
NewAlgorithms andMethodology for

Analysing Distances

George Kettleborough

Supervisors:
Dr K.T. Huber

Prof. V.J. Rayward-Smith
Dr B. De La Iglesia

Doctor of Philosophy

University of East Anglia

School of Computing Sciences

June, 2014

¿is copy of the thesis has been supplied on condition that anyone who consults it is understood to

recognise that its copyright rests with the author and that use of any information derived there

from must be in accordance with current UK Copyright Law. In addition, any quotation or extract

must include full attribution.

Abstract

Distances arise in a wide variety of di�erent contexts, one of which is partitional cluster-
ing, that is, the problem of �nding groups of similar objects within a set of objects. ¿ese
groups are seemingly very easy to �nd for humans, but very di�cult to �nd for machines
as there are two major di�culties to be overcome: the �rst de�ning an objective criterion
for the vague notion of “groups of similar objects”, and the second is the computational
complexity of �nding such groups given a criterion. In the �rst part of this thesis, we focus
on the �rst di�culty and show that even seemingly similar optimisation criteria used
for partitional clustering can produce vastly di�erent results. In the process of showing
this we develop a new metric for comparing clustering solutions called the assignment
metric. We then prove some new NP-completeness results for problems using two related
“sum-of-squares” clustering criteria.

Closely related to partitional clustering is the problem of hierarchical clustering. We
extend and formalise this problem to the problem of constructing rooted edge-weighted
X-trees, that is trees with a leafset X. It is well known that an X-tree can be uniquely
reconstructed from a distance on X if the distance is an ultrametric. But in practice the
complete distance on X may not always be available. In the second part of this thesis we
look at some of the circumstances under which a tree can be uniquely reconstructed from
incomplete distance information. We use a concept called a lasso and give some theoretical
properties of a special type of lasso. We then develop an algorithm which can construct
a tree together with a lasso from partial distance information and show how this can be
applied to various incomplete datasets.

ii

Contents

Abstract ii

List of Figures vi

List of Algorithms ix

List of Tables x

1 Introduction

2 Partitional Clustering
. Summary .
. Datasets and metric spaces .

.. Euclidean space metrics .
.. Sequence space metrics .
.. Mixed data metrics .
.. Set metrics .

. Partitions .
.. ¿e space of partitions .
.. Comparing partitions .

. Partitional clustering .
.. Criteria .
.. Computational complexity .
.. Methods .

3 Sum-of-Squares Clustering
. Introduction .

.. Summary .
.. Multiset datasets .
.. Multiset clusterings .

iii

CONTENTS iv

. Clustering criteria .
.. Consistency .
.. Linear separability .

. Complexity issues .
.. All-squares clustering .
.. Centroid-distance clustering .

. ¿e assignment metric .
.. Comparing fuzzy partitions .
.. Li ing the underlying metric space
.. Upper bound .

. Worst case performance .
. Conclusion .

4 Hierarchical Clustering
. Summary .
. Graphs, Trees and Distances .

.. History .
.. Basic terminology and assumptions

. Tree reconstruction .
.. Reconstruction from subtrees .
.. Reconstruction from distances .
.. Reconstruction from partial distances

. Lassos .
.. De�nitions and basic properties
.. Characterising lassos: the child-edge graph

5 Constructing Trees from Lassos
. Introduction .

.. Summary .
.. Motivation .

. ¿e Lasso algorithm .
.. Method outline .
.. Suitable cliques .
.. Recomputing the distance Dm .
.. An example .

. Results and Discussion .
.. Missing data .

CONTENTS v

.. A yeast dataset .
.. A wheat dataset .

. Conclusion .
. Acknowledgements .

6 Distinguished Minimal Topological Lassos
. Introduction .

.. Summary .
.. Minimal topological lassos and the graph Γ(L)

. ¿e case that Γ(L) is a block graph .
. A special type of minimal topological lasso
. A su�cient condition for being distinguished
. Characterisation of distinguished minimal topological lassos
. Heredity of distinguished minimal topological lassos
. Conclusion .

7 Conclusion and Further Work

8 Bibliography

List of Figures

. Partition of X ∪ Y ∪ Z. ¿e quantities a, b, c, d , e , f , g represent the cardi-
nalities of each disjoint set as shown.

. X and Y are sets with elements labelled by and respectively. Elements
in both sets are labelled with . ¿e Hausdor� distance between X and Y
is, informally, the greatest distance one must travel if starting from a point
in one set and travelling to the closest point in the other. ¿is distance is
marked by d in the diagram.

. ¿e Hasse diagram of the lattice of partitions of a set, D = {a, b, c, d}
[112]. Each vertex in the graph is a partition {C, . . . ,Ck} of D which we
denote by C, . . . ,Ck for clarity.

. ¿e clusters belonging to two partitions {C, . . . ,C} and {C, . . . ,C}
are shown with all similarities between pairs shown dashed. ¿e solid
lines represent one possible matching between the clusters. In this case,
the matching is an injection.

. ¿e chaining e�ect can produce clusters with poor homogeneity and the
dissection e�ect can produce clusters with poor separation.

. A dataset in Euclidean space consisting of three points arranged in an
equilateral triangle with another point at the centre.

. Each of the k clusters correspond to star graphs with the centroid at the
centre, so there is a dominating set of size k as outlined.

. ¿ree clusterings on the same dataset.

. Two clusterings, C and C, formed of six clusters each. ¿ese clusterings
are optimally di�erent under both the assignment metric and variation of
information.

. Relative positions of elements to be clustered. A and B contain N elements
each, C and D contain N + elements each.

vi

LIST OF FIGURES vii

. Charles Darwin’s �rst diagram of an evolutionary tree from his notebook
Transmutation of species, 1837 [33].

. A graph (i) and a directed graph (ii).

. A tree (i) and a rooted phylogenetic X-tree (ii).

. Adendrogram is a visual representation of a tree. Here we see two di�erent
ways to draw the same edge-weighted X-tree.

. An illustration of Build with an input of R = {T, T}. [R, S] is the
auxiliary graph built in the �rst iteration of the algorithm and T is the
�nal tree constructed.

. A tree can be viewed as a hierarchy of partitions.

. ¿e two di�erent trees constructed by Farach’s method (i) and the MVL
method (ii) from the same partial distance information.

. Two equidistant X-trees. All edges have weight 1 except bold edges which
have weight 2. For L = {ac, de , bc, ce , cd} both trees induce the same
distances over the cords in L despite having di�erent topologies. In this
case L is not a topological lasso.

. UPGMA fails to reconstruct the correct tree if the inputted distance is not
ultrametric. Here the true (non-equidistant) tree is shown in (i) and the
tree constructed by UPGMA in (ii).

. For the partial distance D on X = {a, . . . , e} as indicated by the edge-
weights of the graph ΓωD depicted in (i) we depict in (iii) the equidistant
tree (T ,ω) returned by Lasso and in (iv) the strong lasso found by Lasso
for T . In (ii) we depict updated distance D in the �rst repetition step of
Lasso in terms of the graph ΓωD

.

. For all three equidistant X-tree types, we plot the normalised Robinson-
Foulds distance between T and T ′∣Y .

. For T ′ an X-tree with ∣X∣ = and maximum out-degree k = , , and
 we depict the proportion of X which forms the leaf set of T . – see text
for details.

. An equidistant tree returned by Lasso from the yeast dataset with %
of the distances randomly removed. ¿e sixteen European strains are
denoted by the label “Eu”, the four Far Eastern strains by “FE” and the six
American strains by “Am”. ¿e uppermost �ve European strains (CBS5829
to KPN3829), together with N_17, derive from outside the UK, with the
remaining ten European strains having been isolated within the UK. . .

LIST OF FIGURES viii

. Consensus tree built from 100 runs of Lasso on matrices with 10 of
the distances randomly removed. ¿e number next to a vertex shows the
number of times the cluster induced by that vertex appeared in the input
of Consense. ¿e length of an edge is of no relevance.

. ¿e Lasso tree for wheat dataset A coloured according to the groupings
found by ADMIXTURE.

. ¿e Lasso tree for wheat dataset B coloured according to the groupings
found by ADMIXTURE.

. ¿e equidistant supertree built by Lasso for the two wheat datasets. Ac-
cessions from the GEDIFLUX dataset (A) are indicated by green branches,
those from the Turkish dataset (B) by blue branches, with the 26 accessions
found in both datasets (C) indicated by red branches. Note that the shared
accessions are spread across the supertree and that the tree contains all
503 input taxa.

. (i) ¿e graph Γ(L) with vertex set X = {a, b, . . . , f } for the set L =
{ab, cd , e f , ac, ce , ea}. (ii) Two non-equivalent X-trees T and T ′ that
are both topologically lassoed by L. In fact, L is a minimal topological
lasso for either one of them.

. For X = {a, . . . , f } and the X-tree T ′ pictured in Figure 6.1 (iii), we
depict in (i) the minimal topological lasso L = {ad , ec, f a, f e , cd , bd}
for T ′ in the form of Γ(L). In the same way as in (i), we depict in (ii)
the transformed minimal topological lasso L† for T ′ such that Γ(L†) is a
block graph and in (iii) the distinguished minimal topological lasso L∗

for T ′ obtained from L† – see text for details.
. For X = ⟨⟩ and the depicted X-tree T , the enumeration of the interior

vertices of T considered in the proof of¿eorem 20 is indicated in (i). With
regards to this enumeration and the distinguished minimal topological
lassoL for T pictured in the form of Γ(L) in (ii), the total ordering σ of X
considered in that proof restricted to the elements in {θ(v), . . . , θ(v)}
is , , , , , .

. For X′ = {a, c, d} and X′′ = {a, b, c} the X′∪X′′-tree T is a supertree for
the depicted X′ and X′′ trees T ′ and T ′′, respectively. Clearly, L′ = {cd}
and L′′ = {ab, bc} are sets of cords of X′ and X′′, respectively, and L =
L′ ∪L′′ is a strong lasso for T but L′ is not even an equidistant lasso for T ′.

List of Algorithms

 Kennard-Stone initial centres algorithm.
 Yuan-Meng-Zhang-Dong initial centres algorithm.
 k-means++ initial centres algorithm.
 Partition Around Medoids (PAM).
 CLARANS.
 Build.
 Agglomerative hierarchical clustering algorithm.
 UPGMA.
 ¿e Lasso algorithm .
 Random tree generation .

ix

List of Tables

. ¿e value of the Bell number, Bn, for some selected values of n. ¿e value
of Bn is equivalent to the number of possible partitions of an n element set.

. Various pair counting based measures applied to the example partitions
C∗ and C∗ (.).

. Various set matching based measures applied to the example partitions
C∗ and C∗ (.).

. Variation of Information and its components applied to the example parti-
tions C∗ and C∗ (.) using base 2 for the logarithms in equations (.)
and (.).

. ¿e costs of possible 2-clusterings of D, with minimum costs underlined.

. Normalised Robinson-Foulds distances for the balanced trees and the
sizes of the supporting strong lassos.

. Normalised Robinson-Foulds distances for the Yule trees and the sizes of
the supporting strong lassos.

. Normalised Robinson-Foulds distances for the caterpillar trees and the
sizes of the supporting strong lassos.

x

Chapter 1

Introduction

Metric spaces are a generalisation of the world in which we live where physical objects

appear to exist in 3-dimensional space andwe have a notion of the distance between pairs of

objects. ¿e distance that many people think of is the Euclidean distance, the length of the

straight line between the objects that one wouldmeasure with a ruler. However, taxi drivers

are more familiar with the Manhattan distance, the distance one must travel between

locations by traversing the grid-like streets of a city, and airline pilots the great circle

distance, the shortest distance between two points on a sphere. ¿ere are many ways to

calculate a distance but thosemost familiar to humans all share a few key properties, namely

they are metrics. We therefore live in a metric space, or at least a close approximation of

one.

Increasingly, our world is becoming �lled with other, more abstract types of objects

that “live” outside of the physical space: data. Regardless of the form that data takes, be it

numbers, text or pictures, the presence of data always comes with the need for a method

of comparison. Since we are most at ease with thinking about our own world, it seems

natural that we should imagine data points as “living” in a space with a distance de�ned

which holds the same key properties as the distances we use every day. ¿us, the data

points become members of their own metric space.

1

CHAPTER . INTRODUCTION 2

¿ere are a number of problems that present themselves when we have a metric space.

¿e problem of identifying groups of similar objects based on their relative proximity is

called clustering. ¿e problem is very old, ubiquitous and has a rich and diverse set of

applications. Despite the fact that intelligent beings seem to be naturally adept at the task,

it is a well-known hard problem for a computer, and in more than one sense. ¿e �rst

di�culty is in de�ning precisely what one actually expects in terms of a metric, rather

than the vague objective of “groups of similar objects”. ¿e second di�culty is in the sense

of computational complexity. In the �rst part of this thesis we focus mainly on the �rst

di�culty in the context of partitional clustering, which seeks to partition a set into a given

number of subsets. Many objective criteria have been developed to measure the usefulness

of a partition as a solution to a given clustering problem, but we show that even seemingly

similar optimisation criteria can produce vastly di�erent results (see Section 3.5).

In order to show that criteria can produce vastly di�erent partitions it is necessary to

be able to compare partitions. Some metrics have been devised for that purpose already

but they are all naïve with respect to the fact that our data itself lives in a metric space.

We �nd ourselves with several layers of metric spaces and we introduce the concept of

“li ing” a metric space to the space of its power set. In this way we introduce a new metric

for comparing partitions that can take into account the fact that the data lives in a metric

space (see Section 3.4.2).

Metrics present themselves in the context of that most well-known and useful data

structure: the tree. In a rooted edge-weighted X-tree, that is a tree with leaf set X, the

graph-theoretic distance between the leaves is a metric called a tree metric. It is well known

that a tree is uniquely de�ned by and can be reconstructed from the tree metric induced

on its leafset. Tree construction is appropriate and desirable in many areas of classi�cation

such as in evolutionary biology. For example, if we had a dataset corresponding to varieties

of some organism, we could �nd a partitional clustering on them in which each cluster

corresponds to a continent, re�ecting the expected result that organisms on the same

continent are more closely related, and those on di�erent continents are more distantly

CHAPTER . INTRODUCTION 3

related. However, a tree can show us not only this information but the relationships

and lineages of each variety in our set. In this way, trees can be considered hierarchical

clusterings and a step up from partitional clusterings.

In practice, though, we may not always have access to the complete distance informa-

tion for a set of elements. Rather we might be presented with a partial distance, that is

where the distance between some pairs elements is unknown. Studying the properties of

partial distances and their ability to uniquely identify a tree has given rise to the theory

of “lassoing” a tree. It turns out that certain subsets of all pairwise distances do indeed

contain enough information to uniquely identify either the topology of a tree, its edge

weights, or both. ¿is theory is reviewed in Section 4.4.

We therefore investigate the problem of constructing an edge-weighted tree from

partial distance information. We begin by investigating the properties of a special type of

lasso and then we present an algorithm for constructing the unique tree which corresponds

to such a lasso. We then turn to the more general problem of reconstruction from partial

distance information and present an algorithm which constructs a tree from a partial

distance and returns the set of given distances which uniquely determine the constructed

tree.

¿is thesis is in two parts with the �rst part focusing on partitional clustering and the

second on reconstruction of hierarchical clusterings (trees) from partial distance informa-

tion. It is organised as follows: in Chapter 2, we introduce the concept of metric spaces and

review various metrics that exist for various objects including partitions. ¿is leads to a

review of partitional clustering, the problem of �nding partitions of a dataset. In Chapter 3,

we focus on clustering and its di�culties by comparing and contrasting two closely related

clustering criteria, called sum-of-squares criteria. In Chapter 4, we turn our attention

to the tree reconstruction problem and introduce trees, tree metrics, reconstruction and

lassos. In Chapter 5, we present an algorithm called Lasso for reconstruction from partial

distances which is consistent according to the theory of lassos and show that it is applicable

to construction of trees and supertrees from partial distance information.

Chapter 2

Partitional Clustering

2.1 Summary

In this chapter we �rst introduce the relevant terminology that is required for much

of the work presented in this thesis including metrics and partitions. We then review the

�eld of partitional clustering including the various criteria which have been developed,

the computational complexity issues associated with the clustering problem and �nally

various methods which have been developed to perform partitional clustering.

2.2 Datasets andmetric spaces

A dataset, in the most general sense, is simply a collection of objects. For now we will

consider the collection to be a set, but later we will look at some generalisations.

Let D be a set. It is important for many applications to be able to compare objects in a

set. For this purpose we can de�ne a function:

d∶D × D → R≥.

Such a function is called a dissimilarity on D. Whenever we have, for any x , y, z ∈ D, that

d(x , y) > d(x , z), we interpret it as “x , y are more dissimilar than x , z”.

4

CHAPTER . PARTITIONAL CLUSTERING 5

Examples of dissimilarities include Bregman divergences, which are generalisations of

Euclidean distance squared for objects in Euclidean space [10], and the Kullback-Leibler

divergence for probability distributions [98].

Some dissimilarities are more useful than others. One would generally expect such a

function to have the following two properties for all x , y ∈ D:

. d(x , y) = d(y, x) (symmetry),

. d(x , x) = (identical elements are most similar).

A dissimilarity on D that satis�es these two properties is called a distance on D. When we

use a distance, objects are usually said to be close or distant instead of similar or dissimilar.

Examples of distances include the Bhattacharyya distance [14] and the single-linkage

distance that we will see in Section 2.2.4.

Two further properties that one may expect a dissimilarity to satisfy are, for all x , y, z ∈

D:

. d(x , y) = only if x = y (identity of indiscernibles),

. d(x , y) + d(y, z) ≥ d(x , z) (triangle inequality).

A distance on D which satis�es all four properties is called ametric on D. If d is a metric

on D then the pair (D, d) is called ametric space.

A metric is usually the most desirable and intuitive type of dissimilarity. In the re-

mainder of this section we review some of the common metrics used for certain types of

objects, namely Euclidean vectors, sequences, mixed vectors and sets.

Metrics exist for many other types of objects including probability distributions, for

which metrics include the Hellinger distance and squared Jensen-Shannon divergence [50].

It is also possible to transform some dissimilarities into metrics, for example see Everitt

[53, chap. 2.5]. In Section 2.3.2 we look at metrics (and other measures) for comparing

partitions and in Chapter 3 we introduce our own metric.

CHAPTER . PARTITIONAL CLUSTERING 6

2.2.1 Euclidean space metrics

LetM bem-dimensional Euclidean space,Rm. For all x = (x, . . . , xm), y = (y, . . . , ym) ∈

M, metrics onM include the familiar Euclidean distance dE de�ned as:

dE(x, y) =
¿
ÁÁÀ

m
∑
i=

(xi − yi),

theManhattan distance dM de�ned as:

dM(x, y) =
m
∑
i=

∣xi − yi ∣,

and the Chebyshev distance dC de�ned as:

dC(x, y) = max
≤i≤m

∣xi − yi ∣.

It should be noted that all three are special cases of theMinkowski distance [41], dI de�ned

as:

dI(x, y) = (
m
∑
i=

∣xi − yi ∣p)
/p

for all x = (x, x, . . . , xm), y = (y, y, . . . , ym) ∈ M where p is the order. For p = ,

dI = dM , for p = , dI = dE and for limp→∞, dI = dC .

¿e Mahalanobis distance [107] is a metric which is equivalent to Euclidean dis-

tance on scaled principle components of the dataset. To make this more precise, let

D = {s, . . . , sn} ⊂ Rm, then the covariance of the ith and jth components in D is de�ned

as:

Si j =

n −
n
∑
k=

(ski − s̄i)(sk j − s̄ j),

where ski means the ith component of the kth element and s̄i means the mean of com-

ponent i across D. In this context, components are o en called features or �elds. ¿e

covariance matrix associated with D is then the m ×m matrix S = [Si j], which is clearly

CHAPTER . PARTITIONAL CLUSTERING 7

symmetric. ¿e Mahalanobis distance, dP ∶D × D → R≥, is then de�ned as:

dP(x, y) =
√

(x − y)S−(x − y)T ,

for all x, y ∈ D.

2.2.2 Sequence space metrics

Sequences are a frequently occurring type of object found in many areas such as evolution-

ary biology and the analysis of natural language. A well-known metric on sequences of

equal length is the Hamming distance [72]. ¿e Hamming distance, for two sequences x

and y of equal length, is equal to the number of positions where x and y di�er.

Another well-known metric, this time on sequences of arbitrary length, is the Lev-

enshtein distance [155]. ¿e Levenshtein distance is an edit distance, where the allowed

edits are insertion, deletion and substitution (for de�nitions, see [103]). ¿e Levenshtein

distance between two sequences x and y is the minimum number of edits required to

transform one sequence into the other.

2.2.3 Mixed data metrics

Euclidean space consists of m-tuples of real numbers, where m is some positive integer.

¿is type of data is o en called numerical data. Another type of data is categorical data,

where the value of each object is one of a �xed, usually small, number of categories, such

as true and false or male and female.

¿e simplest metric for categorical data is the overlap metric, which is also variously

called the split metric, discrete metric or / metric. For a set, D, the overlap metric,

dO ∶D × D → R≥, is de�ned for all x , y ∈ D as:

dO(x , y) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

 if x = y,

 otherwise.

CHAPTER . PARTITIONAL CLUSTERING 8

A frequently occurring type of data appearing in many areas is mixed data, which

consists of m-tuples with both numerical and categorical components. Let D be a set

of such m-tuples. ¿e heterogeneous Euclidean-overlap metric, dH ∶D × D → R≥, uses

normalised Euclidean distance on the numerical components and the overlap metric on

categorical components. It is de�ned as:

dH(x, y) =
¿
ÁÁÀ

m
∑
i=
dHi(xi , yi),

for all x = (x, . . . , xm), y = (y, . . . , ym) ∈ D where

dHi(xi , yi) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dO(xi , yi) if i is a categorical component in D,

∣xi − yi ∣
rangei

otherwise,

for all ≥ i ≥ m where rangei is the di�erence betweenmaximum andminimum observed

values for component i in D. ¿ere also exist generalised Mahalanobis distances for mixed

data, see for example [36].

2.2.4 Set metrics

Metrics are also possible on more complex structures, like sets. ¿roughout this thesis we

use a convention for naming dissimilarities: d is used in general, δ is used for dissimilarities

on sets and, later, we will use ∆ for dissimilarities on partitions.

Symmetric di�erence

Let D be a set and D its powerset. ¿e cardinality of the symmetric di�erence, δ△∶ D ×

D → R≥ is a well-known metric on sets de�ned for all X ,Y ∈ D as:

δ△(X ,Y) = ∣X△Y ∣.

CHAPTER . PARTITIONAL CLUSTERING 9

X

YZ

a

bc

d

e

f
g

Figure 2.1: Partition of X ∪ Y ∪ Z. ¿e quantities a, b, c, d , e , f , g represent the cardinalities of
each disjoint set as shown.

A related dissimilarity is the normalised symmetric di�erence, δ△∶ D × D → R≥,

de�ned as:

δ△n(X ,Y) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∣X△Y ∣
∣X ∪ Y ∣ if X ∪ Y ≠ ∅,

 otherwise,

for all X ,Y ∈ D.

¿eorem 1. ¿e normalised symmetric di�erence is a metric on D.

¿e following proof was presented in [169], with some errors. We reproduce the proof

here with the errors corrected.

Proof. It is easy to see the function is nonnegative, symmetric and that δ△n(X ,Y) =

if and only if X = Y for all X ,Y ∈ D so we will show that the triangle inequality holds

which is:
∣X△Y ∣
∣X ∪ Y ∣ +

∣Y△ Z∣
∣Y ∪ Z∣ ≥

∣X△ Z∣
∣X ∪ Y ∣

or, equivalently:

 − ∣X ∩ Y ∣
∣X ∪ Y ∣ + −

∣Y ∩ Z∣
∣Y ∪ Z∣ ≥ −

∣X ∩ Z∣
∣X ∪ Z∣ . (.)

CHAPTER . PARTITIONAL CLUSTERING 10

We partition X ∪ Y ∪ Z into disjoint subsets as shown in Figure 2.1 and let

a = ∣X ∖ (Y ∪ Z)∣, b = ∣Y ∖ (X ∪ Z)∣,

c = ∣Z ∖ (X ∪ Y)∣, d = ∣(X ∩ Y) ∖ Z∣.

e = ∣(Y ∩ Z) ∖ X∣. f = ∣(Z ∩ X) ∖ Y ∣.

g = ∣X ∩ Y ∩ Z∣,

and for convenience we let

ξ = ∣X ∪ Y ∪ Z∣.

We can now write equation (2.1) as

 − d + g
ξ − c + −

e + g
ξ − a ≥ − f + g

ξ − b

which can be rewritten as
d + g
ξ − c +

e + g
ξ − a ≤ f + g

ξ − b + .

Removing b from the denominators on the le -hand side can only make the le -hand

side greater, so it is su�cient to show that

d + g
ξ − b − c +

e + g
ξ − a − b ≤ f + g

ξ − b + .

Now if we replace with ξ−a−b−c
ξ−a−b−c on the right-hand side and add the fractions on the

le -hand side we get

(ξ − a − b)(d + g) + (ξ − b − c)(e + g)
(ξ − b − c)(ξ − a − b)

≤ (ξ − a − b − c)(ξ − b) + (ξ − a − b − c)(f + g)
(ξ − b)(ξ − a − b − c)

CHAPTER . PARTITIONAL CLUSTERING 11

which when we expand the denominators becomes

(ξ − a − b)(d + g) + (ξ − b − c)(e + g)
ξ − ξa − ξb − ξc + ab + bc + b + ac

≤ (ξ − a − b − c)(ξ − b) + (ξ − a − b − c)(f + g)
ξ − ξa − ξb − ξc + ab + bc + b .

Notice that the denominator on the le -hand side is equal to the denominator on the

right-hand side with the addition of ac so it cannot be less. It is therefore su�cient to

show that

(ξ − a − b)(d + g) + (ξ − b − c)(e + g)

≤ (ξ − a − b − c)(ξ − b) + (ξ − a − b − c)(f + g).

Starting with the le -hand side we have

(ξ − a − b)(d + g) + (ξ − c − b)(e + g)

= (ξ − a − b − c)(d + g) + c(d + g) + (ξ − a − b − c)(e + g) + a(e + g)

≤ (ξ − a − b − c)(d + g) + c(ξ − a − b − c)

+ (ξ − a − b − c)(e + g) + a(ξ − a − b − c)

= c(ξ − a − b − c) + (ξ − a − b − c)(d + e + g)

+ g(ξ − a − b − c) + a(ξ − a − b − c)

≤ c(ξ − a − b − c) + (ξ − a − b − c) + g(ξ − a − b − c) + a(ξ − a − b − c)

= (ξ − a − b − c)(ξ − b) + g(ξ − a − b − c)

≤ (ξ − a − b − c)(ξ − b) + (f + g)(ξ − a − b − c).

CHAPTER . PARTITIONAL CLUSTERING 12

d

X Y

Figure 2.2: X and Y are sets with elements labelled by and respectively. Elements in both sets
are labelled with . ¿e Hausdor� distance between X and Y is, informally, the greatest
distance one must travel if starting from a point in one set and travelling to the closest
point in the other. ¿is distance is marked by d in the diagram.

Hausdor� distance

Let (M , d) be a metric space andM = M ∖ {∅}. ¿e Hausdor� distance, δH ∶M×M→

R≥, is de�ned as:

δH(X ,Y) = max(max
x∈X

min
y∈Y

d(x , y),max
y∈Y

min
x∈X

d(x , y)) ,

for all X ,Y ∈M. ¿e Hausdor� distance is a metric onM [17]. ¿is distance is illustrated

in Figure 2.2 by showing the Hausdor� distance between two sets with elements in a metric

space. In Chapter 3 we present a new metric onM.

Linkage functions

We conclude by remarking that the linkage functions, which are used in hierarchical

clustering, the topic of Section 4.3.2, are not generally metrics. For a metric space, (M , d),

andM = M ∖ ∅, the single-linkage distance, δSL∶M ×M→ R≥ is de�ned as:

δSL(X ,Y) = min
x∈X ,y∈Y

d(x , y),

for all X ,Y ∈M. While single-linkage is a simple and intuitive distance between sets, it

is not a metric since distinct sets can have a distance of zero. ¿e complete-linkage and

CHAPTER . PARTITIONAL CLUSTERING 13

{a, b, c, d}

{a}{b, c, d} {b}{a, c, d} {c}{a, b, d} {d}{a, b.c} {a, b}{c, d} {a, c}{b, d} {a, d}{b, c}

{a}{b}{c, d} {a}{c}{b, d} {a}{d}{b, c} {a, b}{c}{d} {a, c}{b}{d} {a, d}{b}{c}

{a}{b}{c}{d}

Figure 2.3:¿eHasse diagram of the lattice of partitions of a set, D = {a, b, c, d} [112]. Each vertex
in the graph is a partition {C , . . . ,Ck} of D which we denote by C , . . . ,Ck for clarity.

average-linkage dissimilarities are, in fact, not even distances. ¿ese measures will be

discussed further in Section 4.3.2.

2.3 Partitions

In this section we look at the properties of partitions of sets, how we can compare

partitions and how we can �nd partitions. ¿roughout, we assume that n > and refer to

a set of n elements as an n-set.

2.3.1 ¿e space of partitions

Given an n-set D, a k-partition C = {C,C, . . . ,Ck} of D is a set of k ∈ {, . . . , n}

nonempty, pairwise-disjoint subsets of D such that C ∪ C ∪ ⋯ ∪ Ck = D. Following

common practice, we will refer to the elements of C as clusters.

Let PD be the set of all partitions of D and C , C′ ∈ PD. ¿e partition C is called a

re�nement of C′ if every element of C is a subset of some element of C′. We can then say that

C is �ner-than-or-equal-to C′, which we notate C ≤ C′ (or that C′ is coarser-than-or-equal-to

C). ¿e relation ≤ imposes a partial order on the elements of PD.

¿e partially-ordered set (PD , ≤) is called the lattice of partitions and can be repre-

sented in terms of a graph called the Hasse diagram associated with PD. ¿e vertex set of

that graph is PD and its arc set consists of the pairs (C, C) ∈ PD ×PD such that C < C

CHAPTER . PARTITIONAL CLUSTERING 14

n Bn

5 52
10 115,975
15 1,382,958,545
20 5.17 × 1013
25 4.64 × 1018

Table 2.1:¿e value of the Bell number, Bn , for some selected values of n. ¿e value of Bn is
equivalent to the number of possible partitions of an n element set.

and there exists no C ∈ PD such that C < C < C. Informally, this means that C can be

obtained by bisecting one cluster of C.

¿e Hasse diagram of the set D = {a, b, c, d} is presented in Figure 2.3. ¿e partition

at the top is the coarsest partition (a 1-partition) and the partition at the bottom is the

�nest partition (an n-partition).

As this example suggests, a set can potentially support a very large number of partitions.

For an n-set D the cardinality of PD is given by the Bell number Bn [12, 151] where B =

and

Bn =
n−
∑
l=

Bl(
n −
l

) for n ≥ .

Alternatively, Bn is given by Dobiński’s formula [44]:

Bn =

e

∞
∑
l=

ln

l !
for n ≥ .

We illustrate the growth of the Bell number in Table 2.1.

Fuzzy partitions

Partitions can be generalised to fuzzy partitions by letting the clusters be fuzzy sets. Fuzzy

sets are collections of objects where eachmember of a collection has a grade ofmembership

associated to it [171]. Sets are a special case where the grades of membership are binary—

objects are either members of a set or they are not. Fuzzy sets and partitions have many

applications including classi�cation of data in the natural sciences where membership is

CHAPTER . PARTITIONAL CLUSTERING 15

not precisely de�ned.

Formally, a fuzzy set is an ordered pair (C , µC) consisting of an underlying set C

and a membership function µC ∶C → [,]. For some fuzzy set (C , µC) and element

x ∈ C µC(x) = means x is a full member, µC(x) = means x is not a member and

 < µC(x) < means x is a fuzzy member. If µC(x) = or for all x ∈ C then the object is

called by contrast a crisp set and may be handled by ordinary set theory [171, 95].

A k-fuzzy-partition of an n-set D is a set of k ∈ {, . . . , n} fuzzy sets:

{(C, µ), (C, µ), . . . , (Ck , µk)}

where C ∪⋯∪Ck = D, Ci ≠ ∅ for all i ∈ {, . . . , k} and∑k
i= µi(x) = for all x ∈ D. Note

that the underlying sets of the fuzzy sets (Ci , µi) are not necessarily pairwise disjoint, so

elements can belong to more than one cluster.

2.3.2 Comparing partitions

An attractive way to �nd partitions of a set is by means of a partitional clustering method.

Many methods exist—we will review some in Section 2.4—and, depending on their re-

spective approach to the problem, they all tend to produce di�erent partitions. To further

complicate matters, some methods are nondeterministic so can potentially produce di�er-

ent partitions each time they are used.

For the purposes of comparing and assessing clustering methods it is therefore useful

to be able to compare partitions. Many measures have been devised for this purpose,

including similarity measures and dissimilarity measures, of which some are metrics.

Existing methods fall into four main categories; for two partitions C and C of a set D,

these are:

Pair counting which measures the agreement and disagreement between C and C by

means of counting pairs of element in D,

CHAPTER . PARTITIONAL CLUSTERING 16

Set matching which “matches” clusters in C with clusters in C and measures the similar-

ity between matched sets,

Information theoretic which uses information theory to measure the information and

mutual information contained in C and C,

Density pro�le which takes into account the values of the data when computing the

measure.

We will review measures belonging to the �rst three categories in this section. ¿e

fourth category consists of a single measure called ADCO which we will analyse in Chap-

ter 3.

To be able to describe the measures in detail, we need to introduce some more ter-

minology. Let D = {x, x, . . . , xn} be an n-set with n ≥ and again, as before, let

C = {C,C, . . . ,Ck} and C = {C,C, . . . ,Ck′} be two partitions of D with k and

k′ clusters, respectively. We denote, for some x ∈ D, and a partition, C, of D, the cluster

in C that contains x by C(x). ¿e confusion matrix associated with C and C is the k × k′

matrix [ni j] where ni j = ∣Ci ∩ C j∣. It is used for the calculation of both pair counting

and set matching measures.

To illustrate these de�nitions and the comparison measures we review below, we will

use two example partitions C∗ and C∗ of the set D∗ = {, . . . , } throughout this section:

C∗ = {C∗,C∗,C∗}, C∗ = {C∗,C∗,C∗,C∗} (.)

where

C∗ = {, , }, C∗ = {, , }, C∗{, , } and

C∗ = {, }, C∗ = {, , }, C∗ = {, }, C∗{, }.

¿en, for example, we have C∗ () = C∗, and the confusion matrix associated with C∗ and

CHAPTER . PARTITIONAL CLUSTERING 17

C∗ is:

[ni j]∗ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Pair counting

¿ese measures show the agreement and disagreement between C and C by counting

pairs of element in D. ¿ere are (n) distinct pairs of elements in D. For each distinct pair

(a, b) ∈ D × D one of the following is true:

C(a) = C(b) and C(a) = C(b),

C(a) ≠ C(b) and C(a) ≠ C(b),

C(a) = C(b) and C(a) ≠ C(b),

C(a) ≠ C(b) and C(a) = C(b).

Counting the number of element in each category gives us four counts which are

de�ned formally as:

N = ∣{(a, b) ∈ D × D∶C(a) = C(b) and C(a) = C(b)}∣,

N = ∣{(a, b) ∈ D × D∶C(a) ≠ C(b) and C(a) ≠ C(b)}∣,

N = ∣{(a, b) ∈ D × D∶C(a) = C(b) and C(a) ≠ C(b)}∣,

N = ∣{(a, b) ∈ D × D∶C(a) ≠ C(b) and C(a) = C(b)}∣.

¿e size of N and N are considered to be measurements of agreement between C and

C, while N and N are considered measurements of disagreement.

¿emeasures based on pair counting can all be expressed in terms of these four counts.

Clearly

N + N + N + N = (n

)

CHAPTER . PARTITIONAL CLUSTERING 18

is always satis�ed. ¿e quantities N,N,N and N can all be obtained from the

confusion matrix using the following formulæ [83]:

N =

k
∑
i=

k′

∑
j=
ni j(ni j −),

N =

⎛
⎜
⎝
n +

k
∑
i=

k′

∑
j=
ni j −

k
∑
i=

⎛
⎝

k′

∑
j=
ni j

⎞
⎠

−
k′

∑
j=

(
k
∑
i=
ni j)

⎞
⎟
⎠
,

N =

⎛
⎜
⎝

k
∑
i=

⎛
⎝

k′

∑
j=
ni j

⎞
⎠

−
k
∑
i=

k′

∑
j=
ni j

⎞
⎟
⎠
,

N =

⎛
⎝

k′

∑
j=

(
k
∑
i=
ni j)

−
k
∑
i=

k′

∑
j=
ni j

⎞
⎠
.

¿e four counts for our example partitions C∗ and C∗ are:

N = , N = , N = , N = .

One of the simplest pair counting measures between C and C is the widely-used Rand

index ∆R introduced in [130] and de�ned as:

∆R(C, C) = (N + N)/(
n

).

¿e Rand index is a similarity measure with a lower bound of 0 and an upper bound of 1.

Hubert and Arabie [83] use the following variation:

∆HA(C, C) = (N + N − N − N)/(
n

).

Wallace [160] introduced two asymmetric measures for comparing C and C de�ned

as:

WI(C, C) =
N

∑k
i= ∣Ci∣(∣Ci ∣ −)/

,

CHAPTER . PARTITIONAL CLUSTERING 19

Name Measure

Rand index ∆R(C∗1 , C∗2) ≈ 0.694
Wallace measures WI(C∗1 , C∗2) ≈ 0.222

WII(C∗1 , C∗2) ≈ 0.333
Fowlkes & Mallows ∆F(C∗1 , C∗2) ≈ 0.272
Jaccard coe�cient ∆J (C∗1 , C∗2) ≈ 0.154
Merkin metric ∆M(C∗1 , C∗2) = 22.00

Table 2.2: Various pair counting based measures applied to the example partitions C∗ and C∗ (.).

and

WII(C, C) =
N

∑k′
j= ∣C j∣(∣C j∣ −)/

.

WI andWII represent the probabilities that, for a pair of elements (a, b) ∈ D × D with

C(a) = C(b), we also have C(a) = C(b), and vice versa. A symmetric similarity

measure for C and C can be obtained by taking the geometric mean of the Wallace

measures:

∆F(C, C) =
√
WI(C, C)WII(C, C).

¿is measure was also introduced independently by Fowlkes and Mallows in [59].

¿e Jaccard coe�cient ∆J is another widely-used similarity measure and is de�ned,

for C and C, as:

∆J (C, C) =
N

N + N + N
.

It should be noted that all measures reviewed so far are similarity measures. ¿eMirkin

metric ∆M for measuring dissimilarity between C and C was originally introduced in

[116] and is de�ned as

∆M(C, C) =
k
∑
i=

∣Ci ∣ +
k′

∑
j=

∣C j∣ −
k
∑
i=

k′

∑
j=
ni j ,

where [ni j] again denotes the confusion matrix associated with C and C. As it turns out,

∆M(C, C) = (N + N).

CHAPTER . PARTITIONAL CLUSTERING 20

C

C

C

C

C

C

C

Figure 2.4:¿e clusters belonging to two partitions {C , . . . ,C} and {C , . . . ,C} are shown
with all similarities between pairs shown dashed. ¿e solid lines represent one possible
matching between the clusters. In this case, the matching is an injection.

¿e closely related measure:

∆AB(C, C) = (N + N)/(
n

)

is also a metric onPD and was used byMirkin and Chernyi [117] and Arabie and Boorman

[5].

¿e values of the reviewed pair counting measures when applied to C∗ and C∗ are

given in Table 2.2.

Set matching

Set matchingmeasures for partitions C and C are based on comparisons betweenmatched

pairs of clusters. Each pair to be compared consists of one element of C and one of C. All

of the measures that we review here are based on the confusion matrix, meaning that they

use the cardinality of the intersection between two clusters as a similarity measure. ¿e

di�erences between the measures are essentially due to the way that they �nd the matched

pairs of clusters for comparison.

As before, let D be an n-set and C = {C, . . . ,Ck} and C = {C, . . . ,Ck′}, where

k, k′ ≥ , denote two partitions of D. Also assume, without loss of generality, that k′ ≥ k.

¿en, amatching between C and C is a function σ ∶{, . . . , k}→ {, . . . , k′}.

Meilă and Heckerman [114] introduced a set matching measure for measuring the

CHAPTER . PARTITIONAL CLUSTERING 21

similarity between C and C. It �nds a matching σ using the following heuristic: let [ni j]

be the k × k′ confusion matrix associated with C and C. Compute nab = argmax{ni j∶ ≤

i ≤ k, ≤ j ≤ k′} and put σ(a)← b. Repeat the process for the (k −)× (k′ −) submatrix

obtained by deleting row a and column b, and so on until k matches have been made. ¿is

process clearly �nds an injection for σ and then the similarity of C and C based on that

matching is:

∆H(C, C) =

n

k
∑
i=
niσ(i).

