadays). Air-quality regulations are projected to 

decrease anthropogenic emissions and thus atmospheric acidity in 2100. Our model 

results show a 5-fold decrease in Fe emissions from anthropogenic combustion sources 

(~0.013 Tg-Fe yr
-1

 in the year 2100 against ~0.070 Tg-Fe yr
-1

 nowadays), and about 45% 

reduction in mineral Fe dissolution (~0.078 Tg-Fe yr
-1

) compared to the present day 

(~0.175 Tg-Fe yr
-1

), while DFe biomass burning emissions are enhanced by 20% (~0.155 

Tg-Fe yr
-1

 in the year 2100 against ~0.127 Tg-Fe yr
-1

 nowadays). Overall, the model 

calculates for 2100 a global DFe deposition of ~0.369 Tg-Fe yr
-1

 that is ~25% lower than 

the present day deposition. 

Focusing on oceanic regions, an increase in DFe deposition of ~3 times is calculated for 

the last 150 years (0.063 Tg-Fe yr
-1

 in the year 1850 against ~0.191 Tg-Fe yr
-1

 nowadays) 

but a decrease of ~30% over HNLC oceans is projected for the future (0.024 Tg-Fe yr
-1

 in 

the year 2100 against ~0.033 Tg-Fe yr
-1

 nowadays). In view of the importance of Fe as a 

micronutrient for marine ecosystems, the calculated changes in Fe-containing aerosol 

solubility due to air-quality changes, indicate the necessity of the implementation of 

comprehensive mineral Fe-dissolution processes as well as Fe combustion emissions in 
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coupled climate-biogeochemistry models to account for feedbacks between climate and 

biogeochemical cycles. 
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Tables 

Table 1. Emissions of dust (in Tg yr
-1

), Fe contained in dust-minerals (illite, kaolinite, 

smectite, hematite and feldspars; in Tg-Fe yr
-1

), TFe and DFe (in Tg-Fe yr
-1

) used in 

TM4-ECPL for a) present (year 2008), b) past (year 1850) and c) future (year 2100) 

simulations.  

 

Species Year 
Biomass 

Burning 

Anthropogenic 

Combustion 

Ships’ Oil 

Combustion 
Soils 

Dust 2008    1091 

Fe (illite) 2008    8.473 

Fe (kaolinite) 2008    0.871 

Fe (smectite) 2008    17.154 

Fe (hematite*) 2008    5.663 

Fe (feldspars) 2008    2.761 

TFe 

1850 0.120 0.147 9.83E-05 

35.048 2008 1.200 0.768 0.015 

2100 1.456 0.158 0.002 

DFe 

1850 0.013 0.011 7.99E-05  

0.125 

 

2008 0.127 0.058 0.012 

2100 0.155 0.012 0.001 

*Hematite is here used as surrogate for Hematite and Goethite 
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Table 2. Constants used for proton-promoted iron dissolution rates and emissions 

calculations for different types of iron-containing minerals: Water soluble/Dissolved iron 

(DFe); Fast-released iron (FeF); Intermediate-released iron (FeI); Slowly-released iron 

(FeS); Refractory iron (FeR). The parentheses contain the percentage content of Fe type in 

each mineral. 

 

Mineral Fe type 

KMIN 

(mol m
-2

 s
-1

) 

m 

AMIN 

(m
2
 g

-1
) 

Keq n 

Illite 

FeF (2.7%) (a 1.17x10-09exp[9.2x103(1/298-1/T)] (b 1(b,c 205(b,e 41.7 2.75 

FeS (97.3%) 1.30x10-11exp[6.7x103(1/298-1/T)] (d 0.39 (d 90 (d   

Smectite 

FeI (5%) (a 8.78x10-10exp[9.2x103(1/298-1/T)] (b 1(b,c 125(b,e 3.31 2.85 

FeS (95%) 8.10x10-12exp[6.7x103(1/298-1/T)] (d 0.3(d 300 (d   

Hematite* 
FeR (100%) (b 1.80x10-11exp[9.2x103(1/298-1/T)] (b 0.5(e 9 (b,a 0.44 2.85 

Kaolinite 

DFe(4.3%) (b      

FeR (95.7%) 4.00x10-11exp[6.7x103(1/298-1/T)] (f 0.1(f 20 (f 0.44(b 
2.85(b 

Feldspars 

DFe (3%) (b      

FeR (97%) 2.4x10-10exp[7.7x103(1/298-1/T)] (f 0.5(f 1(f 0.44(b 
2.85(b 

a) Shi et al, 2011b; b) Ito and Xu, 2014; c) Lanzl et al., 2012; d) Ito, 2012; e) Bonneville et al., 2004; f) Meskhidze et 

al., 2005 and references therein. 

