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ABSTRACT 

 

River catchments are an obvious scale for soil and water resources management, since 

their shape and characteristics control the pathways and fluxes of water and sediment. Digital 

Elevation Models (DEMs) are widely used to simulate overland water paths in hydrological 

models. However, all DEMs are approximations to some degree and it is widely recognised 

that their characteristics can vary according to attributes such as spatial resolution and data 

sources (e.g. contours, optical or radar imagery). As a consequence, it is important to assess 

the ‘fitness for purpose’ of different DEMs and evaluate how uncertainty in the terrain 

representation may propagate into hydrological derivatives. 

The overall aim of this research was to assess accuracies and uncertainties associated 

with seven different DEMs (ASTER GDEM1, SRTM, Landform Panorama (OS 50), 

Landform Profile (OS 10), LandMap, NEXTMap and Bluesky DTMs) and to explore the 

implications of their use in hydrological analysis and catchment management applications. 

The research focused on the Wensum catchment in Norfolk, UK. The research initially 

examined the accuracy of the seven DEMs and, subsequently, a subset of these (SRTM, OS 

50, OS10, NEXTMap and Bluesky) were used to evaluate different techniques for 

determining an appropriate flow accumulation threshold to delineate channel networks in the 

study catchment. These results were then used to quantitatively compare the positional 

accuracy of drainage networks derived from different DEMs. The final part of the thesis 

conducted an assessment of soil erosion and diffuse pollution risk in the study catchment 

using NEXTMap and OS 50 data with SCIMAP and RUSLE modelling techniques.  

Findings from the research demonstrate that a number of nationally available DEMs in 

the UK are simply not ‘fit for purpose’ as far as local catchment management is concerned.  

Results indicate that DEM source and resolution have considerable influence on modelling of 
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hydrological processes, suggesting that for a lowland catchment the availability of a high 

resolution DEM (5m or better) is a prerequisite for any reliable assessment of the 

consequences of implementing particular land management measures.   

Several conclusions can be made from the research. (1) From the collection of DEMs 

used in this study the NEXTMap 5m DTM was found to be the best for representing 

catchment topography and is likely to prove a superior product for similar applications in 

other lowland catchments across the UK. (2) It is important that error modelling techniques 

are more routinely employed by GIS users, particularly where the fitness for purpose of a data 

source is not well-established. (3) GIS modelling tools that can be used to test and trial 

alternative management options (e.g. for reducing soil erosion) are particularly helpful in 

simulating the effect of possible environmental improvement measures. 
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assumed to be cultivated with strip tillage.  
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282 

Figure 7.26 Areas occupied by each class of erosion severity (left y- axis) and their 

percentages from whole catchment area (right y-axis), according to the 

three scenarios adopted. 
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Chapter 1 

Introduction 

1.1 Research context 

The watershed, also termed catchment or river drainage basin, is a basic environmental 

unit where all surface water runoff flows downhill to a point on a stream (Gordon et al. 2004; 

Holden, 2014). It is an area defined naturally by surface water hydrology (Defra, 2013). A 

catchment is recognized as an appropriate scale for soil and water resources planning and 

management (Prato and Herath, 2007).  Soil erosion and sediment transport, storage, and 

remobilization are controlled by hydrological and geomorphological processes which operate 

within the context of a catchment scale. Therefore, catchments are the natural scale for the 

assessment of soil erosion potential, and consequently water quality, since their shape and 

characteristics control the pathways and fluxes of water and sediment (Collins and Owens, 

2006). It is now increasingly recognised that better coordinated action by all those who use 

water or influence land management is desirable at the catchment level. This, for instance, is 

central to the EU Water Framework Directive (WFD), a fundamental feature of which is the 

use of river catchments as reference units (Volk et al., 2010). The overall purpose of WFD is 

to achieve good ecological status for all European water bodies from 2015 onwards through 

the implementation of river basin management planning (RBMP) processes in all EU member 

states (Smith et al., 2014).  

It is clear that catchments are an important functional entity for hydrological and 

landscape processes. Environmental processes are altered as landscape features are 
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manipulated and changed by human activities and the catchment is a natural scale to consider 

this aspect of the environment. In the UK this has been reflected in the promotion of the 

catchment-based approach to management and planning of the water environment with 

increasing support for local river trusts and research initiatives such as the Demonstration 

Test Catchments (DTC) programme (Defra, 2013; McGonigle et al., 2014).  

The catchment area is an ideal unit to work with when looking at the land use 

management issues because everything is linked by water. What happens in one part of a 

catchment is likely to affect the remainder of the area.  For example, a soil erosion problem in 

a farm in the upper headwaters may lead to diffuse pollution problems in lower parts of the 

catchment. The extent of such connections will depend on the topography, soil and geology of 

the catchment (Wu et al., 2007). Where the soil and geology are relatively impermeable the 

topography will be the key influence on the distribution and flux of water within the 

catchment landscape. The digital representation of topography is termed a Digital Elevation 

Model (DEM). A DEM is therefore a core spatial dataset for catchment planning and 

management (McDougall et al., 2008).   

1.1.1 The importance of DEMs  

More generally, DEMs are one of the most fundamental types of spatial data used in 

Geographical Information Systems (GIS) (Li et al., 2005: Zhou et al., 2008).  DEMs are a 

form of surface model widely employed in spatial modelling applications and for 

environmental modelling in particular. They are essential for a wide range of applications in 

hydrology, geomorphology, ecology and other related fields (Maune, 2007; Li et al., 2005).  

These digital representations of topography can be used to perform numerous topographic 

analyses, such as calculations of slope, aspect, wetness index, topographic roughness and 

curvature among other topographic attributes (Lyon. 2003; Wilson, 2012; Wilson and Gallant, 

2000). An extension of such topographic analysis is hydrographic feature extraction, which 



  Chapter 1 

 

3 

 

includes delineation of stream profiles and catchments, and derivation of stream networks that 

represent catchment drainage (Liu and Zhang, 2011; Poggio and Soille, 2011; Gallego et al., 

2010; Mantelli et al., 2011; Hengl et al., 2009; Joowon, 2011, Vianello et al., 2009). Many 

hydrological processes, such as soil erosion and sediment transport are strongly dependent on 

the landscape topography and linked to catchment as the spatial reference unit. 

1.1.2 Sources of DEMs 

Terrain data acquisition is the primary stage in digital elevation modelling. DEMs can 

be created from a number of different data sources as summarised in Table 1.1. Traditionally, 

these data have been obtained directly from field survey using surveying instruments such as 

a total station or GPS, digitising information from existing topographic maps, or 

photogrammetric techniques (Li et al., 2005). These traditional methods can yield highly 

accurate digital elevation data, but they are also time consuming and labour intensive.  

In the UK, Ordnance Survey (OS) DEMs have been a common sources of terrain data. 

The Ordnance Survey (OS) created 50 m Landform Panorama and 10 m Landform Profile 

digital terrain models (DTMs) from interpolation of mapped contour lines during the 1980s. 

These contour data were themselves captured from map series completed during the 1970s 

and 1980s using photogrammetric techniques (Ordnance Survey, 2010a and b).    

During the past decade great progress has been made in more automated methods for 

DEM generation, particularly over larger regions and at the global scale. Remote sensing 

from both airborne and spaceborne sensors now provides an excellent source of worldwide 

DEM coverage (Wilson, 2012). This involves the use of optical satellite sensors, such as the 

Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) (ASTER 

Validation Team, 2009) and radar remote sensing sensors, such as the Shuttle Radar 

Topography Mission (SRTM) (Reuter et al., 2007).   
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The SRTM was a single pass interferometric synthetic aperture radar (IFSAR) mission 

conducted in February 2000 (Reuter et al. 2007). It was the first time that a global high-

quality DEM was produced with a resolution of 1 arc-second (approx. 30 m) and 3-arc second 

(90 m), however of these two datasets only 90 m data are available globally, while the 30 m 

data are restricted to USA territory (Jarvis et al. 2008). The ASTER GDEM is derived from 

stereo processing of imagery from the ASTER instrument on the Terra satellite. Version 1 of 

the ASTER GDEM (a global 1 arc-second (30 m) elevation dataset) was released to the public 

in June 2009 (Hirt et al., 2010). An improved version of ASTER GDEM (ver. 2) was released 

in October 2011 (ASTER GDEM Validation Team, 2011). Currently there are two new 

satellite and sensor systems aiming to produce a global DEMs of even higher accuracy. These 

two missions are TanDEM-X which aims to produce a global 12 m resolution DEM based on 

IFSAR images, which will be available during 2014 (DLR, 2014), and the JAXA mission 

aiming to release a global 5 m resolution DEM (PRISM 5m DEM) during 2016 based on 

three optical systems on the ALOS satellite (JAXA, 2014).  

Aerial photogrammetry and airborne radar interferometry have been used commercially 

to produce national coverage of high resolution DEMs. For example, the Bluesky 5m data 

were photogrammetrically interpolated from stereoscopic aerial photography and are available 

for England and Wales from the JISC Landmap service (Landmap 2011). Another example is 

the NEXTMap 5m data produced using an airborne IFSAR system for the USA, UK and 

some other countries within Europe and Asia by Intermap Technologies (Intermap, 2011). A 

further source of DEM information is LiDAR, which uses laser equipment on aircraft and can 

create very accurate and high spatial resolution representations of topography.  At present, 

LiDAR is more of a local or regional data resource (e.g. for cities or coastal areas), but it is 

increasing in availability all the time (Goodchild, 2009; Robert et al., 2007). In response to all 

these advances in the production of DEMs, many studies have investigated the effects of 

http://www.dlr.de/en/
http://www.eorc.jaxa.jp/en/
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DEM data sources and resolutions on the creation of an accurate representation of the Earth’s 

surface and on derived topographic attributes (e.g. McDougall et al., 2008; Vaze et al., 2010).   

 

 

 

 

1.1.3 Error and uncertainty in DEMs 

Whatever the source of data all DEMs contain some inherent errors and these result in 

uncertainty regarding height values (Liu and Bian, 2008). This uncertainty in the DEM 

representation of the terrain surface propagates to the hydrological derivatives (e.g. slope, 

aspect) computed from the DEM (Wechsler, 2007: Wilson, 2012). Accuracy can affect the 

usefulness of a DEM dataset in hydrological applications, particularly in low relief areas 

(Chirico, 2004). For example, it can be important to assess the probability of an incorrect 

output from a hydrological flow model when a particular DEM is used (Darnell et al., 2010). 

It is common to admit that the accuracy of surface features will depend on the resolution and 

Source  Resolution (m) Accuracy 
Elevation/s

urface 

Ground survey Variable but usually <5 m Very high vertical and horizontal Elevation 

GPS Variable but usually <5 m Very high vertical and horizontal Elevation 

Topo-map 
Depends on map scale and contour 

interval 
Very high vertical and horizontal Elevation 

Ortho-photography <1 Very high vertical and horizontal Surface 

LiDAR 1-3 0.15-1 m vertical, 1 m horizontal Surface 

InSAR/IfSAR 2.5-5 1-2 m vertical, 2.5-10 m horizontal Surface 

SRTM 90  16 m vertical, 20 m horizontal Surface 

ASTER 30 7-50 m vertical, 7-50 m horizontal Surface 

TanDEM-X 12 2-10 m vertical, ≤10 m horizontal Surface 

JAXA 5 5 m vertical   Surface 

Table 1.1: Key characteristics of DEM different data sources. 

Modified from Wilson, 2012; Nelson et al. (2010). TanDEM-X information were taken from Krieger et 
al., (2007), (DLR, 214) and JAXA DEM from (JAXA, 2014). 
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vertical accuracy of the DEM being used. However, some research (e.g. Hirt et al., 2010; Li 

and Wong, 2010; Zandbergen, 2006; Zhou and Liu, 2004) has demonstrated that coarser scale 

DEMs are sometimes more accurate in their representation of terrain surfaces, and that this 

can depend on the characteristics of the terrain itself and the nature of the analysis conducted 

(Wechsler, 2007).  

From a practical point of view it is therefore important to regard the quality of a DEM 

as a combination of DEM accuracy and the suitability for a certain application (e.g. surface 

water flow path modelling) (Peckham and Jordan, 2007). Knowledge of the source data used 

to derive a DEM and its impact on hydrological derivatives can help when choosing an 

elevation dataset for a particular application. In other words, quantification of the accuracy 

associated with various DEMs (different sources and different resolutions) and subsequent 

hydrologic derivatives, drainage networks and catchment boundaries would assist other 

potential users in determining whether or not a specific dataset was appropriate for a 

particular application at a certain scale (i.e. fit for purpose).  

As stated previously in Section 1.1.2, different sources, sensors, and formats with 

different characteristics like accuracy and spatial resolution have been developed to meet the 

rising demand for elevation data. Therefore, it is important that a user has an idea of how 

accurate a DEM that was created with a certain method is going to be used for a particular 

application (i.e. in catchment management) and the level of accuracy that can reasonably be 

expected.  Numerous approaches have been developed to assess the accuracy of DEM 

elevation values (Reuter et al., 2009; Wilson, 2012). This includes quantitative assessments of 

DEM accuracy as well as qualitative assessments of data usefulness (Carrara et al., 1997; 

Maune, 2007; Wilson and Gallant, 2000).   
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Many researchers have compared a set of heights extracted from the DEM with 

reference elevation values taken from a more accurate source of topographic data and then 

calculate the root mean square error of elevation (RMSE) to represent the differences between 

the estimated (DEM) and reference values (Hirt et al., 2010; Maune, 2007; Schumann et al., 

2008; Wise, 2000; Wu et al., 2008). To fully address the DEM data for overall quality and 

suitability for an intended product, a qualitative assessment should also be performed.  This 

may involve visually inspecting the spatial pattern of the DEM or its derivatives by means of 

a variety of rendering tools, such as shaded relief maps or other display techniques (Carrara et 

al., 1997; Maune, 2007). 

1.1.4 Drainage network extraction from DEMs 

In hydrology the accurate delineation of surface water drainage networks is a 

prerequisite for investigation of many catchment-based natural resource management issues 

(Liu and Zhang, 2011) and is useful, for example, in distributed hydrological modelling, 

estimation of source areas, drainage density and downslope flow path length (Orlandini et al., 

2011; Wilson, 2012). Surface water flow path is one of the most important hydrological 

parameters and investigation of the location of such networks within a watershed is vital. 

Ferrier and Jenkins (2010) argued that one of the key principles towards developing 

sustainable management of catchments is to understand the natural processes occurring within 

a catchment and in particular, to determine the physical pathways of water movement 

throughout the catchment landscape. The positive outcome of this will be seen in water 

management by helping land managers to choose the best management practices for 

maintaining water quality (Vieux, 2005).  

Automated derivation of drainage networks and catchment boundaries from DEMs is a 

well-established technique used in terrain analysis (Vogt et al., 2003) and is primarily limited 

by landscape relief and DEM resolution (McMaster, 2002). The most commonly used 
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approach is based on the deployment of a model for surface water flow accumulation. As the 

flow of water is traced downhill from a point, flow accumulation is computed for all the 

downstream points through which the water flows such that an area threshold can be set 

whereby any points with an accumulation area higher than the threshold are defined as 

streams (Colombo et al., 2007). This threshold represents the minimum contributing area 

needed to form and maintain a drainage network. The choice of flow accumulation threshold 

influences the extracted drainage network (Lin et al., 2006; Orlandini et al., 2011). As the 

extraction of drainage networks in a catchment is the first step in the simulation of 

hydrological processes (Paik, 2008), the choice of an appropriate threshold is vital (Colombo 

et al., 2007; McMaster, 2002; Orlandini et al., 2011; Wilson and Gallant, 2000). 

 Different DEMs with the same or different resolution will produce different realisations 

of stream networks and catchment boundaries. Uncertainty (error) exists in all spatial data 

(Zhang and Goodchild, 2002). However, the extent of differences in the derived stream 

networks and catchment boundaries will depend on the DEM resolution, technologies and 

methods used to collect the source data, the processing methods that are applied, and the 

complexity of the surface itself. Not surprisingly, the horizontal and vertical resolution of a 

DEM can have a significant influence on the accuracy of hydrologic delineations (i.e. 

drainage network) that are extracted from the DEM (Wilson, 2012). Therefore, the 

comparison of stream networks and catchment boundaries derived from different DEMs is an 

important aspect of quality assessment and can indicate their suitability for a particular 

application (Charrier and Li, 2012; Hengl et al., 2009; Mantelli et al., 2011; Penas et al., 

2011; Poggio and Soille, 2011). The horizontal accuracy of DEMs can be tested by 

quantifying positional offset distances between the delineated drainage networks from each 

DEM and a higher accuracy reference stream network, if we assume that the reference data 

are the best available representation of this particular feature (Goodchild and Hunter, 1997). 
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The mean of these differences (RMSE) can be used to quantify horizontal offset error 

between the reference stream channel and the delineated drainage networks. In turn, these 

errors can be comparatively evaluated to determine which DEM best describes the relative 

terrain (Mantelli et al., 2011).  

1.1.5 Soil erosion modelling 

Within a watershed, surface runoff (sometimes termed overland flow) can play a very 

important role in soil erosion and transport of diffuse pollution (Vieux, 2005; Lane et al., 

2006). Within a catchment, soil eroded from agricultural lands is one of the most obvious 

pollutants (Chapman et al., 2014) and may have other chemical particles (e.g. of phosphorus) 

associated with it (Haygarth et al., 2005). Hydrological pathways can exert a major control on 

where soil is eroded within a landscape and whether it is subsequently delivered to 

watercourses (Ferrier and Jenkins, 2010; Reaney et al., 2011). Surface hydrological 

connectivity can be assessed through analysis of the potential pattern of soil moisture and 

saturation within the catchment (Lane et al., 2006). The spatial pattern of soil moisture 

throughout a catchment depends partly on its landscape topography (Wu et al., 2007). 

Therefore, DEMs are crucial surface representations in soil erosion modelling.  

Digital elevation models have been widely used in a geographical information system 

(GIS) to extract the topographical and hydrological characteristics of a catchment in soil 

erosion and diffuse pollution studies (Datta and Schack-Kirchner, 2010; Shen et al., 2013).  

Estimation of soil erosion loss is often difficult due to the complex interplay of many factors, 

such as climate, land cover, soil type, topography, and human activities. Accurate estimation 

of soil erosion loss or evaluation of soil erosion risk at a catchment or river basin scale has 

become an urgent task (Owens and Collins, 2006). However, in many situations, land 

managers and policy makers are more interested in the spatial distribution of soil erosion risk 

than in absolute values of soil erosion loss. To address this need the combined use of 
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geographical information system (GIS) and erosion models has been shown to be an effective 

approach in estimating the magnitude and distribution of soil erosion risk (Prasuhn et al., 

2013). Studies have also been carried out to evaluate the effect of spatial resolution on the 

accuracy of soil erosion prediction (Cochrane and Flanagan, 2005; Lee and Lee, 2006; 

Molnar and Julien, 1998; Rojas et al., 2008; Wu et al., 2005; Zhang et al., 2008). 

1.1.6 The role of GIS 

Geographical information systems (GIS) are now considered as a key component of 

many environmental studies and their advantages for watershed studies have been recognised 

(Lovett and Appleton, 2008; Lyon, 2003). GIS are computer-based tools that facilitate 

mapping and spatial analysis of the Earth's features and processes. One particularly important 

role of a GIS in catchment modelling is to provide an environment for the integration of 

spatial data at multiple scales collected from different sources (e.g. ground, air and space 

borne sensors) to create spatial datasets of catchment characteristics. Therefore, GIS layers 

describing topography, land use and land cover, soil types and, rainfall become model 

parameters or inputs in the simulation of hydrological processes (Vieux, 2005).  

1.1.7 Summary  

Catchments are increasingly recognised as important units for many types of 

environmental management and planning. This is particularly true of the water environment, 

where local catchment-based approaches have become increasingly common in the UK.  It is 

also clear that understanding of many key catchment processes depends on accurate 

representations of the topography involved. As a consequence, it is important to evaluate the 

effect of using different DEMs in hydrological analysis and catchment management 

applications. By doing so, it is hoped that this research will provide guidance to local 

catchment managers and organisations such as river trusts about the best use of DEM datasets 

in developing catchment understanding and plans.  
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1.2 Aims and Objectives 

1.2.1 Main aim 

Given the above context the overall aim of this research is to understand accuracies and 

uncertainties associated with different digital elevation datasets derived from different sources 

and to explore the implications of their use in hydrological analysis and catchment 

management applications. This will include the assessment of stream networks and catchment 

boundaries, as well as the implications for soil erosion and diffuse pollution modelling. The 

latter are particularly important in terms of the effective spatial targeting of catchment 

management activities. 

1.2.2 Objectives 

To achieve the general aim stated above, the specific objectives of this research are: 

1.  To evaluate the accuracy of different DEM datasets representing the same region 

and surface type but derived from different sources.  

 

2. To determine an appropriate threshold value (flow accumulation threshold) that 

can be used to accurately delineate channel networks in a study catchment.  

 

3. To quantitatively compare the positional accuracy of drainage networks derived 

from different DEMs.  

 

4. To conduct an assessment of soil erosion and diffuse pollution risk in the study 

catchment using different DEMs. A particular focus of this investigation will be to 

identify the locations (or sub-catchments) of high risk soil erosion areas within the 

study catchment using RUSLE and SCIMAP modelling techniques.  
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1.3 Structure of the Thesis 

This chapter has described the context of the thesis research and set out the general 

aim and objectives. Chapter 2 reviews the existing research literature with respect to Digital 

Elevation Models, drainage network extraction from DEMs and soil loss and diffuse pollution 

modelling. This leads to a refinement of the research objectives. 

Chapter 3 briefly describes the study area (the River Wensum catchment). The 

descriptive of the elevation datasets (ASTER, SRTM, Landmap, Bluesky, OS Landform 

Panorama, OS Landform Profile and NEXTMap) as well as  the quality assessment of all the 

elevation datasets used in the study are presented in Chapter 4. Quantitative and qualitative 

assessments of all DEMs are performed using several different approaches. Firstly, the 

accuracy of each DEMs is assessed using elevation and slope descriptive statistics and 

histograms, cross-sectional profiles, and analytical shading images (hillshade). Secondly, an 

analysis of DEM accuracy against a higher accuracy reference data set is undertaken. Finally, 

an assessment of whether or not these elevation datasets are of sufficient quality (fitness for 

purpose) for catchment management studies is made, and five elevation datasets out of seven 

are selected for further investigation.   

Chapter 5 is devoted to the determination of an appropriate supporting area threshold to 

delineate an adequate channel network in the Blackwater sub-catchment using the selected 

DEMs from the previous chapter. Three approaches are examined; trial and error, 1% of the 

maximum flow accumulation value (a rule of thumb), and the area-slope relationship 

approach. Chapter 6 goes on to compare the extracted stream networks using two different 

methods. In the first, stream networks are extracted directly from the original DEMs; in the 

second, an error propagation method (Monte Carlo approach) is used to determine a 

probabilistic estimation of the stream networks and then identify the most probable stream 

network.  The second part of this chapter investigates the positional accuracy of the predicted 



  Chapter 1 

 

13 

 

stream networks by comparing them with a higher accuracy reference drainage network using 

horizontal RMSE and different buffer zones.   

Chapter 7 examines soil erosion and diffuse pollution issues within the study catchment 

using the SCIMAP and RUSLE modelling frameworks. Outputs from the SCIMAP diffuse 

pollution and fine sediment connectivity model are discussed in the first part of the chapter. 

The second part outlines the use of the empirical universal soil loss equation (RUSLE) to 

estimate potential soil loss from fields in the study catchment.  Within a GIS environment the 

RUSLE is then applied to the study catchment for two different farming years using two 

different DEMs. Results from both SCIMAP and RUSLE are compared to each other and also 

are validated and compared against water quality data collected across the study catchment. 

The final chapter (Chapter 8) summarises the main findings of this study, considers the 

implications for catchment management and discusses future research priorities.
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Chapter 2   

Literature review 

 

2.1 Introduction 

Chapter 1 highlighted how a catchment-based approach has been promoted by a range 

of organisations and initiatives for effective management of water quality. These include the 

EU Water Framework Directive (WFD) (Benson et al., 2014), the US Environmental 

Protection Agency (USEPA) in America (Ferrier and Jenkins, 2010) and the Demonstration 

Test Catchment (DTC) programme in the UK (McGonigle et al., 2014). The WFD aspires to 

achieve good ecological and good chemical status for all surface waters through successive 

six-year cycles of measures (initially 2009-15). A surface water is defined as of good 

ecological status if there is only slight departure from the biological community that would be 

expected in conditions of minimal human impact (Kallis and Butler, 2001).  It has also been 

recognised that the key principles towards developing sustainable catchments management 

are firstly to understand the hydrological processes occurring within the catchment, in 

particular, to determine the surface pathways of water movement across the catchment 

landscape. Secondly, to identify possible locations within the catchment landscape where 

nutrients and pollutants are generated (e.g. hotspots of soil erosion) and how they may be 

transported to the watercourses. It has been shown that catchment geomorphology and 

hydrology exert control over the natural processes occurring within the catchment, and DEMs 
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provide a wealth of information regarding catchment geomorphology and hydrology 

(Martinez at al., 2010). Therefore, ensuring that a DEM dataset accurately represents 

catchment surface topography is critical to understanding the natural processes occurring 

throughout the catchment landscape, which in turn has an important bearing on water quality 

management. Hence, this chapter starts (Section 2.2) by providing insight into DEMs 

themselves, their sources, structure, associated uncertainty, and their derived topographic 

parameters. This leads on to consideration of issues related to drainage network extraction and 

diffuse pollution modelling. 

2.2 Digital Elevation Models (DEMs) 

2.2.1 Concept and definition 

Digital elevation data are samples of the Earth’s surface elevations stored and handled 

in a digital environment, which have been defined by many authors in many different ways. 

The simplest definition is the one by Burrough (1986) that the DEM is any digital 

representation of the continuous variation of relief over space, or more briefly any digital 

representation of the terrain. Based on one of the most widespread definitions, the digital 

elevation model is a representation of the Earth’s surface excluding natural or artificial 

features (Peckham and Jordan, 2007).  Also, a DEM is defined as a mathematical model of 

the Earth‘s surface that, at present, is the most powerful method of representing relief.  Fisher 

and Tate (2006, p.468) have defined a DEM as “a set of elevation values which are recorded 

on a regular grid, most commonly in a square form, less frequently in a triangular or 

rectangular form”. Three types of terrain model are commonly distinguished: digital elevation 

model (DEM), digital terrain model (DTM) and digital surface model (DSM) (Maune, 2007). 
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Maune (2007) stated that, unless specifically referenced as a DSM, the generic DEM 

normally implies elevations of the bare earth surface void of vegetation and man-made 

features, and this bare earth DEM is generally synonymous with a DTM.  The difference 

between a DSM and a DTM is that a DTM represents bare ground elevations whereas a DSM 

contains elevation information about all features in the landscape, such as vegetation, 

buildings, and other structures (Maune, 2007).  Jordan (2007) argued that a DEM is the most 

basic type of a DTM, and is defined as a spatial distribution of elevations above some 

arbitrary datum in a landscape.  Li et al (2005) reported that a DEM is a subset of a DTM and 

is the most fundamental component of a DTM. Maune (2007) stated that DTMs may be 

similar to DEMs, but they may also incorporate the elevation of significant topographic 

features on the land, plus mass points and break lines that are irregularly spaced, so as to 

better characterize the true shape of the bare earth terrain.  The term DTM is often used 

because ‘terrain’ often implies attributes of a landscape beyond just the altitude of the land 

surface. For the purposes of this research, the term DEM will be used as described above and 

as used in Maune (2007). 

2.2.2 Elevation data structure 

A continuous surface, such as that of the Earth’s surface, has an infinite number of 

points. Therefore, it is impossible to record every point, and consequently a sampling method 

must be used to extract representative points.  These discrete points can then be used to build 

a surface model that approximates the actual surface. The generation of DEMs includes three 

interrelated tasks: (i) the sampling of the land surface (e.g. the collecting of height 

measurements); (ii) creating a surface model from the sampled heights; and (iii) correcting 

errors and artefacts in the surface model (Wilson, 2012). Fisher and Tate (2006) mentioned 

that a DEM is usually the end result of a number of modelling and processing steps, as 

illustrated by the flowchart in Figure 2.1 below.  Digital elevation data are usually organized 
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Interpolation 

Digital Model DEM 

TIN Interpolation 

Digitization of Contours 

Contour Map 

Photogrammetric Survey 

The Land Surface 

into one of three data structures; regular grid/raster models, triangular irregular networks 

(TIN), or contour lines, depending on the source and/or preferred method of analysis.  

 

 

 

 

 

 

 

 

2.2.2.1 Contour lines 

Contour lines are defined as a set of lines that connect points of the same elevation 

value on a surface (Figure 2.2a).  Each contour line contains an infinite number of potential 

sample points which are connected together to draw a continuous line following the contour 

across the surface.  They are an excellent representation of the heights and variations of a 

surface for a two-dimensional printed map.  This is because, with topographic maps, it is easy 

to interpret the contours since anyone can look at contour lines on a map, can recognize 

peaks, ridges, valleys, relative slope, aspect, stream direction, and other characteristics that 

cannot all be easily interpreted from a TIN or a grid (Maune, 2007).  Contour accuracy 

depends upon whether the lines have been generated from primary or derived data.  Contours 

were historically created by manual interpretation of spot heights, but more recently have 

been derived through a photogrammetric process. When contours have been captured directly 

Process Example 

Figure 2.1: A flow chart showing the process of construction of a 

DEM through the intermediary of a contour map. After Fisher and 
Tate (2006). 
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from aerial photographs as primary data using a stereoplotter, the contours are highly accurate 

(El-Sheimy et al., 2005).  If the contours have been generated from point data, the location of 

the contours must be interpolated between known values.  However, contours can be derived 

from a TIN or grid DEM and vice versa.  Jordan (2007) stated that contour lines are the form 

of topographic surface representation which can be converted to grid DEM by interpolation 

after contour line digitisation.  On the other hand, Maune (2007) mentioned that, today, most 

contours are derived from a TIN or grid which is already created by other techniques. 

The major drawback of contours is that there is no data between contour intervals and 

they only indicate surface values along the lines. Therefore, once the surface has been 

represented as contours, interpolation can be used to derive an elevation for locations between 

contours and may not provide an accurate portrayal of the topography.  This phenomenon is 

particularly apparent when the distance between contours is large, due to either a large 

elevation interval between contours, or in low relief terrain, where a greater horizontal 

distance is covered between contour intervals. Contours have often been used by 

cartographers to represent relief and profiles. However, due to their crude topological 

structure, they are not particularly suitable for automated spatial analysis of ground 

morphology. Even the derivation of slope or shaded relief maps from contours is a rather 

cumbersome operation (Carrara et al., 1997). 

 

 

(a) (b) (c) 

Figure 2.2: Examples of elevation data structure: (a) contour lines; (b) square grid; and (c) 

triangular irregular network (TIN). Source: Wilson and Gallant (2000).   
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2.2.2.2 Grid or raster structure 

The most common elevation data form is the regular grid DEM, a gridded set of points 

in Cartesian space attributed with elevation values that describe the Earth’s surface (El-

Sheimy et al., 2005; Fisher and Tate, 2006; Maune, 2007; Wilson, 2012; Wilson and Gallant, 

2000).  Grids have a matrix structure of regular grid cells (usually square and known as raster 

cells) with an average elevation value that is representative for the area that comprises each 

cell (Figure 2.2b).  Spatial resolution in the X and Y directions refers to the cell size or the 

width and length of a single cell, which determines the precision of the grid representation. 

The size of a grid cell depends upon the level of detail of the input data used to create the grid 

and the data resolution required for the most detailed analysis. The smaller the cell size, the 

higher the resolution of the DEM, which is separate from the quality of the original data.  The 

cell must be small enough to capture the required detail, but large enough so that computer 

storage and analysis can be performed efficiently.  Gridded terrain models are appropriate for 

small scale mapping applications where absolute positional accuracy is not paramount and 

where surface features do not need to be characterised exactly (Maune, 2007). 

In a GIS environment, square-grid DEMs are the most commonly used data structure 

because of their simplicity and ease of computer implementation (Wilson and Gallant, 2000), 

and hence are utilised in the majority of environmental models (Raaflaub and Collins, 2006). 

A regular grid data structure is needed for spatial data manipulation by GIS (Peckham and 

Jordan, 2007).  Therefore, its widespread use as a model of surface form may be attributed to 

its easy integration within a GIS environment.  Moreover, the simplicity of data handling in 

surface analysis makes gridded DEMs the most popular among users (Hengl and Reuter, 

2008). 

Although the grid format is a fast and efficient data structure for analysis algorithms, 

and is a useful DEM structure to perform numerous topographic analysis - such as 
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calculations of contours, slopes, aspects, hill shading images as well as delineations of 

drainage networks and catchment areas - it is not without disadvantages. Maune (2007) 

argued that the disadvantages of the grid representation are that surface discontinuities such as 

ridges and stream centrelines are not well represented, and precise locations for features such 

as peaks are lost in the sampling of the grid.  He also mentioned that, for these same reasons, 

grids are not good for representing man-made objects such as road cuts, buildings, etc., but 

are good for bare earth terrain models.  When information is represented in grid (raster) form, 

all detail about variation within cells is lost, and instead the cell is given a single value 

(Longley et al., 2005).  

Burrough et al. (1998) and Moore et al. (1991) also stated that a gridded DEM has 

several weaknesses: (1) inability to adapt to areas of differing relief complexity without 

changing the grid size; (2) grid spacing needs to be based on the roughest terrain in the 

catchment, resulting in redundancy in smoother areas; (3) resolution affects the results and 

computational efficiency; and (4) the computed flow paths tend to zigzag, not follow the 

drainage lines, and are hence systematically too long.    

2.2.2.3 Triangular Irregular Networks (TIN) 

A TIN is a digital terrain model that is based on an irregular array of points, which 

approximates a topographic surface by connecting this set of irregularly spaced elevation 

vertices into non-overlapping triangular facets (Figure 2.2c).  The points used to construct a 

TIN come from individually sampled locations or from the vertices of linear features.  Ideally, 

these represent a set of critical locations on the surface which defines breaks in slope such as 

peaks, pits, ridges, valleys, and passes (Maune, 2007). 

The accuracy of a TIN is consistent with the degree of variation in the terrain. 

Therefore, the accuracy of a TIN is limited by the selection of input data points; well-chosen 
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points will be located so as to capture significant changes in the modelled surface, such as 

topographical summits, breaks of slope, ridges, points along streams, pits and cols.  As the 

terrain becomes complex, the density of the TIN should be increased accordingly.  This 

occurs because more points are sampled and included in the TIN model in areas of high 

complexity.  This is an advantage of the TIN model over other surface representations since 

where there is a little variation in the terrain surface only a small amount of data is stored, and 

where there is much variation, more data is stored. However, TINs have several 

disadvantages. There are not as many tools to process TINs as with gridded DEMs, and, 

because of their complex structure, some operations are not as efficient (Maune, 2007).  

2.2.3 DEM quality issues 

2.2.3.1 Introduction 

Data quality assessment has become a core practice in fields such as GIS (Zhang and 

Goodchild, 2002) and remote sensing (Lunetta and Lyon, 2004).  The quality of spatial data 

means how well these data represent reality and fulfil the requirements of users (Ehlschlaeger 

and Goodchild, 1994). Digital elevation models (DEMs) are a representation of the Earth’s 

surface but with unavoidable inherent errors, which result in DEM uncertainty (Liu and Bian, 

2008).  The quality of a DEM, in terms of horizontal and vertical accuracies, is dependent 

upon a number of interrelated factors, including the methods of data acquisition, the nature of 

the input data, and the methods employed in generating the DEMs (Weng, 2002; Wilson and 

Gallant, 2000).  As DEM generation goes through a multitude of processes, uncertainties are 

inherited as early as from the data source and post-processing production methods (Zhang and 

Goodchild, 2002).  For most GIS-based environmental studies, primary topographic indices 

such as basic descriptive statistics of elevation (e.g. maximum, mean, minimum, and standard 

deviation), local relief, slope, aspect, curvature and hydrological products such as flow 
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direction, flow accumulation and watershed boundaries are often required for specific 

environmental models (Hebeler and Purves, 2009). While derived from the digital elevation 

model (DEM), these parameters often display noticeable uncertainties due to the accuracy of 

the DEM (e.g. sample errors, interpolation errors, and representation errors) and to the spatial 

structure of the DEM (e.g. precision and grid resolution) (Zhou and Liu, 2008). 

Authors categorize spatial data quality as a function of three primary components: 

accuracy, precision and uncertainty (Chrisman, 1991; Maune, 2007). Accuracy refers to the 

closeness of measured values, observations or estimates to the real or true value (Chrisman, 

1991). The accuracy of a DEM is considered critical when the DEM data are used for 

environmental modelling and for the prediction of the spatial distribution of hydrological, 

geomorphological, and biological properties (Thompson et al., 2001).  The term ‘precision’ is 

used to describe random errors; the smaller the random error, the greater the precision 

(Atkinson and Foody, 2002; Wise, 2000). The difference between accuracy and precision is 

often not understood (Atkinson and Foody, 2002).  Our lack of knowledge about the 

reliability of a measurement in its representation of the true value is referred to as 

‘uncertainty’.  Uncertainty is a measure of what we do not know and exists in all spatial 

databases (Longley et al., 2005). 

In general, the quality of a DEM determines the quality of the products derived from it 

(e.g. slope, aspect, flow direction).  The methods used to acquire elevation data and the 

processes or techniques used to transform these data into a digital elevation model have 

marked impact on the final DEM and, consequently, on the derived products (Wilson and 

Gallant, 2000; Maune, 2007; Li et al., 2005; El-Sheimy et al., 2005; Wechsler, 2007; Charrier 

and Li, 2012; Hirt et al., 2010; Hodgson et al., 2003; Rayburg et al., 2009).  In many cases, 

the derived parameters of the Earth’s surface models are often in more demand than the DEM 

itself because they are key components of applied models.  
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2.2.3.2 Source and type of DEM errors 

As mentioned above, DEM accuracy can be defined as the degree of closeness of an 

observation or estimated value to the true value (Carlisle, 2005).  Values which are very close 

to the true values have higher accuracy and those that are far from the true values have lower 

accuracy.  Sources of DEM error are closely related to DEM production methods. Generally 

speaking, the accuracy of a DEM depends on (i) elevation source data, including the 

techniques for measuring elevations either on the ground or remotely, the density of 

observations, and the location of samples; (ii) the interpolation method used to create the 

DEM from the raw elevation data; (iii) DEM data structure (e.g. grid, contour, TIN); and (iv) 

the surface complexity of the landscape being modelled. Therefore, error is implicitly 

associated with any DEM, but usually the error magnitude and spatial distribution for any 

particular location are unknown (Hebeler and Purves, 2009). The error from different sources 

and processing methods can be categorised into three groups namely; gross, systematic and 

random errors (Fisher and Tate, 2006; Li et al., 2005; Wechsler, 2007).  Gross errors are 

blunders that result from operator error or equipment failure and are easily detected and 

removed (Fisher and Tate, 2006).  Gross errors are, in fact, mistakes (Li et al., 2005). 

Systematic errors result from the procedures used in the DEM generation process that show 

some form of dependency or trend that can cause bias or artefacts in the final DEM product, 

which as such, can be eliminated or reduced (Wechsler, 2007).  Random errors occur due to a 

lack of precision from a variety of operational tasks and are introduced for unknown reasons. 

They cannot be governed by certain standard rules, thus they remain in the data after gross 

and systematic errors are removed (Maune, 2007; Wechsler, 2007).   

2.2.3.2.1 Errors in contour-based DEMs 

The quality of contour-derived DEM is affected by the data source used to create the 

map, interpolation method, grid cell size selected and the terrain complexity (Fisher and Tate, 
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2006; Wilson and Gallant, 2000). Errors in the source map data generally come from the 

process of collection, recording, and generalization inherent in the cartographic process 

(Fisher and Tate, 2006). The contour interval of topographic maps used to collect elevation 

data may affect the density and the distribution of data. The elevations can be derived by 

manually digitizing the contour lines from paper maps or from scanned maps (El-Sheimy et 

al., 2005).  In both techniques, errors can occur during the digitizing/scanning process or in 

automatically identified contour lines.  For example, when obtaining digital elevation data 

from cartographic contour lines, a vertical error can be caused by the operator tagging the 

wrong elevation value to a contour line.  However, the general quality of the derived DEM is 

improved if great efforts are made to extract terrain characteristic features and break lines as 

well (Weng, 2002).  

2.2.3.2.2 Errors in passive sensors-based DEMs 

DEMs produced from photogrammetric techniques are affected by both human errors 

and instrumental errors (Hunter and Goodchild, 1995).  In photogrammetry these errors arise 

due to changes in film media, instrument errors, software precision, and interpolation.  Fisher 

and Tate (2006) stated that the production of DEMs from photogrammetry introduces both 

random and systematic errors.  Random errors may accrue through the lack of precision in the 

identification of target points on a photograph as part of the process of aerial triangulation, 

and systematic errors may occur from changes in the film media, instrument errors and from 

human errors.  The resulting DEMs often have spikes or pits in places where the algorithm 

used to generate the DEM incorrectly matches two points from the stereo pair (Nelson et al., 

2009).  

All aerial and satellite imagery capture Earth’s surface cover rather than the bare earth 

surface, so the resulting DEM will include heights of vegetation and man-made objects which 

can also result in rough surfaces and high slope values (Reuter et al., 2009). Consequently, the 
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elevation data produced are more a DSM rather than DTM. Therefore, applications that 

required bare-earth surface DEMs need to have the surface elevation measurements corrected 

to bare surface elevations (Hensley et al., 2007).  Another serious problem in DEMs derived 

by this method is the existence of voids or NODATA areas because of cloud contamination in 

the data. Areas covered by cloud will be obscured in the visible and near-infrared 

wavelengths, leading to gaps in the data (Nelson et al., 2009). For example, a validation study 

of the digital elevation data produced from ASTER stereo images (GDEM1) identified a 

number of artefacts associated with this DEM due to the effect of cloud cover and inland 

water bodies (ASTER GDEM Validation Team, 2011).   

2.2.3.2.3 Errors in active sensors-based DEMs 

The quality of elevation information collected by active systems (e.g. LiDAR and 

IFSAR) is related to sensor and terrain surface characteristics. The data collected by active 

systems may require not only interpolation, but also considerable processing to obtain the 

resultant DEM (Fisher and Tate, 2006). Similar to the passive system, radar elevation data 

usually represent the visible surface rather than the land surface. In radar DEMs, for example, 

the natural vegetation and man-made objects are seen as small hills, elevated plateaus, 

escarpments or islands (Reuter et al., 2009). Often in radar-based DEMs, errors were found 

higher on vegetated areas due to the tendency of the signal to reflect from the canopy 

(LaLonde et al., 2010), and voids were found over water bodies, in desert and mountain areas 

(Rodriguez et al., 2006). In general, natural vegetation and man-made objects in radar and 

LiDAR DEMs can be quite problematic, and often require a number of post-processing and 

filtering steps (using high resolution auxiliary data) to filter out the impact of these features 

(i.e. conversion from DSM to DTM) (Reuter et al., 2009). An example of a radar imagery-

based DEM is the SRTM DEM (Farr et al., 2007).  
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2.2.3.3  Measures of DEM accuracy 

DEM accuracy has received considerable attention since DEMs came into widespread 

use in the 1980s. Many studies have sought to quantify DEM accuracy and compare the 

accuracy of DEMs produced using different data sources and production methods (Carlisle 

2005). Different data sources (i.e. radar, optical or contour) and methods incorporate 

systematic and random errors that can generate bias in elevations which then propagate 

through derived parameters (slope, aspect, etc.) (Wilson, 2012).   The assessment of errors in 

DEMs is often complex, since errors can be introduced at many stages of the DEM production 

process through to the use of the DEM (Figure 2.3).  The measurement of errors in DEMs is 

often impossible because the true value for every geographic feature or phenomenon 

represented in a geographic data set is rarely determinable (Ravibabu and Jain, 2008).  

According to Weng (2002), uncertainty may be a better means of describing the quality of a 

DEM than error. 

 

.  

 

 

 

 

 

 

 Figure 2.3: Digital elevation model and uncertainty (modified from Wilson, 2012) 
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Quantifying uncertainty in DEMs can be achieved by comparing the elevations in a 

DEM surface with sample point measurements known to be of a higher order of accuracy 

(Hohle and Hohle 2009).  Fisher and Tate (2006) also noted that the error of a DEM can be 

determined by comparing this dataset with other more accurate measurements, known as 

reference data and assumed to be free of error. Such a comparison results in elevation 

differences (residuals) at the tested points. This approach is the most common in DEM 

evaluation studies (Anderson et al., 2005; Li et al., 2005; Wise, 2008).  Statistical measures 

such as Root Mean Square Error (RMSE), Standard Deviation (SD) and Mean Error (ME) are 

the conventional ways to analyse the deviation between two sets of elevation data. The most 

widely used measure to represent the difference between the DEM values and the reference 

values is the Root Mean Square Error, and it is mathematically expressed as follows:  

 

RMSE =  
              
   

 
           (Equation 2.1) 

where ZDEM  is the  measurement of elevation from the DEM, ZRef is the corresponding higher 

accuracy measurment of elevation and   is the number of spot heights. 

Published assessments of DEM quality often quote Root Mean Square Error (RMSE) 

values. For example, the United States Geological Survey (USGS) describes the accuracy of 

its 7.5 minute DEMs with one RMSE value for each quadrangle or tile. The RMSE 

calculation for each quadrangle requires a minimum of only 28 points (USGS, 1998). The 

widely quoted National Standards for Spatial Data Accuracy (NSSDA), given by the Federal 

Geographic Data Committee (FGDC, 1998), recommend the use of a minimum of 20 

checkpoints to reflect geographical area of interest and the error distribution in the dataset. 

Such standards assume a normal distribution of residuals.  In the UK, the Ordnance Survey’s 
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digital contour data have included a single statement of the RMSE (±1.8m) in their products 

metadata, claiming that it is the same for the whole national dataset (Ordnance Survey). The 

larger the value of the RMSE, the greater the difference between two sets of measurements of 

the same phenomenon. 

 Many studies have been conducted to quantify DEM accuracy and compare the 

accuracy of DEMs created using different data sources and production methods. Hirt et al. 

(2010) examined the quality of SRTM version 4 and ASTER version 1 elevation datasets 

among others over Australia, based on a set of ground control points using the statistical 

measures stated above (e.g. RMSE, SD and, ME). They found vertical accuracies of 

approximately 6 m and 15 m for SRTM and ASTER, respectively.  Another study conducted 

by Reuter et al. (2009) evaluated the horizontal and vertical accuracy of ASTER GDEM data 

and found that the average RMSE values of GDEM were between 18 and 29 m.  

Nikoloakopoulos et al. (2006) evaluated the elevation differences between SRTM and 

ASTER products using the root mean square error (RMSE) over regions in the island of 

Crete, Greece, which was found to be less than 50 m.  Hodgson et al. (2003) investigated the 

elevation accuracy of LiDAR and IfSAR derived DEMs with USGS level 1 and level 2 DEMs 

using RMSE and other statistical measures.  Survey-grade points were used as reference 

points.  They found that the LiDAR and contour to grid derived DEMs exhibited the highest 

overall absolute elevation accuracies.  

The main advantage of RMSE lies in its easy computation and straightforward 

interpretation. However, a major drawback of the RMSE is that this measure is usually a 

single global measure of deviation for each DEM based on comparisons with higher accuracy 

reference data, and thus does not account for the spatial variation of errors over the surface of 

the DEM (Gonga-Saholiariliva et al., 2011; Fisher and Tate, 2006; Weschsler and Kroll, 

2006).  The RMSE does not provide an accurate assessment of how well each cell in the DEM 
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represents the true elevation value and assumes that DEM errors are random (Wechsler and 

Kroll, 2006). The RMSE is not necessarily a good description of the statistical distribution of 

the error (Fisher and Tate, 2006).  Therefore, assessment of DEM uncertainty requires more 

definitive information regarding the spatial structure of DEM error beyond that provided by 

the RMSE. This was the motivation of a large body of research focusing on DEM error 

modelling (Darnell et al., 2010; Hebeler and Purves, 2009; Hunter and Goodchild, 1997; 

Oksanen and Sarjakoski, 2005; Raaflaub and Collins, 2006; Wechsler and Kroll, 2006).  

As mentioned earlier, in the context of spatial databases, it should be realized that 

error has a very different meaning to uncertainty (Foody and Atkinson, 2002). The concept of 

error is, in fact, narrower than that of uncertainty. The former relates to individual 

measurements; the actual difference between an individual result and the true value. 

Therefore, error is a single value. On the other hand, uncertainty relates to a measure of what 

is not known or not known with certainty about the reliability of a measurement in its 

representation of the true value (Wechsler and Kroll, 2006). Inaccuracy, ambiguity and 

vagueness all contribute to the notion of uncertainty in the broadest sense (Longley et al., 

2005) 

In a GIS analysis, the effect of DEM uncertainty is not well understood for all terrain 

derivatives, in particular the more complex ones.  For such a GIS operation, error propagation 

(uncertainty) to the terrain derivatives can be modelled by the Monte Carlo simulation method 

(Hunter and Goodchild, 1997). The Monte Carlo method, sometimes called stochastic 

simulation, is a technique that has been widely used to assess uncertainty in data derived from 

DEMs by creating a set of potential realisations of the DEM and of the derived features (e.g. 

Darnell et al., 2010; Darnell et al., 2008; Hengl et al., 2010; Hunder and Goodchild, 1997; 

Oksanen and Sargakoski, 2005; Poggio and Soille, 2011; Wechsler and Kroll, 2006). The 

assumption behind it is often based on DEM residuals with a zero mean and normal 
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distribution (the standard deviation of the distribution being based on RMSE calculated from 

comparison with a higher accuracy data source), although it is accepted that it can often be 

unrealistic and should be considered as the worst-case scenario (Hunter and Goodchild, 

1997).  However, simulation does not ensure that a ‘true’ map of a derivative (e.g. streams) is 

generated from the process, but provides a distribution of results within which it can be stated 

that the ‘real’ map lies. The high number of studies that use Monte Carlo simulation to assess 

uncertainty indicates that this is a preferred method for quantifying DEM uncertainty and its 

propagation to DEM derived derivatives (Wechsler, 2007). Error tends to be spatially 

autocorrelated, however, this is not always considered in such assessments. 

The underlying assumptions of the simulation procedure as applied to DEM 

uncertainty assessment are as follows: (1) DEM error exists and constitutes uncertainty that is 

propagated with manipulation of the elevation data; (2) the true nature and extent of these 

errors are unknown; (3) DEM error can be represented by a distribution of DEM realisations; 

and (4) the true surface lies somewhere within this distribution (Lindsay and Evans, 2008; 

Poggio and Soille 2011). Thus, uncertainty characterizes a range of values within which the 

true value is asserted to lie with some level of confidence. 

2.2.4 DEM based topographic parameters 

The DEM provides a base dataset from which topographic derivatives are digitally 

generated. The raster grid structure lends itself well to neighbourhood calculations which are 

frequently used to derive these parameters (Wechsler, 2007; Wilson, 2012). Topographic 

parameters may be divided into primary topographic parameters, such as slope, aspect, 

surface curvature, or catchment area, and secondary parameters, such as the topographic 

wetness index, or stream-power index (Wilson and Gallant, 2000). The primary attributes are 

calculated directly from the elevation data or from one of its derivatives, whereas the 
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secondary attributes are calculated from two or more primary attributes (Oksanen and 

Sarjakoski, 2005; Wechsler, 2007).  These terrain attributes are used extensively in 

hydrological applications and are derived directly from the DEM.  Table 2.1 shows some of 

these derivatives and their applications.  The path of water through the landscape (routing of 

water) is controlled by topography, and DEMs are the best means of depicting and analysing 

topography in a GIS (Holmes et al., 2000).  Flow direction is derived from slope and aspect.  

From flow direction, the upslope contributing drainage area that contributes flow to a cell can 

be calculated, and, from these maps, drainage networks and catchment boundaries can be 

identified (Do et al., 2011). Wilson and Gallant (2000) provide a detailed review of the DEM-

derived primary and secondary topographic attributes. 

 

 

 

 

Derivative Description Applications 

Slope Rate of change of elevation Overland and sub-surface flow, runoff rate, soil and land 

capability assessment. 

Aspect Compass direction of steepest downhill 
gradient 

Solar irradiance, evapotranspiration, flow direction. 

Profile curvature Rate of change of gradient Flow acceleration, erosion/deposition zones. 

Plan curvature Rate of change of aspect Converging/diverging flow, soil water properties. 

Flow direction Direction of downhill flow Computing surface topology, material transport. 

Upstream area Number of cells upstream of a given cell Watershed delineation, volume of material passing 
through a cell. 

Stream length Length of longest uphill path upstream od a 
given cell 

Flow acceleration, erosion rates, sediment yield. 

Stream channel Cells with upstream area greater than a 

specified threshold 

Location of flow, flow intensity, erosion and 

sedimentation. 

Ridge Cells with no upstream area Drainage divides; soil, erosion and geological analysis. 

Wetness index ln(upstream area/tan(slope)) Index of soil saturation potential. 

Stream power index Upstream area*tan(slope) Index of the erosive power of overland flow. 

Table 2.1: DEM derivatives and their application. 

Source: Modified from Ravibabu and Jain, 2008; Wilson and Gallant, 2000; and Wilson, 2012.  
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Derivatives derived from DEMs are sensitive to both the quality of the DEMs from 

which they were generated and the algorithms used to derive them (Wise, 2007). Numerous 

algorithms have been developed for calculating topographic parameters from DEMs.  For 

example, slope is often calculated for the centre cell of a 3 x 3 matrix from values in the 

surrounding eight cells.  Algorithms behave differently in the way that the surrounding values 

are selected to calculate change in elevation (Wechsler, 2007). Many different algorithms 

have also been developed to calculate flow direction from a gridded DEM data and are 

described as single or multiple flow direction algorithms (Wechsler, 2007). The method most 

commonly used is the one introduced by O’Callaghan and Mark (1984), which determines the 

direction that water will flow from a cell to one of its eight neighbouring cells with the lowest 

elevation; this single flow direction is also referred to as Deterministic 8-Direction (D8) 

(Wise, 2007).  Flow routing is further discussed Section 2.3.4.  