A second similarity measure on PD , denoted ∆L and introduced by Larsen and Aone

[102] simply computes a maximal match for each cluster in C and C:

∆L(C, C) =

k

k
∑
i=

max
≤ j≤k′

ni j
∣Ci ∣ + ∣C j∣

.

A dissimilarity measure ∆V , which is a metric on PD , was introduced by van Dongen

[157]. ¿is measure, again, computes maximal matches for each cluster in C and C:

∆V(C, C) = n −
k
∑
i=

max
≤ j≤k′

ni j −
k′

∑
j=
max
≤i≤k

ni j .

A second metric on PD denoted by ∆CE is due to Meilă [112] and is known by the

name classi�cation error. Like ∆H, this measure computes an injection for σ , but instead

of using a heuristic �nds a globally optimal injection in the set Sk of all possible injections

from {, . . . , k} to {, . . . , k′}:

∆CE(C, C) = −

n
max
σ∈Sk

k
∑
i=
niσ(i).

Note that the injection, σ , can be found in polynomial time. Also,

∆CE(C, C) ≤

for all partitions C and C of D. ¿e values of the set matching measures when applied to

CHAPTER . PARTITIONAL CLUSTERING 22

Name Measure

Meilă & Heckerman ∆H(C∗1 , C∗2) ≈ 0.556
Larsen & Aone ∆L(C∗1 , C∗2) ≈ 0.622
Van Dongen metric ∆V(C∗1 , C∗2) = 7.000
Classi�cation Error ∆CE(C∗1 , C∗2) ≈ 0.445

Table 2.3: Various set matching based measures applied to the example partitions C∗ and C∗ (.).

our example partitions C∗ and C∗ are given in Table 2.3.

Meilă [113] andBae et al. [8] point out that all of thesemeasures su�er from the so-called

“problem of matching” which we will now illustrate. Given a partition C = {C, . . . ,Ck}

with k ≥ equally sized clusters, we can obtain a partition C′ from C by moving a fraction

f of the objects from each cluster Ci to Ci+, with the indices taken modulo k. We can

obtain a further partition C′′ from C by taking the same fraction from each cluster in C ∈ C

and distributing the objects evenly among all other clusters in C ∖ {C}. Our intuition

would be that the similarity between C and C′ is not the same as the similarity between C

and C′′. However,

∆H(C , C′) = ∆H(C , C′′), ∆L(C , C′) = ∆L(C , C′′),

∆V(C , C′) = ∆V(C , C′′), ∆CE(C , C′) = ∆CE(C , C′′)

whenever < f < /.

To give a numerical example, let D = {, . . . , },

C = {{, , , , }, {, , , , }, {, , , , }}

be a partition of D and f = /. ¿en

C′ = {{, , , , }, {, , , , }, {, , , , }}

CHAPTER . PARTITIONAL CLUSTERING 23

and

C′′ = {{, , , , }, {, , , , }, {, , , , }}

are partitions of D obtained from C as described above. In this case we have

∆H(C , C′) = ∆H(C , C′′) = /, ∆L(C , C′) = ∆L(C , C′′) = /,

∆V(C , C′) = ∆V(C , C′′) = , ∆CE(C , C′) = ∆CE(C , C′′) = /.

Information theoretic

Two measures which use information theory are Normalized Mutual Information [60] and

Variation of Information [113]. For the remainder of this section we will focus on the latter

and refer the reader to [60] for details on the former.

Variation of Information is based on both how much information is contained in each

partition and how much information one partition contains about the other (their mutual

information).

Let C = {C, . . . ,Ck}, where k ≥ , be partition of an n-set D. ¿en the information

contained in C is measured by:

H(C) = −
k
∑
i=
PC(i) logb PC(i), (.)

where

PC(i) =
∣Ci ∣
k
, for i = , . . . , k.

Informally, P(i), is the probability that an object picked randomly from D is in cluster

Ci . ¿is measure is sometimes called entropy. ¿e base of the logarithm determines the

unit of information; for example, the bases b = , b = e and b = give the information in

so-called bits, nits and Hartleys, respectively [see 98].

Now, with C = {C, . . . ,Ck} and C = {C, . . . ,Ck′}, where k, k′ ≥ , the mutual

CHAPTER . PARTITIONAL CLUSTERING 24

information, I(C, C), between C and C is given by:

I(C, C) =
k
∑
i=

k′

∑
i=
P(i , j) logb

P(i , j)
PC(i)PC(j)

, (.)

where

P(i , j) =
∣Ci ∩ C j∣

n
, for i = , . . . , k, j = , . . . , k′.

Informally, P(i , j) is the probability that an object picked randomly from D is in both

Ci and C j.

¿e Variation of Information, ∆VI , between C and C is then de�ned as:

∆VI(C, C) = H(C) +H(C) − I(C, C).

As it turns out, ∆VI is a metric on PD and has some attractive properties. ¿ese

include that it is n-invariant, meaning its value depends only on the relative sizes of the

clusters in C and C and not on the size of n. Further, it is bounded for all n by

∆VI(C, C) ≤ logb n.

Finally, ifmax(k, k′) ≤ k∗ where k∗ ≤
√
n then

∆VI(C, C) ≤ logb k
∗

holds.

¿e values of Variation of Information and its components applied to our example

partitions, C∗ and C∗ , are given in Table 2.4.

We conclude this section with mentioning a further measure called ADCO, which is a

density pro�le based measure. We will save discussion of this measure until we introduce

our own Assignment Metric later since these two metrics share a unique feature possessed

by no other measure discussed in this section. Namely, they take into account that the

CHAPTER . PARTITIONAL CLUSTERING 25

Name Measure

Information H(C∗1) ≈ 1.585
H(C∗2) ≈ 1.975

Mutual information I(C∗1 , C∗2) ≈ 0.834
Variation of Information ∆VI(C∗1 , C∗2) ≈ 1.891

Table 2.4: Variation of Information and its components applied to the example partitions C∗ and
C∗ (.) using base 2 for the logarithms in equations (.) and (.).

partitions to be compared are partitions of a dataset themselves, with elements that have a

metric de�ned on them.

2.4 Partitional clustering

The problem of findingmeaningful partitions of a dataset is called partitional clustering.

Broadly speaking, the applications of partitional clustering fall into two categories: data

reduction and object classi�cation.

Data reduction may be necessary when a dataset is large and it is deemed that only

an essence of the data is wanted for a particular application. For example, if geographical

data is to be displayed on a map then a large dataset may not be desirable due to the visual

clutter it would create. Clustering can be used to reduce the dataset into a more visually

appealing and usable subset.

Object classi�cation is concerned with grouping data into a number of classes. For

example, given a dataset obtained by market research one may wish to �nd di�erent classes

of consumers in order to observe their habits and predict future behaviour. A further

example is document clustering which is an important area concerned with clustering on

datasets consisting of objects written in a natural language. Search engines such as those

found on the World Wide Web use document clustering to suggest, among other things,

“similar” documents to the one in which a user is currently interested [154].

CHAPTER . PARTITIONAL CLUSTERING 26

2.4.1 Criteria

Informally, a meaningful partition of a dataset (D, d) is one which contains clusters that

are homogeneous—meaning objects belonging to the same cluster are similar—and well-

separated—meaning objects belonging to di�erent clusters are dissimilar, according to

d.

¿e task of judging a particular partition of a dataset based on these informal standards

is o en a highly subjective one but, nevertheless, many objective criteria have been devised

for the purposes of automatic clustering. ¿e aim of a partitional clustering algorithm is

to �nd a globally optimal solution, that is a partition which has maximum homogeneity

or separation or both, according to a particular criterion.

Dissimilarity based criteria

¿emost general criteria for homogeneity and separation are de�ned only using dissim-

ilarities. To make this more precise, let D be an n-set with n ≥ , d∶D × D → R≥ be a

dissimilarity on D and C ⊆ D be some cluster.

Criteria that measure the homogeneity of C include the diameter of C, which is de�ned as

the maximum dissimilarity between two members of C:

max
x ,y∈C

d(x , y),

the radius of C, which is de�ned as the minimum of the maximum dissimilarities between

each member and another member of C:

min
x∈C i

max
y∈C

d(x , y)

CHAPTER . PARTITIONAL CLUSTERING 27

the star of C, which is de�ned as the minimum of the sums of dissimilarities between each

member and every other member of C:

min
c∈C

∑
x∈C

d(x , c),

and the clique of C, which is de�ned as the sum of dissimilarities between each pair of

members of C:

∑
x ,y∈C

d(x , y).

Criteria that measure the separation of C from every other cluster include the split of

C, which is de�ned as the minimum dissimilarity between a member of C and an element

in D ∖ C:

min
x∈C,y∈D∖C

d(x , y),

and the cut of C, which is de�ned as the sum of dissimilarities between all members of C

and all elements in D ∖ C:

∑
x∈C

∑
y∈D∖C

d(x , y).

Dissimilarity based criteria for partitions can then be obtained from the abovemeasures

for clusters by simply taking the sum over all clusters in a partition. We call these criteria

sum-of-diameters, sum-of-radii, sum-of-stars and so on. Alternatively one could simply

take the maximum or minimum value, as appropriate, over the clusters which we would

callmax-diameter,max-radius,min-cut and so on. ¿e aim of a clustering method is then

to minimise a criterion for homogeneity or maximise a criterion for separation.

Some criteria for homogeneity are equivalent to criteria for separation. Most notably,

minimising sum-of-cliques is equivalent to maximising sum-of-cuts. Such criteria are

therefore criteria for both homogeneity and separation.

As it turns out, criteria which only measure one or the other, like min-split and max-

diameter, are o en con�icting. For example, maximising min-split produces clusters with

CHAPTER . PARTITIONAL CLUSTERING 28

(i) Chaining e�ect. (ii) Dissection e�ect.

Figure 2.5:¿e chaining e�ect can produce clusters with poor homogeneity and the dissection
e�ect can produce clusters with poor separation.

poor homogeneity, called the chaining e�ect, and minimising max-diameter results in

clusters with poor separation, called the dissection e�ect. Figure 2.5 (i) shows a 2-clustering

displaying poor cluster homogeneity due to the chaining e�ect and Figure 2.5 (ii) shows a 2-

clustering displaying poor separation due to the dissection e�ect. ¿ese are the clusterings

produced by maximising min-split and minimising max-diameter, respectively.

Such criteria are therefore not so useful on their own, but one way to overcome

this problem is to consider a bicriterion, that is simultaneously consider a criterion for

homogeneity and a criterion for separation [40].

Scatter matrix based criteria

If the dataset of interest is embedded in m-dimensional Euclidean space, with m ≥ , then

the following criteria based on the scatter or dispersion matrix of Wilks [164] are possible.

To make this more precise, let dE denote the Euclidean distance on D and denote a vector

v ∈ Rm by v = (v, . . . , vm). Suppose C = {x, . . . , xn} ⊂ Rm, then the total scatter matrix

of C, TC , is the m ×m matrix de�ned as:

TC =
n
∑
i=

(xi − c)T(xi − c)

where c is the mean value of D.

CHAPTER . PARTITIONAL CLUSTERING 29

For C = {C, . . . ,Ck}, a partition of an n-set D = {x, . . . , xn}, two further matrices

are associated. ¿e within-cluster scatter matrix,WC , is de�ned as:

WC =
k
∑
i=

TC i ,

where TC i is the total scatter matrix for cluster Ci of C. ¿e between-cluster scatter matrix,

BC , is de�ned as:

BC =
k
∑
i=

∣Ci ∣(ci − x̄)(ci − x̄)T

where ci is the mean of cluster Ci and x̄ is the mean of D. ¿ese matrices are related by

the equality

TD =WC + BC .

A popular criterion used in clustering algorithms is the minimisation of the trace of

WC , denoted tr(WC). Since

tr(TD) = tr(WC) + tr(BC),

and tr(TD) is a constant, it follows that minimising tr(WC) is equivalent to maximising

tr(BC).

Intriguingly, tr(WC) is also equivalent to the sum over all clusters C ∈ C of the sum of

Euclidean distances squared between each element x ∈ C and the mean c of C:

tr(WC) =
k
∑
i=
∑
x∈C i

dE(x, ci). (.)

¿is can be seen easily by examining the main diagonal of the total scatter matrix for each

CHAPTER . PARTITIONAL CLUSTERING 30

cluster C ∈ C, as illustrated here:

TC =

∑
x∈C

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(x − c) (x − c)(x − c) ⋯ (x − c)(xm − cm)

(x − c)(x − c) (x − c) ⋯ (x − c)(xm − cm)

⋮ ⋮ ⋱ ⋮

(xm − cm)(x − c) (xm − cm)(x − c) ⋯ (xm − cm)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where c = (c, . . . , cm) is the mean of C.

Similarly, tr(BC) is equivalent to the sum of Euclidean distances squares between the

mean c of a cluster C and x̄, the mean of D, multiplied by the size of C:

tr(BC) =
k
∑
i=

∣Ci ∣dE(ci , x̄). (.)

For this reason, the trace of WC is o en called “sum-of-squares”, but this name is

ambiguous since any criterion utilising sums of distances squared could have this name.

We therefore call the criterion shown in equation (.) the centroid-distance of C, due to

measuring the distances between elements and centroids, and in general call any criterion

using sums of distances squared a sum-of-squares criterion. Note that when the centroid-

distance of a partition is calculated using equation (.) we can use any metric in place of

dE . But if it is calculated using the scatter matrices then it is implicitly using Euclidean

distance.

¿e relationship between equations (.) and (.) can also be established by the

Huygens-Steiner, or parallel-axis, theorem. ¿is theorem states that, for any cluster C ⊂ Rm

with mean c and any element s ∈ Rm:

∑
x∈C

dE(x, s) = dE(c, s) ⋅ ∣C∣ +∑
x∈C

dE(x, c). (.)

We now use this theorem to establish a relationship between centroid-distance and

CHAPTER . PARTITIONAL CLUSTERING 31

sum-of-cliques. With some C ⊂ Rm as before, we beginning with equation (.) and assign

some y ∈ C to s and sum over all y ∈ C:

∑
x,y∈C

dE(x, y) = ∑
y∈C

dE(c, y) ⋅ ∣C∣ +∑
x∈C

dE(x, c) ⋅ ∣C∣

and, since dE is symmetric,

∑
x,y∈C

dE(x, y)

∣C∣ = ∑
x∈C

dE(x, c). (.)

So when we use squared Euclidean distance as a dissimilarity measure, centroid-distance

for a cluster C ⊂ Rm is equivalent to the sum-of-cliques of C over twice its cardinality.

Since dE is symmetric this equates to only counting pairwise distances once each.

It should also be noted that centroid-distance is, in fact, simply a more general version

of sum-of-stars where the centre need not be a member of the dataset under consideration

but is a member of some underlying metric space, which in the above case was (Rm , dE).

As mentioned, we generally call any criterion involving a metric squared a sum-of-

squares criterion. We call the numerator of the le -hand side of equation (.) all-squares,

since we sum over all pairs of distances. Since sum-of-cliques can generally be used with

any dissimilarity measure we generally count each pair of elements twice, once in each

direction, but for a metric this is obviously redundant.

Friedman and Rubin [61] suggested two further criteria based on scattermatrices, these

are the minimisation of the determinant ofWC (denoted det(WC)), which is sometimes

called generalised variance, and the maximisation of the trace of BCWC−. ¿ese criteria

tend to produce clusters of similar shape and size as centroid-distance with the Euclidean

distance [111].

A further three criteria based on scatter matrices are discussed in [111], these are

∏k
i= det(Wi)∣C i ∣, which is a generalisation of det(W) that allows cluster of di�erent shapes;

n log det(W) − ∑k
i= ∣Ci ∣ log ∣Ci ∣; and ∑k

i=(∣Ci ∣ log det(Wi) − ∣Ci ∣ log ∣Ci ∣). Finally, in

CHAPTER . PARTITIONAL CLUSTERING 32

[110] the criterion∑k
i= det(Wi)

m was introduced.

It is worth noting that all of the criteria based on the scatter matrix tend to produce

clusters of an ellipsoidal shape; clusters with other shapes will either not be found or end

up divided into smaller clusters. Most of them also tend to produce clusters which are

linearly-separable—meaning they are separated by hyperplanes [111].

Other criteria

Some criteria are based on similarities instead of dissimilarities. One such example is

the average entity stability [137]. ¿is criterion considers an object to be stable if it is

more attracted to the rest of the cluster it is currently in than to any other cluster. Give,

a similarity measure, s, the attraction between an object and a cluster is de�ned as the

average similarity between the object and the members of that cluster, with respect to s.

¿e clustering criterion is to maximise the average entity stability over the whole dataset.

Criteria based on information theory are also possible. Wallace and Boulton [159] intro-

duce a clustering program called SNOB which attempts to optimise one such information

measure.

2.4.2 Computational complexity

Given the potentially huge space of possible partitions of a set, partitional clustering is

intuitively a hard problem. In fact, as we will see below, it has been shown that many

partitional clustering problems are NP-complete.

We �rst need to make precise what we mean by a “partitional clustering problem”.

Given a set D and a criterion, a partition in PD that is a global minimum or maximum,

whichever is appropriate, according to that criterion is called an optimal partition. When

we speak of a particular criterion we qualify this name appropriately, so for example a

centroid-distance optimal partition is a partition which globally minimises the centroid-

distance criterion.

CHAPTER . PARTITIONAL CLUSTERING 33

For brevity, we will refer to the problem of �nding an optimal partition according to

some criterion simply as Clustering and, similarly, whenever we speak of a particular

criterion we will qualify the name appropriately, so for example Centroid-Distance

Clustering is the problem of �nding an optimal partition with respect to the centroid-

distance criterion.

An NP-completeness result refers to a decision problem. Since clustering problems are

optimisation problems, whenever one is said to be NP-complete we are actually referring

to the decision problem derived from the optimisation problem. ¿e general decision

problem version of Clustering is simply stated, the speci�c clustering problems are

identical except the value for the criterion f is �xed:

Clustering

Instance: An n-set D, the number of clusters desired k ∈ {, . . . , n}, a criterion f ∶PD →

R+, which involves k in some way, and a bound B ∈ R+.

Question: Does there exist a k-partition C ∈ PD such that f (C) ≤ B?

Optimisation problems also have corresponding approximation problems. ¿e n-

approximation problem corresponding to an optimisation problem is the problem of

�nding solutions with an objective criterion value within n times the value for an optimal

solution. ¿ere is also a decision problem corresponding to the approximation problem

which, again, we will be referring to implicitly when speaking of NP-completeness results.

Sum-of-Cuts Clustering (S-Cuts) is seen to be NP-complete by considering the

classic NP-complete graph problem Max Cut [89, 67]. It turns out that Max Cut is

simply a special case of S-Cuts with k = and where a dissimilarity with values in {, }

is used [63]. Since an optimal partition according to the sum-of-cuts criterion is also an

optimal partition according to the sum-of-cliques criterion, it is clear that Sum-of-Cliques

Clustering (S-Cliques) is NP-complete also. An approximate solution to S-Cuts is

possible to �nd in polynomial time, but, interestingly, the approximation problem of

CHAPTER . PARTITIONAL CLUSTERING 34

S-Cliques remains NP-complete [138].

A number of partitional clustering problems were shown to be in NP-complete by

Brücker [22]. Among these wasMax-Diameter Clustering (M-Diam), a result which,

as it turns out, is directly deducible from the earlier results of Sahni and Gonzalez [138].

M-Diam remains NP-complete for k = and when all dissimilarities are in {, } [62].

It was shown in Gonzalez [68] thatM-Diam is NP-complete when the dataset is in

2-dimensional Euclidean space and Euclidean distance is used. It is also shown that for a

general dissimilarity function, even the n-approximation problem is NP-complete for all

n ≥ .

For a dataset in 1-dimensional Euclidean spaceM-Diam is solvable in polynomial time.

Further, whenever the dissimilarity measure is a metric it is possible to �nd an approximate

solution e�ciently in general. Brücker [22] provides an algorithm for �nding solutions

with a max-diameter value within two times the max-diameter value of the optimal

solution. However, Bern and Eppstein [13] show that, under the Euclidean distance, the

1.969-approximation problem associated withM-Diam is NP-complete. It is also shown

that, for the similarMax-Radius Clustering problem, the 1.822-approximation problem

is NP-complete.

Another result of Brücker [22] is that Sum-of-Diameters Clustering (S-Diam)

is NP-complete for k ≥ . Doddi et al. [45] show that the associated 2-approximation

problem can be solved e�ciently when the dissimilarity used is a metric. But if the triangle

inequality is not satis�ed by the dissimilarity used then it is shown that, if P ≠ NP, no

e�cient approximation algorithm is possible, even for k = .

In Hansen and Jaumard [74] it is shown that, when k = , S-Diam is solvable in

O(n log n) time. It is also shown that minimising any function of the diameters can be

done in O(n) time when k = .

In Garey et al. [64] it is shown that the quantization problem is NP-complete. It turns

out that this problem is a special case of Sum-of-Stars Clustering (S-Stars) where

a dissimilarity with values in {, } is used. Further, it is shown that the problem is

CHAPTER . PARTITIONAL CLUSTERING 35

NP-complete even when the parameter corresponding to k is set to 2.

¿e above complexity results, especially the last one for S-Stars, has led many authors

to believe that Centroid-Distance Clustering in Euclidean space is also NP-complete.

In fact this was proved only relatively recently. It is in fact NP-complete even when k =

[3] and for general k in 2-dimensional Euclidean space [106]. If both k and the number

of dimensions, m, are �xed, then the problem is exactly solvable in O(nmk+ log n) time

[84].

We conclude by remarking that not all clustering problems are hard. One example is

Min-Split Clustering for which a polynomial time algorithm exists (for the optimisation

problem). In particular, the problem is solved with the Slink hierarchical clustering

algorithm of Johnson [86]. ¿e runtime of this algorithm is O(n) [40]. However, the

min-split criterion does su�er from the previously mentioned chaining e�ect and for

this reason it is o en paired with a criterion for homogeneity in a bicriterion, e�ectively

making it a hard problem again [40].

2.4.3 Methods

¿econsequence of the complexity issues discussed in the previous section are that heuristic

methods for approximating optimal solutions are very prevalent. ¿ere are only a small

handful of algorithms which are either guaranteed to �nd a globally optimal solution or

guaranteed to �nd a solution within a known degree of the optimal.

Many of the heuristic methods happen in two stages. Given an n element dataset, D,

the number of clusters desired, k ∈ {, . . . , n}, and a criterion, f ∶PD → R+, we proceed as

follows:

. (Initialisation) Select some initial partition, C ∈ PD,

. (Improvement) Try to improve the partition with respect to the criterion, so �nd a

second partition C′ such that f (C′) < f (C).

We will look at each stage in turn now.

CHAPTER . PARTITIONAL CLUSTERING 36

Initialisation

A commonway to select an initial partition, C, is to choose k elements to be initial estimates

for the “centre” of each cluster. ¿e elements of the dataset are then grouped with the centre

that is closest. Sometimes the centres are updated each time a new element is grouped

with them, for example they could become the actual centroid of the current cluster. ¿e

k centres are usually selected from the dataset, but they could also be taken from the

underlying metric space.

A great number of methods for selecting centres have been suggested and we present

a far from exhaustive review next. Further examples can be found in the following [78],

[93], [24], [168], [26], [51] and [131].

¿e most simple ways to select k centres include taking the �rst k elements of the

dataset [105], taking k random elements of the dataset [58] or taking k elements regularly

spaced across the dataset [11].

More sophisticated methods include the Kennard-Stone algorithm (shown in Algo-

rithm 1) which aims to �nd k centres that are maximally separated in the metric space. It is

noted by De Groot et al. [35] that this method is sensitive to outliers and it is suggested that,

instead of picking maximally separated elements as the �rst two centres as in the original

algorithm (see Algorithm 1), the �rst two centres should be distant, but not outliers.

Algorithm 1 Kennard-Stone initial centres algorithm.

Input: Number of centres desired, k ≥ , and a dataset, D = {x, x, . . . , xn} with n ≥ k,
with dissimilarity d∶D × D → R≥.

Output: Centres {c, c, . . . , ck} ⊆ D.
(c, c)← argmax

(c,c′)∈D×D
d(c, c′) ▷ First two centres

S ← {c, c}
m ←
while m < k do

cm+ ← argmax
c∈D∖S

min
c′∈S

d(c, c′)

S ← S ∪ {cm+}
m ← m +

end while
return S.

CHAPTER . PARTITIONAL CLUSTERING 37

Another method, due to Yuan et al. [170], is shown in Algorithm 2. ¿e algorithm has

a parameter, α, for which the authors suggest a value of 0.75 since this gave good results in

their experiments.

Algorithm 2 Yuan-Meng-Zhang-Dong initial centres algorithm.

Input: Number of centres desired, k > , < α ≤ , and a dataset D = {x, x, . . . , xk},
with n ≥ k, embedded in a metric space (M , d).

Output: Centres {c, c, . . . , ck} ⊆ D.
m ←
while m < k do

(xi , x j)← argmin
(x ,x′)∈D×D

d(x , x′)

Cm ← {xi , x j}
D ← D ∖ {xi , x j}
while ∣Cm∣ < α ⋅ n

k
do

xi ← argmin
x∈D

min
x′∈Cm

d(x , x′)

Cm ← Cm ∪ {xi}
D ← D ∖ {xi}

end while
end while
for all ≤ i ≤ k do

ci ← argmin
c∈M

∑
x∈C i

d(x , c)

end for
return {c, c, . . . , ck}.

A further method, introduced by Arthur and Vassilvitskii [6] is called k-means++

and is shown in Algorithm 3. Its name re�ects the fact that it was designed to be used in

conjunction with an improvement method that is o en referred to as k-means.

Improvement

Given an initial partition, C, of a set D and a criterion f ∶PD → R+, the aim is now to �nd

a partition that is an improvement of the initial partition, if possible. A partition C′ of D is

an improvement of C if f (C′) < f (C) or f (C′) > f (C), whichever is appropriate for the

criterion. We will now look at some of the methods that have been devised for making

improvements.

CHAPTER . PARTITIONAL CLUSTERING 38

Algorithm 3 k-means++ initial centres algorithm.

Input: Number of centres desired, k > , dataset D = {x, x, . . . , xn}, with n ≥ k, and
dissimilarity d∶D × D → R≥.

Output: Centres {c, c, . . . , ck}.
S ← {element chosen at random from D}
m ←
while m < k do

S ← S ∪
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
an element x′ ∈ D chosen with probability

min
c∈S

d(x′, c)

∑
x∈D

min
c∈S

d(x , c)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
end while
return S.

Hartigan’s method [77] is a simple heuristic that is general in the sense that it takes a

criterion as a parameter and attempts to produce an improvement with respect to that

criterion. ¿is is unlike most methods which are specialised to a particular criterion

and o en even to a particular type of dataset and metric. Many of the earliest clustering

methods, such as those described in [53], simply consisted of a particular initialisation

step followed by Hartigan’s method with respect to a particular criterion.

Given a set D, a partition C on D and a criterion, Hartigan’s method produces a new

partition, C′, by selecting an element in D and moving it to a di�erent cluster, if such a

move would produce an improvement. ¿e new cluster is chosen such that the criterion is

optimised at each stage. ¿is is called an optimal reassignment. Elements are repeatedly

optimally reassigned until no more reassignments would produce an improvement. ¿us,

upon termination, a locally optimal partition has been found.

Lloyd’s method, which is specialised to the centroid-distance criterion with the Eu-

clidean distance, is probably the most well-known and widely used clustering method

today. ¿e centroid-distance problem is also commonly called the k-means problem. ¿e

popularity of Lloyd’s method had led tomany authors referring to it simply as “the k-means

algorithm” (although, as we note below, calling it an algorithmmay be erroneous). ¿ere is

some confusion here, though, as some authors also refer to Hartigan’s method with respect

to the centroid-distance criterion as k-means and others refer Lloyd’s method as H-means.

CHAPTER . PARTITIONAL CLUSTERING 39

Lloyd’s method is simple and easy to understand, given an initial k partition of a dataset

D it proceeds as follows:

. Call the current centroid of each cluster the “centre”. Move each element to the

cluster with the closest centre.

. Set each cluster’s centre equal to the centroid. If any centres changed then go to step

1, otherwise terminate.

¿e version written here is as suggested by Ball and Hall [9]. MacQueen [105] prefers

a variation which recomputes centroids every time new elements are added to the clusters,

instead of only once during each iteration. To enable quicker termination, usually another

stopping condition is added, for example a maximum number of iterations or a minimum

threshold for the changes made a er each iteration.

Note also that we are careful not to call this method an algorithm. It is possible that

step 1 will results in empty clusters, which has two problems: we no longer have a partition,

and centroids are not de�ned for empty sets. Some modi�cations have been suggested to

ensure that clusters remain nonempty, for example in [124].

¿emajor advantage of Lloyd’smethod is that it is simple, easy to implement (assuming

centroids are easy to compute) and it generally converges very quickly to a solution. ¿ere

are some drawbacks, however. Asmentioned already, it is implicitly assumed that centroids

are easy to compute. ¿is is the case when Euclidean distance is used, or in fact any

Bregman divergence, since centroids are then equal to the mean of the elements [156, 10].

Even calculating means presents a drawback, since it requires that an implementation

has access to the dataset while other methods only require a matrix of dissimilarities. A

�nal drawback is that the method actually requires, in the worse case, exponentially many

iterations to converge, even in the Euclidean plane [158].

But despite these drawbacks, Lloyd’s method remains very popular. In a brief survey of

some popular data mining andmachine learning so ware it was found that Lloyd’s method

is used in around three-quarters of implementations for centroid-distance clustering.

CHAPTER . PARTITIONAL CLUSTERING 40

Hartigan’s method is used the rest of the time including in some of the more prominent

so ware, for example in R and Weka. A comparison of Lloyd’s method and Hartigan’s

method, in which Hartigan’s method is shown to produce more attractive partitions in

fewer iterations, is given in [156].

We turn now to sum-of-stars clustering, which is also known as k-medoids clustering

analogous to k-means clustering and re�ecting the fact that medoids are calculated in the

process of calculating the sum-of-stars criterion. ¿e oldest and simplest heuristic method

for sum-of-stars clustering is Partitioning Around Medoids (PAM), shown in Algorithm 4,

was introduced by Kaufman and Rousseeuw [90].

Algorithm 4 Partition Around Medoids (PAM).

Input: A dataset, D = {x, . . . , xn} with a dissimilarity d∶D × D → R≥ and an integer
k > n.

Output: A k partition {C, . . . ,Ck} of D.
• Initialise a partition {C, . . . ,Ck} by selecting k elements at random from D and
placing one in each cluster. Call the set of k selected elements Ds and the set of
unselected elements Du.

• Assign each element in Du to the cluster containing a maximally similar element
of Ds, according to d. Calculate the sum-of-stars value for this partition.

• Repeatedly swap elements of Ds with elements of Du and reassign the elements of
Du, whenever the swap would improve the sum-of-stars value. Continue to swap
until no swap will improve the sum-of-stars.

Since PAM can require the sum-of-stars value to be calculated a very large number of

times, Kaufman and Rousseeuw [90] suggested a version with enhanced performance for

large datasets called CLARA (CLustering LArge Applications). For a dataset, D, the basic

idea is to run PAM on a subset, D′, of the D which is selected at random. ¿e centres found

by PAM in D′ should be a good approximation for the centres that would be found by PAM

in D. A er the centres are found in D′, the remaining elements of D are assigned to the

cluster with the closest centre. Usually multiple samples are taken for D′ and the partition

with the smallest sum-of-stars value is taken. As a guidance, Kaufman and Rousseeuw

[90] suggest taking �ve samples of size + k.

CHAPTER . PARTITIONAL CLUSTERING 41

Compared with PAM, CLARA performs well for larger datasets. For an n element

dataset where k clusters are desired, each iteration of PAM has runtime complexity of

O(k(n − k)) while for CLARA it is only O(k(+ k) + k(n − k)) with the suggested

sample size [122].

CLARANS (Clustering Large Applications based on RANdomized Search) takes in�u-

ence from both PAMandCLARA [122]. ¿e algorithm considers the graphGnk with vertex

set Vnk = {{m,m, . . . ,mk}∣m,m, . . . ,mk ∈ D}, so all possible k-medoids, which each

de�ne a partition. Two vertices, M,M ∈ Vnk are connected by an edge if and only if

∣M ∩M∣ = k − , meaningM andM di�er by only one object.

With regards to this graph, PAM can be thought of as a search through Gnk to �nd

a vertex for which no adjacent vertices have a smaller sum-of-stars value. For a found

vertex inGnk , PAMworks by considering every vertex adjacent to it to continue the search.

CLARA instead searches through only a subgraph of Gnk which has far fewer vertices, so

e�ectively, when a vertex is found in Gnk , it considers only a subset of the vertices adjacent

to it.

CLARANS, shown in Algorithm 5, searches through the entire graph Gnk but, for a

found vertex v ∈ Vnk , does not consider every vertex adjacent to v, instead it considers

only a random subset of the set of vertices adjacent to v. In experiments, CLARANS was

shown to run faster than PAM while producing partitions with a smaller sum-of-stars

value than those produced by CLARA [122].

Heuristics remain the most popular choice for clustering applications in general,

probably due to their ability to produce acceptable solutions for a wide variety of input. But

it is o enmore desirable to have an algorithmwith a provenworst-case runtime complexity

and which is guaranteed to produce either optimal solutions or solutions within some

known degree of the optimal. ¿e former type are called exact algorithms and the latter

approximation algorithms.

Approximation algorithms are a popular way to deal with many NP-hard optimisation

problems. An algorithm is called an n-approximation algorithm if the solutions produced

CHAPTER . PARTITIONAL CLUSTERING 42

Algorithm 5 CLARANS.

Input: A dataset, D = {x, . . . , xn}, with a dissimilarity d∶D ×D → R≥, an integer k ≥ n
and parameters numlocal and maxneighbour.

Output: A set of k medoids {m, . . . ,mk} ⊆ D.
• Set i ← and mincost to a large number,

• Set current to a random vertex of Gnk ,

• Set j ← ,

• Compare the sum-of-stars of current and a random vertex, S, adjacent to current,
If S has a lower cost, set current ← S and go to 3,
Otherwise, set j ← j + ,

• If j ≤ maxneighbour, go to 4,
Otherwise, if ss(current) < mincost, set mincost ← ss(current) and
bestnode ← current,

• Set i ← i + m
If i ≤ numlocal , go to 2,
Otherwise return bestnode.

are guaranteed to have a cost, with respect to the objective criterion function, of no more

than n times (a minimisation problem) or at least /n times (a maximisation problem) the

cost of the optimal solution, for some n > .

Gonzalez [68] provides a 2-approximation algorithm for max-diameter which, for

an n element dataset and k cluster desired, has worst-case runtime complexity of O(nk).

¿e algorithm requires that the dissimilarity used is a metric. Doddi et al. [45] provide a

2-approximate algorithm for sum-of-diameters which, again, requires that the dissimilarity

is a metric. ¿ey also provide a version which produces partitions of no more than O(k)

clusters that have sum-of-diameters values within O(ln(n/k)) times the optimal for a

k-partition. Other approximation algorithms have been devised for max-radius [166] and

centroid-distance [30].

Some work has been done on exact algorithms for certain criteria. For those problems

which are NP-complete, these algorithms are only e�cient under very constrained input

conditions. Algorithms for centroid-distance exist including methods using branch-and-

bound [19], branch-and-cut [3] and column generation [115]. Some of these algorithms are

CHAPTER . PARTITIONAL CLUSTERING 43

able to �nd exact solutions to instances in the plane with up to 2000 objects, in reasonable

time [3].

¿e all-squares problem, or more generally sum-of-cliques, has received attention also.

An exact algorithm using branch-and-bound [94] can be used to solve problems with

n ≤ , k ≤ in reasonable time [75]. Cutting planes have also been applied with problems

with n ≤ solved quickly [75, 125].

In Hansen and Delattre [73] an exact algorithm using graph-colouring for the max-

diameter problem is given which is shown to exactly cluster 270 objects in reasonable

time.

Not many clustering problems are in P, but one problem which has already been

mentioned is min-split which can be exactly solved using the SLINK algorithm [86, 148].

¿is is actually a hierarchical clustering algorithm, but can be used to �nd partitions simply

by taking the layer of the hierarchy with the desired number of clusters.

Chapter 3

Sum-of-Squares Clustering

¿is chapter is largely based on the following paper:

G. Kettleborough and V.J. Rayward-Smith. Optimising sum-of-squares measures for

clustering multisets de�ned over a metric space. Discrete Applied Mathematics, 161(16-17):

2499–2513, 2013. doi: 10.1016/j.dam.2013.04.015

y

My contributions include: the examples showing that equations (3.4) and (3.5) do not hold for

all metrics, the example to show that linear separability does not hold for all-squares clustering in

Section 3.2.2, the proof for Lemma 1, the proof of ¿eorems 5, 6 and 10, the examples of using the

assignment metric in Section 3.4.2, and the examples leading to¿eorem 14. I was also responsible

for preparation of the published manuscript and implementation of the assignment metric for

testing.

44

http://dx.doi.org/10.1016/j.dam.2013.04.015

CHAPTER . SUM-OF-SQUARES CLUSTERING 45

3.1 Introduction

3.1.1 Summary

In this chapter we examine two sum-of-squares criteria for clustering in a metric space

and compare their performance. It has recently been shown that partitional clustering

under the centroid-distance criterion is an NP-hard problem in Euclidean space. We

show that the associated decision problem is NP-complete even in a highly constrained

2-valued metric space, as well as general p-valued metric spaces. We also show that the

problem is NP-complete under the related all-squares criterion both in Euclidean space

and for a p-valued metric. We propose a new metric for comparing clustering called the

assignment metric which allows us to use information about the underlying metric space

of a clustering to help distinguish di�erent clustering solutions. Using this metric we �nally

show that optimal clustering solutions under our two di�erent sum-of-squares criteria

can be as di�erent as any two solutions can possibly be.

3.1.2 Multiset datasets

¿e �rst stage of clustering is to build a dataset in which clusters are to be found. ¿ese

data are o en sampled from some set, M. If the objects in M have a metric, d, de�ned

on them then we say that (M , d) is a metric space. ¿e same metric is, of course, then

de�ned for any elements sampled from M, so given a dataset, D ⊆ M, (D, d) is itself a

metric space.

However, there is usually no restriction on how many times an element fromM may

be sampled so, contrary to the name, a dataset is not usually a set, but is o en a multiset. A

multiset can be considered a generalisation of a fuzzy set, that is an ordered pair (D, µD)

where D is the underlying set and is themembership function but with µD ∶D → R+. For

some element x ∈ D µD(x) = n means that n copies x appear in (D, µD) (note that x ∈ D

is ordinary set notation).

CHAPTER . SUM-OF-SQUARES CLUSTERING 46

3.1.3 Multiset clusterings

A clustering is usually considered to be a set of subsets of the dataset but if the dataset is a

multiset then the clusters must also be multisets. A k-clustering of (D, µD) is therefore

C = {(C, µ), (C, µ), . . . , (Ck , µk)} where µi is the membership function for cluster

Ci . For any such clustering we have that C ∪ C ∪ ⋯ ∪ Ck = D and for all x ∈ D,

∑k
i= µi(x) = µD(x). We will see later that there are some surprising di�erences between

normal clusterings and multiset clusterings (see ¿eorem 8).

3.2 Clustering criteria

As discussed in Section 2.4.1, the problem of clustering is �nding a solution where the

clusters are both homogeneous, meaning elements belonging to the same cluster are similar,

and well-separated, meaning elements belonging to di�erent clusters are dissimilar. We

have seen that there are a large number of possible k-clustering solutions for any given

dataset and many criteria for judging the homogeneity, separation or both of a given

solution.

In this chapterwewill look at the two sum-of-squares criteriawhich judge the suitability

of a k-clustering based on both homogeneity and separation. We derived the two criteria,

called centroid-distance and all-squares, from the scatter matrix in Section 2.4.1. We state

them again here de�ned as cost functions along with de�nitions of their corresponding

optimal partitions.

¿e all-squares cost of a clustering is de�ned as:

costas(C) =
k
∑
i=

∑
x ,y∈C i

µi(x)µi(y)d(x , y). (.)

De�nition 1. A multiset k-clustering which minimises the all-squares cost for a particular

D is called an all-squares optimal k-clustering of D.

CHAPTER . SUM-OF-SQUARES CLUSTERING 47

¿e centroid-distance cost is de�ned as:

costcd(C) =
k
∑
i=
∑
x∈C i

µi(x)d(x , ci), (.)

where ci is the centroid of Ci and is de�ned as

ci = argmin
c∈M

∑
x∈C i

µi(x)d(x , c).

Calculation of the centroid depends on the metric; for example, with the Euclidean metric

the centroid is the mean, with the overlap metric it is the mode and with the heterogeneous

Euclidean-overlap metric (HEOM, as de�ned in Section 2.2.3) it is a mixture of means and

modes.