*Hematite is here used as surrogate for Hematite and Goethite 
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Table 3. Constants used for ligand (oxalate)-promoted iron dissolution from illite and 

hematite.  

Mineral 

Dissolution rates 

(mol Fe m
−2

 s
−1

) 

Amin  

(m
2
 g

-1
) 

Ref. 

Illite 3.00x10-10 [OXL2-] + 6x10-11 205 

Paris et al., 2011; 

Johnson and Meskhidze, 

2013 

Hematite* 
   0.36 *(3.00x10-12 [OXL2-] – 2x10-12) 

+ 0.64*(1.00x10-11 [OXL2-] + 7x10-13) 

9 

Paris et al., 2011; 

Johnson and Meskhidze, 

2013 

*Hematite is here used as surrogate for Hematite and Goethite 
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Figures 

Figure 1. Atmospheric processing of dust-Fe taken into account in the model. Details on 

the chemical reactions are given in Table S2. 
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Figure 2. Annual averaged distributions (in ng-Fe m
-2

 s
-1

) of a) total anthropogenic DFe 

primary emissions, b) total biomass burning DFe emissions, c) total DFe mineral 

emissions and d) total mineral-Fe dissolution flux as calculated by TM4-ECPL for the 

present atmosphere.  
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Figure 3. Annual averaged a) proton-promoted and b) ligand-promoted mineral-Fe 

dissolution flux (in ng-Fe m
-2

 s
-1

) as calculated by TM4-ECPL for the present 

atmosphere. 
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Figure 4. Calculated annual mean surface concentrations for the present atmosphere for a) 

TFe in μg-Fe m
-3

, b) DFe in ng-Fe m
-3

, and c) the percent fraction of Fe(II) to total DFe  

(%Fe(II)/DFe). 
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Figure 5. Log-scatter plot of model (y-axis) comparison with cruises observations over 

the Atlantic Ocean (Baker et al., 2013) and Indian Ocean (Witt et al., 2006) (x-axis) for a) 

TFe, b) the DFe and c) the SFe fractions in ambient aerosols, d) TFe comparison with 

global observations from Mahowland et al. (2005) and e) timeseries of monthly variation 

of TFe in ambient aerosols at Finokalia station (Koulouri et al., 2008); monthly mean 

observations are marked with dots, their variability is shown with the dashed area, model 

results are plotted by the black continuous line. In the scatter plots, the continuous black 

line shows the 1:1 correlation, while the dashed lines show the 10:1 and 1:10 

relationships. 
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Figure 6. Calculated present annual deposition (in ng-Fe m
-2

 s
-1

) for a) TFe, b) DFe, and 

the seasonal DFe deposition fluxes for c) December, January and February (DJF), d) 

March, April and May (MAM), e) June, July and August (JJA) and f) September, 

October and November (SON). In brackets (parentheses) the amounts of Fe deposition 

over the globe (only over oceans) are provided. 
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Figure 7. Comparison of Total Fe (TFe) and Dissolved Fe (DFe) input estimates to four 

Atlantic Ocean regions during the April-May-June (AMJ; left panels: a, c) and 

September-October-November (SON; right panels: b, d) periods (in Gmol-Fe) as 

compiled by Baker et al. (2013). 
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Figure 8. The percentage differences of PAST (left panels: a, c, e) and FUTURE (right 

panels: b, d, f) simulations from the PRESENT simulation for a, b) Proton-

promoted/Total mineral-Fe Dissolution Fraction and c, d) Ligand-promoted/Total 

mineral-Fe Dissolution Fraction. 
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Figure 9. Calculated present annual deposition over oceans (in ng-Fe m
-2

 s
-1

; in brackets 

(parentheses) the amounts of Fe deposition over oceans (only over HNLC regions are 

provided)) for a) TFe and b) DFe,  and the percentage (%) differences in DFe deposition 

of c) PAST and d) FUTURE simulations from the PRESENT simulation. 

 