2.2.5 DEM resolution for representing topography 

The quality of a DEM refers to more than just its vertical accuracy. The spatial 

resolution is also a very important aspect that has an effect on the DEM accuracy and its 

derivatives (Wu et al., 2008b). The size of a grid cell is commonly referred to as the DEM 

resolution, with a smaller grid cell indicating a higher resolution. Smaller grid cell sizes can 

capture more detail and smaller variations in topography. DEM accuracy decreases with 

coarser resolutions due to the averaging of elevations (Li, 1992).  It is well known that the 

accuracy of most terrain attributes derived from a DEM is affected by variations in the 

underlying grid cell size (Kienzle, 2004).  Vaze et al. (2010) argued that if a DEM resolution 

is within the spatial range of the processes that are operating in the landscape of interest, there 

is no problem. However, if the DEM resolution is coarser than the resolution of landscape 

processes, any results or attributes derived from DEMs must be treated with caution. They 

added that in some areas and for some processes a grid size of 25 m or even higher would be 
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adequate to capture the scale of surface processes whereas in other areas the resolution 

required may be as small as 1 m.  

The sensitivity of topographic derivatives used in hydrologic modelling to DEM 

resolution has been explored in several studies. Chang and Tsai (1991) examined how spatial 

resolution affects the accuracy of slope and aspect.  Comparison of the results from 

resolutions of 20 m, 40 m, 60 m and 80 m with those at 8m revealed that the two parameters 

are less accurate if generated from a DEM of a coarser resolution. Gallant and Hutchinson 

(1996) found that the grid resolution of DEMs profoundly influences both the spatial pattern 

and the frequency distribution of derived topographic attributes, such as slope and specific 

catchment area, and therefore influences environmental models built on such attributes. 

Warren et al. (2004) compared slopes measured in the field with those derived from different 

DEMs with different resolutions. They found that a higher resolution DEM (1 m) produced 

much better results than a lower resolution DEM (12.5 m).  They also concluded that errors in 

slope can lead to widely varying estimates of environmental factors such as soil erosion. 

Murphy et al. (2008) argued that, when considering hydrologic modelling using DEM data, 

DEM cell size has a greater impact on results than does the method by which the DEM was 

generated.  Charrier and Li (2012) investigated the resolution and data source effect of DEMs 

on automated stream network, watershed and floodplain boundaries and found that higher 

resolution DEMs produced results that more closely match reference data. Kienzle (2004) 

studied the effect of DEM resolution on first order, second order and compound terrain 

derivatives and found that the optimum grid cell size is between 5 and 20 m, depending on the 

terrain complexity.  Sorensen and Seibert (2007) investigated the effects of DEM resolution 

on the calculation of topographical indices and identified that the resolution and information 

content of a DEM has a great impact on the computed topographic indices. 
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The impact of DEM spatial resolution on the hydrologic model predications has been 

shown in the following applications: CASC2D-SED erosion model response to raster-based 

grid cell sizes (Rojas et al., 2008); RUSLE (Lee and Lee, 2006); USLE (Molnar and Julien, 

1998; Wu et al., 2005); erosion relevant topographical parameters, elevation, slope, aspect, LS 

factor derived from different DEMs (Datta and Schack-Kirchner, 2010); WEPP (Cochrane 

and Flanagan, 2005; Zhang et al., 2008), TOPMODEL (Lin et al., 2010; Wu et al., 2007); and 

the SWAT model (Chaubey et al., 2005).  

Research has also demonstrated that higher resolution is not usually necessarily better 

when it comes to the calculation of DEM derived topographic parameters (Zhou and Liu, 

2004; Zhang et al., 2008).  Higher resolution DEMs tend to generate greater slope values 

(Wechsler, 2007).  Research has also been undertaken (Kienzle, 2004; Sharma et al., 2011a; 

Zhang and Montgomery, 1994) to determine an appropriate grid cell resolution for particular 

analysis. However, selection of an appropriate resolution will depend on the characteristics of 

the study area and the nature of the analysis. In general, the effect of grid cell resolution in 

various hydrologic features produced from DEMs is an important factor in our understanding, 

assessment and, quantification of the propagation of DEM errors to hydrologic parameters 

and the resulting uncertainty in related modelling applications (Wechsler, 2007). 

2.3 Drainage network extraction from DEMs 

2.3.1 Introduction 

In previous sections it has been demonstrated that because topography impacts on 

hydrological, geomorphological and environmental landscape processes the application 

potential of DEMs has greatly expanded and become very significant in catchment 

management.  Currently, DEMs are not only used to extract primary topographic attributes 
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(e.g. elevation, slope, aspect, drainage lines, catchment areas, and others), but also to 

characterise the spatial variability of complex processes occurring in the landscape (Wilson, 

2012). These secondary topographic attributes are used for many types of applications, 

including the prediction of erosion potential, sedimentation rates, catchment runoff response, 

non-point source pollution and others.  

However, although there is increasing availability of DEM data from remote sensing 

sources, it remains difficult for users to select an appropriate DEM for a specific application 

(Lin et al., 2013). It has been acknowledged that accurate delineation of drainage networks 

and catchment boundaries are critical for many hydrological modelling and watershed 

resource management. DEMs are used to simulate overland flow paths in hydrological models 

and the accuracy of these drainage patterns are dependent upon how well the DEM represents 

the terrain features that control runoff patterns. Therefore, this next part of the chapter 

(Section 2.3) provides a background regarding automated extraction of stream networks from 

DEMs using grid-based flow direction algorithms. In addition to the stream extraction 

methods, a review of the impacts of different sources and different resolutions of input DEMs 

on the accuracy of derived drainage networks is given.  

2.3.2 Background 

The value of DEMs in hydrologic applications is growing and has received considerable 

attention in recent years (Vogt et al., 2003). Hydrologic features produced from DEMs 

include drainage networks, channel characteristics and watershed boundaries. The extraction 

of stream networks and catchment boundaries from digital elevation models (DEMs) are 

common and important hydrology products. The value of these DEM derivative features 

varies depending upon the purpose and use of the data. Identifying channel networks is 

important to applications in hydrology, geomorphology, and water resource management 
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because of the control exerted by topography, soil properties, and other environmental 

attributes on surface flow paths and erosion properties within a drainage catchment (Wilson et 

al., 2008). Therefore, runoff modelling is valuable in predicting the movement of water and 

sediment (route of water flow) on the landscape and as such relies on the accurate delineation 

of watersheds (Wilson, 2012).  Different DEMs with the same or a different resolution will 

produce different realisations of stream networks and catchment boundaries. As previously 

mentioned, the amount of difference in the derived stream networks and catchment 

boundaries will depend on the DEM resolution, technologies and methods used to collect the 

source data, the processing methods that are applied, and the complexity of the surface itself.  

The comparison of the stream networks and catchment boundaries derived from different 

DEMs is an important assessment of their quality and suitability for a particular application.  

Automation of the drainage network extraction, catchment boundary delineation and 

other hydrologic derivatives from digital elevation models (DEMs) has been the subject of 

much research in recent years (e.g. Colombo et al., 2007; Hengl et al., 2010; Liu and Zhang, 

2011; Vogt et al., 2003). The extractions of all these parameters first involves the 

determination of flow direction and then the calculation of flow accumulation (Do et al., 

2011).  Many different algorithms have been developed to calculate flow direction from 

gridded DEM data and are described as single or multiple flow direction algorithms 

(Wechsler, 2007). These approaches are discussed in Zhou et al (2008). A brief discussion of 

common flow direction algorithms is given in Section 2.3.4. 

  For overland flow modelling, it is important that depressionless DEMs are used (i.e. 

what are also known as hydrologically corrected DEMs). DEMs often contain pits, defined as 

pixels with no neighbouring pixels of lower elevations. Different methods have been 

described in the literature for the treatment of spurious depressions in DEMs (see Section 

2.3.3). 
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Generally, the common method of automatic delineation of stream networks and 

catchment boundaries starts by filling the sinks of the DEM, and then identification of flow 

direction followed by calculation of flow accumulation and then stream definition by applying 

a specific threshold value. The density of the drainage network increases as the threshold 

value decreases. (Liu and Zhang, 2011).  

2.3.3 Treatment of depressions in DEMs 

Some pits are the result of errors in the source data used to generate the DEM or 

artefacts arising from the interpolation processes and the limited resolution of the DEM itself 

(Liu and Zhang, 2011).  Other pits, however, represent authentic depressions in the surface. 

The presence of pits or depressions, whether as real topographical features of terrain or errors 

resulting from the DEM source data or creation processes, influences drainage network 

delineation. These depressions affect the prediction of stream network location as it is 

difficult to ascertain the correct drainage path through them, and the direction of flow through 

them cannot be resolved. When attempting to extract stream networks from DEMs with 

numerous and/or large depressions (artificial or natural), the stream extraction algorithm 

“fills” the depression with “water” and forces flow direction to follow a path around the 

depression until it finds a downstream pixel with an elevation lower than the depression wall. 

This results in stream lines being wildly inaccurate in the vicinity of depressions. 

Therefore, hydrologic derivatives extracted from DEMs require the prior removal of 

spurious pits (Poggio and Soille 2011), even though such treatment may also eliminate natural 

depressions (Peckham and Jordan, 2007). The simplest and earliest method used to remove 

these pits involved smoothing the DEM (O’Callaghan and Mark, 1984), however, it was 

found that smoothing tended to alter some elevation values in areas of the DEM not 
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(A) 

(B) 

containing pits (Raaflaub and Collins, 2006). Figure 2.4 illustrates examples of depressions 

before and after the process of pit filling.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Depression filling has become by far the most widely used approach and several 

different algorithms have been proposed to detect and fill surface depressions (Wang and Liu, 

2006).  According to Poggio and Soille (2011) the available pit treating methods can be 

categorized into three approaches (Figure 2.5): (i) pit filling, whereby the values of cells in 

each sink will be filled by the value of the cell with the lowest value on the sink’s boundary 

Figure 2.4: Examples of spurious pits treatment using ArcGIS pit filling function (A) snapshot 

of two pits from NEXTMap DTM shaded relief image (Wensum area) and (B) same area after 

pits filling treatment.  
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(i.e. depression filling by Jenson and Domingue (1988)); (ii) carving, where DEM pixel 

values (elevation) are lowered from the bottom of the depression, creating a descending path 

until the nearest point of lower elevation value is reached (i.e. carving by Soille et al. (2003)); 

(iii) hybrid, an optimal approach combining the first two (filling and carving) in such a way 

that the pits are filled up to a certain level and then the carving process starts from that level. 

In general, Jenson and Domingue’s (1988) algorithm is best known and is widely used in 

many GIS software packages (e.g. ESRI) for sink filling (Wechsler, 2007).  
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Figure 2.5: Pit removal methods. The spurious pits are the two inner minima in the graph 

(source:  Peckham and Jordan, 2007) 
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2.3.4 Flow direction  

The second step in the process of delineating stream networks from DEMs is 

assignment of directions.  A flow direction raster shows the direction of water flow out of 

each cell of a DEM.  As mentioned earlier, numerous algorithms have been developed to 

calculate flow direction from digital elevation data. The most popular is the D8 single flow 

algorithm (O’Callaghan and Mark, 1984), which has been implemented in a lot of commercial 

GIS software such as ArcView, ArcGIS, IDRISI or GRASS, because of its simple and 

efficient computation, and strong capability in dealing with spurious depressions and flat 

areas (Gandolfi and Bischetti, 1997; Lindsay, 2006; Schauble et al 2008; Tarboton 1997). 

Moreover, the popularity of this algorithm is due to its capacity to generate directly fully 

connected stream networks and also to the fact that it is based on overland flow simulation, 

the hydrologic process largely responsible for initiating and maintaining stream networks 

(Martz and Garbrecht, 1995). The flow of water over a gridded surface is determined by 

considering the direction of steepest downhill slope of the eight surrounding cells. As shown 

in Figure 2.6, flow direction is encoded to correspond to the orientation of one of the eight 

cells surrounding the cell that is located in the middle of a window of 3 x 3 cells (Burrough 

and McDonnell, 1998; Jenson and Domingue, 1988). However, the D8 flow direction 

determination method has long been considered to oversimplify the flow process, due to the 

fact that the flow direction is limited to only one of eight cardinal directions at a time (Kenny 

and Matthews, 2005; Wise, 2007).  Thus, it is not suitable for areas where divergent flow 

occurs, convex slopes and ridges (Wilson and Gallant, 2000).  Another weakness in the D8 is 

the parallel flow path problem that occurs because flow direction can be assigned only in one 

of two principal directions: a cardinal or diagonal direction. When the true flow is at an angle 

or not parallel to the principal direction, errors occur (Wilson et al., 2008). 
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To overcome the limitation of the D8 algorithm, multiple flow direction algorithms 

have been developed which distribute flow downslope to one or more neighbouring pixels 

with weighting by slope. Algorithms such as; Multiple Flow (MFD) (Quinn et al., 1991), 

DEMON (Costa-Cabral and Burges, 1994), D-Infinity (Tarboton, 1997) have long been used 

to create multiple flow direction maps from raster DEM datasets. The multiple flow 

algorithms improve the D8 by distributing multiple stream flows from a grid to its 

neighbours, eliminating the parallel flow path problem.  However, they do not create a single 

flow path but multiple flow paths from a grid so that they tend to cause considerable 

dispersions of flow in downstream and even discontinuity in the middle of supposed stream 

networks (Wilson and Gallant, 2000). Furthermore, according to Wise (2007), some 

researchers have compared different flow routing algorithms and found that single and 

multiple flow path algorithms produce significantly different results. 

Even though the multiple flow algorithm methods enhance flow direction problems in 

the D8 method, they still have dispersion and multimodal stream link problems. As Tarboton 

(1997) concludes, trade-offs take place by selecting one stream mapping method over others. 

For instance, the D8 method has the advantages of the prevention of the dispersion problem, 

robustness to manage large data, simplicity and efficiency of computation, and a strong 

capability in dealing with spurious depressions, whilst it has errors inherent in flow direction 

determination.  In contrast, the alternative methods have more sophisticated flow direction 

modelling functions in compensation to dispersions and multimodal stream links.  

The choice of which flow direction algorithm to use can be quite difficult, where some 

methods are more suited to certain applications than others.  For example, in applications of 

flow routing that involve the extraction of streams which are used in drainage network 

analysis (i.e. the analysis of topological and geometric characteristics of the stream networks) 

or for catchment boundary delineation, a single flow direction algorithm such as D8 is 
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preferable (Desmet and Govers 1996, Li et al. 2005, Wolock and McCabe 1995, Zhou et al. 

2008).   

 

 

 

 

 

 

 

 

 

 

 

 

2.3.5 Flow accumulation 

Using a flow direction surface, a flow accumulation raster can be calculated. The flow 

accumulation value for a cell represents the number of cells upstream that drain into it (Li et 

al., 2005) (Figure 2.7).  Naturally, water flows in an upslope (catchment area) to downslope 

(dispersal area) direction accumulatively. Therefore, the lowest area will collect the water 

flows from all cells in the catchment area.  Flow accumulation is considered as a powerful 

GIS application because calculating the accumulation grid as a spatially distributed quantity 
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Figure 2.6: Assignment of flow directions 
using the D8 model (modified from Li et al. 

2005) 
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allows determination of drainage area, not just at one point, but also at any point within the 

original DEM.  A flow accumulation grid can be studied according to each cell’s 

accumulation value. Cells having high accumulation values generally correspond to stream 

channels, whereas cells having zero values - which means no water from other cells flows to 

them - must correspond to points at peaks or ridge lines (Jenson and Domingue, 1988). The 

cell located at the outlet of the catchment has a value equal to the sum of all of the cells in the 

catchment. 

 

 

 

 

 

 

 

2.3.6 Channel network identification 

As discussed above, once the flow accumulation grid is created, the stream network can 

be extracted by applying a threshold value to the flow accumulation grid (Dobos and 

Daroussin, 2005; Liu and Zhang, 2011). The threshold value represents the minimum 

upstream drainage area that is necessary to delineate an adequate stream network. All those 

cells with flow accumulation values greater than this threshold will be linked together and 

vectorized to become flow lines. The drainage network will be formed from all these flow 

lines and can be represented by a tree structure (Figure 2.7C). The level of detail of the 

extracted stream networks depends on the threshold value used for the flow accumulation.  
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Figure 2.7: Flow accumulation grid (A), flow accumulation with shading (B), and schematic of drainage 

network (C) (modified from Li et al. 2005). 
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For example, using a smaller threshold value will produce a denser stream network data than 

using a larger one (Wang and Yin, 1998). 

2.3.6.1 Threshold definition 

Threshold value is referred to as a critical threshold area that represents the minimum 

support area required to delineate an adequate channel network (Wilson and Gallant, 2000). 

This approach is based on the assumption that channels form where the area drained by a 

given point (called contributing drainage area) exceeds some area threshold (called critical 

drainage area) (Soille, 2007). Threshold of flow accumulation is a key factor in stream 

network extraction from DEMs and will strongly influence the results obtained (Lin et al. 

2006). However, the selection of an appropriate threshold value is difficult and there is no 

consensus about how it should be chosen. Nevertheless, the most widely used approaches are 

the contributing drainage area method and area-slope method (e.g. Montgomery and 

Foufoula-Georgiou, 1993; Ijjasz-Vasquez and Bras, 1995; Hancock and Evans, 2006; Henkle 

et al., 2011). The accuracy of delineated drainage networks varies from method to method, 

and depends on the associated threshold values (Orlandini et al., 2011).  

The contributing area method requires a supporting area threshold. The selection of an 

adequate supporting area threshold is usually a trial and error process until the desired value is 

reached, and needs to take into account the DEM resolution and terrain characteristics (Dobos 

and Daroussin, 2005). Selections of different flow accumulation threshold values produce a 

radically different drainage network in terms of total stream length, stream order, and 

drainage density. The definition of an adequate threshold value has been the subject of several 

studies and often the threshold is set to the value that makes the resulting stream network 

terminate at approximately at the same locations as a reference network obtained from large 

scale topographic maps (Colombo et al. 2007; Da Ros and Borga, 1997), thus using trial and 
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error until the desired extent is reached.  Experience has also suggested that good results can 

be achieved if the threshold is set to the value of 1% of the maximum flow accumulation 

(Maidment, 2002; Tang and Liu, 2009) or the mean accumulation value in all the cells (Li et 

al., 2005).  

Efforts have also been made to obtain an appropriate threshold value by using the log – 

log linear drainage area-slope relationship as computed from DEMs (Colombo et al. 2007, Da 

Ros and Borga, 1997; Tarolli and Dalla Fontana, 2009; Henkle et al., 2011). This approach is 

based on the assumption that different inflection points can be observed in the log-log plot, 

suggesting that these enable the distinction between various geomorphic and hydrologic 

regimes (Montgomery and Foufoula-Georgiou, 1993). These drainage and slope regimes 

include hillslopes, unchanneled valleys, debris flow-dominated channels, and alluvial 

channels.  Figure 2.8 illustrates the hillslope-to-valley transition generated by Montgomery 

and Foufoula-Georgiou (1993).  There are two inflection points in area-slope relationship 

depicted by the plot, the first infliction is related to the hillslope-to-valley transition, while the 

second is related to the transition from debris flow-dominated channels to gentler channels 

(Tarolli and Dalla-Fontana, 2009).  For the log – log analysis, a routing algorithm that allows 

for dispersion of flow such as D-Infinity (Tarboton, 1997) was used for the calculation of the 

local slope and the contributing area (Colombo et al. 2007).  However, as noted already, all 

these analyses are strongly affected by DEM accuracy and resolution.  
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Figure 2.8: Schematic illustration of relations between drainage area and local slope depicting 
transition from hillslopes to valleys (Montgomery and Foufoula-Georgiou, 1993) 

 

 

 

 

 

 

 

 

 

 

Other researchers, such as Lin et al. (2006), McNamara et al. (2006) and Tribe (1992), 

have suggested the identification of channel initiations (valley heads) as an alternative to the 

threshold contributing area for positioning channel sources. The advantage of this approach is 

the constraining of the drainage network to areas of the digital landscape where there is 

morphological evidence of a valley head, while retaining the overland flow simulation as the 

basic approach for the extraction of drainage network below the channel sources (Martz and 

Garbrecht, 1995).   

The identification of the channel networks is therefore a crucial step in catchment 

management. However, each of the methods presented here has certain requirements and 

limitations that make their universal applicability limited (Orlandini et al., 2011). There is 

consequently a need for further research on this issue.  
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2.3.7 Drainage network comparison 

Hydrological modelling and catchment resource management require accurate stream 

networks and catchment boundaries to understand the flow of water on the land surface. This 

will help land managers to choose the best management practices for maintaining water 

quality and quantity. Thus, accuracy assessment or validation of stream networks and 

catchment boundaries should be a key component of any hydrological modelling project. This 

is particularly necessary when automatically generating spatial data (in this case stream 

networks) from computational algorithms or methods using raster data (Zhang and Goodchild, 

2002).  Such an assessment of accuracy gives researchers the ability to quantitatively compare 

methods and results and allows decision-makers to be more confident in the use of spatial 

data analysis results in the decision-making processes.  

2.3.7.1 Effect of DEM source and resolution on the accuracy of delineated drainage 

networks   

It has been established that different DEM resolutions and sources, processing steps, 

and topography lead to differences in the extracted drainage networks and catchment 

boundaries. These differences can be identified visually and quantitatively, and most 

techniques rely on measurement of distance between delineated network features and 

reference features or comparison of attributes such as stream order, stream length, and 

drainage density. Although stream networks can be assessed qualitatively, based on visual 

inspection, quantitative methods can improve the accuracy and ease of the comparative 

analyses.  

Lin and Zhang (2011) compared drainage networks extracted from two different DEMs 

(LiDAR 3m DEM and Vicmap10m) visually and quantitatively in terms of attributes such as 

stream order and drainage density. Visual validation of the extracted drainage networks was 
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also carried out using high spatial resolution (0.35 m) aerial photographs with the help of 3D 

viewing techniques. They used a small threshold value (0.025 km²) in order to delineate 

detailed drainage networks in flat areas. They found that the LiDAR 3m DEM provided a 

more detailed drainage network compared with the Vicmap10m DEM. 

Poggio and Soille (2011) compared drainage networks extracted from four different 

DEMs, (ASTER, SRTM, NEXTMap (DSM) and NEXTMap (DTM)). Monte Carlo 

simulation was used to obtain a probability estimation of the position of the drainage 

networks using a higher resolution reference data. Results were compared with an 

independent reference drainage network. The datasets examined were (i) the inverse of the 

channel probability map (not channel probability =1 – channel probability value); (ii) the 

average of all the 100 simulated DEMs; (iii) the drainage network extracted from the original 

dataset; and (iv) the highest overall probability drainage network amongst all the drainage 

networks that were extracted in the 100 realisations. They compared the stream networks that 

were extracted from the above four datasets using two methods; (a) calculating the overall 

probability of the drainage network by summing the values of the probability maps for all the 

cells belonging to the network considered, and (b) comparing all these networks to the 

independent reference network using Euclidean distance to assess the spatial match of the 

extracted drainage networks.  They found that the network extracted from NEXTMap DTM, 

particularly the inverse of the channel probability map, was the closest to the reference 

network. 

Gallego et al. (2010) also studied the uncertainty related to the extraction of stream 

networks from DEMs. They performed their comparative evaluations by calculating several 

geomorphologic parameters for each stream network extracted. These parameters were basin 

area, Horton/Strahler’s order, number of stream heads, total stream length, drainage density, 

highest elevation in basin, elevation at basin pour point, average slope for basin, and basin 



  Chapter 2 

 

49 

 

perimeter. They found that DEM resolution did not have a great influence on most basin 

parameters, except for average slope of the basin. On the other hand, resolution had a very 

significant effect on the accuracy of the stream length in the automatically delineated stream 

networks.  

In order to assess local and regional ecological risk to the landscape in a protected 

biological resources area, Mantelli et al. (2011) compared automatically extracted drainage 

networks and watershed boundaries from three different DEMs, SRTM, TOPODATA 

(obtained from InSAR) and ASTER, to a reference drainage map adopted as a ground truth. 

They compared each extracted network to a total of 11,581 points, randomly picked from the 

reference drainage map, where the distances between each drainage reference point and the 

nearest point from the extracted network were calculated. The extracted watersheds were 

compared visually and also in terms of area. They found that drainage network generated 

using TOPODATA (30m) was more similar to the reference network than those extracted 

using ASTER or SRTM datasets. The network generated using ASTER-DEM produced many 

commission errors and the one generated using SRTM produced a poor network, less detailed 

than the others.   

Hengl et al. (2009) assessed the spatial accuracy of the derived stream networks by 

calculating the main distance from point line sets which can be derived by overlaying the 

delineated stream network over a buffer map generated using the actual stream network. 

Penas et al. (2011) compared the spatial accuracy of several stream networks extracted from 

DEMs with different spatial resolutions and different sources ranging from regional 

(topographic 5 m DEM) to national (topographic  25 m DEM) to global (SRTM 90 m) scales 

in relation to a reference river network. They assessed the degree of coincidence between each 

of the extracted stream networks and the reference network by applying buffers of 5, 15, 20, 

30, 40, 50, and 60 m to the extracted stream networks and evaluating the percentage of 
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vertexes from the reference network that fell inside each of the buffers. They found that the 5 

and 25 m DEMs generated a more spatially accurate stream network than the 90 m DEM.  

Other researchers such as Hengl et al. (2010) and Lindsay (2006) have used 

geostatistical simulation (Monte Carlo method) to evaluate the uncertainty in derived stream 

networks from DEMs. A large number of stream network realisations have been compared in 

terms of the probability of any DEM cell being part of a stream channel. This approach is not 

a direct comparison of any pair of networks, but it provides a measure of sensitivity to 

possible stream location error. 

2.3.7.2 Measuring the positional accuracy of stream networks  

It is important to assess the reliability of stream networks because they are often used in 

environmental modelling, which in turn is used in water resources and catchment 

management applications (Lindsay, 2006).  One of the most critical attributes of drainage 

networks is the configuration in terms of spatial locations (Penas et al., 2011).  According to 

Goodchild (1993), all spatial data contains errors. However, if one dataset is assumed to be 

the best representation of a particular feature, then the error contained within other features 

can be estimated by comparing them to the reference data.  For example, in Figure 2.9, the red 

lines represent a derived stream network and the blue lines represent the reference stream 

network. Therefore, the positional accuracy of derived stream network segments can be 

defined through measures of differences between the locations of these features and locations 

determined with higher accuracy from the reference dataset.  The mean of these differences is 

used to quantify the horizontal offset error between the reference stream channel and the 

delineated drainage networks.  These errors are comparatively evaluated to determine which 

DEM best describes the relative terrain when different stream networks extracted from 

different DEMS are compared to the reference network.   
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2.3.7.2.1 Root Mean Square Error (RMSE) 

Stream segment positional uncertainty can affect the stream network characteristics. 

Positional difference between an absolute position of a mapped stream segment (polyline) and 

that in a reference dataset can be used to indicate the stream segment’s positional accuracy. 

RMSE of the positional difference between the delineated and reference stream segment can 

be computed to indicate stream segment positional accuracy (Anderson and Ames 2011). The 

FGDC (1998) used RMSE to estimate the positional accuracy of spatial features. Anderson 

and Ames (2011) used RMSE to compare the degree of matching between a stream network 

delineated from LiDAR data and a reference network data. Zhang and Goodchild (2002) also 

discuss using horizontal RMSE as a measure of uncertainty in continuous variables, 

categorical variables and objects associated with spatial data.  Horizontal RMSE is the square 

root of the average of squared distance differences between extracted dataset coordinate 

values and coordinate values from a higher accuracy reference data for identical points.  

2.3.7.2.2 Epsilon band  

The true location of a line can be thought to occur at some displacement from the 

measured position of the line, lying within a band on either side of the measured position. The 

Figure 2.9: Two representations of the stream networks in the Blackwater sub-catchment of the River 
Wensum, reference network shown in blue and the derived stream network shown in red.  

 



  Chapter 2 

 

52 

 

width of the band reflects the standard error, a measure of the uncertainty of the line’s 

location. These bands are sometimes referred to as epsilon bands (Chrisman, 1991). The 

epsilon error band model has been used to describe the inaccuracy of a modelled line (Zhang 

and Goodchild, 2002).  The band is formed as a constant radius error band around the position 

of the reference line (Goodchild and Hunter, 1997).  Hence, the shape of the band looks like 

the buffer of a line (Figure 2.10). 

 

  

 

 

 

 

The proportion of lines within a specified band’s width can be used to assess line 

accuracy. For example, 95% of the digital line vertexes may be required to be within an 

epsilon band of a specified distance.  According to National Map Accuracy Standards for 

horizontal accuracy of maps, 95% of errors are expected to lie within 1/30 inch (0.85 mm) for 

maps at scales of 1:20,000 and finer (Longley et al., 2005).  Longley et al. (2005, p.142) 

proposed a convenient rule of thumb used to provide error estimates for features on maps, in 

which a typical quality criterion is that ”… positions measured from maps are subject to 

errors of up to 0.5 mm at the scale of the map”.  Multiplying this 0.5 mm by the scale of the 

map gives the corresponding distance on the ground, so this 0.5 mm translates to 0.5 m at a 

scale of 1:1000; 5 m at 1:10,000; 50 m at 1:100,000 and so on (Hunter and Goodchild, 1995; 

Longley et al., 2005). 

Figure 2.10: The epsilon band concept. The true position of the line (stream) will occur at some 
displacement from the measured position, between the two parallels of the epsilon band. Modified 

from Zhang and Goodchild (2002) 
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2.3.8 Conclusions 

Hydrological modelling and catchment resource management require accurate stream 

networks and catchment boundaries for better understanding of how water is routed across the 

land surface. Surface water quality is strongly influenced by the hydrological pathways by 

which water travels through a watershed (Chapman et al., 2014). It is clear from the literature 

reviewed above that horizontal and vertical DEM resolution is a critical component to terrain 

modelling and represents the most important consideration in DEM selection. Within a 

catchment, erosion processes are often a key mechanism in the transport of diffuse pollutants 

(such as sediment or phosphates) to water bodies, so accurate determination of overland water 

pathways enables the study of land use impacts on water quality (Evans, 2010: Heathwaite et 

al., 2005). As discussed previously, the prediction of water flow pathways by topography 

analysis is controlled by landscape relief and data resolution. Thus, topography is a crucial 

surface characteristic in soil erosion and diffuse pollution modelling. These models typically 

use a DEM to derive the topographical characteristics of the study catchment. Therefore, it is 

necessary to analyse the reliability of erosion assessments at different spatial resolutions. Soil 

erosion and diffuse pollution modelling within a context of catchment scale are discussed in 

the following section.  
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2.4 Soil loss and diffuse pollution modelling 

2.4.1 Introduction 

A catchment is the natural scale for the assessment of soil erosion potential or risk, 

since their shape and characteristics control the pathways and fluxes of water and sediment 

(Collins and Owens, 2006). In the UK, there is strong evidence that agricultural activities are 

responsible for a large contribution to degradation in land and water quality as a result of soil 

erosion and diffuse pollution (Evans, 2010; Boardman et al., 2009; Rickson, 2014; Inman, 

2006). Rickson (2014) particularly highlights the importance of fine sediment as a diffuse 

source pollutant in surface waters. Agricultural topsoil provides the largest contribution to 

sediment that reaches water bodies, which also provides a strong link between estimated soil 

erosion and sediment yield in rivers. Several studies (Defra, 2009; Environment Agency, 

2004) have argued that over 70% of sediment load in UK rivers comes from arable land. 

Collins et al. (2009) estimated that 76% of sediment delivered to rivers in England and Wales 

came from agricultural lands, 15% from channel banks, 6% from urban diffuse sources, and 

3% from point sources.  

The agricultural contribution to diffuse pollution varies widely as a complex function of 

soil type, topography, climate, hydrology, land use and land management.  This complexity 

hinders accurate identification of pollutant sources and makes their control difficult. 

Contributing areas of diffuse pollutants (critical source areas-CSAs) from agricultural sources 

depend on the coincidence of source factors (soil type, local slope, land use, and land 

management) and transport factors (runoff, erosion, and channel processes) (Heathwaite et al., 

2005). Export of eroded soil from a particular point depends on the connectivity further down 

slope (Lane et al., 2006). According to Hook (2003), gaps in the connectivity or risk re-

exportation chain lead to the capturing and disconnection of the risks. Knowledge about the 
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locations of the important sources and pathways is helpful in developing appropriate 

management interventions to reduce the risk to rivers (Reany et al., 2011).  

As stated previously, DEMs are used to extract topographic parameters in soil erosion 

modelling. The topographic features of the landscape have a great influence on the amount of 

soil loss. DEMs from different data sources and with contrasting resolutions may produce 

different representations of topography that subsequently result in varying erosion 

predictions.      

2.4.2 Soil erosion 

Soil erosion is one of the most serious land degradation problems in the world and has a 

negative impact on agricultural production and water quality. In the UK lowland areas, cases 

of high water-based soil erosion have largely been associated with arable farming (Boardman, 

2013). The degradation of soil involves the processes of physical detachment of soil particles 

by water and their subsequent transportation to other parts of the catchment, such as 

watercourses (Stocking et al., 1995). The potential for soil erosion varies from catchment to 

catchment depending on the characteristics of the catchment (topography, shape), soil 

properties, the local climatic conditions, cropping  and land management practices, control 

practices and the size of the catchment under consideration (Drzewiecki et al. 2013; Romkens 

et al. 2002 ).  

In the case of soil erosion by water, soil material can be detached by raindrops or 

flowing water. Raindrops hitting the surface have enough energy to detach individual soil 

particles from the soil mass, initiating the erosion process (splash erosion) (Romkens et al., 

2002). The soil detachment rate increases rapidly with rainfall intensity. In simple terms, 

erosion by water proceeds in three stages: (i) separation of soil particles by the energy of 

raindrop impact; (ii) transportation of these particles by surface runoff along the slope and 
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(iii) deposition of mobilised sediments when transport energy reaches a low level (Romkens 

et al., 2002). 

Sheet, rill and interrill erosion represent the major sources of soil lost from croplands in 

the UK (Boardman, 2013). Sheet erosion is a form of surface runoff, where runoff is 

concentrated in many small ephemeral streams of water (Toy et al., 2002). Overland flow is 

of very high frequency and very low magnitude, and thus, occurs area-wide between rills 

(Hogg, 1982). This area is also called the interrill area and erosion occurring here is defined 

as interrill erosion (Toy et al., 2002). Rill erosion is a process caused by the concentration of 

surface runoff. This type of erosion is of lesser frequency but higher magnitude than sheet 

erosion. Areas of both rill erosion and interrill erosion make up the overland flow areas of 

landscapes (Toy et al., 2002).  

Haygarth et al. (2005) have argued that soil erosion by rainfall drops (splash erosion) 

and overland flow represent the main pathways through which sediments are lost to rivers. In 

many cases, agricultural erosion occurs when fields are left bare for large parts of the year, so 

that rainfall is not intercepted by vegetation and raindrops hitting the soil have high erosive 

powers. Vegetation cover plays a very important role in reducing soil erosion by water. If the 

rainfall is intercepted by a canopy, the impact of raindrops on the soil is much lower, which 

will reduce the amount of runoff and consequently the transport capacity (Drzewiecki et al., 

2013). 

Since croplands in a watershed are a significant source of sediment, a systematic rating 

of their potential for erosion would be useful in soil conservation planning. Most importantly, 

mapping and assessment of erosion prone areas enhances soil conservation and watershed 

management.  Identifying the spacial distribution of areas with high risk of erosion is of great 
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value in water quality and catchment management application, allowing identification of 

preferential areas where action against soil erosion is more urgent.  

As discussed above, using different DEMs in modelling of watershed processes may 

result in contrasting predictions of soil erosion. Various approaches and equations for risk 

assessment or predictive evaluation on soil erosion by water have been discussed in the 

research literature. The Universal Soil Loss Equation (USLE) and its revisions are the most 

commonly used model to estimate the long-term average annual rate of soil loss (see Section 

2.4.3). However, in many studies, a DEM is incorporated into an erosion model as a given 

parameter without testing its suitability for terrain modelling at the desired scale of the study, 

in contrast to other parameters related to soil type, land use and climate (Datta and Schack-

Krchner, 2010). 

DEMs with different source characteristics and resolutions have been used in many 

parts of the world to produce soil erosion risk maps on the basis of USLE/RUSLE models. 

Examples of these studies are given by Prasuhn et al. (2013) for Swizerland (2 m x 2 m 

LiDAR DEM); Lee (2004) for Boun, Korea (5 m x5 m contour based DEM); Bargiel et al. 

(2013) for south-eastern Poland (21 m x 21 m stereo image-derived DEM); Parveen and 

Kumar (2012) for South Koel basin, India (ASTER 30 m); Suri et al. (2002) for Slovakia (50 

m contour-based DEM); Sharma et al. (2011) for Maithon catchment, India (STRM 90 m). 

The published literature indicates that the USLE/RUSLE approach has been applied in most 

European countries (e.g. Austria, Belgium, Germany, Hungary, Poland, Italy, Spain and 

Switzerland) as well as the USA and Canada. However, it appears to be less common in the 

UK, highlighting an aspect requiring further research.  
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2.4.3 Universal Soil Loss Equation model (USLE) 

The Universal Soil Loss Equation (USLE) is a popular empirical approach for the 

prediction of long-term annual soil erosion loss and the designation of potential risk zones for 

soil erosion (USLE, Wischmeier and Smith, 1978). It was adopted by the Soil Conservation 

Service in U.S. in 1958 and has become the most widely used and accepted model for long 

term assessments of soil erosion. The equation predicts the long-term average annual soil loss 

associated with splash, sheet and rill erosion using six factors that are associated with climate, 

soil, topography, vegetation and management. The USLE is often given as: 

 A = R * K * LS * C * P      (Eq. 2.2)             (Wischmeier and Smith, 1978) 

  

where A is annual average soil loss, in tonnes per hectare, R is the mean rainfall 

erosivity factor for a defined period, K is the soil erodibility factor, the average soil loss in 

tonnes/hectare for a particular soil in cultivated, continuous fallow with an arbitrarily selected 

slope length of 22.13 m (72.6 ft) and slope steepness of 9%, LS is the topographic factor 

which represent the slope length and slope steepness, C is the cover management factor, 

which is used to determine the relative effectiveness of soil and crop management systems in 

terms of preventing soil loss and P is the support practice factor which represents the soil 

conservation operations or other measures that control the erosion. The L, S, C and P factors 

are dimensionless parameters and they are normalized relative to standard plot conditions.  

The USLE model was developed by Wischmeier and Smith (1978) based on data 

obtained from more than 10,000 test plots throughout the eastern part of the U.S. in 20 years 

of field experiments under natural rainfall (Kinnel, 2010). The USLE is currently a globally 

accepted method for soil erosion prediction in the U.S. and in other countries all over the 

world. However, the USLE is known to have a few shortcomings. If just one of the input data 

is not accurately specified, the multiplication of the six factors will lead to a large error in 
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results (Sonneveld and Nearing, 2003). There are also questions about the reliability of the 

parameter values assigned to the model (Sonneveld and Nearing, 2003). Despite criticisms, 

limitations and shortcomings, the empirical Universal Soil Loss Equation (USLE) remains the 

most commonly used soil erosion model worldwide. This popularity of the USLE can be 

attributed to its minimal data computation requirements as well as to its transparent and robust 

model structure (Figure 2.11) (Prasuhn et al., 2013).             

Additional research and experience have resulted in upgrades of the USLE during the 

past 30 years. One of the improved equations developed from the USLE model is the Revised 

Universal Soil Loss Equation (RUSLE) by Renard et al (1997). The RUSLE incorporates 

improvements in the factors based on new and better data, but keeps the basis of the USLE 

equation. In many cases, formulae used to determine the values of R, K, L, S, C and P in the 

USA have been adopted in other countries. RUSLE uses Equation (2.2) with changes in how 

some of the six factors are determined, in particular, developing a new method to calculate the 

cover management factor. For example, a sub-factor approach to the determination of C-

factor enables the model to be applied to crops and management systems not present in the 

original experiments used to develop the model (Kinnell, 2010).  

Soil erosion risk differs spatially because of heterogeneous topography, soil types, land 

cover, land use and management. GIS are able to handle these spatially variable data easily 

and efficiently. Thus, the use of GIS techniques allows spatially variable soil erosion 

estimates to be made at reasonable costs and better accuracy (Prasuhn et al. 2013; Csafordi et 

al. 2012). The required data for the estimation of soil loss (rainfall erosivity, soil data, DEM, 

land use and management data) have to be converted into a GIS format in order to implement 

the USLE/RUSLE in a GIS (Pandey et al., 2007).  The integration of USLE/RUSLE and GIS 

can be further applied as a core procedure for other geomorphologic and hydrologic 

applications such as watershed condition analysis, water quality monitoring of agricultural 
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pollutants in soils, sediment loading of streams and rivers and diffuse pollution (Blaszczynski, 

2001). Different authors have used GIS-based techniques to model USLE factors for 

predicting soil loss on a grid cell basis (e.g. Bargiel et al., 2013; Csafordi et al., 2012; 

Drzewiecki et al., 2013; Nigel and Rughooputh, 2010; Prasuhn et al., 2013; Tetzlaff et al., 

2013; Volk et al., 2010). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.11: Flow chart showing 

analysis of soil loss in a GIS 

framework (Bizuwerk et al., 2008) 
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Despite being used extensively throughout the world, the USLE/RUSLE has been 

criticized for a number of reasons (Brazier, 2013).  For example, in catchments where field 

sediment losses may be dominated by channel erosion rather than hillslope erosion, the 

RUSLE is not able to simulate these processes in a meaningful sense, as the empirical basis is 

limited to hillslope erosion processes and does not account for connectivity and channel or 

gulley erosion (Csafordi et al., 2012; Evans, 2002; Renard et al., 1991). As mentioned before, 

the RUSLE is used to predict the long-term average annual soil loss from the study catchment 

and spatially identify locations with high risk of erosion, however, it does not account for the 

hydrological connectivity of these locations to rivers. However, other modelling approaches 

such as SCIMAP do consider this issue and are discussed further below.    

2.4.4 Sensitive Catchment Integrated Modelling and Analysis Platform 

(SCIMAP) 

According to Munafo et al. (2005), diffuse pollution is a form of pollution that is not 

attributable to any one particular source. Diffuse pollution has been conceptualized as 

consisting of multiple interconnected point sources. The interconnection constitutes a risk 

(Lane et al., 2006). Not all locations in a catchment contribute equally to the delivery of 

sediment to the receiving watercourses and hence to water quality degradation (Milledge et 

al., 2012). This insight has given rise to the concept of critical source areas within a 

catchment where particular locations contribute disproportionally to in-stream sedimentation 

and pollution. Critical source areas in catchments are parts of the landscape that have the 

greatest probability of contributing high sediment loads to receiving waters (Milledge et al., 

2012; Reaney et al., 2011). Several modelling approaches have been developed to meet the 

challenge of identifying these critical source areas within the catchment. According to Lane et 

al. (2006), Reaney et al. (2011) and Milledge et al. (2012), these can be classified into three 
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main groups: (i) transport function modelling, (ii) land unit modelling and (iii) land transfer 

modelling. A detailed description of these models can be found in Lane et al. (2006). 

The most developed approach to identifying and modelling the location of critical 

source areas (CSAs) is the use of a relative risk based approach (Lane et al., 2006). Relative 

risk based analysis of diffuse pollution risk is a well-established idea and such an approach 

has already proved to be very effective in diffuse pollution modelling (Munafo et al., 2005). 

Given an observed change in catchment water quality, the primary challenge is to determine 

which parts of the landscape are most likely to be contributing to that alteration (Reaney et al,. 

2011; Lane et al., 2006), and therefore constitute CSAs. The Sensitive Catchment Integrated 

Modelling Analysis Platform (SCIMAP) provides a framework for identifying the probable 

spatial origins of diffuse pollution problems within agricultural catchments. It is based upon a 

conception of catchments as organising entities: catchments can be conceptualised as a set of 

flow paths that accumulate distributed sources of possible contaminants from across the 

landscape into receiving waters, where, for surface waters, diffuse pollution may become 

visible either through detection of temporal changes in water quality via routine monitoring or 

through the more limited evidence of physical water quality degradation (e.g. algal blooms) 

(Lane et al., 2006; Reaney et al., 2011; Milledge et al., 2012). As such, SCIMAP focuses on 

the question of “where in the catchment is the pollution materials coming from” rather than 

aiming to produce estimates of the actual pollution load (Lane et al., 2006). 

SCIMAP uses three principal inputs: a digital elevation model, land cover and rainfall 

data. The model combines these three different inputs to determine the probable relative risk 

of a point in the landscape producing pollution (Figure 2.12). The SCIMAP risk mapping 

framework comprises two dimensions of analysis: firstly the delimitation of hydrologically 

connected source areas (CSAs); secondly the accumulation of these CSAs through to the 

locations of concern (Lane et al., 2006).  Surface hydrological connectivity is assessed 
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through analysis of the potential pattern of soil moisture and saturation within the catchment. 

The prediction of the spatial pattern of soil moisture is used to assess the ability of each point 

in the landscape to generate saturated overland flow, which also allows for the probability of 

continuous flow to the stream network to be assessed. The export of risk in surface flow from 

a point on the landscape is dependent on each downslope point also being saturated, otherwise 

the risk will be captured and not reach the stream channel. These risks are accumulated 

through the catchment from fields through to the receiving water so as to allow for tracing the 

problem upstream to the locations where the problem is most likely to have originated. A full 

description of the SCIMAP model is provided in Reaney et al. (2011), who show how it can 

be used to understand the relationships between land cover, topography (hydrological 

connectivity) and salmonid fry abundance. 
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2.5 Chapter conclusions 

Water quality and catchment management applications often require detailed terrain 

data (Lin et al., 2013). Nowadays, DEMs derived from remote sensing form an increasingly 

important source of information for these applications. However, it is often not easy to decide 
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Figure 2.12: SCIMAP model stages (SCIMAP project website: www.scimap.org.uk) 
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what the most suitable source of information is for a specific application. Within a catchment, 

DEM resolution and data source are sources of uncertainties associated with the prediction of 

hydrological features such as terrain slope, drainage networks, and catchment boundaries (Wu 

et al., 2008a). Therefore, the type of DEM needed for a particular application is an important 

consideration in catchment management.  

DEMs derived from optical imagery sources such as ASTER and aerial photography 

may be negatively affected by the frequency of cloud cover, vegetation, and man-made 

objects. In contrast, active sensors such as IFSAR (as used for SRTM) penetrate clouds but do 

not fully penetrate dense vegetation and man-made objects. Data from such sensors can also 

have voids over water bodies and in desert or mountain areas, which need to be masked or 

filled to produce a viable DEM.  However, for hydrological analysis, these filling methods 

can over or under-estimate elevation values at the void locations and generate unsatisfactory 

results (Ling et al., 2005). Nevertheless, airborne radar and LiDAR are rapidly becoming the 

choice for GIS practitioners and land managers interested in very high resolution DEMs.  

From the studies reviewed in this chapter which have evaluated the quality of different 

DEMs and the effects of DEM source and resolution on the process of drainage network 

extraction, the following main points can be inferred. The selection of DEMs for hydrological 

studies is normally focused on those with the highest resolution available, typically on the 

basis that they avoid more uncertainties (Lin et al., 2013; Liu and Zhang, 2011; Poggio and 

Soille, 2011). When DEMs with similar resolutions from different sources have been used, 

IFSAR derived DEMs are often preferred over optical source-derived DEM (Mantelli et al., 

2011). In some occasions, even coarser SAR DEMs are more reliable than optical source-

derived DEMs. For example, the quality of ASTER 30 m data has been evaluated, and 

significant anomalies and artefacts noted, even if it has better nominal resolution than 90m 

SRTM data (Hirt et al., 2010; Huggel et al., 2008; Reuter et al., 2009).  All these issues 
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concerning the accuracy of DEMs, sources, resolutions, and post-processing techniques (e.g. 

for void filling or converting a DSM to DTM) need to be recognised when selecting a DEM 

for hydrological analysis within a catchment.  In addition, higher resolution data (such as 

LiDAR) are sometimes only available for limited areas and so another consideration is 

whether nationally available data sets (such as Ordnance Survey data in the UK) or those with 

global coverage (e.g. SRTM or ASTER) are suitable for local catchment management 

applications. 

Achieving water quality objectives, such as those set in the WFD, is at risk in many 

parts of the UK due to the impacts of sediments and associated pollutants from diffuse 

sources (Tetzlaff et al., 2013). Better decision-making in soil and water resources 

management to reduce such impacts requires a suitable representation of the catchment 

topography. However, the literature reviewed in this chapter indicates that the implications of 

using different DEMs to derive catchment characteristics and in modelling techniques such as 

RUSLE and SCIMAP are still only partly understood.  

The research presented in the remainder of this thesis addresses these issues though a 

detailed analysis of DEM characteristics, derived parameters and DEM-related modelling 

outputs for a study catchment in Norfolk.  It is intended that the results will help provide 

guidance to local catchment managers and organisations such as river trusts regarding the best 

use of DEM datasets in the field of soil and water resource management. Using appropriate 

DEMs and processing techniques will help identify areas of high soil erosion risk so that 

preventative practices can be suggested, which in turn will limit amounts of sediment and 

nutrients entering watercourses and subsequent in-stream sedimentation and water quality 

degradation.  
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Chapter 3   

Study Area: The River Wensum Catchment 

3.1 Overview 

This chapter describes the characteristics of the River Wensum catchment in East 

Anglia, eastern England. The study area is a section of the Wensum catchment. It lies between 

1˚ 15.5′ (605000) and 1˚ 2.5′ (620000) East Longitude and 52˚ 41.5′ (315000) and 52˚ 49.5′ 

(330000) North Latitude with a total area of 225 km², (15 km x 15 km). Figure 3.1 shows the 

geographical location of the Wensum study area, including the Blackwater sub-catchment 

approximately in the middle of the map.  

At an early stage in the research (Chapter 4), the whole area illustrated in Figure 3.1 

was used as the study area for the general investigation of DEM quality. However, for the rest 

of the research more focus was given to the Blackwater sub-catchment (Figure 3.1), 

particularly for the studies of soil loss and diffuse pollution potential risks. Many hydrological 

processes, such as soil loss, sediment transport and land cover changes, are strongly linked to 

the catchment level as a spatial reference unit.  Moreover, it is necessary to perform soil loss 

and diffuse pollution studies at catchment or sub-catchment scales so that their results can be 

compared and validated against water quality data that are usually measured at the outlet of 

the catchment or its sub-catchments (Walling et al., 2006). 

Within the River Wensum area, five priority sub-catchments have been identified by 

the Catchment Sensitive Farming (CSF) initiative. The Blackwater is one of these and is 
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intensively monitored as part of the River Wensum Demonstration Test Catchment (DTC) 

project (Wensum Alliance, 2013) funded by the Department of the Environment, Food and 

Rural Affairs (hereafter DEFRA).  The Blackwater sub-catchment, and the Wensum in 

general, is a lowland arable catchment typical of much land in eastern England in terms of 

soil and drainage systems. The Blackwater sub-catchment was therefore selected as the local 

catchment study for this project. The main reasons for this were the existence of detailed 

mapping, farm business, meteorological, river flow and water quality data from contacts and 

infrastructure established as part of the Wensum DTC project.  It was necessary to identify the 

existence of water quality data, both in digital and monitoring data, for the purpose of 

comparisons to the results from SCIMAP and RUSLE. 

3.2 Catchment characteristics 

The River Wensum is 78 km long with a catchment area of 593 km². It lies in a rural 

region with diverse and intense water management interests (Sear et al., 2006), with sites of 

Special Scientific Interest (SSSI) and European Special Area of Conservation (SAC) status 

(Cooper et al., 2014). The catchment has very low-relief topography that ranges from 

approximately 80 metres in the west to a few meters at the confluence with the River Yare 

near Norwich (Wensum Alliance, 2013). The River Wensum has low channel gradients with 

shallow and low velocity streams and tributaries. It has a groundwater dominated flow 

regime, arising from the chalk aquifer (Hiscock et al., 2001).  

The climate is relatively dry compared with the west of the British Isles, with an 

average annual rainfall total of 550 – 750 mm (Mokrech et al, 2008). During the September 

2011 to August 2013 DTC monitoring period (our research study period), the average annual 

rainfall total was 653.6 mm.  
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Cretaceous Chalk dominates the geology of the catchment, which has influenced the 

characteristics of the soil. The Wensum catchment is characterised by rich loams, silts and 

sandy peats, which have a high potential for cultivation (Wensum Alliance, 2013). Soil 

texture, underlying glacial deposits of clays, sands or gravels strongly influence the 

hydrological properties of the soil and drainage networks (Sear et al., 2006). In the 

Blackwater sub-catchment, the west part is dominated by seasonally wet soils that cover 

chalky boulder clay, whereas central and eastern reaches are predominantly gravels with well 

drained sandy loam and glacial sands soil. Soils on valley slopes are generally highly 

permeable and highly fertile sandy loams.  

The management of the River Wensum is influenced by the land use of the catchment 

surface as well as by the modifications made to the channels over time. In the past the channel 

and floodplain of the River Wensum has been physically modified interrupting the natural 

flow regime (Collins et al., 2013; Coombes et al., 2007).  It is a modified watercourse as it has 

been altered by the creation of a network of drainage channels (Sear et al., 2006). Activities 

such as widening, deepening and straightening of tributaries and parts of the main river 

channels and also construction of embankments have altered natural river network form and 

processes. Channel management and land use have, therefore, modified the hydrology and 

channel morphology of the catchment (Coombes et al., 2007; Hiscock et al., 2001). 
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Figure 3.1: Study area.   
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3.3 Land use and land cover 

The Wensum catchment is dominated by intensive arable farming. Intensive arable 

land use dominates the landscape on the upland areas (plateau) and valley slopes, whereas on 

the floodplains low intensity grazing has dominated and scattered woodland, scrub and 

wetlands remain (Sear et al., 2006). On the arable land, cereals, irrigated potatoes and sugar 

beet are the main crops cultivated (Maréchal and Holman, 2004; Wensum Alliance, 2013).  

There are also villages and market towns, such as Reepham and Cawston, which the Land 

Cover Map 2007 (Figure 3.2) shows are also located in the study area.  

The Blackwater sub-catchment is used for intensive arable farming. Cereals (wheat 

and barley), oilseed rape and sugar beet production dominates, although managed grassland 

pasture also occurs where soils are peaty and poorly drained (Entec, 2012). Farms in the 

Blackwater sub-catchment are generally capable of having every field cultivated and most of 

the above mentioned crops as well as, to a lesser extent, potatoes, peas and beans are 

cultivated in rotations ranging from 3 to 7 years in length across the sub-catchment. As a 

results of the intensive arable production, streams across the sub-catchment have been 

identified as having some problems associated with sediment losses from agricultural sources 

(Rawlins, 2011).  Evidence from the detailed flow monitoring measurements also suggests 

that agricultural pollution has had some detrimental impacts on water ecology in the sub-

catchment.  
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Figure 3.2: Land cover map 2007 for the study area   
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3.4 The Demonstration Test Catchment (DTC) Programme 

In 2010, DEFRA established three Demonstration Test Catchments (DTC) across 

England to assess whether the implementation of multiple on-farm mitigation measures, 

targeted to reduce the impact of agricultural diffuse water pollution, could also maintain 

sustainable food production and environmental benefits (Collins et al., 2013; McGonigle et 

al., 2014). These catchments were selected for their contrasting natural characteristics, 

agricultural land use and farming systems, but also reflecting the range of conditions across 

England (OECD, 2012). As mentioned earlier, one of the three DTCs chosen for study was 

the Wensum catchment in Norfolk, within which a smaller area – the Blackwater sub-

catchment- was subsequently selected for detailed study and intensive monitoring 

instrumentation. The Blackwater sub-catchment is, in turn, divided into six mini-catchments, 

labelled A to F, each of which has been equipped with bankside station at its outlet 

monitoring parameters including turbidity, stage, flow and more at 30 minutes resolution 

(Wensum Alliance, 2013).  