De�nition 2. A multiset k-clustering which minimises the centroid-distance cost for a

particular D is called a centroid-distance optimal k-clustering of D.

Centroid-distance cost is a well known criterion which is o en called sum-of-squares

without quali�cation in the literature (see, for example, [4, 115, 150, 85, 75]). We believe

that both of the criteria which we have stated can equally well be called sum-of-squares

criteria, so we qualify them as all-squares and centroid-distance.

If d is the Euclidean metric, centroid-distance is also equivalent to a criterion for

separation, although it is not immediately obvious why. It is due to the parallel axis

theorem, or Huygens-Steiner theorem, which we saw in Section 2.4.1. ¿e theorem states

that when (M , dE) is the Euclidean space with the Euclidean metric

∑
x∈A

µA(x)dE(x , s) = ∑
x∈A

µA(x)dE(a, s) +∑
x∈A

µA(x)dE(x , a) (.)

for each A ⊆ M, where a ∈ M is the centroid of A, and s ∈ M [150]. By summing over each

CHAPTER . SUM-OF-SQUARES CLUSTERING 48

clustering, C, . . . ,Ck in some clustering of D we obtain the equation:

∑
x∈D

µD(x)dE(x , s) =
k
∑
i=
∑
x∈C i

µi(x)dE(ci , s) +
k
∑
i=
∑
x∈C i

µi(x)dE(x , ci). (.)

¿e le -hand side is a constant for any s and D and the second term on the right-hand

side is the centroid-distance cost. ¿erefore, minimising the centroid-distance cost is

equivalent to maximising squared-separation

sep(C) =
k
∑
i=
∑
x∈C i

µi(x)dE(ci , s).

For convenience, s is usually taken to be the centroid of D.

We can also use equation (.) to show an alternative formula for centroid-distance

cost. We substitute some y ∈ Ci for s in (.) and sum over all y ∈ Ci , multiplying each

term by µi(y):

∑
y∈C i

∑
x∈C i

µi(x)µi(y)dE(x , y) = ∑
y∈C i

µi(y)dE(ci , y) ∑
x∈C i

µi(x)

+ ∑
x∈C i

µi(x)dE(ci , x) ∑
y∈C i

µi(y).

Rearranging we get

∑
x ,y∈C i

µi(x)µi(y)dE(x , y)

∑
x∈C i

µi(x)
= ∑
x∈C i

µi(x)dE(x , ci).

So,

k
∑
i=

∑
x ,y∈C i

µi(x)µi(y)dE(x , y)

∑
x∈C i

µi(x)
=

k
∑
i=
∑
x∈C i

µi(x)dE(x , ci). (.)

¿e right-hand side here is centroid-distance cost, while the le -hand side bears a resem-

blance to all-squares cost.

It is important to note that equation (.) does not hold for a general metric space,

CHAPTER . SUM-OF-SQUARES CLUSTERING 49

so neither equation (.) nor equation (.) necessarily hold for metrics other than the

Euclidean metric.

An example to show that (.) does not hold for the HEOM follows. Let D be a dataset

with two numerical attributes and one categorical attribute. ¿e dataset consists of four

distinct elements, a = (, , p), b = (, , q), c = (, , r), d = (, , s) with the following

multiplicities, shown in multiset notation:

D = {a, a, a, a, b, b, b, c, c, d}.

Under the HEOM, the centroid-distance optimal multiset 2-clustering is

{{a, a, a, a, c, c}, {b, b, b, d}},

which has centroids (, , p) and (, , q). ¿e centroid-distance cost is ()
 + (()

 +

)+()
+()

+ =
 and the squared-separation is ((

)

+(
)

)+(()
+(

)
+

) =
 . But this is not the maximum squared-separation possible since the clustering

{{a, a, a, a}, {b, b, b, c, c, d}},

with centroids (, , p) and (,

 , q), has a squared-separation of (()

 + (
)

) +

((
)

 + ()
 +) = .

Similarly, we can show that (.) does not hold with the overlap metric: let M =

(D, d) = ({a, b, c}, overlap). We measure the cost of the multiset clustering {C} where

C = ({a, b, c}, µ) and µ(a) = µ(b) = µ(c) = . ¿e centroid is equal to either a, b or

c, this gives a cost using the le -hand side of equation (.) of while the right-hand side

gives .

So, although it may seem sensible to minimise centroid-distance cost for other metrics,

in general it should not be considered to be a criterion for separation.

CHAPTER . SUM-OF-SQUARES CLUSTERING 50

3.2.1 Consistency

De�nition 3. A clustering on a multiset is called consistent if and only if it satis�es the

condition that for all x ∈ D, µi(x) = µD(x) whenever x ∈ Ci . In other words, all of the

copies of x belong to the same cluster.

¿eorem 2. ¿ere exists an all-squares optimal k-clustering that is consistent.

Proof. Assume there exists an all-squares optimal k-clustering

C = {(C, µ), (C, µ), . . . , (Ck , µk)}

where two identical points are in di�erent clusters: x ∈ Ci and x ∈ C j with µi(x) ≥ and

µ j(x) ≥ .

Consider the clustering C′ constructed from C by removing one copy of x from Ci

and placing it in C j. ¿en

costas(C′) = costas(C) − ∑
y∈C i

µi(y)d(x , y) + ∑
y∈C j

µ j(y)d(x , y).

Since costas(C) is minimal we thus deduce

∑
y∈C j

µ j(y)d(x , y) ≥ ∑
y∈C i

µi(y)d(x , y). (.)

Similarly we can construct a clustering C′′ by removing one copy of x from C j and

placing it in Ci and deduce that

costas(C′′) = costas(C) − ∑
y∈C j

µ j(y)d(x , y) + ∑
y∈C i

µi(y)d(x , y).

So

∑
y∈C i

µi(y)d(x , y) ≥ ∑
y∈C j

µ j(y)d(x , y). (.)

CHAPTER . SUM-OF-SQUARES CLUSTERING 51

¿erefore due to (3.6) and (3.7)

∑
y∈C i

µi(y)d(x , y) = ∑
y∈C j

µ j(y)d(x , y),

and so

costas(C) = costas(C′) = costas(C′′).

So, for an optimal clustering, moving elements from one cluster where they exist to another

cluster where they exist does not change the all-squares cost. ¿us all copies of an element

can be safely moved to the same cluster and the result follows.

¿eorem 3. ¿ere exists a centroid-distance optimal k-clustering which is consistent.

Proof. Assume there exists a centroid-distance optimal k-clustering

C = {(C, µ), (C, µ), . . . , (Ck , µk)},

where two identical points are in di�erent clusters: x ∈ Ci and x ∈ C j with µi(x) ≥ and

µ j(x) ≥ .

¿e clustering C′ is constructed from C by removing one copy of x from Ci and

placing it in C j. We call the new clusters C′i and C
′
j. Let the centroids of Ci ,C j ,C′i and C

′
j

be ci , c j , c′i and c
′
j respectively with membership functions µi , µ j , µ

′
i and µ

′
j.

Note thatC′i must be nonempty in order for c
′
i to be well de�ned. ¿is is always the case

since the clustering where Ci = {x} is trivially a suboptimal centroid-distance clustering.

¿en

costcd(C′) = costcd(C) − ∑
y∈C i

µi(y)d(y, ci) − ∑
y∈C j

µ j(y)d(y, c j)

+ ∑
y∈C′i

µ′i(y)d(y, c′i) + ∑
y∈C′j

µ′j(y)d(y, c′j).

CHAPTER . SUM-OF-SQUARES CLUSTERING 52

Now, by the de�nition of a centroid,

∑
y∈C′j

µ′j(y)d(y, c′j) ≤ ∑
y∈C j

µ j(y)d(y, c j) + µi(x)d(x , c j),

and

∑
y∈C′i

µ′i(y)d(y, c′i) ≤ ∑
y∈C i

µi(y)d(y, ci) − µi(x)d(x , ci).

So

costcd(C′) ≤ costcd(C) + µi(x)(d(x , c j) − d(x , ci)).

Since costcd(C) is optimal we deduce that

d(x , c j) ≥ d(x , ci).

Similarly we construct a clustering C′′ by removing x from C j and placing it in Ci

and deduce that

d(x , ci) ≥ d(x , c j).

¿erefore

d(x , ci) = d(x , c j)

and

costcd(C) = costcd(C′) = costcd(C′′).

So, for an optimal clustering, moving elements from one cluster where they exist to

another cluster where they exist does not change the centroid-distance cost and, again, all

copies of an element can be moved to the same cluster and the result follows.

3.2.2 Linear separability

If our dataset is a subset of n dimensional Euclidean space, Rn, then we can consider

whether a clustering solution will be linearly separable or not. Consider a clustering

CHAPTER . SUM-OF-SQUARES CLUSTERING 53

a

b

c d
√

√

√

Figure 3.1: Adataset in Euclidean space consisting of three points arranged in an equilateral triangle
with another point at the centre.

C = {C,C, . . . ,Ck} of points in Rn. Let Hi denote the convex hull of Ci for all ≥ i ≥ k.

De�nition 4. C is linearly separable if Hi ∩H j = ∅ for all ≤ i < j ≤ k.

It is well known that a centroid-distance optimal clustering is necessarily linearly

separable. ¿is can be seen by considering the Voronoi tessellation de�ned by the centroids

of the clustering; each cluster must lie wholly within the region de�ned by the tessellation.

An all-squares optimal clustering, on the other hand, is not necessarily linearly separa-

ble. ¿is can be shown by a simple example. Consider a dataset consisting of distinct points

a, b, c, d arranged in the Euclidean plane as illustrated in Figure 3.1. ¿ere are n copies

of a and one copy each of b, c, d. ¿e clustering C = {{(a, n)}, {(b,), (c,), (d ,)}} has

an all-squares cost of 72. But if we move one of b, c, d into the �rst cluster, then we have a

cost of n+ which is greater whenever n > . Similarly if we move two of b, c, d into the

�rst cluster we get a cost of n + . So whenever n > the all-squares optimal clustering

is C and hence is not linearly separable.

CHAPTER . SUM-OF-SQUARES CLUSTERING 54

3.3 Complexity issues

We will now formally de�ne the problems of �nding an optimal clustering according to

either criteria and analyse the complexity of these problems.

3.3.1 All-squares clustering

We state the all-squares problem formally as a decision problem:

All-Squares Clustering (ASC)

Instance: A multiset of nodes (D, µD), where D = {S, S, . . . , Sn}; a metric, d, which is

de�ned for all elements in D; the number of clusters desired, k ∈ Z+ and a bound B ∈ R+.

Question: Is there a k-clustering, C = {C,C, . . . ,Ck}, such that

costas(C) =
k
∑
i=

∑
x ,y∈C i

µC i(x)µC i(y)d(x , y) ≤ B ?

¿e problem is de�ned for multisets but, unless stated otherwise, the NP-completeness

proofs which follow are for sets, since this establishes the result for multisets too. When

dealing with sets, the membership functions are omitted since they are always equal to 1.

Euclidean space

An important special case of ASC is when the nodes are in Euclidean space and we use the

Euclidean metric dE . We call this special case Euclidean all-squares clustering (EASC).

¿eorem 4. EASC is NP-complete.

Proof. Weobserve that a guessed solution, Cg , can be checked in polynomial time by simply

calculating costas(Cg) and comparing the value to the bound. ¿erefore EASC ∈ NP.

Now to show that EASC is NP-complete we construct a transformation from a known

NP-complete problem to our problem. ¿e NP-complete problem we will use is the

following [62]:

CHAPTER . SUM-OF-SQUARES CLUSTERING 55

Partition into Triangles (PT)

Instance: Graph G = (V , E), with ∣V ∣ = q for some integer q.

Question: Can each of the vertices of G be partitioned into q disjoint sets V,V, . . . ,Vq,

each containing exactly vertices, such that for each Vi = {ui , vi ,wi}, ≤ i ≤ q, all three

of the edges {ui , vi}, {ui ,wi} and {vi ,wi} belong to E?

We transform an instance I = G = (V , E) of PT, where ∣V ∣ = p, V = {v, . . . , vp−}

and ∣E∣ = m into an instance f (I) of EASC: �rst we assign to D a set of n = p points in

(p+m)-dimensional Euclidean space. Each element vi ∈ V corresponds to a point where

. the ith coordinate is N = m,

. all other coordinates ≤ i ≤ p are 0,

. for ≤ j ≤ m, if vi is incident with e j ∈ E then the (p + j)th coordinate is 1,

otherwise it is 0.

We then set k to p and B to m − p + Np. It is easy to see that this transformation

can be computed in polynomial time.

Lemma 1. Let D be a dataset with ∣D∣ = n where the distance squared between each pair of

distinct elements is s. ¿e sum-of-squares minimal k-clustering will contain clusters with

cardinality of either ⌈ nk ⌉ or ⌊
n
k ⌋ only.

Proof. ¿e cost associated with a cluster, C, which contains p elements is p(p −)s =

(p− p)s. ¿e extra cost of adding an element to C is ((p+)−(p+))s−(p− p)s = ps,

and the saving when removing an element is (p − p)s − ((p −) − (p −))s = (p −)s.

We proceed by contradiction. Assume that we have an optimal k-clustering, where

k ≥ (the case where k = is trivial), including two clusters Ci and C j, where ∣Ci ∣ = pi ,

∣C j∣ = p j and pi > p j + . We move an element from Ci to C j; the di�erence in overall

cost due to the move is p js − pis + s < , so we have a saving. ¿erefore our original

clustering could not have been optimal.

CHAPTER . SUM-OF-SQUARES CLUSTERING 56

Corollary 1. Since pi ≥ p j + , the di�erence in cost will be (p j − pi +)s ≤ s. ¿erefore,

the cost of any suboptimal clustering will be at least s greater than the cost of the optimal

clustering.

In our reduction ⌈ nk ⌉ = ⌊ nk ⌋ = , so the optimal clustering when all nonzero distances

are equal will be one where each cluster contains three elements.

Lemma 2. I is a YES instance of PT if and only if f (I) is a YES instance of EASC.

Proof. If I ∈ YPT then we can construct a clustering by letting each cluster correspond to

one of the triangles in the partition of G. Let w , x , y be the vertices of such a triangle, and

therefore a cluster. ¿e distance squared between a pair of these points is d(w , x) = N+

deg(w)+deg(x)−; the N comes from the coordinates governed by rules 1 and 2 in the

transformation and the deg(w)+deg(x)− comes from the coordinates governed by rule

3. ¿e overall cost of the clustering is therefore (deg(w)+deg(x)+deg(y)+N−).

Hence, the set of p triangles has cost

∑
v∈V

deg(v) + Np − p = m + Np − p = B, (.)

so f (I) ∈ YEASC.

If f (I) ∈ YEASC then we have a k-clustering which �ts the bound. ¿e distance between

each pair of distinct points in the dataset is at least N. Assume that the distances are all

exactly N: due to Lemma 1, the optimal clustering in this case is one where each cluster

contains 3 elements, and this clustering has an overall cost of Np. Due to Corollary 1,

any suboptimal clustering would have an overall cost of at least (p +)N and, since

N = m, will not meet the bound. Clearly, if one of these suboptimal clusterings

contained distances greater than N in the sum their overall cost would be greater still.

¿erefore, each cluster must contain exactly 3 elements.

As shown in equation (.), the cost of a clustering where each cluster corresponds to

a triangle in G equals the bound. If some cluster does not correspond to a triangle, then

CHAPTER . SUM-OF-SQUARES CLUSTERING 57

its cost is increased, and therefore the overall cost of the clustering will be greater than the

bound. So each cluster must be a triangle, so I ∈ YPT.

Hence, due to Lemma 2, the theorem is established.

p-valued metric

De�nition 5. A p-valued metric is a metric where the cardinality of the codomain is equal

to some positive integer p.

¿eorem 5. ASC is NP-complete even with a 3-valued metric.

Proof. We observe that a guessed solution can be checked in polynomial time, therefore

ASC ∈ NP.

Now we choose again to construct a transformation from Partition into Triangles

(PT). An instance I of PT is transformed into an instance f (I) of ASC as follows: �rst we

construct a 3-valued metric space by setting D to V and de�ning a function d∶D × D →

{, α, β} where > α > β by

d(u, v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

 if u = v,

α if there exists an edge in G between u and v,

β otherwise.

Lemma 3. (D, d) is a metric space.

Proof. We show that d satis�es each condition required for a metric for all u, v ,w ∈ D:

. d(u, v) = if and only if u = v by de�nition,

. d(u, v) = d(v , u) by de�nition,

. d(u, v) + d(v ,w) ≥ d(u,w) (triangle inequality)

If u = w then this is trivially true.

CHAPTER . SUM-OF-SQUARES CLUSTERING 58

If d(u,w) = α then u ≠ w so either u ≠ v or v ≠ w or both.

If d(u,w) = β then u ≠ w and there is no edge between u and w, we then have two

cases: either both u ≠ v and v ≠ w which satis�es the inequality, or one of u = v or

v = w, but we know there is no edge between u and w so therefore there is no edge

between v and w or v and u respectively, so the inequality is satis�ed.

We then set B to qα and k to q to complete the transformation. It is easy to see that

this transformation can be computed in polynomial time.

Lemma 4. I is a YES instance of PT if and only if f (I) is a YES instance of ASC.

Proof. If I ∈ YPT then observe that we can construct a clustering, C, by assigning to each

cluster Ci the set Vi . Since each Vi has an edge between each pair of vertices, the cost of

each cluster Ci is α, and therefore the cost of C is qα. So therefore f (I) ∈ YASC.

If I ∈ NPT then we cannot have a clustering where all clusters have cardinality as

this will contain at least one distance greater than α and therefore not meet the bound.

We must consider clusterings where all within cluster distances are equal to α, but due to

Lemma 1, any such clustering with clusters of di�erent sizes always has a higher cost so

they also cannot meet the bound. ¿erefore f (I) ∈ NASC.

Hence, due to Lemmata 3 and 4, the theorem is established.

¿eorem 6. For all n ≥ there exists a metric such that ASC is hard, therefore ASC is

NP-complete with an n-valued metric when n ≥ .

Proof. We proceed by induction. ¿eorem 5 establishes the base case, so we now assume

that the problem is NP-complete with an n-valued metric and show that it is NP-complete

with an (n +)-valued metric.

CHAPTER . SUM-OF-SQUARES CLUSTERING 59

We transform an instance, I, of the n-valued problem into an instance, f (I) of the

(n +)-valued problem. Let D∗, d∗, k∗ and B∗ be the dataset, metric, number of clusters

and bound of f (I), respectively. We set D∗ to D ∪ {a}, k∗ to k + and B∗ to B. We de�ne

a function d∗∶D × D by

d∗(x , y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

 if x = y,

s if x = a or y = a,

d(x , y) otherwise,

where s = ∑p,q∈D d(p, q). Notice that the distance between a and each element in D is

the complete sum of all distances squared in D. It is easy to see that this transformation

can be computed in polynomial time.

Lemma 5. I is a YES instance of n-valued ASC if and only if f (I) is a YES instance of

(n +)-valued ASC.

Proof. If I ∈ YASC then there is some clustering C = {C,C, . . . ,Ck} of D with a cost less

than or equal to B. We can construct a similar clustering of D∗ : C∗ = C ∪ {{a}}. ¿e

extra cluster will not contribute to the cost, so the cost of C∗ is also less than or equal to B,

so f (I) ∈ YASC .

If f (I) ∈ YASC then there is some clustering, C∗ = {C∗ ,C∗ , . . . ,C∗k∗}, with cost less

than or equal to B. Let C∗l be the cluster which contains the element a. If some other

elements belong to this cluster then we can move them into any other cluster: each element

we move makes a saving of at least s but the �nal overall cost of the cluster we move them

to can be at worst s, so clearly this will result in a saving. Now, Cl contains only a so does

not contribute to the overall cost, so C∗ ∖ C∗l has an overall cost less than or equal to B

and therefore I ∈ YASC .

Hence, due to Lemma 5, the theorem is established.

CHAPTER . SUM-OF-SQUARES CLUSTERING 60

If our dataset is a set and the metric is 2-valued then the problem is solvable in

polynomial time due to Lemma 1. We need only solve the equation

x ⌈n
k
⌉ + (k − x) ⌊n

k
⌋ = n

for x and an optimal clustering is then x = n − k⌊ nk ⌋ clusters of ⌈
n
k ⌉ elements and k − x

clusters of ⌊ nk ⌋ elements. For the decision version we would then simply calculate the cost

of the clustering to see if it is less than the bound. We conclude with:

¿eorem 7. When the dataset is a set with a 2-valued metric, an optimal clustering can be

found in polynomial time.

However, if the dataset is a multiset this is not the case; the problem becomes NP-

complete.

¿eorem 8. When the dataset is a multiset with a 2-valued metric, ASC is an NP-complete

problem.

Proof. We construct a transformation from the NP-complete problem [62]:

Minimum Sum-of-Squares (MSS)

Instance: Finite set A, a size s(a) ∈ Z+ for each a ∈ A, positive integers K ≤ ∣A∣ and J.

Question: Can A be partitioned into K disjoint sets A,A, . . . ,Ak such that

K
∑
i=

⎛
⎝∑a∈A i

s(a)
⎞
⎠

≤ J ?

We construct our dataset by setting D to A and µD to s and we set k to K. We de�ne a

metric d for all u, v ∈ D as

d(u, v) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

 if u = v,

 otherwise.

CHAPTER . SUM-OF-SQUARES CLUSTERING 61

To �nd the value for B, consider an optimal multiset clustering C = {C, . . . ,Ck}

which is consistent, so µC i(x) = µD(x) for all x ∈ D and ≤ i ≤ k. ¿e cost of a single

cluster, Ci , is

∑
x ,y∈C i

µD(x)µD(y) =
⎛
⎝∑x∈C i

µD(x)
⎞
⎠

− ∑
x∈C i

(µD(x)),

so the total cost of C is

k
∑
i=

⎛
⎝∑x∈C i

µD(x)
⎞
⎠

−
k
∑
i=
∑
x∈C i

(µD(x)). (.)

¿e second term is a constant and is equivalent to

Γ = ∑
x∈D

(µD(x)).

We set B to J − Γ and the transformation is complete. It is now easy to see that the

cost of the optimal clustering, C, will meet the bound, B, if and only if the �rst term in

expression (.) is less than or equal to J. So I ∈ YMSS if and only if f (I) ∈ YASC and the

theorem is established.

3.3.2 Centroid-distance clustering

Again, we state the problem formally as a decision problem:

Centroid-Distance Clustering (CDC)

Instance: Ametric space (M , d), a set of nodes D ⊆ M, the number of clusters desired,

k ∈ Z+, and a bound, B ∈ R+.

Question: Is there a k-clustering, C = {C,C, . . . ,Ck} such that

costcd(C) =
k
∑
i=
∑
x∈C i

µi(x)d(x , ci) ≤ B,

where ci ∈ M is the centroid of cluster Ci?

CHAPTER . SUM-OF-SQUARES CLUSTERING 62

Again, the problem is de�ned for multisets, but the following proof is for sets so the

membership function has been omitted.

¿eorem 9. CDC is NP-complete.

Proof. Weobserve that a guessed solution, Cg , can be checked in polynomial time, therefore

CDC ∈ NP.

To show that CDC is NP-complete we will construct a transformation from a known

NP-complete problem to our problem. ¿e problem we will use is the following [62]:

Dominating Set (DS)

Instance: A graph G = (V , E) and a positive integer K ≤ ∣V ∣.

Question: Is there a dominating set of size K or less for G or, in other words, a subset

V ′ ⊆ V with ∣V ′∣ ≤ K such that for all u ∈ V ∖ V ′ there is a v ∈ V ′ for which {u, v} ∈ E?

We transform an instance I of DS into an instance f (I) of CDC. Fist we construct a

3-valued metric space by settingM = D to V and de�ne a function d∶M ×M → R by

d(u, v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

 if u = v,

 if there exists an edge in G between u and v,

 otherwise.

¿is is a metric space by Lemma 3. We then set k to K and B to n − k.

Lemma 6. I is a YES instance of DS if and only if f (I) is a YES instance of CDC.

Proof. If I ∈ YDS then ∣V ′∣ ≤ K = k. We can construct a k-clustering by �rst picking

k− ∣V ′∣ arbitrary elements fromV ∖V ′ and adding each of these to separate clusters. ¿ese

are �nal clusters and will not contribute to the overall cost. We then add one element of

the dominating set each to the remaining ∣V ′∣ clusters. ¿ese elements are the tentative

centroids of the clusters. So far we still have an overall cost of zero. ¿e remaining n − k

CHAPTER . SUM-OF-SQUARES CLUSTERING 63

Figure 3.2: Each of the k clusters correspond to star graphs with the centroid at the centre, so there
is a dominating set of size k as outlined.

elements are added one by one to any cluster where they share an edge with the tentative

centroid. ¿us, each of these n − k elements contributes to the cost by 1. If one of the �nal

centroids of these constructed clusters turns out to be di�erent to the tentative centroids,

this can only decrease the cost of that cluster, by the de�nition of a centroid. ¿erefore the

overall cost is less than or equal to B = n − k, so f (I) ∈ YCDC .

If f (I) ∈ YCDC then we have an overall cost of less than or equal to n− k. Since D = M,

each cluster must contain an element equal to the centroid of that cluster, so there are

exactly k elements which do not contribute to the overall cost. Each of the n− k remaining

elements must contribute to the cost by at least , so therefore must contribute by exactly

giving an overall cost of exactly n − k. Each cluster therefore corresponds to a star in G, as

illustrated in Figure 3.2, so I ∈ YDS.

Hence, due to Lemmata 3 and 6, the theorem is established.

¿eorem 9 has already been established using Euclidean space. In fact, the problem has

been shown to be NP-hard for both k = in general Euclidean space [4] and for general

k in only 2 dimensions [106]. If both k and d, the number of dimensions, are �xed, the

problem is exactly solvable in O(ndk+ log n) time[84].

Our proof establishes the following new result:

Corollary 2. Even if the metric, d, is a 3-valued metric, centroid-distance clustering remains

an NP-complete problem.

CHAPTER . SUM-OF-SQUARES CLUSTERING 64

¿eorem 10. For all n ≥ there exists a metric such that CDC is hard, therefore CDC is

NP-complete with an n-valued metric when n ≥ .

Proof. We proceed by induction. ¿eorem 9 establishes the base case, so we now assume

that the problem is NP-complete with an n-valued metric and show that it is NP-complete

with an (n +)-valued metric.

We use the same transformation as used for the proof of ¿eorem 6.

Lemma 7. I is a YES instance of n-valued CDC if and only if f (I) is a YES instance of

(n +)-valued CDC.

Proof. If I ∈ YCDC then there is some clustering C = {C,C, . . . ,Ck} of D with a cost less

than or equal to B. We can construct a similar clustering of D∗: C∗ = C ∪ {{a}}. ¿e extra

cluster will not contribute to the cost, so the cost of C∗ is also less than or equal to B, so

f (I) ∈ YCDC .

If f (I) ∈ YCDC then there is some clustering C∗ = {C∗ ,C∗ , . . . ,C∗k∗} which has cost

less than or equal to B. Let C∗l be the cluster which contains element a. If other elements

belong to this cluster then the cluster will have cost greater than or equal to s. We can

move all other elements to any other cluster, say C∗p , which will reduce the cost of C∗l to

0, but the cost of C∗p must be less than s, so we have an overall saving. Now C∗l does not

contribute to the overall cost, so C∗ ∖ C∗l has an overall cost less than or equal to B and

therefore I ∈ YCDC .

Hence, due to Lemma 7, the theorem is established.

However, when the metric is 2-valued, the problem is solvable in polynomial time,

even in the multiset case. To see this, let our metric be

d(u, v) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

 if u = v,

s otherwise.

CHAPTER . SUM-OF-SQUARES CLUSTERING 65

¿e overall cost of a clustering will be

k
∑
i=

∑
{x∈C i ,x≠c i}

µi(x)s

or, equivalently,

∑
x∈D

µD(x)s −
k
∑
i=
µi(ci)s.

¿e �rst term is a constant, so the problem is to simply maximise the second term. ¿is

can be done by ordering the elements of D by their membership count in descending order

and selecting the �rst k elements. We move all copies of each of the selected elements to

their own cluster; these will become the centroids. ¿e remaining elements may then be

moved to an arbitrary cluster as they will all contribute to the cost by s each in any case.

3.4 ¿e assignment metric

There are many existing methods for comparing clusterings. Many do not provide us

with, or do not have established, bounds so are not very useful for our purposes. We will

look at two metrics which have upper bounds: the Variation of Information (VI) (see

Section 2.3.2) and our assignment metric which we present here. ¿e assignment metric is

based on set matching like those discussed in Section 2.3.2, but allows any metric to be

used for comparing the matched sets.

Let Pk be the set of all possible k-clusterings of D. We de�ne the assignment metric

as a function ∆∶Pk×Pk → R where

∆(C, C) = min
σ∈Sk

k
∑
i=
δ(Ci ,Cσ(i))

for some δ∶ (D ∖ ∅) × (D ∖ ∅) → R and where Sk is the set of all possible functions

σ ∶{, . . . , k}→ {, . . . , k}.

¿eorem 11. ¿e measure ∆ is a metric on Pk whenever δ is a metric on (D ∖ ∅).

CHAPTER . SUM-OF-SQUARES CLUSTERING 66

Proof. We show that ∆ satis�es all conditions required for a metric:

. ∆(C, C) ≥ trivially since δ(Ci ,C j) ≥ for all ≤ i , j ≤ k since δ is itself a

metric,

. If C = C then there exists some σ for which Ci = Cσ(i) so δ(Ci ,Cσ(i)) = for

all ≤ i ≤ k, so ∆(C, C) = .

If ∆(C, C) = then δ(Ci ,Cσ(i)) = and therefore Ci = Cσ(i) for some σ and

all ≤ i ≤ k, so C = C,

. ∆(C, C) = ∆(C, C) trivially since δ(Ci ,C j) = δ(C j ,Ci) for all ≤ i , j ≤ k,

. Let ∆(C, C) = ∑k
i= δ(Ci ,Cσ(i)) for some σ ∈ Sk

and ∆(C, C) = ∑k
i= δ(Ci ,Cτ(i)) for some τ ∈ Sk .

¿en,

∆(C, C) + ∆(C, C) =
k
∑
i=
δ(Ci ,Cσ(i)) + δ(Cσ(i),Cτ(σ(i)))

≥
k
∑
i=
δ(Ci ,Cτ(σ(i))) (due to triangle inequality of δ)

≥ min
σ∈Sk

k
∑
i=
δ(Ci ,Cσ(i))

= ∆(C, C).

Possible choices for the δ metric are the cardinality of the symmetric di�erence,

δ(A, B) = ∣A△B∣, and the normalised symmetric di�erence, also known as the Jac-

card distance, δ(A, B) = ∣A△ B∣
∣A∪B∣ . ¿ese are well known metrics with the former be-

ing used o en in the literature for comparing sets, for example in [134]. ¿ese two

metrics extend naturally to multisets; the multiset version of symmetric di�erence is

δ((A, µA), (B, µB)) = ∑x ,y∈A∪B ∣µA(x) − µB(y)∣.

Calculating ∆ amounts to calculating theminimum costmatching between the clusters.

¿ere are k! possible matchings, but the minimum can be found in O(k) time using the

CHAPTER . SUM-OF-SQUARES CLUSTERING 67

Hungarian algorithm [97]. Since k! < k when k < , it may be more e�cient to simply

enumerate all solutions when k is small.

Clusterings with di�erent k can be compared by the addition of the pseudometric

∣∣C∣ − ∣C∣∣ (ie. the absolute di�erence between the set cardinalities). Let P be the set of all

partitions of D. ¿e assignment metric then becomes a function ∆∶P ×P → R de�ned as

∆(C, C) = min
σ∈Sk

k
∑
i=
δ(Ci ,Cσ(i)) + λ∣∣C∣ − ∣C∣∣,

where k = min(∣C∣, ∣C∣), δ∶ (D ∖ ∅) × (D ∖ ∅)→ R and λ is a positive real number.

¿is is most sensible when the metric δ is bounded or normalised and λ is greater

than or equal to the upper bound on δ. Calculation of the metric using the Hungarian

algorithm can then be performed by a simple modi�cation, namely by setting the cost of

matching a set to nothing as λ and �nding the minimum matching in the same way.

Using a bounded metric does not limit our choice since any metric can be bounded.

One general formula for bounding a metric by [,] is

δb(A, B) =
δ(A, B)

 + δ(A, B) . (.)

Alternatively, it may be possible to normalise the metric, as with the normalised symmetric

di�erence metric.

¿is version of the assignment metric is bounded by λ ⋅max(∣C∣, ∣C∣), and this bound

is approached arbitrarily closely by C = {{, , . . . , n}}. C = {{}, {}, . . . , {n}} in the

limit of large n for any metric δ. Tighter bounds may exist for speci�c choices of δ and

�xed k (we prove one in Section 3.4.3).

In Section 3.4.1 we show how the assignment metric can be used to compare fuzzy

partitions and in Section 3.4.2 we discuss the use of metrics which are aware of the under-

lying metric space of a clustering. In Section 3.5 we use the symmetric di�erence to prove

a worst case result for our two clustering criteria.

CHAPTER . SUM-OF-SQUARES CLUSTERING 68

3.4.1 Comparing fuzzy partitions

¿e assignment metric extends easily to fuzzy partitions. All we need is a metric on fuzzy

sets. Here we present such a metric which is analogous to the symmetric di�erence.

Let F f be the set of all fuzzy sets and Fc ⊂ F f the set of all crisp sets. Note that a crisp

set is a special case of a fuzzy set where

µA(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

 if x ∈ A

 if x ∉ A

for all A ∈ Fc .

We now de�ne a function δ f ∶F f ×F f → R by

δ f (A, B) = ∑
x∈R

∣µ(x ,A) − µ(x , B)∣.

¿eorem 12. ¿e measure δ f is equivalent to the symmetric di�erence δ(A, B) = ∣A△B∣

for all A, B ∈ Fc .

Proof. For each x ∈R:

. If x ∉ A and x ∉ B then µ(x ,A) = µ(x , B) = and therefore this does not contribute

to the sum in δ f (A, B),

. if x ∈ A and x ∉ B then µ(x ,A) = and µ(x , B) = so ∣µ(x ,A)−µ(x , B)∣ = ∣−∣ = ,

. similarly, if x ∉ A and x ∈ B then ∣µ(x ,A) − µ(x , B)∣ = ∣ − ∣ = ,

. if x ∈ A and x ∈ B then ∣µ(x ,A) − µ(x , B)∣ = ∣ − ∣ = and therefore also does not

contribute to the sum.

CHAPTER . SUM-OF-SQUARES CLUSTERING 69

For fuzzy sets this measure does correspond to ∣A△B∣ = ∣A∪ B∣ − ∣A∩ B∣ since

µ(x ,A∪ B) = max(µ(x ,A), µ(x , B))

µ(x ,A∩ B) = min(µ(x ,A), µ(x , B))

so the cardinality ∣A∪ B∣ − ∣A∩ B∣ is

∑
x∈R

(max(µ(x ,A), µ(x , B)) −min(µ(x ,A), µ(x , B)))

= ∑
x∈R

∣µ(x ,A) − µ(x , B)∣.

¿eorem 13. (F f , δ f) is a metric space.

Proof.

. δ f (A, B) = ⇐⇒ A = B:

δ f (A, B) = ⇐⇒ µ(x ,A) = µ(x , B) ∀x ∈R

⇐⇒ A = B,

. δ f (A, B) = δ f (B,A) by de�nition,

. δ f (A, B) + δ f (B,C) ≥ δ f (A,C) (the triangle inequality):

δ f (A, B) + δ f (B,C) = ∑
x∈R

∣µ(x ,A) − µ(x , B)∣ + ∑
x∈R

∣µ(x , B) − µ(x ,C)∣

= ∑
x∈R

(∣µ(x ,A) − µ(x , B)∣ + ∣µ(x , B) − µ(x ,C)∣)

≥ ∑
x∈R

∣µ(x ,A) − µ(x ,C)∣

= δ f (A,C)

CHAPTER . SUM-OF-SQUARES CLUSTERING 70

(i) Clustering C.

(ii) Clustering C.

(iii) Clustering C.

Figure 3.3:¿ree clusterings on the same dataset.

¿ere is also a corresponding normalised version of this metric for use with the second

version of the assignment metric:

δ fn(A, B) =
∣A△B∣
∣A∪ B∣ .

3.4.2 Lifting the underlying metric space

Another possibility that the assignment metric gives us is to use a metric which is aware of

the metric space underlying our clustering. ¿is overcomes some of the limitations that

are present in most comparison methods [8].

Figure 3.3 shows three possible clusterings, C, C and C on a given dataset. ¿e

elements in this dataset exist in the Euclidean plane and are shown in their relative positions

on the page. Imagine that C represents the standard clustering and C and C are two

alternative clusterings. We would like to know which of the alternative clusterings is closest

to the standard so we measure the distance between C and C and C and C. Under the

VI metric we get ∆(C, C) = ∆(C, C) = .. Under the assignment metric with

the symmetric di�erence we similarly get ∆(C, C) = ∆(C, C) = . ¿is seems contrary

to our intuition: we would expect that C is further from the standard since the clusters

are of very di�erent shapes. ¿e assignment metric combined with the Hausdor� metric

δH and Euclidean metric dE re�ects this intuition: we get ∆(C, C) = . and

∆(C, C) = .. We could, of course, have used a metric other than the Euclidean

metric to plug in to the Hausdor� metric if this made more sense.

CHAPTER . SUM-OF-SQUARES CLUSTERING 71

¿e Hausdor� metric can be normalised in a natural way for use with the second

version of the assignment metric. One way would be to divide by the maximum distance

observed in the dataset:

δHn(X ,Y) = δH(X ,Y)
maxx ,y∈D d(x , y)

.

When we use a metric like the Hausdor� metric we have three “layers” of metric space

that we are dealing with. ¿e underlying layer is our dataset and metric used for clustering

(D, d). We have the cluster layer (D ∖ ∅, δ) and the clustering layer (P , ∆). When we

take into account all three layers we say that we are “li ing” the underlying metric space

to the space of partitions.

It should be noted that two commonly used functions for comparing sets in a metric

space

f(X ,Y) = min
x∈X ,y∈Y

d(x , y)

and

f(X ,Y) = ∑
x∈X

∑
y∈Y

d(x , y)

are not metrics. ¿is can be shown by considering a simple counterexample for each:

f({x , y}, {x , z}) = violates property 3 of a metric (identity of indiscernibles) and

f({x , y}, {x , y}) > violates property 2 (identical elements are most similar).

3.4.3 Upper bound

An upper bound for ∆ can be established when δ(A, B) = ∣A△B∣. We show the upper

bound using sets for clarity, but the result is still valid for multisets using the multiset

version of symmetric di�erence.

¿ere are k possible matchings between clusters, the costs of which can be shown in

CHAPTER . SUM-OF-SQUARES CLUSTERING 72

a matrix:
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

∣C△C∣ ∣C△C∣ . . . ∣Ck△C∣

∣C△C∣ ∣C△C∣ . . . ∣Ck△C∣

⋮ ⋮ ⋱ ⋮

∣C△Ck ∣ ∣C△Ck ∣ . . . ∣Ck△Ck ∣

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Let pi = ∣Ci ∣, p j = ∣C j∣ and pi j = ∣Ci ∩ C j∣. We can calculate the sum of the values in

the jth row of the matrix for some j:

k
∑
i=

∣Ci△C j∣ =
k
∑
i=

(∣Ci ∪ C j∣ − ∣Ci ∩ C j∣)

=
k
∑
i=

(p j + pi − pi j).

Noting that∑k
i= pi = m and∑k

i= pi j = p j this can be written as

kp j +m − p j = (k −)p j +m.

¿e total sum of values in the matrix is therefore

k
∑
j=

((k −)p j +m),

and noting that∑k
j= p j = m we get

(k −)m +mk.

¿ere are k! possible solutions to the assignment problem where each solution is a

combination of k assignments. Let S = {s, s, . . . , sk!} be the set of costs for each solution

so each element is equal to∑k
i= δ(Ci ,Cσ(i)) for some σ . ¿e mean value in the matrix is

(k −)m +mk
k

,

CHAPTER . SUM-OF-SQUARES CLUSTERING 73

C

C

Figure 3.4: Two clusterings, C and C, formed of six clusters each. ¿ese clusterings are optimally
di�erent under both the assignment metric and variation of information.

so the mean solution value is

s̄ = k ((k −)m +mk
k

)

= m − m
k
.

We can split S into three disjoint subsets S<, S= and S> which contain the solutions

which are less than, equal to and greater than the mean, respectively. We have two cases:

either both S< = ∅ and S> = ∅ or both S< ≠ ∅ and S> ≠ ∅. In the �rst case, all solutions are

equal to the mean and therefore any of these will be picked; in the second case, a solution

from S< will be picked.

¿erefore

∆(C, C) ≤ m − ⌈m
k

⌉ .

¿is bound is tight and can be met with the worst case which is illustrated in Figure 3.4:

C = {{, . . . , k}, {k + , . . . , k}, . . . , {(k −)k + , . . . , k}}

C = {{, k + , . . . , (k −)k + },

{, k + , . . . , (k −)k + },

. . . ,

{k, k + k, . . . , (k −)k + k}}.

¿is also produces the worst case under the VI metric, as shown in [113].

CHAPTER . SUM-OF-SQUARES CLUSTERING 74

A

B C

D

s s

s + є

s + є

Figure 3.5: Relative positions of elements to be clustered. A and B contain N elements each, C and
D contain N + elements each.

3.5 Worst case performance

We have so far seen that our two clustering criteria have a number of similarities, and a

number of di�erences. Using our metrics for comparing clusterings, we will now show just

how di�erent an all-squares optimal clustering and a centroid-distance optimal clustering

of the same dataset can be.

Let (M , dE) be 2-dimensional Euclidean space with the Euclidean metric and our

dataset be (D, µD) where D ⊂ R, D = A ∪ B ∪ C ∪ D, µD(A) = µD(B) = N and

µD(C) = µD(D) = N + . ¿e relative positions of A, B,C ,D in the Euclidean plane

are shown in Figure 3.5. Two possible -clusterings of (D, µD) are {A ∪ B,C ∪ D} and

{A∪ D, B ∪ C} which we will call C and C respectively.

Formulae for the all-squares and centroid-distance costs of C and C can now be given,

�rst for centroid-distance cost:

costcd(C) =

(Ns + (N +)s) ,

costcd(C) =

(N(s + є) + (N +)(s + є)) .

It is clear that C is the optimal clustering under the centroid-distance criterion whenever

CHAPTER . SUM-OF-SQUARES CLUSTERING 75

Table 3.1:¿e costs of possible 2-clusterings of D, with minimum costs underlined.

Clustering Centroid-distance cost All-squares cost

{A∪ B,C ∪ D} 2.940 19.60
{A∪ D, B ∪ C} 3.375 18.00
{A∪ C , B ∪ D} 5.613 33.68
{A, B ∪ C ∪ D} 4.152 41.52
{B,A∪ C ∪ D} 4.152 41.52
{C ,A∪ B ∪ D} 4.283 29.76
{D,A∪ B ∪ C} 4.283 29.76

є > . Now, for all-squares cost,

costas(C) = Ns + (N +)s,

costas(C) = N(N +)(s + є).

So C is the optimal clustering under the all-squares criterion whenever

є <
¿
ÁÁÀs + s

N(N +) − s.

Other clusterings of D are possible, but these are trivially more expensive.

A simple numerical example can now be constructed; let s = ., є = . and N = .

¿e costs of all possible 2-clusterings are shown in Table 3.1. Again we see that the optimal

clustering under each criterion is di�erent.

C and C are not just slightly di�erent clusterings, they are in fact optimally di�erent,

that is, no two clusterings can be more di�erent, according to both the VI metric and

assignment metric, as well as our basic intuition. ¿is leads us to:

¿eorem 14. A centroid-distance optimal clustering and an all-squares optimal clustering

can be optimally di�erent under both the VI metric and the assignment metric.

CHAPTER . SUM-OF-SQUARES CLUSTERING 76

3.6 Conclusion

In this chapter we have shown that the two sum-of-squares criteria, centroid-distance

and all-squares, share some similarities but also some di�erences. Optimal clusterings

according to both criteria may be consistent but, while centroid-distance always produces

linearly separable solutions, all-squares does not.

Both criteria simultaneously measure both homogeneity and separation. For all-

squares, the relationship between the homogeneity measure and separation measure

is trivial and independent of the choice of metric. However, for centroid-distance we

have shown that the homogeneity measure is not necessarily equivalent to the separation

measure when using something other than the Euclidean metric. ¿e example we used is

the homogeneous Euclidean-overlap metric for mixed data.

It has recently been shown that the centroid-distance problem is NP-hard using Eu-

clidean space. We have shown that both problems are NP-complete even when using a

simple 3-valued metric. We also show that all-squares is NP-complete in Euclidean space.

When using a 2-valued metric, both problems are in P, except for all-squares on a multiset,

which remains NP-complete.

We have introduced a new metric for comparing clusterings, called the assignment

metric. It is, in fact, a family of metrics since any metric for comparing matched sets

can be used. ¿is allows for some interesting choices of metric, namely we can use it to

compare fuzzy clusterings and take into account the underlying metric space of the dataset

which gives the measure a more intuitive feel. We have used this metric to show just how

di�erent optimal clusterings according to the two criteria can be. It turns out that they can

be optimally di�erent, according to both our metric and the VI metric.

Much of the work here which we present for multisets also applies naturally to fuzzy

multisets. ¿e consistency results also extend to crispness, that is to say that optimal fuzzy

clusterings according to either criteria need not have been fuzzy in the �rst place. ¿e

assignment metric also applies to fuzzy clusterings simply by using a metric for fuzzy sets.

Chapter 4

Hierarchical Clustering

4.1 Summary

In this chapter we review the relevant terminology and background that is required

for the remainder of this thesis. We begin with the general theory of graphs, trees and

their relationship to distances and special types of metrics. We then look at the problem

of reconstructing trees from distances and �nally at the theory of “lassoing” a tree from

incomplete distance information.

4.2 Graphs, Trees and Distances

4.2.1 History

Trees have been used to represent hierarchical structures for many hundreds of years

[96]. One of the most well-known and ubiquitous occurrences is that of the family tree.

¿e use of a tree to represent lineages was widespread in Europe by the 14th Century in

Christian artwork depicting the ancestors of Jesus of Nazareth. ¿is depiction is known as

the Tree of Jesse [29].

Darwin would later popularise the concept of the more general “tree of life” in his sem-

inal work popularly known as On the Origin of Species [34]. Darwin’s �rst tree (Figure 4.1)

77

CHAPTER . HIERARCHICAL CLUSTERING 78

Figure 4.1: Charles Darwin’s �rst diagram of an evolutionary tree from his notebook Transmutation
of species, 1837 [33].

shows the theoretical relationship between an ancestral species (1) and its descendant

species [147]. Extant species are shown by tips on the endpoints of some branches with

the remaining branches possibly representing extinct species. His idea was that groups of

species would have diverged at di�erent times and therefore some groups will be more

closely related than others. For example, the species labelled by B and C would be more

closely related than those labelled by A and D.

Trees as a formally de�ned mathematical entity, such as the ones will see in the fol-

lowing sections, appeared as early as 1847 with the name “tree” appearing in the literature

shortly a erwards [96]. ¿e more general theory of graphs and topology was developed

earlier and is considered to have begun with Euler who in 1735 presented the paper “Solutio

problematis ad geometriam situs pertinentis” [52] in which it was shown that it was not

possible to walk through the city of Königsburg crossing each of its seven bridges exactly

once.

Tree structures are of great importance in computer programming. One of the earliest

programs to make explicit use of tree structures used them to represent algebraic formulæ

for the purpose of symbolic di�erentiation [96, 88]. ¿is would later become the �eld of

computer algebra which would drive the development of computer science and especially

CHAPTER . HIERARCHICAL CLUSTERING 79

programming languages for many years.

Intuitively, it makes sense to arrange many di�erent types of information in trees,

particularly that for which we can de�ne a distance. A �rst question to ask is whether a

representation in terms of a tree exists for a given dataset and distance function. As we

will see, when the distance function satis�es certain properties there always exists a tree

representation and this representation is also unique (in a well-de�ned sense). We focus

then on a slightly di�erent problem: imagine we know the distance between only certain

pairs of objects in our dataset. We call this information a partial distance. ¿is presents two

separate problems. First, does there exist a tree representation of a given partial distance

and if so, can we �nd one? Second, does there exist a unique tree representation of a given

partial distance, and if so can we �nd it? ¿ese issues are the subject of the remainder of

this thesis.

4.2.2 Basic terminology and assumptions

In this section we introduce much of the terminology that is required for dealing with

trees. Since trees are special cases of graphs, we begin with general graph theory before

moving on to trees and, in particular, a special type of tree that is of greatest interest to

us: the equidistant tree. As noted by Knuth [96] there is a large degree of variation in the

terminology used by di�erent authors in graph theory. We try to follow the terminology

used in current phylogenetics literature such as [147] and [46]. ¿roughout this section,

let X denote a �nite nonempty set.

Graphs

A graph is an ordered pair (V , E) where V is a set of vertices and E is a set (or multiset) of

edges, each of the form {x , y} such that x , y ∈ V are distinct. Unless speci�ed otherwise,

all graphs in this thesis are simple and �nite meaning that V and E are �nite sets and there

are no loops. Suppose G = (V , E) is a graph. Two vertices v , v′ ∈ V are said to be adjacent

if there exists an edge in G joining v and v′. An edge {x , y} ∈ E is said to be incident with

CHAPTER . HIERARCHICAL CLUSTERING 80

a b c
d

efg

h
a b

c

de

f

(i) (ii)

Figure 4.2: A graph (i) and a directed graph (ii).

the vertices x and y. ¿e degree of a vertex v ∈ V is the number of edges in G incident

with it.

A path is a sequence of distinct vertices v, v, . . . , vk where k ≥ such that for all

i ∈ {, . . . , k − }, vi and vi+ are adjacent. If k ≥ and v and vk are also adjacent then

the path is called a cycle. A graph is connected if between each pair of distinct vertices

there exists a path joining them. A graph is complete if there is an edge joining each pair of

distinct vertices. A subset V ′ ⊆ V is called a clique if there is an edge joining each pair of

distinct vertices in V ′. Figure 4.2 helps to illustrate these de�nitions. In the graph shown

in (i) an example of a path is g , f , e , d and an example of a cycle is g , f , b, a, g. ¿e graph

is connected, but not complete, and the set {a, b, g , f } is a clique.

A directed graph is an ordered pair (V , E) where E is a set of directed edges or arcs. An

arc (v , v′) ∈ E is said to lead from v to v′. ¿e out-degree of a vertex is the number of arcs

leading out from it and the in-degree is the number leading in. ¿e degree of a vertex is

therefore the sum of its out-degree and in-degree. An oriented path is a sequence of distinct

vertices v, . . . , vk such that there exists an arc from vi to v j for all ≤ i ≤ k − . Figure 4.2

(ii) shows a directed graph to help illustrate these de�nitions. Vertex f has out-degree 3,

in-degree 1 and therefore degree 4. An example of an oriented path is e , f , b, c.

Two graphs (V , E) and (V ′, E′) are called isomorphic if there exists a bijection ϕ∶V →

V ′ such that {v , v′} ∈ E if and only if {ϕ(v), ϕ(v′)} ∈ E′. So, in other words, adjacency

of vertices is preserved. A graph (V ′, E′) is a subgraph of a graph (V , E) if V ′ ⊆ V and

E′ ⊆ E. Further if V ′ ⊆ V and E′ contains all edges {v , v′} ∈ E whenever v , v′ ∈ V ′ the

graph (V ′, E′) is an induced subgraph of (V , E).

CHAPTER . HIERARCHICAL CLUSTERING 81

Trees

In this section we formally de�ne trees as a special type of graph and introduce all the

relevant terminology for a special type of tree which we will focus on.

A graph that is connected and has no cycles is called a tree. Trees can be characterised

in many ways, some of which are given in the following theorem (see [96, Section 2.3.4.1]

for a proof):

¿eorem 15. IfG is a �nite graph with n > vertices, the following statements are equivalent:

a) G is a tree,

b) G is connected, but if any edge is deleted the resulting graph is no longer connected,

c) ¿ere is exactly one path between any two distinct vertices of G,

d) G contains no cycles and has n − edges,

e) G is connected and has n − edges.

For example, Figure 4.3 shows two graphs which are trees. ¿e tree depicted in (ii) is a

special type of tree called a rooted tree. A rooted tree (or oriented tree) is a directed graph

G with a distinguished vertex ρG (the root) such that [96]:

a) ¿e root ρG has in-degree 0,

b) Each vertex v of G apart from ρG has in-degree 1,

c) ¿ere is a path between ρG and any vertex of G that is not the root.

Suppose T is a rooted tree. A vertex in T is called a leaf if it has degree 1. All other

vertices are called interior vertices. An edge which is incident with a leaf is called a pendant

edge. All other edges are called interior edges. ¿e set of all leaves of T is called the leafset

of T which we denote by L(T).

Suppose X is a �nite, nonempty set, a rooted phylogenetic X-tree is a rooted tree with no

vertices of in-degree one and out-degree one andwith leafset X. Since the remainder of this

CHAPTER . HIERARCHICAL CLUSTERING 82

a b
c
d

ef

g
a

b c
d e f

ρ

(i) (ii)

Figure 4.3: A tree (i) and a rooted phylogenetic X-tree (ii).

thesis is concerned with rooted trees we will from now on refer to a rooted phylogenetic

X-tree as simply an X-tree. Figure 4.3 (ii) shows an X-tree with X = {a, . . . , f }.

An X-tree is binary if all interior vertices have degree 3 apart from the root which has

degree 2. We therefore have that each vertex has out-degree zero or two and each vertex

apart from the root has in-degree 1. By considering the directed paths from the root to

leaves it becomes clear why such a tree is called binary [147].

An edge-weighted graph (G ,ω) is a graph G = (V , E) paired with an edge-weighting

function ω∶ E → R. For an edge-weighted X-tree T we call an edge-weighting proper if

w(e) > for every interior edge e of T .

An X-tree has a natural partial order on the vertices. Given an X-tree T = (V , E),

a vertex v ∈ V is an ancestor of a vertex v′ ∈ V if and only if v is on the directed path

from the root of T to v′. ¿e vertex v′ is then said to be a descendant of v. If v and v′ are

adjacent then we also call v the parent of v′ and v′ a child of v. ¿e number of children of

a particular vertex equals its out-degree.

¿e lowest common ancestor of two vertices v and v′ in an X-tree is the unique vertex

u such that u is an ancestor of both v and v′ and the path from the root ρ to u is longer

than the path to any other ancestor of both v and v′. ¿e lowest common ancestor of v

and v′ is denoted lca(v , v′). In the X′-tree in Figure 4.3 (ii) the lowest common ancestor

of a and d is the root ρ.

A connected subgraph of a tree is called a subtree. If T is an X-tree and X′ ⊆ X then

we denote by T ∣X′ the subtree of T whose leafset is X′, with degree 2 vertices suppressed.

CHAPTER . HIERARCHICAL CLUSTERING 83

T ∣X′ is then called a restricted subtree. If T is binary and ∣X′∣ = then T ∣X′ is called a

triplet.

We call two X-trees T and T ′ equivalent (written T ≃ T ′) if there exists a bijection

ϕ∶V(T)→ V(T ′) that extends to a graph isomorphism that is the identity on X. Since an

X-tree is rooted, ϕ must also map ρT to ρT′ .

For a set X the number of possible non-equivalent binary X-trees is (∣X∣−)!! (where

!!means double factorial). ¿erefore to �nd a tree in this space with particular properties

we cannot look at each possible tree and must instead use a special tree reconstruction

method. Next we look at how distances are related to trees and then at the problem of

reconstructing a tree from distance information.

Ultrametrics

Given an edge-weighted X-tree (T ,ω)where T = (V , E) and ω∶ E → R≥ we can associate

a distance D(T ,ω)∶X × X → R≥ to (T ,ω) by setting for all x , y ∈ X:

D(T ,ω)(x , y) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∑
e∈P(x ,y)

ω(e) if x ≠ y,

 otherwise,

where P(x , y) is the set of edges on the path from x to y. We call D(T ,ω) the distance

induced by (T ,ω).

¿e distance induced by a tree is a special type of metric called a tree metric. ¿ese

metrics have some interesting properties which are discussed in [147, Chapter 7]. For our

purposes we are most interested in a special type of tree metric called an ultrametric. A

distance δ∶X ×X → R is called an ultrametric if for every distinct x , y, z ∈ X the following

stronger form of the triangle inequality holds:

δ(x , y) ≤ max(δ(x , z), δ(y, z)).

CHAPTER . HIERARCHICAL CLUSTERING 84

a b c d e f g h i j

2

2

2

(i)

j
i
h
g
f
e
d
c
b
a

1.0

(ii)

Figure 4.4: A dendrogram is a visual representation of a tree. Here we see two di�erent ways to
draw the same edge-weighted X-tree.

An edge-weighting ω∶ E → R for an X-tree T = (V , E) with root ρT is called equidis-

tant if it satis�es the following properties:

(i) D(T ,ω)(ρT , x) = D(T ,ω)(ρT , y) for all x , y ∈ X,

(ii) D(T ,ω)(x , y) ≥ D(T ,ω)(x , u) for all x ∈ X and any u, v ∈ V whenever u is encoun-

tered before v on the directed path from x to ρ.

If ω is an equidistant edge-weighting then D(T ,w) is an ultrametric [147, Lemma 7.2.4].

X-trees with equidistant edge-weightings arise naturally in many places, for example

in phylogenetics. For convenience we will from now on refer to such an X-tree with

equidistant edge-weighting as simply an equidistant X-tree.

Figure 4.4 shows an example of an equidistant X-tree with X = {a, . . . , j} using two

common display formats (dendrograms). In (i) the edges are simply labelled with their

weights (edges with weight 1 are le unlabelled for clarity). In (ii) the weight of each edge

is proportional to the horizontal component of its length on the bar with the actual length

shown with a scale bar.

For any ultrametric δ∶X × X → R there is, up to isomorphism, a unique equidistant

X-tree (T ,ω) such that δ(x , y) = D(T ,ω)(x , y) for all x , y ∈ X. ¿is tree can be recovered

from the ultrametric in polynomial time, as we will see in the next section.

CHAPTER . HIERARCHICAL CLUSTERING 85

4.3 Tree reconstruction

In this section, we look at various methods of reconstructing trees. Of most interest

to us is the problem of reconstructing an X-tree from a distance on X. ¿is is generally

done by one of two broad classes of hierarchical clustering methods which we discuss in

Section 4.3.2.

A further problem is that of reconstructing an edge-weighted X-tree from a distance

on X. ¿is is desirable in many cases, for example in phylogenetics the edge-weights might

represent the time or number of point mutations [55].

Closely related to this is the problem of reconstructing X-trees from only partial

distance information. ¿is means that we do not have the complete distance d, but rather

only have the values d(x , y) for some, but not all, pairs x , y ∈ X. ¿is problem is motivated

by the fact that accurate distance measurements are o en di�cult or impossible to obtain

in practice but one would still like to build an edge-weighted X-tree given only what is

known.

As with complete distance information, it is possible for partial distance information

to uniquely determine an X-tree. ¿is is the subject of Section 4.4. ¿is allows us to de�ne

a consistency property for partial distance reconstruction methods.

4.3.1 Reconstruction from subtrees

Before we look at reconstructing trees from distances, it is interesting to note that we

do not actually need a distance to reconstruct only the topology of an X-tree. It su�ces

merely to know the set of subtrees displayed by the tree [147].

A pair of leaves of an X-tree that share the same parent is called a cherry and a set of

leaves (of any size) that share the same parent is called a pseudocherry. As before, an X-tree

with ∣X∣ = that contains a cherry is called a triplet. If P is an {a, b, c}-tree a, b is a cherry

of P then we denote the triplet P by ab∣c. We say that a triplet ab∣c is displayed by an X-tree

T if the restriction T ∣{a, b, c} of T to {a, b, c} is binary and l caT(a, c) = l caT(b, c) is an

CHAPTER . HIERARCHICAL CLUSTERING 86

a b c d
d

ba

c

T[R, S]

cb d ca

T T

a

e
e

e

Figure 4.5: An illustration of Build with an input of R = {T , T}. [R, S] is the auxiliary graph
built in the �rst iteration of the algorithm and T is the �nal tree constructed.

ancestor of l caT(a, b) in T . For example, the tree T in Figure 4.5 is a triplet and can be

written as ad∣c.

¿e Build algorithm [1] can be used to reconstruct an X-tree T from the set of all

triplets displayed by T . We show the Build algorithm in pseudocode in Algorithm 6 and

give an example in Figure 4.5. ¿e algorithm uses a set R of rooted trees {T, . . . , Tn}

where L(T) ∪⋯ ∪ L(Tn) = X and an auxiliary graph [R, S] which has vertex set S ⊆ X

and an edge {a, b} for each a, b ∈ S whenever there exists some c ∈ S and some T ′ ∈ R

such that T ′∣{a, b, c} and ab∣c are equivalent.

¿is algorithm has some nice properties, for example if Build returns a tree then the

set of input trees is said to be compatible. ¿e de�nition of compatible is independent

of Build (see [147]) but Build can be used to check compatibility. Furthermore, if we

input the set of all triplets displayed by a tree T , then Build is guaranteed to output T and

therefore T is uniquely determined by the set of triplets it displays.

If the inputted set of triplets R is some subset of all the triplets displayed by a tree then

the set is still compatible but this set is displayed by possibly many trees. In this case the

output of Build is deterministic and the tree reconstructed is known as the Build tree for

R. Some interesting properties of these trees can be found in [20, Section 2.5.2].

CHAPTER . HIERARCHICAL CLUSTERING 87

Algorithm 6 Build.

Input: A set of rooted trees R = {T, . . . , Tn}.
Output: An X-tree T where X = L(T) ∪⋯ ∪ L(Tn).
S = {x, . . . , xm}← X.
if ∣S∣ = then return the tree ({x},∅).
end if
if ∣S∣ = then let ρ be a new vertex and return the tree with root node ρ obtained by
attaching x and x to ρ.
end if
Construct the auxiliary graph [R, S].
Let S, . . . , Sk be the vertex sets of the connected components of [R, S].
for all ≤ i ≤ k do

Let Ti be the output of Build on Ri = {T ∣Si ∶T ∈ R}.
end for
Let ρ be a new vertex and return the tree with root node ρ obtained by attaching the
root of each Ti to ρ.

¿e Build algorithm was initially developed to construct a tree satisfying a given set

of constraints and was applied to problems arising in the theory of relational databases.

It was later applied to phylogenetics but remained relatively unknown in the �eld for a

number of years [152, 21].

When the inputted trees are not compatible, Build returns an error. Since it is o en

the case that trees will not be compatible, theMinCutSupertree algorithmwas developed

which will construct a tree even if the input trees are not compatible [146]. ¿e algorithm

builds a graph similar to [R, S] and ensures that it is disconnected in each step by using a

minimum cut. ¿is algorithm was developed primarily for construction of phylogenetic

supertrees.

4.3.2 Reconstruction from distances

We now turn to the problem of reconstructing an X-tree from a distance. We begin with a

brief overview of general hierarchical clustering methods and then look at the UPGMA

method [149] and its optimal runtime algorithm. Hierarchical clustering methods in

general build unweighted X-trees, but UPGMA can be considered an extension which

CHAPTER . HIERARCHICAL CLUSTERING 88

a edb c
a∣b∣c∣d∣e
ab∣c∣de
abc∣de
abcde

Figure 4.6: A tree can be viewed as a hierarchy of partitions.

also constructs an edge-weighting for the constructed tree.

For a distance-based reconstruction method the following property is desirable: if we

input a distance function D(T ,ω) induced by an edge-weighted X-tree (T ,ω) we get the

tree T and its edge-weighting ω. If a method enjoys this property then we call it consistent.

For many methods this property holds only under certain conditions. For UPGMA this

holds if (T ,ω) is a binary equidistant X-tree [49].

Hierarchical clustering methods

Hierarchical clustering is used for the classi�cation of information inmuch the sameway as

partitional clustering. ¿e aim of a hierarchical clustering method is to produce an X-tree

corresponding to a given distance D on a set X. While a partition of a set is merely a set of

disjoint subsets (clusters) which “cover” the set, an X-tree can be viewed as a hierarchy

of such clusters which induces several partitions on X. ¿is natural relationship between

trees and partitions is illustrated in Figure 4.6. In the example we have X = {a, . . . , e}. ¿e

root of the tree corresponds to the single cluster X (denoted abcde) and as we move down

the tree the set is partitioned further until we have cluster of one leaf each ({{a}, . . . , {e}},

denoted a∣b∣c∣d∣e for short).

¿ere are twomainmethods in use for building hierarchies. ¿ese are the agglomerative

or “bottom-up” methods which begin with each element of X in its own cluster and

successively merges clusters until there is only one cluster le , and the divisive or “top-

down” methods which begin with a single cluster and successively splits clusters until each

element is on its own. ¿e resulting hierarchy depends upon which merges or splits have

CHAPTER . HIERARCHICAL CLUSTERING 89

been chosen at each stage which, in turn, depends on �nding a local optimum according

to some criterion.

Algorithm 7 Agglomerative hierarchical clustering algorithm.

Input: A set X and a linkage function D∶ X × X → R with an underlying distance
d∶X × X → R.

Output: A rooted X-tree T .
Let F be a forest of ∣X∣ trees each containing a unique element of X as the only vertex,
which is also the root,
while ∣F∣ > do

Let v be a new vertex and (x , y)← argmin
x ,y∈F

D(L(x), L(y)),

Remove trees x and y from F and add the tree obtained by attaching the roots of x
and y to v and letting v be the root,
end while
return the single tree contained in F.

¿e general algorithm for agglomerative clustering is shown in Algorithm 7. ¿e

choice of linkage function determines how the distances are recomputed at each stage

and therefore which trees are joined in each subsequent stage. Given a set X and distance

d∶X × X → R and two nonempty subsets C,C ⊆ X, some common choices for linkage

functions include:

single-linkage:

DSL(C,C) = min
x∈C ,y∈C

d(x , y),

complete-linkage:

DCL(C,C) = max
x∈C ,y∈C

d(x , y),

and average-linkage:

DAL(C,C) =
⎛
⎝ ∑x∈C

∑
y∈C

d(x , y)
⎞
⎠
/∣C∣∣C∣.

¿e general algorithm for agglomerative clustering has runtime complexity of O(n)

where n = ∣X∣ since there areO(n)merges to be done and �nding the argmin takesO(n)

time. However, for many linkage criteria, including the three above, it is possible to use

CHAPTER . HIERARCHICAL CLUSTERING 90

an O(n) algorithm. Two well known examples are SLINK [148] and CLINK [39] for

using single-linkage and complete-linkage respectively. In the next section we will see that

hierarchical clustering using average-linkage may be done in quadratic time too.

¿e divisive method works in the opposite direction: we begin with a single cluster and

successively split clusters until we end up with one cluster per leaf. Divisive methods are

usually signi�cantly more complicated than agglomerative methods. Each step requires

an initial decision about which cluster to split, and then a decision about how to split that

cluster [141]. A naïve approach for deciding which cluster to split next is to always split the

largest cluster, but there are more sophisticated approaches, for example based on cluster

homogeneity. Splitting a cluster then essentially requires a partitional clustering method

[43]. In general the time complexity of a divisive method is O(n) where n = ∣X∣making

it prohibitively expensive for most applications [27].

UPGMA

Unweighted Pair Group Method with Arithmetic Mean (UPGMA) [149] is in fact a modi-

�ed agglomerative clustering method using average-linkage which reconstructs an equidis-

tant X-tree. For an equidistant X-tree (T ,ω), let height((T ,ω)) be the sum of the edge

weights on the path from the root of T to any leaf, or 0 if the root is the sole vertex. ¿e

algorithm for UPGMA is shown in Algorithm 8.

Since only two trees are joined in each iteration, the output of UPGMA is always

a binary tree. If the input distance d is equal to the induced distance D(T ,ω) of some

equidistant binary X-tree (T ,ω) then UPGMA is guaranteed to return (T ,ω) [49].

In the general agglomerative algorithm, each step involves identifying a pair of elements

such that no other pair of elements in X are closer according to the chosen linkage criterion.

In other words, we are �nding a global minimum. In more e�cient algorithms we instead

look only for a local minimum at each stage. A local minimum in this context means

a pair of elements which are mutual nearest neighbours (MNNs). Given a set X and a

distance d on X, a pair x , y ∈ X are MNNs if there exists no element z ∈ X for which

CHAPTER . HIERARCHICAL CLUSTERING 91

Algorithm 8UPGMA.
Input: A set X, and a distance d∶X × X → R.
Output: A binary equidistant X-tree (T ,ω).
Let F be a forest of ∣X∣ trees each containing a unique element of X as the only vertex,
which is also the root.
while ∣F∣ > do

Let v be a new vertex,
put m ← min

x ,y∈F
DAL(L(x), L(y)),

and (x , y)← argmin
x ,y∈F

DAL(L(x), L(y)).

Remove trees x and y from F and add the tree obtained by attaching the root of x
to v with an edge of length m/ − height(x), attaching the root of y to v with an edge
of length m/ − height(y) and letting v be the root.
end while
return the X-tree contained in F and its edge-weighting.

d(x , z) < d(x , y) or d(y, z) < d(x , y). Such a pair can be safely agglomerated as soon as

it is found, just as in the general algorithm [121].

Finding MNNs can be done quickly by building a chain of nearest neighbours in the

following way: we begin with an arbitrary cluster in X and �nd its nearest neighbour

giving us a chain of length two. We then repeatedly add to the chain the nearest neighbour

of the last element in the chain until we �nd a pair of MNNs. ¿eMNNs are removed from

the chain and agglomerated. ¿e distances between new clusters and all other clusters are

calculated recursively using the Lance-Williams update formula in constant time [100].

¿e process is then continued from the end of the chain, or from an arbitrary cluster if

the chain is empty. ¿is method works because for certain linkage criteria, including

average-linkage, the nearest neighbour chain remains valid a er an agglomeration (see

[69] for details).

¿is mutual nearest neighbour method, also called the algorithme des célibataires, was

developed in the early 1980s and initially appeared in [37] and [87] (in French) and later in

[119] and [120] (in English). It leads to the optimal O(n) version of UPGMA and other

hierarchical clustering methods [69].

CHAPTER . HIERARCHICAL CLUSTERING 92

4.3.3 Reconstruction from partial distances

Partial distances arise o en in practice, that is a distance where the distance between some

pairs of elements is missing. Potential reasons for this might be that it is sometimes di�cult

or impossible to make measurements between certain pairs due to those pairs not sharing

any information from which a distance can be inferred. For example, in biological studies

involving large numbers of species and genes it is o en the case that species do not share

any genes in the available data [31].

For this reason it becomes useful to ask whether a partial distance can be extended

into a complete distance that is also an ultrametric. More formally, a partial distance

on X is a function d∗∶ (X × X) − M → R≥ where M is the set of pairs for which the

distance value is missing. ¿e problem is to �nd a complete distance d∶X × X → R≥

where d(x , y) = d∗(x , y) for all x , y ∈ (X × X) −M and which is an ultrametric. In [54]

it was shown that it is possible to decide in polynomial time whether an extension to

an ultrametric exists (and to compute such an extension), although the corresponding

decision problem for unrooted trees (that is, deciding if an extension to a general tree

metric exists) is NP-complete.

Below we describe three di�erent methods proposed in the literature for extending

a partial distance on X to an ultrametric on X and reconstructing the corresponding

equidistant X-tree. We restrict ourselves to equidistant X-trees but similar results on

unrooted trees may be found in, for example, [70], [54], [108] and [71].

An optimisation method

¿e approach taken by de Soete [38] is to consider a least squares constrained optimisation

problem. Given a partial distance d∗∶ (X × X) −M → R≥, a function Loss∶RX×X
≥ → R≥

(where RX×X
≥ is the set of all dissimilarities on X) is de�ned as:

Loss(d) = ∑
(x ,y)∈(X×X)−M

(d∗(x , y) − d(x , y)).

CHAPTER . HIERARCHICAL CLUSTERING 93

¿is is called the loss function. ¿e problem is now to �nd a function d∶X × X → R≥ such

that Loss(d) is minimised and with the constraint that d is an ultrametric.

To solve the constrained minimisation problem the authors propose to use the sequen-

tial unconstrained minimisation technique (SUMT) [57]. Under this technique the con-

straint that d be an ultrametric is removed and instead we �nd a distance dn∶X ×X → R≥

which minimises the augmented function Φ∶RX×X
≥ ×R≥ → R≥ de�ned as:

Φ(dn , σ) = Loss(dn) + σPen(dn), (σ >),

where Loss is the loss function and Pen∶RX×X
≥ → R≥ is called the penalty function which

is meant to enforce the ultrametric condition. Pen is de�ned as:

Pen(dn) = ∑
(i, j,k)∈Ω(dn)

(dn(i , k) − dn(j, k))

where

Ω(dn) = {(i , j, k) ∈ X∶ d(i , j) ≤ min (dn(i , k), dn(j, k)) and dn(i , k) ≠ dn(j, k)}.

In other words, Ω(dn) denotes the set of -tuples for which the ultrametric condition is

violated. ¿e unconstrained minimisation is performed successively with an increasing

value for σ , each time using the previous result dn− to begin the search for the next dn. A

method by [127] is used to perform the unconstrained minimisation.

An agglomerative method

Missing Values Linkage (MVL) is an example of an agglomerative approach proposed by

[143]. It is actually identical to the agglomerative hierarchical clustering algorithm (see

Section 4.3.2) but using a linkage criterion modi�ed to take into account missing values.

CHAPTER . HIERARCHICAL CLUSTERING 94

¿e modi�ed average-linkage criterion for two nonempty sets S, S is:

DMVL(S, S) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∑
(x ,y)∈(S×S)−M

d(x , y)

∣(S × S) −M∣ if (S × S) −M ≠ ∅,

∞ otherwise,

where M = {(i , j) ∈ X × X∶ d(i , j) is unknown}. Modi�ed versions of other linkage

criteria are possible; some more examples are given in the original paper.

¿e authors do not provide an algorithm with better time complexity than that of

the naïve O(n) agglomerative algorithm (where n = ∣X∣). ¿ey also show that the MVL

method produces very similar results to de Soete’s method.

Figure 4.7 (ii) shows the tree constructed by MVL from a partial distance d on a set

{a, . . . , e} containing only the distances d(a, b) = , d(b, c) = , d(c, d) = , d(c, e) =

, d(d , e) = .

A divisive method

Farach et al. [54] use a top down, divisive approach. Given a partial distance function

d∗∶ (X × X) −M → R≥ let G = (V , E) be a graph with vertex set X and an edge {x , y}

with x , y ∈ X but (x , y) ∉ M (so the distance between x and y is known). We also de�ne

an edge-weighting ω∶ E → R by ω({x , y}) = d∗(x , y) for all x , y ∈ E.

¿e tree reconstruction algorithm proceeds as follows:

. If E = ∅, return the single element in V .

. Otherwise, put m ← maxe∈Eω(e).

. Let G∗ = (V , E∗) be a graph and put E∗ ← {e ∈ E∶ω(e) < m}.

. Let u be a new vertex and return the tree with root node u obtained by recursing on

each connected component of G∗ and attaching the results of each to u.

CHAPTER . HIERARCHICAL CLUSTERING 95

a b c d e a b c d e

(ii)(i)

Figure 4.7:¿e two di�erent trees constructed by Farach’s method (i) and the MVL method (ii)
from the same partial distance information.

¿is basic algorithm shown here requiresO(∣V ∣∣E∣) time but a quicker algorithm requiring

only O(∣E∣ + ∣V ∣ log ∣V ∣) time is also given by [54].

Figure 4.7 (i) shows the tree constructed by this method from the same partial dis-

tance d on {a, . . . , e} containing only the distances d(a, b) = , d(b, c) = , d(c, d) =

, d(c, e) = , d(d , e) = . Note that the tree constructed is di�erent to the tree constructed

by MVL.

4.4 Lassos

As we saw in the example shown in Figure 4.7, the existing partial distance reconstruction

methods can construct di�erent trees from the same input. ¿e problem with the example

partial distance in that case was that no ultrametric extension exists so the methods each

modi�ed the given distances in di�erent ways to obtain an ultrametric. ¿is means that

for some pairs of leaves in the resulting tree the induced tree distance is not equal to the

inputted distance. ¿is may be undesirable.

A second problem is that o en more than one extension to an ultrametric is possible.

We will see this in the example in the following section. In the case where more than one

extension is possible the existing algorithms will provide one of many solutions. But we

may wish to know not only that an ultrametric extension exists but that it is unique. ¿is

section provides us with some theory for deciding when this is possible.

Certain partial distances on X have the property that they uniquely determine the

topology or edge-weights of an X-tree. In other words, only one extension to an ultrametric

CHAPTER . HIERARCHICAL CLUSTERING 96

a b c d e a b c d e
(i) (ii)

(T ,ω): (T ′,ω′):

Figure 4.8: Two equidistant X-trees. All edges have weight 1 except bold edges which have weight
2. For L = {ac, de , bc, ce , cd} both trees induce the same distances over the cords in
L despite having di�erent topologies. In this case L is not a topological lasso.

on X is possible. To enable us to understand when partial distances have this uniqueness

property, the theory of lassos was developed. We next de�ne certain types of lassos as

applied to equidistant X-trees and look at some important characterisations.

4.4.1 Definitions and basic properties

Let (T ,ω) and (T ′,ω′) be two edge-weighted X-trees and L ⊆ (X) be some subset of

pairs of elements in X. For convenience we denote an element {x , y} ∈ L as simply xy.

¿en (T ,ω) and (T ′,ω′) are called L-isometric if D(T ,ω)(x , y) = D(T′ ,ω′)(x , y) for all

xy ∈ L.

Now, given an X-tree T and a subset L ⊆ (X) we de�ne L to be:

(i) an equidistant lasso for T if ω = ω′ holds for all equidistant edge-weightings ω,ω′

of T where (T ,ω) and (T ,ω′) are L-isometric,

(ii) a topological lasso for T if T is equivalent to T ′ for any X-tree T ′ for which there

exist proper edge-weightings ω and ω′ of T and T ′ respectively where (T ,ω) and

(T ′,ω′) are L-isometric,

(iii) a strong lasso T if L is both an equidistant and topological lasso for T .

To illustrate these concepts consider the two equidistant X-trees (T ,ω) and (T ′,ω′)

depicted in Figure 4.8. ¿e edge-weights are proportional to the length of the edges in the

�gure and induce distances D(T ,ω)∶X × X → R and D(T′ ,ω′)∶X × X → R respectively. ¿e

CHAPTER . HIERARCHICAL CLUSTERING 97

trees are therefore equidistant. If we have the set of cords L = {ac, de , bc, ce , cd} then

notice that the distances between each of these pairs of leaves is the same according to the

induced distances for both trees (for example D(T ,ω)(a, c) = D(T′ ,ω′)(a, c)). ¿erefore L

is not a topological lasso. Notice that this property ofL is dependent solely on the structure

of the set itself and not on the actual distances on the trees. For further information and

discussion about lassos, especially those concerning more general trees, the reader is

referred to [46] and [82].

4.4.2 Characterising lassos: the child-edge graph

Lassos for X-trees can be characterised using a graph associated to each interior vertex

of a tree [81]. First, a lasso L of X which satis�es the property that ⋃c∈L c = X is called a

covering of X. Let T be an X-tree and V̊(T) denote the set of internal vertices of T . For

some v ∈ V̊(T), and a set of cords L ⊆ (X), we associate a graph called G(L, v) de�ned as

follows. ¿e vertex set of the graph Vv is the set of all child edges of v. ¿e edge set Ev is

the set of all {e , e′} ∈ (Vv) for which there exist leaves a, b ∈ X and a cord ab ∈ L such that

e and e′ are edges on the path from a to b in T . We call the graph G(L, v) the child-edge

graph (of v with respect to T and L).

We have the following characterisation of topological lassos which originally appeared

in [81]:

¿eorem 16. Suppose T is an X-tree and L ⊆ (X) is a covering of X. ¿en the following are

equivalent:

. L is a topological lasso for T ,

. for every vertex v ∈ V̊(T), the graph G(L, v) is complete.

Due to the characterisation of equidistant lassos also presented in [81], we also have

that every topological lasso for T must also be an edge-weight lasso, and therefore a strong

lasso, for T .

Chapter 5

Constructing Trees from Lassos

¿is chapter is largely based on an early version of the following paper:

G. Kettleborough, J. Dicks, I.N. Roberts, and K.T. Huber. Reconstructing (super)trees

from data sets with missing distances: Not all is lost. Molecular Biology and Evolution, 2015.

doi: 10.1093/molbev/msv027

y

I developed the Lasso algorithm and the simulation study for testing it. I was also responsible

for processing the biological datasets and using them for testing. ¿is involved implementation

of the algorithm and methods described. I also implemented the methods for drawing the

phylogenetic trees found in the chapter.

98

http://dx.doi.org/10.1093/molbev/msv027

CHAPTER . CONSTRUCTING TREES FROM LASSOS 99

5.1 Introduction

5.1.1 Summary

In this chapter we introduce a new algorithm for reconstructing an equidistant X-tree

from a partial distance on X. ¿e algorithm returns both an X-tree and a subset of the

distances given which correspond to an equidistant lasso for the X-tree. To understand

the performance of Lasso, we assess it by means of arti�cial and real biological datasets,

showing its e�ectiveness in the presence of missing data even in the presence of noise. We

also show how it can be applied to the problem of combining datasets to build a supertree

and compare our method with a well known supertree method.