An essential part of the DTC is that data are collected at appropriate temporal and 

spatial resolutions using a high resolution monitoring infrastructure, where monitoring covers 

groundwater, surface water, flow and socio-economic aspects of land management. These 

data are intended to be freely used by others where research is undertaken in a much more 

collaborative and open way, using the concept of a research platform (McGonigle et al., 

2014). 

Another important component of the DTC program is to consider new concepts and 

adopt more integrated management approaches to addressing diffuse source pollution. These 

approaches recognise the river catchment as the appropriate organising unit for understanding 

and managing the environment in a context that includes social, economic and political 



  Chapter 3 

 

74 

 

considerations (McGonigle et al., 2014; OECD, 2012). The outcomes of the DTC research 

programme are intended to benefit the whole community engaged in land use and water 

resource management. In general, DTC project is an initiative of DEFRA to provide a 

research platform from which a number of integrated ways of managing agricultural diffuse 

source pollution at the river catchment scale can be developed (OECD, 2012).  

3.5 Conclusion 

The River Wensum catchment, East Anglia was chosen as the study area for this 

research for reasons explained earlier. As stated above, the River Wensum and its tributaries, 

particularly the Blackwater sub-catchment, were identified as having high risks from diffuse 

pollutant substances, including nutrients, heavy metals and pesticides associated with soil loss 

and sedimentation delivered to the channels (Rawlins, 2011). Therefore, in order to improve 

the status of the river so it meets the criteria of good water quality and ecological condition 

under the Water Framework Directive (WFD), problems related to soil loss and diffuse 

pollution need to be addressed. Sediment mobilized by water from agricultural land and 

deposited in the rivers is an important component, possibly the most important one, of the 

turbidity and suspended sediment load in waterways. Thus, as Blackwater sub-catchment is 

intensively monitored as part of Wensum DTC project it is an ideal testing area for the 

SCIMAP risk modelling approach for diffuse source of pollution and the RUSLE model for 

an average annual soil loss estimation within the sub-catchment using different digital 

elevation models (DEMs), particularly because the results from these two models can be 

validated and compared with the monitored water quality data. 
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Chapter 4 

DEM quality assessment for the Wensum study area 

 

4.1 Introduction 

This chapter begins by describing all the elevation datasets compiled for this study 

from the perspective of their characteristics and technical specification. The types of the 

elevation datasets that were selected for this study consist of ASTER 30 m, SRTM 90 m, 

Landform Panorama, Landform Profile, Landmap DTM, Bluesky DTM and NEXTMap 

DTM. These types of elevation datasets were selected for this study for their diversities in 

their resolution, the way they were generated, their source (i.e. contour, optical or radar 

images) and of course their availability (Table 4.1).  

The quality of these elevation datasets is assessed using different approaches. At first, 

a comparison between the DEMs is performed in terms of slope and elevation descriptive 

statistics and histograms, cross-sectional profiles, and analytical shading relief images. Then 

an analysis of all the DEMs against a higher accuracy reference dataset is undertaken. Finally, 

a statement of whether or not these elevation datasets are of sufficient quality (fit for purpose) 

for catchment studies is given.  
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4.2 Elevation dataset characteristics 

Different sources and techniques for the generation of DTMs have been developed 

since their inception in the middle of the 20th century (Maune, 2007; Li et al., 2005). DEMs 

generated from different sources can be at similar scales but with different characteristics. 

Traditionally, methods of creating DTMs were from ground survey measurements and the use 

of vectorized contour lines and spot heights from existing topographic paper maps. 

Nowadays, significant advances in remote sensing technologies have led to the possibility of a 

wide variety of higher quality elevation sources (Tighe and Chamberlain, 2009). These 

regional and global topographic observations are collected by means of optical, radar or laser 

sensors such as; improved photogrammetric imagery, IFSAR and LiDAR.  

Several processing steps needed to be performed before these elevation datasets could 

be compared. The first is those datasets downloaded in tiles (ASTER and SRTM) covering 

larger areas needed to be clipped to the study area, while others (Bluesky, NEXTMap and 

Landform Profile) with smaller tiles were mosaicked into one file covering the whole region.  

The second was re-projecting the non UK produced data (ASTER and SRTM) from WGS 84 

to British National Grid. Moreover, as the assessment of DEM quality often also requires 

supplementary information about land cover, Land Cover Map 2007 (LCM2007) was 

downloaded and prepared to help in the analysis process.  Below is a brief summary of the 

technical specifications for all the elevation datasets included in the study. 

4.2.1 Remote sensing derived elevation data 

4.2.1.1 Shuttle Radar Topography Mission (SRTM) 

The Shuttle Radar Topography Mission (SRTM) is a single pass interferometric 

synthetic aperture (InSAR) mission conducted in February 2000 (Reuter et al. 2007). The 
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SRTM elevation data cover most of the globe land surface between 60 N and 56 S. It was the 

first time that a global high-quality DEM was produced with a resolution of 1 arc-second (30 

m) and 3-arc second (90 m), however, of these two datasets only 90 m data are available 

globally, while the 30 m is only for the USA territory (Jarvis et al. 2008). The post-processed 

SRTM elevation data version 4 has now been released for the entire terrestrial surface and is 

available at the website of Consultative Group for International Agricultural Research 

Consortium for Spatial Information (CGIAR-CSI) (Jarvis et al. 2008). It is the latest post-

processed SRTM elevation data released, which represent a huge improvement over the 

previous versions because errors (i.e. voids) were corrected using new interpolation and 

patching algorithms as well as better auxiliary DEMs (Hirt et al., 2010). 

The SRTM DEM was produced using data retrieval technology which is based upon 

the transmission of one radar signal and reception using two SAR antennas. It can be defined 

as a “snapshot of the reflective surface of the Earth during the time period of the mission” 

(Reuter et al. 2007, p. 4). This process produced three dimensional measurements for every 

single point imaged on the Earth’s surface (Weydahl et al. 2007).  The SRTM signal 

measurement resulting from reflective surface elevation is a complicated function of the 

electromagnetic and structural properties of the scattering surface, and this depends on the 

terrain type and cover type (Tighe and Chamberlain, 2009). As a result, SRTM data are 

subject to a number of errors (i.e. voids) due to lack of contrast in the radar image, and 

because of that a methodology based on spatial filtering was developed to correct this 

problem (Gorokhovich and Voustianiouk 2006). In general, the error was found to be higher 

in vegetated areas due to the tree canopy (Sun et al., 2003), and voids were found over water 

bodies, in mountainous area and in desert areas (Reuter et al., 2007). 

The existence of no-data regions initially caused significant problems in using SRTM 

DEMs, especially in the context of hydrological models and catchment management which 
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require continuous flow surfaces. For the version used in this study (CGIAR-CSI SRTM data 

products), CGIAR-CSI applied a hole-filling algorithm to provide a continuous elevation 

surface (Jarvis et al. 2008). This method involved two steps. First filling small holes 

iteratively and cleaning the surface to reduce pits and peaks. Secondly, interpolating across 

large holes using a range of methods, based on the size of the hole and the surrounding 

landforms. The void-filling process was conducted using a high resolution auxiliary DEM, 

however, for areas without such details, the SRTM30 data were used (Jarvis et al. 2008). 

SRTM data were mosaicked into a number of one degree by one degree tiles. Sample 

spacing between data points is either 1 arc-second (about 30 m) or 3 arc-second (about 90 m), 

referred to as SRTM-1 and SRTM-3 respectively. The 3 arc-second DEMs are derived from 

the 1 arc-second data by averaging of the 9 elevation samples in a 3 x 3 window, and spaced 

at 3 arc-second intervals. Since the primary error source in the elevation data has random 

noise characteristics, this error is thus reduced by roughly a factor of three (Gamache, 2004). 

Each tile is projected in geographic coordinates using WGS84 horizontal datum and the 

EGM96 vertical datum (Jarvis et al., 2008). The elevation data is provided in meters as 16-bit 

signed integer data.  

Among the elevation data literature, several studies have examined SRTM data quality 

(Gorokhovich and Voustianiouk, 2006; Rabus et al., 2003; Sun et al., 2003) with different 

horizontal and vertical accuracy results. In general, the horizontal accuracy has been found to 

be lower than ± 20 m at 90% confidence level. The DEM vertical errors have been recognized 

to be ±16 m and ±6 m for absolute and relative accuracy, respectively. Absolute accuracy 

describes the error throughout the entire mission while relative accuracy stands for the error 

on a local 200 km-scale. 
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4.2.1.2 Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) 

The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is 

an imaging instrument developed by the Ministry of Economy, Trade and Industry (METI) of 

Japan, NASA and the Earth Remote Sensing Data Analysis Centre (ERSDAC).  Images are 

acquired by sensors measuring reflectance and radiance in parts of the visible, shortwave 

infrared and thermal infrared spectrum (ASTER Validation Team, 2009). Amongst these, a 

near-infrared (NIR) Band 3 is acquired using a nadir and backward looking telescope 

providing along-track stereo coverage from which high quality DEMs are generated using 

automated stereo correlation. ASTER GDEM (ver. 1) is a global 1 arc-second elevation 

dataset which was released to the public in June 2009 by METI, Japan and NASA (Hirt et al., 

2010). 

The ASTER GDEM data covers the Earth’s landmass between 83˚ N and 83˚ S 

latitudes offering greater coverage over SRTM. The GDEM was created by stereo correlating 

about 1.3 million scenes, each scene corresponding to about 60 km by 60 km ground area 

which were collected during an observation period of more than seven years (2000-2007) 

(Hirt et al., 2010). For the final public release, the data were formatted in 1 x 1 degree tiles as 

GeoTIFF files with a ground surface distance of 30 m (Tighe and Chamberlain, 2009).  

There have been several studies to determine the accuracy of digital elevation data 

derived from ASTER (ASTER Validation Team, 2009; Goncalves and Oliveira 2004; Hirt et 

al., 2010; Reuter et al., 2009). The overall vertical accuracy of ASTER elevations is 

recognized to vary between 10 m and 25 m. Like SRTM, ASTER elevation data are projected 

to WGS84 horizontal datum and the EGM96 for the vertical datum. ASTER GDEM data 

were examined in terms of the containment of specific features, such as artifacts and residual 

anomalies and it was determined that the ASTER GDEM does contain anomalies and artifacts 
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which affect its overall accuracy and impede its use for certain applications (i.e. hydrological 

applications) unless external information is used as a supplement (ASTER Validation Team, 

2009). There are two main sources of these anomalies and artifacts; one is cloud cover and the 

other is the algorithm used to generate the final GDEM from the individual ASTER DEMs 

available. It is important to note that the ASTER GDEM version 1 has no inland water mask 

applied, consequently the elevations of inland lakes are not accurate. As a result of these 

shortcomings, ASTER GDEM version 1 was considered to be experimental or research grade 

(ASTER Validation Team, 2009).  A second version of the ASTER GDEM was released in 

late 2011 which incorporated additional image scenes and improved processing to enhance 

masking of water bodies and reduce voids (ASTER Validation Team, 2011). However, much 

of the comparative analysis conducted in this chapter had been completed by then so the 

results presented here refer to version 1 of the GDEM product. 

4.2.1.3 Landmap DTM 

The Landmap IFSAR DEM was derived from European Space Agency European Radar 

Satellite (ERS) data using an interferometry technique which is similar to the 

photogrammetric process used with stereoscopic aerial photography (Muller et al., 2000). The 

Landmap project generated a DEM with a 25m cell size for the whole of the UK and Ireland 

using multi-pass IFSAR based on the ERS satellite 1 and 2 data (Smith et al., 2006). 

Uniquely, this project employed automated processing of image strips (as opposed to 

individual image scenes) to produce DEMs at no royalty fee cost for use by the academic 

community in the UK (Muller et al., 2000; Smith et al., 2006).  

IFSAR data can be acquired by single pass or repeat pass techniques. Single pass data 

are acquired from an aircraft or spacecraft where there are two antenna separated by a known 

base length, while repeat pass is usually from satellites, where the images are acquired from 

two passes of the sensor in very similar orbits (Dowman, 2004). The coherence between 



 Chapter 4 

 

81 

 

IFSAR images is the means by which the suitability of a pair of these images for generating 

DEMs is measured. It was found that the coherence is usually good on single pass images 

while it can be poor on repeat pass, especially if the capturing time between the images is 

significant (Dowman, 2004). An advantage of SRTM data over Landmap is that SRTM DEM 

was created from single pass data (Nikolakopoulos et al., 2006). In other words, the Landmap 

DTM product suffers from the problem of poor coherence and atmospheric effects caused by 

the repeated pass data (Dowman, 2004).   

The Landmap data are projected to the British National Grid, and it is believed that the 

absolute accuracies are better than 30m horizontal and ±20m vertical (Muller et al., 2000).  

The Landmap DTMs are derived from a DSM product which means that the surface 

representation could still include man-made objects, such as the upper surface of 

embankments, bridges, etc.  The main problems that been recognized in the IFSAR data are 

the presence of layover and shadows, the size of footprint and loss of coherence (Dowman, 

2004).  

4.2.1.4 Bluesky DTM 

Bluesky 5m DTM is high resolution elevation data photogrammetrically interpolated 

from stereoscopic aerial photography collected between 1999 and 2008, where a 

photogrammetric DSM was produced first then converted to DTM. These data have a cell size 

of 5m and exist in both integer and float elevation versions, where the elevation value is 

rounded to the nearest metre and values with potential decimal places, respectively.  These 

data are available for England and Wales from the JISC Landmap service.  The Bluesky DTM 

registered to the British National Grid has 5m and ±2m horizontal and vertical accuracies 

respectively (Landmap 2011).   
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4.2.1.5 NEXTMap DTM 

NEXTMap is one of the Intermap’s core products. Intermap is a global provider of 

high accuracy, high resolution digital elevation data using airborne single-pass across-track 

interferometric synthetic aperture radar (IFSAR) X-band data (Smith et al., 2006). The system 

collects return radar pulses from the X-band twin antenna interferometer, which is separated 

by a one metre baseline, and the positioning and orientation information are achieved through 

the use of differential GPS and inertial systems (Intermap, 2011).  The IFSAR system has 

been operated commercially by Intermap since January 1997.  

Since this system is a single pass technique, terrain heights (DSM) are collected by 

trigonometry using the phase difference between signals, the distance between the two 

antennae and the location of the aircraft (Dowman, 2004). By their nature, the original 

elevation models provided by the IFSAR system are of the first surface and not the underlying 

bare earth. The NEXTMap digital terrain model (DTM) is derived from the DSM product by 

digitally removing vegetation, buildings and other cultural features, leaving the bare Earth’s 

surface dependent on the filtering algorithms that are used and also manual editing efforts 

(Intermap, 2011). 

IFSAR DSM and DTM products are subject to several potential sources of errors 

which degrade their overall accuracy. The most inherent problems are the altitude and motion 

of the aircraft, the presence of layover and shadow, footprint and the loss of coherence (Smith 

et al., 2006).  In addition, vegetation cover and severe weather conditions can effect IFSAR 

product accuracy. Areas covered by vegetation will produce more height measurements error 

(noise) than other surfaces (specular scatters i.e. bare soil). It is known that in moderate to 

heavily vegetated areas the elevation measures take place near the canopy top, which 

produces a noisy pattern over forested areas (Mercuri et al., 2006). As a result, vertical 
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accuracy of IFSAR DSM and DTM products will be degraded due to the vegetation cover 

since the radar will penetrate vegetation to some distance near to the canopy top before 

reflecting, depending on the wavelength.   

While IFSAR data can be collected in nearly all kinds of weather conditions, night and 

day, there still are some cases where data accuracy can be affected. These situations, for 

example, are air turbulence and clouds with heavy moisture; the former affect the stability of 

the platform, whilst the latter can absorb the radar energy to some extent (Li et al., 2004).    

NEXTMap Britain was implemented in 2002 and was performed in two phases. Phase 

I covered England, Wales and the southern part of Scotland, while the northern part of 

Scotland was included in Phase II. A huge effort was made for the validation processes for 

this programme (Mercer, 2004). NEXTMap DTM data are provided in 5 m cell size grids 

stored in 32-bit floating format using British National Grid, which is defined by OSGB36 

projection. The vertical and horizontal datums are ODN (OSGM91) and ETRS89 

respectively. The data have a spatial resolution of 5 m, with a vertical accuracy of 1m 

(Intermap, 2011). 

4.2.2 Ordnance Survey of Great Britain data 

4.2.2.1 Landform Panorama (OS 50m) 

The Landform Panorama DTM is one of the spatial data products that are provided by 

Ordnance Survey of Great Britain (OSGB) which is the primary provider of spatial data for 

the UK.  This product is derived from 1:50,000 contour mapping to generate a DEM with a 50 

m cell size and an integer elevation value.  Landform Panorama DTMs consist of elevation 

values which have been mathematically interpolated from the contours on the Landranger 

1:50,000 scale map series. These height values are located at each intersection of a 50 m 
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horizontal grid. The Landranger maps were originally generated from stereo aerial 

photography which was captured during the 1970s (Ordnance Survey, 2010a). 

The Landform Panorama data are projected to the National Grid coordinate reference 

system, which is defined by the OSGB36 datum and distributed in 20 km x 20 km tiles. The 

elevation values are normally related to mean sea level at Newlyn. There are some variations 

in the Landform panorama DTM accuracy which depend upon the density of elevation data 

contained in the contour file and the nature of the terrain. Generally speaking, the vertical 

accuracy of these data is better than one half of the vertical interval of the source contour data, 

which is ± 5m. In the flat areas, where there are limited height differences, contours and 

elevation points may be a great distance apart, this can cause irregularities in the DTM which 

appear as slight terracing of the terrain (Ordnance Survey, 2010a). 

4.2.2.2 Landform Profile 

The Landform Profile DTM have been mathematically interpolated from a contour 

product and has a cell size of 10 m. The contour data that were used to generate this DTM 

were captured from Ordnance Survey’s 1:10,000 scale maps, which have contours spaced at 5 

m intervals. These data were supplemented by spot heights (captured by photogrammetric 

methods in 1987), and high and low water marks from Ordnance Survey 1:250, 1:2500 and 

1:10,000 scale digital data. These contour lines, spot heights and tidal lines were converted to 

a TIN and then to a 10 m regular grid (OS 10m) (Wise, 2007; Ordnance Survey, 2010b). The 

vertical accuracy of the Landform profile data is believed to be better than or equal to half of 

the contour interval on the original map, in this case ±2.5m. Landform Profile data is 

referenced to the Ordnance Survey Great Britain 1936 (OSGB36) datum and projected in 

British National Grid. These OS elevation data are supplied as OS 5 km x 5 km grid tiles 

(Ordnance Survey, 2010a). 
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 NEXTMap DTM Bluesky  DTM Landform Profile Landmap DTM ASTER GDEM 
Landform 

Panorama 
SRTM 

Data source 

type 

Radar images acquired 
by two IFSAR 

antennas. 

Single pass system 

(X-band) 

Aerial photography 

Contour data  from 

Ordnance Survey’s 

1:10,000 scale maps 

Radar images using 
multi-pass IFSAR 

based on the ERS 

satellite data 

Images acquired by 
visible and near-

infrared (VNIR) 

bands. 

Contour data  from 
Landranger 

1:50,000 scale map 

series 

Radar images acquired 
by two SAR antennas. 

Single pass system 

(C-band and X-band) 

Processing 

Interferometric 

technique produces 

DSM which need 
processing to DTM 

Stereoscopic 

technique produces 

DSM which need 
processing to DTM 

Elevations 

mathematically 

interpolated from 
contours data 

Interferometry 

technique produces 

DSM which need 
processing to DTM 

Stereo correlation 

Elevations 

mathematically 

interpolated from 
contours data 

Interferometric technique 

using two SAR images 

Spatial 

resolution 
5 m 5 m 10 m 25 m 30 m 50 m 90 m 

Accuracy 
Vertical accuracy of 

±1m 

Vertical accuracy 

better than  ±2.5m 

Half contour interval, in 

this case ±2.5m 

Vertical accuracy 

better than  ±20m 

Vertical accuracy 

vary between 10 m 

and 25 m 

Half contour 

interval, in this case 

± 5m 

Vertical accuracy vary 

between 6 m and 16 m 

Coverage National coverage England and Wales National coverage UK and Ireland 
Between 83˚ N and 

83˚ S 
National coverage 

Between 60˚ N and 

56˚ S 

Example of 

problems 

Some artifacts that are 

not completely 
removed during the 

process of converting 

DSM to DTM 

Some artifacts that 

are not completely 
removed during the 

process of converting 

DSM to DTM 

Stair-step problem, 

steep slope between 
different contours 

positions and integer 

rounding problem 

Artifacts caused by 

presence of layover 
and shadows, the size 

of footprint and loss of 

coherence 

Contains 

significant 

anomalies and 
artifacts caused by 

residual clouds and 

the algorithm used. 

Integer rounding 

problem in flat 
areas (contour 

ghosts) 

Data holes because of a 

lack of contrast in radar 
image, presence of water 

or excessive atmospheric 

interference. 

Acquisition 

date  

30-Dec-2001 to 13-

Oct-2003 (Mercer, 

2004; Smith, 2010) 

1999-2008 (Bluesky; 

Landrmap, 2014) 

Regularly maintained 

(Smith, 2010) 

1995-96 (Smith et al., 

2006) 

2000-2008 (Urai et 

al., 2012) 

Maintained until 

2002 (Smith, 2010) 

02-2000 (Smith et al., 

2006; Tighe and 

Chamberlain, 2009) 

Table 4.1: Characteristics of DEMs used in this study. 
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4.3 DEM quality assessment 

4.3.1 Comparison of elevation and slope descriptive statistics 

In this study, seven different DEMs were compared using statistical and graphical 

techniques (Maune, 2007; Penas et al., 2011). Elevation and slope characteristics were 

assessed by comparing minimum, maximum, mean and standard deviation values, as shown 

in Table 4.2 and Table 4.3. 

 

 

From the elevation descriptive statistics (Table 4.2), it can be seen that the ASTER and 

Landmap DTMs have the lowest mean elevation values, 31.8 m and 34.5 m, respectively.  

This could indicate that these two datasets do have some accuracy problems, with elevation 

values usually underestimated. A study by Blanchard et al. (2010) found that compared to 

SRTM 90 m, ASTER 30 m accuracy was lowest for agricultural and grassland areas. It is 

clear from the table that the Landmap 25 m has the worst accuracy on most statistical 

measures; minimum (-1 m), maximum (75 m) and, standard deviation (11.3 m) compared to 

Statistical Calculation 
NEXTMap 

5m 

Bluesky 

5m 
OS10m 

LandMap

25m 

ASTER 

30m 
OS50m 

SRTM 

90m 

Minimum ( ˚ ) 0 0 0 0 0 0 0 

Maximum ( ˚ ) 56.2 31.3 30.4 38.9 27.9 10.3 11.8 

Mean ( ˚ ) 1.7 1.4 1.5 2.97 2.6 1.1 1.3 

Standard Deviation ( ˚ ) 1.99 1.25 1.65 2.3 1.6 0.97 0.97 

% of area ≥ 3 ( ˚ )  13.7% 9.3% 16.3% 36.5% 37.3% 3.0% 6.1% 

Statistical Calculation 
NEXTMap 

5m 

Bluesky 

5m 
OS10m 

LandMap

25m 

ASTER 

30m 
OS50m 

SRTM 

90m 

Minimum (m) 7.8 8.3 8 -1 7 8 5 

Maximum (m) 75.8 64.6 62 75 61 63 67 

Mean (m) 38.3 37.04 37.2 34.5 31.8 36.8 38.1 

Standard Deviation (m) 11.1 10.9 10.7 11.3 9.8 10.9 10.6 

Table 4.2: Elevation descriptive statistics 

 

Table 4.2: Elevation descriptive statistics 

Table 4.3: Slope descriptive statistics 

 

Statistical Calculation 
NEXTMap 

5m 

Bluesky 

5m 
OS10m 

LandMap

25m 

ASTER 

30m 
OS50m 

SRT

M 

90m 

Minimum ( ˚ ) 0 0 0 0 0 0 0 
Maximum ( ˚ ) 56.2 31.3 30.4 38.9 27.9 10.3 11.8 
Mean ( ˚ ) 1.7 1.4 1.5 2.97 2.6 1.1 1.3 

Standard Deviation ( ˚ ) 1.99 1.25 1.65 2.3 1.6 0.97 0.97 
% of area ≥ 3 ( ˚ )  13.7% 9.3% 16.3% 36.5% 37.3% 3.0% 6.1% 

 Table 4.3: Slope descriptive statistics 
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results from other datasets. On the other hand, several other datasets (NEXTMap 5 m, 

Bluesky 5 m, OS10 m, OS50 m and SRTM) produced very similar results.  

In the literature, it is common that DEMs with lower resolutions produced lower 

average slopes (e.g. Kienzle, 2004; Li and Wong, 2010; Wu et al., 2008; Zhang et al., 1999). 

However, in this study, coarser resolutions, ASTER 30 m and Landmap 25 m DEMs, have 

higher mean slope measures compared with the higher resolution DEMs, Bluesky 5 m and 

NEXTMap 5 m, 2.6˚ for ASTER and almost 3˚ for Landmap DTM (Table 4.3). This is 

probably related to the DEM generation process and data source, rather than to DEM spatial 

resolution or vertical accuracy. 

4.3.2 Elevation histograms 

It is clear from the histograms in Figure 4.1 below, that the elevation data derived from 

remote sensing sources (i.e. ASTER, SRTM ,Landmap DTM, Bluesky DTM and NEXTMap 

DTM) are, to some extent, distributed as normal bell-curves around values relatively close to 

the mean elevation value of each dataset. On the other hand, histograms of DEMs generated 

from contour data show some diagnostic peaks (spikes) indicating over-representation of the 

contour lines (Fisher and Tate, 2006). From histograms it can be seen that most of the 

distributions are negatively skewed (Lee and Wong, 2001), which mean that most of the 

elevation values in each dataset are greater than the corresponding mean, the exception being 

the ASTER dataset which has more of a positive skew where its histogram shows a normal 

distribution around the value of 28 while its mean value is 31.8. 
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Figure 4.1: Histograms of the elevation values for each dataset. 

 

 

Figure 4.1: histograms of the elevation values distribution for all available 

elevation datasets. 
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4.3.3 Cross-sectional profiles 

Two cross-sections from West to East were generated and used to visually compare the 

elevation profile for each DEM in the whole dataset (Figure 4.2). Transect one was selected to 

pass through the upper part of the Wensum tributary, the area where the catchment 

management studies are focusing (Blackwater sub-Catchment), and lies between these two 

points (X1=610187, Y1=325756, X2=614550, Y2=325756). The other transect (between 

X1=608200, Y1=323070, X2=612560, Y2=323070) was selected to pass through the town of 

Reepham where the river goes through an built-up area (Figure 4.2).    

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: Locations of the cross-sectional lines. 

 

 

Figure 4.2: Locations of the cross-sectional lines. 
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4.3.3.1 Cross-sectional elevation profile 1 

Figure 4.3 shows cross-section 1 overlaid on top of the land cover map which was used 

to help in the interpretation of the elevation profile results. It is clear from the illustration that 

the first profile passed over an area mainly consisting of arable and horticultural land cover 

with some broad-leaved woodland in the middle and coniferous woodland to the far east of 

the area.  

 

 

For the analysis, elevation values were plotted on the vertical axis whereas distance 

along the cross profile was along the horizontal axis as shown in Figure 4.4 below. 

A visual interpretation of Figure 4.4 shows that Landmap DTM (E) behaves as a noisy 

dataset. It is clear that this data contains a lot of spurious sinks and peaks where the elevation 

is considerable lower or higher than the surrounding terrain. This could be due to the fact that 

this elevation data was created using IFSAR repeat pass data, which has been reported as 

Figure 4.3: Location of cross-sectional line 1 overlaid on 
the land cover map (source: DTC). 

 

 

Figure 4.3: Location of the cross-sectional line 1 
overlaid on the land cover map.   

 

Land Cover Map 2007 
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suffering from poor coherence, the interval between acquisition of the two images and the 

weather conditions  (Dowman, 2004). 

 By looking at the elevation profiles for the Ordnance Survey (Figure 4.4C and D) 

products which were created from contour data, common problems associated with the 

creation of DTM from contour data are obvious in these two examples. It is clear from profile 

(C) (Landform profile 10m) that this data is suffering from the stair-step problem, steep 

slopes between different contours positions and an integer rounding problem (the elevation 

value is rounded to the nearest metre), where the transect line represents the same elevation 

value for a long distance (i.e. the value of 34 m between 1700 m and 2300 m from the start of 

the profile, (profile C)).  It has been noted that rounding off elevations to the nearest metre 

can cause a significant error into the DEM (Fisher and Tate, 2006). 

Land cover is a very important factor which affects the calculation of elevation when 

optical or radar sensors are used, where near top of canopy and man-made objects are 

measured not the bare earth (ASTER Validation Team, 2009;  Liu, 2008; Reuter et al., 2007). 

This fact is clear on both ASTER, and SRTM cross-section examples below (F and G) where 

the elevation increased sharply at the far east of these transects, due to a coniferous woodland 

covering that part of this area (Figure 4.4). Hebeler and Purves (2009) reported that SRTM 

data appear to be sensitive to overestimating terrain elevation in densely vegetated areas.  

Figure 4.5 shows that the Landmap 25 m and ASTER data are below the other DEMs, 

underestimating elevation values along almost the entire transect line by a few meters.  On the 

other hand, SRTM, the coarsest DEM among all those examined, exhibits almost the same 

elevation profile pattern as the Bluesky, NEXTMap and OS datasets.  
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Figure 4.5: Cross-section 1 showing difference between all the seven 

DEMs used in this study.  

 

Figure 4.5: Cross-section 1 showing difference between all the seven 
DEMs used in this study.  

(E) Landmap 

 

(E) Landmap 

Figure 4.4: Elevation profile along cross-
section1 for each different DEM (see 

Figure 4.3 for land cover categories) 

 

Figure 4.4: Elevation profile along the 
cross-section1 for each different DEM (see 

Figure 4.3 for land cover categories) 
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4.3.3.2 Cross-sectional elevation profile 2 

As can be seen from the map below (Figure 4.6), cross section 2 has an urban area in 

the middle, with arable land covering much of the rest of the area with some improved 

grassland and broad-leaved woodland. 

 

 

Comparisons made between all the elevation profiles generated from each elevation 

dataset using cross-section 2 showed that the effect of land cover type when optical or radar 

sensors were used. As highlighted in Figure 4.7, there are identifiable false peaks in the 

ASTER, SRTM and LandMap DTM elevation datasets (see small red circles) compared with 

the others used in this study. This error was caused by broad-leaved woodland covering that 

part of the cross-section area (Figure 4.6).  Ordnance Survey, Bluesky, NEXTMap and SRTM 

elevation datasets behave quite similarly over the transect area while ASTER and LandMap 

appear very rough containing many gross errors affecting their overall quality. It is clear that 

these two datasets undulate on short lags, while other datasets show less variability. 

Figure 4.6: Location of the cross-sectional line 2 overlaid on 

the land cover map (Source: DTC).   

 

 

Figure 4.6: Location of the cross-sectional line 2 overlaid on 
the land cover map.   

 

Land Cover Map 2007 
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Figure 4.7: Elevation profile along the 
cross-section 2 for each different DEM (see 

Figure 4.5 for land cover categories) 

 

Figure 4.7: Elevation profile along the 
cross-section 2 for each different DEM (see 

Figure 4.5 for land cover categories) 

Figure 4.8: Cross-section 2 showing difference between all the seven 

DEMs used in this study.  

 

Figure 4.8: Cross-section 2 showing difference between all the seven 

DEMs used in this study.  
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Additionally, the effect of the small woodland, which can be seen clearly in the other 

optical and radar remote sensing generated DEMs (see red circles), does not exist in 

NEXTMap DTM elevation profile example above (Figure 4.7B). This could be due to the fact 

that as reported by Intermap, “trees that stand alone, in clumps, rows and areas that are fully 

encompassed in a circle of radius 50 metres or less will be removed” (Intermap, 2011). 

Similar to  the Bluesky, NEXTMap, OS10m and OS50m profiles, along the two transect lines, 

SRTM data provides a fairly consistent profile across the various land covers except for forest 

areas, where it does provide higher elevation values (Figure 4.8). This result is consistent with 

Blanchard et al. (2010) who reported that, compared to ASTER 30 m, SRTM 90 m vertical 

accuracies were the highest for built-up areas and bare soils, and lower for forest areas. 

Contour derived DEMs provide a consistent surface profile in all land covers which 

mean that these products provide a reasonable accuracy regardless of land cover. In contrast, 

remote sensing-derived DEMs, especially SRTM, provide a consistent surface profile in all 

land covers except woodland where the elevations are too high (Figures 4.5 and 4.8). 

4.3.4 Common problems 

Along with statistical comparisons, visually inspecting the spatial pattern of the DEMs 

through a variety of rendering tools such as shaded relief maps can help to fully address 

overall quality (Carrara et al., 1997). Visual methods can offer an initial assessment, 

benefitting from the huge improvements in digital data visualisation capabilities (Podobnikar, 

2009). Analytical shading with different parameters is an extremely effective way to examine 

and identify any artifacts and anomalies that an elevation dataset may contain. The shaded 

relief image (hillshade), is a technique that has been used to determine the hypothetical 

illumination of a surface for either an analysis or a graphical display (Maune, 2007). 
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Hillshade images were therefore created for each elevation dataset and examined for any 

errors (i.e. anomalies, artifacts, etc). 

 

 

 

 

 

 

 

 

 

  

It is clear from Figure 4.9 above that the ASTER elevation data reflects the comment 

in the ASTER GDEM Validation Summary Report stating that anomalies and artifacts occur 

with regularity and often high frequency within the ASTER GDEM. Figure 4.9 illustrates 

some pit artifacts (see white arrows) where the elevation is considerably lower than the 

surrounding terrain. It has been suggested that this kind of artefact is related to irregular stack 

number boundaries caused by the linear boundaries that exist between swath-oriented zones 

of two different stack numbers (ASTER Validation Team, 2009). 

 

 

 

Figure 4.9: Examples of pit artifacts in 
an ASTER DEM normal image from 

the Wensum area (A) and shown more 

clearly in shaded relief images (B & C). 

 

 

Figure 4.9: Examples of pit artifacts in 

an ASTER DEM normal image from 
Wensum area (A) and more clearly in 

shaded relief images (B & C). 
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From the images shown in Figure 4.10 above, it appears that the Landmap dataset 

suffers from stripe-effects in the elevation values. Striping is usually caused by some sensors 

that are out of alignment, defective or not calibrated correctly. Moreover, as this elevation 

dataset was generated from SAR data using an interferometry technique, the effect of 

woodland cover type on the calculation of elevation is of great impact. As can be seen from 

the Figure 4.11 below, the areas with higher estimated elevation are covered by broad leaved 

and coniferous woodlands. It is known that area with dense vegetation obstruct the radar 

Figure 4.10: Stripe effects (linear boundaries) in the LandMap dataset (A) and the 

associated abnormal elevation change is clear in the shaded relief images (B&C) 

and the elevation colour scheme image (D). 

 

Figure 4.10: Stripe effects (linear boundaries) in the LandMap dataset (A) and the 

associated abnormal elevation change is clear in the shaded relief images (B&C) 

and the elevation colour scheme image (D). 
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irradiance which results in higher estimation of elevation than the true value (Liu, 2008). This 

also could indicate that vegetation cover may not have been classified correctly to produce a 

bare-earth data during the process of converting from DSM to DTM (Bandara et al., 2011) 

 

 

 

 

 

 

 

 

 

 

 

 

More generally, it is clear that this elevation dataset contains a lot of artifacts (i.e. pits, 

bumps and stripes) which give the product a noisy and blemished appearance. This could be 

due to the fact that this elevation data was created using IFSAR repeat pass data, which has 

been proven to suffer from poor coherence, the interval between acquisition of the two images 

and the weather conditions  (Dowman, 2004). 

 

 

Figure 4.11: Land cover map 2007 (only three categories) overlaid on top of 

shaded relief image of the LandMap DTM form the River Wensum study area 

illustrating the effect of woodlands on the data.  

 

 

Figure 4.11: Land cover map 2000 (only three categories) overlaid on top of 
shaded relief image of the LandMap DTM form the River Wensum study area 

illustrating the effect of woodlands on the data.  
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Figure 4.12 above reveals some common interpolation artifacts that are associated with 

elevation datasets that are produced using contour data. Peckham and Jordan (2007) stated 

that DEMs derived from contour data often display bias towards contour elevations and the 

curvature parameters can appear as waves over the landscape. These errors are evident in the 

illustrations above as sudden slope changes and flat areas between contour lines. It is also 

apparent that the flat river plain is covered by an unrealistic relief pattern consisting of 

triangular-shaped surfaces at which elevation values are slightly different (i.e. 2.3 metre in the 

example Fig. 4.12B). Moreover, by inspecting the image carefully, it is apparent that this 

elevation dataset is affected by stair-step artifacts along contour lines positions. In addition, 

this shaded-relief image of the OS 10 m contour based DTM illustrates large areas of similar 

values (the flattening of hilltops and valley bottoms) which is probably due to horizontally flat 

regions induced by TIN to grid conversion (Wise, 2007). Artificial horizontally flat surfaces 

occur within in valley floors and on hill-tops where no additional data were available (e.g. 
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. 
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Figure 4.12: Shaded relief map of Landform 

Profile 10m DTM illustrating common problems 

associated with DTMs derived from contour data 
(triangular-shaped and stair-step) (A). Elevation 

profile indicates abnormal elevation change (2.3 

meters) caused by unrealistic triangular-shaped 

relief (B).  

 

 

Figure 4.12: Shaded relief map of Landform 10m 

DTM illustrating common problems associated 

with DTMs derived from contour data (triangular-

shaped and stair-step) (A). Elevation profile 
indicates abnormal elevation change (2.3 meters) 

caused by unrealistic triangular-shaped relief (B).  
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spot heights, break lines) (Figure 4.12). Other problem can be clearly witnessed by the relief 

pattern in the north-west portion of Figure 4.12A, where the surface appears noisy giving 

more details of the contours position, while it is much smoother in the other parts of the 

dataset. This is believed to be a systematic error caused by the process of mosaicking the 

elevation data tiles (5 km x 5 km grid tiles).  

 

 

 

 

 

 

 

 

 

  

 

 

 

As noted earlier, the Bluesky DTM was generated from photogrammetrically derived 

digital surface models (DSM).  A DSM represents earth topography along with the elevated 

features such as vegetation and man-made objects on it.  As DTM generation goes through 

many processes, errors are inherited from the source data and before production processes.  

Therefore, errors are propagated in the DTM if not identified and removed from the DSM. 

The Bluesky DTM relief-shaded image above (Figure 4.13) reveals some artifacts that are not 

Figure 4.13: Examples of artifacts in a Bluesky DTM shaded-relief image (River 

Wensum area) that illustrate problems associated with DTMs derived from DSM data.   

 

 

Figure 4.13: Examples of artifacts in an Bluesky DTM shaded-relief image (River 

Wensum area) that are clearly illustrate problems associated with DTMs derived from 
DSM data.   
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completely removed during the process of converting from DSM to DTM. As can be seen 

from image (C) above, there are dam-shape artifacts that can be easily identified in the middle 

of the image, which might be related to features such as elevated roads, embankments or 

dams. Shaded-relief image (D) shows some other artifacts which appear like buildings. In 

addition, a horizontal smearing is clearly noticeable. This kind of artifact is likely to be a 

result of errors during the collection of the source data, such as unstable remote sensing 

equipment or image processing (Gehrke and Uebbing, 2011).  All these quality problems 

indicate that man-made structures and vegetation effects have not been completely removed 

from the data during the process of converting from DSM product to a bare-earth DTM, a 

common problem in remote sensing-derived DEMs (ASTER Validation Team, 2009; 

Dowman, 2004; Hodgson et al., 2003;  Jordan, 2007). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.14: Examples of artifacts in the NEXTMap DTM shaded-relief image of Wensum 

area that illustrate problems associated with DTMs derived from DSM data. 

 

 

Figure 4.14: Examples of artifacts in the NEXTMap DTM shaded-relief image of Wensum 
area that are clearly illustrate problems associated with DTMs derived from DSM data. 
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NEXTMap DTM is a single-pass IFSAR product. It was derived from DSM data, 

which represents surfaces that are visible to the radar signal, after the automatic processing 

and manual editing to remove vegetation, buildings and other man-made features leaving just 

the bald-earth (Intermap, 2011).  However, as can be seen from Figure 4.14 above, the canopy 

cover problem still exists in the NEXTMap data from the River Wensum catchment area. 

Intermap’s Products Handbook (2004) indicates that any woodland region covering an area 

that exceeds fifty metres in all directions will not be removed from the DTM product. This 

can be seen clearly in the shaded relief image Figure 4.14E where elevation values represent 

the canopy heights not the bare earth. The presence of these artifacts also influences the 

character of the DEM surface and distorts derived parameters, in particular applications that 

are based on neighbourhood analysis such as upslope contributing area (Schwanghart et al., 

2013).  

Intermap also edits and modifies features such as lakes and streams in the DTM 

product.  The Intermap Products Handbook (2004) reports that elevations along streams less 

than 20 metres in width and greater than one kilometre in length will be modified to maintain 

the monotonic flow within the vertical accuracy limit of radar elevation data. Figure 4.14E 

illustrates modified streams where the narrow drainage canals are preserved through the 

woodland area. This helps to ensure that water flow paths through the woodland area are 

uninterrupted.  

Figure 4.14C and D demonstrates how water bodies are represented in the NEXTMap 

data, where lakes greater than 400 square metres in area are levelled to a single elevation 

value (expressed to the nearest 0.1 m) based on the water elevations and the surrounding 

shoreline (Intermap, 2011). This process produced water bodies as depression artifacts, where 

the elevation values are lower than surrounding terrain (Figure 4.15).  
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4.3.5 Assessing DEMs against higher accuracy reference data  

A dataset of higher accuracy can be used to quantify the accuracy of other datasets 

(FGDC, 1998; Hohle and Hohle, 2009). In this situation of determining the accuracy of 

DEMs, reference data are needed which provide accuracy sufficient to serve as statistical 

control. Therefore, the accuracy of the different available DEMs was assessed against the spot 

heights collected from Ordnance Survey 1:1000 MasterMap (Section 4.3.5.1).  Such a 

comparison results in elevation differences (residuals) at the tested points. Statistical measures 

such as Root Mean Square Error (RMSE), Standard Deviation (SD) and Mean Error (ME) are 

the conventional ways to analyse the differences between the DEM elevations and reference 

data.  

4.3.5.1 Reference data description 

The reference data were a set of spot heights collected from Ordnance Survey 1:1000 

MasterMap data (Figure 4.16). The altitude of these points was determined by levelling 

techniques, and recorded to one decimal place of a metre (Ordnance Survey, 2009a). 

Figure 4.15: Elevation profile transect over a lake (Wensum 

River area) illustrating elevation differences between the lake and 

the surrounding terrain.  

 

 

Figure 4.15: Elevation profile transect over a lake (Wensum 
River area) illustrating elevation differences between the lake and 

the surrounding terrain.  
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According to the OS technical documents, it is believed that these data offer a horizontal and 

vertical accuracy better than a metre (tens of centimetres). These spot heights were therefore 

selected to serve as ground control points because of their higher order accuracy of the height 

component, and also because of their precise horizontal positions (Ordnance Survey, 2009a). 

The spot heights dataset comprised 963 levelling points collected from 250 (1 km x 1 km) 

Ordnance Survey MasterMap tiles covering the Wensum study area (Figure 4.17).  

 

 

 

 

 

 

 

 

 

Figure 4.16: Examples of 
the spot heights used in 

this study as reference data 

(see red circles). 

 

 

Figure 4.16: Examples of 
the spot heights used in 

this study as a reference 

data (see red circles). 

 

Figure 4.17: Distribution 
of the spot heights in the 

study area. 

 

 

Figure 4.17: Distribution 

of the spot heights in the 
study area. 
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4.3.5.2 Test of normality 

As the accuracy assessment of the DEMs will involve comparisons with the reference 

data (spot heights), it is important to examine the underlying distribution of this dataset. This 

can be done using both graphical (i.e. histogram and normality plot) and statistical (i.e. mean, 

standard deviation, skewness and kurtosis) methods of evaluating normality (Hohle and 

Hohle, 2009). SPSS statistical software was used to determine normality of the reference data. 

According to Field (2009) if you want to test whether or not data are normally distributed, 

three interrelated approaches should be conducted. First, a histogram with the normal curve 

superimposed should be drawn so that the data can be compared to the normal curve. Second, 

the level of normality can be determined by drawing a quantile-quantile ‘Q-Q Plot’ and 

examining how close the data points are to the straight line to check the deviation from the 

normal distribution. Finally, statistical descriptives such as; Skewness and Kurtosis, mean, 

standard deviation etc, should be calculated. 

 

 

 

 

 

 

 

 

 

Figure 4.18: Histogram of the reference data with the normal curve superimposed (A), and 
Normal Q – Q Plot for the reference data (B). 

 

 

Figure 4.18: histogram of the reference data with the normal cure superimposed (A), and Normal 

Q – Q Plot for the reference data (B). 
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Descriptive statistics and histograms are a useful way of generating a picture of the 

data distribution (Field, 2009). Figure 4.18A depicts the histogram of the reference data 

distribution. In order to compare with normality, the figure contains the normal distribution 

curve superimposed. By examining the histogram graph visually and comparing the real data 

distribution to the normal curve, it can be seen that the histogram shows a fairly normal 

distribution even if it looks slightly negatively skewed. The first thing that can be inferred 

from the graph is that there are no values at the extremes of the normal curve.   It is also clear 

from the histogram that the peak is not completely symmetrical, and what that seems to 

suggest is that elevation values were more clustered around the values ranging from 40m to 

50m.  It can be noticed that there is a group of values at around a value of 15m making a 

small peak out of the normal curve, which could be a contour artifact problem.   

By looking at the Q-Q plot (Figure 4.18B) it can be noticed that the data points fall 

very close to the ideal diagonal line. However, there are some data values in the upper and 

lower end of the chart deviating away from the diagonal (S-shaped), which is an indication of 

small skewness problem (Field, 2009), and this is consistent with the results obtained from the 

histogram.  

 

    

 

 

 

 

Descriptives 

 Statistic Std. Error 

Elevation Mean 36.8722 .36678 

95% Confidence Interval for 

Mean 

Lower Bound 36.1524  

Upper Bound 37.5920  

5% Trimmed Mean 37.0567  

Median 38.3000  

Variance 129.552  

Std. Deviation 11.38210  

Minimum 10.20  

Maximum 61.50  

Range 51.30  

Interquartile Range 16.30  

Skewness -.331 .079 

Kurtosis -.655 .157 

 

Table 4.4: Descriptive statistics for the reference data 

 

 

Table 4.4: Descriptive statistics for the reference data 
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SPSS outputs in Table 4.4 shows the descriptive statistics for the reference data. From 

this table, it can be seen that the mean value of the higher accuracy reference data is 36.8722, 

and by looking back to the mean measure for each DEM in our dataset (Table 4.2), this value 

falls in the middle (which is good). However, the standard deviation (11.38210) for the 

reference data is larger than those for all DEMs (ranging from 9.8 for the ASTER to 11.3 for 

LandMap (Table 4.2)), this could be due to the fact that a DEM is a smooth continuous 

surface created from discreet features by interpolation. The values of skewness and kurtosis 

should be zero in a normal distribution (Field, 2009).  From the table above, the negative 

values of skewness indicate a slight bias in the peak to the right, and that also clear from the 

histogram too, as it is slightly negatively skewed. 

The Kolmogorov-Smirnov test (or simply the K-S test) can be used to test the 

hypothesis that data comes from a normal distribution (Field, 2009; Illian et al., 2008; Lee and 

Wong 2001). It is a statistical test to assess how closely an observed distribution matches an 

expected distribution. The K-S test is always testing what is called the null hypothesis, which 

states that there is no significant difference between the expected and observed result. 

Therefore, the K-S distribution can be used to test whether or not that the data as a whole 

deviates from a comparable normal distribution, with the same mean and standard deviation 

(Field, 2009).  

The K-S test was used to test the null hypothesis that the spot height elevation data 

follow a normal distribution. K-S test of normality results for the reference spot heights are 

reported in Table 4.5.  Traditionally, in a K-S test, to compare two probability distributions, 

the distribution have to be converted into cumulative probability distribution (Ebdon, 1978), 

columns (e) and (f) of Table 4.5 show these cumulative probabilities and they are also 

illustrated in Figure 4.19. The right-hand column (f) lists the absolute differences between the 

two columns of cumulative probabilities. The largest absolute difference is 0.05, and this is 
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therefore the value of the K-S statistic, D.  The critical value of D (p = 0.05) can be calculated 

as follows: 

D (p = 0.05) = 1.36 * √ (963+963)/(963*963) = 0.0620       (Lee and Wong, 2001) 

 

 

 

 

 

 

 

 

 

 

  Frequency Probabilities Cumulative probabilities 

Elevation 

categories 

Observed 

(a) 

Expected 

(b) 

Observed 

(c) 

Expected 

(d) 

Observed 

(e) 

Expected 

(f) 

Difference 

(g) 

10.2-15.2 31 18.19 0.032 0.019 0.032 0.019 0.013 

15.2-20.2 76 41.45 0.079 0.043 0.111 0.062 0.049 

20.2-25.2 67 78.09 0.070 0.081 0.181 0.143 0.038 

25.2-30.2 93 121.66 0.097 0.126 0.277 0.269 0.008 

30.2-35.2 124 156.74 0.129 0.163 0.406 0.432 0.026 

35.2-40.2 144 167.01 0.150 0.173 0.556 0.606 0.050 

40.2-45.2 174 147.16 0.181 0.153 0.736 0.759 0.022 

45.2-50.2 143 109.24 0.148 0.113 0.885 0.872 0.013 

50.2-55.2 81 77.64 0.084 0.081 0.969 0.953 0.016 

55.2-60.2 26 32.21 0.027 0.033 0.996 0.986 0.010 

60.2-65.2 4 13.27 0.004 0.014 1.000 1.000 0.000 

 963 962.66 1.00 1.00    

Table 4.5: K-S test statistics output table 

 

 

Table 4.4: Descriptive statistics for the reference data 

 

 

     

 Elevation 

Chi-square 333.490
a 

 df 391 

 Asymp. Sig. 0.984 

a. 392 cells (100.0%) 

have expected 

frequencies less than 5. 

The minimum expected 

cell frequency is 2.5. 

 Table 4.5: Chi-square test statistics output table 

 

 

Table 4.4: Descriptive statistics for the reference data 
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Figure 4.19: Cumulative probability distributions for K-S test. 

 

 

 

Figure 4.19: Distribution of the differences among each DEM and the 

reference data 
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Since the K-S test calculated value of D is 0.05, which is smaller than the critical 

value (0.062), the test is not a statistically significant and hence we can accept the null 

hypothesis that the data follow a normal distribution. In other word, the test does not indicate 

that the data distribution is significantly different from normality.  

In general and based on the normality distribution tests discussed above, it will be 

assumed that the reference data have a normal distribution, and the accuracy measures for the 

DEMs will be applied using these spot heights as a higher accuracy reference data. The 

elevation error will be computed as the differences between the seven considered DEMs and 

the reference data and then will be used to calculate accuracy measures like Root Mean 

Square Error (RMSE), mean and standard deviation for each DEM. The RMSE for each DEM 

will be used later as an input for Monte Carlo simulations to obtain a probability estimation 

(uncertainly) of the position of a river network extracted from each DEM (Chapter 6).  

4.3.5.3 DEM comparisons with reference data (ground truth)  

DEM accuracy assessment using reference data can deliver reasonable accuracy 

estimates, provided that the reference data are independent and sufficiently precise (Hirt et al., 

2010). For assessment purposes, the elevation of each spot height was compared with the 

elevation of the respective DEM pixel. 963 points spread over the study area were used in this 

comparison. Using ArcGIS 9.3, the corresponding DEM pixel value with each spot height 

point was extracted, and then the differences between all DEM values and the reference data 

were calculated. Statistical parameters such as; minimum, maximum, mean, standard 

deviation and RMSE values for each DEM against the spot height reference values were 

calculated. The differences for each DEM against the spot heights are reported in Table 4.6 

and Figures 4.20. In addition, cross-plots (Bland and Altman, 1986; Thomas et al., 2014) of 

reference data versus elevations from each DEM were used to demonstrate the degree of 
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agreement between reference heights and the corresponding heights from each DEM (Figure 

4.21).  

 

 

The statistical parameters for the elevation differences between the seven DEMs and 

the relative points of the reference data were examined. As can be observed from the table 

above, the mean value of the differences between each DEM and the reference data is less 

than one metre except for the ASTER and Landmap DEMS which present bigger differences 

of 5.24m and 2.52m respectively. The mean values of ASTER and Landmap differences 

reflect that these two datasets are underestimating the elevation values (Figure 4.20). Bluesky 

and Landform Profile (OS10) elevation datasets produce low residual errors with RMSE of 

0.9m and 0.568m, respectively, and also low standard deviations of 0.8m and 0.58m, 

respectively, compared to the other elevation datasets. In contrast, the accuracies of ASTER 

and Landmap are the lowest with 6.8 m and 4.18 m for the RMSE and 4.39m and 3.34m for 

the standard deviation, respectively.  

NEXTMap data were assessed in the UK by UCL (Dowman, 2004). It was found that 

when comparing the NEXTMap DTM with photogrammetric checkpoints, the RMSE was 

Comparison Resolution (m) Min Max Mean RMSE Std.dev 

Bluesky-GCPs 5 -7.2272 4.5777 -0.4116 0.91969 0.8225 

NEXTMap-

GCPs 
5 -4.6274 14.3092 0.6751 2.03168 1.9163 

OS10-GCPs 10 -6.8 2.9 -0.1396 0.5987 0.5822 

Landmap-GCPs 25 -13.1 13.3 -2.5222 4.1885 3.3439 

ASTER-GCPs 30 -22.40 13.20 -5.24 6.8387 4.392 

OS50-GCPs 50 -7.1 6.8 -0.6365 1.9962 1.8921 

SRTM-GCPs 90 -5.9 15.2 0.8983 2.6259 2.4675 

Table 4.6: Statistics of DEMs comparison with 963 spot heights (units are in metres). 