5.1.2 Motivation

¿e ease and speed with which molecular sequence data can now be generated using

modern Next Generation Sequencing (NGS) technologies has enabled evolutionary bi-

ologists to embark on exciting, albeit highly challenging, endeavours such as the Tree of

Life project. NGS has perhaps been most in�uential at the sub-species level, and datasets

encompassing numerous lines, strains or accessions are becoming commonplace. ¿ese

new data, together with a wealth of legacy datasets, promise the interleaving of species

and sub-species within a common evolutionary framework. However, to increase our

chances of successfully constructing such a tree numerous obstacles have to be overcome,

ranging from data collection via data storage and information extraction to tree build-

ing. ¿e vastness of tree space one faces in overcoming the latter obstacle, that of tree

building, coupled with the computational demands of Bayesian, likelihood and parsimony

approaches implies that reconstruction methods based on these approaches cannot, at

least at present, be directly applied to obtain such a tree. Given the large amount of legacy

phylogenetic data, a natural solution is to try to �nd ways to merge what is already known

and then to augment the result. Apart from having to deal with the problem of patchy

taxonomic coverage, as some taxa have been studied more than others (see, for example,

CHAPTER . CONSTRUCTING TREES FROM LASSOS 100

[140, 126, 153, 136] for more on this), constructing such a tree does not only entail �nding

ways to combine di�erent types, qualities, and quantities of data but also addresses the

problem of how to combine data sets that might only share very few taxa. ¿e latter is a

formidable problem in its own right and boils down to �nding powerful ways of dealing

with missing information.

Depending on the study within which a dataset was generated missing information

may take the form of trees that have few taxa in common, or missing values in character

state or distance matrices. To tackle the former, numerous supertree approaches have been

introduced in the literature (see, for example, [15] and [18] and the references therein). A

similar number of supermatrix approaches have also been proposed to deal with missing

values in character state matrices (see, for example, [15]) while the number of approaches

addressing missing values in distance matrices is comparatively small (see [32, 31, 108, 70,

71, 38, 66]).

¿e starting point for many supertree approaches is a collection of (potentially very

small) phylogenetic trees and the goal is to �nd some kind of parental tree on all the taxa of

the input trees that in some sense displays the evolutionary information contained within

them. In contrast, the starting point for the remaining two approaches are character state

matrices and distances on di�ering taxa sets, respectively. ¿e aim here is to combine

them into a supermatrix or distance, respectively, on all the taxa in the combined taxa

set using some sort of imputing scheme (see e. g [15] and [129] for such schemes in the

supermatrix context and [70, 108, 71] in the distance context). From the obtainedmatrices a

phylogenetic tree is then constructed using one of the many tree reconstruction techniques.

All three types of approach have their pros and cons, with supermatrices being criticised

on, for example, the dependence of the generated supermatrix upon the order in which

the missing values are inferred, and the potentially heavy in�uence of even a small error in

the estimation of a missing value on the tree topology, the latter due to a cascading e�ect

such an error might have on other inferred missing values [101]. Criticisms of supertrees

include not using primary information, combining trees that have potentially evolved

CHAPTER . CONSTRUCTING TREES FROM LASSOS 101

under di�erent evolutionary models into a supertree without properly accounting for this,

and not properly taking branch-lengths associated with the input trees into account (see

[165] for an exception to this and [99] for a recent comparison of supertree methods).

Finally, criticisms of distances include losing valuable phylogenetic information between,

for example, two DNA sequences by representing the observed di�erence by a single

number. Nonetheless, distance-based tree reconstruction methods are known to provide

quick but rough snapshots of the evolutionary relationships contained within a dataset

making themparticularly attractive for large datasets. In addition to providing evolutionary

insights in their own right their attraction also lies in the provision of a potentially good

starting/guide tree for more sophisticated, but computationally intensive, methods such

as Maximum Likelihood and Bayesian Inference.

For popular distance methods such as Neighbor Joining [139], and BioNJ [65] (in the

unrooted case) and UPGMA [149] (in the rooted case) to be applicable, however, the

distance on the combined taxa set X must be complete. As we saw in Section 4.3.3, it is

possible to reconstruct trees from partial distance information, but the existing algorithms

deal only with the problem of existence of a tree that �ts the partial distance, they say

nothing about the uniqueness of the solution. In this chapter we focus on the problem of

�nding a unique equidistant X-tree for some subset of the given distances.

From a biological point of view, equidistant X-trees are commonly constructed when

a molecular clock can be assumed for the evolution of the taxa of interest. Although

molecular clocks have been criticised strongly over the years (see [7, 144]), widely-used

so ware packages such as BEAST rely heavily on the concept [16]. Intriguingly, this

popularity may be linked in part to the recent emergence of NGS datasets, including

many consistent with a molecular clock, particularly those at the sub-species level. Indeed,

examples of studies where the molecular clock assumption has been satis�ed include

population studies where they helped to understand the genetic diversity of germplasms

[167], palaeontological studies where they helped to estimate divergence dates or shed light

into e�ects that climate change and other global factors might have had on diversi�cation

CHAPTER . CONSTRUCTING TREES FROM LASSOS 102

[162], and phylogeographic studies [28] (see [161] for more on these examples and [79]

where so called symbolic ultrametric trees were used in orthology detection).

In the form of the Lasso approach, we propose a novel method for (super)tree re-

construction from partial distances, that is, some of the distance values between taxa are

missing. Contrary to the methods alluded to above, Lasso is not imputing-based and is

similar in spirit to the supermatrix approach introduced in [118] and the veto-supertree

approach proposed in [145] in that not every taxon in the combined taxa set is guaranteed

to be a leaf in the resulting tree. It essentially works by trying to detect a treelike signal on

as many taxa as possible from the available distances and then reconstructs the unique

equidistant tree on those taxa. LikeUPGMA, Lasso is also an iterative process in the sense

that it begins with a partial (or complete) distance D on some taxa set X with a graph G

of ∣X∣ isolated vertices, each of which is labelled by an element in X. In each repetition

step, the distance on a smaller taxa set is recomputed and, in a bottom up manner, an

equidistant tree on X is reconstructed. In contrast to UPGMA, Lasso looks to replace a

certain type of edge-weighted clique in a canonical graph theoretical representation of the

given distances by a composite vertex, rather than only an edge in that graph as UPGMA

does. In addition, the distances between a newly created composite vertex and any other

vertices is calculated by some kind of consensus rather than merely using average linkage

as in the case ofUPGMA. ¿ese two di�erences ensure that Lasso enjoys several desirable

properties such as consistency whereby we mean that the equidistant tree T returned by

Lasso is the unique tree which, for any two taxa x and y in the returned lasso, the given

distance d(x , y) is equal to the distance between them in T .

5.2 ¿e Lasso algorithm

In this section, we present an outline of the Lasso algorithm. ¿e algorithm is similar

in spirit to UPGMA (as shown in Section 4.3.2). Like UPGMA, the Lasso approach is

to construct the tree from the bottom up in a repetitive fashion where each repetition

CHAPTER . CONSTRUCTING TREES FROM LASSOS 103

consists of a reduction step and a construction step. However, and contrary to UPGMA,

Lasso takes as input a partial distance on X (which can of course also be complete). ¿e

complete algorithm outline is shown in Algorithm 9. In the following sections we outline

the steps in detail.

5.2.1 Method outline

Given a partial distance D on some set of taxa X, let LD be the set comprising all pairs of

X for which the distance under D is known.

Lasso aims to �nd a subset Y ⊆ X of taxa and subset L′ ⊆ LD, both as large as

possible, so that the equidistant tree returned by it is uniquely determined by the available

distances between pairs inL′ with regards to topology and edge-weighting. In other words,

Lasso �nds an equidistant Y-tree (T ,ω) such that the set L′ is a strong lasso for T and

D(T ,ω)(x , y) = D(x , y) holds for all cords xy ∈ L′.

To do this, LD is viewed as an edge-weighted graph ΓωD , or Γ
ω for short. ¿e (un-

weighted) underlying graph Γ(LD) of Γω has vertex set X and edge set LD. ¿e edge-

weighting of Γω associates to every edge xy of Γω the distance D(x , y). Note that in the

case where D is a complete distance on X, the graph Γ(LD) is complete. To preserve the

given taxa set X, we put Xr = X.

For ease of presentation, assume from now on that we have already carried out q ≥

 repetitions and that C is the selected connected component of Γω, that is, one of the

connected graphs that make up Γω. Note that for q = we may assume that C is Γω itself

as connectedness of the graph Γ(LD) and thus of Γω is a necessary condition for a Z-tree

to be topologically lassoed by a set of cords on some non-empty set Z [81]. However it

should be noted that Γω may become disconnected during successive repetitions. In that

case, we exploit the fact that, as we will see below, in each repetition step an equidistant

tree is grown from (hopefully all) the vertices of a connected component of the graph

Γω generated in the previous step. Put di�erently, we choose a connected component of

Γω such that, over all connected components of Γω, the leaf set of the tree grown from

CHAPTER . CONSTRUCTING TREES FROM LASSOS 104

it is as large as possible (where we break ties randomly). Other methods of component

choice are conceivable though, such as identifying that which possesses the most cords of

LD . Alternatively, it may be preferable to run Lasso for each connected component of Γω

separately, in which case prior biological knowledge might be used to join up the returned

equidistant trees.

Note that Lasso terminates when the selected connected component consists of just

one vertex. Also note that to help mitigate against a poor choice of a connected component

which might yield an equidistant tree on a small number of taxa of X, Lasso returns

the tree that connects the most taxa in X (and its associated strong lasso) found over p

independent runs, where p is a user de�ned parameter that is currently set to ten.

To simplify the description of the remaining details of the q-th repetition step, let

m denote the minimal edge weight over all edges of C. ¿en C is transformed into an

unweighted graph Cm in which �rst all edges except those with weight m have been

removed and then the weights of the remaining edges are ignored. Lasso now chooses

a connected component Sm of Cm and a suitable clique of Sm (see below for details) and

grows an equidistant tree using the vertex set of that clique. To make this more precise

de�ne for any equidistant tree (T ′,ω′)with leaf set Z the height of T ′ to beD(T′ ,ω′)(x , y)/

for any two elements x and y of Z for which the path joining them crosses the root of

T ′. Let G be a graph consisting of ∣X∣ isolated vertices each of which is labelled by an

element in X. For the purpose of growing a tree it will be useful to view each of them as

an equidistant tree with height zero.

Now, let Km denote a suitable clique of Sm found by Lasso (where we break ties

randomly). ¿en to obtain a new distance Dm on a smaller set Xm which, for example,

ensures that Lasso terminates, we �rst remove all vertices in Sm from Xr and then add a

new vertex um to obtain Xm. Next, we de�ne Dm to be the distance on Xm that assigns to

any x and y contained in Xm the value D(x , y) if x and y in Xm−{um}, zero if x = y = um

and the value D∗(x , y) if either x = um or y = um, where D∗ is a distance such as the one

described below in the section on recomputing the distance Dm.

CHAPTER . CONSTRUCTING TREES FROM LASSOS 105

To �nd the equidistant tree (Um ,ωm) that Lasso grows from X in this repetition

step, let l denote the size of the vertex set of Km and let (T,ω), . . . , (Tl ,ωl) denote the

equidistant trees with leaves in Xr found in the previous repetition steps such that the

vertex set of Km comprises of the roots ρi of Ti , ≤ i ≤ l . ¿en to obtain Um, we �rst add

a new vertex to G labelled um and then join every root ρi , ≤ i ≤ l , via an edge with um

making Um a tree with root um and leaves contained in X.

To obtain the equidistant edge-weighting ωm for Um, assume for all i ∈ {, . . . , l} that

the height hi of the tree (Ti ,ωi) was computed in one of the previous repetition steps.

Note that, by de�nition, there must exist leaves u and v with distance D(u, v) = m such

that um lies on the path from u to v in Um. ¿en we de�ne ωm to be the map that assigns

to every edge e of Um that is also contained in some tree Ti , ≤ i ≤ l , its weight under

ωi and the weight m/ − hi if e contains the root ρi , ≤ i ≤ l . Since for all i ∈ {, . . . , l}

the trees (Ti ,ωi) are equidistant, it is straightforward to see that ωm is an equidistant

edge-weighting for Um and that the height of the tree (Um ,ωm) is m/.

To complete the repetition step, we replace Xr by Xm and D by Dm, and return to

�nding a connected component for the new graph Γw for D. Once the aforementioned

termination criterion is satis�ed, the found equidistant tree and its strong lasso is saved

and the next run is started. Lasso stops once all p runs have been completed and returns

the equidistant tree and its strong lasso, as described above.

5.2.2 Suitable cliques

Central to Lasso is �nding a suitable clique in the graph ΓωD where D was constructed in

the previous step of the repetition (or of the input distance if the current step is the start of

the repetition). Note that these cliques correspond to the complete graphs of theorem 16

and give us one internal vertex. In the case where the tree is binary these cliques are trivial

(consisting of only one edge). To �nd a suitable clique, let m be the minimal edge-weight

in the graph C and Sm a connected component with minimal edge-weight chosen as above.

Exploiting again the fact that the new element um constructed in the current repetition

CHAPTER . CONSTRUCTING TREES FROM LASSOS 106

d

c

b

a

1.0

(i) Original tree.

a

d

c

b

1.0

(ii) Tree constructed by UPGMA.

Figure 5.1: UPGMA fails to reconstruct the correct tree if the inputted distance is not ultrametric.
Here the true (non-equidistant) tree is shown in (i) and the tree constructed byUPGMA
in (ii).

step can be thought of as the equidistant tree (Um ,ωm) whose leaf set is contained in X,

we say that a clique in Km is suitable if, over all cliques of Sm, the number of taxa of X it

contains is as high as possible.

Since the problem of �nding such a clique further requires deciding whether a clique

of a given size K or more exists in a graph, and this is a well-known NP-complete problem

[62], we use a heuristic for this. More precisely, we start with a randomly chosen edge e in

Sm. Note that e is clearly a clique. Denoting that clique by Ke , and its vertices by x and

y, we check for all remaining vertices z of Sm if they are adjacent with every vertex of Ke

or not. In the former case we update Ke by adding z to its vertex set and all edges of the

form {c, z} to its edge set where c ∈ Ke , and in the latter case we discard z. We continue

in this fashion until we cannot enlarge Ke any further, in which case we stop and save

the found clique. To again mitigate against a poor choice, we repeat this process k-times

(ignoring edges that are chosen more than once) where k is a user-de�ned parameter that

is currently set to ten. ¿e clique that, over all found cliques, has the largest number of

leaves is the clique that we take as the suitable clique.

5.2.3 Recomputing the distance Dm

¿ere are several possible choices for recomputing the distance Dm. Continuing with

the notation introduced above we need to de�ne for all vertices a in C but not in Sm the

CHAPTER . CONSTRUCTING TREES FROM LASSOS 107

distance D∗(um , a) by somehow combining the distances D(v , a) for all v in Km. In the

straightforward case where the inputted partial distance came from an ultrametric, the

distances D(v , a) for all a ∈ C will be equal for all v ∈ Km. In this case we would simply

set D∗(um , a) to D(v , a) for all a. However, in practice the distances D(v , a) for some

a may not be equal. ¿ere are two reasons for this: either the partial distance does not

come from an ultrametric at all, or the data from which we derived the partial distance

information was subject to noise (as we would expect from biological data).

To illustrate this situation we consider how UPGMA behaves. Figure 5.1 (i) shows

an edge-weighted X-tree (T ,ω) with X = {a, . . . , d} which is not equidistant, therefore

the induced distance D(T ,ω) on X is not an ultrametric. If this distance is used as input

to UPGMA we get the equidistant X-tree (T ′,ω′) shown in Figure 5.1 (ii). ¿e induced

distance on the constructed tree D(T′ ,ω′) is correct only between b and c. To see why recall

that UPGMA agglomerates the nearest two clusters in each iteration, in the �rst iteration

this is {b} and {c} which will come together to form a cherry with the correct height of

D(T ,ω)(b, c)/. Next the algorithm must calculate the distance between the newly formed

cluster and every other cluster using average-linkage. ¿e distance between {b, c} and

{a}, for example is calculated from the distances between {b} and {a} and {c} and {a}.

But observe that these two distances are not equal. ¿is is our indication that the inputted

distance was not ultrametric.

Returning to Lasso, it is now clear that to provide the consistency property we cannot

simply use average-linkage in the case where the distances D(v , a) are not equal. Instead

we must discard some of the input distances such that D(v , a) is equal for all v ∈ Km and

all a ∈ C−Sm. ¿is reduces the size of our outputted lasso. To decide which of the distances

to discard the obvious way is for each a ∈ C − Sm to take the mode of the distances D(v , a)

for all v ∈ Km and discard those distances not equal to the mode. ¿is ensures that the

consistency property is satis�ed while using as many distances as possible. ¿e fact that the

algorithm has not used every distance in the input can be used as a sign that the inputted

distance was not ultrametric. In the worst case, the lasso returned by the algorithm will be

CHAPTER . CONSTRUCTING TREES FROM LASSOS 108

only a minimal topological lasso even if many more distances were inputted. Indeed, this

is the case if we try the example of Figure 5.1 using the above procedure to calculate D∗.

However, this does not take into account the fact that real data is noisy. In practice

we can rarely expect to �nd equality, but this does not necessarily mean that the real

underlying tree is not equidistant. To enable tolerance to noise we try to �nd for each

a ∈ C − Sm a cluster of distances in D(v , a) over all v ∈ Km. ¿e distances in the cluster

should be similar to within some noise threshold. We then discard distances not in the

cluster and set D∗(um , a) to the mean of the distances in the cluster.

To �nd a single cluster we can use a simple iterative approach. Let S ⊂ R≥ be our

set of distance values and s̄ the mean of all values in S. We �nd an s ∈ S such that ∣s − s̄∣

is maximised and remove this value if σ = ∣s − s̄∣/s̄ is greater than some threshold ζ. We

repeatedly remove values from S until σ is below the noise threshold. We are le with our

cluster S. We have found that a good value for ζ is ..

¿e overall algorithm is given in as Algorithm 9. ¿e runtime complexity of the

algorithm is O(∣LD ∣) since, in the worst case, we replace a clique consisting of only one

edge in each iteration and must perform a linear search on the edges of Γω to �nd the

minimum edge-weight in each iteration.

5.2.4 An example

To illustrate the Lasso approach assume that X = {a, . . . , e} is a taxa set and that D is

a partial distance on X given in terms of the edge-weights of the graph ΓωD presented in

Figure 5.2 (i).

¿en in the �rst repetition step (with q =) the minimal edge-weight is 2 and the

connected component C chosen by Lasso is ΓωD itself as that graph is connected. ¿e

subgraph of C with vertex set {a, b, c, d}, edge set indicated in bold and edge-weights

ignored, is C. Note that this graph coincides with the connected component S chosen by

Lasso as that graph is again connected. ¿e suitable clique chosen by Lasso is the subgraph

with vertex set {b, c, d} and the three edges joining them in the form of a triangle in that

CHAPTER . CONSTRUCTING TREES FROM LASSOS 109

Algorithm 9¿e Lasso algorithm
Input: Partial distance D on X
Output: A subset L′ of cords of LD and an equidistant Y-tree (T ,ω) that is strongly
lassoed by L′ such that Y and L′ are as large as possible, Y = ⋃xy∈L′ xy holds, and
D(T ,ω)(x , y) = D(x , y), for all xy ∈ L′.

0. Compute Γω = ΓωD and put q ∶= and Xr = X.

1. Choose a connected component C of Γω such that the leaf set of the equidistant tree
grown from it is as large as possible. If C has a single vertex, terminate and return
that tree and the found set of cords that strongly lassos it.

2. Put m ∶= min
xy∈LD

D(x , y) and compute unweighted graph Cm.

3. Choose a connected component Sm of Cm and a suitable clique Km in Sm.

4. Using a new vertex um and the de�nition of D∗, put Xm ∶= Xr − Sm ∪ {um} and the
new distance Dm on Xm, respectively.

5. Join um with the roots of the equidistant trees whose roots correspond to the vertices
of Km to obtain the tree Um and de�ne the equidistant edge-weight ωm such that
the height of Um is m/.

6. Put Xr ∶= Xm, D ∶= Dm, q ∶= q + and return to step 1.

6
e

u

(i) (iii) (iv)(ii)

d

c
e

3
2

111

b ce d b

6

d

2 2
b

c

2

a
2

8

eΓωD (T ,ω) LYΓωD

Figure 5.2: For the partial distance D on X = {a, . . . , e} as indicated by the edge-weights of the
graph ΓωD depicted in (i) we depict in (iii) the equidistant tree (T ,ω) returned by Lasso
and in (iv) the strong lasso found by Lasso for T . In (ii) we depict updated distance
D in the �rst repetition step of Lasso in terms of the graph ΓωD

.

CHAPTER . CONSTRUCTING TREES FROM LASSOS 110

�gure. ¿e equidistant tree (U,ω) grown by Lasso is the subtree of the equidistant

tree depicted in Figure 5.2 (iii) with leaf set {b, c, d} and edges in bold. Furthermore, the

updated distance D on X = {u, e} is represented in terms of the graph ΓωD
displayed

in Figure 5.2 (ii) where the tie was broken by deleting the cord de and thus removing the

distance D(d , e). Putting Xr = X and D = D completes the �rst repetition step. Since ΓωD

is again connected and contains more than one vertex a second repetition step is carried

out. Again C is the graph ΓωD itself. ¿eminimal weightm is six and C, S and K all equal

ΓωD . ¿en X = {u}, D(u, u) = . ¿e equidistant tree (U,ω) grown is depicted in

Figure 5.2 (iii). To complete the second repetition step we now replace Xr by X and D

by D. Since the graph ΓωD
is connected Lasso picks ΓωD

as the connected component.

Since ΓωD
contains only the vertex u, Lasso terminates. For Y = {b, c, d , e}, we picture

in Figure 5.2 (iv) the strong lasso LY found by Lasso for T in terms of the graph Γ(LY).

It is possible for Lasso to �nd smaller trees (for example we could have picked the clique

with only a and b in the �rst iteration) but a er multiple runs this tree will be found as

the largest.

5.3 Results and Discussion

The Lasso approach enjoys several attractive theoretical features. ¿ese include that

when given a partial distance D on some taxa set X, the set L′ of cords returned by Lasso

(together with the distances for the cords in that set) uniquely determines the topology as

well as the edge-weighting of the equidistant X′-tree (T ,ω) returned by Lasso, where X′

is the vertex set of Γ(L′). In particular, if D is such that LD is a topological lasso for T

then X = X′. ¿at is, the leaf set of T is the whole of X. Moreover, if D is in fact a complete

distance on X and ultrametric then the distance induced by (T ,ω) on X is D.

Due to, for example, missing data it is in general too much to hope for that the

available distances in a real biological study correspond to a topological lasso for some

equidistant tree. To assess the performance of Lasso as a tree reconstruction approach

CHAPTER . CONSTRUCTING TREES FROM LASSOS 111

with regards to this confounding factor, while controlling key aspects of the input data, we

carried out a simulation study which is similar in spirit to the one presented in [31]. To

gauge the performance of Lasso as a tree reconstruction approach on a real biological

dataset, we applied it to a yeast dataset [163] recently developed from a whole genome

resequencing study [104]. We further assessed the potential of Lasso as a supertree

approach by combining two partially overlapping wheat datasets, developed in distinct

studies [132, 142]. We start with outlining our missing data simulation scenario.

5.3.1 Missing data

To better understand how the topology of an equidistant tree a�ects our ability to recon-

struct it from a partial distance, we �rst generated three binary X-trees, one of which

was a balanced tree, a second a caterpillar tree, and the third we generated using the

Yule-Harding model. For this, we took the size of X to be 128. For initial unweighted tree

simulation, we implemented the approach described in [147, Section 2.5]. Next, we turned

each of the resulting trees into an equidistant X-tree. In the balanced tree case we assigned

weight one to all edges. In the caterpillar tree case we assigned the di�erence in height

between two adjacent vertices to the weight of the joining edge, and in the Yule-Harding

tree case we proceeded as follows. Starting with a Yule-Harding X-tree T , we �rst assign

to every vertex v of T the number h(v) of edges on a longest path from v to a leaf of T

below v, where we put h(v) = in case v is a leaf. For e an edge of T joining two vertices

u and v, we then assign ∣h(u) − h(v)∣ as weight to e.

For each of these three equidistant X-trees, we then generated an incomplete distance

matrix from the induced (complete) distance matrix by randomly removing a percentage

Pmiss of entries, ensuring that with L denoting the associated set of cords the Γ(L) graph

remained connected. More precisely, we generated 500 incomplete distance matrices

for each of the three equidistant X-tree types using the values %, %, %, % and

% for Pmiss. We then used the resulting × × incomplete distance matrices as

input to Lasso. Each equidistant X-tree found by Lasso was then compared with the

CHAPTER . CONSTRUCTING TREES FROM LASSOS 112

Pmiss mean min max meanc minc maxc

0.0 0.000 0.000 0.000 2016.000 2016 2016
1.0 0.000 0.000 0.000 2015.770 2014 2016
5.0 0.011 0.000 0.095 2003.480 1945 2015
10.0 0.029 0.000 0.190 1976.640 1814 2005
20.0 0.099 0.000 0.587 1849.600 475 1944
30.0 0.261 0.000 0.762 1445.220 255 1842

Table 5.1: Normalised Robinson-Foulds distances for the balanced trees and the sizes of the sup-
porting strong lassos.

Pmiss mean min max meanc minc maxc

0.0 0.000 0.000 0.000 2016.000 2016 2016
1.0 0.000 0.000 0.000 2015.760 2013 2016
5.0 0.005 0.000 0.143 2007.850 1949 2016
10.0 0.024 0.000 0.270 1982.360 1869 2003
20.0 0.110 0.000 0.492 1842.460 672 1954
30.0 0.187 0.000 0.635 1670.370 317 1859

Table 5.2: Normalised Robinson-Foulds distances for the Yule trees and the sizes of the supporting
strong lassos.

Pmiss mean min max meanc minc maxc

0.0 0.000 0.000 0.000 2016.000 2016 2016
1.0 0.000 0.000 0.000 2015.780 2014 2016
5.0 0.000 0.000 0.000 2011.090 2003 2016
10.0 0.020 0.000 1.000 1994.720 1933 2004
20.0 0.040 0.000 1.000 1931.610 1864 1954
30.0 0.110 0.000 1.000 1829.440 1769 1861

Table 5.3: Normalised Robinson-Foulds distances for the caterpillar trees and the sizes of the
supporting strong lassos.

CHAPTER . CONSTRUCTING TREES FROM LASSOS 113

0

0.05

0.1

0.15

0.2

0.25

Pmiss

M
ea
n
Ro
bi
ns
on
-F
ou
ld
sd
ist
an
ce Balanced

Yule
Caterpillar

Figure 5.3: For all three equidistant X-tree types, we plot the normalised Robinson-Foulds distance
between T and T ′∣Y .

respective equidistant X-tree (T ′,ω′) used to generate the underlying input matrix. More

precisely, for Y denoting the leaf set of a tree (T ,ω) returned by Lasso, we computed the

Robinson-Foulds distance [135] DRF(T , T ′∣Y) between T and the restriction T ′∣Y of T ′ to

Y , that is, we counted the number of clusters induced by T ′∣Y but not by T and vice versa.

For each equidistant X-tree type and percentage Pmiss, we then averaged the obtained

500 distances using the mean. We summarise our results in Figure 5.3 in terms of the

normalised Robinson-Foulds distance DRF(T , T ′∣Y)/(∣X∣−) between T and T ′∣Y , that is,

we divided DRF(T , T ′∣Y) by the maximal Robinson-Foulds distance between two X-trees,

which is (∣X∣ −). Tables 5.1, 5.2 and 5.3 show some simple statistical measures on the

supporting strong lassos. Mean, min and max refer to the Robinson-Foulds distance and

meanc, minc and maxc refer to the size of the lasso.

We observed that, independent of the type of equidistant tree considered, the Robinson-

Foulds distance between T ′∣Y and T increases as the number of distance values decreases,

which is as expected. Having said that, out of all three X-tree types equidistant caterpillar

trees were reconstructed most accurately with a mean normalised Robinson-Foulds dis-

tance below 0.1 even when % of the distance values were missing. A potential reason for

CHAPTER . CONSTRUCTING TREES FROM LASSOS 114

Pmiss

P l
ea
ve
s

2
5
10
20

Figure 5.4: For T ′ an X-tree with ∣X∣ = and maximum out-degree k = , , and we depict
the proportion of X which forms the leaf set of T . – see text for details.

this might be that to correctly reconstruct a internal vertex v of T ′ the child-edge graph

associated to v must be a complete graph (see Section 4.4.2). In a caterpillar tree there is

only one cherry, all other internal vertices have a child that is a tree. So the likelihood that

the child-edge graph associated to an internal vertex is a complete graph is high as an edge

in that vertex’s child edge graph tends to be supported by many leaf pairs of T implying

that Lasso correctly reconstructs v. On the other hand, a balanced tree has the highest

number of cherries. ¿us, the likelihood that the child-edge graph associated to such

vertices is not a complete graph increases as the number of missing distance values grows,

implying that T may be very di�erent from T ′∣Y . Given that it is well-known that trees

generated under the Yule-Harding model tend to be highly balanced (see e. g. [147, Section

2.5]) it is unsurprising to see that equidistant Yule-Harding trees and equidistant balanced

trees exhibit a similar behaviour. Interestingly, equidistant Yule-Harding trees were recon-

structed slightly more accurately than equidistant balanced trees overall, presumably due

to small departures from a purely balanced state.

Figure 5.3 suggests that for low quantities of missing distances, Lasso is very good at

exploiting redundancy in a given distance matrix to correctly reconstruct the underlying

CHAPTER . CONSTRUCTING TREES FROM LASSOS 115

Algorithm 10 Random tree generation
Input: A set X and an integer k.
Output: An equidistant X-tree with maximum out-degree k.

1. Choose an integer p in {, . . . ,min(∣X∣, k)} and some subset C of X of size p.

2. Construct a tree T with root ρT by attaching each element c in C via an edge to ρT
and setting the weight of that edge to +maxx∈X height(x) − height(c).

3. Put X ∶= (X − C) ∪ {ρT}.

4. If ∣X∣ > go to step 1, otherwise return T and its edge-weighting.

equidistant X-tree, independent of the tree type. To better understand how much this

observation is dependent on the fact that the starting X-trees were all binary, we also inves-

tigated the in�uence of the maximal vertex degree k of such a tree on Lasso’s performance.

To this end, we generated random equidistant X-trees (T ′,ω′) with maximum vertex

out-degree k as described in Algorithm 10. ¿e values for k that we used in this study were

k = , , , and the size of X was always . We summarise our results in Figure 5.4 in

terms of the average percentage Pl eaves of the elements in X that are also present in the

leaf set of the equidistant tree (T ,ω) returned by Lasso.

As expected, Pl eaves is very high (above %) for all values of k if the number of

missing distances is not too large (Pmiss ≤ %) which is encouraging from a supertree

perspective as the out-degree of a vertex can be comparatively high in such trees. However

with an increasing number of missing distances, equidistant X-trees with a lower maximal

degree seem to fare better overall. More precisely, in the case k = the equidistant tree

returned by Lasso still contains % of the leaves of T ′ even if % of the distance values

are missing. To obtain a similar result for k = only around % of the distance values

are allowed to be missing from a distance matrix. A potential reason for this discrepancy

might be that the more distances are missing from a distance matrix the more likely it is

for the child-edge graph of a high out-degree vertex not to be a complete graph and thus

to not be correctly reconstructed by Lasso.

CHAPTER . CONSTRUCTING TREES FROM LASSOS 116

5.3.2 A yeast dataset

To test Lasso on a real biological dataset, again as a tree reconstruction approach in the face

of missing data, we applied it to a distance matrix generated for the analysis of several intra-

speci�c strains of yeast. In [163] the authors identi�ed both fully and partially resolved

single nucleotide polymorphisms (SNPs and pSNPS) within the ribosomal DNA (rDNA)

tandem arrays of 26 strains of the wild yeast Saccharomyces paradoxus. A distance matrix

was constructed from the resulting allele frequency dataset using the Cavalli-Sforza and

Edwards Chord distance measure [25]. A phylogenetic tree was estimated using Neighbor

Joining. ¿e tree was rooted by analysing rDNA variation in S288c, the type strain of the

closely related baker’s yeast Saccharomyces cerevisiae. We note that the rooted tree built

with either UPGMA or Lasso is very similar to the authors’ tree suggesting that the tree

underlying the dataset is indeed equidistant. From the distance D on the strains induced

by the Lasso-tree we then randomly removed % of the distance values ensuring that

(i) whenever we removed for two strains x and y the distance D(x , y) we also removed

the distance D(y, x), that (ii) values of the form D(x , x) where x denotes a strain did not

count towards the removed %, and that (iii) the graph Γ(LD) remained connected. We

present the equidistant tree returned by Lasso in Figure 5.5. Note that this tree contains

all 26 input taxa. Furthermore, its topology is highly similar to that produced, on the full

distance matrix, by [163]. Most importantly, the groupings of the American, Far Eastern

and European strains are preserved, as is the separation of the UK and non-UK derived

strains within the European group. Furthermore, the putative European/Far Eastern

hybrid strains N_ and N_ are located within the tree at positions consistent with

such an evolutionary history. While some minor changes in topology are seen within the

European and American groups, the relationships within the Far Eastern group are wholly

preserved once 10 of distances have been removed.

Since Lasso’s ability to reconstruct an equidistant tree from a partial distance depends

on both which distances are missing and the random decisions made by the algorithm

CHAPTER . CONSTRUCTING TREES FROM LASSOS 117

DBVPG6304
YPS138
A12
A4
UFRJ50791
UFRJ50816
N_45
IFO1804
N_43
N_44
CBS5829
CBS432
DBVPG4650
KPN3828
KPN3829
N_17
Q62_5
Z1_1
Y7
Q59_1
Q32_3
Q89_8
Q95_3
S36_7
T21_4
Y6_5

0.016

Am

FE

Eu

Figure 5.5: An equidistant tree returned by Lasso from the yeast dataset with % of the distances
randomly removed. ¿e sixteen European strains are denoted by the label “Eu”, the
four Far Eastern strains by “FE” and the six American strains by “Am”. ¿e uppermost
�ve European strains (CBS5829 to KPN3829), together with N_17, derive from outside
the UK, with the remaining ten European strains having been isolated within the UK.

to break ties, we also constructed a consensus tree from the equidistant trees returned

by Lasso (see Figure 5.6). For this, we used an approach similar to bootstrapping and

indicate in terms of numbers assigned to each internal vertex, except the root, how o en

each cluster induced by such a vertex is displayed by an equidistant tree returned by Lasso.

More precisely we generated 100 partial distances with % of the distances removed at

random as described above. We then ran Lasso on each partial distance resulting in a total

of equidistant trees each supported, on average, by a strong lasso with 205 cords (out

of the possible 293). ¿e resulting trees were then used as input to the Consense program

[56] with default settings to build a consensus tree using the “majority rule (extended)"

option. ¿is tree is again highly consistent with the full distance matrix tree, di�ering only

CHAPTER . CONSTRUCTING TREES FROM LASSOS 118

100.0
83.0

DBVPG6304

78.0

YPS138

88.0
A12
A4

89.0
UFRJ50791
UFRJ50816

100.0

100.0

N_45

94.0

IFO1804

87.0
N_43
N_44

100.0

100.0

CBS5829

98.0
94.0

CBS432
DBVPG4650

92.0
KPN3828
KPN3829

100.0

N_17

85.0

88.0
Q62_5
Z1_1

94.0

Y7

78.0
87.0

Q59_1

74.0

Q32_3

74.0

Q89_8

9.0
Q95_3
S36_7

96.0
T21_4
Y6_5

Am

FE

Eu

Figure 5.6: Consensus tree built from 100 runs of Lasso on matrices with 10 of the distances
randomly removed. ¿e number next to a vertex shows the number of times the cluster
induced by that vertex appeared in the input of Consense. ¿e length of an edge is of
no relevance.

from Figure 5.5 in the relationship between the three European strains Q89_8, Q95_3 and

S36_7. Noticeably, the support for the bifurcation of the latter two strains is the only one

in Figure 5.6 less than 74.

5.3.3 A wheat dataset

Next, we analysed two partially overlapping wheat genetic marker datasets in order to

evaluate the potential of Lasso as a supertree approach. ¿e �rst dataset (which we will

refer to as dataset A) consisted of 57 NBS (Nucleotide Binding Site) markers scored over

411 accessions, a subset of a dataset developed within the GEDIFLUX EU Framework V

project [132] to assess genetic diversity over time across four major crops, including wheat.

¿e second dataset (which we will refer to as dataset B) consisted of 71 NBSmarkers scored

over 118 accessions, a subset of a study comparing genetic diversity within and between

CHAPTER . CONSTRUCTING TREES FROM LASSOS 119

142
126
43

95
522

529
546

254
26

5
23

5
25

3
10

3
53

9
67

9
60

7
59

2
56

2
50

5
62

8
25

1
13

0
70

4
15

3
52

5
69

5
59

3
61

3
54

3
63

7
55

2
61

9
71

1
62

9
64

9
64

3
65

4
57

1
69

6
69

2
14

9
52

7
58

3
70

5
68

8
54

2
52

8
68

0
60

3
60

4
67

3
64

7 675
614
638
644
653
616
143
144
624
635
563
611
523
681
646
659
129
657
541
652
685
504
560
537
687

551
690

691
556

524
597

225
230

190
195

248
266

106
194

712
88

702
559

128
662

87
557

540
709

125
630

682

48
217
220
234
684
676
218
228
245
146
82
151
221
167
108
22
100
703
589
601
558
62
18
23
642
44
584
514
519
92
93
520
90
667
618
626
694
85
549
591
585
620
55
162
565
41
35
121
594
627
561
588
587
161
602
5825096336636486396416746706715675695738039105174175212506150550608548566513707172163166581246365746347105966257065756066456226935726406561175905101221239410712050

851
563
262
170
01951

713
2

18
4

19
1

14
8

14
7

18
1

18
2

4670
1

37384916
8

18
8

51
8

10
1

12
7

17
3

18
5

13
1

59
8

19
2

65
8

91761
2

65
1

9717
1

60
0

68
9

20
1

65
0

55
5

57
7

16
0

67
2579

586
697
530
53673
114
62372
564
5684296110

238
102
263
5992529

154
232
239
275
17020254

660
661
273
240
708
54498

521666199200104257992764711051668621360910924225625225515262812141134135336126927026827426256134136139113
41122091115913858536031229137

8258260
5233526214507164169236

198
155
237
610
545

36
40

118
615
249
605

51
241

52
226
547
678
186
189
511
124
180
178

13
27
57

271
21

9
32

699
512
538
243
617

3
6

140
183
196
141
115
261
281
264
267

17
179
223
219
193
222
272

231
210

211

Figure 5.7:¿e Lasso tree for wheat dataset A coloured according to the groupings found by
ADMIXTURE.

winter wheat accessions from Turkey, Kazakhstan and Europe [142], the latter comprising

a small group of the GEDIFLUX wheat accessions. Consequently, the two datasets share a

common set of 26 European winter wheat accessions, comprising 6.3 and 22.0 of their

accessions respectively. We will refer to this shared dataset as dataset C.

Equidistant trees were estimated for datasets A and B separately, using the Modi�ed

Rogers measure [133] to calculate a distance matrix, followed by tree construction with

Lasso. For convenience, we denote the two distance matrices as dA and dB, where the

index indicates the dataset to which they refer. ¿e resulting equidistant trees were found

to be supported by 77,577 (out of 84,255) and 6,844 (out of 6,903) distances from dA

and dB respectively, and are shown in Figures 5.7 and 5.8. We assessed the individual

CHAPTER . CONSTRUCTING TREES FROM LASSOS 120

38
39

36

37

34

60

42

17

10

14 32

13
0

40 85 99

26

51

82

59

86

90

4

48

103

91

97

15

109
92

49

76

81

98

94

93

95

100

55

56

52

53

54

28

115

22

106

66

31

44

121

78

57

12

65

116
117

110
128

21

113

107

12
911

810
510

812
611

912
510

111
1

10
2

10
4

84112927

12212773686384

87114

89

23

83

88

6
30

35

80

3

16

2

7

50

24

47

77

75

11

67

72

74

69

79

5

61

45

46

18

64

33

19

25

43

Figure 5.8:¿e Lasso tree for wheat dataset B coloured according to the groupings found by
ADMIXTURE.

Lasso trees according to population group data for the two datasets. In the original

analysis of dataset B [142], the model-based clustering method STRUCTURE [128] was

carried out to estimate the number of founder populations underlying the dataset and the

genetic contribution of each population to each accession. We coloured branches of the

Lasso tree in Figure 5.8 such that the colour of each branch corresponded to the main

population group to which the relevant accession belonged. For dataset A, we conducted

our own population structure analysis, here using the ADMIXTURE method [2] with

default parameter values. ADMIXTURE uses an identical genetic model to STRUCTURE,

but a di�erent computational approach to optimise population parameters, rendering

it considerably faster to run. ¿e Lasso tree for dataset A, coloured according to these

groups, is shown in Figure 5.7. For both datasets, we see that accessions belonging to the

same population group are largely clustered within the equidistant trees. ¿e large sizes of

the two Lassos (encompassing 92.1 and 99.1 of distances within dA and dB respectively),

CHAPTER . CONSTRUCTING TREES FROM LASSOS 121

together with the consistency of population grouping across the equidistant trees, strongly

suggest the suitability of the Lasso approach in determining the genetic relationships

between accessions within both of these datasets. Furthermore, we note the previous use

of the UPGMAmethod to analyse NBS markers for wheat accessions [109].

To obtain a (partial) distance D on the combined dataset of + − =

accessions we proceeded as follows. If x and y are accessions such that one of them is

contained in dataset A/C and the other in A then we put D(x , y) = dA(x , y). Similarly, if

one of them is contained in dataset B/C and the other in B then we put D(x , y) = dB(x , y).

For the remaining case that both accessions are contained in the overlap we took the mean,

that is, we put D(x , y) = dA(x , y) + dB(x , y))/ where x and y are the accessions under

consideration. To mitigate against the fact that for some accessions in C the distance

values dA(x , y) and dB(x , y) correlate more strongly than for others we used the ratio

dA(x , y)/dB(x , y) to identify outliers, which we subsequently removed from the analysis.

For this, we employed the distribution of these ratios and de�ned a distance value to

be an outlier if it is more than one interquartile range above the upper quartile or one

interquartile range below the lower quartile.

In total, the distancematrix representingD contained 90,814 entries (where we exclude

entries of the form D(x , x) and only count entries of the form D(x , y) and D(y, x) once)

which equates to .% of the , potential distance values of a distance matrix on

 taxa missing. We then used this distance as input for Lasso to obtain a supertree T

on the combined dataset. We depict that supertree in (Figure 5.9) and remark in passing

that the tree contains all 503 input taxa and that the size of the strong lasso returned by

Lasso supporting T is 89,642. Put di�erently, T is the unique equidistant tree that displays

correctly 98.7 of the 90,814 distance values for D.

To better understand the relevance of the obtained supertree T we tested it with regards

to consistency with the original distances on the two datasets. In addition, we compared

its topology against the supertree generated by the modi�edMinCutSupertree approach

[123]. For the former, we performed Mantel tests between the distance matrices derived

CHAPTER . CONSTRUCTING TREES FROM LASSOS 122

B210
B211
C22

B219
B193

B222
B272
A

66
A

31
A

44
A

2
A

7
A

50
A

24
A

47
A

28
A

3
A

30
A

6
A

35
A

80
A

75
A

11
A

67
A

72
A

77
A

16
A

74
A

69
A

79
B

23
1

B
19

4
B

99
A

68
A

63
A

84
A

73
B

27
3

B
70

8
B

24
0

B
54

4
B

52
1

B
98

B
66

6
B

19
9

C
20

B
19

0
B

80
B

10
5

C
2

A
81

A
98

A
94

A
93

A
10

0
A

95
A

92
A

49
A

76
A

89
A

83
A

88
B

24
5 A87

B
146

B
82

C
13

B
220

B
234

B
682

B
217

B
48

B
137

B
195

B
264

B
260

B
267

B
17

B
179

A
23

B
226

C
4

B
241

B
51

B
229

B
31

B
236

B
198

C
15

B
237

B
610

B
545

B
36

B
40

B
118

B
615

B
249

B
605

B
275

C
24

B
242

B
252

B
255

B
256

B
109

B
173

B
101

B
127

B
185

B
131

B
598

B
168

B
188

B
518

B
186

B
189

B
214

B
507

B
164

C
18

B42
B96

C14
B10

B506
B232

B258

B8
B150

B212

B174

B175

B178

B183

B196

B599

B25
B29

B13
B27
B57
B28
B11
B34
B12
B14
B262

B209

B111

B138

B59
B58
B60
C5
B139

B113

B112
B4
B56
B134
B136
B135
B33
B61
B268
B274
B269
B270
B15
B26
B579
B586
B697
B530
B536
B73
B114
B623
B72
B564
B568
B172
B163
B166
B513
B707
B581
B24
B636
B686
B516
B661
B19
B517
B132
B184
B191
B148B147B181B182B566B608B548B550B94B107B120B508B515B632B621B700B510B122B123B514B92B519B520B93B37B38B49B46B701B574B634B710B596B625B706B117B590B575B572B640B656B606B645B622B693B271B21B32B9B141

B261
C10B617

B3B140

B6B699

B243

B512

B538

B547

B
678

C
1B

233

B
52

6

B
55

5

B
57

7

B
67

2

C
16B
91B
61

2

B
7B
60

0

B
68

9

B
20

1

B
65

0

B
65

1

B
17

1

B
97B
28

1

B
17

0

B
66

0

B
20B
2B
54B
58

8
B

56
7

B
56

9
B

57
3

A
21B
63

0
B

54
0

B
70

9
B

66
7

B
90B
61

8
B

62
6

B
69

4
B

54
9

C
7

B
58

7
B

16
1

B
60

2
B

58
2

B
50

9
B

63
3

B
66

3
B

64
8

B
67

4
B

63
9

B
64

1
B

59
1

B
58

5
B

62
0

B
55

8
B

62
B

18

B
23

B
642
B

44
B

584
B

124
B

180
B

125
B

511
B

684
B

670
B

671
B

676
B

218
B

228
B

557
B

87
B

559
B

662
C

11
B

712
B

702
B

88
C

25
B

238
B

102
B

263
A

78
A

57
A

12
A

65
B

104
B

257

B
658
C

19
A

22

B
162C

6

B
565
B

41
B

35

B
121

B
594

B
627B

1
C

21
C

17

B
108

B
100
B

22
A

32

B
703

B
589

B
601A

27

B
230C

23A
8A
41A

1A
29A

55A56

B266A52A53A54C9A15A4A82A59A86A90A48B609B276A91A97B110C3B213B561A34A60A42A17A10A14A36A37A38A39A5A33A19A25A43A61A18A64A45A46B679B607B592B562B505B628B251B130B704B153B525B695B593B613B571
B696
B543
B637
B552
B619
B711
B629
B649
B643
B654
B692
B149
B527
B583
B705
B129
B659
B657
B541
B652
B646
B523
B681
B635
B563
B611
B603
B604
B614
B638
B653
B644
B616

C12
B144
B624
B673
B647
B675
B688
B542

B528

B680

B685

B504

B560

B556

B524

B597

B537

B687

B551

B690

B691

B142

B126
B43

B95

B522

B529

B546

B539
C8

A99

A26

A51

A40

A85

B235

B253

B254

C26

0.033

Figure 1: Tree.

1

Figure 5.9:¿e equidistant supertree built by Lasso for the two wheat datasets. Accessions from
the GEDIFLUX dataset (A) are indicated by green branches, those from the Turkish
dataset (B) by blue branches, with the 26 accessions found in both datasets (C) indicated
by red branches. Note that the shared accessions are spread across the supertree and
that the tree contains all 503 input taxa.

CHAPTER . CONSTRUCTING TREES FROM LASSOS 123

from dA and dB and the distances displayed by T . ¿e tests showed a positive correlation of

. and ., respectively, with p-values for both being .. ¿ese results indicate

that T displayed relationships between accessions within the two datasets appropriately,

including the overlapping accessions.

For the latter, we employed again the Robinson-Foulds distance. More precisely, we

used the equidistant trees TA and TB generated by Lasso from the datasets A and B,

respectively, to generate a supertree S using the modi�edMinCutSupertree approach.

¿is tree we then restricted to each of the data sets A and B resulting in the trees S∣A

and S∣B, respectively. Next, we restricted the topology t of T to the accessions in A and

in B, respectively, resulting in the trees t∣A and t∣B (where the index indicates the data

set). For these four trees we computed the Robinson-Foulds distances between them

and found that DRF(TA, S∣A) = > = DRF(TA, t∣A) and that DRF(TB , S∣B) = >

 = DRF(TB , t∣B). ¿is suggests that the topology of the supertree returned by Lasso

is closer to that of the original trees on the two datasets than the supertree constructed

by the modi�edMinCutSupertree approach, thus highlighting Lassos’s potential as a

supertree method.

5.4 Conclusion

In this chapter, we have proposed the novel Lasso approach both for distance-based

phylogenetic tree reconstruction and supertree construction. Lasso is similar in spirit

to UPGMA but takes as input partial distances and aims to reconstruct a unique (in a

well-de�ned sense), equidistant tree by exploiting redundancy in a given distance matrix

rather than trying to estimate missing distance values as do approaches such as [31]. Given

that equidistant trees can be exploited as starting trees within a search of tree space, for

sophisticated phylogenetic methods such as Maximum Likelihood and Bayesian Inference

[23, 16], Lassomight provide a quick and promising way to extend these methods to data

sets for which only partial distance information is available. Such datasets might arise

CHAPTER . CONSTRUCTING TREES FROM LASSOS 124

when, for example, con�dence in a distance value is low resulting in an exclusion of that

distance (and thus the taxa involved) from an analysis, or when combining disparate but

overlapping datasets in a supertree context.

We assessed the performance of Lasso by means of arti�cial and real biological data.

For the former we considered three di�erent types of binary equidistant trees and found

that, independent of the tree type, Lasso showed great promise when up to approximately

% of distance values were missing. For higher percentages of missing distance values we

found that the type of equidistant tree started to a�ect our ability to accurately reconstruct

it. More precisely, the equidistant caterpillar tree was recovered most accurately under

our simulation scenario and the equidistant balanced tree the least accurately, with the

equidistant Yule-Harding tree faring slightly better than the balanced tree. We also found

that Lasso showed great promise when the (unknown) equidistant tree underlying the

given partial distance did not possess vertices of too high a degree if a high proportion of

distance values were missing. Put another way, even with % of distance values missing

for an underlying equidistant tree with vertices of maximal out-degree , Lasso was still

able to return a tree on more than % of the original taxa.

We also assessed the performance of Lasso on two real biological datasets. In the �rst

of these studies, a yeast dataset originally developed and analysed in [163] was successfully

reconstructed by Lasso, even with 10 of distance values removed at random. In the

second study, Lasso was used to construct a supertree of two partially overlapping wheat

NBS marker datasets [132, 142]. Subsequent statistical tests showed both that the Lasso

supertree successfully displayed relationships found with the two original datasets and

that it was more consistent with the two underlying trees than a supertree constructed

using the rival modi�edMinCutSupertree approach. Collectively, these studies suggest

that Lasso is potentially a highly useful method for both tree reconstruction and supertree

construction on real datasets.

It is interesting to speculate that the strong performance of Lasso in a supertree

context owes part of its success to its ability to reject shared distances that are not highly

CHAPTER . CONSTRUCTING TREES FROM LASSOS 125

correlated. Indeed, when we repeated ourMantel tests comparing the equidistant supertree

derived from the full combined dataset (that is, not rejecting any shared distance values)

to the two separate distance matrices (A and B), the correlations were found to be 0.47

(p = .) for both datasets. Although this performance is almost identical for

dataset B, we see that removing certain shared distances leads to a highly improved result

for dataset A, which we earlier noted possessed a lower proportion of distance values

within the Lasso. In future, an investigation of methods to combine datasets for supertree

construction would be highly valuable, to see whether a further improvement could be

obtained.

Additional future work might include updating the distance in each repetition step in

a di�erent way. An alternative might be to simply throw out outliers and remain much

more tolerant to non-ultrametric input. Although as we become more tolerant to this

we are less able to claim that we are satisfying the consistency property. We decided to

only remove distances to avoid the problems that come with introducing distances that

exist with other methods (as in Section 4.3.3), but it might also be worth considering

introducing distances under certain circumstances. For example, we may consider adding

one distance if it would allow us to grow our suitable clique further. Also it might be

interesting to investigate the Lasso approach in a relaxedmolecular clock framework [48].

In summary, we propose the Lasso approach to become a new method within the

molecular phylogenetics toolkit. Given its demonstrated potential both in tree reconstruc-

tion in the face of missing data, and in supertree construction, we believe it can play an

important role within a key project of our generation, uncovering the Tree of Life.

5.5 Acknowledgements

For their assistance in the preparation of the paper underlining this chapter we grate-

fully acknowledge Lesley Boyd and Muge Sayar-Turet for providing a wheat dataset and

Andrei-Alin Popescu for help with the ADMIXTURE analysis and testing of so ware.

Chapter 6

DistinguishedMinimal Topological

Lassos

¿is chapter is based on the following paper of which I was a minor author:

K.T. Huber and G. Kettleborough. Distinguished minimal topological lassos. Submitted,

2014

y

I was involved in developing the idea of a special type of minimal topological lasso whose

Γ(L) graph is a block graph, the development ofmuch of the terminology, lemma 8, propositions 1

and 2, theorem 17 and all of the examples used throughout. ¿is theory was intended to be used

by a new algorithm, however the development of the algorithm was unsuccessful.

126

CHAPTER . DISTINGUISHED MINIMAL TOPOLOGICAL LASSOS 127

6.1 Introduction

6.1.1 Summary

In this chapter we focus on a type of lasso called a minimal topological lasso, that is a

topological lasso from which no cord can be removed such that the set of cords remains a

topological lasso. We show that any set-inclusion minimal topological lasso for such a tree

T can be transformed into a “distinguished” minimal topological lasso L for T , that is,

the graph (X ,L) is a claw-free block graph. Furthermore, we characterise such lassos in

terms of the novel concept of a cluster marker map for T and present results concerning

the heritability of such lassos in the context of the subtree and supertree problems.

6.1.2 Minimal topological lassos and the graph Γ(L)

In this section, we introduce the extra terminology required for this chapter and establish

some initial results. Assume throughout that X is a �nite set with at least 3 elements

and that, unless stated otherwise, all sets L of cords of X considered satisfy the property

that X = ⋃L. We say that L is a (set-inclusion) minimal topological lasso for T if L is a

topological lasso for T but no cord c ∈ L can be removed from L such that L − {c} is still

a topological lasso for T .

We denote the set of leaves of T that are also descendants of v by LT(v). If v is a leaf of

T then we put LT(v) ∶= {v}. If there is no ambiguity as to which X-tree T we are referring

to then, for all v ∈ V(T), we will write L(v) rather than LT(v) and ch(v) rather than

chT(v).

To facilitate the discussion of lassos we will very o en refer to a graph called Γ(L).

For a set of cords L of X the graph Γ(L) has vertex set X and an edge between distinct

elements x and y in X whenever xy ∈ L. If there is no danger of confusion, we denote an

edge {a, b} of Γ(L) by ab rather than {a, b}.

To illustrate these de�nitions, let X = {a,⋯, f } and let L be the set of cords such that

Γ(L) is the graph depicted in Figure 6.1 (i). It is easy to see that the X-trees depicted in

CHAPTER . DISTINGUISHED MINIMAL TOPOLOGICAL LASSOS 128

a b c d e f b fa c d e
ce

a
f b

d
(i) (ii)

Figure 6.1: (i) ¿e graph Γ(L) with vertex set X = {a, b, . . . , f } for the set L =
{ab, cd , e f , ac, ce , ea}. (ii) Two non-equivalent X-trees T and T ′ that are both topo-
logically lassoed by L. In fact, L is a minimal topological lasso for either one of them.

Figure 6.1 (ii) are topologically lassoed by L. In fact, L is a minimal topological lasso for

both of them.

Denoting for an X-tree T , a topological lasso L for T , and an interior vertex v ∈ V̊(T)

the set of all cords ab ∈ L for which v = l caT(a, b) holds by A(v), ¿eorem 16 readily

implies ∣A(v)∣ ≥ (∣ch(v)∣). ¿e next observation is almost trivial yet central to this chapter

and concerns the special case that L is a minimal topological lasso for T . To able to state

it, we denote for an interior vertex v ∈ V̊(T) and a child edge e ∈ E(T) of v the child of v

incident with e by ve .

Lemma 8. Suppose T is an X-tree and L is a minimal topological lasso for T . ¿en, for all

v ∈ V̊(T), we have ∣A(v)∣ = (∣ch(v)∣). In particular, for any two distinct child edges e and

e of v there exists precisely one pair (a, a) ∈ L(ve) × L(ve) such that aa ∈ L.

Note that Lemma 8 immediately implies that any two minimal topological lassos for

the same X-tree must be of equal size.

To be able to establish Proposition 1, we require a further de�nition. Suppose T is an

X-tree and L is a topological lasso for T . ¿en for all v ∈ V(T), we denote by Γv(L) the

subgraph of Γ(L) induced by L(v). Note that in case v is a leaf of T and thus an element

in X the only vertex in Γv(L) is v (and E(Γv(L)) = ∅).

Proposition 1. Suppose T is an X-tree and L is a topological lasso for T . ¿en, for all

v ∈ V(T), the graph Γv(L) is connected. In particular, Γ(L) is connected.

CHAPTER . DISTINGUISHED MINIMAL TOPOLOGICAL LASSOS 129

Proof. Assume for contradiction that there exists some vertex v ∈ V(T) such that Γv(L)

is not connected. ¿en v cannot be a leaf of T and so v ∈ V̊(T)must hold. Without loss

of generality we may assume that v is such that for all descendants w ∈ V(T) of v the

induced graph Γw(L) is connected. Since L is a topological lasso for T and so G(L, v)

is a clique, it follows for any two distinct children v, v ∈ ch(v) that there exists a pair

(x, x) ∈ L(v) × L(v) such that xx ∈ L. Since the assumption on v implies that the

graphs Γw(L) are connected for all children w ∈ ch(v), it follows that Γv(L) is connected

which is impossible. ¿us, Γv(L) is connected, for all v ∈ V(T). ¿at Γ(L) is connected

is a trivial consequence.

6.2 ¿e case that Γ(L) is a block graph

To establish a further property of Γ(L) which we will do in Proposition 2, we require

some terminology related to block graphs (see e. g. [42]). Suppose G is a graph. ¿en a

vertex of G is called a cut vertex if its deletion (plus its incident edges) disconnects G. A

graph is called a block if it has at least one vertex, is connected, and does not contain a cut

vertex. A block of a graph G is a maximal connected subgraph of G that is a block and a

graph is called a block graph if all of its blocks are cliques. For convenience, we refer to a

block graph with vertex set X as a block graph on X.

As the example of the two minimal topological lassos {ab, cd , e f , ac, ce , ea} and

{ab, bc, cd , de , e f , f a} for the {a, . . . , f }-tree depicted in Figure 6.1 (ii) indicates, the

graph Γ(L) associated to a minimal topological lasso Lmay be but need not be a block

graph. However if it is then Lemma 8 can be strengthened to the following central result

where for all positive integers n we put ⟨n⟩ ∶= {, . . . , n} and set ⟨⟩ ∶= ∅.

Proposition 2. Suppose T is an X-tree and L is a minimal topological lasso for T such

that Γ(L) is a block graph. Let v ∈ V̊(T) and let v, . . . , vl ∈ V(T) denote the children of

v where l = ∣ch(v)∣. ¿en, for all i ∈ ⟨l⟩, there exists a unique leaf xi ∈ L(vi) such that

xsxt ∈ L holds for all s, t ∈ ⟨l⟩ distinct.

CHAPTER . DISTINGUISHED MINIMAL TOPOLOGICAL LASSOS 130

Proof. For all v ∈ V̊(T) and all w ∈ ch(v), put

Lvw ∶= {x ∈ L(w) ∶ there exist w′ ∈ ch(v) − {w} and y ∈ L(w′) such that xy ∈ L}.

We need to show that ∣Lvw ∣ = holds for all v ∈ V̊(T) and all w ∈ ch(v). To see this,

note �rst that since G(L, v) is a clique for all v ∈ V̊(T), we have, for all w ∈ ch(v) with

v ∈ V̊(T), that Lvw /= ∅. ¿us, ∣Lvw ∣ ≥ holds for all such v and w.

To establish equality, suppose there exists some interior vertex v ∈ V̊(T) and some

child v ∈ ch(v) such that ∣Lvv ∣ ≥ . Choose two distinct leaves x and y of T contained in

Lvv and denote the parent edge of v by e. Note that v = ve . Since y ∈ Lvv , there exists

a child edge e of v distinct from e and some x ∈ L(ve) such that yx ∈ L. In view of

x ∈ Lvv , we distinguish between the cases that (i) xz /∈ L holds for all z ∈ L(ve) and (ii)

there exists some z ∈ L(ve) such that xz ∈ L.

Assume �rst that Case (i) holds. ¿en since x ∈ Lvv there exists a further child edge e

of v and some y ∈ L(ve) such that xy ∈ L. Since, by ¿eorem 16, G(L, v) is a clique

and so {e, e} is an edge in G(L, v), there must exist leaves y ∈ L(ve) and x ∈ L(ve)

such that yx ∈ L. By Proposition 1, the graphs Γvei (L), i = , , are connected and, by

de�nition, clearly do not share a vertex. Hence, there must exist a cycle in Γ(L) whose

vertex set contains⋃ j∈⟨⟩{x j , y j}. But then xx ∈ Lmust hold since Γ(L) is a block graph

and so every block in Γ(L) is a clique. By Lemma 8 applied to e and e, it follows that

x = y as x, y ∈ L(v) and yx ∈ L which is impossible.

Now assume that Case (ii) holds, that is, there exists some z ∈ L(ve) such that xz ∈ L.

¿en Lemma 8 applied to e and e implies x = y as yx ∈ L also holds which is

impossible.

To illustrate Proposition 2, let T be the X-tree depicted in Figure 6.1 (ii) and let L be

the set of cords of X whose Γ(L) graph is pictured in Figure 6.1 (i). Using the notation

from Proposition 2 and labelling the children of the root of T from le to right by v, v

and v it is easy to see that Proposition 2 holds for x = a, x = c and x = e.

CHAPTER . DISTINGUISHED MINIMAL TOPOLOGICAL LASSOS 131

¿e next result is the main result of this section and lies at the heart of Corollary 3

which provides for an X-tree T and a minimal topological lasso L for T such that Γ(L) is

a block graph a close link between the blocks of Γ(L), the interior vertices of T and, for all

v ∈ V̊(T), the child-edge graphsG(L, v). To establish it, we denote for all v ∈ V(T)−{ρT}

the parent edge of v by ev and the set of blocks of a graph G by Block(G).

¿eorem 17. Suppose T is an X-tree and L is a minimal topological lasso for T such that

Γ(L) is a block graph. ¿en, for all v ∈ V̊(T), there exists a unique block B ∈ Block(Γ(L))

such that v = l caT(V(B)).

Proof. We �rst show existence. Suppose v ∈ V̊(T). Let v, . . . , vl ∈ V(T) denote the

children of v where l = ∣ch(v)∣. By Proposition 2, there exists, for all i ∈ ⟨l⟩, a unique

leaf xi ∈ L(vi) such that, for all s, t ∈ ⟨l⟩ distinct, we have xsxt ∈ L. Put A = {x, . . . , xl}.

Clearly, v = l caT(A) and the graph G(v) with vertex set A and edge set E = {{x , y} ∈

(A) ∶ xy ∈ L} is a clique. ¿en since Γ(L) is a block graph there must exist a block

B ∈ Block(Γ(L)) that contains G(v) as an induced subgraph.

We claim that the graphsG(v) and B are equal. In view of the facts that A ⊆ V(B), the

blocks in a block graph are cliques, and G(v) is a clique it su�ces to show that V(B) ⊆ A.

Suppose for contradiction that there exists some y ∈ V(B) − A. Note �rst that yx ∈ L

must hold for all x ∈ A. Next note that y cannot be a descendant of v since otherwise there

would exist some i ∈ ⟨l⟩ such that y ∈ L(vi). Choose some j ∈ ⟨l⟩ − {i}. ¿en Lemma 8

applied to ev i and ev j implies xi = y as yx j , xix j ∈ L which is impossible.

Choose some x ∈ A and put w = l caT(x , y). ¿en v is a descendant of w and

w = l caT(x , y) holds for all x ∈ A. Let w ∈ V(T) and w ∈ V̊(T) denote two distinct

children of w such that y ∈ L(w) and x ∈ L(w). ¿en Lemma 8 applied to ew and ew

implies xi = x j for all i , j ∈ ⟨l⟩ distinct since yx ∈ L holds for all x ∈ Awhich is impossible.

¿us, V(B) ⊆ A, as required. ¿is concludes the proof of the existence part of the theorem.

We next show uniqueness. Suppose for contradiction that there exists some v ∈ V̊(T)

and distinct blocks B, B′ ∈ Block(Γ(L)) such that l caT(B) = v = l caT(B′). Since

CHAPTER . DISTINGUISHED MINIMAL TOPOLOGICAL LASSOS 132

every block of Γ(L) contains at least two vertices as Γ(L) is connected and ∣X∣ ≥ , we

may choose distinct vertices b, b ∈ V(B) and b′, b′ ∈ V(B′) such that l caT(b, b) =

l caT(B) = v = l caT(B′) = l caT(b′, b′). Note that bb and b′b′ must be cords in L as B

and B′ are cliques of Γ(L). We distinguish between the cases that (i) {b, b}∩{b′, b′} = ∅

and (ii) {b, b} ∩ {b′, b′} /= ∅.

We �rst show that Case (i) cannot hold. Assume for contradiction that Case (i) holds,

that is, {b, b} ∩ {b′, b′} = ∅. We claim that l caT(b, b′) = v. Assume for contradiction

that w ∶= l caT(b, b′) /= v. Let v ∈ ch(v) such that v lies on the path from v to w. If

v /= l caT(b, b′) then there exists a descendantw′ ∈ V(T) of v such that l caT(b, b′) = w′.

Let v ∈ ch(v) such that v that lies on the path from v to w′. ¿en Lemma 8 applied

to ev and ev implies b = b′ and b = b′ as bb, b′b′ ∈ L which is impossible. ¿us,

l caT(b, b′) = v must hold. Let v, v′ ∈ ch(v) such that b ∈ L(v) and b′ ∈ L(v′).

¿en since b, b′ ∈ L(v) and bb, b′b′ ∈ L, Proposition 2 implies b′ = b. Consequently,

{b, b} ∩ {b′, b′} /= ∅ which is impossible.

¿us, l caT(b, b′) = v cannot hold and so

l caT(b, b′) = v ,

as claimed. Swapping the roles of b, b′ and b, b′ in the previous claim implies that

v = l caT(b, b′) must hold, too. For i = , let vi , v′i ∈ ch(v) such that bi ∈ L(vi) and

b′i ∈ L(v′i). ¿en, by Lemma 8, there exist pairs (c, c′) ∈ L(v)×L(v′) and (d , d′) ∈ L(v)×

L(v′) such that cc′, dd′ ∈ L. Since (b, b) ∈ L(v) × L(v) and (b′, b′) ∈ L(v′) × L(v′)

and bb, b′b′ ∈ L, Proposition 2 implies that c = b, b = d, d′ = b′ and c′ = b′. But then

C: c′ = b′, b′ = d′, d = b, b = c, c′ is a cycle in Γ(L). Since Γ(L) is a block graph it follows

that there must exist a block BC in Γ(L) that contains C. Since {b, b} ⊆ V(BC) ∩ V(B)

and two distinct blocks of a block graph can share at most one vertex it follows that BC

and Bmust coincide. Since {b′, b′} ⊆ V(BC)∩V(B′) holds too, similar arguments imply

that BC must also coincide with B′. ¿us, B and B′ must be equal which is impossible.

CHAPTER . DISTINGUISHED MINIMAL TOPOLOGICAL LASSOS 133

Hence Case (i) cannot hold, as required.

¿us, Case (ii) must hold, that is, {b, b} ∩ {b′, b′} /= ∅. Since any two distinct

blocks in a block graph can share at most one vertex it follows that ∣{b, b}∩ {b′, b′}∣ = .

Without loss of generality we may assume that b = b′. We �rst claim that

l caT(b, b′) = v .

Assume to the contrary that l caT(b, b′) /= v. ¿en there exist distinct children v, v ∈

ch(v) such that b ∈ L(v) and b, b′ ∈ L(v) hold. Since both bb and b′b′ = bb′ are

cords inL, Lemma 8 applied to ev and ev implies b′ = b. Hence, ∣{b, b}∩{b′, b′}∣ =

which is impossible. ¿us, l caT(b, b′) = v, as claimed.

Let v, v, v′ ∈ ch(v) such that b ∈ L(v), b ∈ L(v), and b′ ∈ L(v′). By Lemma 8,

there exist some (c, c′) ∈ L(v) × L(v′) such that cc′ ∈ L. Since we also have (b, b) ∈

L(v) × L(v) with bb ∈ L holding and (b, b′) ∈ L(v) × L(v′) with b′b = b′b′ ∈ L

holding, Proposition 2 implies that b = c and b′ = c′. Hence, C: b = b′, b′ = c′, c = b, b

is a cycle in Γ(L) and so similar arguments as in the corresponding subcase for Case (i)

imply that

B and B′must coincide which is impossible. ¿us, l caT(b, b′) = v cannot hold which

concludes the discussion of Case (ii) and thus the proof of the uniqueness part of the

theorem.

In view of¿eorem 17, we denote for T an X-tree, a minimal topological lasso L for T

such that Γ(L) is a block graph, and a vertex v ∈ V̊(T) the unique block B in Γ(L) for

which v = l caT(V(B)) holds by BLv , or simply by Bv if the set L of cords is clear from the

context. Moreover, we denote for all x ∈ L(v) the child of v on the path from v to x by vx .

Corollary 3. Suppose T is an X-tree and L is a minimal topological lasso for T such that

Γ(L) is a block graph. ¿en the map

ψ ∶ V̊(T)→ Block(Γ(L)) ∶ v ↦ Bv

CHAPTER . DISTINGUISHED MINIMAL TOPOLOGICAL LASSOS 134

is a bijection with inverse map ψ− ∶ Block(Γ(L))→ V̊(T): B ↦ l caT(V(B)). Moreover,

the map

χ ∶ Block(Γ(L))→ {G(L, v) ∶ v ∈ V̊(T)} ∶ B ↦ G(L,ψ−(B))

is bijective and, for all B ∈ Block(Γ(L)), the map

ξB ∶ V(B)→ Vψ−(B) ∶ x ↦ eψ−(B)x

induces a graph isomorphism between B and the child-edge graph G(L,ψ−(B)).

Proof. In view of ¿eorem 17, the map ψ is clearly well-de�ned and injective. To see that

ψ is surjective let B ∈ Block(Γ(L)) and put vB = l caT(V(B)). Clearly, vB ∈ V̊(T). Since

BvB = ψ(vB) is a block in Γ(L) for which also vB = l caT(V(BvB)) holds, ¿eorem 17

implies that ψ(vB) and B must coincide. Consequently, ψ must also be surjective and thus

bijective. ¿at the map ψ− is as stated is trivial. Combined with¿eorem 16, the bijectivity

of the map ψ implies in particular that, for all B ∈ Block(Γ(L)), the map ξB ∶ V(B) →

Vψ−(B) fromV(B) to the vertex setVψ−(B) of the child-edge graphG(L,ψ−(B)) induces

a graph isomorphism between B and G(L,ψ−(B)).

To see that the map χ is bijective note �rst that χ is well-de�ned since ψ−(B) ∈ V̊(T)

holds for all blocks B ∈ Block(Γ(L)). To see that χ is injective assume that there exist

blocks B, B ∈ Block(Γ(L)) such that χ(B) = χ(B) but B and B are distinct. ¿en

ψ−(B) /= ψ−(B) asψ is a bijection from V̊(T) to Block(Γ(L)). Combined with the fact

that, for all B ∈ Block(Γ(L)), the map ξB induces a graph isomorphism between B and

G(L,ψ−(B)) it follows that χ(B) = G(L,ψ−(B)) /= G(L,ψ−(B)) = χ(B) which is

impossible. ¿us, χ must be injective. Combined with the fact that ∣Blocks(Γ(L))∣ =

∣V̊(T)∣ = ∣{G(L, v) ∶ v ∈ V̊(T)}∣ it follows that χ must also be surjective and thus

bijective.

CHAPTER . DISTINGUISHED MINIMAL TOPOLOGICAL LASSOS 135

6.3 A special type of minimal topological lasso

Returning to the example depicted in Figure 6.1, it should be noted that, in addition

to being a block graph, Γ(L) enjoys a very special property where L is the minimal

topological lasso considered in that example. More precisely, every vertex of Γ(L) is

contained in at most two blocks. Put di�erently, Γ(L) is a claw-free graph. Motivated by

this, we call a minimal topological lasso L distinguished if Γ(L) is a claw-free block graph.

Note that such block graphs are precisely the line graphs of (unrooted) trees where for any

graph G the associated line graph has vertex set E(G) and two vertices a, b ∈ E(G) are

joined by an edge if a ∩ b /= ∅ [76].

In this section, we show in¿eorem 18 that distinguished minimal topological lassos

are a very special type of lasso in that for every X-tree T any minimal topological lasso L

for T can be transformed into a distinguished minimal topological lasso L∗ for T via a

repeated application (that is, l ≥ applications) of the rule:

(R) If xy, yz ∈ L and l caT(y, z) is a descendant of l caT(x , y) in T then delete xy from

the edge set of Γ(L) and add the edge xz to it.

Before we make this more precise which we will do next, we remark that since a

topological lasso for a star tree is in particular a distinguished minimal topological lasso

for it, we will for this and the next two sections restrict our attention to non-degenerate

X-trees, that is, X-trees that are not star trees on X.

Suppose T is a non-degenerate X-tree and L is a set of cords of X. Let V̊(T) denote a

set of colours and let

γ(L,T) ∶ L→ V̊(T) ∶ ab ↦ l caT(a, b)

denote an edge colouring of Γ(L) in terms of the interior vertices of T . Note that if L

is a topological lasso for T then¿eorem 16 implies that γ(L,T) is surjective. Returning

to Rule (R), note that a repeated application of that rule to such a set L of cords results

CHAPTER . DISTINGUISHED MINIMAL TOPOLOGICAL LASSOS 136

in a set L′ of cords that is also a topological lasso for T . Furthermore, note that if L is a

minimal topological lasso for T then L′ is necessarily also a minimal topological lasso for

T . Finally note for all v ∈ V̊(T) that ∣γ−(L,T)(v)∣ = or ∣γ
−
(L,T)(v)∣ ≥ must hold in this

case.

Lemma 9. Suppose T is a non-degenerate X-tree and L is a minimal topological lasso for T .

Put γ = γ(L,T) and assume that v ∈ V̊(T) such that ∣γ−(v)∣ ≥ . ¿en for any three pairwise

distinct cords c, c, c ∈ γ−(v), there exists a cycle Cv in Γ(L) such that c, c, c ∈ E(Cv)

and, for all c ∈ E(Cv), γ(c) either equals v or is a descendant of v.

Proof. Let v ∈ V̊(T) and let c = xy, c = xy and c = xy denote three pairwise

distinct cords in γ−(v). For all i ∈ ⟨⟩, let vi ∈ ch(v) such that vi lies on the path from

v to xi in T and let wi ∈ ch(v) such that wi lies on the path from v to yi in T . ¿en, by

Lemma 8, there exists unique pairs (s, t) ∈ L(v) × L(v), (s, t) ∈ L(w) × L(w), and

(s, t) ∈ L(w) × L(v) such that, for all i ∈ ⟨⟩, we have si ti ∈ L. Since for all such i,

we also have that xi ∈ L(vi) and yi ∈ L(wi) and, by Proposition 1, the graphs Γv i(L) and

Γw i(L) are connected, it follows that there exists a cycle Cv in Γ(L) that contains, for all

i ∈ ⟨⟩, the cords ci and si ti in its edge set.

It remains to show that for every edge c ∈ E(Cv), we have that γ(c) either equals v or

is a descendant of v. Suppose c ∈ E(Cv). If there exists some i ∈ ⟨⟩ such that c ∈ {ci , si ti}

then γ(c) = v clearly holds. So assume that this is not the case. Without loss of generality,

we may assume that c lies on the path P from x to s in Cv that does not cross y. Since P

is a subgraph of Γv(L) and, implied by Proposition 1, every edge in Γv(L) is coloured via

γ with a descendant of v, it follows that γ(c) is a descendant of v.

To establish¿eorem 18, we require further terminology. Let T be a non-degenerate

X-tree, L a minimal topological lasso for T , and v ∈ V̊(T). ¿en we denote by HL(v) the

induced subgraph of Γ(L) whose vertex set is the set of all x ∈ X that are incident with

some cord c ∈ L for which γ(L,T)(c) = v holds. Moreover, we denote the set of cut vertices

of a connected block graph G by Cut(G) and note that in every connected block graph G

CHAPTER . DISTINGUISHED MINIMAL TOPOLOGICAL LASSOS 137

there must exist a vertex that is contained in at most one block of G. ¿is last observation

is central to the proof of ¿eorem 18 (ii).

¿eorem 18. Suppose T is a non-degenerate X-tree and L is a minimal topological lasso for

T . ¿en there exists an ordering σ ∶ v, v, . . . , vk = ρT , k = ∣V̊(T)∣, of V̊(T) such that the

following holds:

(i) ¿ere exists a sequence Lv = L,Lv , . . . ,L† = Lvk of minimal topological lassos Lv i
for T , i ∈ ⟨k⟩, such that for all such i, we have:

(L1) Lv i is obtained from Lv i− via a repeated application of Rule (R) and HLvi (vi)

is a maximal clique in Γ(Lv i).

(L2) For all j ∈ ⟨i − ⟩, HLvi (v j) is a maximal clique in Γ(Lv i).

In particular, Γ(L†) is a block graph.

(ii) If Γ(L) is a block graph then there exists a sequence Lv = L,Lv , . . . ,L∗ = Lvk of

minimal topological lassos Lv i for T , i ∈ ⟨k⟩, such that for all such i, we have:

(L1’) Lv i is obtained from Lv i− via a repeated application of Rule (R) and Γ(Lv i) is

a block graph.

(L2’) Γv i(Lv i) is a claw-free block graph.

In particular, L∗ is a distinguished minimal topological lasso for T .

Proof. For all i ∈ ⟨k⟩, put Li = Lv i and γi = γ(Li ,T). Clearly, if L is distinguished then

the sequences as described in (i) and (ii) exist. So assume that L is not distinguished.

For all v ∈ V̊(T), let l(v) denote the length of the path from the root ρT of T to v and

put h = maxv∈V̊(T){l(v)}. Note that h ≥ as T is non-degenerate. For all i ∈ ⟨h⟩, let

V(i) ⊆ V̊(T) denote the set of all interior vertices v of T such that l(v) = i. Let σ denote

an ordering of the vertices in V̊(T) such that the vertices inV(h) come �rst (in any order),

then (again in any order) the vertices in V(h −) and so on with the last vertex in that

ordering being ρT .

CHAPTER . DISTINGUISHED MINIMAL TOPOLOGICAL LASSOS 138

(i) Suppose v ∈ V̊(T). If v ∈ V(h) then we may assume without loss of generality

that v = v. ¿en v is the parent of a pseudo-cherry of T and so¿eorem 16 implies that

HL(v) is a maximal clique in Γ(L). ¿us, L ∶= L is a minimal topological lasso for T

that satis�es Properties (L1) and (L2).

So assume that v /∈ V(h). ¿en there exists some ∣V(h)∣ < i ≤ k such that v = vi .

Without loss of generality, we may assume that vi is such that, for all j ∈ ⟨i − ⟩, L j is a

minimal topological lasso for T that satis�es Properties (L1) and (L2). If vi is the parent of

a pseudo-cherry of T then similar arguments as before imply that Li ∶= Li− is a minimal

topological lasso for T that satis�es Properties (L1) and (L2). So assume that vi is not

the parent of a pseudo-cherry of T . We distinguish between the cases that HLi−(v) is a

maximal clique in Li− and that it is not.

Assume �rst that HLi−(v) is a maximal clique in Li−. ¿en since Li− is a minimal

topological lasso for T that satis�es Properties (L1) and (L2), it is easy to see thatLi ∶= Li−

is also a minimal topological lasso for T that satis�es Properties (L1) and (L2). So assume

that HLi−(v) is not a maximal clique in Li−. ¿en HLi−(v)must contain three pairwise

distinct edges, e = xy, e = xy, and e = xy say, such that {e, e, e} is not the

edge set of a -clique in HLi−(v). For all i ∈ ⟨⟩, put zi = l caT(xi , yi). ¿en Lemma 9

combined with a repeated application of Rule (R) to Li− implies that, for all i ∈ ⟨⟩, we

can �nd elements x′i ∈ L(zi) such that

L′i− = Li− − {xy, xy, xy} ∪ {x′x′, x′x′, x′x′}

is a minimal topological lasso for T and the cords x′x′, x′x′, and x′x′ form a -clique

in HL′i−(v). Transforming L
′
i− further by processing any three pairwise distinct edges

in HL′i−(v) that do not already form a -clique in the same way and so on eventually

yields a minimal topological lasso Li for T such that any three pairwise distinct edges in

HLi(v) form a -clique. But this implies that HLi(v) is a maximal clique in Γ(Li) and

so Property (L1) is satis�ed by Li . Since only edges e of Γ(Li−) have been modi�ed by

CHAPTER . DISTINGUISHED MINIMAL TOPOLOGICAL LASSOS 139

the above transformation for which γi−(e) = v holds and, by assumption, Li− satis�es

Property (L2) it follows that Li also satis�es that property.