 

 

 

Table 4.5: Statistics of DEMs comparison with 963 spot heights (units are in metres). 
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Table 4.5: Statistics of DEMs comparison with 963 spot heights (units are in metres). 
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0.83 m, and when compared with a LiDAR DTM the resultant RMSE was 1.013 m. The 

NEXTMap data were also compared with detailed GPS measurements and it was found that 

over mixed terrain (hilly, flat) a RMSE of 1.67 m was obtained (Dowman, 2004). Over 

several study sites in the United States and using extensive ground control (NGS), Tighe and 

Chamberlain (2009) reported that the vertical accuracy of NEXTMap data is about 2.05 m 

(RMSE) which is in agreement with the result obtained here. 

The Landform Profile elevation dataset shows better values in most statistical 

parameters (maximum, mean, RMSE, and standard deviation) in comparison with the other 

elevation datasets (Figuers 4.20 and 4.21). This good agreement between Landform Profile 

and the spot heights data can be explained as that the spot heights are more consistent with the 

Ordnance Survey products than with the remote sensing-based ASTER, Bluesky, SRTM, 

Landmap and NEXTMap models. On the other hand, ASTER and Landmap present the worst 

values on most statistical measures (minimum, mean, RMSE and standard deviation) 

compared to the output statistical results from the other datasets. The cross-plots of reference 

data versus elevations from each DEM also clearly illustrate that the elevation values from 

these two data sets, ASTER and Landmap, were generally underestimated (Figure 4.21)  
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Figure 4.20: Distribution of the 

differences comparing each DEM and 

the reference data 

 

 

 

Figure 4.19: Distribution of the 

differences among each DEM and the 

reference data 
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Figure 4.21: Cross-plots of reference 

heights versus corresponding heights from 
each DEM (45  line would indicate perfect 

match). 

 

 

 

Figure 4.19: Distribution of the differences 
among each DEM and the reference data 
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4.3.5.4 Reference data limitation 

The relatively good agreement between the DEMs from the Ordnance Survey (OS 10 

m and OS 50 m) and the reference data may partly reflect the fact that all three are products of 

the same organisation. Therefore, the reference data cannot be considered completely 

independent of the OS 10 m and OS 50 m elevation datasets. This likely explains the good 

results from OS 10 m dataset which on visual inspection is clearly poor quality.  In their study 

of DEM resolution and data source effects on automated floodplain delineation Charrier and 

Li (2012) also noted that elevation data derived from similar sources tends to produce similar 

results regardless of DEM resolution. They noted that similar levels of uncertainty were 

observed for different USGS DEM resolutions. 

In addition, even though the reference spot heights are located broadly across the 

study area, the distribution of these heights within the study area is not completely 

representative of the terrain topography. This stands to reason, as collected spot heights are 

generally located on the existing road network across the study area, which contributes to the 

limitations in the spatial distribution of these heights. This problem could be minimised by 

collecting additional control points (GCPs) using positioning devices (e.g. GPS) in open, 

accessible areas across the study area. It would also have been appropriate to have reference data 

created using techniques such as high resolution LiDAR data (i.e. 2 metre LiDAR data).  

4.3.6 Statement about fitness for purpose 

This study has investigated the quality of seven elevation datasets ASTER, SRTM, 

Bluesky DTM, Landmap DTM, NEXTMap DTM, Ordnance Survey Landform and Ordnance 

Survey Panorama over an area of 225 sq km of the River Wensum catchment (Figure 4.2). 

The assessment begin by describing the main characteristics of these elevation datasets. The 

quality of each DEM was then quantitatively and qualitatively evaluated.  The results of this 
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assessment revealed a number of interesting outcomes which are relevant to what of these 

elevation datasets can be used for in catchment management studies. Upon examination of the 

results it is apparent that the ASTER GDEM 1 elevation dataset contains anomalies and 

artifacts that degrade its overall accuracy, which is why METI and NASA consider it to be 

research-grade only (ASTER Validation Team, 2009). These results are consistent with 

results from previous studies (e.g. Hirt et al. 2010, Reuter et al. 2009).  

Moreover, the ASTER elevations showed the lowest elevation mean value (Table 4.2) 

compared with the other datasets. This agrees with the result from cross-sections profiles 

(Figures 4.5 and 4.8), as it can be seen from these two elevation profiles that the ASTER 

elevation values were generally underestimated in the open arable land and overestimated in 

areas covered by woodlands in comparison with the other elevation datasets.  In a study over 

Western Australia, Hirt et al. (2010) reported that the vertical accuracy of ASTER 30 m was 

15 m (RMSE) whereas that for SRTM 90 m was 6 m. Chrysoulakis et al. (2011) stated that, in 

Greece, the accuracy of ASTER is more than 16.1 m (RMSE).  

The Landmap DTM elevation dataset from IFSAR observations comes at 25 m 

resolution. It performs as a noisy elevation dataset. The model contains a lot of spurious pits 

and spikes artifacts occurred with high frequency as well as stripe-effects. It is clear that this 

data suffered from the problem of poor coherence and atmospheric effects caused by the 

repeated pass data (Dowman, 2004) which degrade the output accuracy. In the case of SRTM, 

it performs better than both Landmap and ASTER apart from the fact that elevation values are 

overestimated in areas covered by high canopy trees (Blanchard et al., 2010; Lalonde et al., 

2010).  SRTM gave quite similar results to the Bluesky, NEXTMap , Ordnance Survey 

Profile and Ordnance Survey Panorama along the two transects for all land cover types, but if 

significant vegetation is present the elevation values are usually overestimated.  
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On this basis, Bluesky, NEXTMap, Ordnance Survey Profile, Ordnance Survey 

Panorama and SRTM are preferred over ASTER and Landmap DTM for further investigation 

of their suitability (fitness for use) for hydrologic analysis and other catchment management 

applications.  

4.4 Summary 

In this chapter a range of available digital elevation models (DEMs) for the study area 

have been described.  DEMs quality has been extensively evaluated using a wide range of 

quantitative and qualitative accuracy assessment procedures. In general, the results of this 

analysis revealed that both ASTER and Landmap elevation datasets performed very poorly in 

this area. Therefore, these two elevation datasets were considered unsuitable for inclusion in 

further stages of this research.  
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Chapter 5   

 

Threshold Definition 

5.1 Introduction 

At the end of Chapter 4 five elevation datasets (NEXTMap, Bluesky, OS10, OS50 

and, SRTM) were selected for further assessment of their suitability for catchment 

management applications. Literature reviewed in Chapter 2 indicated that the locations and 

extents of DEM-derived stream networks vary with the method of calculation (e.g. flow 

accumulation threshold value) and the source and spatial resolution of the DEM used. In this 

chapter, the five selected DEMs were used to identify the most appropriate contributing 

drainage area threshold for the study catchment using three different methods and to 

investigate how sensitive each method was to the input DEM source and resolution. Another 

objective of this part of research was to evaluate the performance of each different threshold 

for deriving channel networks in the study area. 

5.2 Determining an adequate threshold 

Stream channels are rarely singular in form and tend instead to be part of branching 

networks. A stream network is composed of channel and overland flow elements that 

represent flow over the terrain (Vieux, 2005).  Stream order is a way of categorising the 

network so that headwater streams (ephemeral streams) are denoted as first-order streams and 

when two first-order streams meet they produce a second-order stream. Where two second-
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order streams meet that produces a third-order stream, and so on (Holden, 2014). Ephemeral 

stream networks serve as a critical hydrologic link between the surrounding landscape and the 

larger, connecting stream outflows within a catchment. These networks drain extensive 

surface areas within the catchment that are not directly in contact with higher order stream 

channels. The ephemeral channels of any catchment are the overland flow of water during, 

and often after, a precipitation event (Desmet et al., 1999; Sheshukov, 2015).  

It has been acknowledged that for many catchment-based natural resource 

management issues an accurate delineation of the surface pathways of water movement on the 

catchment landscape is a prerequisite. Accurate determination of channel network locations 

and shapes is important for many hydrological and environmental applications at the 

catchment scale, including diffuse pollution and water quality issues. For modelling purposes, 

neglecting lower order streams can result in variations of hillslope flow length and drainage 

density, features that all control how water is routed through the landscape (Zhang and 

Montgomery, 1994). Channel network extraction models often simulate transitions from 

hillslope to channelized flow based on a contributing area threshold calculated from a DEM. 

Therefore, this point of transition is important because it represents a geomorphic threshold 

point within the catchment where enough surface water has accumulated to cause erosion 

(McNamara et al., 2006). 

 Different values of the contributing drainage area threshold can produce radically 

different stream network in terms of total stream length, stream order and, drainage density. 

The ideal threshold is at the point where diffuse (hillside) erosion terminates and fluvial 

(stream) erosion initiates as a result of concentrated surface flow. Several methods have been 

proposed for threshold value estimation (Colombo et al., 2007; Hancock and Evans, 2006; 

Ijjasz-Vasquez and Bras, 1995; Montgomery and Foufoula-Georgiou, 1993; Orlandini et al., 

2011; Tang and Liu, 2009; Wilson and Gallant, 2000) three of which are widely used: the 
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area-slope relationships method, a trial and error approach (comparing the derived network 

with a reference network), and using the 1% value of the maximum flow accumulation. These 

three approaches have been chosen for further investigation since they are among the most 

common approaches found in the literature about how to select an appropriate threshold value 

that will produce a representative depiction of the stream network. Therefore, flow 

accumulation thresholds were identified and analysed using these three different methods. 

First, a trial and error approach was conducted until the extracted network was 

consistent with a reference stream network obtained from OS VectorMap™ Local at 1:10000 

scale and modified using OS 1:1000 MasterMap raster data (Section 5.2.1). Secondly, the 1% 

of the maximum flow accumulation value approach, as a simple rule of thumb for stream 

determination threshold was examined. Finally, the area-slope relationship was employed, 

where thresholds are determined by evaluating distributions of surface slope and drainage 

area calculated from a DEM. It has been claimed that examining the association between 

these two variables can help identify a threshold that represents the mean drainage area which 

distinguishes between hillslope and channel flow in hydrologic modelling (Tarboton et al., 

1992). All three threshold methods were used to extract stream networks and these were 

assessed to find out which threshold(s) can be considered as an appropriate support area 

threshold in the study area.  

5.2.1 Reference river network 

The reference network is a modified river network created using the water surface line 

and area layer products obtained from OS VectorMap™ Local, a GML vector dataset at a 

nominal scale of 1: 10000 covering the whole of Great Britain. The main characteristics of the 

dataset is representation of real world features (e.g. roads, railways, buildings, vegetation, 

surface water lines and areas, boundaries and urban extents) as points, lines, polygons, and 
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text. According to the OS VectorMap™ Local’s user guide and technical specification 

document, rivers and streams narrower than 5 m are represented as a single line, whereas 

those wider than this are illustrated as polygons. Lakes and ponds greater than 100 m² are 

shown as flat water polygons. Water feature such as rivers and lakes are broken into sections 

by features such as bridges, tunnels, dams, and culverts (Regnauld and Mackaness, 2006). 

The resolution of this data is believed to be two decimal places of a meter. OS VectorMap 

Local data are projected to the National Grid coordinate reference system, which is defined by 

the OSGB36 datum and distributed in 5 km x 5 km tiles (Ordnance Survey, 2009b).  

The reference network was obtained from the surface water line layer for the study 

area and was enhanced using OS 1:1000 MasterMap and Google Earth. As mentioned above, 

there is no representation of water features where they are obscured by other objects such as 

bridges.  These unconnected water features that are passing under bridges or tunnels were 

connected to each other to produce a completely connected river network. It was possible to 

infer the correctness of the connectivity results using the OS 1:1000 MasterMap by overlying 

the stream network on these high detailed topographic maps (Figure 5.1). Google Earth was 

used for visual inspection of the correctness of the resultant fully connected river network. In 

addition, the surface water data included information on man-made ditches and artificial 

drainage lines which were eliminated. The centre lines of rivers and streams that are shown in 

a polygonal form were then created and joined to the other linear representations of the river. 

The centreline representation of rivers and streams was created using the Cartography tools in 

ArcGIS 10.  

This river network was adopted as a reference stream network for the purpose of 

comparison with the modelled stream networks in the following sections (see the reference 

network for the whole of the study area in Figure 5.2). Turcotte et al. (2001) argued that river 

network which was extracted from large scale topographic maps with the help of high 
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resolution satellite images used for a visual inspection was found to represent a better 

accuracy in terms of horizontal location. 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: Example of OS VectorMap™ water feature data for Blackwater study area, (a) shows the 

breaks in the river segments (see red circles), and in (b) part of OS 1:1000 MasterMap illustrates that 

these breaks are indicative of road features intersecting the river, also in this figure the connected river 
segments are overlaid on the topographic map. Source: Ordnance Survey.      

 

(a) (b) 
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5.2.2 Trial and error approach (method 1) 

As mentioned above, the choice of the threshold value obviously influences the 

generated stream network. Generally, a threshold value is established by visual comparison of 

the generated network with a reference network obtained from large scale topographic maps, 

using a trial and error approach until a certain threshold value makes the resulting stream 

network terminate at approximately the same locations as the reference network (Gandolfi 

and Bischetti, 1997; Heine et al., 2004). NEXTMap DTM data were used for this trial and 

error process of determining the ideal threshold value. This DTM was selected because of its 

higher resolution (5m) and also because during the process of converting NEXTMap 

Figure 5.2: Reference river network for the Wensum study area. The underlying terrain is 

represented using NEXTMap elevation data.  
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elevation data from a DSM to DTM product the narrow drainage channels were preserved 

through woodland areas, as described in the Intermap Product Handbook (Intermap 

Technologies, 2011). This was an advantage of NEXTMap data compared to the other 5m 

resolution elevation dataset (Bluesky) considered in this study. 

After several iterations, it was found that the flow accumulation threshold value that 

generated a stream network which had the best match to the reference river network (see 

reference network in Figure 5.2) was 25,000 cells (equal to an area of 0.625 km²). It should be 

pointed out that this method is based on some assumptions such as; the study area is small and 

has a homogeneous landscape (Tang and Liu 2009). However, it is still not a perfect fit with 

the reference river network, especially for the first order streams where it was difficult to have 

a good match between the reference and the extracted network in terms of channel heads. In 

the literature it has been reported that accurate identification of stream initiation locations 

requires more than elevation data as it is often influenced by local characteristics of climate, 

geology, groundwater level, land cover and land use (Metz et al. 2011).  

In order to compare the drainage networks extracted from the different elevation 

datasets, the same threshold value was applied to facilitate the comparison (Li and Wong 

2010; Liu and Zhang, 2011). Therefore, as a first step, the flow accumulation threshold values 

were calculated for the other DEM datasets using Eq. 5.1 and are reported in Table 5.1 below; 

 

 

where FAᵢ is the flow accumulation threshold value needs to be determined for a 

DEM, FAₐ is the calculated flow accumulation threshold value for DEMₐ (i.e. NEXTMap in 

this study), and Cₐ and Cᵢ are the cell areas of each corresponding DEM. 

Eq. 5.1 (Wang and Yin 1998) 
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The contributing drainage area can be computed using Eq. 5.2 below; 

           

        km²                 (Eq. 5.2) 

 

 where FA is the flow accumulation threshold value (count of pixels), CDA is the 

corresponding contributing drainage area and cell size is the DEM resolution.  

 

 

 

 

 

 

The hydrology analysis extension within ArcGIS 10 was used to calculate the flow 

accumulation raster for each DTM using the D8 flow accumulation method, following the 

basic steps of pit filling, identification of flow direction followed by the calculation of a flow 

accumulation raster as described in Chapter 2. Stream networks were then identified by 

applying the same contributing area threshold (0.625 km²) to the flow accumulation matrix of 

each different DEM. All the grid cells with an accumulation value greater than the threshold 

were regarded as the potential surface flow path. Stream networks are formed by these flow 

paths.  All streams were further ordered according to the Strahler system, a stream ordering 

method proposed by Strahler in 1952 (Strahler 1952) which introduces a hierarchy into the 

river system, where stream order only increases when streams of the same order intersect 

DEM 
Calculated FA threshold 

(count  of cells) 
CDA (km²) 

NEXTMap (5m) 25000 0.625 

Bluesky (5m) 25000 0.625 

OS 10m 6250 0.625 

OS 50m 250 0.625 

SRTM (90m) 77 0.625 

Table 5.1: Flow accumulation threshold values for each different DEM 
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(Poggio and Soille, 2008). In this study, the Strahler hierarchy arrives at an order of four for 

all the extracted stream networks from each DEM.   

Stream networks extracted from each DEM using the same threshold value are shown 

in Figure 5.3. The figure illustrates that all the DEMs are able to capture the general pattern of 

the drainage networks in the study area compared to the reference river network. It is clear 

that all the derived stream networks are broadly similar for lower channel reaches. Channels 

derived from SRTM data have unnaturally straight sections and angular features. This is most 

likely a result of the lower resolution (90 m). Moreover, visual inspection of the extracted 

stream networks at the circled locations in Figure 5.3 suggests that none of the five DEMs 

used was able to capture the real shape of the River Wensum in that part of the study area. 

This could be due to the existence of large water bodies (lakes) in that area (Figure 5.3), 

which are represented by the DEM as flat areas. By definition, DEMs do not contain 

information about lakes or ponds, and it is difficult to determine if an area of equal elevation 

is either a lake or a flat area (Turcotte et al. 2001).   
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Figure 5.3: The stream networks extracted from each DEM using the selected 

threshold value (0.625 km²). The reference river network is also illustrated. 
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The number of streams within different stream orders obtained from each DEM using 

the same threshold value (0.625 km²) in the study area is summarised in Table 5.2, and 

illustrated in Figure 5.4. In this study, the Strahler hierarchy arrived at an order of four for all 

the extracted stream networks. However, there are some differences in the number of streams 

within different orders obtained from each DEM especially for the first and third order 

streams, where the Bluesky dataset estimates greater stream numbers than the others, 110 for 

the first order and 23 for the third order. On the other hand, Landform Panorama (OS 50m) 

generates the lowest number of streams with 90 streams for the first order and 12 for the third 

order. Despite the fact that SRTM has the largest pixel size (90m), the number of streams 

within each order obtained from SRTM is greater than that from Landform Panorama (50m), 

with the exception of the number of streams within order four. 

Generally speaking, the use of a high-resolution DEM should result in more detailed 

delineated low-order streams (Liu and Zhang, 2011). However, as can be seen from Table 5.2 

there is no great differences in the number of first order streams obtained from each DEM, 

while the resolution of the DEMs varies from 5m for NEXTMap and Bluesky to 90m for the 

SRTM. This could be due to the relatively large contributing area threshold that has been 

used, where only recognizable (true) channels were mapped. Finally, all the DEMs produced 

the same number of streams within the highest stream order, nine streams, except SRTM data 

with four streams only (Figure 5.4). 

 

 

 

 

Stream order 
NEXTMap (5m) Bluesky (5m) OS 10m OS 50m SRTM 

Number of streams 

1 103 110 107 90 107 

2 54 54 57 48 51 

3 18 23 20 12 21 

4 9 9 8 9 4 

Total 184 196 192 159 183 

Table 5.2: The numbers of streams within each stream order from each DEM 
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5.2.3 1% of the maximum accumulation value approach (method 2) 

As stated previously, the use of the 1% value of the maximum flow accumulation 

value, as a simple rule of thumb for stream determination threshold, has been proposed as 

resulting in an adequately delineated stream network (Arc Hydro tool documentation, Tang 

and Liu 2009).  The hydrology analysis extension within ArcGIS 10 was used to calculate the 

flow accumulation raster for each DTM using the D8 flow accumulation method, following 

the basic steps of pit filling, identification of flow direction followed by the calculation of the 

flow accumulation raster (the same approach as in the previous method). The threshold values 

for all the DTMs, selected as the value of 1% of the maximum flow accumulation, are 

reported in Table 5.3 below.  

 

 

 

 

DEM 1% of the max FA CDA (km²) 

NEXTMap (5m) 48666 1.22 ≈ 1.2 

Bluesky (5m) 48666 1.22 ≈ 1.2 

OS 10m 11613 1.16 ≈ 1.2 

OS 50m 482 1.21 ≈ 1.2 

SRTM (90m) 140 1.134 ≈ 1.2 

Figure 5.4: The numbers of streams within each stream order from each DEM 

 

Table 5.3: Flow accumulation threshold as a 1% of the maximum 
flow accumulation value for each DTM. 
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As can be seen from Table 5.3, the contributing drainage area thresholds obtained 

from the DTMs are all approximately the same (1.2 km²). This threshold was applied to the 

flow accumulation raster of each different DEM using the Con function of ArcGIS 10, where 

all cells with a contributing drainage area larger than the threshold were included as part of 

the identified stream networks (Figure 5.5). All streams were further ordered according to the 

Strahler ordering system. 

Figure 5.5 below shows a comparison of the streams derived from each DEM when 

the threshold value is 1.2 km² (1% of the maximum flow accumulation value) with the 

reference stream network. As can be seen from the maps, the delineated streams match quite 

closely with the reference network. However, it is clear from Figures 5.3 and 5.5 that stream 

network with a threshold of 0.625 km² has many small streams that do not appear in the 

stream network with a threshold value of 1.2 km², hence, the former stream network (method 

1) extends farther headward than the latter one (method 2) (see example from Bluesky data in 

Figure 5.7). In addition, the effect of the water bodies is apparent at the circled locations, as 

discussed with the previous method. 
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Figure 5.5: The stream networks extracted from each DEM using 1% of the maximum 

flow accumulation value as the threshold  (1.2 km²). The reference river network is 

also presented including the lakes layer. 
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With the same contributing area threshold (1.2 km²), the Strahler hierarchy arrives at 

an order of three for two delineations (OS 50m and SRTM) and an order of four for the other 

three datasets (NEXTMap, Bluesky and OS 10m), (Table 5.4 and Figure 5.6). As expected, it 

is clear from the figure and the table that with the increase in the threshold value the total 

stream number and the stream orders decrease. Table 5.5 shows that with the increase in the 

threshold value from 0.625 to 1.2 km² the number of streams considerably declines by about 

80 streams for each elevation dataset.    

 

 

 

 

 

 

 

 

Stream 

order 

NEXTMap 

(5m) 

Bluesky 

(5m) 

OS 

10m 
OS 50m SRTM 

Number of streams 

1 61 56 64 56 59 

2 32 27 31 34 25 

3 9 9 10 7 13 

4 5 5 7 0 0 

Total 107 97 112 97 97 

Table 5.4: The numbers of streams within each stream order from each DEM 

 

Figure 5.6: Number of streams within each stream order from each DEM 
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5.2.4 Area–slope relationship approach (method 3) 

In order to investigate the critical contributing drainage area threshold some 

geomorphological descriptors such as area-slope relationship and cumulative area distribution 

can be used (Hancock and Evans, 2006; Khan et al., 2009; Khan et al., 2013). This approach 

is based on the assumption that there will be some inflection points in the longitudinal area-

slope profile which enable a distinction between various geomorphic and hydrologic regimes 

(Colombo et al., 2007). Typically, the channel head location is defined as the area where the 
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Method 1 184 4 0.625 196 4 0.625 192 4 0.625 159 4 0.625 183 4 0.625 

Method 2 107 4 1.2 97 4 1.2 112 4 1.2 97 3 1.2 97 3 1.2 

Table 5.5: Comparison of total numbers of streams and highest stream order from each DEM using 

0.625km² (visual judgment) and 1.2km² (%1 of the maximum flow accumulation value) threshold values. 

Figure 5.7: The differences 
between stream networks 

with 0.625 and 1.2 km² 

thresholds.  

 



  Chapter 5 

 

133 

 

hillslope ends and channel begins. Downstream of the channel head, the channel takes its 

proper shape as the surface water flow concentrates, and then stream network formation starts. 

The underlying hypothesis of these approaches states that channel heads are located in the 

transition zone which exists between the diffusive and fluvial zones and it is argued that the 

value of the contributing drainage area at this point of transition represents the critical value 

(Hancock and Evans, 2006). In other words, the threshold is the point where diffusive 

(hillslope) processes terminate and fluvial (channel) ones initiate as a result of concentrated 

surface flow. 

Many studies have computed these descriptors from DEMs in order to infer an 

adequate threshold (e.g Hancock and Evans, 2006; Henkle et al., 2011; Khan et al., 2009; 

McNamara et al., 2006; Tarboton et al., 1991; Tarolli and Dalla-Fontana, 2009). The area–

slope relationship is the relationship between upslope contributing area draining through a 

point versus the slope at the point. The cumulative distribution of drainage area is the 

proportion of the catchment that has a drainage area draining through a point which is greater 

than or equal to a given drainage area.  

Hancock and Evans (2006) worked on two small catchments (20 ha and 50 ha) of 

uniform geology located in Tin Camp Creek, Northern Territory, Australia. The two 

catchments consisted of closely dissected short, steep slopes (10 – 100 m long) and gradients 

generally between 15 and 50 per cent. They were able to distinctly differentiate between 

diffusion dominated areas (hillslope) and those areas dominated by fluvial process (channel) 

on the basis of area-slope relationship and cumulative area distribution plots. An example is 

shown in Figure 5.8.  In this study of part of the Wensum catchment, a relatively flat and low-

lying area, with altitude ranging from few metres to maximum elevation of less than 80 

metres above mean sea level and a slope of 1.5 degrees on average and about 30 degrees at 

maximum has been explored. The catchment is dominated by arable farming with some 
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scattered woodlands. Moreover, the catchment of the Wensum is known as a modified 

catchment due to the creation of a network of drainage channels (reaches) that extend over 

some of the Wensum area and drain via gravity into the main River Wensum (Sear et al., 

2006). Thus, the topography of the Wensum catchment is rather different from that for the 

two catchments used by Hancock and Evans. 

 

 

 

 

 

 

 

The area-slope relationship plots generated from all DEMs show considerable scatter 

(Figure 5.9). Initially it was thought that the main reason for this scatter was the fact that all 

the DEMs used, apart from the Ordnance Survey datasets, were generated by remote sensing 

technologies such as IFSAR, where the mapped elevation surfaces include the top of 

woodland trees, as well as anthropogenic features rather than the bare ground surface. 

However, the area-slope relationship of the areas covered by only the arable and grass land 

cover types for the Bluesky DTM (as defined by LCM 2007) was also explored and again 

showed considerable scatter (Figure 5.10). Furthermore, a tremendous scatter is also apparent 

in the plots from OS DEMs that were generated from contour data. This suggests that the 

types of data sources and techniques that were used to generate the DEMs are not major 

factors affecting scatter in the area-slope relationship.  

Figure 4.8: Area-slope relationship with each data point being an 
average of 20 surrounding points (A), and cumulative area distribution 

(B) plots depicting the hillslope-to-valley transition (Hancock and 

Evans, 2006). 

(B) (A) 
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Figure 5.9: Area-slope relationship for Wensum study area  
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Figure 5.10: Area-slope relationship for Wensum study area using Bluesky data 
(arable and grass land cover categories only) 
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As it was very difficult to distinguish diffusive (hillslope) from fluvial (channel) zones 

from the plots of area-slope relationship, the concept of area-aggregated slope relationship, 

introduced by Khan et al. (2009), was investigated. The aggregated slope of an area is the 

average slope of all the pixels having contributing area greater than or equal to that area 

(Khan et al., 2009; Ijjasz-Vasquez and Bras, 1995). Conceptually, it represents the variation in 

average slope of all downslope pixels from the given point (corresponding to the upslope area 

on x-axis), as we move progressively from upper parts of the catchment to catchment outlet. 

Unlike the area- slope relationship, the area- aggregated slope relationship is much more 

stable and it represents change in catchment slope at a macroscopic scale (personal 

communication to the author). As can be seen from an example using the Bluesky DTM in 

Figure 5.11 below, this approach is better at defining different regions of area-slope regimes, 

which makes the data more interpretable. The area-aggregated slope relationship and 

cumulative area distribution in semi-log plots were therefore generated for all the DEMs.  

 

 

 

 

 

 

 

 

 

Figure 5.11: Area-aggregated slope relationship on semi-log scale separated into 

regions based on scaling response. Vertical lines signify transitions between 
regions denoted by inflictions in the curve. 

1 2 

3 4 5 
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From Figure 5.12A, the area-aggregated slope relationship from the Bluesky (5m) 

DTM shows five regions with different scaling responses. In region 1, at a very small 

contributing area (25 pixels), the area-aggregated slope relationship has a positive gradient 

but it becomes negative in region 2. This positive to negative inflection has been said to 

represent a transition from convex to concave slope profile, or from hillslopes to valleys. 

Here, this corresponds to a contributing area of 0.005 km².  The negative trend becomes 

weaker with some fluctuating values in region 3, but it becomes very distinct beyond a sharp 

inflection point in region 4 at a contributing area equal to 50,000 pixels. This plot of area-

aggregated slope relationship for the River Wensum study area (Figure 5.12A) appears 

similar to the area-slope relationships described by Ijjasz-Vasquez and Bras (1995) and 

McNamara et al. (1999), where the gradient is positive in region 1, becomes negative in 

region 2, is less negative in region 3, and returns to steeply negative in region 4. A fifth region 

appears at larger drainage areas. These four scaling responses are similar to those observed in 
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Figure 5.12: Area-aggregated slope relationship in semi-log scale (A) and 

cumulative area distribution (B) for the entire study area using Bluesky data. 
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two recent studies conducted by Henkle et al. (2011) and Tarolli and Dalla-Fontana (2009). 

However, the cumulative area distribution graph (Figure 5.12B) exhibits only two regions. A 

point in the middle of a transition zone at approximately 50,000 pixels in the cumulative area 

distribution matches the inflection point at 50,000 pixels that was observed in the area-

aggregated slope relationship plot. Similar results were found from the other five metre 

resolution data (NEXTMap DTM) for the study area (Figure 5.13). 

 

 

 

 

 

 

 

 

 

In order to better understand the implications of each threshold value obtained at each 

transition point observed in the area-aggregated slope diagram presented in Figure 5.12A, 

stream networks were delineated and analysed. Four stream networks were delineated using 

the contributing drainage area at each inflection point observed on the area-aggregated slope 

relationship graph from the Bluesky dataset as threshold values (i.e. 25, 200, 50,000 and 
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Figure 5.13: Area-aggregated slope relationship in semi-log scale (A) and cumulative 

area distribution (B) for the entire study area using NEXTMap data. 
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540,000 pixels) (Figure 5.12A) for the Blackwater sub-catchment (Figures 5.14, 15, 16 and 

17). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.14: Stream networks extracted from Bluesky DTM in Blackwater 

catchment at a contributing area of 25 pixels (0.000625 km²), transition between 
regions 1 and 2. 

Figure 5.15: Stream networks extracted from Bluesky DTM in Blackwater 

catchment at a contributing area of 200 pixels (0.005km²), transition between 
regions 2 and 3. 
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Figure 5.16: Stream networks extracted from Bluesky DTM in Blackwater 

catchment at a contributing area of 50,000 pixels (1.25 km²), transition 
between regions 3 and 4.  

Figure 5.17: Stream networks extracted from Bluesky DTM in Blackwater 
catchment at a contributing area of 540,000 pixels (13.5 km²), transition 

between regions 4 and 5.  
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In order to study these stream networks and to help interpret each threshold value (the 

four regions observed in the area-aggregated slop relationship profile (Figure 5.11)) a field 

trip was made to the Blackwater sub-catchment area (Figure 5.20). In region 1, where slope 

increases with the drainage area until the first inflection point is reached at a very small 

contributing drainage area of 25 pixels, the stream network extracted at this threshold value 

(0.000625 km²) shows a very high level of detail (Figure 5.14). This region represents the 

convex topography (hillslope) that is typically controlled by diffusive processes.  

It is clear from Figure 5.14 and Table 5.6 that choosing the threshold value at the 

transition between regions 1 and 2 would underestimate the minimum drainage contributing 

area (threshold area) and overestimate the length of channel networks. In many cases, as is 

clear from Figure 5.14, lower-order streams are represented as a whole series of parallel lines 

going down the field indicating that the variation in slope is in one direction. In other words, 

the low-order streams in Figure 5.14 can be interpreted as no more than showing the slope 

direction across the field (see Figures 5.18 and 5.19 for more illustrations). According to 

Montgomery and Foufoula-Georgiou (1993) the change between regions 1 and 2 is related to 

the change between hillslope with diffuse sediment transport and concave unchanneled 

valleys (see Figure 2.8, Chapter 2 for more illustration from Montgomery and Foufoula-

Georgiou, 1993). 
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Figure 5.18: Streams obtained using 25pixels threshold are laid over the slope 

raster map. It is clear that low-order streams are a whole series of parallel lines 

going down the field when the variation in slope is in one direction.   

Figure 5.19: Streams obtained using 25pixels threshold are laid over the aspect 

raster map.  
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Stream networks obtained using the value of the contributing drainage area at the 

transition point between regions 2 and 3 (200 pixels) are illustrated in Figure 5.15. In region 2 

slope decreases with drainage area, which implies concave topography, until the second 

turnover point is reached at 200 pixels. In order to examine the stream network that was 

obtained using the minimum contributing drainage area threshold of 200 pixels, several 

locations in the Blackwater catchment were visited (Figure 5.20) and some pictures were 

taken (Figures 5.21, 22 and 23). The field work consisted of exploring the landscape setting 

for the lower-order streams. At the three locations that were examined, it was found that first, 

second and third-order streams tend to correspond with the areas where flow accruing across 

fields could be seen, where there are sufficient variations in slope to concentrate surface 

drainage across the field. The variations in slope in two directions are evident and during the 

field investigation there were physical signs indicating that the water accumulated in some 

areas at the bottom of each field before draining to the main stream (Figure 5.22B). These 

streams can be defined as ephemeral streams which result from a surface water accumulation 

process during and following a period of heavy rainfall. In addition, these results also indicate 

that 5 m resolution DTMs are able to capture the small variations in the topography, which 

consequently allow these ephemeral streams to be accurately mapped during the process of 

flow accumulation. 
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Figure 5.20: The three locations investigated in the sub-catchment of the Blackwater. 

The little arrows are indicate the directions of the camera when photos were taken.   
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Streams Number 

Bluesky DTM 

Method 3 

Stream 

 order 

Threshold 1 

(0.000625 km²) 

Threshold 2  

(0.005 km²) 

Threshold 3 

(1.25 km²) 

Threshold 4 

(13.5 km²) 

1 131415 10825 55 6 

2 59253 4806 27 3 

3 26472 2637 9 0 

4 14508 1552 4 0 

5 9908 828 0 0 

6 6338 436 0 0 

7 2987 173 0 0 

8 1031 0 0 0 

9 726 0 0 0 

Total 252638 21257 95 9 

Table 5.6: The numbers of streams within each stream order from Bluesky 

DTM using the four threshold values obtained using method 3. 

 

Figure 5.21: Landscape of location 1. Overland surface water accumulates to 

the bare part of this field as accurately captured by the DEM. 
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Figure 5.22: Landscape of location 2 (A).  The arrow in image (B) indicates the 
place at the edge of the field where the surface water accumulates before draining 

to the main stream just behind the long grass.  

(A) 

(

B) 

(B) 
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Figure 5.16 illustrates the stream networks obtained using the flow accumulation value 

(50,000 pixels) at the transition point between regions 3 and 4. In region 3 the slope remains 

relatively constant until the third inflection point is reached at a contributing drainage area of 

50,000 pixels (1.25 km²). A contributing drainage area threshold of this magnitude has been 

suggested in prior studies to represents channelized areas (Montgomery and Foufoula-

Georgiou, 1993; Ijjasz-Vasquez and Bras, 1995; Tarolli and Dalla-Fontana, 2009). In our 

study, the stream networks that were obtained using this contributing area threshold were 

found to be representing recognisable channels (Figure 5.16). A validation process was 

carried out by directly observing the true streams in the field at the visited locations. As can 

be seen from Figure 5.24, the delineated streams using the threshold value of 50,000 pixels 

match quite closely with the reference network. Therefore, it is very clear that using a 

threshold value around 50,000 pixels (1.25 km²) will result in a delineated stream network 

that only reflects as much of the known stream channels as possible.  

Figure 5.23: Landscape of location 3.    
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Figure 5.17 shows that choosing the value of the contributing area threshold at the 

transition point between regions 4 and 5 will overestimate the threshold value and as a 

consequence, the derived stream networks are too short (start too late), as is clear from the 

map where network starts only on the main channel in the middle of the sub-catchment.  

In summary, for the entire Blackwater catchment and using the 5 m resolution Bluesky 

DTM, the contributing drainage area thresholds ranging from 25 to less than 200 pixels 

produce stream networks where lower-order streams represent parallel lines going down to 

the bottom of slopes (diffusive processes, surface wash on one direction slopes). Stream 

networks corresponding to threshold areas of 200 to less than 50,000 pixels represent a 

mixture of where it possible to get a concentration of surface flow across  a field and the edge 

of the field drains, whereas those corresponding to contributing drainage area thresholds of 

50,000 pixels or more depict the recognisable (true) channels (Figure 5.25). This finding is 

consistent with Montgomery and Foufoula-Georgiou (1993) who have reported that a break 

from less negative to more negative gradient is found at larger contributing areas (transition 

Figure 5.24: Comparison of the 50,000 pixels threshold delineated streams and the 

reference network.    
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between regions 3 and 4 in our study), attributed to where alluvial channel processes begin to 

persist. 

 

 

 

 

 

 

 

 

 

5.2.5 Threshold values for other elevation datasets based on Bluesky results 

Flow accumulation threshold values were calculated for the other DEM datasets using 

Eq. 5.1 and those values obtained from Bluesky data using the area-aggregated slope 

relationship method. They are reported in Table 5.7 and are also shown on each 

corresponding area-aggregated slope plot in Figure 5.26. 

The analysis of the area-aggregated slope relationship plots (Figure 5.26) shows the 

capability of high-resolution DTMs to depict the detailed changes in the gradient during the 

process of flow accumulation. Tarolli and Dalla-Fontana (2009) argued that only DEMs finer 

than 5 m allow the correct identification of dominant geomorphic process in relation to 

channel initiation location. Bluesky and NEXTMap DTMs behave very similar since the four 

Figure 5.25: Stream networks determined for the Blackwater catchment at contributing 
areas of 200, 50,000 and 540,000 pixels, 0.005, 1.25, 13.5 km², respectively.  
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scaling regimes were identically picked out in both of them. Moreover, of the five DTMs, 

there is strong evidence that the third threshold (1.25 km²) can be picked out very well in 

three of them (Bluesky, NEXTMap, and OS50m), where it is almost identical in the first two 

DEMs and in the other one (OS50m) there is a similar sort of threshold but it is to some 

extent smaller (1.125 km²). Landform Profile (OS10m) DTM does not appear capable of 

picking up any threshold although there is an inflection point just smaller than the third 

threshold (1.25 km²) at about a contributing drainage area of 0.8 km². This could be related to 

the stepping artefacts (stair-step) problem related to the contour origin of this DTM. 

Figure 5.26E shows that the four scaling regimes (thresholds) that were picked out by 

the 5 metre resolution DTMs (Bluesky and NEXTMap) do not exist in the SRTM area-

aggregated slope relationship plot although there are two inflection points which can be 

interpreted as a displacement of the third and fourth thresholds, this is likely to be related to 

the lower resolution of the SRTM DEM (90 m).  

Figures 26D and E demonstrate that the first and second regions that were observed by 

the finest DTM resolution (5 m) are not detectable by the courser resolution DTMs (OS50m 

and SRTM), this level of detail is lost (Martinez et al., 2010). However, the 50 m resolution 

DTM (OS50m) is capable of picking up the third and fourth scaling regimes (thresholds) that 

were picked up by the finest DTM (5 m). These results indicate that as grid size increases 

some details are lost (Hancock and Evans, 2006). Tarolli and Dalla-Fontana (2009) found that 

in a typical steep alpine catchment, a DEM finer that 10 m is required to better recognize local 

morphology and provide interpretation of the hillslope-to-valley transition based on the slope-

area relationship. They also concluded that these scaling regimes, to some extent, disappear in 

20 or 30 m DEMs.  Montgomery and Foufoula-Georgiou (1993) reported that in moderately 

steep topography, a DEM finer than 30 m resolution is required to accurately identify the 

hillslope-to-valley transition. 
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Figure 5.26: Area-aggregated slope plot for each DTM. The vertical dashed lines show the 

scaling regimes with respect to the four drainage area thresholds (25, 200, 50000 and 540000 

pixels) that obtained using Bluesky DTM. 
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5.2.6 The suitable threshold for stream delineation  

Stream networks have been delineated using various threshold values (method 1 = 

0.625 km², method 2 = 1.2 km² and method 3 = 0.000625, 0.005, 1.25 and 13.5 km²). As 

expected, selection of different threshold values produces radically different stream networks 

in terms of numbers of streams, the stream orders and the stream lengths (Table 5.8). This 

shows that with the increase in the threshold values these other parameters gradually decrease. 

Comparing the extracted stream networks obtained from all the three methods with 

each other and with the reference network reveals that networks extracted using the 1% value 

of the maximum flow accumulation (method 2) and the third threshold from the area-slope 

relationship (method 3) produce almost the same stream networks. This is because the two 

threshold support areas are almost the same, 1.2 and 1.25 km² respectively. These findings 

also indicate that the value that represents 1% of the maximum flow accumulation coincides 

with an inflection point in the area-aggregated slope relationship diagram (threshold 3) that 

represents the transition from the unchanneled valley (ephemeral streams) to the start of 

alluvial channels (recognizable channels). Overall, these results suggest that the use of the 

value that represents 1% of the maximum flow accumulation: as a simple rule of thumb for 

 Bluesky NEXTMap OS10 OS50 SRTM 

Threshold 1 
Pixels 25 25 6.25 0.25 0.07716 

Area (km²) 0.000625 0.000625 0.000625 0.000625 0.000625 

Threshold 2 
Pixels 200 200 50 2 0.617284 

Area (km²) 0.005 0.005 0.005 0.005 0.005 

Threshold 3 
Pixels 50000 50000 12500 500 154.321 

Area (km²) 1.25 1.25 1.25 1.25 1.25 

Threshold 4 
Pixels 540000 540000 135000 5400 1666.667 

Area (km²) 13.5 13.5 13.5 13.5 13.5 

Table 5.7: The number of pixels from each DEM corresponding to each contributing 

drainage area (thresholds) that were obtained from Bluesky. 
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stream determination threshold will result on an extracted stream network that reflects as 

much of the known stream channels as possible.  

 

 

Ijjasz-Vasquez and Bras (1995) suggested that the transition between the hillslope and 

channel regimes begins in region 3 and is completed at the beginning of region 4, as observed 

from the area-slope relationship (Figure 5.27). Similar findings were reported by McNamara 

et al. (1999), where they observed three distinct flow path regimes, and the fluvial channel 

regime is at drainage areas above 0.015 km², which is the value of the contributing drainage 

area at the boundary between regions 3 and 4 (Figure 5.28). In our study, the stream network 

that was extracted using a threshold value equal to the contributing drainage area at the 

boundary between regions 3 and 4 (50,000 pixels = 1.25 km²) represents the recognisable 

(true) channels. 
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1 110 93638 56 69261 131415 17766897 10825 1142380 55 67107 6 15601 

2 54 52154 27 37419 59253 2610924 4806 426041 27 37419 3 10026 

3 23 24558 9 10554 26472 852279 2637 188633 9 10554 
  

4 9 10169 5 6805 14508 348688 1552 106295 4 6805 
  

5 
    

9908 185938 828 52631 
    

6 
    

6338 97782 436 26121 
    

7 
    

2987 52021 173 10010 
    

8 
    

1031 18820 
      

9 
    

726 13887 
      

Table 5.8: Streams order, numbers of streams and streams lengths obtained from BlueskyDTM 
using different threshold values. 
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To conclude, the response of contributing areas versus aggregated slopes was 

examined in DEM data from a relatively flat and low-lying area of the River Wensum 

catchment. Four regions with different scaling response were identified in the area-aggregated 

slope diagram. The existence of these regions in the DEM data, suggests the existence of 

different threshold values (Ijjasz-Vasquez and Bras, 1995). The actual concentrated surface 

flow initiation locations across the catchment landscape is better represented by the first 

inflection point after the gradient reversal (Henkle et al. 2011; Montgomery and Foufoula-

Georgiou, 1993), which would be the transition between regions 2 and 3 (see Figure 5.11 for 

the scaling response regions and Figure 5.15 for the resultant stream network using the value 

at the transition between regions 2 and 3).   The transition between regions 3 and 4 is related 

to the change of dominance from the unchanneled valley (ephemeral streams) to the start of 

alluvial channels (true channels). Similar findings have been reported by other researchers 

(e.g. Henkle et al., 2011; Ijjasz-Vasquez and Bras, 1995; McNamara et al., 1999; Tarolli and 

Dalla-Fontana, 2009)  

Figure 5.28: Area-local 

slope plot for the Imnavait 

Creek Basin (Alaska, USA). 
Four regions with different 

scaling response can be 

identified (McNamara et al. 

1999). 

Figure 5.27: Area-local 

slope plot for the Brushy 

Creek basin (Alabama, 
USA). Four regions with 

different scaling response 

can be identified (Ijjasz-
Vasquez and Bras, 1995). 



  Chapter 5 

 

155 

 

Since the area-aggregated slope relationship is a quantitative analysis method, the 

calculated stream threshold area should be more objective and accurate than a visual judgment 

or arbitrary chosen threshold value. Comparing various results, and according to our study 

purposes, the second and third thresholds, 0.005 and 1.25 km² respectively, that were obtained 

from the Bluesky DTM area-aggregated slope relationship graph will be used for the 

subsequent stream network uncertainty analysis. In addition, because the shape of the area-

aggregated slope relationship is similar to those identified in previous studies for different 

study areas, the thresholds obtained in this study may be of significance for understanding 

hydrologic and geomorphic processes with the study catchment in relation to sediment 

transporting and surface water quality.  

5.3 Conclusions 

In this chapter, the performance of different contributing drainage area thresholds 

obtained by three different methods for channel network extraction using DEMs was 

evaluated.  The first two methods (trial-and-error method and 1% of the maximum flow 

accumulation value) are straightforward processes and the flow accumulation area thresholds 

obtained produced stream networks that match to some extent the length of the reference 

network (true streams).  When examining the relationship between contributing area and local 

slope, the data for the Blackwater catchment exhibit the systematic relationship identified in 

studies of other landscapes. Three distinct process domains defined by the area-slope plot 

have been identified, similar to those previous researchers have attributed to hillslopes, 

unchannelized, and channelized domains. Three different contributing drainage area 

thresholds were identified according to these distinct scaling regimes; 0.000625 km² (hillslope 

diffuse process), 0.005 km² (unchanneled valleys), and 1.25 km² (true streams). In the next 
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chapter (Chapter 6), the third threshold value is used to address how DEM sources and 

resolutions influence the positional accuracy of extracted stream networks. 

The results of this study suggest that, in a landscape like the Wensum catchment, from 

the five DEMs examined a 5 m resolution is most appropriate when extracting geomorphic 

process domains from DEMs. It was clear from the area-slope plots for the different five 

DEMs that only Bluesky and NEXTMap DEMs were able to depict the different inflection 

points that enable the distinction between the above mentioned various geomorphic and 

hydrologic regimes. The examination of the area-slope data for the different DEMs 

demonstrates that as cell size increases, detail in the area-slope relationship is lost. At a grid 

spacing of 50 m and 90 m, the curvature in the diffusive region is lost and the area-slope 

relationship is generally linear for its entire domain (Figure 5.26).  
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Chapter 6 

Comparing automated drainage networks derived from DEMs 

6.1 Introduction 

Earlier in this research the importance of the accurate delineation of stream networks 

and catchment boundaries for hydrological modelling and catchment resource management 

was acknowledged and reviewed. In the previous chapter (Chapter 5), breakpoints in the area-

slope gradient were identified for the Blackwater sub-catchment and used to partition the 

landscape into three distinct flow path regimes: hillslope regimes at drainage area of 0.000625 

km², unchanneled valley regimes above 0.005 km², and fluvial channel (true streams) regimes 

at or above 1.25 km². Two of these thresholds (0.005 and 1.25 km²) are used here for an 

assessment of extracted stream networks in terms of stream order, number of streams and 

stream lengths. However, setting different flow accumulation thresholds for a given DEM 

resolution results in differences of headward extent (lower order streams) of the mapped 

networks but not in the locations (positional accuracy) of the channels. Thus, the focus of this 

part of the research is not on assessing performance of these thresholds but rather addressing 

how DEM sources and resolutions influence the positional accuracy of modelled stream 

networks in the Blackwater sub-catchment. 

Therefore, in the next part of this chapter, quantitative comparisons of the closeness of 

fit (horizontal accuracy) between derived stream network from different DEMs and reference 

data (reference network was discussed in Section 5.2.1) are performed, evaluated and 
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presented using two methods: horizontal RMSE and the Epsilon error band (see Chapter 2, 

Section 2.3.7.2).  As discussed previously in Chapter 2 (Section 2.3.4) in applications of flow 

routing that involve the extraction of streams which are intended to be used in drainage 

network analysis or catchment boundary delineation, the use of a single flow direction 

algorithm such as D8 is preferable (Li et al. 2005; Zhou et al. 2008). In this study, therefore, 

the D8 was selected as a convenient DEM-based stream network generating method for the 

purpose of stream network comparison. The comparison of the stream networks and 

catchment boundaries derived from different DEMs for the Blackwater sub-catchment is 

believed to be an important aspect of DEM quality and can indicate the suitability of a DEM 

for local catchment management applications.  

6.2 Comparing stream networks to each other and to reference data  

Previous research has been undertaken on the quantitative assessment of stream 

networks in terms of attributes such as stream order, stream length and drainage density (Lin 

et al., 2010). RMSE has also been used for the assessment of the positional accuracy of spatial 

features (Shi, 2010; Zhang and Goodchild, 2002). Both in horizontal and vertical 

measurements, the RMSE has been adopted as a standard method by the Federal Geographic 

Data Committee (FGDC), in its National Standard for Spatial Data Accuracy (FGDC, 1998). 

In addition, several studies have been conducted on the positional accuracy of DEM-

delineated stream networks, relative to a reference network, by applying a buffer zone to the 

reference network or vice versa and then evaluating the degree of coincidence between 

extracted networks and the reference data (e.g. Clarke and Burnett, 2003; Goodchild and 

Hunter, 1997; Penas et al., 2011; Vogt et al., 2003). 
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All of these assessment criteria, some selected hydrographical parameters (stream 

order, number of streams in each order, stream lengths and catchment area), horizontal RMSE 

and defining a buffer zone around the reference network approaches, were used as methods 

for quantitatively assessing the quality of extracted stream networks from several different 

DEMs, NEXTMap (5m), Bluesky (5m), Ordnance Survey Landform Panorama (OS50 m) and 

SRTM (90m). In this assessment the effect of DEM resolution and type of data source on the 

derived stream network were investigated as they were believed to be the major factors 

affecting the positional accuracy of stream networks derived from these DEMs (e.g. Charrier 

and Li, 2012; Penas et al., 2011; Wang and Yin, 1998). Two methods for stream extraction from 

the DEMs were used; (1) from the original DEM and (2) from the DEM after an error 

modelling process (error propagation method). 

6.2.1 Stream extraction from original DEMs  

As previously indicated, the horizontal and vertical resolution of a DEM can have a 

significant influence on the accuracy of the hydrological derived surface parameters (i.e. flow 

direction) that are computed from it (Wilson, 2012). This is likely to be particularly important 

in low relief areas (Chirico, 2004).  It has also been recognised that different DEM sources, 

processing steps, and topography can lead to differences in the extracted drainage networks 

and catchment boundaries. These differences can be identified visually and quantitatively, and 

most studies rely on comparing parameters describing stream network composition, including 

the stream orders, numbers of streams, stream lengths and catchment areas (Liu and Zhang, 

2011; Gallego et al., 2010). 
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6.2.1.1 Methods 

Stream networks were extracted from each DEM using the two threshold values that 

were obtained using the area-aggregated slope method (see Chapter 5). The smaller threshold 

(0.005 km²) was found to produce a detailed description of the stream networks, where it 

possible to get a concentration of surface flow across fields and to the edge of the field drains, 

whereas the second threshold (1.25 km²) produced a stream network representing the 

recognisable (true) channels. The resultant stream networks derived using each threshold with 

each DEM were compared in terms of the stream network parameters mentioned above and 

also to the reference network.  

The extraction of the stream networks and the catchment boundaries was carried out 

using the hydrology analysis extension within ArcGIS 10, following the basic steps of pit 

filling, identification of flow direction followed by the calculation of flow accumulation 

rasters. Stream networks were identified by applying the same contributing area thresholds 

(0.005 and 1.25 km²) in turn to the flow accumulation values of each different DEM.  All the 

grid cells with an accumulation value greater than the threshold were regarded as potential 

surface flow paths. Stream networks are formed by these flow paths. All streams were further 

ordered according to the Strahler system, a stream ordering method proposed by Strahler in 

1952 which introduces a hierarchy into the river system, where stream order only increases 

when streams of the same order intersect (Poggio and Soille, 2008). The length of streams of 

each order was obtained by measuring all the drainage within the catchment of a given order 

(Liu and Zhang, 2011). All these geoprocessing tools were combined using ArcGIS Model 

Builder. Raster to Vector conversions were used to convert stream network and catchment 

boundaries into a vector data format for the purpose of comparison between each other and to 

the reference data. 
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6.2.1.2 Results 

Tables 6.1 and 6.2 and Figure 6.1 show the maximum stream order, the number of 

stream segments and the total stream length using the 0.005 km
2 

threshold for each DEM. The 

NEXTMap DEM generated the highest number of stream segments with 3145 segments, as 

compared to 2322 from Bluesky, 1174 from OS50 and 706 from the SRTM data. In addition, 

the total stream length and the maximum stream order of the NEXTMap derived network 

were 251.193 km and 7, as opposed to 213.766 km and 6 from Bluesky, 206.342 km and 6 

from OS50 and 155.895 km and 5 from SRTM, respectively. This ordering of the number of 

segments and their structure by Strahler order is what would be expected, a function of 

resolution. It was observed that there is a decreasing trend in the maximum stream order, 

number of stream segments and the total stream lengths as a function of cell size (see Figure 

6.1, Table 6.1 and Table 6.2). These results are consistent with those of Paz et al. (2008) who 

found that total stream length and the number of segments were underestimated when DEMs 

with lower spatial resolution were used, as they could not detect some small streams because 

of reduced vertical resolution. Table 6.2 also shows that the greatest differences associated 

with resolution are at the lower orders, where at Strahler level 1 NEXTMap generated 1612 

segments, in contrast to 1178 modelled by Bluesky, 598 by OS50 and 393 by SRTM. 

Furthermore, it is clear from Table 6.2, as would be expected, among the different resolutions 

there is less difference as the stream order increases.   