Processing the successor of vi in σ in the same way and so on yields a minimal

topological lasso L† for T for which Γ(L†) is a block graph. ¿is completes the proof of

(i).

(ii) For all i ∈ ⟨k⟩ and all vertices w ∈ V̊(T) put Biw = BLiw . Suppose that v ∈ V̊(T). If

v ∈ V(h) then we may assume without loss of generality that v = v. ¿en v is the parent

of a pseudo-cherry of T and so L ∶= L clearly satis�es Properties (L1’) and (L2’).

So assume that v /∈ V(h). ¿en there exists some ∣V(h)∣ < i ≤ k such that v = vi .

Without loss of generality, we may assume that vi is minimal, that is, for all j ∈ ⟨i − ⟩,

we have that L j is a minimal topological lasso for T that satis�es Properties (L1’) and

(L2’). If v is the parent of a pseudo-cherry of T then similar arguments as before imply

that Li ∶= Li− satis�es Properties (L1’) and (L2’). So assume that v is not the parent of a

pseudo-cherry of T . If Γv(Li−) is a claw-free block graph then setting Li ∶= Li− implies

that Li satis�es Properties (L1’) and (L2’).

So assume that this is not the case, that is, there exists a vertex x ∈ L(v) that, in addition

to being a vertex in the block Bi−v of Γ(Li−) and thus of Γv(Li−), is also a vertex in l ≥

further blocks B, . . . , Bl of Γv(Li−) which are also blocks in Γ(L). ¿en there exists a

path P from v to x in T that contains, for all l ≥ , the vertices ψ−(B), . . . ,ψ−(Bl) in its

vertex set where ψ ∶ V̊(T) → Block(Γ(L)) is the map from Corollary 3. Let w ∈ ch(v)

denote the child of v that lies on P. Note that since l ≥ , we have w ∈ V̊(T). Without

loss of generality, we may assume that w = vi−. ¿e fact that Γ(Li−) is a block graph

and so Γv i−(Li−) is a block graph combined with the fact that Γv i−(Li−) is connected

implies, in view of the observation preceding ¿eorem 18, that we may choose some

y ∈ L(vi−) − Cut(Γv i−(Li−)). ¿en y is a vertex in precisely one block of Γv i−(Li−)

and thus can be a vertex in at most two blocks of Γv(Li−). Consequently, y /= x. Applying

Rule (R) repeatedly to Li−, let Li denote the set of cords obtained from Li− by replacing,

for all i ≤ l ≤ k, every cord of Li− of the form xa with a ∈ V(Bi−v l) by the cord ya. ¿en,

CHAPTER . DISTINGUISHED MINIMAL TOPOLOGICAL LASSOS 140

a
b

d
c

f

e
a

df

e

c
b

a

d

ce

f
b

(i) (ii) (iii)

Figure 6.2: For X = {a, . . . , f } and the X-tree T ′ pictured in Figure 6.1 (iii), we depict in (i) the
minimal topological lasso L = {ad , ec, f a, f e , cd , bd} for T ′ in the form of Γ(L). In
the same way as in (i), we depict in (ii) the transformed minimal topological lasso
L† for T ′ such that Γ(L†) is a block graph and in (iii) the distinguished minimal
topological lasso L∗ for T ′ obtained from L† – see text for details.

by construction,Li is a minimal topological lasso for T and Γ(Li) is a block graph. Hence,

Li satis�es Property (L1’). Moreover, since Γv i−(Li−) is claw-free it follows that Γv i(Li)

is claw-free and so Li satis�es Property (L2’), too.

Applying the above arguments to the successor of vi in σ and so on eventually yields a

minimal topological lasso Lk for T that satis�es Properties (L1’) and (L2’). ¿us, Γvk(Lk)

is a claw-free block graph and, so, L∗ is a distinguished minimal topological lasso for

T .

To illustrate ¿eorem 18, let X = {a, . . . , f } and consider the X-tree T ′ depicted in

Figure 6.1 (iii) along with the set L = {ad , ec, f a, e f , cd , bd} of cords of X which we

depict in Figure 6.2 (i) in the form of Γ(L).

Using for example¿eorem 16, it is straight-forward to check that L is a minimal topo-

logical lasso for T ′ but Γ(L) is clearly not a block graph and so L is also not distinguished.

To transform L into a distinguished minimal topological lasso L∗ for T ′ as described in

¿eorem 18, consider the ordering v = l caT′(e , f), v = l caT′(c, d), v = l caT′(a, d),

v = ρT′ of the interior vertices of T ′. For all i ∈ ⟨⟩, put Li = Lv i . ¿en we �rst transform

L into a minimal topological lasso L† for T ′ as described in¿eorem 18 (i). For this we

have L = L = L = L and L is obtained from L by �rst applying Rule (R) to the cords

ec, cd ∈ L resulting in the deletion of the cord ce fromL and the addition of the cord ed

CHAPTER . DISTINGUISHED MINIMAL TOPOLOGICAL LASSOS 141

to L and then to the cords f e , ed ∈ L resulting in the deletion of the cord ed from L

and the addition of the cord f d to it. ¿e graph Γ(L) is depicted in Figure 6.2 (ii). Note

that L = L† and that although Γ(L†) is clearly a block graph L† is not distinguished.

To transform L† into a distinguished minimal topological lasso L∗ for T ′, we next

apply ¿eorem 18 (ii). For this, we need only consider the vertex d of Γ(L†) that is, we

have L† = L = L = L = L. Since the child of v on the path from v to d is v, we may

choose a as the element y in L(v) − Cut(Γv(L)). ¿en applying Rule (R) to the cords

bd , da ∈ L implies the deletion of bd from L and the addition of the cord ab to it. ¿e

resulting minimal topological lasso for T ′ is L∗ which we depict in Figure 6.2 (iii) in the

form of Γ(L∗).

We conclude this section by remarking in passing that combined with ¿eorem 16

which implies that any minimum sized topological lasso for an X-tree T must have

∑v∈V̊(T) (
∣ch(v)∣

) cords, ¿eorem 18 and Corollary 3 imply that the minimum sized topo-

logical lassos of an X-tree T are precisely the minimal topological lassos of T .

6.4 A su�cient condition for being distinguished

In this section, we turn our attention towards presenting a su�cient condition for a

minimal topological lasso for some X-tree T to be a distinguished minimal topological

lasso for T . In the next section, we will show that this condition is also necessary.

We start our discussion with introducing some more terminology. Suppose T is a non-

degenerate X-tree. Put cl(T) = {L(v) ∶ v ∈ V̊(T) − {ρT}} and note that cl(T) /= ∅. For

all A ∈ cl(T), put clA(T) ∶= {B ∈ cl(T) ∶ B ⊊ A} and note that a vertex v ∈ V̊(T) − {ρT}

is the parent of a pseudo-cherry of T if and only if clL(v)(T) = ∅. For σ a total ordering

of X andminσ(C) denoting the minimal element of a non-empty subset C of X, we call a

CHAPTER . DISTINGUISHED MINIMAL TOPOLOGICAL LASSOS 142

map of the form

f ∶ cl(T)→ X ∶ A↦
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

minσ(A− { f (B) ∶ B ∈ clA(T)}) if clA(T) /= ∅,

minσ(A) else.

a cluster marker map (for T and σ). Note that since ∣V̊(T ′)∣ ≤ ∣X∣ − holds for all X-trees

T ′ and so A− { f (B) ∶ B ∈ clA(T)} /= ∅must hold for all A ∈ cl(T) with clA(T) /= ∅, it

follows that f is well-de�ned. Also note that if v ∈ V̊(T) is the parent of a pseudo-cherry

C of T then f (L(v)) = f (C) = minσ(C) as clC(T) = ∅ in this case. Finally, note that it

is easy to see that a cluster marker map must be injective but need not be surjective.

We are now ready to present a construction of a distinguished minimal topological

lasso which underpins the aforementioned su�cient condition that a minimal topological

lasso must satisfy to be distinguished. Suppose that T is a non-degenerate X-tree, that

σ is a total ordering of X, and that f ∶ cl(T) → X is a cluster marker map for T and σ .

We �rst associate to every interior vertex v ∈ V̊(T) a set L(T , f)(v) de�ned as follows. Let

l, . . . , lkv denote the children of v that are leaves of T and let v, . . . vpv denote the children

of v that are also interior vertices of T . Note that kv = or pv = might hold but not both.

Put (∅) = (⟨⟩) = ∅. ¿en we set

L(T , f)(v) ∶= ⋃
{i, j}∈(⟨kv ⟩)

{li l j} ∪ ⋃
{i, j}∈(⟨pv ⟩)

{ f (L(vi)) f (L(v j))} ∪ ⋃
i∈⟨kv⟩, j∈⟨pv⟩

{li f (L(v j))}.

Note that ∣L(T , f)(v)∣ ≥ must hold for all v ∈ V̊(T). Finally, we set

L(T , f) ∶= ⋃
v∈V̊(T)

L(T , f)(v).

To illustrate these de�nitions, consider the X = {a, . . . , f }-tree T ′ depicted in Fig-

ure 6.1 (iii). Let σ denote the lexicographic ordering of the elements in X. ¿en the map

CHAPTER . DISTINGUISHED MINIMAL TOPOLOGICAL LASSOS 143

f ∶ cl(T ′)→ X de�ned by setting

f ({c, d}) = c, f ({e , f }) = e , and f (X − {b}) = a

is a cluster marker map for T ′ and σ and L(T , f) (or more precisely the graph Γ(L(T′ , f)))

is depicted in Figure 6.1 (i).

To help establish ¿eorem 19, we require some intermediate results which are of

interest in their own right and which we present next. To this end, we denote for a vertex

v ∈ V̊(T)−{ρT} by T(v) the L(v)-tree with root v obtained from T by deleting the parent

edge of v.

Lemma 10. Suppose T is a non-degenerate X-tree, σ is a total ordering of X, and f ∶

cl(T)→ X is a cluster marker map for T and σ . ¿en the following hold

(i) L(T , f) is a minimal topological lasso for T .

(ii) Γ(L(T , f)) is connected.

(iii) If v and w are distinct interior vertices of T then ∣⋃L(T , f)(v) ∩⋃L(T , f)(w)∣ ≤ .

(iv) Suppose x ∈ X. ¿en there exist distinct vertices v ,w ∈ V̊(T) such that

x ∈⋃L(T , f)(v) ∩⋃L(T , f)(w)

if and only if there exists some u ∈ V̊(T) − {ρT} such that x = f (L(u)).

Proof. For all v ∈ V̊(T), set L(v) = L(T , f)(v).

(i) ¿is is an immediate consequence of ¿eorem 16 and the respective de�nitions of

the set L(v) where v ∈ V̊(T) and the graph G(L′, v) where L′ is a set of cords of X and v

is again an interior vertex of T .

(ii) ¿is is an immediate consequence of Proposition 1 and Lemma 10 (i).

(iii) ¿is is an immediate consequence of the fact that, for all vertices u ∈ V̊(T) and

all x , y ∈ ⋃L(u) distinct, we have u = l caT(x , y).

CHAPTER . DISTINGUISHED MINIMAL TOPOLOGICAL LASSOS 144

(iv) Let x ∈ X and assume �rst that there exist distinct vertices v ,w ∈ V̊(T) such that

x ∈ ⋃L(v) ∩⋃L(w) but x /= f (LT(u)), for all u ∈ V̊(T) − {ρT}. ¿en x must be a leaf

of T that is simultaneously adjacent with v and w which is impossible. ¿us, there must

exist some u ∈ V̊(T) such that x = f (L(u)).

Conversely, assume that x = f (L(u)) for some u ∈ V̊(T) − {ρT}. ¿en x ∈ L(u) and

so there must exist an interior vertexw of T(u) that is adjacent with x. Hence, x ∈ ⋃L(w).

Let v denote the parent of u in T which exists since u /= ρT . ¿en x = f (L(u)) ∈ ⋃L(v)

and so x ∈ ⋃L(v) ∩⋃L(w), as required.

Note that u ∈ {v ,w} need not hold for u, v andw as in the statement of Lemma 10 (iv).

Indeed, suppose T is the X = {a, b, c, d}-tree with unique cherry {a, b} and d adjacent

with the root ρT of T . Let σ denote the lexicographic ordering of X and let f ∶ cl(T)→ X

be (the unique) cluster marker map for T and σ . Set x = b, v = l caT(a, b), w = ρT . ¿en

x = f (L(u)) where u = l caT(a, c) and x ∈ ⋃L(v) ∩⋃L(w) but u /∈ {v ,w}.

Proposition 3. Suppose T is a non-degenerate X-tree, σ is a total ordering of X, and

f ∶ cl(T) → X is a cluster marker map for T and σ . ¿en Γ(L(T , f)) is a connected block

graph and every block of Γ(L(T , f)) is of the form Γ(L(T , f)(v)), for some v ∈ V̊(T).

Proof. For all v ∈ V̊(T), set L(v) = L(T , f)(v) and put L = L(T , f). We claim that if C is a

cycle in Γ(L) of length at least three then there must exist some v ∈ V̊(T) such that C is

contained in Γ(L(v)). Assume to the contrary that this is not the case, that is, there exists

some cycle C ∶ u, u, . . . , ul , ul+ = u, l ≥ , in Γ(L) such that, for all v ∈ V̊(T), we have

that C is not a cycle in Γ(L(v)). Without loss of generality, we may assume that C is of

minimal length. For all i ∈ ⟨l⟩, put vi = l caT(ui , ui+). ¿en, by the construction of Γ(L),

we have for all such i that uiui+ is an edge in Γ(L(vi)) and, by the minimality of C, that

vi /= v j for all i , j ∈ ⟨l⟩ distinct. Put Y = V(C) and let T ′ = T ∣Y denote the Y-tree obtained

by restricting T to Y . Note that l caT(ui , ui+) = l caT′(ui , ui+) holds for all i ∈ ⟨l⟩. ¿us,

the map ϕ ∶ E(C) → V̊(T ′) de�ned by putting uiui+ ↦ l caT(ui , ui+), i ∈ ⟨l⟩, is well-

de�ned. Since ∣E(C)∣ = l and for any �nite set Z with three or more elements a Z-tree

CHAPTER . DISTINGUISHED MINIMAL TOPOLOGICAL LASSOS 145

has at most ∣Z∣ − interior vertices, it follows that there exist i , j ∈ ⟨l⟩ distinct such that

ϕ(ui , ui+) = ϕ(u j , u j+). Consequently, vi = l caT(ui , ui+) = l caT(u j , u j+) = v j which

is impossible and thus proves the claim. Combined with Lemma 10 (ii) and (iii), it follows

that Γ(L) is a connected block graph. ¿at the blocks of Γ(L) are of the required form is

an immediate consequence of the construction of Γ(L).

To be able to establish that L(T , f)(v) is indeed a distinguished minimal topological

lasso for T and f as above, we require a further concept. Suppose A, B ⊆ X are two distinct

non-empty subsets of X. ¿en A and B are said to be compatible if A∩ B ∈ {∅,A, B}. As

is well-known (see e. g. [47, 147]), for any X-tree T ′ and any two vertices v ,w ∈ V(T ′) the

subsets L(v) and L(w) of X are compatible.

¿eorem 19. Suppose T is a non-degenerate X-tree, σ is a total ordering of X and f ∶

cl(T) → X is a cluster marker map for T and σ . ¿en L(T , f) is a distinguished minimal

topological lasso for T .

Proof. For all v ∈ V̊(T) putL(v) = L(T , f)(v) and putL = L(T , f). In view of Proposition 3

and Lemma 10 (i), it su�ces to show that Γ(L) is claw-free. Assume to the contrary that

this is not the case and that there exists some x ∈ X that is contained in the vertex set

of m ≥ blocks A, . . . ,Am of Γ(L). ¿en, by Proposition 3, there exist distinct interior

vertices v, . . . , vm of T such that, for all i ∈ ⟨m⟩, we have V(Ai) = ⋃L(vi) ⊆ L(vi). Since

for all v ,w ∈ V(T) distinct, the sets L(v) and L(w) are compatible, it follows that there

exists a path P from ρT to x that contains the vertices v, . . . , vm in its vertex set. Without

loss of generality we may assume that m = and that, starting at ρT and moving along P

the vertex v is encountered �rst then v and then v. Note that clL(v i)(T) /= ∅, for i = , .

Since T is a tree and so x can neither be adjacent with v nor with v it follows that there

must exist for i = , some Bi ∈ clL(v i)(T) such that x = f (Bi). But this is impossible as

B ∈ clL(v)(T) and so f (B) /= f (B) as f is a cluster marker map for T and σ .

CHAPTER . DISTINGUISHED MINIMAL TOPOLOGICAL LASSOS 146

6.5 Characterisation of distinguishedminimal topological lassos

In this section, we establish the converse of ¿eorem 19 which allows us to characterise

distinguished minimal topological lasso of non-degenerate X-trees. We start with a well-

known construction for associating an unrooted tree to a connected block graph (see

e. g. [42]). Suppose thatG is a connected block graph. ¿enwe denote by TG the (unrooted)

tree associated to G with vertex set Cut(G) ∪ Block(G) and whose edges are of the from

{a, B} where a ∈ Cut(G), B ∈ Block(G) and a ∈ B. Note that if a vertex v ∈ V(TG) is a

leaf of TG then v ∈ Block(G).

Suppose T is a non-degenerate X-tree and L is a distinguished minimal topological

lasso for T . Let v denote an interior vertex of T whose children are v . . . , vl where

l = ∣ch(v)∣. ¿en Corollary 3 combined with Proposition 2 implies that for all i ∈ ⟨l⟩

there exists a unique leaf xi ∈ L(vi) of T such that, for all i , j ∈ ⟨l⟩ distinct, xix j ∈ L

and {x, . . . , xl} = V(Bv). Since Γ(L) is claw-free, every vertex of Bv is contained in at

most one further block of Γ(L). ¿us, if w ∈ V(Bv) and w ∈ V(B) holds too for some

block B ∈ Block(Γ(L)) distinct from Bv then w must be a cut vertex of Γ(L). For every

vertex v′ ∈ V̊(T) that is the child of some vertex v ∈ V̊(T), we denote the unique element

x ∈ L(v′) contained in V(Bv) by cBv′ in case x ∈ Cut(Γ(L)). Note that it is not di�cult

to observe that, in the tree TΓ(L), the vertex cBv′ is the vertex adjacent with Bv that lies on

the path from Bv to Bv′ .

¿e following result lies at the heart of¿eorem 20 and establishes a crucial relationship

between the non-root interior vertices of T and the cut vertices of Γ(L).

Lemma 11. Suppose T is an X-tree and L is a distinguished minimal topological lasso for T .

¿en the map

θ ∶ V̊(T) − {ρT}→ Cut(Γ(L)) ∶ v ↦ cBv

is bijective.

Proof. Clearly, θ is well-de�ned and injective. To see that θ is bijective let T−Γ(L) denote

CHAPTER . DISTINGUISHED MINIMAL TOPOLOGICAL LASSOS 147

the tree obtained from TΓ(L) by suppressing all degree two vertices. ¿en Block(Γ(L)) =

V(T−Γ(L)) and Corollary 3 implies that ∣Block(Γ(L))∣ = ∣V̊(T)∣ as Γ(L) is a block graph.

Since Γ(L) is claw-free, we clearly also have ∣Cut(Γ(L))∣ = ∣E(T−Γ(L))∣. Combined with

the fact that f ∣V(T ′)∣ = ∣E(T ′)∣ + holds for every tree T ′, it follows that ∣Cut(Γ(L))∣ =

∣Block(Γ(L))∣ − = ∣V̊(T)∣ − = ∣V̊(T) − {ρT}∣. ¿us, θ is bijective.

Armed with this result, we are now ready to establish the converse of ¿eorem 19

which yields the aforementioned characterisation of distinguished minimal topological

lassos of non-degenerate X-trees.

¿eorem 20. Suppose T is a non-degenerate X-tree and L is a set of cords of X. ¿en L is

a distinguished minimal topological lasso for T if and only if there exists a total ordering σ

of X and a cluster marker map f for T and σ such that L(T , f) = L.

Proof. Assume �rst that σ is some total ordering of X and that f ∶ cl(T) → X is a

cluster marker map for T and σ . ¿en, by ¿eorem 19, L(T , f) is a distinguished minimal

topological lasso for T .

Conversely assume that L is a distinguished minimal topological lasso for T and

consider an embedding of T into the plane. By abuse of terminology, we will refer to this

embedding of T also as T . We start with de�ning a total ordering σ of X. To this end, we

�rst de�ne a map t ∶ V̊(T)− {ρT}→ N by setting, for all v ∈ V̊(T)− {ρT}, t(v) to be the

length of the path from ρT and v. Put h = max{t(v) ∶ v ∈ V̊(T) − {ρT}} and note that

h ≥ as T is non-degenerate.

Starting at the le most interior vertex v of T for which t(v) = h holds and moving,

for all l ∈ ⟨h⟩, from le to right, we enumerate all interior vertices of T but the root. We

next put n = ∣X∣ and X = ⟨n⟩ and relabel the elements in X such that when traversing

the circular ordering induced by T on X ∪ {ρT} in a counter-clockwise fashion we have

ρT , , , , . . . , n, ρT . To re�ect this with regards to L, we relabel the elements of the cords

in L accordingly and denote the resulting distinguished minimal topological lasso for T

also by L.

CHAPTER . DISTINGUISHED MINIMAL TOPOLOGICAL LASSOS 148

T ρT

vv
vv v

v

12 13111091 2 3 4 5 6 7 8

Figure 6.3: For X = ⟨⟩ and the depicted X-tree T , the enumeration of the interior vertices of
T considered in the proof of ¿eorem 20 is indicated in (i). With regards to this
enumeration and the distinguished minimal topological lasso L for T pictured in the
form of Γ(L) in (ii), the total ordering σ of X considered in that proof restricted to the
elements in {θ(v), . . . , θ(v)} is , , , , , .

By Lemma 11, the map θ ∶ V̊(T) − {ρT} → Cut(Γ(L)) de�ned in that lemma is

bijective. Put m = ∣Cut(Γ(L))∣ and let v, v, . . . , vm denote the enumeration of the

vertices in V̊(T) − {ρT} obtained above. Also, set Y = X − {θ(vi) ∶ i ∈ ⟨m⟩}. Let

y, y, . . . , yl denote an arbitrary but �xed total ordering of the elements of Y where

l = ∣Y ∣. ¿en we de�ne σ to be the total ordering of X given by

σ ∶ θ(v), θ(v), . . . , θ(vi−), θ(vi), θ(vi+), , . . . , θ(vm), y, y, . . . , yl

where θ(v) is the minimal element and yl is the maximal element. Note that if v ∈ V̊(T)

is the parent of a pseudo-cherry C of T then θ(v) = minσ C.

We brie�y interrupt the proof of the theorem to illustrate these de�nitions by means of

an example. Put X = ⟨⟩ and consider the X-tree T depicted in Figure 6.3 (i) (ignoring the

labelling of the interior vertices for themoment) and the distinguishedminimal topological

lasso L for T pictured in the form of Γ(L) in Figure 6.3 (ii). ¿en the labelling of the

interior vertices of T gives the enumeration of those vertices considered in the proof of

¿eorem 20. ¿e total ordering σ of X restricted to the elements in {θ(v), . . . , θ(v)} is

, , , , , .

Returning to the proof of the theorem, we claim that the map f ∶ cl(T) → X given,

for all A ∈ cl(T), by setting f (A) = θ(l ca(A)) is a cluster marker map for T and σ

where for all such A we put l ca(A) = l caT(A). Indeed, suppose A ∈ cl(T). ¿en

CHAPTER . DISTINGUISHED MINIMAL TOPOLOGICAL LASSOS 149

θ(l ca(A)) = cB l ca(A) ∈ L(l ca(A)) holds by construction. We distinguish between the

cases that clA(T) /= ∅ and that clA(T) = ∅. If clA(T) /= ∅ then since θ is bijective it

follows that θ(l ca(A)) /= θ(v) holds for all descendants v ∈ V̊(T) of l ca(A). Combined

with the de�nition of σ , we obtain f (A) = θ(l ca(A)) = minσ(A − {θ(l ca(D)) ∶ D ∈

clA(T)}) = minσ(A − { f (D) ∶ D ∈ clA(T)}), as required. If clA(T) = ∅ then, as was

observed above, f (A) = θ(l ca(A)) = minσ A. ¿us, f is a cluster marker map for T and

σ , as claimed.

It remains to show that L(T , f) = L. To see this note �rst that, by¿eorem 19, L(T , f)
is a distinguished minimal topological lasso for T . Since Lemma 8 implies that any two

minimal topological lasso for T must be of the same size and thus ∣L(T , f)∣ = ∣L∣ holds, it

therefore su�ces to show thatL ⊆ L(T , f). Suppose a, b ∈ X distinct such that ab ∈ L. ¿en

there exists some interior vertex v ∈ V̊(T) such that v = l caT(a, b). Hence, a, b ∈ V(Bv).

We claim that ab ∈ L(T , f)(v). To establish this claim, we distinguish between the cases

that (i) a ∈ ch(v) and (ii) that a /∈ ch(v).

Assume �rst that Case (i) holds, that is, a is a child of v. If b ∈ ch(v) then the claim

is an immediate consequence of the de�nition of L(T , f)(v). So assume that b /∈ ch(v).

Let v′ ∈ V̊(T) denote the child of v for which b ∈ L(v) holds. ¿en b = cBv′ = θ(v
′) =

f (L(v′)) follows by the observation preceding Lemma 11 combined with the fact that

b ∈ V(Bv). Hence, ab = a f (L(v′)) ∈ L(T , f)(v), as claimed.

Assume next that Case (ii) holds, that is, a is not a child of v. In view of the previous

subcase it su�ces to consider the case that b /∈ ch(v). Let v′, v′′ ∈ V̊(T) denote the

children of v such that a ∈ L(v′) and b ∈ L(v′′). ¿en, again by the observation preceding

Lemma 11 combined with the fact that a, b ∈ V(Bv), we have a = cBv′ = θ(v
′) = f (L(v′))

and b = cBv′′ = θ(v
′′) = f (L(v′′)) and so ab = f (L(v′)) f (L(v′′)) ∈ L(T , f)(v) follows,

as claimed. ¿is concludes the proof of the claim and thus the proof of the theorem.

Recall that ¿eorem 16 tells us that a set L of cords of X is an equidistant lasso for an

X-tree T if and only if, for every vertex v ∈ V̊(T), the graph G(L, v) has at least one edge.

CHAPTER . DISTINGUISHED MINIMAL TOPOLOGICAL LASSOS 150

Since for σ some total ordering of X and f ∶ V̊(T) − {ρT}→ X a cluster marker map for

T and σ the graphs G(L(T , f), v) clearly satisfy this property for all v ∈ V̊(T), it follows

that L(T , f) is also an equidistant lasso for T and thus a strong lasso for T .

De�ning a strong lasso L of an X-tree to beminimal in analogy to when a topological

lasso is minimal, ¿eorem 20 implies

Corollary 4. Suppose T is a non-degenerate X-tree, L is a set of cords of X, σ is a total

ordering of X, and f ∶ cl(T) → X is a cluster marker map for T and σ . ¿en L(T , f) is a

minimal strong lasso for T .

6.6 Heredity of distinguishedminimal topological lassos

In this section, we turn our attention to the problems of characterising when a dis-

tinguished minimal topological lasso of an X-tree T induces a distinguished minimal

topological lasso for a subtree of T and, conversely when distinguished minimal topologi-

cal lassos of X-trees can be combined to form a distinguished minimal topological lasso of

a supertree for those trees (see e. g. [15] for more on such trees). ¿is will also allow us to

partially answer the rooted analogue of a question raised in [46] for supertrees within the

unrooted framework. To make this more precise, we require further terminology. Suppose

L a set of cords of X and Y ⊆ X is a non-empty subset. ¿en we set

L∣Y = {ab ∈ L ∶ a, b ∈ Y}.

Clearly, Γ(L∣Y) is the subgraph of Γ(L) induced by Y but Y = ⋃L∣Y need not hold.

Moreover, if L is a minimal topological lasso for an X-tree T and ∣Y ∣ ≥ such that every

interior vertex of T is also an interior vertex of T ∣Y then¿eorem 16 implies that L∣Y is a

minimal topological lasso for T ∣Y . In particular, Γ(L∣Y)must be connected in this case.

¿e next result is a strengthening of this observation.

¿eorem 21. Suppose T is an X-tree, L is a distinguished minimal topological lasso for T ,

CHAPTER . DISTINGUISHED MINIMAL TOPOLOGICAL LASSOS 151

and Y ⊆ X is a subset of size at least three. ¿en L∣Y is a distinguished minimal topological

lasso for T ∣Y if and only if Γ(L∣Y) is connected.

Proof. Assume �rst that L∣Y is a distinguished minimal topological lasso for T ∣Y . ¿en,

by Proposition 1, Γ(L∣Y) is connected.

Conversely, assume that Γ(L∣Y) is connected. ¿en the statement clearly holds if

T is the star tree on X. So assume that T is non-degenerate. Let Y ⊆ X be of size at

least three and assume �rst that T ∣Y is the star tree on Y . We claim that Γ(L∣Y) is a

clique. Assume to the contrary that this is not the case, that is, there exist elements

y, y′ ∈ Y distinct such that yy′ /∈ L. Since Γ(L∣Y) is connected, there must exist a

path P ∶ x = y, x, . . . , xl = y′, l ≥ , in Γ(L∣Y) from y to y′. Since the vertex set

of Γ(L∣Y) is Y , it follows that X′ = {x, x, . . . , xl} ⊆ Y . Combined with the fact that

l caT(x , x′) = l caT(Y) holds for all x , x′ ∈ X′ distinct as T ∣Y is a star tree on Y , we obtain

X′ ⊆ V(Bl caT(Y)). ¿us, yy′ ∈ L which is impossible and thus proves the claim. ¿at L∣Y

is a distinguished minimal topological lasso for T ∣Y is a trivial consequence.

So assume that T ∣Y is non-degenerate. Since L is a distinguished minimal topological

lasso for T , ¿eorem 20 implies that there exists a total ordering ω of X and a cluster

marker map fω ∶ cl(T)→ X for T and ω such that L = L(T , fω). Moreover, Lemma 10 (iv)

implies that the cut-vertices of Γ(L) are of the form fω(LT(v)) where v ∈ V̊(T).

To see that L∣Y is a distinguished minimal topological lasso for T ∣Y and some total

ordering of Y note �rst that the restriction σ of ω to Y induces a total ordering of Y .

Furthermore, the aforementioned form of the cut-vertices of Γ(L) combined with the

assumption that Γ(L∣Y) is connected implies that, for all A ∈ cl(T) with A∩ Y /= ∅, we

must have fω(A) ∈ Y . For all A ∈ cl(T ∣Y) denote by AT the set-inclusionminimal superset

of A contained in cl(T). ¿en since fω is a cluster marker map for T and ω it follows that

the map

fσ ∶ cl(T ∣Y)→ Y ∶ A↦ fω(AT)

is a cluster marker map for T ∣Y and σ . By ¿eorem 20 it now su�ces to establish that

CHAPTER . DISTINGUISHED MINIMAL TOPOLOGICAL LASSOS 152

L∣Y = L(T ∣Y , fσ). Since both L∣Y and L(T ∣Y , fσ) are minimal topological lassos for T ∣Y and

so ∣L∣Y ∣ = ∣L(T ∣Y , fσ)∣ is implied by Lemma 8 it su�ces to show that L∣Y ⊆ L(T ∣Y , fσ).

Suppose ab ∈ L∣Y , that is, ab ∈ L and a, b ∈ Y . Since Y is the leaf set of T ∣Y , there must

exist a vertex v ∈ V̊(T ∣Y) such that v = l caT ∣Y (a, b). Clearly, v ∈ V̊(T). If a and b are both

adjacent with v in T then a and b are also adjacent with v in T ∣Y . ¿us ab ∈ L(T ∣Y , fσ)(v)

in this case. So assume that at least one of a and b is not adjacent with v in T . Without loss

of generality let a denote that vertex. ¿en since ab ∈ L = L(T , fω), it follows that there

must exist a unique child v′ ∈ V̊(T) of v such that a ∈ LT(v′) and a = fω(LT(v′)). Hence,

a ∈ V(Bv) and a cut-vertex of Γ(L).

We claim that v′ ∈ V̊(T ∣Y). Assume for contradiction that v′ /∈ V̊(T ∣Y). ¿en since fω

is a clustermarkermap for T and ω, it follows that a cannot be a cut vertex in Γ(L∣Y). Since

Γ(L) is a claw-free block graph, no edge in the unique block B′ ∈ Block(Γ(L)) − {Bv}

that also contains a in its vertex set can therefore be incident with a in Γ(L∣Y). Since

Γ(L∣Y) is assumed to be connected, to obtain the required contradiction it now su�ces to

show that there exists some c ∈ Y ∩ LT(v′) distinct from a such that every path from c to

b in Γ(L) crosses a. But this is a consequence of the facts that v is not the parent of a in

T ∣Y and, implied by Proposition 1, that the subgraph Γv′(L) of Γ(L) induced by LT(v′) is

the connected component of Γ(L) containing a obtained from Γ(L) by deleting all edges

in Bv that are incident with a. ¿is concludes the proof of the claim

To conclude the proof of the theorem, note that if b is adjacent with v in T ∣Y then

ab = fω(LT(v′))b = fω((LT ∣Y (v′))T)b = fσ(LT ∣Y (v′))b ∈ L(T ∣Y , fσ)(v) ⊆ L(T ∣Y , fσ).

If b is not adjacent with v in T ∣Y then there exists a child v′′ ∈ V̊(T) of v such that

b = fω(LT(v′′)). In view of the previous claim, we have v′′ ∈ V̊(T ∣Y). But now arguments

similar to the ones used before imply that ab ∈ L(T ∣Y , fσ)(v) ⊆ L(T ∣Y , fσ).

We now turn our attention to supertrees which are formally de�ned as follows. Suppose

T = {T, . . . , Tl}, l ≥ , is a set of Yi-trees Ti with Yi ⊆ X and ∣Yi ∣ ≥ , i ∈ ⟨l⟩, and T

is an X-tree. ¿en T is a called a supertree of T if T displays every tree in T where we

CHAPTER . DISTINGUISHED MINIMAL TOPOLOGICAL LASSOS 153

say that some X-tree T displays some Y-tree T ′ for Y ⊆ X with ∣Y ∣ ≥ if T ∣Y and T ′ are

equivalent. More precisely, we have the following result which relies on the fact that in

case L is a distinguished minimal topological lasso for a binary X-tree T , that is, every

vertex of T but the leaves has two children, Γ(L)must be a path. In particular, L induces

a total ordering of the elements in X in this case. For Y ⊆ X a non-empty subset of X, we

denote the maximal and minimal element in Y with regards to that ordering byminL(Y)

andmaxL(Y), respectively.

Corollary 5. Suppose X′ and X′′ are two non-empty subsets of X such that X = X′ ∪ X′′

and X′ ∩ X′′ /= ∅ and T ′ and T ′′ are X′-trees and X′′-tree, respectively. Suppose also

that L′ and L′′ are distinguished minimal topological lassos for T ′ and T ′′, respectively,

such that L′∣X′∩X′′ = L′′∣X′∩X′′ and Γ(L′′∣X′∩X′′) is connected. If T is a binary X-tree that

displays both T ′ and T ′′ then L = L′ ∪ L′′ is a distinguished minimal topological lasso

for T if and only ifminL′(X′ ∩ X′′) ∈ {minL′(X′),minL′′(X′′)} andmaxL′(X′ ∩ X′′) ∈

{maxL′(X′),maxL′′(X′′)}.

Continuing with the assumptions of Corollary 5, we also have that if

min
L′

(X′ ∩ X′′) ∈ {min
L′

(X′),min
L′′

(X′′)}

and

max
L′

(X′ ∩ X′′) ∈ {max
L′

(X′),max
L′′

(X′′)}

holds then L′ ∪L′′ is a (minimal) strong lasso for T as every minimal topological lasso

for an X-tree is also an equidistant lasso for that tree. However, not all strong lassos for

T are of this form. An example for this is furnished for X′ = {a, c, d} and X′′ = {a, b, c}

by the X′-tree T ′, the X′′-tree T ′′ and the X′ ∪ X′′-tree T depicted in Figure 6.4 along

with the set L′ = {cd} and L′′ = {ab, bc} of cords of X′ and X′′, respectively. Clearly, T

is a supertree of {T ′, T ′′} and L = L′ ∪ L′′ is a strong lasso for T but L′ is not even an

equidistant lasso for T ′. Investigating further the interplay between minimal topological

CHAPTER . DISTINGUISHED MINIMAL TOPOLOGICAL LASSOS 154

a b c d a c d b ca
L
′
∪L

′′
= {ab, bc, cd} L′ = {cd} L

′′
= {ab, bc}

Figure 6.4: For X′ = {a, c, d} and X′′ = {a, b, c} the X′∪X′′-tree T is a supertree for the depicted
X′ and X′′ trees T ′ and T ′′, respectively. Clearly, L′ = {cd} and L′′ = {ab, bc} are
sets of cords of X′ and X′′, respectively, and L = L′ ∪L′′ is a strong lasso for T but L′
is not even an equidistant lasso for T ′.

lassos for X-trees and minimal topological lassos for supertrees that display them might

therefore be of interest.

We conclude with returning to Figure 6.1 which depicts two non-equivalent X-trees

that are topologically lassoed by the same set L of cords of X. In fact, L is even a minimal

topological lasso for both of them. Understanding better the relationship between X-trees

that are topologically lassoed by the same set of cords of X might also be of interest to

study further.

6.7 Conclusion

In this chapter we introduced a special type of lasso called a distinguished minimal

topological lasso for which the associated Γ(L) graph is a claw-free block graph. We

have shown that for such a lasso L each block in Γ(L) corresponds to one interior vertex

in the tree (¿eorem 17 and Corollary 3). A distinguished minimal topological lasso is

special in that for any X-tree a minimal topological lasso for it can be transformed into

a distinguished minimal topological lasso by repeated application of a simple rule. We

characterised these lassos in terms of a cluster marker map and have given a criterion for

inheritance by subtrees and supertrees.

Chapter 7

Conclusion and FurtherWork

In this thesis we have investigated several problems related to analysing distances using

techniques known as clustering. With regards to partitional clustering we have seen

that a central task is to de�ne a criterion with which to determine the suitability of any

particular clustering solution. We have an intuitive sense of what we would like to obtain

in a clustering, that is one where the clusters are tightly packed and well separated, but

we have shown that even very similar criteria which have been used for this purpose can

produce wildly di�erent results in the worst case (Section 3.5). We have also shown that the

widely used centroid-distance criterion is not simultaneously a criterion for homogeneity

and separation under the homogeneous Euclidean-overlap metric making it less useful as

a general purpose clustering criterion.

Even if the sum-of-squares criteria are deemed to be good enough, it is now known that

clustering under the centroid-distance criterion is an NP-hard problem in Euclidean space

[4, 106]. We have shown that the associated decision problem is NP-complete even under

a simple p-valued metric where p ≥ . However, the problem is solvable in polynomial

time for a 2-valued metric. Similarly, we have shown that the decision problem associated

with all-squares clustering is NP-complete both with Euclidean space and with a p-valued

metric when p ≥ . ¿e problem is solvable in polynomial time with a 2-valued metric

155

CHAPTER . CONCLUSION AND FURTHERWORK 156

when the dataset is a set, but the problem remains NP-complete even for a 2-valued metric

when the dataset is a multiset (Section 3.3).

In the process of showing the worst case performance of the two sum-of-squares

criteria we have developed a new metric for comparing clusterings called the assignment

metric. In general this metric allows us to compare sets whose elements are themselves in

a metric space. ¿is allows us to distinguish clusterings by using the underlying metric

space in a way which is not possible with other metrics. It is easily extendable to any metric,

as well as to multiset and fuzzy clusterings (Section 3.4).

Our �ndings reinforce the view that partitional clustering is very di�cult to do exactly.

It is unclear if it even makes sense to try to solve clustering problems exactly since selection

of a criterion is itself so di�cult. Even so, heuristics for partitional clustering can o en do

a very good job when an exact solution to the problem is not required.

Our �ndings for hierarchical clustering are more positive. We extended the problem

of simply building a hierarchy of clusters from a distance on a set X to that of building

an edge-weighted X-tree. We then investigated the problem of building such a tree when

only a partial distance on X is given. ¿e theory of lassos allows us to decide whether a

given set of distances over X is enough to uniquely determine the tree, with regards to

topology and edge-weighting, that they came from.

In Chapter 5, we turned our attention to the problem of reconstructed an equidistant

X-tree from partial distance information. We have developed an algorithm called Lasso

for building a tree from partial distance information that returns a lasso and the unique

equidistant tree lassoed by it. We showed using a simulation study that it is possible to

recover much of the tree even when faced with a large number of missing distances. Our

algorithm is resistant to noise in the data making it applicable to real biological datasets.

We show that its performance on such a dataset is very good when faced with missing

distances (Section 5.3.2).

We also illustrated the applicability of Lasso in a supertree context (Section 5.3.3).

As part of this we compared Lasso with modi�ed MinCutSupertree, a well known

CHAPTER . CONCLUSION AND FURTHERWORK 157

supertree algorithm, using the normalised Robinson-Foulds distance. We showed that

the supertree produced by our method was closer to both of the original trees than the

one produced by modi�edMinCutSupertree. In addition, since we are using distances

our method produces an edge-weighted supertree while theMinCutSupertree requires

weighting by another method.

In addition to the directions of further work outlined in Chapters 3, 6 and 5 there

are number of interesting problems which suggest themselves. ¿ere are still many ques-

tions with regards to the computational complexity of the partitional clustering problems.

Namely, we wonder whether it is possible to solve in polynomial time any of the approxima-

tion problems associated to the sum-of-squares optimisation problems or, in other words,

can a near optimal solution be found to within some bounds of the optimal? Although

we now know that exactly solving the sum-of-squares clustering problems is intractable

unless P = NP, there have been several exact polynomial solutions for restricted versions

of the problem. One could attempt to extend these solutions to accept larger input sizes

thereby providing exact solutions in many practical cases.

¿e Lasso algorithm has O(∣LD ∣) runtime complexity, where L is the set of given

distances on X. ¿is means it is more applicable to cases where a given distance matrix

is very sparse. ¿e best case is when a minimal topological lasso of a binary tree is used

as input since this results in O(∣X∣) runtime. When a complete distance matrix is used

then we have O(∣X∣) runtime. In this case, other reconstruction techniques with O(∣X∣)

or O(∣X∣) runtime for a complete matrix become more attractive. It may be possible,

for example using ideas from the fast UPGMA algorithm (Section 4.3.2), to modify the

algorithm such that the runtime complexity is smaller in terms of the size of X. ¿is would

allow the algorithm to remain applicable to complete distance matrices as well as sparse

matrices.

Finally, in Chapter 6 we presented a study into the structural properties of lassos and,

in particular, minimal topological lassos. Our investigation indicated a special type of

minimal lasso called a distinguished minimal topological lasso. ¿e Γ(L) graph of such a

CHAPTER . CONCLUSION AND FURTHERWORK 158

lasso is a claw-free block graph which have been widely studied in many areas. ¿ese lassos

are special since it is possible to turn any minimal topological lasso into a distinguished

one by repeated application of a simple rule. We have characterised these lassos in terms

of a cluster marker map and have given a criterion for when these lassos can be inherited

by subtrees and supertrees, although it is easy to �nd examples where inheritance does

not work for supertrees.

Chapter 8

Bibliography

[] A.V. Aho, Y. Sagiv, T.G. Szymanski, and J.D. Ullman. Inferring a tree from lowest
common ancestors with an application to the optimization of relational expressions.
SIAM Journal on Computing, 10(3):405–421, 1981.

[] D.H.Alexander, J. Novembre, andK. Lange. Fastmodel-based estimation of ancestry
in unrelated individuals. Genome Research, 19:1655––1664, 2009.

[] D. Aloise. Exact Algorithms for Minimum Sum-of-Squares Clustering. PhD thesis,
Department of Mathematics and Industrial Engineering, École Polytechnique de
Montréal, 2009.

[] D. Aloise, A. Deshpande, P. Hansen, and P. Popat. NP-hardness of Euclidean sum-
of-squares clustering. Machine Learning, 75:245–248, 2009. ISSN 0885-6125. doi:
10.1007/s10994-009-5103-0.

[] P. Arabie and S.A. Boorman. Multidimensional scaling of measures of distance
between partitions. Journal of Mathematical Psychology, 10(2):148–203, 1973.

[] D. Arthur and S. Vassilvitskii. k-means++: ¿e advantages of careful seeding. In
Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 1027–1035. Society for Industrial and Applied Mathematics, 2007.

[] F.J. Ayala. Molecular clock mirages. BioEssays, 21:71––75, 1999.

[] E. Bae, J. Bailey, and G. Dong. A clustering comparison measure using density
pro�les and its application to the discovery of alternate clusterings. Data Mining
and Knowledge Discovery, 21:427–471, 2010. ISSN 1384-5810. doi: 10.1007/s10618-
009-0164-z.

[] G.H. Ball and D.J. Hall. A clustering technique for summarizing multivariate data.
Behavioral Science, 12(2):153–155, 1967. ISSN 1099-1743. doi: 10.1002/bs.3830120210.

[] A. Banerjee, S. Merugu, I.S. Dhillon, and J. Ghosh. Clustering with Bregman
divergences. ¿e Journal of Machine Learning Research, 6:1705–1749, 2005.

159

http://dx.doi.org/10.1007/s10994-009-5103-0
http://dx.doi.org/10.1007/s10994-009-5103-0
http://dx.doi.org/10.1007/s10618-009-0164-z
http://dx.doi.org/10.1007/s10618-009-0164-z
http://dx.doi.org/10.1002/bs.3830120210

CHAPTER . BIBLIOGRAPHY 160

[] E.M.L. Beale. Euclidean cluster analysis. Bulletin of the International Statistical
Institute, 43(2):92–94, 1969.

[] E.T. Bell. Exponential numbers.¿eAmericanMathematical Monthly, 41(7):411–419,
1934. ISSN 00029890.

[] M. Bern and D. Eppstein. Approximation algorithms for geometric problems. In
D.S. Hochbaum, editor, Approximation Algorithms for NP-hard Problems, pages
296–345. PWS Publishing Company, Boston,MA,USA, 1996.

[] A. Bhattacharyya. On a measure of divergence between two statistical populations
de�ned by their probability distributions. Bulletin of the Calcutta Mathematical
Society, 35:99–109, 1943. ISSN 0008-0659.

[] O.R.P. Bininda-Emonds. Phylogenetic Supertrees: Combining Information to Reveal
the Tree of Life. Springer, 2004. ISBN 978-1-402-02328-6.

[] R. Bouckaert, J. Heled, D. Kühnert, T. Vaughan, C.-H. Wu, D. Xie, M.A. Suchard,
A. Rambaut, and A.J. Drummond. BEAST 2: A so ware platform for Bayesian
evolutionary analysis. PLoS Computational Biology, 10:e1003537, 2014.

[] D. Braun, J. Mayberry, A. Powers, and S. Schlicker. ¿e geometry of the Hausdor�
metric, 2003.

[] M. Brinkmeyer, T. Griebel, and S. Boecker. Flipcut supertrees: Towards matrix
representation accuracy in polynomial time. Algorithmica, 67:142–160, 2013.

[] M.J. Brusco. A repetitive branch-and-bound procedure for minimumwithin-cluster
sums of squares partitioning. Psychometrika, 71(2):347–363, 2006.

[] D. Bryant. Building Trees, Hunting for Trees, and Comparing Trees—¿eory and
Methods in Phylogenetic Analysis. PhD thesis, University of Canterbury, 1997.

[] D. Bryant, C. Semple, andM. Steel. Supertreemethods for ancestral divergence dates
and other applications. In O.R.P. Bininda-Emonds, editor, Phylogenetic Supertrees,
volume 4 of Computational Biology, pages 129–150. Springer Netherlands, 2004.
ISBN 978-1-4020-2329-3. doi: 10.1007/978-1-4020-2330-9_7.

[] P. Brücker. On the complexity of clustering problems. Optimization and Operations
Research, 157:45–54, 1978.

[] F.T. Burbrink and T.A. Castoe. Molecular phylogeography of snakes. In Snakes:
Ecology and Conservation, pages 38–77. Cornell University Press, 2009.

[] F. Cao, J. Liang, and G. Jiang. An initialization method for the k-means algorithm
using neighborhood model. Computers & Mathematics with Applications, 58(3):
474–483, 2009. ISSN 0898-1221. doi: 10.1016/j.camwa.2009.04.017.

[] L.L. Cavalli-Sforza and A.W. Edwards. Phylogenetic analysis. models and estimation
procedures. ¿e American Journal of Human Genetics, 19(3:1):233–57, 1967.

http://dx.doi.org/10.1007/978-1-4020-2330-9_7
http://dx.doi.org/10.1016/j.camwa.2009.04.017

CHAPTER . BIBLIOGRAPHY 161

[] Z. Chen and X. Shixiong. k-means clustering algorithmwith improved initial center.
In Second International Workshop on Knowledge Discovery and Data Mining, pages
790–792. IEEE, 2009.

[] P. Cimiano, A.Hotho, and S. Staab. Comparing conceptual, divise and agglomerative
clustering for learning taxonomies from text. In Proceedings of the 16th Eureopean
Conference on Arti�cial Intelligence, ECAI’2004, including Prestigious Applicants of
Intelligent Systems, PAIS 2004, 2004.

[] V.A. Confalonieri, A.S. Sequeira, L. Todaro, and J.C. Vilardi. Mitochondrial DNA
and phylogeography of the grasshopper trimerotropis pallidipennis in relation to
clinical distribution of chromosome polymorphisms. Heredity, 81:444–452, 1998.

[] J. Corblet. Étude iconographique sur l’arbre de Jessé. Librairie Archéologique de
Charles Blériot, Paris, 1860.

[] G. Cormode and A. McGregor. Approximation algorithms for clustering uncer-
tain data. In Proceedings of the Twenty-seventh ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, pages 191–200. ACM, 2008.

[] A. Criscuolo and O. Gascuel. Fast NJ-like algorithms to deal with incomplete
distance matrices. BMC Bioinformatics, 9(1):166, 2008. ISSN 1471-2105. doi:
10.1186/1471-2105-9-166.

[] A. Criscuolo, V. Berry, E.J.P Douzery, and O. Gascuel. SDM: A fast distance-based
approach for (super)tree building in phylogenomics. Systematic Biology, 55:740–755,
2006.

[] C. Darwin. Notebook B: Transmutation of species, 1837–1838.

[] C.Darwin. On theOrigin of Species byMeans of Natural Selection, or¿ePreservation
of Favoured Races in the Struggle for Life. John Murray, London, 1859.

[] P.J. De Groot, G.J. Postma, W.J. Melssen, and L.M.C. Buydens. Selecting a repre-
sentative training set for the classi�cation of demolition waste using remote NIR
sensing. Analytica Chimica Acta, 392(1):67–75, 1999.

[] A.R. De Leon and K.C. Carrière. A generalized Mahalanobis distance for mixed
data. Journal of Multivariate Analysis, 92(1):174–185, 2005.

[] C. De Rham. La classi�cation hiérarchique ascendante selon la méthode des voisins
réciproques. Cahiers de l’Analyse des Données, 5(2):135–144, 1980.

[] G. de Soete. Ultrametric tree representations of incomplete dissimilarity data.
Journal of Classi�cation, 1(1):235–242, 1984.

[] D. Defays. An e�cient algorithm for a complete linkmethod.¿eComputer Journal,
20(4):364–366, 1977. CLINK.

[] M. Delattre and P. Hansen. Bicriterion cluster analysis. IEEE Transactions on Pattern
Analysis and Machine Intelligence, PAMI-2(4):277–291, 1980.

http://dx.doi.org/10.1186/1471-2105-9-166
http://dx.doi.org/10.1186/1471-2105-9-166

CHAPTER . BIBLIOGRAPHY 162

[] M.M. Deza and E. Deza. Encyclopedia of Distances. Springer, 2009. ISBN 978-3-
642-00233-5.

[] R. Diestel. Graph¿eory. Springer-Verlag, 2005. ISBN 978-3-540-26182-7.

[] C. Ding and X. He. Cluster merging and splitting in hierarchical clustering algo-
rithms. In 2002 IEEE International Conference on Data Mining, pages 139–146. IEEE,
2002.

[] G. Dobiński. Summirung der reihe ∑ nm/n! für m = , , , , , Archiv der
Mathematik und Physik, 61:333–336, 1877.

[] S. Doddi, M. Marathe, S. Ravi, D. Taylor, and P. Widmayer. Approximation algo-
rithms for clustering to minimize the sum of diameters. Algorithm¿eory-SWAT
2000, pages 41–51, 2000.

[] A.W.M. Dress, K.T. Huber, and M. Steel. ‘Lassoing’ a phylogenetic tree I: Basic
properties, shellings, and covers. Journal of Mathematical Biology, pages 1–29, 2011.
ISSN 0303-6812. doi: 10.1007/s00285-011-0450-4.

[] A.W.M. Dress, K.T. Huber, J. Koolen, V. Moulton, and A. Spillner. Basic Phylogenetic
Combinatorics. Cambridge University Press, 2012. ISBN 978-0-521-76832-0.

[] A.J. Drummond, S.Y.W. Ho, M.J. Phillips, and Rambaut A. Relaxed phylogenetics
and dating with con�dence. PLoS Biology, 4:e88, 2006.

[] R. Durbin, S.R. Eddy, A. Krogh, and G. Mitchison. Biological Sequence Analysis:
Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press, 1998.
ISBN 978-0-521-62971-3.

[] D.M. Endres and J.E. Schindelin. A new metric for probability distributions. IEEE
Transactions on Information ¿eory, 49(7):1858–1860, July 2003. ISSN 0018-9448.
doi: 10.1109/TIT.2003.813506.

[] M. Erisoglu, N. Calis, and S. Sakallioglu. A new algorithm for initial cluster centers
in k-means algorithm. Pattern Recognition Letters, 32(14):1701–1705, October 2011.
ISSN 0167-8655. doi: 10.1016/j.patrec.2011.07.011.

[] L. Euler. Solutio problematis ad geometriam situs pertinentis. Commentarii
academiae scientiarum Petropolitanae, 8:128–140, 1741.

[] B. Everitt. Cluster Analysis. Heinemann Educational Books Ltd, London, UK, 1980.
ISBN 0-435-82296-9.

[] M. Farach, S. Kannan, and T. Warnow. A robust model for �nding optimal evolu-
tionary trees. Algorithmica, 13(1-2):155–179, 1995.

[] J. Felsenstein. Inferring Phylogenies. Sinauer Associates, 2003. ISBN 978-0-878-
93177-4.

[] J. Felsenstein. PHYLIP (phylogeny inference package), version 3.695, 2013. URL
http://evolution.genetics.washington.edu/phylip.html.

http://dx.doi.org/10.1007/s00285-011-0450-4
http://dx.doi.org/10.1109/TIT.2003.813506
http://dx.doi.org/10.1016/j.patrec.2011.07.011
http://evolution.genetics.washington.edu/phylip.html

CHAPTER . BIBLIOGRAPHY 163

[] A.V. Fiacco and G.P. McCormick. ¿e sequential unconstrained minimization
technique for nonlinear programing, a primal-dual method. Management Science,
10(2):360–366, 1964.

[] E. Forgy. Cluster analysis of multivariate data: E�ciency vs. interpretability of
classi�cations. Biometrics, 21:768–769, 1965.

[] E.B. Fowlkes and C.L. Mallows. A method for comparing two hierarchical cluster-
ings. Journal of the American Statistical Association, 78(383):553–569, 1983. ISSN
01621459.

[] A.L.N. Fred and A.K. Jain. Robust data clustering. Computer Vision and Pattern
Recognition, IEEE Computer Society Conference on, 2:128, 2003. ISSN 1063-6919.
doi: 10.1109/CVPR.2003.1211462.

[] H.P. Friedman and J. Rubin. On some invariant criteria for grouping data. Journal
of the American Statistical Association, pages 1159–1178, 1967.

[] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the ¿eory
of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979. ISBN
0-7167-1044-7.

[] M.R. Garey, D.S. Johnson, and L. Stockmeyer. Some simpli�ed NP-complete graph
problems. ¿eoretical Computer Science, 1(3):237–267, 1976. ISSN 0304-3975. doi:
10.1016/0304-3975(76)90059-1.

[] M.R.Garey, D.S. Johnson, andH.S.Witsenhausen.¿e complexity of the generalized
Lloyd-max problem (corresp.). Information ¿eory, IEEE Transactions on, 28(2):
255–256, mar 1982. ISSN 0018-9448. doi: 10.1109/TIT.1982.1056488.

[] O. Gascuel. BIONJ: An improved version of the NJ algorithm based on a simple
model of sequence data. Molecular Biology and Evolution, 14:685–695, 1997.

[] W. Gaul andM. Schader. Pyramidal classi�cation based on incomplete dissimilarity
data. Journal of Classi�cation, 11(2):171–193, 1994.

[] T.F. Gonzalez. On the computational complexity of clustering and related problems.
System Modeling and Optimization, 38:174–182, 1982. ISSN 0170-8643.

[] T.F. Gonzalez. Clustering to minimize the maximum intercluster distance. ¿eoreti-
cal Computer Science, 38:293–306, 1985. ISSN 0304-3975.

[] I. Gronau and S. Moran. Optimal implementations of UPGMA and other common
clustering algorithms. Information Processing Letters, 104(6):205–210, 2007.

[] A. Guénoche and S. Grandcolas. Approximations par arbre d’une distance partielle.
Mathématiques, Informatique et Sciences Humaines, 37(146):51–64, 1999.

[] A. Guénoche, B. Leclerc, and V. Makarenkov. On the extension of a partial metric
to a tree metric. Discrete Mathematics, 276(1):229–248, 2004.

http://dx.doi.org/10.1109/CVPR.2003.1211462
http://dx.doi.org/10.1016/0304-3975(76)90059-1
http://dx.doi.org/10.1016/0304-3975(76)90059-1
http://dx.doi.org/10.1109/TIT.1982.1056488

CHAPTER . BIBLIOGRAPHY 164

[] R.W. Hamming. Error detecting and error correcting codes. ¿e Bell System
Technical Journal, 29:147–160, 1950. ISSN 0005-8580.

[] P. Hansen andM.Delattre. Complete-link cluster analysis by graph coloring. Journal
of the American Statistical Association, pages 397–403, 1978.

[] P. Hansen and B. Jaumard. Minimum sum of diameters clustering. Journal of
Classi�cation, 4:215–226, 1987. ISSN 0176-4268. doi: 10.1007/BF01896987.

[] P. Hansen and B. Jaumard. Cluster analysis and mathematical programming. Math-
ematical programming, 79(1):191–215, 1997.

[] F. Harary. Graph¿eory. Addison-Wesley Publishing Co., 1972. ISBN 978-0-201-
02787-7.

[] J.A. Hartigan. Clustering Algorithms. Probability and Mathematical Statistics. John
Wiley & Sons, Inc., 1975. ISBN 978-0-471-35645-5.

[] J. He, M. Lan, C. Tan, S. Sung, and H. Low. Initialization of cluster re�nement algo-
rithms: A review and comparative study. In Proceedings of 2004 IEEE International
Joint Conference on Neural Networks, volume 1. IEEE, 2004.

[] M. Hellmuth, M. Hernandez-Rosales, K.T. Huber, V. Moulton, and P.F. Stadler.
Orthology relations, symbolic ultrametrics, and co-graphs. Journal of Mathematical
Biology, 66:399–420, 2013.

[] K.T. Huber and G. Kettleborough. Distinguished minimal topological lassos. Sub-
mitted, 2014.

[] K.T. Huber and A. Popescu. Lassoing and corralling rooted phylogenetic trees.
Bulletin of Mathematical Biology, 75(3):444–465, 2013. ISSN 0092-8240. doi:
10.1007/s11538-013-9815-8. arXiv:1208.5594.

[] K.T. Huber and M. Steel. Tree reconstruction from triplet cover distances. ¿e
Electronic Journal of Combinatorics, 21(2):2–15, 2014.

[] L. Hubert and P. Arabie. Comparing partitions. Journal of Classi�cation, 2:193–218,
1985. ISSN 0176-4268. doi: 10.1007/BF01908075.

[] M. Inaba, N. Katoh, and H. Imai. Applications of weighted Voronoi diagrams and
randomization to variance-based k-clustering. In Proceedings of the Tenth Annual
Symposium on Computational Geometry, SCG ’94, pages 332–339, New York, NY,
USA, 1994. ACM. ISBN 0-89791-648-4. doi: 10.1145/177424.178042.

[] A.K. Jain, M.N. Murty, and P.J. Flynn. Data clustering: A review. ACM Computing
Surveys (CSUR), 31(3):264–323, 1999. ISSN 0360-0300.

[] S. Johnson. Hierarchical clustering schemes. Psychometrika, 32:241–254, 1967. ISSN
0033-3123. doi: 10.1007/BF02289588.

http://dx.doi.org/10.1007/BF01896987
http://dx.doi.org/10.1007/s11538-013-9815-8
http://dx.doi.org/10.1007/s11538-013-9815-8
http://dx.doi.org/10.1007/BF01908075
http://dx.doi.org/10.1145/177424.178042
http://dx.doi.org/10.1007/BF02289588

CHAPTER . BIBLIOGRAPHY 165

[] J. Juan. Programme de classi�cation hiérarchique par l’algorithme de la recherche
en chaîne des voisins réciproques. Cahiers de l’Analyse des Données, 7(2):219–225,
1982.

[] H.G. Kahrimanian. Analytical di�erentiation by a digital computer. Master’s thesis,
Temple University, Philadelphia, Pennsylvania, USA, May 1953.

[] Richard M. Karp. Reducibility among combinatorial problems. In R. E. Miller
and J. W.¿atcher, editors, Complexity of Computer Computations, pages 85–103.
Plenum Press, New York, 1972.

[] L. Kaufman and P.J. Rousseeuw. Finding Groups in Data: An Introduction to Cluster
Analysis. John Wiley & Sons, Ltd., 1990. ISBN 978-0-471-73578-6.

[] G. Kettleborough and V.J. Rayward-Smith. Optimising sum-of-squares measures
for clustering multisets de�ned over a metric space. Discrete Applied Mathematics,
161(16-17):2499–2513, 2013. doi: 10.1016/j.dam.2013.04.015.

[] G. Kettleborough, J. Dicks, I.N. Roberts, and K.T. Huber. Reconstructing (su-
per)trees from data sets with missing distances: Not all is lost. Molecular Biology
and Evolution, 2015. doi: 10.1093/molbev/msv027.

[] S.S. Khan and A. Ahmad. Cluster center initialization algorithm for k-means
clustering. Pattern Recognition Letters, 25(11):1293–1302, August 2004. ISSN 0167-
8655. doi: 10.1016/j.patrec.2004.04.007.

[] G. Klein and J.E. Aronson. Optimal clustering: A model and method. Naval
Research Logistics, 38(3):447–461, 1991.

[] G.J. Klir and B. Yuan. Fuzzy Sets and Fuzzy Logic, volume 4. Prentice Hall New
Jersey, 1995.

[] D.E. Knuth. Fundamental Algorithms, volume 1 of¿eArt of Computer Programming.
Addison-Wesley Longman Publishing Co., Inc., Reading, Mass., USA, third edition,
1997. ISBN 0-201-89683-4.

[] H.W. Kuhn. ¿e Hungarian method for the assignment problem. Naval Research
Logistics Quarterly, 2(1-2):83–97, 1955. ISSN 1931-9193.

[] S. Kullback. Information ¿eory and Statistics. Dover Publications, Inc., New York,
1968.

[] A. Kupczok. Consequences of di�erent null models on the tree shape bias of
supertree methods. Systematic Biology, 60:218–225, 2011.

[] G. N. Lance andW. T. Williams. A general theory of classi�catory sorting strategies
1. hierarchical systems. Computer Journal, 9:373–380, 1966.

[] F.J. Lapointe and C. Levasseur. Everything you always wanted to know about
the average consensus and more. In O.R.P. Bininda-Emonds, editor, Phylogenetic

http://dx.doi.org/10.1016/j.dam.2013.04.015
http://dx.doi.org/10.1093/molbev/msv027
http://dx.doi.org/10.1016/j.patrec.2004.04.007

CHAPTER . BIBLIOGRAPHY 166

Supertrees: Combining Information to Reveal the Tree of Life, pages 87–105. Kluwer
Academic Publishers, 2004.

[] B. Larsen and C. Aone. Fast and e�ective text mining using linear-time document
clustering. In Proceedings of the Fi h ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’99, pages 16–22, New York, NY, USA,
1999. ACM. ISBN 1-58113-143-7. doi: 10.1145/312129.312186.

[] V.I. Levenshtein. Binary codes capable of correcting deletions, insertions, and
reversals. Soviet Physics Doklady, 10:707–710, 1966.

[] G. Liti, D. M. Carter, A. M. Moses, J. Warringer, L. Parts, S. A. James, R. P. Davey,
I. N. Roberts, A. Burt, V. Koufopanou, I. J. Tsai, C. M. Bergman, D. Bensasson, M. J.
O’Kelly, A. van Oudenaarden, D. B. Barton, E. Bailes, A. N. Nguyen, M. Jones, M. A.
Quail, I. Goodhead, S. Sims, F. Smith, A. Blomberg, R. Durbin, and E. J. Louis.
Population genomics of domestic and wild yeasts. Nature, 458(7236):337–41, 2009.

[] J. MacQueen. Some methods for classi�cation and analysis of multivariate obser-
vations. In Proceedings of the Fi h Berkeley Symposium on Mathematical Statistics
and Probability, volume 1, pages 281–297. California, USA, 1967.

[] M. Mahajan, P. Nimbhorkar, and K. Varadarajan. ¿e planar k-means problem
is NP-hard. In Proceedings of the 3rd International Workshop on Algorithms and
Computation, WALCOM ’09, pages 274–285, Berlin, Heidelberg, 2009. Springer-
Verlag. ISBN 978-3-642-00201-4. doi: 10.1007/978-3-642-00202-1_24.

[] P.C. Mahalanobis. On tests and measures of group divergence. Journal of the Asiatic
Society of Bengal, pages 541–588, 1930.

[] V. Makarenkov. Une nouvelle méthode e�cace pour la reconstruction des arbres
additifs à partir des matrices de distances incomplètes. Proceedings of the 8-ièmes
Rencontres de la Société Francophone de Classi�cation, pages 238–244, 2001.

[] P. Mantovani, G. van der Linden, M. Maccaferri, M.C. Sanguineti, and R. Tuberosa.
Nucleotide-binding site (NBS) pro�ling of genetic diversity in durum wheat.
Genome, 49:1473––1480, 2006.

[] R. Maronna and P.M. Jacovkis. Multivariate clustering procedures with variable
metrics. Biometrics, 30(3):499–505, 1974. ISSN 0006341X.

[] F.H.C. Marriott. Optimization methods of cluster analysis. Biometrika, 69(2):
417–421, 1982.

[] M. Meilă. Comparing clusterings: An axiomatic view. In In ICML ’05: Proceedings
of the 22nd International Conference on Machine Learning, pages 577–584. ACM
Press, 2005.

[] M. Meilă. Comparing clusterings—an information based distance. Jour-
nal of Multivariate Analysis, 98(5):873–895, 2007. ISSN 0047-259X. doi:
10.1016/j.jmva.2006.11.013.

http://dx.doi.org/10.1145/312129.312186
http://dx.doi.org/10.1007/978-3-642-00202-1_24
http://dx.doi.org/10.1016/j.jmva.2006.11.013
http://dx.doi.org/10.1016/j.jmva.2006.11.013

CHAPTER . BIBLIOGRAPHY 167

[] M. Meilă and D. Heckerman. An experimental comparison of model-based cluster-
ing methods. Machine Learning, 42(1):9–29, 2001. ISSN 0885-6125.

[] O. Merle, P. Hansen, B. Jaumard, and N. Mladenovic. An interior point algorithm
for minimum sum-of-squares clustering. SIAM Journal on Scienti�c Computing, 21
(4):1485–1505, 1999.

[] B.G. Mirkin. Mathematical Classi�cation and Clustering. Nonconvex Optimization
and its Applications. Kluwer Academic Pubishers, 1996. ISBN 978-0-792-34159-8.

[] B.G. Mirkin and L.B. Chernyi. Measurement of the distance between distinct
partitions of a �nite set of objects. Automation and Remote Control, 31:786–792,
1970.

[] B. Misof, B. Meyer, von B.M. Reumont, P. Kück, K. Misof, and K. Meusemann.
Selecting informative subsets of sparse suprematrics increases the chance to �nd
correct trees. BMC Bioinformatics, 14:348, 2013.

[] F. Murtagh. A survey of recent advances in hierarchical clustering algorithms. ¿e
Computer Journal, 26(4):354–359, 1983.

[] F. Murtagh. Complexities of hierarchic clustering algorithms: State of the art.
Computational Statistics Quarterly, 1(2):101–113, 1984.

[] F. Murtagh and P. Contreras. Methods of hierarchical clustering. arXiv preprint
arXiv:1105.0121, 2011.

[] R.T. Ng and J. Han. CLARANS: A method for clustering objects for spatial data
mining. IEEE Transactions on Knowledge and Data Engineering, 14(5):1003–1016,
2002.

[] R.D.M. Page. Modi�edmincut supertrees. In Proceedings ofWorkshop on Algorithms
in Bioinformatics (WABI ’02), Springer Lecture Notes in Computer Science, 2452:537–
552, 2002.

[] M.K. Pakhira. Amodi�ed k-means algorithm to avoid empty clusters. International
Journal of Recent Trends in Engineering, 1(1), 2009.

[] G. Palubeckis. A branch-and-bound approach using polyhedral results for a clus-
tering problem. INFORMS Journal on Computing, 9(1):30–42, 1997.

[] H. Philippe, E.A. Snell, E. Bapteste, P. Lopez, P.W.H. Holland, and D. Casane. Phy-
logenomics of eukaryotes: Impact of missing data on large alignments. Molecular
Biology and Evolution, 21(9):1740–1752, 2004.

[] M.J.D. Powell. Restart procedures for the conjugate gradient method. Mathematical
Programming, 12(1):241–254, 1977.

[] J.K. Pritchard, M. Stephens, and P.J. Donnelly. Inference of population structure
using multilocus genotype data. Genetics, 155:945–959, 2000.

CHAPTER . BIBLIOGRAPHY 168

[] A. Queiroz and J. Gatesy. ¿e supermatrix approach to systematics. Trends in
Ecology and Evolution, 22:34–41, 2006.

[] W.M. Rand. Objective criteria for the evaluation of clustering methods. Journal of
the American Statistical Association, 66(336):846–850, 1971. ISSN 01621459.

[] S.J. Redmond and C. Heneghan. A method for initialising the k-means clustering
algorithm using kd-trees. Pattern Recognition Letters, 28(8):965–973, 2007.

[] J.C. Reeves, E. Chiapparino, P. Donini, M. Ganal, J. Guiard, S. Hamrit, M. Hecken-
berger, X.-Q. Huang, M. van Kaauwen, E. Kochieva, R. Koebner, J. R. Law, V. Lea,
V. Le Clerc, T. Van der Lee, F. Leigh, G. Van der Linden, L. Malysheva, A. E.
Melchinger, S. Orford, J. C. Reif, M. Röder, A. Schulman, B. Vosman, C. Van der
Wiel, M. Wolf, and D. Zhang. Changes over time in the genetic diversity of four
major European crops: A report from the Gedi�ux framework 5 project. Proceedings
of the XVIIth EUCARPIA General Congress, Tulln, Austria, 8–11 September 2004,
pages 3–7, 2004.

[] J.C. Reif, A.E. Melchinger, and M. Frisch. Genetical and mathematical properties of
similarity coe�cients applied in plant breeding and seed bank management. Crop
Science, 45:1–7, 2005.

[] A.P. Reynolds, G. Richards, B. De La Iglesia, and V.J. Rayward-Smith. Clustering
rules: A comparison of partitioning and hierarchical clustering algorithms. Journal
of Mathematical Modelling and Algorithms, 5(4):475–504, 2006. ISSN 1570-1166.

[] D.F. Robinson and L.R. Foulds. Comparison of phylogenetic trees. Mathematical
Biosciences, 53(1):131–147, 1981.

[] B. Roure, D. Baurain, and H. Philippe. Impact of missing data on phylogenies
inferred from empirical phylogenomic data sets. Molecular Biology and Evolution,
30(1):197–214, 2012.

[] J. Rubin. Optimal classi�cation into groups: An approach for solving the taxonomy
problem. Journal of ¿eoretical Biology, 15(1):103–144, 1967. ISSN 0022-5193. doi:
10.1016/0022-5193(67)90046-X.

[] S. Sahni and T. Gonzalez. P-complete approximation problems. Journal of the ACM
(JACM), 23(3):555–565, 1976.

[] N. Saitou and M. Nei. ¿e neighbor-joining method: A new method for recon-
structing phylogenetic trees. Molecular Biology and Evolution, 4(4):406–425, 1987.

[] M. Sanderson, M. McMahon, and M. Steel. Phylogenomics with incomplete taxon
coverage: ¿e limits to inference. BMC Evolutionary Biology, 10(1):155, 2010.

[] S.M. Savaresi, D. Boley, S. Bittanti, and G. Gazzaniga. Cluster selection in divisive
clustering algorithms. In SDM. SIAM, 2002.

http://dx.doi.org/10.1016/0022-5193(67)90046-X
http://dx.doi.org/10.1016/0022-5193(67)90046-X

CHAPTER . BIBLIOGRAPHY 169

[] M. Sayar-Turet, S. Dreisigacker, H.-J. Braun, A. Hede, R. MacCormack, and L.A.
Boyd. Genetic variation within and between winter wheat genotypes from Turkey,
Kazakhstan and Europe as determined by NBS-pro�ling. Genome, 54:419–430, 2011.

[] M. Schader andW. Gaul. ¿e MVL (missing values linkage) approach for hierarchi-
cal classi�cation when data are incomplete. In Analyzing and Modeling Data and
Knowledge, pages 107–115. Springer, 1992.

[] J. H. Schwartz and B. Maresca. Do molecular clocks run at all? A critique of
molecular systematics. Biological ¿eory, 1:357–371, 2006.

[] C. Scornavacca, V. Berry, V. Lefort, E.J.P Douzery, and V. Ranwez. PhySICIST:
Cleaning source trees to infer more informative supertrees. BMC Bioinformatics, 9:
413, 2008.

[] C. Semple and M. Steel. A supertree method for rooted trees. Discrete Applied
Mathematics, 105(1):147–158, 2000.

[] C. Semple and M. Steel. Phylogenetics. Oxford Lecture Series in Mathematics and
its Applications. Oxford University Press, 2003. ISBN 978-0-198-50942-4.

[] R. Sibson. SLINK: An optimally e�cient algorithm for the single-link cluster
method. ¿e Computer Journal, 16(1):30–34, 1973.

[] R.R. Sokal. A statistical method for evaluating systematic relationships. University
of Kansas Science Bulletin, 38:1409–1438, 1958.

[] H. Späth. Cluster Analysis Algorithms. Ellis Horwood Limited, Chichester, West
Sussex, England, 1980. ISBN 0-85312-141-9.

[] R.P. Stanley. Enumerative Combinatorics, Volume I. Number 49 in Cambridge
Studies in Advanced Mathematics. Cambridge University Press, second edition,
2000. ISBN 978-0-521-66351-9.

[] M. Steel. ¿e complexity of reconstructing trees from qualitative characters and
subtrees. Journal of Classi�cation, 9(1):91–116, 1992.

[] M. Steel and M.J Sanderson. Characterizing phylogenetically decisive taxon cover-
age. Applied Mathematics Letters, 23(1):82–86, 2010.

[] M. Steinbach, G. Karypis, and V. Kumar. A comparison of document clustering
techniques. Technical Report 00-034, Department of Computer Science and Engi-
neering, University of Minnesota, Minneapolis, Minnesota, USA, 2000.

[] В.И. Левенштейн. Двоичные коды с исправлением выпадений, вставок и
замещений символов. ДокладыАкадемийНаукСCCP, 163:845–848, 1965. English
language version: [103].

[] M. Telgarsky and A. Vattani. Hartigan’s method: k-means clustering without
Voronoi. In 13th International Conference on Arti�cial Intelligence and Statistics
(AISTATS), 2010.

CHAPTER . BIBLIOGRAPHY 170

[] S. van Dongen. Performance criteria for graph clustering and Markov cluster
experiments. Technical report, CWI (Centre for Mathematics and Computer
Science), Amsterdam, ¿e Netherlands, ¿e Netherlands, 2000.

[] A. Vattani. k-means requires exponentially many iterations even in the plane.
In Proceedings of the 25th Annual Symposium on Computational Geometry, pages
324–332. ACM, 2009.

[] C.S. Wallace and D.M. Boulton. An information measure for classi�cation. ¿e
Computer Journal, 11(2):185–194, 1968.

[] D.L. Wallace. A method for comparing two hierarchical clusterings: Comment.
Journal of the American Statistical Association, 78(383):569–576, 1983. ISSN 01621459.

[] J.T. Weir and D. Schluter. Calibrating the avian molecular clock. Molecular Ecology,
17:2321–2328, 2008.

[] J.T. Weir and D. Schluter. Ice sheets promote species in boreal birds. Proceedings of
the Royal Society of London Biological Sciences, 271:1881–1997, 2008.

[] C.West, S.A. James, R.P.Davey, J. Dicks, and I.N. Roberts. RibosomalDNA sequence
heterogeneity re�ects intraspecies phylogenies and predicts genome structure in
two contrasting yeast species. Systematic Biology, 2014. doi: 10.1093/sysbio/syu019.

[] S.S. Wilks. Multidimensional statistical scatter. In I. Olkin, S.G. Ghurye, W. Ho-
e�ding, W.G. Madow, and H.B. Mann, editors, Contributions to Probability and
Statistics, chapter 40. Stanford University Press, Stanford, California, USA, 1960.

[] S.J. Willson. Constructing rooted supertrees using distances. Bulletin of Mathemati-
cal Biology, 66:1755–1783, 2004.

[] A.I. Wirth. Approximation Algorithms for Clustering. PhD thesis, Princeton Univer-
sity, January 2005.

[] Y. Xiao, W. Liu, Y. Dai, C. Fu, and Y. Bian. Using SSR markers to evaluate the
genetic diversity of Lentinula edodes’ natural germplasm in China. World Journal of
Microbiology and Biotechnology, 26:527–536, 2010.

[] M. Yedla, S.R. Pathakota, and T.M. Srinivasa. Enhancing k-means clustering algo-
rithm with improved initial center. International Journal of Computer Science and
Information Technologies, 1(2):121–125, 2010.

[] P.N. Yianilos. Normalized forms for two common metrics. Technical report, NEC
Research Institute, 2002.

[] F. Yuan, Z. Meng, H. Zhang, and C. Dong. A new algorithm to get the initial
centroids. In Proceedings of International Conference on Machine Learning and
Cybernetics, volume 2, pages 1191–1193, 2004. doi: 10.1109/ICMLC.2004.1382371.

[] L.A. Zadeh. Fuzzy sets. Information and Control, 8(3):338–353, 1965.

http://dx.doi.org/10.1093/sysbio/syu019
http://dx.doi.org/10.1109/ICMLC.2004.1382371

	Abstract
	Contents
	List of Figures
	List of Algorithms
	List of Tables
	Introduction
	Partitional Clustering
	Summary
	Datasets and metric spaces
	Euclidean space metrics
	Sequence space metrics
	Mixed data metrics
	Set metrics

	Partitions
	The space of partitions
	Comparing partitions

	Partitional clustering
	Criteria
	Computational complexity
	Methods

	Sum-of-Squares Clustering
	Introduction
	Summary
	Multiset datasets
	Multiset clusterings

	Clustering criteria
	Consistency
	Linear separability

	Complexity issues
	All-squares clustering
	Centroid-distance clustering

	The assignment metric
	Comparing fuzzy partitions
	Lifting the underlying metric space
	Upper bound

	Worst case performance
	Conclusion

	Hierarchical Clustering
	Summary
	Graphs, Trees and Distances
	History
	Basic terminology and assumptions

	Tree reconstruction
	Reconstruction from subtrees
	Reconstruction from distances
	Reconstruction from partial distances

	Lassos
	Definitions and basic properties
	Characterising lassos: the child-edge graph

	Constructing Trees from Lassos
	Introduction
	Summary
	Motivation

	The Lasso algorithm
	Method outline
	Suitable cliques
	Recomputing the distance D_m
	An example

	Results and Discussion
	Missing data
	A yeast dataset
	A wheat dataset

	Conclusion
	Acknowledgements

	Distinguished Minimal Topological Lassos
	Introduction
	Summary
	Minimal topological lassos and the graph (L)

	The case that (L) is a block graph
	A special type of minimal topological lasso
	A sufficient condition for being distinguished
	Characterisation of distinguished minimal topological lassos
	Heredity of distinguished minimal topological lassos
	Conclusion

	Conclusion and Further Work
	Bibliography