With the same contributing area threshold (0.005 km²), the results indicate that 

NEXTMap can produce a more detailed delineation of the stream network, as the number of 

streams and their lengths within each stream order was the greatest for all the five DEMs 

(Table 6.2). Although Bluesky exhibited a similar resolution to NEXTMap, the latter 

produced a more detailed stream network. This was attributed to the data source type and 
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Table 6.1: The number of streams, total stream lengths and the total catchment area for 

the Blackwater sub-catchment from each DEM using the threshold value of 0.005 km². 

 

DEM 
Maximum  
Stream 
order 

Total N of 
stream 
segments 

Total stream 
lengths (km) 

Total 
catchment 
area (Km²) 

Reference N 3 19 19.198 
 

NEXTMap 7 3145 251.193 25.484 

Bluesky 6 2322 213.766 25.279 

OS50 6 1174 206.342 25.568 

SRTM 5 706 155.895 25.790 

 Table 4.1: The number of streams, total stream lengths and the total catchment area 

for the Blackwater catchment from each DEM using the threshold value of 0.005 km². 

techniques used to generate the DEM and also to the methods used to filter the DSM to 

generate a bare-earth data – DTM. 

 

 

 

 

 

 

 

 

Table 6.1 also shows the area of the Blackwater sub-catchment determined using each 

DEM. From the table it is clear that there is a slight tendency for the area of the catchment to 

increase with cell size. This can be attributed to the fact that grid cells of different sizes 

cannot consistently cover the irregular shape of the catchment (Wu et al., 2008a).  However, 

DEM 

Maximum  

Stream 

order 

Total N of 

stream 

segments 

Total stream 

lengths (km) 

Total 

catchment 

area (Km²) 

Reference 

Network 
3 19 19.198 

 

NEXTMap 7 3145 251.193 25.484 

Bluesky 6 2322 213.766 25.279 

OS50 6 1174 206.342 25.568 

SRTM 5 706 155.895 25.790 

Stream 

order 

Reference 

Network 
NEXTMap (5m) Bluesky (5m) OS50 (50m) SRTM (90m) 

Number 

of 

streams 

Stream 

lengths 

(km) 

Number 

of 

streams 

Stream 

lengths 

(km) 

Number 

of 

streams 

Stream 

lengths 

(km) 

Number 

of 

streams 

Stream 

lengths 

(km) 

Number 

of 

streams 

Stream 

lengths 

(km) 

1 10 13.061 1612 150.083 1178 124.033 598 125.383 393 98.785 

2 4 2.761 630 51.586 510 44.236 307 50.098 166 29.569 

3 5 3.375 356 21.377 307 21.926 102 13.501 76 14.873 

4   287 15.973 183 12.906 94 9.972 53 9.425 

5   173 9.324 79 5.797 33 4.082 18 3.244 

6   11 0.744 65 4.868 40 3.307 
  

7   79 2.995       

Total 19 19.198 3145 251.193 2322 213.766 1174 206.342 706 155.895 

Table 6.2: The number of streams and the stream lengths within each stream order for the Blackwater 
catchment from each DEM using the threshold value of 0.005 km². 

 

Table 4.2: The number of streams and the stream lengths within each stream order for the Blackwater 

catchment from each DEM using the threshold value of 0.005 km². 
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others have also examined the effect of grid size change on the catchment area determined 

from DEM, and no consistent trend was observed (Vieux, 1993; Wu et al., 2008a). Total 

length of all stream segments and the area of the catchment often play a critical role in 

determining catchment hydrologic characteristics for water resource management (Callow et 

al., 2007; Wu et al., 2008b). The assumption is that longer stream lengths, greater stream 

orders and higher number of stream segments imply greater accuracy (Paz et al., 2008; Liu 

and Zhang, 2011; Murphy et al., 2008; Penas et al., 2011). In this regard, it was hypothesized 

that the relationship between these parameters and the cell size would be linear such that 

higher resolution DEMs would result in longer stream length, greater stream order and higher 

number of stream segments. Therefore, the results clearly indicate that the NEXTMap 

elevation data are preferred over the other elevation datasets used in this study. From 

comparing these parameters of the stream networks, this study showed that with the same 

contributing drainage area threshold (0.005 km²) NEXTMap offers a delineated stream 

network with more detail compared to what can be achieved using the other elevation 

datasets.  
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In Tables 6.1 and 6.2 the values for the derived stream networks are all appreciably 

higher than for the reference network since the latter only represents the recognisable 

channels. The second comparison used a threshold of 1.25 km² which previous analysis in 

Chapter 5 suggested was the transition point from shallow concentrated flows (ephemeral) to 

channelized flows.  
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Figure 6.1: The number of streams within each stream order from each DEM (a) and the 

stream lengths (metre) within each stream order from each DEM (b) using the threshold value 
of 0.005 km²   for the Blackwater sub-catchment. 

 

Figure 4.1: The number of streams within each stream order from each DEM (a) and the 

stream lengths (m) within each stream order from each DEM (b) using the threshold value of 
0.005 km²   for the Blackwater catchment. 
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Table 6.3: The number of streams, total stream lengths and the total catchment area 

for the Blackwater catchment from each DEM using the threshold value of 1.25 km². 

 

Table 4.3: The number of streams, total stream lengths and the total catchment area 

for the Blackwater catchment from each DEM using the threshold value of 1.25 km². 

Results from applying this larger threshold to each of the DEMs are presented as 

maximum stream order, number of stream segments and total stream length in Table 6.3, and 

number of stream segments within each order and stream lengths for each stream order in 

Table 6.4 and Figure 6.2. As expected, the values of all these parameters decrease with the 

larger threshold and those for the derived network are similar to those for the reference data. 

As can be seen from Table 6.3, the NEXTMap and Bluesky networks showed the best 

agreement with the reference network, generating the same maximum stream order of 3, 

compared to 2 from the other two elevation datasets, OS50 and SRTM. Moreover, the total 

stream length of the reference network is 19.198 km, while that derived from NEXTMap is 

14.672 km, Bluesky 14.407 km, OS50 13.828 km and SRTM 13.200 km. Assuming the 

distances derived from the reference network are correct, the NEXTMap stream length is an 

underestimate by 23.57%, 24.96% for Bluesky, 27.97% for OS50 and 31.24% for SRTM. 

These results suggest that there was a tendency to underestimate the river length as the cell 

size increased.  

 

 

DEM 

Maximum 

Stream 

order 

Total N of 

Stream 

segments 

Total 

stream 

lengths (km) 

Total 

catchment 

area (km²) 

Reference 

Network 
3 19 19.198 

 

NEXTMap 3 17 14.672 25.484 

Bluesky 3 15 14.407 25.279 

OS50 2 13 13.828 25.568 

SRTM 2 13 13.200 25.790 
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Stream 

order 

Reference 

Network 
NEXTMap Bluesky OS50 SRTM 

Number 

of 

streams 

Stream 

lengths 

(km) 

Number 

of 

streams 

Stream 

lengths 

(km) 

Number 

of 

streams 

Stream 

lengths 

(km) 

Number 

of 

streams 

Stream 

lengths 

(km) 

Number 

of 

streams 

Stream 

lengths 

(km) 

1 10 13.061 9 8.373 8 9.227 7 8.940 7 8.636 

2 4 2.761 4 3.313 3 2.205 6 4.888 6 4.565 

3 5 3.375 4 2.987 4 2.975 
    

Total 19 19.198 17 14.672 15 14.407 13 13.828 13 13.200 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6.4: The number of streams and the stream lengths within each stream order for the Blackwater 

catchment from each DEM using the threshold value of 1.25 km². 

 

Table 4.4: The number of streams and the stream lengths within each stream order for the Blackwater 

catchment from each DEM using the threshold value of 1.25 km². 
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Figure 6.2: The number of streams within each stream order from each DEM (a) and the 
stream lengths (metre) within each stream order from each DEM (b) using the threshold value 

of 1.25 km²   for the Blackwater sub-catchment. 

 

Figure 4.1: The number of streams within each stream order from each DEM (a) and the 
stream lengths (m) within each stream order from each DEM (b) using the threshold value of 

0.005 km²   for the Blackwater catchment. 
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Overall, these comparisons suggest that the use of increased DEM resolution 

improved the modelling of stream networks.  Other authors have drawn similar conclusions 

(Paz et al., 2008; Liu and Zhang, 2011; Murphy et al., 2008; Penas et al., 2011). In this study, 

however, although NEXTMap and Bluesky have similar resolutions, the results indicated that 

NEXTMap produces a more detailed delineation of the stream network. As noted previously 

this is most probably due to data source type, techniques used to generate the DEM and also 

to the methods used to convert from DSM to DTM.     

 

6.2.2 Extracting streams from DEMs after error modelling 

6.2.2.1 Introduction 

Uncertainty exists in all spatial data, such as elevation datasets. In catchment resource 

management and modelling applications, any uncertainty within the DEM will be propagated 

to derived products such as stream networks (Wechsler and Kroll, 2006; Wu et al., 2008a and 

b). In a GIS analysis such propagation can be modelled by the Monte Carlo simulation 

method (Hunter and Goodchild, 1997). As stated in Chapter 2 (Section 2.2.3.3) the underlying 

assumptions of the Monte Carlo simulation procedure as applied to DEM uncertainty 

assessment are as follows: (i) DEM error exists and constitutes uncertainty that is propagated 

with manipulation of the elevation data; (ii) the true nature and extent of these errors are 

unknown; (iii) DEM error can be represented by a distribution of DEM realisations; and (iv) 

the true surface lies somewhere within this distribution (Lindsay and Evans, 2008; Poggio and 

Soille 2011). Thus, these models of uncertainty produce a range of values within which the 

true value is believed to lie with some level of confidence.  

Figure 6.3 illustrates the Monte Carlo simulation procedure that was used in this 

study. This technique is based on performing the GIS operation a number of times, where 

(a) 

 

(a) 

(b) 

 

(b) 
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Figure 6.3: Monte Carlo simulation procedure used to produce stream probability maps 
from each DEM used in the study (modified from Lindsay, 2006)  
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each iteration is referred to as a simulation. In each simulation a random error field was first 

created. This error surface was then added to the original DEM and the model was run using 

the resultant new DEM as the input and derivatives such as the stream network extracted. The 

entire procedure was repeated for a hundred iterations. Each iteration generated an alternative 

realization of the extracted information that was equally probable. A frequency distribution of 

the extracted derivatives is built up over the course of simulation, given the degree of 

uncertainty in the terrain model (Lindsay and Evans, 2008).  This method offers flexibility 

although it also involves relatively heavy computation and calculations.  

 

 

 

 

 

 

The Mont Carlo approach has become popular due to its ease of implementation and 

its general applicability. When compared to other error propagation techniques, the technique 

is not affected by the exact formulation or model of the spatial operator (Raaflaub and 

Collins, 2006). This makes it suitable for global GIS operations, though in such cases its use 

requires the simulation of correlated random fields which can be generated by simple first 

order autoregressive models on regular grids. However, in this study, the unfiltered random 

field method was used. This random field method assumes that errors in the DEM are 
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completely random and not spatially autocorrelated, with a mean of zero and a standard 

deviation equal to the RMSE (Lindsay and Evans, 2008). Darnell et al (2010) applied the two 

methods, spatially dependent and independent, to investigate flow path sensitivity to 

correlation between errors and found that there was no great difference, concluding that 

spatially independent errors were therefore fit for purpose.                                                                    

6.2.2.2 Modelling DEM error propagation to the stream network 

To simulate the error over the whole surface of the DEM, the Monte Carlo method 

was used to generate a grid of random errors which was then added to the original DEM to 

create a DEM realization. In this study, a spatially independent errors model was used, 

assuming that the error had a mean of zero and standard deviation equivalent to the RMSE 

(Wechsler, 2007). These multiple realisations of the DEM produce a Gaussian distribution 

that better represents the DEM under uncertain conditions (Hunter and Goodchild, 1997; 

Fisher, 1998; Wechsler and Kroll, 2006). The random fields were created with same 

geospatial extent of the DEM and with the properties based on the statistics obtained from the 

DEM accuracy studies (see Chapter 4 Section 4.3.5); mean = 0 and standard deviation = 

RMSE obtained for each DEM (Wechsler and Kroll, 2006; Widayati et al., 2004). As a rule of 

thumb, 100 simulations is taken as being enough, and everything below 20 as insufficient 

(Hengl et al., 2010).  Therefore, the random fields were created 100 times to generate DEM 

perturbations. 

ArcGIS Modelbuilder was used to create the error propagation model for the terrain 

analysis (Figure 6.4). The process begins with the generation of random error grids that have 

the same dimensions as the original DEM. The values in the error grids were generated from a 

normal probability distribution with a mean of zero and standard deviation equal to the RMSE 

of the original DEMs; 2.0317, 0.9197, 1.9962 and 2.6259 m for NEXTMap, Bluesky, OS50 
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and SRTM, respectively (Table 4.5 in Chapter 4). These RMSE values were obtained from a 

local DEM accuracy study conducted using a set of spot heights recorded at a higher degree 

of accuracy for the study area (see Section 4.3.5.3). The error grid was then added to the 

original DEM to create a new terrain realization. This new DEM became the input into the 

stream extraction model (Figure 6.4).  
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Figure 6.4: ArcGIS Modelbuilder flowchart for the error propagation model used to 

produce a stream probability map for each DEM used in the study.  
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The model then created the stream networks: sinks were filled, flow direction and flow 

accumulation were derived from the DEM and streams were delineated based on a flow 

accumulation threshold of 1.25 km². The stream network was then added to an accumulating 

total raster, with cell size same as the DEM and initial values of zero. This raster was copied 

and from the results a feedback loop was created. As the model ran multiple times, the stream 

network from each run was added as cells with a value of one to the accumulating total. This 

ultimately generated a cumulative probability surface, where the value for each cell identified 

how many times a stream network passed through it. The more times a cell was selected, the 

higher the probability that the stream network passed through the cell.  Figure 6.5 shows the 

results for the four DEMs.  

(a) 
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The model results provide an indication of uncertainty in the stream delineations. The 

visualisation of the density of streams clearly illustrates the concept of propagated 

uncertainty. In contrast to running the analysis with just the original DEM, the Monte Carlo 

modelling identifies areas where there is substantial uncertainty over the location of the 

streams.  

The outcomes of 100 realizations of stream networks for each DEM are shown in 

Figure 6.5.  It is clear from the maps that the stream networks were most affected by error in 

the headwater reaches (lower order streams). There are also a few places where uncertainty is 

quite substantial, as a result of a flat area problem or other artefacts existing in the DEM. In 

Figure 6.5: Results of the error propagation analysis for stream delineation from (a) 
NEXTMap with RMSE of 2.032 m, (b) Bluesky with RMSE of 0.92 m, (c) OS50 with RMSE 

of 1.996 m and (d) SRTM with RMSE of 2.626 m. The model run for 100 iterations. 

(d) 
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some areas streams are isolated and seem to be very improbable (see circled area in Figure 

6.5b).  

The influence of DEM resolution is evident in all maps. The maps in Figure 6.5 

provide evidence that when coarser resolution DEMs were used, the probable streams 

appeared as very wide zones as a result of the larger cell size, but inside these zones higher 

probabilities were present indicating the most likely locations of the streams. However, the 

overall purpose of this error propagation study is to determine a probability estimation of the 

position of the stream network from each DEM and then extract the most probable stream 

network for comparison with the reference network in terms of positional accuracy. This is 

discussed in the following sections.   

6.2.2.3  Selecting the most probable stream network 

ArcGIS Cost Surface and Cost Path functions were used to identify the most probable 

stream network from each probability raster. Cost path analysis is one of the spatial 

optimization techniques usually used in GIS and is considered as a very useful method in 

determining the optimal path from one or more origins to one or more destination targets 

(Choi et al., 2009). The Cost Path function determines a one cell wide least-cost path from a 

destination to a source relative to the minimum accumulative cost distance over a cost surface 

raster (Atkinson et al., 2005). A cost surface raster is one whose cells are assigned values 

representing the ‘cost’ of passing through them. The accumulative cost surface is generated 

from the cost surface, by calculating the cumulative cost of reaching each cell from the start 

point (Lee and Stucky, 1998). Methodologies for the calculation of an accumulated cost raster 

map and then extraction of the lowest score paths are well implemented and documented in 

ArcGIS (Collischonn and Pilar, 2000).  
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To create a cost raster from each probability map a raster with the same geospatial 

extent, cell size and with a pixel value of 100 (equal to the number of iterations) was first 

created for each elevation dataset. Each probability map was then subtracted from the 

corresponding 100 value raster. Each resulting grid was simply the inverse of each probability 

map. The Cost Path tool was then used to generate the most probable stream network by 

tracing cells with the minimum accumulative values between start and end points (Figure 

6.6).  The start point was selected to be the catchment outlet and the destination points were 

the possible headwaters for each stream segment.  

 

    

 

 

Figure 6.6: Example from OS50 data for the most probable stream created using the cost path 

method. 
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The outputs from the cost path processes are the most probable stream networks, 

identifying locations on each DEM where there are the highest probabilities of finding 

streams on the terrain (Figure 6.7).    

 

 

 

 

 

 

 

Figure 6.7: Maps of the most probable stream network for each DEM. 
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6.3 Stream network positional accuracy analysis 

6.3.1 Root Mean Square Error (RMSE) 

As noted in Chapter 2, the positional accuracies of modelled stream network can be 

tested by measuring the distance between each derived stream point and its corresponding 

point from an independent reference data of higher accuracy (FGDC, 1998). RMSE is widely 

used as a summary measure of such distances (FGDC, 1998; Zhang and Goodchild, 2002). 

RMSE require the computation of distances between two points on a map which can be 

calculated using the common equation based on Pythagorean’s Theorem (also called the 

Euclidean distance): 

                                         
           

                          (6.1) 

for n points with di (i = 1, 2,....., n), observed as the differences in coordinates between the 

modelled data and the more accurate reference data, the RMSE is 

                                    
     
   

 
                                            (6.2)             

where the di is the distance between a modeled stream point (Xmi, Ymi), and a corresponding 

reference data point (Xri, Yri). In other words, the di using the Cartesian coordinates is 

                                         
      

       
      

                  (6.3)  

Thus, the horizontal RMSE computed between a number of paired sets of points located along 

both delineated and reference stream network segments (polylines) is 

                             
     

      
       

      
   

   

 
                   (6.4) 
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RMSE can therefore be used as a measure of how accurately the derived stream network 

matches the reference network. The smaller the RMSE, the closer the fit between the derived 

stream network and the reference network.  

6.3.1.1 Work process steps 

To derive horizontal RMSE values two stream network datasets were considered: one 

being the derived stream network from each DEM using the 1.25 km² threshold and the other 

was the reference stream network. This threshold produced stream networks roughly similar 

in detail to the reference data, easing the comparison of positional accuracy between each 

pair. For each stream segment in the reference network, the Construct Points function in 

ArcGIS 10 was used to create points spaced 100 m apart (the analysis was repeated with the 

stream segments densified to 5 m point spacing for the purpose of results comparison) along 

each polyline starting from the upstream end point of each stream segment. This was done for 

the whole of the test area (Blackwater sub-catchment). Then, for each reference point, the 

nearest location on each of the derived stream polylines was identified using the Near Point to 

Line function and then the distance (di) from that point on the extracted polyline to the 

corresponding point on the reference polyline was calculated (Figure 6.8). The horizontal 

RMSE was calculated using equation 6.4, where n is the number of paired points. 
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Figure 6.8: Computation of horizontal RMSE between derived stream network from 

NEXTMap data and the reference stream network for the Blackwater sub-catchment. 

 

Figure 4.5: Computation of horizontal RMSE between derived stream network from 
NEXTMap data and the reference stream network for the Blackwater catchment. 

 

 

            

6.3.1.2 Some special considerations  

There are several considerations that apply when using these methods with vector 

stream polylines particularly when implemented in a GIS environment using shapefile 

formatted data. First, a visual quality check was needed to ensure that there was a one-to-one 

correspondence between stream polyline segments in both derived and reference networks. 

This does not mean that there has to be a polyline in the extracted network for every polyline 

in the reference network. If the extracted stream network was missing a stream segment, then 

the reference segment was ignored (Figure 6.9). In other words, all of the segments in the 

refrence network that were not included in the derived stream network were ignored.  
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Secondly, the stream segments under comparison needed to flow in the same 

direction. This meant that any two stream segments, in different stream networks that were 

being compared, needed to be constructed in the same order, upstream end to downstream 

end. So, flow direction was checked and, if necessary, a point that could not be matched to the 

correct stream segment was removed. 

Finally, the third consideration was that the extent of the reference stream segments 

needed to be visually checked against the extracted network ones. If the reference polyline 

segment was much longer than the extracted polyline, all points on the reference polyline that 

were beyond the end of the extracted polyline were ignored for fair comparison of the 

common segments (Figure 6.10). Therefore, for each comparision, reference stream network 

against each derived stream network, the total number of paired points varies due to the 

Before correction 

 

Before 

correction 

After correction 

 

 

After 

correction 

 

Figure 6.9: Illustration showing that the derived stream network was missing a stream segment 
compared to the reference network. Points on the reference segment (indicated with small arrow) 

in (a) were manually removed (b) before the calculation process to ensure one-to-one 

correspondence. 

 

Figure 4.6: Illustration showing that the derived stream network was missing a stream segment 

compared to the reference network. Points on the reference segment (indicated with small arrow) 

in (a) were manually removed (b) before the calculation process to ensure one-to-one 
correspondence. 

(b) 

 

(

b) 
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removal of points that could not be matched to the correct stream segment or extended 

beyond the extent of the derived network polylines.     

 

 

 

 

 

 

 

 

 

 

 

6.3.1.3 Results 

Horizontal RMSE was computed between the paired sets of points located along both 

the reference and extracted stream networks. The smaller the RMSE, the closer the fit 

between derived and reference stream networks.  

6.3.1.3.1 Stream networks extracted from original DEMs 

Resulting RMSE values and other statistical measures, as computed between each 

derived stream network and the reference stream network, are shown in Table 6.5. 

(a) 

 

(a) 

(b) 

 

(b) 

Before correction 

 

Before correction 

After correction 

 

After correction 
Figure 6.10: Illustration showing that all points on the reference polyline that were beyond 

the end of the derived polyline (a) were manually removed (b). 

 

Figure 4.7: Illustration showing that all points on the reference polyline that are beyond the 

end of the derived polyline (a) were manually removed (b). 
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As can be seen from the table, the RMSE value increases as cell size increases, with 

the 5 m resolution DEM producing the best RMSE. The NEXTMap dataset has better values 

for most statistical parameters in comparison with the other elevation datasets; maximum, 

mean, standard deviation and RMSE are 66.52, 17.15, 14.41 and 22.36 m respectively. On the 

other hand, SRTM derived stream network, on the whole, gives the worst results of all 

extracted networks; minimum, maximum, mean, standard deviation and RMSE are 0.55, 

222.72, 50.78, 45.37 and 67.98 m respectively. Therefore, and not surprisingly, there is a 

considerable resolution effect on the RMSE and other statistical indicators. These results are 

consistent with Clarke and Burnett (2003) who identified DEM resolution as one of the major 

factors affecting the accuracy of stream network extraction. Although there is a slight 

improvement in the RMSE values when the point spacing is densified to 5m, overall the 

values of all statistical parameters were very similar to those obtained with 100 m point 

spacing (Table 5.6).   

DEM 
Minimum 

(m) 

Maximum 

(m) 

Mean 

(m) 

Median 

(m) 

Standard 

Deviation 

% 

within 

10m 

% 

within 

20m 

RMSE 

(m) 

       
 

 

NEXTMap(5m) 
0.27 
(0.001) 

66.52 

(70.05) 

17.15 

(17.41) 

13.31 
(13.63) 

14.41 

(14.55) 

41.04 
(36.7) 

69.40 

(66.91) 

22.36 

(22.69) 

Bluesky (5m) 
0.02 

(0.001) 

85.45 

(87.93) 

21.33 

(20.45) 
12.67 

(12.20) 

21.18 

(20.48) 
44.60 

(45.27) 

63.08 

(63.19) 

30.01 

(28.94) 

OS50 (50m) 
0.24 
(0.027) 

139.15 
(146.84) 

35.24 
(36.35) 

27.45 
(27.21) 

30.31 
(30.28) 

21.80 
(18.87) 

37.59 
(35.92) 

46.40 
(47.31) 

SRTM (90m) 
0.55 

(0.021) 

222.72 

(222.72) 

50.78 

(50.2) 

39.25 

(38.95) 

45.37 

(43.41) 

15.91 

(14.7) 

28.79 

(26.87) 

67.98 

(66.37) 

Table 6.5: Minimum, maximum, mean, median, standard deviation and RMSE values for the distance 

differences between the derived stream networks and the reference network. The percentage of the 

distance differences that are equal or less than 10 and 20 metres is also reported. Results when 5 m 
spacing was used are reported inside the brackets.  

 

Table 4.5: Minimum, maximum, mean, median, standard deviation and RMSE for the distance 

differences between the derived stream networks and the reference network. The percentage of the 
distance differences that are equal or less than ten metres is also reported.  
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Although NEXTMap has the same resolution as Bluesky, differences in RMSE values 

and other statistical measures are clearly discernible. According to the descriptive statistics 

reported in Table 6.5, the comparison between NEXTMap and Bluesky highlights that the 

stream network obtained from NEXTMap data was the closest to the reference network.  

Thus, it can be argued that for automatically extracted stream networks those created using 

radar interferometry produce better results (Mantelli et al., 2011). In addition, the DSM to 

DTM conversion can be important.  The Intermap Products Handbook (2004: p.60) reports 

that elevations along streams less than 20 metres in width and greater than one kilometre in 

length ‘will be modified to maintain the monotonic flow within the vertical accuracy limit of 

radar elevation data’. An example illustrating modified streams where the narrow drainage 

canals are preserved through the woodland area is shown in Figure 6.11.   

 

 

 

 

 

 

 

 

 

 
Figure 6.11: Illustration showing modified streams locations where the narrow 

drainage channels are preserved through the woodland area, NEXTMap example 

from Blackwater catchment. 

 

Figure 4.8: Illustration showing modified streams where the narrow drainage 

channels are preserved through the woodland area, NEXTMap example from 

Blackwater catchment. 
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On the other hand, as shown in Table 6.5 and Figure 6.12, the percentage of the 

distance differences within ten metres is slightly higher for the Bluesky data than NEXTMap, 

44.6% and 41.04%, respectively. However, this order reverses to 69.4% for NEXTMap and 

63.08% for Bluesky when the distance differences are within 20 metres. 

 

 

 

 

 

  

 

 

 

 

 

This contrast is further illustrated by the cumulative frequency distribution of distance 

differences presented in Figure 6.13. The Bluesky data performed equally as well as the 

NEXTMap data at shorter distance differences (from 0 to 10 m). However, there is a more 

obvious divergence from 20 m onwards, with the cumulative frequency reaching 100% at 

about 66 m for NEXTMap and 85 m for the Bluesky data.  
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Figure 6.12: Frequency distribution of the distance differences between each derived stream 
network and the reference network within 10m,20m, 30m, ....., and 230m.  

 

Figure 4.9: Frequency distribution of the distance differences between each derived stream 
network and the reference network within 10m ,20m, 30m, ....., and 230m.  
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To find those areas where Bluesky was performing noticeably worse than NEXTMap, 

the study area was investigated carefully. It was found that the longer distance differences 

between the Bluesky derived stream network and the reference network occurred in an area 

just upstream of an artefact behaving as a dam, which is believed to be a man-made object 

was not completely removed during the process of converting the Bluesky data from a DSM 

to DTM (Figure 6.14). A visual inspection of a hillshade map of the Bluesky data indicated 

that the pit filling stage in the process of stream extraction generated a very big flat area just 

upstream the artefact, where the D8 algorithm then produced oversimplified straight stream 

segments.  As a result, the Bluesky derived stream network has a poor match with the 

reference network in this area, with the maximum distance difference being 85.45 m.  

Figure 6.13: Cumulative frequency of the distance differences between each derived 

stream network and the reference network.  

 

Figure 4.10: Cumulative frequency of the distance differences between each derived 

stream network and the reference network.  
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6.3.1.3.2 Stream networks extracted from DEMs after error modelling 

The stream network delineated from a single elevation realization is just one out of an 

infinite number of possible alternative depictions. Thus, it has limited chance of a perfect 

match to the reference network. The Monte Carlo method employed in this study was used to 

generate a channel probability map and the most probable stream network was defined as the 

one passing through the highest frequency cells. The positional accuracy of the most probable 

stream network extracted from each DEM using the error propagation method was assessed 

relative to the reference network. The overall positional accuracy of the stream networks 

extracted from DEMs after the error propagation modelling was found to be slightly better 

than the values obtained for the networks extracted directly from the original DEMs. 

Figure 6.14: Reference network and NEXTMap stream network overlying a NEXTMap 

hillshade model (right) and Bluesky stream network overlying a Bluesky hillshade model 

(left). Note the big flat area in the Bluesky image resulting from the pit filling algorithm 
during the process of filling a huge sink created by an artifact behaving as a dam.  

 

Figure 4.11: Reference network and NEXTMap stream network overlying a NEXTMap 

hillshade model (right) and Bluesky stream network overlying a Bluesky hillshade model 
(left). Note the big flat area in the Bluesky image resulting from the pit filling algorithm 

during the process of filling a huge sink created by an artifact behaving as a dam.  
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Resulting RMSE values and other statistical measures, as computed between each 

most probable stream network and the reference data are shown in Table 6.6. As reported 

previously, the horizontal RMSE value increases as cell size increases, with the 5 m 

resolution DEM producing the lowest (best) RMSE. The NEXTMap dataset still shows better 

results in most statistical parameters in comparison with the other elevation datasets. 

Nevertheless, as can be seen from the table, all the statistical measures reported here for the 

most probable streams extracted from the DEMs after the error propagation analysis are 

slightly better than that were reported in Table 6.5 for the stream networks extracted directly 

from original DEMs. There is a reduction of about 13% in the RMSE values (better results) 

for all the stream networks, except for OS50 with only 3% improvement compared to the 

horizontal RMSE values for the streams obtained from the original DEMs. These results are 

consistent with Poggio and Soille (2011) who proposed that the overall probability of the 

stream networks extracted from DEMs after error propagation modelling is significantly 

higher than those obtained for the networks extracted directly from the original DEMs. They 

also concluded that the use of the inverse of the channel probability map to extract stream 

network maximises the probabilities of having a river, according to the simulations of DEM 

errors. 

DEM 
Minimum 

(m) 

Maximum 

(m) 

Mean 

(m) 

Median 

(m) 

Standard 

Deviation 

% 

within 

10m 

% 

within 

20m 

RMSE 

(m) 

       
 

 

NEXTMap(5m) 0.03 53.27 14.70 10.93 12.96 45.5 73.1 19.57 

Bluesky (5m) 0.16 69.61 18.60 10.54 18.07 46.2 66.9 25.88 

OS50 (50m) 0.61 123.27 33.60 25.97 29.54 24.1 42.1 44.66 

SRTM (90m) 0.83 209.67 39.72 28.36 41.69 22.0 37.1 57.47 

Table 6.6: Minimum, maximum, mean, median, standard deviation and RMSE for the distance differences 

between the most probable stream networks and the reference network. The percentage of the distance 
differences that are equal or less than 10 and 20 metres is also reported.  

 

Table 4.5: Minimum, maximum, mean, median, standard deviation and RMSE for the distance differences 

between the derived stream networks and the reference network. The percentage of the distance differences 
that are equal or less than ten metres is also reported.  
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According to the cumulative frequency distribution of distance in Figure 6.15, it is 

clear that the uncertainty for the SRTM derived stream network was minimised when the 

error propagation method was used. It can be seen from Figures 6.15 and 6.16 that the SRTM 

derived stream network extracted after error modelling performed almost as well as the OS50 

data, especially for short distance differences (from 0 to 60 m), a notable change from when 

the original DEMs were used (see Figure 6.13). Therefore, Monte Carlo simulations with 

alternative DEM realizations produced by adding random error surfaces onto the original 

DEM show potential for improving the fidelity of extracted stream networks.   

 

 

 

Figure 6.15: Cumulative frequency of the distance differences between the most probable 

stream networks and the reference network.  

 

Figure 4.10: Cumulative frequency of the distance differences between each derived stream 

network and the reference network.  
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Overall, the positional accuracy of stream lines extracted from DEMs was 

significantly affected by the DEM resolution. The results showed that the distance differences 

between the reference and extracted stream networks tended to be smaller with finer 

resolution. Thus, it can be concluded that DEM resolution is the major factor affecting the 

positional accuracy of streams derived from DEMs. However, despite the fact that NEXTMap 

and Bluesky have the same resolution (5 m), the stream network obtained from the 

NEXTMap product was the closest to the reference network, based on the horizontal RMSE 

and other statistical measures. This was believed to be related to the type of source data and 

also to the methods used to create a DTM from a DSM. It was also found that using Monte 

Carlo simulations to generate alternative DEM realizations and then deriving the most 

probable stream networks improved their positional accuracy relative to reference data. 

   

Figure 6.16: Frequency distribution of the distance differences between the most probable 
stream networks and the reference network within 10m ,20m, 30m, ....., and 210m.  

 

Figure 4.9: Frequency distribution of the distance differences between each derived stream 

network and the reference network within 10m ,20m, 30m, ....., and 230m.  
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6.3.2 Measuring positional accuracy by applying different buffer zones 

The second method of measuring positional accuracy for derived stream networks was 

that described in Goodchild and Hunter (1997). This method calculates the percentage of the 

total length of the derived stream network that lies within a specified buffer distance of the 

reference network. The concept of an epsilon band (Figure 6.17) was used to calculate the 

buffer width (Chrisman, 1982; Goodchild and Hunter, 1997; Longley et al., 2005). Epsilon 

bands were discussed in detail in Chapter 2 Section 2.3.7.2.2. The rule of thumb proposed by 

Longley et al. (2005), in which features measured from maps are subject to positional errors 

of up to 0.5 mm at the scale of the map, was used to define epsilon bands. As the reference 

network used was obtained from OS VectorMap™ Local, which is a GML vector dataset at a 

nominal scale of 1: 10,000 the epsilon distance was calculated to be 5 m. 

 

 

 

 

 

 

The degree of coincidence between each of the extracted stream networks and the 

reference network was evaluated by applying buffers of 5, 10, 20, 30, 40, 50, 60 and 70 m to 

the reference network and then calculating the percentage of each derived stream network that 

fell inside each of the buffers. It was considered that a higher percentage of the total length of 

a derived stream network in narrower buffers was indicative of a greater spatial accuracy 

(Penas et al., 2011). Buffer and Clip tools in ArcGIS 10 were used to carry out the analysis. 

Epsilon 

Band 

Map feature 

(i.e. stream) 

Figure 6.17: The epsilon band concept. The true position of the line (stream) will occur at 
some displacement from the measured position, between the two parallels of the epsilon 

band. 

 

Figure 4.12: A buffer of width 70m placed around the reference network, and the 
portions of the NEXTMap derived stream network lying inside the buffer. This 

illustration is shown as an example.  
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Figure 6.19: Illustrations of the portions of the NEXTMap derived stream network lying inside the 

buffer for width of (a) 5m (20.99 %), (b) 10m (35.78 %), (c) 20 m (65.09 %), (d) 30 m (79.58 %), 

(e) 40 m (88.84 %), (f) 50 m (93.71 %), (g) 60 m (97.18 %), (h) 70 m (98.97 %) and (i) the original 

NEXTMap streams (100 %).  

 

Figure 4.13: Illustrations of the portions of the NEXTMap derived stream network lying inside the 

buffer for width of (a) 5m (20.99 %), (b) 10m (35.78 %), (c) 20 m (65.09 %), (d) 30 m (79.58 %), 

(e) 40 m (88.84 %), (f) 50 m (93.71 %), (g) 60 m (97.18 %), (h) 70 m (98.97 %) and (i) the original 

NEXTMap streams (100 %).  

The principle of this approach is shown in Figure 6.18, and the proportions of the NEXTMap 

derived stream network lying inside each different buffer width are illustrated in Figure 6.19.  

 

 

 

 

 

 

 

Figure 6.18: A buffer of width 70m placed around the 

reference network, and the position of the NEXTMap 

derived stream network relative to the buffer. This 
illustration is shown as an example.  
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6.3.2.1 Results 

6.3.2.1.1 Stream networks extracted from original DEMs 

As can be seen from Table 6.7 and Figure 6.20 it is very clear that DEM spatial 

resolution had large effects on the positional accuracy of the extracted stream networks.  The 

extracted stream networks from the finer resolution DEMs (NEXTMap and Bluesky) have a 

higher level of agreement with the reference stream network.  As would be expected, the 

percentage of each extracted stream network that lies within each buffer region (from 5 to 70 

m) is considerably affected by the cell size of the DEM being used, as the cell size increases 

this percentage decreases. For the narrower buffers (5 and 10 m), the stream network 

extracted from Bluesky data was the best overall, with 24.91% and 43.39% of the total stream 

length falling inside each buffer, respectively.  However, the NEXTMap derived stream 

network gives the best result of all extracted stream networks when applying buffers of 20 m 

and wider. The least accurate stream network was obtained when using the 90 m SRTM 

elevation data, showing the lowest percentage of the total stream length within each different 

buffer region. This could be related to the poorer spatial resolution of the SRTM data (90 m). 

Similar to these findings, Wang and Yin (1998) identified DEM resolution and the terrain 

complexity as the two major factors affecting the positional accuracy of stream networks 

derived from DEMs. 

  As was pointed out in discussion of the previous method (horizontal RMSE), stream 

networks extracted from NEXTMap and Bluesky elevation datasets showed significantly 

higher overall positional accuracy than stream networks extracted from the other two datasets 

(OS50 and SRTM). However, when compared to each other, for the narrower buffers (5 and 

10 m), Bluesky extracted stream network produced better results while for the buffers of 20 m 

and above, results obtained from the NEXTMap data showed a higher agreement with the 

reference network. As discussed previously, this could be related to data source type, 
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Figure 6.20: An illustration of the percentage of each extracted stream network lying 

within the buffer versus the buffer width.    

 

Figure 4.14: An illustration of the percentage of each extracted stream network lying 

within the buffer versus the buffer width.    

techniques used to generate the DEM and also to the methods used to convert from DSM to 

DTM (Figure 6.20 and Table 6.7).  

 

 

 

 

 

 

 

 

From Table 6.7 it can be seen that stream network extracted from Bluesky provided 

almost three times more of the percentage of stream network features lying within 5 m of the 

reference network (24.91%) than that extracted from SRTM (8.21%). However, the resolution 

of the SRTM data is 18 times coarser than Bluesky. In addition, streams extracted from the 5 

m resolution NEXTMap data exhibited only double the length of streams lying within 5 m of 

the reference network (20.99%) than those derived from the 50 m OS50 data (9.43%).   This 

represents a kind of diminishing return in terms of the cell size, as the DEM cell size can be 

made finer and finer but the percentage of streams feature lying within the 5 m of the 

reference network might not increase much. Charrier and Li (2012) concluded that stream 

networks extracted using 3 and 5 m resolution DEMs still produce >95% stream length match 

compared to the reference streams delineated by a 1 m LiDAR DEM. They also reported that 

a coarser resolution DEM (such as 10 m LiDAR DEM) is more appropriate to delineate 
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watershed boundaries compared to the results from 1 , 3 or 5 m resolution LiDAR DEMs. 

Therefore, although high resolution DEMs may prove more advantageous for certain 

applications, the use of such data may not necessarily result in a better positional accuracy in 

respect to stream network delineation. 
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Notes: 

The highest percentages of stream networks within each buffer region from all the DEMs are highlighted (gray cells). Note that Bluesky data allowed a much accurate 

delineation of stream network when applying buffers of 5 and 10 m, while NEXTMap produced the best results when applying buffers from 20 m and above. Stream 

network obtained from SRTM product yielded the lowest percentage of streams within each buffer zone (underlined values).  Stream network obtained from OS50 

presented slightly better results than that from SRTM, but these results are twice smaller than that from NEXTMap in most cases. However, the differences between the 

stream networks were greatly reduced when applying 60 and 70 m buffers, indicating that stream networks delineated from OS50 and SRTM were not very far from the 

reference network

Buffer 

width 

(m) 

NEXTMap Bluesky OS50 SRTM 

Length of stream 
network within 

buffer(m) 

% of stream 
network within 

buffer 

Length of stream 
network within 

buffer(m) 

% of stream 
network within 

buffer 

Length of stream 
network within 

buffer(m) 

% of stream 
network within 

buffer 

Length of stream 
network within 

buffer(m) 

% of stream 
network within 

buffer 

5 2812.03 20.99 3353.55 24.91 1235.24 9.43 1081.93 8.21 

10 4793.17 35.78 5841.56 43.39 2398.27 18.30 1865.22 14.15 

20 8718.54 65.09 8152.47 60.56 4604.31 35.13 3368.47 25.55 

30 10659.79 79.58 9458.59 70.26 7071.96 53.96 4894.56 37.12 

40 11900.80 88.84 10465.62 77.74 8633.01 65.88 6497.61 49.28 

50 12553.50 93.71 11228.88 83.41 9801.09 74.79 7719.12 58.55 

60 13018.39 97.18 12324.24 91.55 10729.03 81.87 8596.64 65.20 

70 13257.28 98.97 12889.85 95.75 11441.33 87.31 9258.68 70.22 

Table 6.7: Results showing the length and percentage of each DEM extracted stream network for the Blackwater sub-catchment inside the buffer in terms of its 

width.  

 

Table 4.6: Results showing the length and percentage of each DEM extracted stream network for the Blackwater catchment inside the buffer in terms of its width.  
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(a) NEXTMap 

 

(b) NEXTMap 

(c) Bluesky 

 

(d) Bluesky 

(e) OS50 

 

(f) OS50 

(g) SRTM 

 

(h) SRTM 

Figure 6.21: Illustrations of the portions of each derived stream network lying inside each buffer 

width. Line breaks depict sections of each stream network lying outside the buffer.    

 

Figure 4.15: Illustrations of the portions of each derived stream network lying inside each buffer 

width. Line breaks depict sections of each stream network lying outside the buffer.    
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Another interesting finding related to the use of different data sources is that, in 

general, the OS50 derived stream network coincides very well with the reference network in 

terms of the main stretches of the lower reaches of the network (see circled locations in Figure 

6.21). Almost the whole lower reaches of the OS50 derived stream network were captured 

when applying a buffer of 30 m. In contrast, however, in the case of streams extracted from 

finer resolution datasets, NEXTMap and Bluesky, large sections of the main river stretches 

lay outside the 30 m buffer compared to the results from the coarser resolution OS50 (Figure 

6.21). The good agreement between streams extracted from the Ordnance Survey OS50 m and 

the reference network in the area of the lower reaches is probably due to the fact that the latter 

was obtained from OS VectorMap™ Local dataset and was modified using the OS 1:1000 

MasterMap raster dataset (i.e sources from the same organisation). In further support to this 

finding, Charrier and Li (2012) investigated the effect of DEM different data sources and they 

suggested that different data sources can introduce significant uncertainties and may have 

different relationships between uncertainties and DEM resolutions due to the inherited 

resolution of their original data sources. They found that USGS DEMs, which were 

constructed from similar topographic maps, tend to produce similar results in automated 

floodplain delineation regardless of DEM resolutions.  

 

6.3.2.1.2 Stream networks extracted from DEMs after error modelling 

All the results regarding the percentage of each extracted stream network within each 

buffer region (from 5 to 70 m) are summarised in Table 6.8 and illustrated in Figure 6.22. It is 

clear from these findings that the NEXTMap derived stream network gives the best result of 

all extracted stream networks for all the buffer ranges, a difference from what was obtained 

when the original DEMs were used (Table 6.7), where for the narrower buffers (5 and 10 m), 

the Bluesky extracted stream network produced better results. The least accurate stream 
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network was again obtained when using SRTM elevation data, showing the lowest percentage 

of the total stream length within each different buffer region, although these results have 

improved to some extent through use of the error modelling method (see Table 6.8). In 

general, compared to what was achieved when the original DEMs were used, the percentage 

of each extracted stream network that lies within each buffer region (from 5 to 70 m) is 

improved when extracted from the DEMs after error modelling.      

 

 

  

 

 

Figure 6.22: An illustration of the percentage of each extracted most probable stream 

network lying within the buffer versus the buffer width.    

 

Figure 4.14: An illustration of the percentage of each extracted stream network lying within 

the buffer versus the buffer width.    
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Buffer 

width 

(m) 

NEXTMap Bluesky OS50 SRTM 

Length of 
stream network 

within buffer(m) 

% of stream 
network 

within buffer 

Length of stream 
network within 

buffer(m) 

% of stream 
network 

within buffer 

Length of stream 
network within 

buffer(m) 

% of stream 
network 

within buffer 

Length of stream 
network within 

buffer(m) 

% of stream 
network within 

buffer 

5 3993.57 29.21 3828.86 28.54 1439.88 10.52 1333.86 10.29 

10 6649.79 48.64 6399.63 47.70 2764.18 20.20 2536.18 19.57 

20 10074.33 73.68 8819.46 65.74 5431.17 39.69 4770.86 36.82 

30 11415.37 83.49 10305.00 76.81 7641.26 55.84 6348.18 48.99 

40 12532.23 91.66 11223.98 83.66 9096.32 66.47 8111.43 62.60 

50 13262.58 97.00 12178.90 90.77 10342.05 75.58 9522.07 73.49 

60 13568.12 99.23 13017.52 97.03 11343.61 82.90 10336.99 79.78 

70 13641.39 99.77 13337.27 99.41 11951.93 87.34 10779.19 83.19 

Table 6.8: Results showing the length and percentage of each DEM extracted most probable stream network for the Blackwater sub-catchment inside the buffer 

in terms of its width.  

 

Table 4.6: Results showing the length and percentage of each DEM extracted stream network for the Blackwater catchment inside the buffer in terms of its 
width.  
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There are possible alternative methods of determining the positional accuracy of the 

extracted stream networks that have been reported in the literature.  Li and Wong (2010)  

adopted a raster approach to evaluate the accuracy of extracted stream networks. Both the 

modelled and the reference networks were converted into raster layers for comparison. In 

order to evaluate how well the extracted network can replicate the reference network they 

used two method of comparison. The first one is called the correctness index and is defined as  

   
      

  
   

Where NB is the number of cells representing the reference network and N(A∩B) is the 

number of cells representing the extracted stream network, but the cells are also found in the 

reference network. The second method called Figure of Merit (FM) which is the ratio between 

the number of cells found in both extracted and reference networks, and the number of cells in 

the two networks combined, but overlapping cells are counted only once. If N(AUB) is the 

number of unique cells found in either network A or B, the ration is defined as  

    
      

      
   

Li and Wong (2010) believed that these raster approaches of stream network 

comparison had advantages over vector-based comparison. They argued that vector-based 

comparison evaluates only certain parts of the drainage network, but not the entire network, it 

does not offer a comprehensive assessment of similarity between the extracted and reference 

networks.      

Another method which can be used to quantify the positional accuracy of stream 

networks is the Digital Shoreline Analysis System (DSAS). DSAS is a software extension to 

ArcGIS that calculates shoreline change statistics from multiple historic shoreline positions 

(Thieler et al., 2009).  Although DSAS was made to calculate the rate of coastline movement 
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and changes, it can be also used to obtain distance offsets, or error of any other data, such as 

stream networks, that incorporate identifying feature positions based of a baseline or reference 

network (Thieler et al., 2009; Trowbridge, 2014). DSAS generates transects that are cast 

perpendicular to the baseline at a user-specified spacing. Distance measurements are obtained 

by calculating distances from the baseline to the points where transects intersected shorelines 

(which could be the derived stream channels in our case) and then used to calculate the rate-of 

change statistics (Kuleli, 2009). Anderson and Ames (2011) have used sinuosity as one 

measure of detail and closeness of fit between derived and reference stream networks, where 

the absolute value of sinuosity differences can be used as a measure of derived stream 

network accuracy.  

6.4 Conclusions 

The results obtained from all the methods used in this study, the assessment of some 

selected hydrographical parameters (stream order, number of streams in each order, stream 

lengths and catchment area), RMSE and percentage length within buffers, reveal that DEM 

spatial resolution and data source type were important factors that influenced the extracted 

stream networks positional accuracy. The DEMs employed in this study were derived from 

different remote sensing sensors (passive and active) as well as different topographic data 

sources, and consequently, it was anticipated that they would produce different results. 

From the results, the effect of DEM resolution on hydrological feature derivation is 

clearly evident. Among all the different DEMs used, the total stream length, the maximum 

stream order and the total stream segments had the highest values from the highest resolution 

DEMs, and there was a descending trend with increasing cell size. While using the same 

contributing drainage area threshold, the results showed that higher resolution DEMs 

(NEXTMap and Bluesky) produced more detailed stream networks. However, among the two 

5 m resolution DEMs, results from NEXTMap were better than those from Bluesky. This is 
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attributed to the combined effect of the original data source, DEM generating techniques and 

the DSM to DTM conversion process, while they have the same resolution NEXTMap 

provides a more accurate and detailed drainage network. These results are consistent with 

Charrier and Li (2012) who proposed that re-sampled lower resolution LiDAR DEM 

generated more accurate and detailed floodplain outputs when compared with outputs from 

same resolution USGS DEMs, attributing these differences to the type of the original data 

source. 

It was observed that the density of stream networks with a threshold value of 0.005 

km² was significantly greater than that of stream network with a threshold of 1.25 km². So it is 

very clear that a smaller threshold value will result in a denser stream network. It was also 

found that the best fit between the modelled stream networks and the reference network in 

respect to the hydrological parameters comparisons occurred with the use of a 1.25 km² 

threshold value. In the regard to catchment area, although there was a minor tendency to 

increase with cell size, others have also examined the effect of grid size change on the 

catchment area determined from DEM, and no consistent trend was observed (Vieux, 1993; 

Wu et al., 2008a).  

The horizontal RMSE was found to increase with the cell size. The difference between 

extracted stream networks and the reference network increased as DEM resolution decreased. 

The results showed that distance differences between the modelled stream network and the 

reference network tended to be smaller with a finer resolution.  Nevertheless, the effect of 

data source and processing methods for generating DEMs is apparent here too, where the 5 m 

resolution NEXTMap data offered a better horizontal RMSE value of 22.36 m, as opposed to 

30.01 m from the other 5m resolution data, Bluesky.  It was also observed that the percentage 

of the modelled streams that fell inside each of the buffers, when the buffer method was used, 

increased as the DEM resolution increased. This is also consistent with Penas et al. (2011) 
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who concluded that 5 and 25 m DEMs generated a more spatially accurate drainage network 

than the 90 m DEM.  

It was also observed that using the error modelling method and then extracting stream 

networks for a specified number (100 in our study) of realizations and then selecting the most 

probable stream network produced more robust results compared to the networks extracted 

from the original DEMs.  The derivation of the most probable stream networks shows a better 

spatial matching between these networks and the reference network. Thus, the use of some 

DEM realizations with modelled error seems to give more reliable results that minimise the 

uncertainty due to errors in the original DEM (Gatziolis and Fried, 2004; Poggio and Soille, 

2011: Raaflaub and Collins, 2006)  

Overall, DEMs with higher spatial resolution improved the modelling of stream 

networks, their structure and spatial accuracy. The process of DEM generation from raw data, 

the DEM original data source and also the technique used to convert from DSM to DTM also 

affect the positional accuracy of the modelled stream networks. However, in this study, it was 

observed that the major factor affecting the positional accuracy of stream networks derived 

from all the DEMs in our study is the DEM resolution. In further support of this conclusion, 

several authors have concluded that DEM resolution is the most important factor influencing 

its derived products (e.g. Charrier and Li, 2012; Paz et al., 2008; Oksanen and Sargakoski, 

2005; Penas et al., 2011; Vaze et al., 2010; Wang and Yin, 1998). It should be noted that the 

choice of datasets does not allow the effects of resolution to be separated from those of data 

source type. The effect of resolution on the positional accuracy of the derived streams could 

be examined if the resolution, for example, of the NEXTMap or Bluesky datasets was reduced 

(re-sampled to a lower resolution).   In a study by Vaz et al. (2010) they investigated the 

impact of using different resolution DEMs on hydrologically important derived indices. They 

concluded that the loss of details by re-sampling the higher resolution DEM to coarser 
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resolution are much less compared to the details captured in the commonly available coarse 

resolution DEM derived from contour maps. The same conclusion was drawn by Charrier and 

Li (2012) as they found that DEMs from more detailed original data source, such as LiDAR 

data, provided more accurate and detailed stream networks even when using re-sampled lower 

resolutions DEMs.   

From comparing several network parameters including the stream orders, the number 

of the stream segments, the total stream length and the catchment area as well as the results 

from horizontal RMSE and the buffer methods, this study showed that the NEXTMap 

elevation data offer better results compared with what can be achieved using the other 

elevation datasets. However, the differences between NEXTMap and Bluesky derived stream 

networks were not substantial, in some respects the Bluesky data performed well and similar 

to NEXTMap. These results suggest that if NEXTMap and Bluesky data are available, 

NEXTMap is suggested to be used instead of Bluesky, at least according to the results 

obtained so far and for an area with similar topography to our study area.  In addition, the 

study revealed that it is worth investigating in error propagation to stream network. 

Comparing to the reference network, the derived most probable stream networks from the 

multiple equally likely realisations produced more accurate result compared to the networks 

extracted directly from the original DEM.  

 



    Chapter 7 

 

206 

 

 

 

Chapter 7   

Modelling of Soil Erosion and Diffuse pollution 

 

7.1 Introduction 

In many agricultural catchments the problem of soil erosion and diffuse pollution is an 

important environmental concern (Posen et al., 2011). Soil erosion can cause significant 

damage to productivity of agricultural lands and when it leads to increased sedimentation in 

waterways, can have negative effects on drinking water quality (Mainston et al., 2008). For 

the implementation of the Water Framework Directive (WFD), which came into force in 

2003, EU member states must meet good chemical and ecological standards in water bodies 

by 2015. Research has shown that agricultural activities are responsible for a large 

contribution to degradation in water quality as a result of soil erosion and diffuse pollution 

(Harris and Heathwaite, 2005; Rickson, 2014; Boardman et al. 2009) which are consequently 

a major barrier to meeting these standards (Defra, 2002). Therefore, in order to effectively 

apply mitigation measures and best practice land management techniques it is necessary to 

prioritise which areas in the landscape of catchment should be targeted.  

As has been mentioned earlier in this research, DEM-based modelling of watershed 

processes has become increasingly popular in environmental research due to the advances in 

availability and efficiency of DEMs in acquiring topographic properties of catchments, such 

as slope, field slope length, and channel network. Within a catchment, hydrological pathways 
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can play a very important role in soil erosion and transport of diffuse pollution (Lane et al., 

2006) by exerting a major control on where soil is eroded within a landscape and whether it is 

subsequently delivered to watercourses (Ferrier and Jenkins, 2010; Reaney et al., 2011).   

As indicated above, a key issue in diffuse pollution management is the concept of 

Critical Source Areas (CSAs). CSAs are any piece of land where source factors (soil type, 

local slope, land use, and land management) combine with the local hydrological 

characteristics (i.e. flow from land is directly connected to streams) (Heathwaite et al., 2005). 

Connectivity throughout a catchment depends partly on its landscape topography (Wu et al., 

2007) which is represented by DEMs.  In Chapter 6 it was concluded that, among the four 

elevation datasets investigated, the NEXTMap data were found to be the best to represent 

Blackwater sub-catchment topography in relation to drainage network modelling. Therefore, 

NEXTMap dataset was used here to investigate soil erosion and diffuse pollution problems in 

the study catchment. Furthermore, for comparison purposes and for evaluation of the DEM 

uncertainty caused by grid size and data source on the model parameters and results the 

contour-based OS50 m DEM was also used.   

Overall, the concern of this chapter is three-fold. Firstly, SCIMAP modelling is 

applied and evaluated for the Blackwater sub-catchment within the River Wensum catchment. 

SCIMAP provides a framework for identifying the probable spatial locations of diffuse 

pollution problems within the catchment as well as the risk of these areas being 

hydrologically connected to rivers and streams (Reaney et al., 2011) (see Section 2.4.4 for 

more details). Secondly, this study attempts to validate the SCIMAP results by comparing the 

outputs to water quality measurements in the catchment.  Finally, the omission of the effects 

of soil type on diffuse pollution modelling by SCIMAP is perhaps the area where the model 

may be best improved. Therefore, for the purpose of model comparison, the RUSLE was used 

in an attempt to account for the considerable effect of soil type on soil erosion estimation 
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process (see Section 2.4.3). Two mini-catchments (A and B) were selected that were deemed 

to be representative of those found in the Blackwater sub-catchment and the results from 

RUSLE were discussed in relation to both water quality measurements and results from 

SCIMAP.  Additionally, in an attempt to demonstrate the effect of changes in the RUSLE 

factors (such as crop management (C) and support practice (P) factors) on the assessment of 

soil erosion risk, different scenarios were considered and the results were compared to those 

that were obtained when the original factors were used. 

Resulting from increased levels of environmental degradation in rivers efforts have 

been made to account and monitor the sources and pathways of diffuse pollution on a 

catchment level. One such monitoring strategy in the UK was the establishment of the River 

Wensum Demonstration Test Catchment project, which is part of the UK-wide Demonstration 

Test Catchment (DTC) programme. As a result of a joint DEFRA and Environment Agency 

initiative the Wensum DTC was established where issues (hypotheses) relating to diffuse 

pollution and improved agricultural practices can be tested and evaluated (McGonigle et al., 

2014; Wensum Alliance, 2013). The main aim of the project is to work towards reducing the 

impact of diffuse pollution to the Wensum without impairing agricultural productivity 

(Wensum Alliance, 2013). In this regard, using SCIMAP and RUSLE in the Blackwater sub-

catchment seeks to identify areas of high soil erosion risk so that preventative practices can be 

suggested, which in turn will limit amounts of sediment and nutrients entering watercourses 

and subsequent in-stream sedimentation and water quality degradation.  
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7.2 SCIMAP 

7.2.1 Introduction 

The Sensitive Catchment Integrated Modelling Analysis Platform (SCIMAP) provides 

a framework for identifying the probable spatial origins of diffuse pollution problems within 

agricultural catchments. It is based upon a conception of that sources of risk are thought to be 

distributed across the river catchment and that a catchment can be regarded as a set of flow 

paths that accumulate these distributed sources of risk from across the landscape into 

receiving waters where, for surface waters, diffuse pollution may become visible either 

through detection of temporal changes in water quality via routine monitoring or through the 

more limited evidence of physical water quality degradation (e.g. algal blooms) (Lane et al., 

2006; Reaney et al., 2011; Milledge et al., 2012). As such, SCIMAP focuses on identifying 

where in the catchment pollution materials come from rather than aiming to produce estimates 

of the actual pollution load (Lane et al., 2006). Hence, the result of SCIMAP is a method for 

determining where in the catchment management resources should be concentrated in order to 

achieve optimum environmental protection (Lane et al., 2006).   

The model first considers the areas in which surface flow will accumulate based upon 

topography and rainfall inputs to generate a map of the stream network. The erodibility of a 

given surface, derived from land cover data, is subsequently determined to produce a map of 

erosion risk across the whole catchment.  Each land cover category is assigned a risk value, 

parameterised by expert judgement (Reaney et al., 2011), which is scaled between 0 (low risk 

of erosion) and 1 (high risk of erosion). The erosion risk map is then combined with 

hydrological data to identify those areas in which fine sediment will accumulate due to 

hillslope and hydrological process. The final stage of the SCIMAP framework is that the 

accumulated erosion risk map is superimposed upon the stream network map to produce a 
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weighted output map of sediment risk in channels (in-stream risk concentration). The risk 

concentration is deemed to be the sum of all upstream contributing risks and by dividing it by 

the upslope contributing area dilution processes can be accounted for (Lane et al., 2006). 

7.2.2 Methods 

Within this study the SCIMAP framework was applied at two different scales of 

topographic data: NEXTMap 5m resolution DTM and OS 50m panorama DEM.  The 

SCIMAP diffuse pollution risk mapping was conducted using two geographical information 

systems. ArcGIS provided the tools to organise, modify and ultimately display outputs, whilst 

SAGA 2.0 was used to run the SCIMAP fine sediment risk model. SCIMAP has been 

developed as a joint project between Durham and Lancaster Universities and takes the form of 

a custom module in the SAGA GIS framework (SCIMAP, 2013). 

As mentioned previously, in order for SCIMAP to compute the relative risk of an area 

producing a diffuse sediment pollution risk three layers of data are required, topographic, land 

cover and rainfall (Reaney et al., 2011). Because the study area is small, the rainfall data were 

assumed to be spatially uniform over the whole catchment.  The land cover data was based on 

the Land Cover Map 2007 (LCM2007) but has been updated using farm records by the 

Wensum DTC project so that more recent changes in land management are represented across 

the study area.    

It is a prerequisite of the SCIMAP model that all input data exist in the same grid 

system, with the same extent and spatial resolution. Using the ArcGIS Resample tool the land 

cover map and the rainfall data were downscaled onto the topographic data resolutions used in 

this study; 5m for NEXTMap and 50m for the OS 50m data. In SCIMAP it was necessary to 

reclassify each land cover category from the LCM2007 data into values between 0 (low risk) 

and 1 (high risk) to produce an erodibility index. In this regard, the literature was consulted 
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and the land cover risk values based upon the categorisations by Reaney et al. (2011) were 

used. The land cover weightings used within SCIMAP in this study are shown in Table 7.1.  

Once pre-processing of the three data layers has been completed, the SCIMAP model 

then uses these initial three layers to produce a selection of new layers. SCIMAP modelling 

produced intermediate maps before the final stage of the modelling process was 

accomplished. These intermediate layers are: the slope, stream network, network index and 

erosion risk. The erosion risk map allows areas susceptible to erosion and locations with 

highly erosive rainfall to be identified. For a particular area in the landscape, the surface flow 

index map (network index) represents the likelihood of sediments that are mobilised from that 

area to make their way through to the channel network.  Once these intermediate modelling 

layers have been combined together SCIMAP makes predictions, based on topographic 

controls, of in-situ soil erosion risk at each location across the catchment. By combining this 

risk with land cover risk weightings the important role played by different land covers in 

either increasing or decreasing erosion risk can be identified. The final stage of the SCIMAP 

modelling process is to incorporate the effects of dilution to the accumulated risk to 

effectively give a risk concentration (Reaney et al., 2011). Of these layers, erosion risk, 

network index and in-stream risk concentration maps were then exported back into ArcGIS to 

manipulate the data for display purposes.  

 

 

 

 

 

Land Cover Assigned Risk Value 

Arable 1.0 

Improved grassland 0.20 

Rough grassland 0.10 

Woodland 0.05 

Urban/Other 0.00 

Water 0.00 

After Reaney et al. (2011) and SCIMAP final 

report. 

Table 7.1: Default land cover risk weighting 

used in the SCIMAP framework. 
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7.2.3 SCIMAP results 

The results of applying the SCIMAP model to the Blackwater sub-catchment are 

presented in this section. Maps of slope, the surface wetness index, erosion risk and erosion 

risk in channels were produced, amongst other outputs. The key output and the one used most 

in the subsequent discussion is the concentrated erosion risk in channels map.  This map 

allows hot spot mini-catchments and tributaries within the sub-catchment to be identified.  

It should be noted at this point that due to the overall poor performance of the 

SCIMAP model when the lower resolution OS data was used, the subsequent discussion 

concentrates on the results from NEXTMap data.  The results from SCIMAP model when the 

OS data were used were unrealistic (Figure 7.1). Visual inspection of the map indicates that 

the information derived from this DEM shows an unrealistic stream network. It is clear from 

the map that there are some disconnected stream reaches (mini-catchment D), also some 

streams that initiate in one mini-catchment end up pouring into a different one (in mini-

catchment C; notably the stream is erroneously diverted to the west). This appears to be a 

consequence of the DEM’s coarser resolution where the flow routes were poorly defined.  

These results suggest that the OS 50m resolution DEM is not suitable for applying SCIMAP 

for diffuse pollution modelling in the Blackwater sub-catchment. Reaney (2014) has argued 

that SCIMAP works best with 5m resolution data (or finer data such as LiDAR) as the 

standard topography data source, however, OS 10m profile DEM can be used but care must 

be taken to check the results.  
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7.2.3.1 SCIMAP risk maps using NEXTMap data 

Initially the intermediate layers of the SCIMAP modelling process were analysed 

independently. The following figures are example outputs from different stages of SCIMAP 

modelling framework; Figure 7.2 shows the network index map, Figure 7.3 erosion risk map 

and Figure 7.4 is the final output from the model. These intermediate SCIMAP layers will be 

discussed briefly below and more discussion will be devoted to the final stage result. 

Before the final outputs from the SCIMAP modelling process are examined it is 

possible to use information from the intermediate layers to infer some of the properties of the 

catchment which might make certain areas more likely to be responsible for generating and 

transmitting diffuse pollution around the catchment. The likelihood of places to become 

Figure 7.1: In channel risk mapping for the Blackwater sub-catchment using OS 50m DEM, the 
accumulated risk weighted by the dilution potential. Areas in red show where there is more 

diffuse pollution risk than water to dilute the risk and green areas show where there is less risk.  
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connected is demonstrated by the network index (Figure 7.2), where places in the landscape 

with a higher network index represent a high surface flow connection risk (Reaney et al., 

2011). It is clear from the figure that the most highly connected areas are in the gently sloping 

landscape of the western side of the sub-catchment, especially areas included in min-

catchments A and B. The least connected areas are found in the middle of the sub-catchment.  

Figure 7.3 shows which areas are most likely to be susceptible to soil erosion based on 

topographic factors and land cover. Usually, when land cover weightings are added into the 

SCIMAP model, the locations of areas most at risk of soil erosion change. Each land cover 

classification was scaled between 0 (low risk) to 1 (high risk) based upon its potential for 

producing soil erosion, arable was assigned 1 (maximum risk) where the land might be left 

bare for part of the year (Reaney et al., 2011). However, a visual inspection of the two figures, 

Figures 7.2 and 7.3 indicates that there are no big differences in the locations of high risk 

areas after the integration of land cover weightings into the SCIMAP modelling process. This 

can be attributed to the fact that in the Blackwater sub-catchment, arable land covers more 

than 80% of the total area.    
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The final stage of the SCIMAP modelling process adds a dilution effect to the 

accumulated risk to effectively give a risk concentration (Reaney et al., 2011). Risk at a 

location may not necessarily be transported through the hydrological network to the receiving 

areas and it is possible that a degree of risk may be diluted as a result of inputs of water from 

a large upslope contributing area.  In Figure 7.4 the symbolisation runs from red (high risk) 

Figure 7.2: Network index values for the Blackwater catchment. The network index is used as 

representation of surface connectivity risk. Blue represents the highest potential connectivity 

and red the lowest. 

Figure 7.3: Blackwater sub-catchment potential pattern of surface erosion. Red is the highest 

relative risk, blue is the lowest. 
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through to green (low risk) in classes of one third of standard deviation of the mean of the risk 

value. In areas where this value is higher than the mean (red areas), the risk of pollution 

increases faster than it can be diluted thus the area is identified as having a risky input to it. 

Conversely, in locations where this value is less than the mean, the risk of pollution is less 

than the dilution potential thus these locations are classified as having lower risk inputs to the 

channels (Reaney et al., 2011). 

Areas that are highlighted by SCIMAP as being at greatest risk of diffuse pollution are 

mainly located in the western parts of the sub-catchment, mini-catchments A and B (Figure 

7.4). The agricultural areas surrounding the channels that run through the two mini-

catchments are considered to be at a particular high risk of sediment loss. As discussed 

previously, these two mini-catchments are completely used for intensive farming. Thus, what 

is clear from the visual inspection of the figure is that the two mini-catchments A and B are 

highlighted as being most at risk of being critical source areas of surface soil erosion and 

consequently agricultural diffuse pollution. This appears to be due to the hydrological 

connectivity of these areas coupled with the presence of intensive arable farming. Other 

notable “hotspots” can be observed to the east of Heydon (mini-catchment C) and on the west 

of the sub-catchment. Locations with low risk are found at the upper reaches of the Heydon 

estate and in the middle of the sub-catchment where some patches of woodlands and large 

water bodies exist which are likely to contribute to lower erosion risk since they act to dilute 

risks from other sources in the catchment (Milledge et al., 2012). 
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Figure 7.5 shows mini-catchments A and B overlaid with the field boundaries.  

Zooming in to mini-catchment scale provides a high resolution map of at risk areas in the 

channel network. As the two mini-catchments are dominated by arable farming, the model 

predicts that a high proportion of the two mini-catchments is susceptible to erosion. It also 

illustrates the predicted effects of in-stream dilution upon risk concentration as areas of high 

risk indicated by red tend to be diluted at the confluence with another channel. 

Figure 7.4: In channel risk mapping for the Blackwater sub-catchment, the accumulated risk 

weighted by the dilution potential. Areas in red show where there is more diffuse pollution risk 

than water to dilute the risk and green areas show where there is a less risk.  
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Figure 7.5: In channel risk mapping, the accumulated risk weighted by the dilution potential (a) 
mini-catchment A and (b) mini-catchment B. Areas in red show where there is more diffuse 

pollution risk than water to dilute the risk and green areas show where there is less risk.  

(a) 

(b) 



    Chapter 7 

 

219 

 

7.2.4 SCIMAP Performance Assessment 

The results obtained from applying the SCIMAP framework to the Blackwater sub-

catchment can be assessed against spatial patterns of water quality data gathered from a series 

of monitoring stations operating as part of the Wensum DTC initiative.  This allows an 

evaluation of the performance of SCIMAP in making spatial predictions and whether 

correlations can be identified between areas deemed to be most at risk of sediment pollution 

by SCIMAP and the records of turbidity (mini-catchments A, B, C and D were used in this 

assessment). Past research by Milledge et al. (2012) has successfully used water quality data 

to show that SCIMAP is able to reproduce observed water quality patterns across several UK 

catchments. Reaney et al. (2011) applied the SCIMAP model in River Eden catchment to 

understand the relationships between land cover, topography (hydrological connectivity) and 

spatially distributed salmon and fry data.  

On a sub-catchment scale, results from the SCIMAP modelling framework show that 

mini-catchments A and B are generally at high risk of surface soil erosion (and therefore 

associated nutrient delivery via fine sediment) compared to C and D (Figure 7.3). Turbidity 

measures recorded at 30 minutes intervals at the outlet of each sub-catchment using an in-

stream turbidity meter (Wensum Alliance, 2013) carried out by the Wensum DTC project 

from 2011 to 2013 support these predictions from the SCIMAP framework. The results from 

the turbidity measurements suggest that mini-catchments A and B have higher mean and 

median turbidity values compared to the other two mini-catchments. The mean turbidity 

values for mini-catchments A, B, C and D are 10.12, 8.53, 6.49 and 7.15 (NTU), respectively 

(Table 7.2). The lowest turbidity concentration measures were recorded for mini-catchment C 

with mean and median of 6.49 and 4.8 (NTU), respectively.  These findings add support to the 

results produced by SCIMAP that these two mini-catchments (A and B) are most likely to be 

at greatest risk of agricultural diffuse pollution and C had the lowest risk (Table 7.2) 
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Numerical values from the final in-stream risk concentrations map allow for more 

assessment of SCIMAP performance in identifying parts of the landscape that generate risks 

(Table 7.2). These descriptive statistics from the SCIMAP final map allow for the comparison 

of the different mini-catchments with respect to their risk inputs to the channels, and the 

results were then compared with the water quality data.  It is clear from the table that mini-

catchments A and B had high mean and median values for fine sediment risk concentrations 

compared to the other two. Mini-catchment C had the lowest mean and median in-stream risk 

concentration, which is in agreement with the turbidity measures. The descriptive statistics of 

turbidity records from these mini-catchments are consisted with the SCIMAP results. The 

results from the water quality data (Table 7.2) suggest that mini-catchments A and B have 

higher mean and median turbidity values compared to those from C and D.   

 

 

 

 

 

 

 

 

Overall, SCIMAP results from the Blackwater sub-catchment support the viewpoint 

that a catchment dominated by arable farming is at some risk of sediment associated water 

quality problems (Yang et al., 2012). From the above discussion and on a mini-catchment 

scale, it can be concluded that SCIMAP framework was successful in identifying the areas at 

  SCIMAP Water Quality 

   Risk concentration Turbidity 

Mini-catchment Area (ha) Mean Median Mean Median 

A 537.9 0.15755 0.16726 10.12 7.3 

B 133.7 0.18239 0.18101 8.53 5.9 

C 352.1 0.10818 0.12813 6.49 4.8 

D 661.4 0.11823 0.11744 7.15 5.1 

Table 7.2:  Numerical values from the SCIMAP final risk map and the water 

quality data for mini-catchments A, B, C and D. 
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major risk of sediment pollution and establishing a hierarchy of mini-catchments at risk. 

Therefore, in terms of a catchment wide modelled output the results could be used by the 

stakeholders to focus their attention on particular parts of a study area that are particularly 

contributing to the sediment loss and thus diffuse pollution problems. 

The methodology behind the SCIMAP framework has several limitations attached to 

it, which can lead to a significant amount of inherent uncertainty attached to the model 

predictions. A main limitation of the SCIMAP framework is that it does not account for the 

effect of different soil types, which may significantly influence erodibility (Reaney et al., 

2011).  Research has shown that differences in soil composition can quickly lead to variations 

in levels of infiltration and overland flow (Heathwaite et al., 2005), which can indeed affect 

the model predictions.  

Furthermore, the framework does not differentiate between areas of different land use 

due to the framework being based on land cover categories. Land cover differs from land use 

in that it does not include management practices and is coarser in terms of categories. For 

example, the arable category accounts for all the type of crops (cereals, root crops and 

horticulture) which in fact differ in the percentage of ground cover throughout the growing 

season and also in erosion risk (Defra, 2005).  Thus, in the following sections, this weakness of 

SCIMAP was addressed by using the Revised Universal Soil Loss Equation (RUSLE) and its 

Crop Management Factor (C-factor) to evaluate the effect of different crop types on prediction of 

soil erosion risks in the study catchment.   
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7.3 Universal Soil Loss Equation model (USLE/RUSLE) 

The Universal Soil Loss Equation (USLE) (Wishmeier and Smith, 1978) and its later 

amended version the Revised Universal Soil Loss Equation (RUSLE) (Renard, 1997) are the 

most widely used methods to estimate soil erosion on a catchment scale (Kinnell, 2010;  

Csafordi et al. 2012; Drzewiecki et al. 2013; Shiferaw, 2011). The USLE/RUSLE has been 

described in detail in Section 2.4.3. RUSLE predicts the long-term average annual rate of soil 

erosion and the potential risk zones of erosion. Soil loss contributes to sediment yield and can 

contribute to agricultural diffuse source pollution in waterways (Drzewiecki et al. 2013; 

Boardman, 2013; Volk et al., 2010). Therefore, successful RUSLE calculations can contribute 

to an assessment of soil lost to watercourses as well as the identification of potential locations 

at high risk of soil erosion which can aid the local catchment managers and planners to 

improve land management (Prasuhn et al., 2013; Rickson, 2014). 

Planning for soil and water conservation measures requires knowledge of the relation 

between the driving factors that cause soil erosion (e,g. the erosivity of rainfall, the slope of 

land, soil erodibility) and the factors that help to reduce such loss (e.g. vegetation cover, the 

conservation practices and measures). RUSLE can be used to compare several different 

erosional scenarios to assess and demonstrate the effect of changes in individual RUSLE 

parameters on the amount and spatial distribution of soil losses (Rulli et al., 2013).  

7.3.1 RUSLE parameters 

The RUSLE includes six factors.  Their implementation in the Blackwater sub-

catchment is discussed in the following sections.  
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7.3.1.1 Rainfall erosivity factor (R) 

The rainfall erosivity factor (R factor) represents the erosion potential caused by 

rainfall (Kouli et al., 2008). It depends on the amount of precipitation within a region over a 

certain time period (Bargiel et al., 2013). The R factor was originally designed as an empirical 

measure to represent the averaged effect of annual rainfall. In an effort to estimate the R 

factor using monthly and annual rainfall data, Renard and Freimund (1994) proposed the use 

of both mean annual rainfall P and the Modified Fournier Index F (Arnoldus, 1980), where F 

is the sum of the monthly erosivity indicators. According to Drzewiecki et al. (2013) and 

Nigel and Rughooputh (2010) this is the most widely used method of estimating the rainfall 

erosivity factor. Ferro and Porto (1999) argued that even if F takes into account the seasonal 

variation in precipitation, analysing data on mean annual rainfall and the modified Fourmier 

index F for different European regions shows that the F index is strongly linearly correlated to 

the mean annual rainfall. Moreover, some studies (e.g.  Lastoria et al., 2008; Drzewiecki et al. 

2013) suggest that P and F are linearly correlated, thus making the added complications in the 

computation of F not necessary. 

 The F index, as proposed by Arnoldus (1980), is defined as:  

                                     
  
 

 

  
    ,  (Eq. 7.1),   

where pj, is the mean rainfall amount in mm for month j, and P is the annual 

precipitation total. Different authors have proposed different ways to retrieve R from P or F. 

Each method is optimized for a certain location, and as usual, with no guarantee that it will 

work if applied elsewhere (Lastoria et al., 2008). Therefore, to circumvent this problem, 

several equations have been used and the resulting rainfall erosivity indexes have been 

averaged. Table 7.3 below shows these equations and the references where they can be found.  
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Sources: Wensum Alliance (2013) 

 

 

 

 

 

 

 R factor values were determined by averaging all R factor values obtained using all 

the equations above (Table 7.3) and using the precipitation data that were available from rain 

gauges in the Blackwater study area (Table 7.4) (Wensum Alliance, 2013). The calculated R 

factor values for the study area are 113.05 and 92.69 (US units) for the two farming years 

beginning in September 2011 and September 2012, respectively. Raster maps were generated 

in ArcGIS with pixel values of 113.05, 92.69 and a cell size of 5 x 5 m. Two other raster were 

generated with a cell size of 50 x 50 m (same resolution as OS50).  

 

 

 

 

 

 

 

 

Author Model 

Arnoldus – linear (1980) R = (4.17 * F - 152) / 17.02 

Arnoldus – exponential (1977) R = 0.302 * F
1.93 

Renard and Freimun – F (1994) R = 0.739 * F
1.847 

Renard and Freimun – P (1994) R = 0.0483 * P
1.61 

Lo et al., (1985) R = 38.46 + 3.48 * P 

Yu and Rosewell (1977) R = 3.82 * F
1.41 

Month  

Marham LTA (mm) (data 

from Met Office) 
Wensum monitoring stations 

1981 - 2010 2011/12 2012/13 

Sep 55.3 24.8 41.6 

Oct 67.3 35.2 73.6 

Nov 62.2 21.2 87.4 

Dec 52.7 63.4 82.2 

Jan 56.1 56.4 56.6 

Feb 39.3 13.6 45.6 

Mar 49.1 50.6 75 

Apr 47.2 114.6 16.2 

May 53.3 54 50.4 

Jun 59.2 92.2 22.2 

Jul 52.1 85.2 9.8 

Aug 58.8 75 60.4 

Sep   53.4 

Oct   100.4 

Table 7.4: Monthly precipitation records for Blackwater sub-catchment (mm). 

Table 7.3 : Approximation R equations. 

Sources: based on Lastoria et al. (2008) 
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7.3.1.2 Soil erodibility factor (K) 

The soil erodibility factor (K factor) measures the susceptibility of soil particles or 

surface materials to detachment and transportation by the amount of rainfall and runoff input 

(Renard et al., 1997). Several parameters, namely soil texture, structure, permeability and 

organic matter content, determines the erodibility of a particular soil (Morgan, 2005). It is 

known that the most easily eroded soil particles are silt and very fine sand and the less 

erodible soil particles are aggregated soils because they are accrued together making them 

more resistible (Kim and Julien, 2006). Morgan (2005) argued that silt loams, loams, fine 

sands and sandy loams are those most susceptible to erosion.  

In (R)USLE five important soil parameters, that is, % silt + very fine sand, % other 

coarse sand, % organic matter, structure and permeability are used as inputs in calculating soil 

erodibility (Wichmeier and Smith, 1978). However, the data in the National Soil Map 

(NatMap) (obtained via the Wensum DTC project from Cranfield University) includes details 

on texture, but not on permeability, structure and the percentage of silt and very fine sand 

information which are required in the traditional calculation. However, soil erodibility has 

also been satisfactorily described by K values derived directly from field measurements of 

erosion (Morgan, 2005). The index used by USLE, is an universally accepted erodibility 

index represents the average soil loss for a particular soil with a hypothetical slope length of  

22.1 m with steepness of 9% (Table 7.5) (USLE: OMAFRA, 2012). 

Inspection of Figure 7.6 indicates that four different soil types dominate the 

Blackwater sub-catchment. These types include deep loam, deep sandy, seasonally wet deep 

loam to clay and seasonally wet deep sand. For this study, K factor values were obtained 

from Table 7.5, K values for different soil classes as used by USLE (USLE: OMAFRA, 2012; 

Gitas et al., 2009). After the soil map shapefile was added as a layer into ArcGIS, the soil map 

attribute table was edited by adding a new field of K values. The K factor used for deep loam 
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was 0.30, for deep sand was 0.13, for seasonally wet deep loam to clay was 0.20 and seasonally 

wet deep sand was 0.04 (Figure 7.7). The map was in vector form and was converted to raster 

form with cell size of 5 m and 50 m and reclassified based on K value of each soil class. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Textural Class Average Less than 2% More than 2% 

Clay 0.22 0.24 0.21 

Clay Loam 0.30 0.33 0.28 

Coarse Sandy Loam 0.07 - - 0.07 

Fine Sand 0.08 0.09 0.06 

Fine Sandy Loam 0.18 0.22 0.17 

Heavy Clay 0.17 0.19 0.15 

Loam 0.30 0.34 0.26 

Loamy Fine Sand 0.11 0.15 0.09 

Loamy Sand 0.04 0.05 0.04 

Loamy Very Fine Sand 0.39 0.44 0.25 

Sand 0.02 0.03 0.01 

Sandy Clay Loam 0.20 - - 0.20 

Sandy Loam 0.13 0.14 0.12 

Silt Loam 0.38 0.41 0.37 

Silty Clay 0.26 0.27 0.26 

Silty Clay Loam 0.32 0.35 0.30 

Very Fine Sand 0.43 0.46 0.37 

Very Fine Sandy Loam 0.35 0.41 0.33 

Figure 7.6: Soils map of the Blackwater sub-catchment indicating the different soil types  

Table 7.5: K factor values for different soil classes as used by USLE  

Sources: USLE: OMAFRA (2012), Gitas et al. (2009) 
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7.3.1.3 Slope length and slope steepness factor (LS) 

The topographic factor is a very important parameter in water soil erosion, since 

gravity force plays a decisive role in surface runoff. The specific effects of topography on soil 

erosion are estimated by the dimensionless LS factor in USLE, which combines the effects of 

a slope length factor (L) and a slope steepness factor (S) (Rabia, 2012). Slope steepness is the 

average gradient of slope between two specified points, usually expressed as a percentage. 

Slope length as defined by Smith and Wischmeier (1957) is the distance from the point of 

origin of overland flow to the point where either the slope gradient decreases enough that 

deposition begins, or the runoff water enters a well-defined channel that may be part of a 

stream network. In this study, the digital elevation models (DEM) of the study area with a cell 

size of 5 m (NEXTMap) and 50 m (OS50) were used for the calculation of the LS factor. 

According to Morgan (2005), in the USLE/RUSLE model, the appropriate value of LS can be 

obtained from nomographs or from the equation as defined by Wichmeier and Smith (1978) 

and Renard et al. (1997): 

Figure 7.7: K factor raster map  
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        (Eq. 7.2) 

Where: 

S =    slope steepness in % 

L =   length of slope in metre 

Constant =  22.1 m (72.5 ft) 

M =    see Table 7.6 

 

The value of L and S were derived from NEXTMap DEM. To calculate the L value, a 

flow accumulation raster was derived from the DEM after conducting Fill and Flow Direction 

processes in ArcGIS 10 (Kamaludin et al., 2013).  

                                                         (Kamaludin et al., 2013). 

By substituting L value, LS equation will be: 

                                      
                        

    
 
 

     (Eq. 7.3) 

Slope (%) (Figure 7.8) was also directly derived from the DEM using ArcGIS. The 

value of M varies from 0.2-0.5 depending on the slope as shown in Table 7.6 (OMAFRA, 

2012).  

 

 

 

 

 

M value  Slope (%) 

0.5  >5 

0.4  3-5 
0.3   1-3 

0.2   <1 

Table 7.6: M values for LS factor  

Sources: Drzewieki et al. (2013), OMAFRA (2012) 
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Finally, the ArcGIS Raster Calculator function was used to input the modified 

equation 7.3 to compute the LS factor (Figure 7.8). Slope of the DEM as a percent and flow 

accumulation were employed to implement equation 7.3.  DEM resolution of 5m and 50 m 

were utilized in equation 7.3 and the M value of 0.3 from Table 7.6 was selected because the 

steepness of more than 80% of the terrain in the Blackwater sub-catchment is less than 3%.  

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 7.8: Slope (%) (a) and LS-factor (b) from NEXTMap 5m data, (c) and (d) from NEXTMap 

resampled to 50 m, (e) and (f) from OS50 m data. It is clear that LS-factor is strongly influenced by cell 
size. 

(a) (b) 

(c) (d) 

(e) 
(f) 
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7.3.1.4 Crop management factor (C) 

The Crop Management Factor (C) represents the effect of vegetation and management 

on soil erosion rates. This dimensionless factor measures the ratio of soil loss for a specific 

crop with given cover management conditions to the soil loss under reference conditions 

"clean-tilled continuous fallow conditions" (Rabia, 2012). Under clean-tilled, continuous 

fallow, the value of C-factor is equal to one, and applying the USLE to these conditions will 

give the maximum possible amount of soil loss from any particular field.  The amount of 

protective coverage of a crop for the surface of the soil influences the soil erosion rate. A C 

value is lower when there is more coverage of a crop for the soil surface resulting in less soil 

erosion (Renard et al., 1997). Therefore, as the vegetation cover increases, the soil loss 

decreases. For this reason, the C-factor is probably the most important factor within the USLE 

as it is the factor that can be varied most easily by either changing the crop or the cropping 

conditions. 

Since soil loss varies with the percentage of the crop cover, it is necessary to take 

account of changes during the year to arrive at an annual value. According to Morgan (2005) 

and Wischmeier and Smith (1978) for arable farming, the year is divided into periods 

corresponding to different stages of crop growth. These are divided into five distinct growth 

stages and defined as: (1) fallow, ploughing to seedbed establishment; (2) secondary tillage 

for seedbed formation to 10 per cent crop cover; (3) establishment, 10 – 50 per cent crop 

cover; (4) development, 50 – 75 per cent crop cover; (5) maturity, 75 per cent crop cover to 

harvest. A sixth period can be considered (Morgan, 2005) for the residue after harvesting 

where three options are available: leaving the residue without seeding; leaving the residue and 

seeding; or removing the residue and leaving the ground bare.  
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Calculation of the C-factor using the method described above requires detailed 

information which does not always exist. For instance, its exact calculation needs an accurate 

record of the rotation and cultivation practices (Lastoria et al., 2008). The C-factor is one of 

the hardest factors to define due to the difficulties and expense involved in obtaining the 

required data. Thus, in such cases it has been suggested that the C-factor values can be 

assigned within the range of values cited in the literature allocated on the basis of identified 

cover types and weighted percentage of cover (Csafordi et al., 2012; Hui et al., 2010; Lastoria 

et al., 2008; Lee, 2004; Ligonja and Shrestha, 2013; Morgan, 2005; Sharma et al., 2011; 

Smitha and Sobha, 2011). 

Some studies, however, have applied remote sensing data to develop values for the C-

factor by classifying land cover categories and land use units (Csafordi et al., 2012). Ahmet 

(2010), Gitas et al (2009) and Kouli et al (2008) have used mid resolution satellite image (e.g. 

Landsat TM) to estimate the C-factor values by applying the Normalised Difference 

Vegetation Index (NDVI). The NDVI was used to estimate the C-factor because NDVI can 

express the condition of vegetation at different stages of growth (Gitas et al., 2009).   

Schonbrodt et al. (2010) calculated the C-factor using the fractional vegetation cover (FVC), 

as a function of the NDVI, based on Landsat-TM images and used C-factor values from 

literature assigned to each specific land use class from a classification based on Landsat-TM 

2007 as reference. Other studies have used the satellite images to derived the land use/land 

cover map and then each of the land use/land cover categories has been assigned a value for 

the C-factor based on the values cited in literature (Lastoria et al., 2008; Lu et al., 2004; 

Pandey et al., 2007; Sharma et al,. 2011). Examples of some studies that have adopted remote 

sensing data to calculate C-factor values are listed in Table 7.7 below.  
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7.3.1.4.1 C-factor values for crops in the Blackwater sub-catchment 

Having a C-factor value range (from high to low risk depending on the productivity) 

for each crop in the study area, the accurate estimation of the annual average C-factor value 

for each crop is primarily based on information on crop rotations and the crop cover 

percentage on each stage of growth (Wall et al., 2002). Within the Blackwater sub-catchment 

a variety of crops are grown, each of which is planted and harvested at different times of the 

year and grows at a different rate. A typical farming year in the UK usually starts in 

September of one year and finishes in August the following year (farm-direct.co.uk). Based 

on information obtained from several sources, sowing and harvesting dates for a selection of 

crops grown in the Blackwater sub-catchment are reported in Table 7.7 below. 

 

 

Reference Method of estimating C-factor 

Bargiel et al., 2013, Poland 
Land cover classification based on high 

resolution radar images. 

Lu et al., 2004, Rondonia, Brazil 

Remote-sensing Classification image. C-factor 
was estimated based on the fraction images from 

Spectral Mixture Analysis (SMA) of Landsat 

ETM+ image. 

Ma et al., 2003, China Greenness index 

Ahmet, 2010, Turky 
  

Gitas et al., 2009, Greece, 

Kouli et al., 2008, Greece, 

Van der Knijff et al., 1999, Itali, and 

Van der Knijff et al., 2000, Europe 

  NDVI 

Table 7.7: Summary of other methods for estimating C-factor value using remotely sensed images. 

                  NDVI   

                         
 

α, β : Parameters that determine the shape of the NDVI-C curve. According to Van der Knijff et 

al. (1999, 2000) an α-value of 2 and a β-value of 1 seem to give reasonable results.  
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It is known that the amount of time arable land is bare and the growth rates of crops 

both influence soil erosion risk. For example, maize is harvested in the autumn and then fields 

of bare soil are often left exposed to autumn and winter rainfall which will significantly 

increase the soil erosion risk (Inman, 2006). Moreover, soil erosion risk at a point will be 

affected not only by the crop cover of the year in question, but also by past land use and land 

cover. Due to data availability from farm records available via the Wensum DTC project the 

two farming years of 2011/12 to 2012/13 were chosen for investigation. Example data of crop 

rotations for three years in fields within the study area is reported in Table 7.8 below. 

 

 

 

 

 

Crop Planted Harvested 

Winter Wheat October August 

Winter Barley September July / August 

Spring Barley March / April August 

Oilseed Rape August July 

Maize May September / October 

Sugar beet March / April September to Christmas 

Potatoes April August through October 

Vining Peas  (green harvest) March to early June From June until October 

Vining Beans (green harvest) March – April – May within 15 weeks 

Winter Beans Dried October September 

Spring Beans Dried March September/October 

Table 7.7: Typical sowing and harvesting dates for a selection of crops grown in the UK.  

Sources: based on Defra, (2005), UKAgriculture.com, Twining and Clark, (2009). 

 



    Chapter 7 

 

234 

 

 

 

As mentioned previously, the C-factor value depends on vegetation type, stage of 

growth and crop cover percentage at each stage (Gitas et al., 2009). However, the crop cover 

percentage varies significantly over the year depending on factors such as: the crop type 

(winter barley and oilseed rape are generally established earlier than winter wheat), the rate of 

the growth for each different crop (oilseed rape is known to experience a period of very rapid 

growth between May and June whereas winter wheat grows at a much more constant rate over 

the course of the year), and also the climate of the area (temperature) which affects the 

duration of all crop development phases (Defra, 2005;  HGCA: the wheat growth guide, 

2008).  

The method that is suggested by Morgan (2005) and Wischmeier and Smith (1978) for 

estimating the C-factor value using the six crop stage periods (mentioned above) is very 

useful because it considers the percentage of crop cover at each stage of growth during the 

Field Name 2010-2011 2011-2012 2012-2013 

100 Acres 
Dwarf French Beans  Winter Wheat  

Winter Barley  
Winter Oilseed Rape  Winter Wheat  

11 Acres Spring Barley  Spring Barley  Winter Barley  

14 Acres Spring Barley  Spring Barley sugar beet 

8 Acres & Long Meadow Winter Barley  Winter Oilseed Rape  Winter Wheat  

24 Acres Winter barley Winter Oilseed Rape  Winter Wheat   

4 Acres Spring Barley  Spring Barley  sugar beet 

40 Acres Spring barley Winter Barley  
Forage Maize  

Spring Barley  

60 Acres Winter wheat Winter Barley  Winter Oilseed Rape  

64 Acres Winter Barley  Winter Barley  sugar beet 

70 Acres Winter Barley  
Spring Barley  

Winter Barley  
Winter Barley  

Homefield & Meadow Spring Barley  
Spring Field Beans  

Winter Wheat  
Winter Oilseed Rape  

Long Meadow Winter Barley Spring Field Beans  Winter Wheat   

Next House Grass Ley Grass Ley Grass Ley 

Table 7.8: An example of three year crop rotations for some fields in the study area 

(Blackwater catchment).  

Source: Wensum DTC (2013). 
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whole farming year. However, information about the timing of each crop stage development 

and the percentage of crop cover at each stage during the farming year are not routinely 

collected by farms in the study area. Moreover, length of the respective periods usually varies 

a lot with crop, farms, climate and management (Morgan, 2005; Wischmeier and Smith, 

1978).  Thus, as this information was not available, the C-factor calculation method discussed 

above was not used for the estimation of the C values in our study. 

  Alternatively, as has been widely used in other research, the C-factor can be 

attributed to all the occurring land use types according to the values cited in the literature (Hui 

et al., 2010; Lastoria et al., 2008; Lu et al., 2004; Ligonja and Shrestha, 2013; Pandey et al., 

2007; Sharma et al,. 2011). Therefore, a range of the C-factor values that are reported in the 

literature from all over the world, especially Europe, USA and Canada, were collected (Table 

7.9). The median values were then chosen and allocated to each corresponding land use class 

occurring in the study area (Table 7.10).  
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Crop type  

Reference Maize 
Sugar 

Beet 
Peas Beans Potatoes Wheat Barley 

Oilseed 

Rape 
Grass Woodland Urban 

Bargiel et al. (2013), Poland 0.68 - - - 0.58 - - - - - - 

Drzewiecki et al. (2013),  Poland 0.22 0.22 0.22 0.22 0.22 
0.15ww-
0.18sw 

0.15wb-
0.18sb 

0.15wr-
0.18sr 

- - - 

Fernandez et al. (2003) Lawyers 

Creek Watershed, Idaho 
- - - - - 0.234 0.05sb - - - - 

Friedli (2006), Germany (No- 

Tillage) 
0.119 - 0.08 0.054 0.097 0.092 0.028 - - - - 

Gonzales Inca C. (2009), Peru - - - 0.5 0.56 0.26 0.35 - - - - 

Kinnell (2005), Bethany, 

Missouri 
- - - - - 0.11 - - - - - 

Morgan (2005) 0.2-0.9 - - - 0.2-0.5 0.1-0.4 - - 0.01 0.001 0.0 

MUNLV NRW (2007), Germany 0.5 - - - 0.47 0.1 0.06wb 0.11 - - - 

Owusu (2012), Ghana 0.63 - - - - - - - - - - 

Thuringian State Institute of 
Agriculture (TLL), Germany 

0.35 0.32 0.2 0.2 0.29 0.12 
0.07wb-
0.15sb 

0.07 - - - 

Suri et al. (2002), Slovakia 0.6 0.44 0.3 0.3 0.6 0.13 0.13sb 0.22 - - - 

Svetla Rousseva, 2003, Bulgaria 0.5 - - - 0.69 0.28 - - - - - 

Wall et al. (2002),   

Alberta ,Prairie region, Canada 
0.57 0.5 0.48 0.48 0.42 0.34 0.32 0.3 - - - 

 

Table 7.9: Crop management factor (C-factor) for different land use/land cover categories cited in the literature.  
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The relative order of crops according to the associated erosion risk (high to low) when 

the median values were selected (Table 7.10 above) is consistent with the relative order of the 

C values calculated by Suri et al. (2002) (Table 7.11 below). These values have been used in 

several nationwide soil erosion assessments in EU member states such as the Sustainable 

Agriculture and Soil Conservation (SoCo) project, 2009.  

 

 

 

 

 

 

 

 C-factor  

Crop type Median 

Maize 0.53 

Potatoes 0.45 

Sugar beet 0.38 

Beans 0.26 

Peas 0.22 

Winter Wheat 0.165 

Oilseed rape 0.165 

Spring Barley 0.15 

Winter Barley 0.11 

Grass 0.01 

Woodland 0.001 

Urban 0 

Water bodies 0 

Crops C-factor 

Sunflower 0.65 

Grain Maize 0.6 

Potatoes 0.6 

Vegetables 0.5 

Forage maize 0.45 

Sugar beet  0.44 

Legumes 0.3 

Other crops 0.3 

Oil rape 0.22 

Several year forage crops 0.15 

Cereals 0.13 

One year forage crops 0.10 

Table 7.10: The median of the C-factor values for each 

crop reported in Table 7.9 above. 

Table 7.11: C-factor values for main crop groups from 

Suri et al. (2002). 
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Therefore, from the above discussion the C factor values reported in Table 7.10 are 

considered realistic and were used in this study. Figures 7.9 and 7.10 illustrate the C factor 

distribution for the farming years of 2011/12 and 2012/13 respectively. However, as 

mentioned before, determination of the C-factor value for agricultural crops required detailed 

research about the pattern of anti-erosion protection offered by each crop at different stages of 

growth and the reduction in erosion caused by surface cover. In addition, previous cropping 

and management practices should be taken into account as well as monthly changes of the 

rainfall erosivity factor. In some countries, C-factor values resulting from such research for 

the most popular crops and crop rotation practices are tabulated. For conditions in the UK, 

this kind of information describing the full crop rotations has not yet been elaborated. These 

are the reasons behind the assumptions in assigning C-factor values for each crop in this 

study.  

 

 

 

 

 

 

 

 

 

Figure 7.9: C factor raster map (5 x 5 m) for the farming year of 2011/12  
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7.3.1.5 Support practice factor (P) 

The support practice factor (P), as defined by Wischmeier and Smith (1978), is the 

ratio of soil loss with a specific support practice to the corresponding loss with up and down 

slope cultivation. This factor considers any practice applied by humans to reduce erosion 

degree and soil loss amount deriving from water erosion processes. Therefore, the P value is 

equal to 1 when the land is ploughed directly down slope. This is also known as the worst 

practice. A P value is lower and less than one when the adopted conservation practice reduces 

soil erosion (Renard et al., 1997). Support practices (P) are designed to reduce erosion by 

slowing the rate of runoff water, thereby reducing its transport capacity and erosive power.  

The most common practices usually include cross slope cultivation, contour farming, strip 

cropping, terracing (Wall et al., 2002). It has been argued that the P factor is the most difficult 

factor to be determined and the least reliable of the USLE input factors (Hui et al., 2010). The 

values of P-factor based on the most used basic support practices in USLE/RUSLE (Wall et 

al., 2002; Wischmeier and Smith,1978) are shown in Table 7.12 below.  

  

Figure 7.10: C factor raster map (5 x 5 m) for the farming year of 

2012/13  
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For the study area, according to Hughes (2012), cross slope cultivation is used in the 

Wensum catchment. Moreover, in some parts of the study area (Salle farm), the Entry Level 

Scheme (ELS) allows for a six metre margin alongside all water courses on cultivated land 

and also contour ploughing is adopted in areas where greatest run off risks are likely to occur 

(Wensum Alliance, 2013; Hiscock, 2011). Therefore, and according to Table 7.12, the P 

factor for the cultivated land was chosen to be the average value of 0.75 (cross slope) and 

0.50 (contour farming) which is 0.625. Due to the lack of more information about the 

cultivation methods in the study area this value was used for all cropland in this study to 

begin with (later in this study, the influence of different cultivation methods on soil losses has 

been analysed, Section 7.3.6).  Other lands such as forest and urban were assigned to one 

because there are no support practices (Drzewiecki et al., 2013; Lee, 2004), whereas water 

was allocated a 0.01 P factor (Ligonja and Shrestha, 2013; Teh, 2011). Figure 7.11 illustrates 

the P factor distribution in the Blackwater sub-catchment.   

 

Support Practice P Factor 

Up & down slope 1.0 

Cross slope 0.75 

Contour farming 0.50 

Strip cropping, cross slope 0.37 

Strip cropping, contour 0.25 

Table 7.12: P Factor Data. 

 

Source: Gitas et al. (2009), OMAFRA, (2012), 

Wall et al. (2002) 
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7.3.2 Production of USLE maps 

In this study, the RUSLE was applied in a GIS environment to determine the average 

annual soil loss and its distribution in the Blackwater sub-catchment using two different 

DEMs with different spatial resolutions (5m and 50m). First of all, the RUSLE parameters 

determined for the study area were converted into raster maps using the cell size defined by 

each DEM (5m for NEXTMap and 50m for OS50). Then, all these parameters, the erosivity 

factor (R), soil erodibilty factor (K), topography factor (LS), cover management factor (C) 

and support practice factor (P), were multiplied using the Raster Calculator tool of ArcGIS for 

the two farming years of 2011/12 and 2012/13. In other word, the final RUSLE soil erosion 

risk estimation map using each DEM was produced by multiplying corresponding grid cells 

from each of the five factor maps as defined in the RUSLE (Eq. 2.2, Chapter 2). 

Figure 7.11: P factor raster map (5 x 5 m) 
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7.3.3  Results 

As the RUSLE was applied for two different seasons, the value of crop management 

factor (C) changed according to the crop rotation used in the study area and also the erosivity 

factor (R) which depends on rainfall intensity and amount during each season. The other three 

RUSLE perameters (LS, K and P) remained constant. Moreover, when a different DEM was 

used, the LS factor changed as the local slope and aspect values alter (Zhang et al., 2008).  

Thus, the result of RUSLE implimentation in the raster geographic domain for the two 

seasons comprised the following:  

 

 Two maps of soil erosion risk (in tonnes/ha/year) for the study area, one for each 

farming year (2011/12 and 2012/13). 

 Two tables, one is where the area (in hectares) covered by every class of erosion risk 

severity is presented and the other represents area (in hectares) and minimum, 

maximum and mean soil erosion risk (in tonnes/ha/year) for each land use category.  

 

Initially, the erosion maps gave each individual cell’s original value of soil erosion 

risk as derived from the implementation of RUSLE equation. However, in order to obtain a 

better view and understanding and at the same time be able to compare risks between the 

different seasons for each class of erosion risk severity or each land use category, these 

original values were classified into six classes of severity based on the soil loss tolerance (1 

tonne/ha) suggested by Morgan (2005) and also classification from other relevant studies (e.g. 

Bargiel et al. 2013; Cerdan et al. 2010; OMAFRA, 2012; Tatzlaff et al. 2013; Verheijen et al. 

2009). They were finally presented in a colour scheme of green (low risk) to red (high risk) in 

all the maps.  
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7.3.3.1 NEXTMap data 

7.3.3.1.1 Farming year 2011/12 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Soil erosion risk 

(tonne/ha/year) 
Area (ha) 

Share of total 

area (%) 

Erosion risk 

category 

0-1 2366.065 87.86 Very Low 

>1-3 230.6575 8.57 Low 

>3-5 59.6625 2.22 Medium 

>5-10 28.825 1.07 High 

>10-15 4.775 0.18 Very High 

>15 2.8875 0.11 Extreme 

Table 7.13: Assessed soil erosion intensities for Blackwater study area. 

Farming year 2011/12 – NEXTMap   

 

Figure 7.12: Soil erosion risk map for Blackwater sub-catchment. Farming year 2011/12 - 

NEXTMap 

(a) 

(b) 
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Figure 7.12 (a and b) and Tables 7.13 and 7.14  present the annual soil loss rates for 

the Blackwater sub-catchment for the farming year of 2011/12 using the 5m spatial resolution 

DEM (NEXTMap). These maps offer a quick overview of the soil erosion rate caused by 

sheet and rill erosion for the study area. These maps also reveal the spatial locations of the 

high soil erosion risk areas. Based on this analysis, the amount of soil loss in the sub-

catchment varies from 0 to 200.05 (tonne/ha/yr) due to variation in soil erodibility (K), slope 

(LS) and crop management (C) factors. As shown in the figures and tables, the highest mean 

value of the annual soil erosion rate calculated in the Blackwater were obtained for arable 

land with 2.35 (tonne/ha/yr), whilst the lowest contributors of soil erosion are urban and water 

bodies with mean value of zero (tonne/ha/yr). In general, it is unreasonable to assume that 

urban areas will have a zero soil loss contribution, however, urban areas represent less than 

0.7% (19.83 ha) of the total area of the sub-catchment and therefore have insignificant impact 

on the total soil erosion, thus this result is acceptable. It should be noted that the C-factor 

value for urban land use category was assumed to be zero (Table 7.10). The enlarged sub-

catchment section shown in Figure 7.12b reveals that the soil erosion risk is typically greater 

along the relatively steep slope areas along the river at the edges of adjacent crop fields. 

Agricultural land on flat terrain, grass and woodland are shown to be the least vulnerable to 

   Soil erosion risk 

(tonne/ha/year) 

Crop Area (ha) 
Share of total 

area (%) 
Min Max Mean 

Arable 1836.06 68.18 0.00 200.05 2.35 

Grass 409.54 15.21 0.00 107.73 1.97 

Others 77.70 2.89 0.00 7.44 0.16 

Woodland 335.89 12.47 0.00 3.45 0.04 

Urban 19.83 0.73 0.00 0.00 0.00 

Water 13.76 0.52 0.00 0.00 0.00 

Table 7.14: The annual soil loss rates based on the land use for 

Blackwater study area. Farming year 2011/12 – NEXTMap   
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soil erosion, apart from the other land cover (urban and water) which gave the value of zero 

soil erosion.  

The results show that, the very low class of erosion risk severity (0 to1 tonne/ha/year) 

occupies 87.88% of the study area (Table 7.13), these areas are usually arable with very low 

slope gradient (low LS), grass, woodland, urban and water bodies. High and very high classes 

occupy only about 1.20% of the study area and are found in the areas with combinations of 

greater inclinations (large values of LS), in comparison with other areas, and cropped with 

crops associated with a high erosion risk (higher C value) such as sugar beet (Figure 7.12b). 

Evans (2002) has argued that, sugar beet is one of the crops that causes high rates of erosion 

risk. These results are in agreement with findings reported by Andrade et al. (2010) and 

Hoyos (2005). Generally speaking, steeper slopes have a greater potential to erode wherever 

they coincide with croplands which in turn increases the soil erosion risk (Volk et al., 2010). 

Thus, topography played a secondary role, since on steep slopes (higher LS values), soil 

erosion was predicted to be very low under grass and woodlands, but high under croplands. 

These results are consistent with Mati et al (2000), who proposed that on steep slopes, erosion 

was very low under natural forests and grasslands, but high under cultivated land. Hoyos 

(2005) also conclude that regardless of the topography and erodiblity, low erosion occurred in 

areas under forest, shrub and pasture. Therefore, arable lands are more susceptible to erosion 

because they are repeatedly tilled and often are left bare between the planting of different 

crops (crop rotations).  

The maps show particularly well the influence of land use (C factor) and topography 

(LS factor) on erosion risk rates, however, although there is an effect of soil erodibility (K 

factor) and  conservation support practices (P factor)  on soil loss estimation, they are 

spatially difficult to differentiate for the following reasons. First, the Blackwater sub-

catchment is dominated by one soil type (deep coarse loamy soil), roughly covering 80% of 
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the sub-catchment area (Figure 7.6). A small part to the west boundary of the sub-catchment 

is covered by clay loam soil with gentle topography which favours mostly low erosion rates.  

Secondly, regarding the conservation practices (P factor), under arable land the P-factor was 

assumed to be constant by adopting a combined cross slope and contour farming practice on 

all croplands across the sub-catchment (P = 0.625) (see Section 3.7.1.5). 

7.3.3.1.2 Farming year 2012/13 

To evaluate the effect of crop rotations (C factor) and rainfall erosivity (R factor) 

between different seasons on soil erosion rates, the LS, K and P factors remained the same 

while the C and R factors for the farming year of 2012/13 were used. Results are presented in 

Figures 7.13 (a and b) and Tables 7.15 and 7.16. It is clear from the figures and tables that 

mapping where erosion took place in the sub-catchment and estimating rates of erosion for the 

areas affected showed that, compared to rates obtained for the year of 2011/12, the areas 

categorized as very low soil erosion rate slightly increased, from 87.86 to 91.97 % out of the 

total sub-catchment area (Tables 7.13 and 7.15). Moreover, the maximum soil erosion rate 

decreased from 200.05 tonne/ha/yr for the farming year of 2011/12 to 185.91 tonne/ha/yr for 

the farming year of 2012/13.  

When looking into the comparison results obtained for the two different seasons, the 

influence of the crop rotations (lower C values compared to the previous season) is evident.  

As the data indicate (Table 7.10), there is no doubt that woodlands and well managed 

grasslands protect the soil better and cause less erosion than seasonal crops. Crops like maize, 

potatoes or sugar beet are known to cause more erosion than wheat, barley or oilseed rape 

(Boardman et al., 2009; Defra, 2005; Evans, 2002). In this study, when the arable land use for 

some fields was changed from sugar beet in season 2011/12 to winter wheat and spring barley 

in the following season (2012/13) (Figures 7.12b and 7.13b), it is clear that the severity of soil 
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erosion risk was decreased in these fields. Furthermore, in our study, the values of C factor 

ranges from zero to 0.53 during both seasons, but their spatial distributions are different 

because of changes in the land use according to the crop rotation system.  According to Table 

7.10, sugar beet has a C value of 0.38, which is relatively high in comparison to those for 

winter wheat (0.165) and spring barley (0.15). Thus, targeting highly erodible cropland by 

changing from higher risk cultivation (i.e. maize, potatoes or sugar beet) to lower risk 

activities (i.e. wheat, barley or oilseed rape) would have the potential to reduce the annual soil 

loss rate (Boardman et al., 2009; Inman, 2006; Schonbrodt et al., 2010). However, it should 

be kept in mind that there was an assumption in allocating C factor values for each crop in 

this study. As discussed previously, since there are no studies available that describe them in 

the UK, the C factor values generated in this study were within range of values cited in the 

literature especially from Europe, USA and Canada. 

 

 

 

 

 

 

 

 

 

 

Soil erosion risk 

(tonne/ha/year) 
Area (ha) 

Share of total 

area (%) 

Erosion risk 

category 

0-1 2476.73 91.97 Very Low 

>1-3 165.83 6.16 Low 

>3-5 29.92 1.11 Medium 

>5-10 13.68 0.51 High 

>10-15 3.12 0.12 Very High 

>15 3.59 0.13 Extreme 

Table 7.15: Assessed soil erosion intensities for Blackwater study area. Farming year 
2012/13 – NEXTMap   
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Soil erosion risk 

(tonne/ha/year) 

Land use 

Area (ha) 

Share of 

total area 

(%) 

Min Max Mean 

Arable 1840.51 68.35 0.00 185.91 2.30 

Grass 405.09 15.04 0.00 88.32 1.59 

Others 77.70 2.89 0.00 6.10 0.13 

Woodland 335.89 12.47 0.00 2.83 0.04 

Urban 19.83 0.73 0.00 0.00 0.00 

Water 13.76 0.52 0.00 0.00 0.00 

Figure 7.13: Soil erosion risk map for Blackwater sub-catchment. Farming year of 2012/13 - 

NEXTMap 

(

a) 

(

b) 

Table 7.16: The annual soil loss rates based on the land use for Blackwater 

study area. Farming year 2012/13 – NEXTMap   

 

(

b) 

(a) 

(b) 
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In addition to the observed effect of crop rotation on the soil loss erosion risk between 

the two seasons, the effect of the difference in the rainfall erosivity factor (R) should be 

considered. It has been argued that there is a close correlation between the rainfall 

characteristics and soil loss (Pandey et al., 2007). Thus, an increase in the rainfall intensity 

and amount is generally accompanied by an increase in soil erosion. Therefore, the higher 

value of R factor (113.05) for the season of 2011/12 compared to 92.69 for the season of 

2012/13 also makes a contribution to the higher estimates of soil erosion risk in the sub-

catchment during the 2011/12 season. For example, the estimated amount of soil that was 

eroded from the entire sub-catchment was 2782.11 (metric ton/yr) for season 2011/12 and 

2650.64 (metric ton/yr) for season 2012/13 (Table 7.17). This can be attributed to the effect of 

crop rotations (C factor) as well as the effect of the relatively high mean annual rainfall during 

the first season.  

 

 

 

 

However, it should be noted that rainfall erosivity (R factor) is an estimated value that 

depends on the amount of precipitation within the sub-catchment over the whole farming 

year. In other word, according to the R-values obtained, on average, season 2011/12 (R = 

113.05) is wetter than season 2012/13 (R = 92.69), but actually there were months in the 

second season were associated with heavy rainfall. For example; the rainfall level in 

September, October, November and December for season 2012/13 was as much as twice the 

rainfall amount in the same months for the first season (Table 7.4). Thus, the average monthly 

rainfall over the autumn and the winter months of season 2012/13 is higher than that for the 

 

Estimated soil losses from the whole sub-catchment (metric ton/yr) 

Season R-factor NEXTMap OS50 

2011/12 113.05 2782.11 1341.59 

2012/13 92.69 2650.644 1311.685 

Table 7.17: Estimated amount of soil eroded from the entire Blackwater 

catchment for the two seasons 
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first season, those months where the ground was likely to be bare. The effect of these 

differences in rainfall on the soil loss was not considered as the R factor was calculated based 

on an annual rainfall erosivity indicator which is originally based on the sum of monthly 

rainfall index (Section 7.3.1.1) for the whole farming year (Nigel and Rughooputh, 2010). 

This is a drawback of the RUSLE as it is not feasible to estimate soil loss for individual storm 

events and was primarily designed for calculating long-term average annual rates of erosion 

(Csafordi et al., 2012).    

7.3.3.2 OS50 data 

7.3.3.2.1 Farming year 2011/12 

Figure 7.14 and Tables 7.18 and 7.19 illustrate the results of the RUSLE analysis of 

the Blackwater sub-catchment for the farming year of 2011\12 using the 50 m resolution 

DEM (OS50), whereas Figure 15 and Tables 7.20 and 7.21 present the results for season 

2012\13. In general, the spatial distribution of the soil erosion risk in the Blackwater sub-

catchment that was obtained using the 50 m resolution DEM follows the same pattern that 

was achieved when the higher resolution DEM (5 m) was used. However, maximum and 

mean values of the soil loss rates for each land use category are much lower compared to the 

same values that were obtained when the higher resolution DEM was used. For example, the 

average annual soil erosion loss from arable land is 1.19 tonne/ha/yr, but soil loss may range 

from zero to 83.31 tonne/ha/yr, due to variation in crop management (C), topographic (LS) 

and, with lesser effect, soil erodibility (K) factors (Table 7.19). These values were much 

higher when NEXTMap data were used (Table 7.14 and 7.16). Molnar and Julien (1998) 

compared soil loss erosion on different grid cell size and they concluded that large grid cell 

sizes underestimate soil losses because of the terrain slope effects. 
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Soil erosion risk 

(tonne/ha/year) 
Area (ha) 

Share of total area 

(%) 

Erosion risk 

category 

0-1 2400.5 92.60 Very Low 

>1-3 111.25 4.29 Low 

>3-5 47.25 1.82 Medium 

>5-10 26.5 1.02 High 

>10-15 4.5 0.17 Very High 

>15 2.25 0.09 Extreme 

Figure 7.14: Soil erosion risk map for Blackwater sub-catchment. Farming year 2011/12 – 

OS50 

Table 7.18: Assessed soil erosion intensities. Farming year 2011/12 – OS50   

 

(a) 

(b) 
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7.3.3.2.2 Farming year 2012/13 

 

 

   

Soil erosion risk 

(tonne/ha/year) 

Land use Area (ha) Share of total area (%) Min Max Mean 

Arable 1760.79 67.92 0.00 83.31 1.19 

Grass 400.64 15.46 0.00 26.63 0.78 

Others 74.87 2.88 0.00 0.87 0.04 

Woodland 320.92 12.38 0.00 0.47 0.02 

Urban 18.62 0.71 0.00 0.00 0.00 

Water 16.59 0.64 0.00 0.00 0.00 

Figure 7.15: Soil erosion risk map for Blackwater sub-catchment. Farming year 2012/13 – 

OS50 

Table 7.19: The annual soil loss rates based on the land use. Farming year 2011/12 – OS50   

 

(a) 

(b) 
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Furthermore, it is clear from Figure 7.15 and Tables 7.20 and 7.21 that all values of 

the soil erosion rates, mean and maximum, for each land use category obtained for the season 

2012\13 are slightly lower than those for season 2011\12. This could be attributed to the fact 

that season 2011\12 was overall wetter (R=113.05) than season 2012\13 (R= 92.69). 

However, some other factors could contribute to these findings such as the number of fields 

that were cropped with crops that are classified as highly susceptible to erosion e.g. sugar beet 

and potatoes (Defra, 2005) in each season. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Soil erosion risk 

(tonne/ha/year) 
Area (ha) 

Share of total 

area (%) 

Erosion risk 

category 

0-1 2450.25 94.52 Very Low 

>1-3 92.5 3.57 Low 

>3-5 31.5 1.22 Medium 

>5-10 16.25 0.63 High 

>10-15 1 0.04 Very High 

>15 0.75 0.03 Extreme 

   

Soil erosion risk 

(tonne/ha/year) 

Land use 
Area 

(ha) 

Share of 

total area 

(%) 

Min Max Mean 

Arable 1765.2 68.10 0.00 40.20 1.12 

Grass 396.2 15.29 0.00 21.84 0.65 

Others 74.9 2.88 0.00 0.71 0.04 

Woodland 320.9 12.38 0.00 0.39 0.01 

Urban 18.6 0.71 0.00 0.00 0.00 

Water 16.6 0.64 0.00 0.00 0.00 

Table7.20: Assessed soil erosion intensities. Farming year 2012/13 – OS50   

 

Table 7.21: The annual soil loss rate based on the land use. Farming year 

2012/13 – OS50   

 

(

a) 

(

b) 
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7.3.3.3 NEXTMap data downsampled to a coarser resolution DEM (50 m) 

To examine the impact of DEMs from the same source with different resolutions on 

soil erosion calculations, the NEXTMap 5-m data were resampled to a coarser resolution at 

50-m grid scale. There are three commonly used DEM resampling methods, nearest neighbor, 

bilinear, and cubic interpolation methods. Previous research (Hail and Rientjes, 2005; Wu et 

al., 2005) concluded that methods of resampling do not significantly influence the quality of 

resampled DEMs. However, bilinear resampling technique is the most suggested method 

when using continuous data such as DEM, therefore it was used here (Usery et al., 2004).    

 Figure 7.16 and Tables 7.22 and 7.23 illustrate the results of the RUSLE analysis of 

the Blackwater sub-catchment for the farming year of 2011\12 using the 50 m resampled 

NEXTMap DEM (NEXTMap 50-m). In general, it is clear from the map that the spatial 

distribution of the soil erosion risk in the Blackwater sub-catchment obtained using the 50 m 

resolution DEM follows the same pattern that was generated when the higher resolution DEM 

(5 m) was used. However, maximum and mean values of the soil loss rates for each land use 

category are much lower compared to the same values that were obtained when the higher 

resolution DEM was used, but slightly higher than those obtained from the other 50-m 

resolution DEM (OS50 m) (Tables 7.19 and 7.23). The resampled 50-m NEXTMap DEM 

generated better predictions than the 50-m resolution OS DEM. The difference is probably 

due to the inherited differences in the resolution and quality of their original data sources used 

to create these two types of DEMs. The Ordnance Survey (OS50) DEM was developed 

mainly from 1:50,000 topographic maps with a relatively coarse resolution, while NEXTMap 

data were collected using airborne single-pass IFSAR platforms. Compared to OS50, as a 

more detailed original data source, the 50-m resampled NEXTMap data provide more detailed 

soil erosion predictions (see Figures 7.14 and 7.16) even with resampled lower resolution.  
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Similar conclusions have been drawn in previous studies such as Charrier and Li, (2012) and 

Li and Wong, (2010).   

  

Soil erosion risk 

(tonne/ha/year) 
Area (ha) 

Share of total 

area (%) 

Erosion risk 

category 

0-1 2059.75 81.11 Very Low 

>1-3 310.00 12.21 Low 

>3-5 105.00 4.13 Medium 

>5-10 53.25 2.10 High 

>10-15 7.75 0.31 Very High 

>15 3.75 0.15 Extreme 12 

Figure 7.16: Soil erosion risk map for Blackwater sub-catchment. Farming year 2011/12 – 
NEXTMap 50-m 

Table 7.22: Assessed soil erosion intensities. Farming year 2011/12 – NEXTMap 50-m 

 

(a) 

(b) 
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7.3.4 Effect of DEM resolution on soil erosion 

Three different digital elevation models (DEMs) with different spatial resolutions and 

different data sources (the NEXTMap 5-m data were resampled to 50-m resolution to evaluate 

the effect of DEM resolution separate from data source) were used to extract topographic 

parameters in erosion modelling. In general, the topographic features of the landscape have a 

great influence on the amount of soil loss, therefore different DEMs with various resolutions 

may produce diverse representations of topography that consequently result in different 

erosion risk predictions.  As mentioned previously, in the USLE, effects of topography on soil 

erosion were characterised by the topography factor (LS) which could be obtained for each 

cell from the digital elevation model (DEM) (Wu et al., 2005). Figure 7.8 shows the slope and 

LS distributions obtained from the three DEMs. A visual examination indicates that DEM 

resolution does have profound effect on both slope and LS factor. It is obvious that changes in 

the resolution of the DEM affect the slopes and distribution of slopes and consequently values 

and distribution of LS factor within the sub-catchment. The maximum, average, and standard 

deviation of slope and LS values decrease as the DEM resolution becomes coarser. This 

 
  

Soil erosion risk (tonne/ha/year) 12 

Crop Area (ha) Share of total area (%) Min Max Mean 

Arable 1706.00 67.80 0.00 126.24 1.66 

Grass 384.50 15.28 0.00 20.28 0.87 

Others 71.00 2.82 0.00 4.20 0.24 

Woodland 320.00 12.72 0.00 1.90 0.03 

Urban 18.50 0.74 0.00 0.00 0.00 

Water 16.25 0.65 0.00 0.00 0.00 

Table 7.23: The annual soil loss rates based on the land use. Farming year 2011/12 – 
NEXTMap 50-m  
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simply reinforces the fact that, a smoothing of the topographic features of the catchment 

occurs when DEM resolution is coarser (Cochrane and Flanagan, 2005).  

It is clear from Table 7.24 that as the DEM resolution became coarser, the maximum, 

mean and standard deviation slope values generally decreased. The maximum slope value 

reduced substantially from 26.69
o 
for NEXTMap 5-m to 11.36

 o
 for resampled NEXTMap 

data and to 5.29
o 
for OS50. In addition, the percentage of land with slope steepness greater 

than 3
o 
decreased from 4.66% for NEXTMap 5-m to 3.07% for NEXTMap 50-m and to 

1.13% for OS50. Indeed, maximum, mean and standard deviation of slope were shown to 

decrease as DEM cell size increased, similar to other findings in the literature (Martinez et al. 

2010; Vaze et al 2010; Wu et al. 2008;; Zhang et al. 2008).Table 7.25 shows the effect of 

DEM spatial resolution on the LS factor. Apparently, maximum, mean and standard deviation 

of LS factor values decrease as the grid size increase. The maximum value of the LS factor 

declined dramatically from 45.369 to 12.65 from the two NEXTMap DEMs 5-m and 50-m 

respectively and to 9.324 from OS50 data. However, by simply inspecting Figure 7.8 and 

Tables 7.24-25, it is clear that results from 50-m resampled NEXTMap data are much better 

than those from the other 50-m resolution OS50 DEM for both slope and LS derivatives.  

When high resolution data (NEXTMap 5-m) were resampled to lower resolution (NEXTMap 

50-m), their performances were degraded, but they perform reasonably well compare to the 

same resolution DEM (OS50) created from coarser source data. DEMs with same resolution 

but from different sources produced varied slope and LS statistics.  These results confirm 

findings from earlier studies that different data sources of DEMs may produce more 

variability than DEMs of different resolution but from the same source (Baker et al., 2006; 

Charrier and Li, 2012; Li and Wong, 2010).   
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As mentioned before, the soil erosion from each cell estimated by RUSLE equation 

was obtained for the two different DEMs. During the process of soil erosion estimation, the 

soil type, rainfall erosivity, land use and conservation factor are similar throughout the sub-

catchment while the topographic factor (LS) changes according to the DEM.  The annual soil 

erosion risk results from NEXTMap 5-m are presented in Figure 7.12 and Tables 7.13 and 

7.14, from OS50 in Figure 7.14 and Tables 7.18 and 7.19 and from the resampled NEXTMap 

50-m in Figure 7.16 and Tables 7.22-23 for the farming season of 2011/12. In general, by 

using a DEM with a coarser resolution, areas categorized as very low erosion risk moderately 

increased, from 87.86 % to 92.60% of the total area, whereas those categorized as extreme 

erosion slightly decreased, from 0.11% to 0.09%. Moreover, the maximum soil erosion rate 

decreased from 200.05 (tonne/ha/yr) for the 5m resolution DEM to 126.24 and 83.16 

(tonne/ha/yr) for the 50m resolution NEXTMap and OS respectivly, which proved the 

underestimation of erosion in coarser resolution as shown by Rojas et al. (2008), Wu et al. 

Statistical Calculation 
NEXTMap 

5 m 

NEXTMap 50 

m OS50 

Minimum (˚) 0 0 0 

Maximum (˚) 26.688 11.36 5.2867 

Mean (˚) 1.1998 1.05 0.8079 

Standard Deviation (˚) 1.4830 0.965 0.6684 

% of slope >3
o 4.66 3.07 1.13 

Statistical Calculation 
NEXTMap 5 

m 

NEXTMap 

50 m 
OS50 

Minimum 0 0 0 

Maximum 45.369 12.65 9.324 

Mean 0.4017 0.215 0.1976 

Standard Deviation 0.780 0.376 0.4552 

Table 7.24: Blackwater sub-catchment slope values for different resolutions. 

 

Table 7.25: Blackwater sub-catchment LS values for different resolutions. 
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(2005) and Zhang et al. (2008). Also by decreasing the DEM resolution, the average annual 

soil erosion rates of different land use/cover classes decreased, however, results from 

resampled NEXTMap are slightly higher than those from OS data due to the higher accuracy 

original source data as mentioned previously (Tables 7.14, 7.19 and 7.23).  

Although, using two DEMs with different resolutions affected the output of the 

erosion model, the general pattern of the predicted soil erosion in coarser resolution was 

similar to that with finer resolution DEM.  Figures 7.12b, 7.14b and 7.16b show that, there is 

a satisfactory agreement between the two erosion maps in capturing the areas under high 

erosion risk rates (see highlighted area). Overall, the analysis of erosion predictions and the 

slope and LS factor statistics revealed that the DEM with the coarser resolution generally 

underestimates soil erosion risks compared to the finer resolution one. In the RUSLE, effects 

of topography on soil erosion are characterised by the topographic factor (LS) that can be 

obtained from DEM and controlled by its resolution. Zhang et al. (2008) reported that DEM 

in coarse resolution only could preserve major relief features; therefore, it effects the soil 

erosion assessment. Wu et al. (2005) found that soil loss decreased with the increases of cell 

size. Although the resolution will affect all the topographic attributes, slope is probably the 

most important and has the greatest influence, especially when taking into account modelling 

of soil erosion risks. The resolution not only affects the topographic attributes from the DEM 

however, the variability of land use (C factor) and the support practices (P factor) 

classifications also have to be taken into account.   

Clearly, the study shows that for larger DEM resolution, slopes decreased significantly 

and consequently both LS values in the RUSLE estimated erosion decreased, whilst at the 

same time higher resolution maintained steep slopes that have increased runoff quantities, 

which in turn has raised erosion estimates. In terms of determining the appropriate grid size 

for soil erosion modelling with the RUSLE, Wu et al. (2005) argued that it is difficult to 
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determine the best grid size due to the empirical nature of the RUSLE model. Also they add 

that when estimating soil erosion using a simple model like the RUSLE in the grid 

environment it is still hard to attain any adequate accuracy due to the empirical features and 

difficulties in parameterization. However, many studies have agreed that a smaller cell size 

would be more likely to provide a higher accuracy in the estimation of soil erosion (Prasuhn 

et al. 2013; Zhang et al. 2008; Cochrane and Flanagan 2005; Wu et al. 2005; Molnar and 

Julien 1998). Rojas et al (2008) concluded that soil erosion modelling using the RUSLE is 

best applied at a grid size close to the 22.1 m standard plot size of the USLE, the hillslope 

length on which it was based.  

In this study, from a quantitative respect, it is difficult to suggest that a particular 

DEM has adequately represented an accurate estimation of soil loss in the study sub-

catchment. In general, DEM resolution often influences estimated soil losses (Brazier et al., 

2005), and DEMs that have sufficient resolution to detect small topography changes in low 

relief agricultural lands provide the opportunity to identify and prioritise the high-erosion risk 

areas (Prasuhn et al., 2013).  Therefore, NEXTMap data, according to the outcome results, 

was believed to be more suitable for qualitatively representing the soil erosion risks. Wu et al. 

(2005) claimed that the smallest available grid size DEM should be selected for qualitative 

assessment of soil erosion risks. In addition, the lack of field measurements for the soil loss in 

the study area made quantitative comparisons between the output results from both DEMs 

impossible. Therefore, based upon the above discussion it appears that NEXTMap data is 

better for erosion prediction in the Blackwater sub-catchment, and thus will be used for 

further investigation of soil erosion scenarios in selected mini-catchments.        
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7.3.5 Validation of soil erosion results from the RUSLE 

A validation of the erosion model results would require long-term measurements of 

sediment transport and water quality data (Volk et al., 2010). However, in the absence of such 

information some researchers have, alternatively, consulted reference values from the 

literature for comparable climate, soil and cropping conditions (Terzlaff et al., 2013). In this 

study, the validation of the RUSLE soil loss results was undertaken in three ways. Firstly, 

reference values from previous erosion risk studies in the UK were consulted. Secondly, the 

general trend in the total amount of soil estimated to be eroded from each of two mini-

catchments A and B (Figure 7.17)  was relatively compared with the water quality data 

(turbidity) recorded at the outlet of each catchment for farming years 2011/12 and 2012/13. 

Finally, the suspended sediment load of the two mini-catchments for the study period (seasons 

2011/12 and 12/13) were estimated using the records of water discharge and the records of 

suspended sediment concentration derived from the continuous turbidity measurements. Then 

comparisons were made between the calculated sediment loads of the two mini-catchment 

with the results from the RUSLE and turbidity. These two mini-catchments were selected 

because of their water quality data and land use information availability.  

7.3.5.1 USLE results compared to reference values from literature 

Assessment of the risk of erosion in Britain has been aided by a series of case studies 

of particular sites or areas all based on field observation and measurement (Boardman, 2013). 

Most of these studies have reported, in general, relatively low rates of soil loss although in 

some cases erosion occurs to significant levels throughout the UK (Brazier, 2004). For 

example, in the Tamar catchment in South West England, it has been estimated that the gross 

erosion rate has reached 5.3 t/ha/year (Inman, 2006). Walling and Quine (1991) reported a net 

erosion rate from a sugar beet field at Rufford Forest Farm in Nottinghamshire of 10.5 t/ha/yr.  
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Brazier (2004) listed the results of soil erosion studies undertaken at different places in 

the UK and his data indicated that average soil erosion rates range from 0.22 to 4.89 t/ha/yr. 

Brazier (2004) also reported that the mean soil erosion for a field in east Norfolk was 

estimated to be 1.48 t/ha/yr. He also concluded that erosion rates averaged over a whole field 

are often less than 1.4 t/ha/yr, a threshold recognized as being acceptable by authors such as 

Evans (1981) and Morgan (1980). Cerdan et al. (2010) stated that mean sheet and rill erosion 

rate for the European area covered by arable land is about 3.6 t/ha/yr. In addition, Morgan 

(1985) argued that the erosion rates in the UK from cultivated land ranged from 0.1 to 3 

t/ha/yr, and 10 to 40.50 t/ha/yr from bare soil. In general, as mentioned in the Environment 

Agency report (2004), the average annual soil losses from cultivated land are generally less 

than 5 t/ha but can occasionally exceed that.  

As can be seen from the summary above, average annual soil losses from cultivated 

fields are generally less than 5 t/ha/yr. These reference values confirm the relatively correct 

magnitude of RUSLE results for the Blackwater sub-catchment. In the Blackwater, the rates 

of average erosion values in terms of crop types vary from 0.3 to 10.01 t/ha/yr (Table 26). It 

has been reported in the literature that there can be an overestimation of the soil loss results 

through (R)USLE modelling compared with field measurements (Bartsch et al. 2002; Evans 

2002; Evans and Brazier 2005; Hui et al. 2010; Prasuhn et al. 2013), however, in general, the 

average of soil erosion values estimated by the RUSLE were considered realistic after 

comparison with the reference data from the series of the case studies throughout the UK.  
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7.3.5.2 Relative comparison between the USLE results and water quality data  

The second method of validating the RUSLE results for the Blackwater was to 

compare the general trend in the total amount of soil estimated to be eroded from mini-

catchments A and B with the water quality data monitored at the outlet of each mini-

catchment for seasons 2011/12 and 2012/13. These data were gathered from a series of 

automated monitoring stations and associated grab samples where variables such as turbidity 

and stage were measured (Wensum Alliance, 2013). 

As indicated above, one of the most serious off-site environmental impacts associated 

with soil loss from agricultural land is the potential degradation of river water quality. In 

order to use water quality data in the validation of RUSLE results, the following discussion is 

divided into two approaches. In the first, turbidity measurements were averaged for each four 

months, as reported in Table 7.28 and illustrated in Figure 7.19 and then compared to the 

RUSLE results, in a relative way of comparison. The second approach involves the 

conversion of the turbidity record to one for suspended sediment concentrations, using a field-

derived calibration relationship (see Appendix 1 for more details). Since turbidity can be 

Mean soil erosion loss (tonne/ha/yr) 

 Mini-catchment A Mini-catchment B 

Crop 
Season 

2011/12 

Season 

2012/13 

Season 

2011/12 

Season 

2012/13 

Maize 1.03 0.85 - - 

Sugar Beet 4.03 3.45 4.19 10.01 

Beans - 1.38 - 2.804 

Peas 0.42 - - - 

Winter Wheat 0.97 1.13 2.937 1.286 

Oilseed Rape 1.06 0.67 - - 

Spring Barley 0.30 1.25 1.705 1.356 

Winter Barley 0.54 0.44 3.434 - 

Table 7.26: Rates of soil erosion in terms of crop types for min-catchments 

A and B in the Blackwater sub-catchment. 

Note: These data are the results of implementing the RUSLE using the original 
factors data from the two mini-catchments A and B for the two seasons 

2011/12 and 2012/13. 
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recorded continuously, it is possible to obtain a continuous record of sediment concentration. 

Wass et al. (1997) stated that it is generally expected that an adequate calibration relationship 

between suspended sediment and turbidity can be established.  Stage data were also used to 

obtain discharge values according to stage-discharge relationship curves. The suspended 

sediment load of the two mini-catchments were then estimated using the record of water 

discharge and the calculated suspended sediment obtained from the above step. Sediment 

loads estimated of the two mini-catchments A and B for the two seasons are reported in Table 

7.29 and depicted in Figure 7.20.    

Because of the significant environmental impacts of sugar beet harvesting on soil and 

water, it was chosen to be used as the key crop to study the reliability of the RUSLE results in 

comparison with the water quality data. The land uses in the two mini-catchments for the two 

seasons are reported in Table 7.27. It is clear from the table that sugar beet was the dominant 

crop in mini-catchment A during the first season and in B for the second season. Furthermore, 

as can be seen from Figure 7.17, in both cases (catchment A season 2011/12 and catchment B 

season 2012/13) the fields where sugar beet was grown coincided with sites classified as at 

high risk on the basis of slope (LS) and also the majority of those fields are adjacent to the 

watercourses, which therefore increasing the erosion risk and the potential for delivery of the 

eroded sediment to the streams. As discussed previously, Defra (2005) provides a ranking of 

susceptible to erosion crops and includes potatoes, sugar beet and maize crops in the highest 

risk category.  Table 7.27 and Figure 7.17 indicate that during the study periods, there were 

no potatoes, one maize field (coinciding with very gentle topography) and 32 sugar beet 

fields.   
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Number of fields occupied by each crop type 

 

 Mini-catchment A Mini-catchment B 

Crop Season 2011/12 Season 2012/13 Season 2011/12 Season 2012/13 

Maize 1 1 0 0 

Sugar Beet 21 1 3 7 

Beans 0 3 0 3 

Peas 1 0 0 0 

Winter Wheat 9 11 3 2 

Oilseed Rape 6 3 0 0 

Spring Barley 2 16 3 4 

Winter Barley 3 7 6 0 

Total soil loss 

(tonne\year) 
278.72 254.11 143.25 162.989 

Figure 7.17: Sugar beet fields in mini-catchment A and B highlighted differently for each 

season 

Table 7.27: Number of fields in terms of crop type in mini-catchments A and B for season 

2011/12 and 2012/13.  
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Sugar beet is usually drilled during spring (March/April) and harvested in the autumn 

(September/Christmas), but in some cases, it is also harvested until the end of February 

(Defra, 2010).  During the process of sugar beet harvesting the soil is substantially disturbed 

and bare ground is left with ruts and wheelings that can channel water and lead to serious 

erosion (Defra, 2005). Therefore, rain coinciding with harvesting sugar beet can cause a lot of 

soil to leave the field. Given the fact that sugar beet tends to be harvested in the autumn until 

the late winter, it is often the case that harvesting takes place in wet conditions, autumn and 

winter rainfall events, which can result in extremely high rates of soil erosion taking place 

(Figure 7.18). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.18: Impact of sugar beet harvesting on soil erosion. These photos were taken from Wood Dalling 
field on 27 November 2012.  The right photo highlights the large suspended sediment concentration 

coming from a tributary due to sugar beet harvesting upstream.  
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The off-farm effects of sugar beet being sown during the spring of season 2011/12 will 

not appear on the adjacent watercourses until late autumn or even the winter of the next 

season 2012/13. Moreover, Walling and Amos (1999) demonstrated that eroded soil, mainly 

derived by winter rainfall events when arable fields were bare, was responsible for summer 

problem of turbidity, as sediments were progressively remobilised and deposited. As it was 

considered that the sugar beet was the main contributor to the soil erosion in the two mini-

catchments, the amount of total soil estimated to be eroded from each catchment (RUSLE 

results) was relatively compared with the measurements of turbidity that were continuously 

recorded at each catchment outlet and to the sediment load estimated to come out from the 

two mini-catchments according to the water quality data. This type of comparison would also 

give an indication of the likely relationship between turbidity concentrations in the two rivers 

and the crop types that were grown in their catchments.  

The total estimated soil loss by RUSLE from mini-catchment A for the season of 

2011/12 was higher than that for the second season, 278.72 and 254.11 t/yr, respectively 

(Table 7.27). This was mainly attributed to the fact that sugar beet was the dominant crop in 

the first season, 21 fields (Table 7.27). The mean values of the turbidity measurements 

(averaged for each four months) for the periods from September to December 2012 and 

January to April 2013  (Season 2) are the highest among other periods for mini-catchment A, 

13.55 and 14.56 (NTU), respectively (Table 7.28 and Figure 7.19). Nevertheless, the highest 

suspended sediment loads estimated to come out of the two mini-catchments happened during 

September to December 2012 (Table 7.29 and Figure 7.20). This can be attributed to the fact 

that sugar beet that was cropped in Season 1 was harvested in Season 2 during the period 

from September to December and sometimes up to February.  These turbidity and suspended 

sediment load values are also higher than values for the same periods from mini-catchment B 

(Table 7.28). These results could be attributed to the fact that, in the spring of 2011, there 
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were 21 sugar beet fields in mini-catchment A and only 3 sugar beet fields in mini-catchment 

B (Table 7.27). Thus, erosion was extensive where sugar beet was the dominant crop. 

 

 

 

 

 

 

 

 

 

 

 

   Turbidity (NTU) 

 
Months 

Rainfall 

(mm) 
Catchment A Catchment B 

Total Aver. Mean STD Min Max Mean STD Min Max 

S
ea

so
n

 1
 Sep-11 to Dec-11 144.6 36.15 5.54 5.72 0.9 69.6 8.04 4 2.2 66.6 

Jan-12 to Apr-12 235.2 58.8 5.56 8.63 1 141 4.59 3.25 0.9 46.8 

May-12 to Aug-12 306.4 76.6 10.64 8.99 1.7 97.5 9.47 6.4 0.1 58.24 

S
ea

so
n
 2

 Sep-12 to Dec-12 284.8 71.2 13.55 11.91 2.9 96.2 12.01 16.8 0.1 246.5 

Jan-13 to Apr-13 193.4 48.35 14.56 18.07 4 293.1 8.96 12.49 1.5 167.6 

May-13 to Aug-13 144.2 36.05 12.1 15.62 4.2 246.8 6.55 16.09 1.4 193.3 

 Sep-13 to Oct-13 153.8 76.9 9.46 10.25 2.1 192.3 10.25 12.71 2.4 199.1 

Table7.28: Descriptive statistics for turbidity measurements recorded at the outlet of sub-catchment A and B. 

the mean value is the average of each four months 

Figure 7.19: Turbidity mean values averaged for each four months 
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 Catchment A 

 
Moth 

Rainfall 

(mm) 

Sediment 

load 

(tonne) 

4months 

total 

Total 

Load 

S
ea

so
n

 1
 

Sep-11 24.8 0.233 

0.931 

5.713 

Oct-11 35.2 0.233 

Nov-11 21.2 0.233 

Dec-11 63.4 0.233 

Jan-12 56.4 0.335 

1.966 
Feb-12 13.6 0.114 

Mar-12 50.6 0.013 

Apr-12 114.6 1.504 

May-12 54 1.092 

2.816 
Jun-12 92.2 0.518 

Jul-12 85.2 0.741 

Aug-12 75 0.464 

S
ea

so
n

 2
 

Sep-12 41.6 0.423 

9.337 

 

14.177 

Oct-12 73.6 1.513 

Nov-12 87.4 4.490 

Dec-12 82.2 2.910 

Jan-13 56.6 0.542 

4.528 
Feb-13 45.6 1.243 

Mar-13 75 2.585 

Apr-13 16.2 0.157 

May-13 50.4 0.138 

0.312 
Jun-13 22.2 0.054 

Jul-13 11.2 0.021 

Aug-13 60.4 0.099 

 Sep-13 53.4 0.110 
0.361 0.361 

Oct-13 100.4 0.251 

 
Catchment B 

Sediment 

load 

(tonne) 

4months 

total 

Total 

Load 

0.266 

1.062 

4.138 

0.266 

0.266 

0.266 

0.268 

1.486 
0.240 

0.494 

0.485 

0.567 

1.589 
0.382 

0.435 

0.205 

0.152 

2.888 

4.649 

0.674 

1.300 

0.761 

0.241 

1.217 
0.131 

0.636 

0.210 

0.143 

0.544 
0.113 

0.148 

0.140 

0.056 
0.266 0.266 

0.210 

Table 7.29: Sediment load estimated according to turbidity measurements of mini-catchments A and B  

Figure 7.20: Sediment load of the two mini-catchments (A and B) for each four months 
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On the other hand, the net soil loss estimated to erode from mini-catchment B for the 

season of 2011/12 was lower than that for the second season, 143.25 and 162.989 t/yr, 

respectively (Table 7.27). Moreover, there was an increase in the mean turbidity value 

measured for B during the period from September to October 2013 compared to the value 

from A for the same period, 10.25 and 9.46 (NTU), respectively. Therefore, it can be 

suggested that the high number of sugar beet fields in mini-catchment B during the second 

season was an influence on that increase in the net soil loss from the catchment, and 

consequently in turbidity values (Table 7.28).  

Turbidity values (Figure 7.19) and estimated suspended sediment loads (Figure 7.20) 

illustrate complementary facts. They are illustrating the issues about certain key events which 

can be important in terms of the overall sediment load. The big sediment loss that happened in 

the period from September to December 2012 was a result of a specific combination of 

factors, particularly harvesting a very risky crop (sugar beet) in heavy rain conditions (see 

Figure 7.18 for a good illustration). However, the RUSLE results do not reflect this. RUSLE 

assigned an annual weighting risk value to each land use category and did not consider what 

was going on in the fields during the crop harvesting process. The extent to which that risk is 

realised then depends on another factors, such as harvesting in heavy rain conditions. 

Therefore, RUSLE can be used to give an idea of potential risk of soil erosion, but not 

necessarily the complete picture of the realised risk.  

Overall, the results obtained from the comparison of the river monitoring data and the 

RUSLE model output results for the two mini-catchments indicate that eroding sugar beet 

fields are an important source of sediment transported to the rivers. However, it should be 

recognized that not all the estimated soil loss came only from sugar beet fields, other crop 

fields also made significant contributions. Results presented in Table 7.26 indicates that 
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winter barley and winter wheat fields are estimated to yield an average annual soil loss of 

about 3.43 and 2.94 t/ha/yr, respectively.  

Generally, the above discussion indicates that the RUSLE model can be successfully 

used for soil erosion risk estimation from croplands in the Blackwater sub-catchment. 

Moreover, the comparisons of the RUSLE annual mean soil erosion values in terms of crop 

types with the reference values from the literature for comparable cropping conditions 

confirm the relatively right magnitude of the model results. However, it should be noted that 

RUSLE produces undoubtedly errors in the prediction of soil erosion values as proved by 

some studies that compare USLE model results with values measured in the field (Boomer et 

al. 2008; van Rompaey et al. 2003). The large difference of the net soil estimated to erode 

from each mini-catchment between results from RUSLE and water quality data can be 

attributed to the following factors. First, as mentioned early in this section, RUSLE tends to 

overestimate the values of soil loss. Second, most eroded soil from hillslopes deposits within 

the catchment and only a portion of the sediment will reach streams or a catchment outlet 

(Morgan, 2005; Wu et al., 2005). Morgan (2005) also reported that the proportion of the 

sediment eroded from the land surface that discharges into the catchment outlet can vary from 

3 to 90 per cent, decreasing with larger catchment area and lower average slope. Nevertheless, 

it has been suggested that RUSLE is highly suitable for identifying regions of higher possible 

soil loss qualitatively instead of providing quantitative values (Bargiel et al. 2013; van der 

Knijf et al. 2000; Wu et al. 2005).  
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7.3.6 Different Scenarios 

Vegetation cover (C factor) and conservation support practices (P factor) are the main 

means of controlling soil erosion by water. The efficiency varies greatly with vegetation 

types, which are always related to land use patterns (Zhang et al., 2003) and the types of 

supporting cropland practices. The most commonly used practices are; cross slope, contour 

farming, strip cropping or terracing (Wall et al., 2002). Thus, impacts of changes in land use 

from the highly susceptible to erosion crops (e.g. sugar beet, potatoes or maize) to those 

classified as low erosion risk (Defra 2005), and changes in cultivation methods from cross 

slope to more effective tillage operations (e.g. contour and strip tillage cultivations) on the 

soil erosion risk can be analysed, simply by calculating the RUSLE with different empirical 

values for the individual factors. Therefore, to demonstrate the effect of changes in the C and 

P factors on the assessment of soil erosion risk, different scenarios were considered, and the 

results were compared to those that were obtained when the original data were used.    

The first scenario (Table 7.30) was achieved by adopting different support practices 

(P-factor), contour farming (P = 0.5) for fields cropped with sugar beet or potatoes and strip 

cropping (P =0.37) for any other crops.   A second scenario (Table 7.30) involved replacing 

highly susceptible to erosion crops (e.g. sugar beet, potatoes or maize) with moderately to less 

susceptible to erosion crops (e.g. wheat, barley or oilseed rape) according to the previous crop 

was planted in each field. These scenarios were applied to mini-catchments A and B (Figure 

7.17) and for the two different seasons of 2011/12 and 2012/13.  

 

 

 



    Chapter 7 

 

273 

 

 

Scenario Description of Scenarios 

1 
Influence of tillage: change from cross slope tillage into contouring and strip 
cropping practices 

2 
Influence of changes in crop types: avoiding highly susceptible crops (potatoes, 

sugar beet and maize). Strip cropping practice was applied to all croplands 

          

7.3.6.1 Season 2011/12 

7.3.6.1.1 First scenario – different P values 

Considering different supporting practices (P factor), a substantial reduction in soil 

losses were achieved when contouring and strip cropping practices were applied to the 

croplands, as expected. Figures 7.21b and 7.21b show the spatial distribution of the soil 

erosion intensity in mini-catchment A and B when the new P-factor values (Scenario 1) were 

used. Table 7.31 provides an overview of selected results. Both contour farming and strip 

tillage practices reduce the estimated amount of soil loss from mini-catchment A and B by 

more than 22% and 24%, respectively (Table 7.31). Combining both techniques which means 

managing all arable land in the two mini-catchment with either contour ploughing or strip 

tillage (sugar beet and potatoes cannot be cultivated with strip tillage) would result in an 

average soil erosion risk from each land use category less than the corresponding values from 

the original Scenario (P =0.625), (as discussed previously in Section 7.3.1.5, in normal cases 

cross slope farming was the dominant cultivation method used in Wensum catchment as well 

as contour ploughing at areas under greater risk of runoff). For example, the average annual 

soil loss from sugar beet fields was reduced from 4.03 tonne/ha/yr (Original Scenario) to 3.23 

tonne/ha/yr when the improved P-factor values (Scenario 1) were used. These results 

demonstrate how soil protection measures can affect soil erosion rates.  

Table 7.30:  Descriptions of the different scenarios  



    Chapter 7 

 

274 

 

When looking into the comparison of results for entire mini-catchments A and B, the 

influence of the new adopted P-factor values seems to be evident (Figure 7.23a and b). The 

results show that areas categorized as very low and low erosion moderately increased, 

whereas those categorized as very high and extreme erosion slightly decreased compared to 

the results obtained for original Scenario. For mini-catchment A, it can be seen from Figure 

7.23a, that when contour farming and strip tillage practices were applied to the croplands, 

areas covered by the very low class of soil erosion risk increased from 411.9 ha (76.73% of 

the total area) to 442.43 ha (82.41% of the total area), and areas categorized as extreme 

erosion slightly decreased, from 0.21 ha (0.04% of the total area) to 0.10 ha (0.02% of the 

total catchment area). On other words, under Scenario 1, most of the area (82.41%) was 

predicted to suffer from very low erosion risk (0-1 tonne/ha/yr) and, in 0.02% of the 

catchment, the soil erosion was estimated to exceed >15 tonne/ha/yr. Almost the same pattern 

of results were obtained for mini-catchment B under Scenario1 (Figure 7.23b). Therefore, the 

soil erosion results that were obtained under this scenario clearly reveal the effectiveness and 

importance of conservation practices (contouring and strip cropping practices), and suggest 

that wider application could further reduce erosion. These support practices typically affect 

erosion by decreasing the erosive rate of rainfall and runoff (Fernandez et al., 2003; Jamshidi 

et al., 2013).  

It is clear from the figures that the highest erosion risks are found at the parts of the 

catchment where relatively steep land (high LS factor values) was used to grow highly 

susceptible to erosion crops (e.g. sugar beet). The most vulnerable fields in the two mini-

catchments according to the spatial distribution of the erosion risk severity categories were 

generally the fields that are adjacent to the watercourses, fields such as; Dunkirk, First 

Hempsky, Gatehouse Hyrne, Potash and Shed Field in mini-catchment A and Field House 

Meadow Big, Field House Meadow Small, Harrow, High Meadow, Rackety Barn and Shed 
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Field in mini-catchment B. All these fields were found to coincide with sites of high 

topographic factor values (LS) (see Figure 7.17). From Figures 7.21b and 7.22b, it is obvious 

that, even under Scenario 1 (using contour ploughing), at the fields where sugar beet 

coincided with sites classified as having high steep slopes (high LS values), the estimated 

mean soil erosion is still high.  Therefore, at sites where steep slopes are observed, the highly 

susceptible crops (potatoes, sugar beet and maize) should be avoided unless other measures 

(including reduced-tillage and residual cover) are taken to control erosion (Boardman et al 

2009; Fernandez et al 2003). According to Figures 7.21 and 7.22 in general, land use and 

slope gradient appear to be the major influences on the amount of soil losses in the 

catchments. 
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Season 2011\12 

Figure 7.21: Soil erosion risk maps for mini-catchment A, (a) normal Scenario, (b) first level assessment of measures for soil erosion risk (Scenario one), by 
adopting different tillage practices, contour tillage (P =0.5) where sugar beet or potatoes occurred and strip tillage (P=0.37) for any other crop, (c) second level 

assessment of measures for soil erosion risk (Scenario two), by replacing any sugar beet, potatoes or maize crops with either wheat, barley or oilseed rape, 

according to the previous crop grown at the proposed field. Note: In scenario two, all fields were assumed to be cultivated with strip tillage.   

(a) (c) (b) 

(a) (c) (b) 
Figure 7.22: Soil erosion risk maps for mini-catchment B, (a) normal Scenario, (b) first level assessment of measures for soil erosion risk (Scenario one), by 

adopting different tillage practices, contour tillage (P =0.5) where sugar beet or potatoes occurred and strip tillage (P=0.37) for any other crop, (c) second level 

assessment of measures for soil erosion risk (Scenario two), by replacing any sugar beet, potatoes or maize crops with either wheat, barley or oilseed rape, 
according to the previous crop grown at the proposed field. Note: In scenario two, all fields were assumed to be cultivated with strip tillage.   
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Season 2011\12 

 Mean soil erosion loss (tonne/ha/yr) 

 Mini-catchment A Mini-catchment B 

Crop Original 

Scenario 

Scenario 1 Scenario 2 Original 

Scenario 

Scenario 1 Scenario 2 

Maize 1.03 0.61 - - - - 

Sugar Beet 4.03 3.23 - 4.19 3.352 - 

Beans - - 0.21 - - - 

Peas 0.42 0.25 0.25 - - - 

Winter Wheat 0.97 0.58 0.58 2.937 1.739 1.739 

Oilseed Rape 1.06 0.63 0.84 - - - 

Spring Barley 0.30 0.18 0.18 1.705 1.009 1.009 

Winter Barley 0.54 0.41 0.70 3.434 2.033 2.033 

Total soil loss 

(tonne\year) 
278.72 217.34 153.64 143.25 108.71 89.70 

% of reduction 22.02% 44.88%  24.11% 37.38% 

Table 7.31: Rates of soil erosion in mini-catchment A and B in terms of crop types based on 

the three scenarios.  

Figure 7.23: Areas occupied by each class of erosion severity (left Y axis) and their percentages from 

whole catchment area (right Y axis), according to the three scenarios adopted. 

(a)  (b)  



    Chapter 7 

 

278 

 

7.3.6.1.2 Second scenario – land use scenario (no potatoes, sugar beet or maize) 

Figures 7.21c and 7.22c show the spatial distribution of the soil erosion intensity in 

mini-catchments A and B under Scenario 2. This approach was used to study potential 

impacts of changes in soil management as well as changes in crop rotation on the soil erosion 

rates. Different erosion risks are associated with different crop covers and Defra (2005) 

provides a ranking of susceptible land uses which includes potatoes, sugar beet and maize 

crops in the highest risk category. Thus, certain combinations of soil texture (K factor), slope 

(LS factor) and crop type (C factor) will lead to high risks of erosion (Boardman et al., 2009).  

From the previous results, it is clear that the high risks of soil erosion are associated with the 

crop of sugar beet. Therefore, in order to assess the effect of crop types on soil erosion risk, 

all highly susceptible to erosion land uses (potatoes, sugar beet or maize) were replaced by 

land uses (crops) classified as less susceptible to erosion (e.g. winter wheat, winter or spring 

barley and oilseed rape). In this scenario, which is assumed to be the best-scenario, the highly 

susceptible crops were avoided as well as applying strip cropping to all croplands in the 

catchments.  

  Figure 7.23(a and b) and Tables 7.31 illustrate the results for Scenario 2. Under this 

scenario, when the highly susceptible to erosion crops were avoided, substantial reduction in 

soil loss has been achieved. This scenario leads to an average erosion reduction by 44.88% 

and 37.38% for mini-catchments A and B, respectively, compared to the values from their 

original analyses and about 22.86% and 13.27% compared to Scenario 1 (Table 7.31). 

Therefore, by adopting feasible cropping management and soil erosion control practices 

(contouring and strip cropping practices) and avoiding crops highly susceptible to erosion the 

soil erosion risks in the two mini-catchments were significantly reduced.  The variation in the 

mean soil erosion values in terms of each crop type between seasons is believed to be due to 

variation in soil erodibility (K), topography (LS) and rainfall erosivity factor (R) as well as 
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different erosion control practices (P) under the different scenarios.  This result could be 

interpreted from the perspective that when a single crop was grown over many fields across 

the catchment, the overall estimated value of the mean soil loss from the whole fields would 

be affected by the variation in all of above mentioned factors (Fernandez et al., 2003; van 

Vliet et al., 1976). 

For mini-catchments A and B, under the best scenario conditions (adopting strip 

cropping practice and avoiding highly susceptible to erosion crops), areas of the catchment 

categorized as very low and low erosion moderately increased, whereas areas categorized as 

very high and extreme erosion completely disappeared (zero values) compared to the results 

obtained for the other two scenarios (Figure 7.23a and b). Most of the area of mini-catchment 

A (95.57%) was predicted to suffer from very low erosion risk (0-1 tonne/ha/yr) compared to 

76.73% and 82.41% for the original analysis and Scenario 1, respectively. 4.34% of the mini-

catchment area was classified under low erosion risk according to Figure 7.23a, 0.07% as 

moderate erosion risk, 0.01% as high erosion risk, and 0% as very high to extreme erosion 

risk. Almost same results were obtained for mini-catchment B under this scenario (see Figure 

7.23b). Overall, by adopting strip tillage practice and considering other land use, avoiding 

highly susceptible to erosion crops, a substantial reduction in soil loss has been achieved.  

 

7.3.6.2 Season 2012/13 

7.3.6.2.1 First scenario – different P values 

Figure 7.24 presents the spatial distribution of the soil loss risk under Scenario 1 in the 

mini-catchment A for season 2012/13. A visual inspection of the figure indicates that the 

spatial extent of areas of the catchment suffered from soil erosion are much lower in season 

2012/13 compared to the previous season (2011/12) under all scenarios. This result could be 
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interpreted from several perspectives. First, in mini-catchment A, during season 2012/13, 

there were only two fields cropped with crops which are classified as highly susceptible to 

erosion by (Defra, 2005), sugar beet and maize (there were 21 sugar beet fields in first 

season), and in addition, all were grown on level to gently sloping landscape which favours 

mostly low erosion rates. Second, the rainfall intensity for the whole farming year was 

relatively lower in season 2012/13 compared to the previous season. The rainfall erosivity 

factor (R), as calculated based on the sum of monthly erosivity index, was 113.05 for season 

2011/12 and 95.32 for season 2012/13. Thus, this result indicates that lower predicted soil 

loss in season 2012/13 was a consequence of the relatively low amount of rainfall compared 

to the previous season. An increase in rainfall amount is generally accompanied by an 

increase in soil loss. Thus, this could be another reason of why soil loss was moderately lower 

in this season compared to the previous one. On the other hand, although on an average first 

season was considered to be wetter than second season, mini-catchment B experienced higher 

rates of soil loss in second season compared to the first one, due to the high number of sugar 

beet fields during this season.  

 However, as discussed previously, it is important to note that rainfall erosivity factor 

(R) is an estimated value across the whole farming year. In fact there are some months in the 

second season which were much wetter than their corresponding months in the first season 

and some of those months coincided with the bare ground periods, after harvesting, drilling 

and early growth phases on new crops (Table 7.4). Thus, by using an annual rainfall erosivity 

factor (R) some of these differences in the monthly rainfall intensities, which are likely to be 

quite important for sediment loss processes on the ground, are overlooked. Boardman et al. 

(2009) argued that erosion on bare fields varies from season to season depending on rainfall 

amount, intensity and timing  
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Under Scenario 1, most of the area of the mini-catchment ( about 95 %) was 

considered to suffer from very low erosion risk, and 0% for areas classified as very high to 

extreme erosion risk (Figure 7.25a). Still, under Scenario 1 for season 2012/13, the highest 

annual mean soil erosion rate (reduced from 3.45 to 2.76 tonne/ha/yr) was estimated for sugar 

beet (Table 7.31).  Despite adopting different cultivation method, the mean rate of soil losses 

estimated from sugar beet fields in mini-catchment B was relatively high (8.011t/ha/yr) 

(Table 7.31). The relatively high soil loss value can be attributed to the high LS factors, since 

most of the sugar beet fields coincided with sites classified at high risk in terms of topography 

(LS values) (Figure 7.17).  Therefore, this results support the assertion that growing highly 

susceptible to erosion crops on high risk sites, sloping fields adjacent to water courses, would 

be best avoided (Boardman et al., 2009; Defra, 2005; Inman, 2006). 

 In season 2012/13, Scenario 1 lead to an average erosion reduction of about 18.41% 

and 21.76% from mini-catchments A and B, respectively, compared to their original 

scenarios.  Further inspection of Figures 7.26a and b indicates that, in terms of erosion risk 

severity categories, if there are no high risk crops in the catchment at the first place, the 

cultivation method changes have little impact, but if there are high risk crops (i.e. sugar beet) 

there would be large differences in the area coved by each severity class. For example, the 

very low erosion risk category increased by only 5% in the case of mini-catchment A (Figure 

7.26a), whereas the same category has increased by about 17% for B (Figure 7.26b).  
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Season 2012\13 

Figure 7.24: Soil erosion risk maps for mini-catchment A, (a) normal scenario, (b) first level assessment of measures for soil erosion risk (Scenario one), by 

adopting different tillage practices, contour tillage (P =0.5) where sugar beet or potatoes occurred and strip tillage (P=0.37) for any other crop, (c) second level 

assessment of measures for soil erosion risk (Scenario two), by replacing any sugar beet, potatoes or maize crops with either wheat, barley or oilseed rape, 

according to the previous crop grown at the proposed field. Note: In scenario two, all fields were assumed to be cultivated with strip tillage.   

(a) (c) (b) 

(a) (c) (b) 

Figure 7.25: Soil erosion risk maps for mini-catchment B, (a) normal scenario, (b) first level assessment of measures for soil erosion risk (Scenario one), by 

adopting different tillage practices, contour tillage (P =0.5) where sugar beet or potatoes occurred and strip tillage (P=0.37) for any other crop, (c) second level 

assessment of measures for soil erosion risk (Scenario two), by replacing any sugar beet, potatoes or maize crops with either wheat, barley or oilseed rape, 

according to the previous crop grown at the proposed field. Note: In scenario two, all fields were assumed to be cultivated with strip tillage.   
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Season 2012\13 

 Mean soil erosion loss (tonne/ha/yr) 

 Mini-catchment A Mini-catchment B 

Crop Original 

Scenario 
Scenario 1 Scenario 2 

Original 

Scenario 
Scenario 1 Scenario 2 

Maize 0.85 0.50 - - - - 

Sugar Beet 3.45 2.76 - 10.013 8.011 - 

Beans 1.38 0.82 0.73 2.804 1.688 1.688 

Peas - - - - - - 

Winter Wheat 1.13 0.67 0.67 1.286 0.761 1.523 

Oilseed Rape 0.67 0.51 0.47 - - 2.619 

Spring Barley 1.25 0.74 0.74 1.356 0.803 1.205 

Winter Barley 0.44 0.26 0.30 - - - 

Total soil loss 

(tonne\year) 
254.11 207.33 147.74 162.989 127.53 92.195 

% of reduction 18.41% 41.86%  21.76% 43.44% 
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Table 7.32: Rates of soil erosion in mini-catchments A and B in terms of crop types based on the three 
scenarios. 

Figure 7.26: Areas occupied by each class of erosion severity (left y- axis) and their percentages from 
whole catchment area (right y-axis), according to the three scenarios adopted. 

(a)  (b)  
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7.3.6.2.2 Second scenario – land use scenario (no sugar beet, potatoes or maize) 

Figures 7.24c, 7.25c and 7.26 and Tables 7.31 present the results of the assessment of 

soil erosion risk in mini-catchments A and B under Scenario 2, season 2012/13. In general, 

the lowest/best soil erosion risks values obtained for mini-catchment A was achieved under 

Scenario 2 for the farming season of 2012/13. Results showed that under this scenario, the 

percent of land in the very low erosion category largely increased (97.03% of the total area) 

while that in the very high to extreme categories decreased (0%) (Figure 7.26a). The average 

annual amount of eroded soil from the mini-catchment was found to be about 147.74 

(tonne/yr) with about 41.86% reduction compared to the original analysis. The underlying 

reason for these results can be attributed to the fact that in parallel with the best scenario 

condition applied to the catchment (strip cropping and avoiding high risk crops) the rainfall 

erosivity factor (R) was relatively low compared to the previous season. Therefore, it appears 

that, depending on rainfall characteristics, many agricultural lands are at a high risk of soil 

erosion.  

The impact of changes in cultivation methods and crop types on rates of soil erosion in 

mini-catchment B was really significant, since the sugar beet was the dominant crop during 

season 2012/13. Figure 7.26b illustrates that the area of the mini-catchment covered by very 

low erosion increased by about 25% compared to the original analysis. Moreover, a reduction 

in soil loss up to 43.44% was estimated when these combined erosion control practices (strip 

cropping practice and avoiding high risk crops) were implemented.  

7.3.7 Summary and conclusion 

It has been shown from the above discussion that, the integration of the RUSLE with 

raster GIS is of best use for land classification of soil erosion risks. Although many 
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assumptions were made in this study, the erosion rate values obtained were reasonable when 

compared to measured soil losses cited in the literature from fields at different sites around 

the UK.  In addition, the relative comparisons of turbidity measurements measured at the 

outlets of the mini-catchments A and B to the RUSLE results for each catchment confirmed 

the realistic RUSLE output results.  

Two DEMs from different sources at various spatial resolutions were analysed for 

their reliability for soil erosion modelling with RUSLE. It was difficult to quantitatively 

compare their soil loss results because of the lack of field based soil loss measurements in the 

study area. In this study, the highest resolution DEM, NEXTMap (5m), was found to be the 

most realistic at qualitatively identifying regions of higher possible soil loss risk. This is 

because when the coarser DEM was used erosion processes may not be adequately 

represented due to possible significant loss of spatial variability represented by the LS factor 

in the RUSLE. However, although using DEM data in different resolutions and from different 

sources affected the output results of the erosion model, the large-scale patterns of predicted 

soil erosion at coarser resolution were similar to those with the finer resolution DEM. 

The strength of the RUSLE model is in identifying the relative spatial differences of 

erosion risk rather than on exact values (Hoyos, 2005). Therefore, the resulting erosion risk 

patterns should indicate which factors are more or less influential and under what conditions. 

Thus, in order to understand the effects of changes in some factors, the RUSLE was 

implemented using different scenarios; the influence of different support practices (Scenario 

1) and the influence of changes in land uses (Scenario 2). Results showed that even under first 

scenario (contour farming practice for sugar beet fields), the mean annual soil loss from sugar 

beet fields is still very high compared to other crops.  This was interpreted as a consequence 

of the current spatial distribution of the sugar beet fields across the catchment (especially 

season 2011/12 for mini-catchment A and season 2012/13 for B) where the majority of the 
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sugar beet fields coincided with sloping fields (higher LS values) which were also adjacent to 

water courses (Figure 7.13). Inman (2006) discussed some of the causes of soil erosion on 

agriculture land in England and Wales and he suggested that one of the key activities that 

encourage soil erosion is the growing highly susceptible crops on inappropriate land. As 

mentioned previously, certain combinations of soil texture, slope and crop type can lead to 

high risks of erosion (Boardman et al., 2009).  Therefore, adopting additional cropping 

management and erosion control practices (including for example; reduced-tillage or residue 

cover) and targeting areas with high risk of erosion should help to further reduce soil erosion 

risks (Boardman et al., 2009; Defra, 2005; Fernandez et al., 2000; Inman, 2006; Volk et al., 

2010). Nevertheless, as advised by Defra (2005), for any areas with a substantial erosion risk 

the situation can be completely avoided by keeping these areas under permanent grass or 

woodland.  

Modelling the effect of land use changes (Scenario 2) on the soil erosion risks 

indicated that the erosion potential of the mini-catchments would decrease as a result of 

converting highly susceptible to erosion crops to those classified as low risk crops. Chambers 

and Garwood (2000) argued that in order to minimize erosion risks on susceptible sites it is 

important that soil conservation practices are used, such as ensuring that low susceptible to 

erosion crops are grown on particularly high risk fields, and where practically possible, 

avoiding compaction and wheelings.  Boardman et al. (2009) also concluded that successful 

conservation schemes require a multi-method approach combining land use change and anti-

erosion management measures. Consistent with this, the best results in this study were 

achieved under Scenario 2, where highly susceptible to erosion crops were avoided and strip 

tillage practice was applied to all croplands. 
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7.4 SCIMAP vs RUSLE 

In this study two different approaches (SCIMAP and RUSLE) were used to predict 

soil erosion risks in the Backwater sub-catchment, therefore, it is useful to compare their 

predictions. Figure 7.27 (a and b) illustrates areas at high risk of erosion based on SCIMAP 

and RUSLE. It is clear from the maps that the spatial distribution of SCIMAP and RUSLE 

predictions of areas at high risk of soil erosion is quite different. The result from SCIMAP 

indicates that a high proportion of the Blackwater sub-catchment is susceptible to erosion 

(Figure 7.27a). As discussed earlier, due to the catchment wide predominance of arable 

farming and as a result of the risk weighting specified to arable land use (100% risk), the 

model considered that a significant proportion of the catchment area is at risk of soil erosion. 

However, a closer look at the erosion risk map indicated that the areas deemed to be most at 

risk are those in the highest headwater parts of the catchment where high risks of connectivity 

are combined with arable land (see figure 7.27a, mini-catchments A and B). 

On the other hand, RUSLE results indicate that only particular parts of the sub-

catchment are found to be at high risk of soil erosion. Further inspection of Figure 7.27b 

reveals that those areas with the highest severity of soil erosion were often predicted to be at 

areas on steep lands (high LS) coincident with high risk land uses. As opposed to the results 

form SCIMAP, areas classified as having a high risk of erosion in the RUSLE approach have 

been interestingly shifted to the parts of the sub-catchment where sites classified as at high 

risk on the bases of soil types and slopes coincided with highly susceptible to erosion land 

cover (Figure 7.27b).  

Therefore, results of this study lead to the observation that, in a small lowland 

catchment that is almost covered by arable land, SCIMAP tends to predict that the areas 

susceptible to hydrological connectivity and under the influence of arable farming are those 
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areas at high risk of soil erosion and results suggest that large proportions of the study 

catchment at risk of erosion.  Whereas in the RUSLE approach, only parts of the catchment 

where sites are classified as at high risk on the basis of soil types and slopes coinciding with 

highly susceptible to erosion land cover are classified as risky areas. These areas are usually 

the sites on sloping fields adjacent to watercourses. Thus, this strongly suggests that, in 

SCIMAP, landuse is the key controlling factor in determining risky areas within the 

Blackwater sub-catchment.  On the other hand, for RUSLE modelling, risky areas were 

determined at locations where three or more factors coincided, vulnerable soil, steeper slope 

(high LS value) and high risk crop (C factor).  

Despite the differences between SCIMAP and RUSLE in their spatial predictions of 

areas at high risk of soil erosion described above, there is an agreement between the two 

approaches in that mini-catchments A and B are more at high risk of agricultural diffuse 

pollution compared to the other parts of the sub-catchment. It should be acknowledged that 

RUSLE is an empirically-based model used in the science of soil erosion to provide 

predictions of average soil loss over long periods of time.  Results from this model can be 

used to target specific combinations of soil type, land use and slope that lead to significant 

soil erosion, enabling mitigation process to be implemented. Brazier (2013) argued that the 

use of models such as the RUSLE to predict the medium to long-term effects of soil erosion 

can provide the means to target areas where soil erosion exceeds a given tolerance levels. 

SCIMAP takes a different approach and operates in a risk-based framework rather than on a 

net loss prediction basis. As discussed earlier in this chapter, SCIMAP works with the spatial 

pattern of land cover, hydrological connectivity (topography) and rainfall data to calculate 

map based predictions of where risk is generated, connected and concentrated within the 

catchment. These maps are used to trace back across the catchment to where the risk sources 

are probably located (Reaney et al., 2011). Thus, SCIMAP appears to have good potential to 
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be used at least as a tool for the identification of critical source areas across a catchment 

(Hahn et al., 2013). 
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Figure 7.27: Blackwater sub-catchment models showing areas at high risk of erosion based on (a) SCIMAP and (b) RUSLE. 

(a) (b) 
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7.5 Chapter conclusions 

This chapter has applied a diffuse pollution risk-based modelling approach (SCIMAP) 

and a soil erosion risk estimation model (RUSLE) to the Blackwater sub-catchment using two 

DEMs from different sources at different resolutions, NEXTMap 5m and OS Landform 

Panorama 50m. The results indicated that both models were indeed sensitive to the data 

resolution. The highest resolution NEXTMap DEM was found to be more realistic than the 

courser OS50m DEM, especially for the SCIMAP approach. Therefore, due to the overall 

poorer performance of the OS Landform Panorama 50m DEM, it is not recommended as the 

DEM of choice for soil erosion and diffuse pollution modelling in the Blackwater sub-

catchment. However, for the soil erosion analysis it should be noted that the resampled 

NEXTMap 50-m performed slightly better than the OS 50-m and that is believed to be be due 

to the higher quality original source data. 

The results from SCIMAP suggest that the dominance of arable farming in the 

Blackwater sub-catchment results in large proportions of the study area estimated as at risk of 

erosion. This can be attributed to the fact that in SCIMAP analysis is based on land cover 

category. This does not differentiate between different crops inside the arable category, which 

in fact vary greatly in terms of erosion risk, and instead assigned the highest risk weighting 

value (%100 risk) to any arable land cover (Reaney et al., 2011). In future, to overcome this 

weakness of the SCIMAP approach and to enable an assessment of variations in the effect of 

different crops upon erodibility (weighting risk), the internationally accepted RUSLE Crop 

Management Factor (C-factor) should be used. As a result, SCIMAP could then can be used 

to produce a catchment-wide risk map where the effects of different crop types would be 

considered. Another limitation of the SCIMAP approach compared to RUSLE is the omission 

of the effect of soil types on soil loss prediction processes. To overcome this drawback, the 
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effects of soil type upon erodibility can be consider by developing a combined land cover and 

soil type risk map which can be incorporated into the SCIMAP model.  

The comparison of the predictions obtained with the two models indicates that the 

locations and extent of high erosion risk areas in the Blackwater sub-catchment were more 

dependent on land cover in the SCIMAP framework and on soil type, slope (topography) and 

crop type in the RUSLE model. In terms of the in-stream sediment risk, SCIMAP results 

indicated that mini-catchments A and B are especially at risk. These two mini-catchments 

were also represented by RUSLE as areas prone to high risk of soil erosion. Therefore, 

according to the results from both models, it can be inferred that the two mini-catchments A 

and B are considered to be the most likely source of sediment diffuse pollution in the 

Blackwater sub-catchment. Thus, soil erosion on arable land is definitely a problem in these 

two mini-catchments. Significantly, these results are supported by the real time measurements 

of water quality at the outlet of each mini-catchment, as discussed earlier in this chapter. 

Thus, with these findings from both models, management interventions can be focused and 

priority should be given to areas of high risks within these two mini-catchments. 

However, the real strength of the RUSLE model over SCIMAP is that different 

erosion scenarios can be analysed and compared with each other (Ranzi et al. 2012; Rulli et 

al. 2013; Terranova et al. 2009). In this study, by comparing different scenarios, the 

effectiveness of some anti-erosion practices (changes in the C and P factors) has been 

highlighted. The comparisons of the scenarios (the effects of land use changes and anti-

erosion management measures on soil erosion) provide a useful basis for the definition of 

prevention and control measures by organisations responsible for soil and water resources 

management. For example, a scenario of implementing best management practices on steep, 

vulnerable soil will help to examine the effectiveness of the scenario in minimising soil 

losses, which, in turn limits sediment deliver to a water body.     
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Overall, based on the above discussion, it is clear that in a GIS environment the 

RUSLE can be applied to determine field-scale soil loss quantitatively and spatially, and then 

to predict erosion hazard over a larger catchment. The combined RUSLE/GIS approach was 

useful for describing areas that are vulnerable to soil erosion, enabling immediate 

conservation planning. The study yielded useful soil erosion risk thematic maps for the 

Blackwater sub-catchment and some of its mini-catchments in more detail, where hot spot 

locations of soil erosion risk were identified. Those maps can be important for authorities 

(e.g. such as a River Trust) to plan future land use alternatives and to apply specific soil 

conservation practices at the identified high risk locations.  

However, it should be noted that many assumptions were involved in applying 

RUSLE in the Blackwater sub-catchment. Since detailed data for the calculation of the K and 

C factors were not available, these parameters were estimated from the literature. The 

uncertainties regarding data sources for these factors as well as those associated with the 

DEM data may introduce larger uncertainties in soil erosion estimates. Undoubtedly, 

(R)USLE produces errors in the prediction of soil erosion values as proved by studies that 

compare  RUSLE/USLE estimated values with ones observed in the field (Bartsch et al. 2002; 

Boomer et al. 2008; Evans 2002; Evans and Brazier 2005: Prasuhn et al. 2013; van Rompaey 

et al. 2003). Therefore, often RUSLE/USLE is more suitable for identifying soil erosion risk 

areas qualitatively rather than providing quantitative values (Bargiel et al. 2013; van der Knijf 

et al. 2000; Wu et al. 2005). Nevertheless, these data are indispensable for conservation 

policies that need qualitative erosion assessment in relation to soil protection and water 

quality management.   
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Chapter 8   

Conclusions  

8.1 Overview 

DEM-based modelling of watershed processes has become increasingly popular in 

environmental research, for example hydrological and geomorphology studies, mainly due to 

the advances in availability and efficiency of DEMs to represent topographic properties of 

catchments, such as slope, field slope length and channel network. This research has 

investigated the accuracies and uncertainties associated with different digital elevation 

datasets derived from different sources and explored the implications of their use in 

hydrological analysis and catchment management applications in a UK lowland river 

catchment. The research then studied the effect of DEM sources and resolutions on extracted 

stream networks and catchment boundaries as well as the implications of using these different 

DEMs for soil erosion and diffuse pollution modelling in the Blackwater sub-catchment, one 

of the five priority sub-catchments of the larger River Wensum catchment in Norfolk.  

Achieving good ecological and chemical status for English rivers is an important 

objective of the Water Framework Directive (WFD, 2000); intensive agricultural activities 

have the potential to work against this objective. Research has shown that Blackwater sub-

catchment is a high risk area for sediment loss and its associated diffuse pollutant inputs as a 

result of intensive arable farming (Sear et al., 2006; Wensum Alliance, 2013). Previous 

research (e.g. Boardman et al., 2009; Collins et al., 2009; Defra, 2005) has called for a move 
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towards better agricultural land management practices (such as land use changes and anti-

erosion management measures) aiming to minimise soil disturbance and reduce soil erosion as 

a source of sediments. The effectiveness of these measures can be investigated by projecting 

scenarios of land use changes and changes in cultivation methods using soil erosion 

modelling frameworks (e.g. RUSLE). However, little research has focused on investigating 

the effectiveness of these scenarios in the context of risk-assessment for specific sites. 

Therefore, one of the research objectives was to use RUSLE to examine the risk of soil losses 

under different scenarios of land use changes and different land cultivation practices.  

This chapter first summarises the main findings of the research. In the latter part of 

this chapter the implications for catchment management are discussed and recommendations 

for future research are made. 

8.2 Findings 

8.2.1 Objective 1 

To evaluate the accuracy of different DEM datasets representing the same region 

and surface type but derived from different sources. 

In this study, the quality of seven elevation datasets: ASTER, SRTM, Bluesky DTM, 

LandMap DTM, NEXTMap DTM, Ordnance Survey Landform and Ordnance Survey 

Panorama over an area of 225 sq km in the River Wensum catchment has been investigated. 

The results from the quality comparisons in terms of slope and elevation descriptive statistics 

and histograms, cross-sectional profiles, and analytical shading relief images revealed the 

following findings. The results showed the presence of artifacts in most DEM datasets 

(Chapter 4, Section 4.3.4). Some artifacts occurred on the surface of a certain morphometry. 
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The remote sensing methods such as IFSAR and ASTER capture the earth surface and 

required filtering. The ASTER GDEM 1 elevation dataset was found to contain anomalies and 

artifacts that degrade its overall accuracy. It has a lot of pit artifacts where the elevation is 

considerably lower than the surrounding terrain. The LandMap DTM (25 m) was a noisy 

elevation dataset. The data contains a lot of spurious pits, spikes and stripe-effects artifacts 

occurred with high frequency. To a lesser extent, the examined relief-shaded images of the  

NEXTMap DTM revealed some artifacts caused by woodland cover that were not completely 

removed during the process of converting from DSM to DTM. In the case of contour based 

DEMs, visual inspection of the shaded relief maps revealed that striping and flat hill-tops 

along contours are present in the OS contour based DTMs (especially OS 10m). Similar 

artifacts associated with the contour data are discussed in several studies such as Carrara et al. 

(1997), Desmet (1997) and Wise et al. (2008).   

The coarser DEM, SRTM 90 m, performed better than both LandMap and ASTER 

apart from the fact that elevation values were overestimated in areas covered by woodlands. 

Results of horizontal profiling (Chapter 4, Section 4.3.3) indicated that SRTM data 

represented surface elevations quite similarly to results from the higher resolution DEMs: 

Bluesky, NEXTMap, Ordnance Survey Profile and Ordnance Survey Panorama for all land 

cover types, but if significant vegetation is present the elevation values are usually 

overestimated. In contrast, results of the horizontal profiling showed that elevations from 

ASTER and LandMap were consistently lower than those of other datasets. Moreover, they 

showed the lowest mean elevation values compared with the other datasets. This is in line 

with results of previous studies (Forkuor and Maathuis, 2012; Lin et al., 2013; Slater et al., 

2009). In addition, according to the slope statistics, the ASTER and LandMap data were 

found to have about only 62.7 and 63.5% of their areas having slopes less than or equal to 3 , 

respectively. These results are in counterintuitive with findings from the higher accuracy 
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DEMs (NEXTMap and Bluesky) where approximately 90% of their areas have slopes of 0 - 

3 . In a related study, Collins et al. (2013) reported that approximately 98% of the area 

represented by Wensum catchment has a median slope of 0 to 3 . 

Vertical accuracy is the most important factor to be considered when a DEM is used. 

The most common practice to assess the accuracy of a DEM is to generate statistical 

measures, such as RMSE, mean error and standard deviation. This assessment was carried out 

by verification of each DEM against a number of higher accuracy spot heights. This approach 

is a common method of accuracy assessment in many applications. The results discussed in 

Chapter 4, Section 4.3.5.3 clearly show that the ASTER and LandMap elevation datasets 

produced the worst results on most statistical measures (minimum, mean, RMSE and std.dev) 

in comparison with other elevation datasets. The analyses also revealed that SRTM has a 

higher vertical accuracy (in terms of RMSE) than both ASTER and LandMap datasets. 

Among all the DEMs used in this study, the OS 10m data were found to be the most accurate 

based on the comparison against the higher accuracy reference data. It has the highest vertical 

accuracy (RMSE = 0.5987 m) and this can be attributed to the fact that OS 10m DEM and the 

reference data are products of the same organisation, the Ordnance Survey.  

In this part of the study, the findings suggested that both ASTER and LandMap 

elevation datasets performed very poorly in the Wensum area. METI and NASA 

acknowledged that ASTER GDEM 1 is research grade due to the presence of certain residual 

anomalies and artifacts in the data that may affect the accuracy of the product and hinder its 

effective utilization for certain applications. Bluesky 5m (photogrammetry) and NEXTMap 

5m (IFSAR) elevation datasets were found to be the most accurate and thus the most realistic 

approximation of the real surface amongst the selected DEMs.  The performance of the other 

three DEMs, OS 10m, OS 50m and SRTM 90m in comparison to the results from the finer 

resolution DEMs and also against the higher accuracy reference data suggests that these 
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DEMs provide good approximations of the real ground surface and thus were considered 

suitable for inclusion in further stages of this research.  

8.2.2    Objective 2 

To determine an appropriate threshold value (flow accumulation threshold) that can 

be used to accurately delineate channel networks in the Blackwater sub-catchment. 

Accurate delineation of the surface pathways of water movement on the catchment 

landscape is a vital component for many catchment-based natural resource management 

issues. Processes and phenomena determined by small local variations in topography such as 

concentration of overland flow for surface water modelling are likely to be modelled 

differently according to the type of DEM used. The quality of these DEM-derived 

hydrological features is sensitive to DEM accuracy (Burrough and McDonnell 1998).   

Channel network extraction models often simulate transitions from hillslope to channelized 

flow based on a contributing area threshold calculated from the DEM.  Different values of the 

contributing drainage area threshold produced radically different stream networks. The main 

part of this section of the study (Chapter 5, Section 5.2.3) was devoted to examining the effect 

of DEM source and resolution in identifying the point of transition where diffuse (hillside) 

erosion terminates and fluvial (stream) erosion initiates as a result of concentrated surface 

flow using the relationship between contributing drainage area and local slope (Montgomery 

and Foufoula-Georiou, 1993; Ijjasz-Vasquez and Bras, 1995; Tarolli and Dalla Fontana, 

2009) for the Blackwater sub-catchment. 

Results from this study revealed that the higher resolution DEMs (Bluesky and 

NEXTMap) are more appropriate for extracting various hydrological and geomorphological 

process domains on the arable lowland of the Blackwater sub-catchment. It was found that 

from the area-slope plots for the different five DEMs, only Bluesky and NEXTMap DEMs 
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were able to depict the different inflection points that enabled the distinction between the 

various geomorphic and hydrologic regimes, hillslopes, unchannelized, and channelized 

domains. These distinct flow path regimes defined by an area-slope relationship have been 

identified for different areas in the previous literature (e.g. Henkle et al., 2011; Ijjasz-Vasquez 

and Bras, 1995; McNamara et al., 1999; Montgomery and Foufoula-Georiou, 1993; Tarolli 

and Dalla-Fontana, 2009).    

For the Blackwater sub-catchment and using the 5 m resolution DEMs (Bluesky and 

NEXTMap), plotting contributing area against local slope reveals trends in the relationship 

that signify physical changes in persistent sediment transport process domains.  First, there 

was a break from positive to negative slope of the relationship at very low contributing area 

(0.000625 km², hillslope diffuse process). A break from negative to less negative gradient was 

found at larger contributing area (0.005 km², unchanneled valleys), and a break from less 

negative to more negative gradient was obtained at a larger contributing area (1.25 km²), 

attributed to where fluvial channel processes begin to persist (true streams). On the other 

hand, the findings indicated that none of the other three DEMs (OS 10m, OS 50m and SRTM 

90m) were able to clearly capture any of these hillslope morphologic scaling regimes. In the 

case of OS 10m performance, the effect of the data source is clearly evident. The curvature in 

the diffusive region of the area-slope relationship is lost and the relationship is linear nearly 

over the entire domain (Chapter 5, Section 5.2.4, Figure 5.26C). This is believed to be 

attributed to the fact that the contour based DEMs usually exhibit a lot of artifacts such as; flat 

hill-tops, terraces along contours and striping. The contour based DEM poorly modelled the 

relatively flat terrain (such as the Blackwater sub-catchment) as artifacts occur in areas where 

contours are separated by a large distance (Carrara et al., 1997). Interestingly, despite the fact 

that OS Panorama (50m) is coarser than OS Landform Profile (10m) and originates from the 
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same data source, the performance of OS 50m was better in the area-slope relationship 

analysis for the Blackwater sub-catchment.   

The examination of the area-slope relationship for the different DEMs demonstrates 

that as cell size increases, details in the area-slope relationship are lost. At a grid spacing of 

10 m, 50 m and 90 m, the curvature in the diffusive region is lost as the data become more 

linear (Chapter 5, Section 5.2.4). Therefore, findings revealed that for the Blackwater sub-

catchment a DEM of at least 5 m resolution is needed so that the area-slope relationship can 

be used as a tool to determine hillslope-to-channel partitioning. At any resolution larger than 

5 m it appears that important hillslope details are lost.  Consequently, it can be said that the 

area-slope relationship plot can provide a tool for determining a suitable DEM resolution for 

observing geomorphic processes (Hancock and Evans, 2006; Tarolli and Dalla-Fontana, 

2009). According to the findings, for the Blackwater sub-catchment, DEMs with resolution of 

5 m or finer need to be used to accurately identify the dominant geomorphic processes and 

distinct flow path regimes.  

8.2.3 Objective 3 

Quantitatively comparing the positional accuracy of drainage networks derived 

from different DEMs. 

Accurate delineations of stream networks and catchment boundaries are important for 

hydrological modelling and catchment resource management studies. Using the highest 

resolution data available is always advised, however, this thesis provides a measure of how 

much variation might be introduced into the delineated stream network and catchment 

boundaries when different DEMs are used. Several factors influence the accuracy of stream 

network delineations in areas with low relief due to the occurrence of artifacts and the lack of 

sufficient details in DEM representations of the terrain. The third objective of this research 
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was to evaluate and compare positional accuracy as well as assess selected hydrological 

parameters (stream order, number of streams in each order, stream lengths and catchment 

area) of drainage networks delineated in the Blackwater sub-catchment from NEXTMap, 

Bluesky, OS 50 and SRTM DEMs against a higher accuracy reference network (Chapter 6). 

The main interest, however, was in comparison of the positional accuracy of different stream 

networks extracted first, directly from the original DEMs and second, from DEMs after the 

simulation of DEM errors. Two methods for quantitatively evaluating and comparing such 

extractions were used, horizontal RMSE and different buffer zones (epsilon band) around the 

reference network.   

The results obtained from all the methods used in this study revealed that DEM spatial 

resolution and data source type were important factors that influenced the extent and 

positional accuracy of the extracted stream networks. The horizontal RMSE was found to 

increase with the cell size. The results showed that differences in the distance between the 

modelled stream network and the reference network tended to be smaller with a finer 

resolution in both the horizontal RMSE and epsilon band buffer approaches. This meant that 

stream networks extracted from Bluesky and NEXTMap DEMs were closer to the reference 

network.  Further, the effect of data source and processing methods for generating DEMs was 

also apparent, where the 5 m resolution NEXTMap data offered a better horizontal RMSE 

value of 22.36 m, as opposed to 30.01 m from the other 5m resolution data, Bluesky. This was 

believed to be due to the effect of the data source type, the method of processing the original 

data to create the DEM and other post-processing activities (e.g. DSM to DTM).  

Results from this analysis also show that the performance of the DEMs is better after 

the simulation of DEM errors (error propagation). Findings suggested that using Monte Carlo 

simulations with alternative DEM realizations produced by adding random error surfaces onto 

the original DEM (unconditional simulation of error) and then deriving most probable stream 
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networks improved the accuracy of extracted stream networks, compared to those extracted 

from the original DEMs. The derivation of the most probable stream networks showed a 

better spatial matching between these networks and the reference network. Thus, the use of 

DEM realizations with modelled error seems to give more reliable results that minimise the 

uncertainty due to errors in the original DEM (Gatziolis and Fried, 2004; Poggio and Soille, 

2011: Raaflaub and Collins, 2006). 

Overall, in this study, the results obtained suggested that the major factors affecting the 

positional accuracy of derived stream networks are the DEM resolution, and to lesser extent 

data source, processing and post-processing techniques. NEXTMap data offers better results 

compared with the other elevation datasets, however, the differences between NEXTMap and 

Bluesky derived stream networks were not substantial, in some respects the Bluesky data 

performed well and similar to NEXTMap. Generally, the results discussed in this section 

(objective 3) strongly suggest that, for the purpose of modelling stream networks in the 

Blackwater sub-catchment, NEXTMap is the best input DEM data and using Monte Carlo 

simulation to identify the most probable stream network is also worthwhile.  

8.2.4 Objective 4 

To conduct an assessment of soil erosion and diffuse pollution risks in the study 

catchment using different DEMs. A particular focus of this investigation was to identify the 

locations (or sub-catchments) of high risk soil erosion areas within the study catchment 

using RUSLE and SCIMAP modelling techniques. 

The main objective of this section of the research was to investigate the current diffuse 

sediment pollution risks and soil erosion problems associated with arable cultivation in 

Blackwater sub-catchment using two different modelling approaches. The diffuse pollution 

risk modelling framework (SCIMAP) and a model for long-term average annual soil erosion 
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prediction (RUSLE) were applied to the Blackwater sub-catchment using two different 

DEMs, NEXTMap 5m and OS 50m.  The findings indicated that both modelling approaches 

were indeed sensitive to the data resolution. The highest resolution NEXTMap DEM was 

found to be more realistic than the coarser OS50m DEM, particularly in the case of the 

SCIMAP approach. Therefore, the following discussion is based on the results from using 

NEXTMap data as the surface representation into SCIMAP and the RUSLE. 

Not all the areas contribute equally to the delivery of diffuse pollutants to the drainage 

network and the observed water quality problems. Hence, the identification of critical source 

areas (CSAs) is crucial for management to be targeted at the most appropriate locations 

(Heathwaite, 2010).  The basis of the SCIMAP analysis is the consideration of both the 

probability of a part of the catchment landscape generating a risk and then that risk reaching 

the waterways (Lane et al., 2006). The analysis of the intermediate layers from applying the 

SCIAMP model to the Blackwater sub-catchment showed that large proportions of the sub-

catchment were assessed as at risk of diffuse pollution. This was attributed to the fact that  

most of the sub-catchment area is used for intensive arable farming which is considered by 

SCIMAP as having the highest risk weight (100% risk) (Chapter 7, Section 7.2.3.1).  

However, the in-stream risk concentration results, where the dilution effect was 

considered, indicated that the areas at greatest risk of diffuse pollution were mainly located in 

the western parts of the sub-catchment, mini-catchments A and B. These two mini-catchment 

were highlighted as being most at risk of being critical source areas of surface soil erosion and 

consequently agricultural diffuse pollution. Furthermore, these findings were supported by the 

water quality data gathered by the DTC Wensum project at the outlet of each mini-catchment.  

The high risk in these two mini-catchments was attributed to the interactions between high 

levels of hydrological connectivity and highly susceptible to erosion land use. Therefore, in 
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this instance, it is these areas where conservation soil management activities would be best 

targeted in order to minimise sediment erosion risk.  

In the second part of objective 4, it was demonstrated that the use of RUSLE in a GIS 

environment for modelling soil erosion can provide a very sound base for the effective 

estimation and visualisation of soil erosion risks in the Blackwater sub-catchment. In order to 

understand the soil erosion problems associated with arable cultivation in the study area, this 

section sought to quantify the magnitude of the soil erosion rates and spatially identify parts 

of the sub-catchment prone to higher risk of erosion associated with crops cultivation using 

the RUSLE. Generally, although assumptions had to be made in the computation of the soil 

erodibility (K) and crop management (C) factors, the soil erosion rate values obtained were 

reasonable when compared to measured soil loss rates cited in the literature from fields at 

different sites around the UK (Chapter 7, Section 7.3.5). However, estimated soil loss rates 

were still higher than soil erosion tolerance (Verheijen et al., 2009) and also than field 

measurements (Brazier, 2004). 

As many studies show, RUSLE often overestimate soil erosion rates. Generally this is 

attributed to the empirical nature of the model and to the fact that it is based on experimental 

plot data (Evans and Brazier, 2005). As previously stated, a shortcoming of USLE/RUSLE 

models is that they do not predict sediment deposition. Thus, the model predicts erosion 

universally, even where deposition may occur, therefore, at a catchment scale, it is likely that 

the model will tend to overestimate erosion (Warren et al., 2005). In addition, the accuracy of 

the predicted soil loss will depend on how well the parameter values that are used for sub-

factor calculations describe the physical and management conditions on the ground. An error 

in the selection of a factor value will produce an equivalent error in soil loss estimates. For 

instance, in this study quite general assumptions had to be made for the values of the crop 
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management (C) and soil erodibility (K) factors. One of these was that the effect of the crop 

factor that was assumed to be constant throughout the seasons.  

Sugar beet cultivation has been identified as a key cause of soil loss and consequently 

stream pollution in the study area. Findings obtained from the comparison of the river 

monitoring data and the RUSLE model output results for mini-catchments A and B indicated 

that eroding sugar beet fields were an important source of sediment transported to the rivers. 

Results highlighted that sugar beet can be very risky crop if it is harvested in the wrong 

conditions, such as during or after heavy rainfall. In the context of sugar beet cultivation in 

the Blackwater sub-catchment, mini-catchment A had the largest areas cropped with sugar 

beet in season 2011/12, 21 fields in total. According to the water quality data, this study 

suggested that the potentially high rate of soil erosion associated with sugar beet fields after 

harvest was the main source of increased sediment inputs to the streams in the Blackwater 

sub-catchment. The findings also indicated that values of high turbidity and sediment load 

measured at the outlet of mini-catchment A during the period from September 2012 to April 

2013  (Table 7.26 and 7.27) were consistent with harvesting of sugar beet fields planted in the 

previous 2011/12 season.   

In considering the wider implications of the results outlined above, it is important to 

highlight the need for some protective measures on sugar beet (or potatoes and maize) 

cultivation in the Blackwater sub-catchment, which appear to increase the potential for high 

rates of soil loss and sediment delivery to watercourses.  As noted in Chapter 7, most of the 

area of sugar beet cultivation in the Blackwater sub-catchment occurs on fields that are 

characterized by relatively steep topography and soils (e.g. deep loam) that are particularly 

susceptible to erosion. In addition, many sugar beet fields are located relatively close to 

watercourses. These factors are likely to increase the erosion risk and the efficiency of 

sediment delivery to watercourses.     
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 RUSLE has the capacity to allow the impact of changing factors influencing soil 

erosion to be analysed.  In this case the soil type, rainfall and topography were treated as 

unchanged parameters, while vegetation effects (C-factor) were altered by changing the crop 

types that were grown and the support practices (P factor) were modified by adopting more 

effective erosion control practices. The observed results from these scenarios indicated that 

the most effective reductions in soil erosion were achieved when the highly susceptible to 

erosion crops (e.g. sugar beet) were avoided and a strip tillage practice was applied to arable 

crop land across the whole sub-catchment. Important findings from this part of the research 

were that the effectiveness of conservation practices (contouring and strip tillage) in 

comparison to conventional management (cross slope tillage) in controlling soil erosion is site 

specific, and is affected by changes in slope gradient and the crop types grown. Results show 

that sugar beet fields coinciding with sloping landscapes still generated high rates of soil loss 

even when the cultivation practice was changed from cross slope tillage to contour ploughing 

(Chapter 7, Table 7.29). Therefore, individual site assessments are needed, where additional 

crop management and erosion control practices (for example; reduced-tillage or residue 

cover) can be implemented for further reduction in soil erosion risks.  

 Results from these different scenarios provide means that can be used to isolate and 

describe areas that are vulnerable to soil erosion (which in turn are the most likely sources of 

pollution), allowing immediate application of soil conservation management. These scenarios 

are important instrument for policy making to develop soil conservation strategies with 

multiple criteria for sustainable land management. The risk maps and erosion information can 

also help enhance discussions between farmers and agencies responsible for catchment scale 

land and water management and, potentially, agreement on mutually acceptable mitigation 

measures.  
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8.3 Implications and Recommendations 

8.3.1 Data implications 

Modelling overland flow is very dependent on parameters such as slope and aspect 

which are sensitive to micro changes in topography.  In our study, from the collection of 

DEMs examined, the NEXTMap 5m DTM was found to be the best representation of the 

topography of the Wensum catchment. As stated before, the Wensum catchment is typical of 

much land in eastern and southern England in terms of topography and drainage systems. 

Therefore, the findings of this research are relevant to the problems that occur when working 

with DEM data at many UK lowland catchment settings.  According to our findings, a DEM 

with 5 metre grid resolution (or finer) is recommended to avoid possible errors when 

modelling the hydrological processes for such lowland catchment.  

It is important to note that elevation data availability has changed since this research 

started. For example, ASTER GDEM data have been improved with the release of the 

GDEM2 version in late 2011. It has been stated that the overall accuracy of GDEM2 was 

improved by the removal of voids and anomalies so that it is approximately three meters more 

accurate than GDEM1 (ASTER Validation Team, 2011; Meyer et al., 2012; Suwandana et al., 

2012). In addition, Ordnance Survey has recently (mid 2013) introduced new sets of elevation 

data. The Land-form Panorama (OS50) has been superseded by the new OS terrain 50 

product, which has been verified to be 4 m RMSE. This data is an open source product which 

enable users to access a source with consistently maintained height content for the whole of 

Great Britain (Ordnance Survey, 2013a).  Another completely new Ordnance Survey product 

is OS Terrain 5.  This offers 5 metre grid and 5 metre contour options within the one product 

(Ordnance Survey, 2013b). Certainly according to the findings of this research, one of the 
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greatest improvements in catchment management applications would be to make data such as 

OS Terrain 5 freely available to organisations such as river trusts.  

Moreover, the Environment Agency has recently made its collection of LiDAR data 

much more readily available for non-commercial use.  As yet, however, these data do not 

cover all part of the country, including a stripe through the middle of the Blackwater study 

area. Nevertheless, these data may well provide a valuable resource for organisations such as 

river trusts in the future (Environmental Agency, 2014).     

8.3.2 Error modelling implications 

 It has been recognized in the literature that even though summary statistics are easy to 

calculate and interpret, they provide only a global, and thus a limited picture of DEM 

uncertainty (Fisher and Tate, 2006; Kraus et al., 2004; Wechsler and Kroll, 2006; Wise, 

1998). Assessment of the elevation alone is also less informative than the consideration of the 

derived hydrological parameters. Findings from Chapter 6 show that error modelling is very 

important in DEM uncertainty and DEM error propagation modelling. Creating multiple 

equally probable realisations of random error surfaces, extracting stream networks by using 

these different terrain surfaces as inputs to the flow routing model and then obtaining the most 

probable stream network produced more robust results compared to the networks extracted 

from the original DEMs. Therefore, it is important that error modelling techniques are more 

routinely employed by GIS users, particularly where the fitness for purpose of a data source is 

not well-established.  

8.3.3 Implications for catchment management 

The findings from this study have implications for current land management agendas 

in the River Wensum area and in the Blackwater sub-catchment in particular. There is 
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evidence in the literature and from water quality data that the Blackwater sub-catchment is at 

risk of soil erosion problems. This study has shown that in a GIS environment and using a 5m 

resolution DEM (NEXTMap) the RUSLE can be applied to determine field-scale soil loss 

quantitatively and spatially, to predict erosion hazards across the catchment. The study 

presents an example of a model-based estimation of the mean annual long-term risk of soil 

erosion in the catchment. Based on the model results, which should be interpreted as risk 

potentials rather than precise numbers, delineation and ranking of sub-areas (or sub-

catchments) vulnerable to soil erosion becomes feasible. Therefore, these measured and 

modelled data of soil erosion risks can be used to aid farmers and other agencies in defining 

those areas where soil erosion is important and thus where their monitoring policy and 

mitigation measures should be directed.  

The findings presented in this thesis show that GIS-based applications have great 

potential as a support for catchment management. GIS modelling tools that can be used to test 

and trial alternative management options and solutions (e.g. different scenarios in soil loss 

assessment) are particularly helpful in simulating future environmental improvement 

measures.  These advances of GIS analysis are also dependent on the availability of accurate 

input data, particularly elevation data.  

To our knowledge, the GIS capability in most river trusts is quite limited and often 

does not extend beyond basic mapping.  To take advantage of the recent improvements in data 

availability (e.g. access to LiDAR) additional training and technical support are likely to be 

needed to extend their routine use of GIS from the descriptive to the more analytical.     

8.3.4 Limitations and recommendations for future work 

The main aim of this study was to understand accuracies and uncertainties associated 

with different digital elevation datasets derived from different sources and to explore the 
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implications of their use in hydrological analysis and catchment management applications in 

the Blackwater sub-catchment of the River Wensum.  In answering this aim through the set of 

objectives summarised above, the following topics have been identified for further work. 

8.3.4.1 DEM accuracy assessment 

The limitations of the research on DEM quality are mainly related to the availability of 

reference DEM data of higher order accuracy. It would have been appropriate to have 

reference DEMs created using techniques such as high resolution LiDAR data (i.e. 2 metre 

LiDAR data). The reference data used were a set of spot heights collected from higher 

accuracy topographic maps (Chapter 4, Section 4.3.5.1) and the locations of these spot heights 

was mainly based on the existing road network across the study area, which contributed to 

limitations in the spatial distribution of these heights.   

For the DEM error propagation analysis, conditional stochastic simulation (Hunter and 

Goodchild, 1995) could have been implemented and the outputs compared with the results 

from the unconditional method used in this study. Conditioning the simulation model allows 

consideration of spatial autocorrelation between neighbouring error values which might 

produce less variation in the topographic parameters compared with uncorrelated error 

(Raaflaub and Collins, 2006).  

8.3.4.2 SCIMAP 

The methodology behind the SCIMAP framework has several limitations attached to 

it, which could lead to a significant amount of inherent uncertainty in the model predictions. 

A main limitation of the SCIMAP framework is that it does not account for the effect of 

different soil types, which may significantly influence erodibility (Reaney et al., 2011).  

Research has shown that differences in soil composition can quickly lead to variations in 

levels of infiltration and overland flow (Heathwaite et al., 2005), which indeed can affect the 
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model predictions. To overcome this drawback, the effects of soil type upon erodibility could 

be considered by developing a combined land cover and soil type risk map to be incorporated 

into the SCIMAP model.  

Furthermore, the framework does not differentiate between areas of different land use 

due to the framework being based on land cover categories. Land cover differs from land use 

in that it does not include management practices and is coarser in terms of categories. For 

example, the arable category accounts for all the type of crops (arable cereals and arable 

horticulture), which in fact differ in the percentage of ground cover throughout the whole 

growing season (Defra, 2005).  Therefore, assuming that the arable category stays constant 

over the course of a year is not necessarily the case, as crop cover will vary during the 

growing season and also between different seasons. Thus, to overcome this weakness of 

SCIMAP approach and to enable an assessment of variations in the effect of different crops 

upon erodibility (weighting risk), the internationally accepted USLE Crop Management 

Factor (C-factor) can be used. The C-factor has been discussed in detail in Section 7.3.1.4. 

8.3.4.3 RUSLE 

In order to further develop the results obtained from this research using the RUSLE, 

several suggestions for future studies are made here. To improve the quality of erosion 

modelling results, the methods of estimation of RUSLE factor values should be improved. As 

mentioned earlier in this thesis, there were many assumptions behind computation of the crop 

cover management factor (C) and soil erodibility (K) factors. Since detailed data for the 

calculation of the K and C factors were not available these parameters were estimated from 

the literature. The uncertainties regarding data sources for these factors may introduce larger 

uncertainties in soil erosion estimates.  
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In this study, the coarse data (NatMap) used to obtain K values, despite details on 

texture, lacked information with respect to the permeability, structure and the percentage of 

silt and very fine sand information, which are required in the traditional calculations. 

Therefore, literature values previously calculated based on texture were used. This is not 

optimal as the k factor is also dependent on local organic matter, permeability and structure. 

The K factor could be considerably improved within the study area if further research was 

undertaken. The results would be most accurate if soil samples were taken from the sub-

catchment landscape and then analysed for soil structure, permeability, organic matter and 

texture including percentages of silt, fine sand and clay.  

As stated before, the C factor in RUSLE reflecting the effect of vegetation on soil 

erosion by water is one of the most important factors for estimating soil erosion rates. In this 

study, each type of crop occurred within the study area was assigned a yearly C value 

obtained from range of values cited in the literature especially from Europe, USA and Canada 

(Chapter 7, Section 7.3.1.4).  To improve the calculation of C factor, detailed information for 

individual crops would be required. Information about the cultivation methods and crop 

rotations in the study area and knowledge about the ground cover percentage at each growth 

stage are vital to quantify the C factor. In other words, the C factor has to represent the 

changing conditions of the crop throughout the period of study. This can also necessitate 

calculations on land use in previous years so that the full effect of crop rotations is known. 

Therefore, extensive field visits to assess the degree of each crop cover within the study area 

for the period of study would be required first. Nevertheless, aerial photographs and high 

resolution satellite remote sensing images are also seen as valuable tool for vegetation cover 

mapping (Drzewiecki et al., 2013; Vrieling, 2006; Zhang et al., 2011). 

Some other limitations of RULSE can be summarised as: it is not feasible to estimate 

soil loss for individual storm events and it was primarily designed for calculating long-term 
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average annual rates of erosion (Csafordi et al., 2012); it does not account for gully or stream-

channel erosion (Gitas et al., 2009); it generates results usually higher than field based 

estimates (Bartsch et al., 2002; Evans, 2002; Evans and Brazier, 2005; Hui et al., 2010; 

Prasuhn et al., 2013) and it does not estimate deposition and sediment yield at a downslope 

locations (Pandy et al., 2007; Renard et al., 1991).   

8.4 Concluding statement  

The thesis has enhanced understanding of the properties of different DEMs with 

varying resolutions and generated from contrasting data sources and of the impacts of these 

differences on hydrological analysis and catchment management applications. Much remains 

to be done, but it is hoped that this thesis provides guidance to local catchment managers and 

organisations such as river trusts about the best use of DEM datasets in developing catchment 

understanding and future plans.  



  References 

 

314 

 

References 

 

 

Anderson, D. and Ames, D. (2011). A Method for Extracting Stream Channel Flow Paths 

from LiDAR Point Cloud Data. Journal of Spatial Hydrology, 11(1). 

Anderson, E., Thompson, J. and Austin, R. (2005). LIDAR density and linear interpolator 

effects on elevation estimates. International Journal of Remote Sensing, 26(18), 

pp.3889--3900. 

Andrade, O., Kappas, M. and Erasmi, S. (2010). Assessment of erosion hazard in Torres 

municipality of Lara State (Venezuela) based on GIS. Interciencia, 35(5), p.348. 

Arnoldus, H., Boodt, M., Gabriels, D. and others, (1980). An approximation of the rainfall 

factor in the Universal Soil Loss Equation. Assessment of erosion., pp.127--132. 

Asok, S. and Sobha, V. (2011). Spatial Information Technology as a tool for soil erosion 

assessment using USLE-A study in the Shendurney Wild Life Sanctuary, South Kerala, 

India. International Journal of Environmental Sciences, 1(7), pp.1978--2003. 

ASTER Validation Team, (2009). ASTER global DEM validation summary report. Published 

by the ASTER GDEM Validation Team: METI, NASA and USGS in cooperation with 

NGA  523 and other colloborators. June 2009, 28 pages. 

ASTER Validation Team, (2011). ASTER Global Digital Elevation Model Version 2 - 

Summary of Validation Results. NASA Land Processes Distributed Active Archive 

Center and the Joint Japan-US ASTER Science Team. 

Atkinson, D., Deadman, P., Dudycha, D. and Traynor, S. (2005). Multi-criteria evaluation and 

least cost path analysis for an arctic all-weather road. Applied Geography, 25(4), pp.287-

-307. 

Atkinson, P. and Foody, G. (2002). Uncertainty in remote sensing and GIS: fundamentals. 

Uncertainty in remote sensing and GIS, pp.1--18. 



  References 

 

315 

 

Baker, M., Weller, D. and Jordan, T. (2006). Comparison of Automated Watershed 

Delineations: Effects on land cover areas, percentages, and relationships to nutrient 

discharge. Photogrammetric Engineering & Remote Sensing, 72(2), pp.159-168. 

Bandara, K., Samarakoon, L., Shrestha, R. and Kamiya, Y. (2011). Automated generation of 

digital terrain model using point clouds of digital surface model in forest area. Remote 

Sensing, 3(5), pp.845--858. 

Bargiel, D., Herrmann, S. and Jadczyszyn, J. (2013). Using high-resolution radar images to 

determine vegetation cover for soil erosion assessments. Journal of environmental 

management, 124, pp.82--90. 

Bartsch, K., van Miegroet, H., Boettinger, J. and Dobrwolski, J. (2002). Using empirical 

erosion models and GIS to determine erosion risk at Camp Williams. Journal of Soil and 

Water Conservation, 57, pp.29--37. 

Benson, D., Fritsch, O., Cook, H. and Schmid, M. (2014). Evaluating participation in WFD 

river basin management in England and Wales: Processes, communities, outputs and 

outcomes. Land Use Policy, 38, pp.213--222. 

Bizuwerk, A., Taddese, G. and Getahum, Y. (2008). Application of GIS for Modeling Soil 

Loss Rate in Awash Basin, Ethiopia. International Livestock Research Institute (ILRI). 

Blanchard, S., Rogan, J. and Woodcock, D. (2010). Geomorphic change analysis using 

ASTER and SRTM digital elevation models in central Massachusetts, USA. GIScience 

& Remote Sensing, 47(1), pp.1--24. 

Bland, J. and Altman, D. (1986). Statistical methods for assessing agreement between two 

methods of clinical measurement. The Lancet, 327(8476), pp.307-310. 

Blaszczynski, J. (2001). Regional Sheet and Rill Soil Erosion Prediction with the Revised 

Universal Soil Loss Equation (RUSLE). GIS Interface. Resource Notes No.46. 

Boardman, J. (2013). Soil Erosion in Britain: Updating the Record. Agriculture, 3(3), pp.418-

-442. 

Boardman, J., Shepheard, M., Walker, E. and Foster, I. (2009). Soil erosion and risk-

assessment for on- and off-farm impacts: A test case using the Midhurst area, West 

Sussex, UK. Journal of Environmental Management, 90(8), pp.2578-2588. 



  References 

 

316 

 

Boomer, K., Weller, D. and Jordan, T. (2008). Empirical models based on the universal soil 

loss equation fail to predict sediment discharges from Chesapeake Bay catchments. 

Journal of Environmental Quality, 37(1), pp.79--89. 

Brazier, R. (2004). Quantifying soil erosion by water in the UK: a review of monitoring and 

modelling approaches. Progress in Physical Geography, 28(3), pp.340--365. 

Brazier, R. (2013). Hillslope Soil Erosion Modeling. Treatise on Geomorphology, Academic 

Press, San Diego,CA, 2, pp.135 - 146. 

Burrough, P. (1986). Principles of geographical information systems for land resources 

assessment. Oxford [Oxfordshire]: Clarendon Press. 

Burrough, P., McDonnell, R. and Burrough, P. (1998). Principles of geographical 

information systems. Oxford: Oxford University Press. 

Carlisle, B. (2005). Modelling the spatial distribution of DEM error. Transactions in GIS, 

9(4), pp.521--540. 

Carrara, A., Bitelli, G. and Carla, R. (1997). Comparison of techniques for generating digital 

terrain models from contour lines. International Journal of Geographical Information 

Science, 11(5), pp.451--473. 

Cerdan, O., Govers, G., Le Bissonnais, Y., Van Oost, K., Poesen, J., Saby, N., Gobin, A., 

Vacca, A., Quinton, J., Auerswald, K. and others, (2010). Rates and spatial variations of 

soil erosion in Europe: a study based on erosion plot data. Geomorphology, 122(1), 

pp.167--177. 

Chambers, B. and Garwood, T. (2000). Monitoring of water erosion on arable farms in 

England and Wales. 1990--94. Soil Use and Management, 16(2), pp.93--99. 

Chang, K. and Tsai, B. (1991). The effect of DEM resolution on slope and aspect mapping. 

Cartography and Geographic Information Systems, 18(1), pp.69--77. 

Chapman, P., Kay, P., Mitchell, G. and Pitts, C. (2014). Surface water quality. In: J. Holden, 

ed., Water Resources: An integrated approach, 1st ed. London: Routledge, pp.79 -- 122. 

Charrier, R. and Li, Y. (2012). Assessing resolution and source effects of digital elevation 

models on automated floodplain delineation: A case study from the Camp Creek 



  References 

 

317 

 

Watershed, Missouri. Applied Geography, 34, pp.38--46. 

Chaubey, I., Cotter, A., Costello, T. and Soerens, T. (2005). Effect of DEM data resolution on 

SWAT output uncertainty. Hydrological Processes, 19(3), pp.621--628. 

Chirico, P. (2004). An evaluation of SRTM, ASTER and contour based DEMs in the 

Caribbean region. Proceedings of the URISA 2004 Caribbean GIS conference. 

Barbados: URISA.. 

Choi, Y., Park, H., Sunwoo, C. and Clarke, K. (2009). Multi-criteria evaluation and least-cost 

path analysis for optimal haulage routing of dump trucks in large scale open-pit mines. 

International Journal of Geographical Information Science, 23(12), pp.1541--1567. 

Chrisman, N. (1982). A theory of cartographic error and its measurement in digital databases. 

In: AutoCarto 5. Bethesda, MD, pp.159--68. 

Chrisman, N. (1991). The error component in spatial data. Geographical information systems, 

1, pp.165--174. 

Chrysoulakis, N., Abrams, M., Kamarianakis, Y. and Stanislawski, M. (2011). Validation of 

ASTER GDEM for the area of Greece. Photogrammetric Engineering & Remote 

Sensing, 77(2), pp.157--165. 

Clarke, S. and Burnett, K. (2003). Comparison of digital elevation models for aquatic data 

development. Photogrammetric Engineering & Remote Sensing, 69(12), pp.1367--1375. 

Cochrane, T. and Flanagan, D. (2005). Effect of DEM resolutions in the runoff and soil loss 

predictions of the WEPP watershed model. University of Canterbury. Natural Resources 

Engineering. 

Collins, A., Anthony, S., Hawley, J. and Turner, T. (2009). The potential impact of projected 

change in farming by 2015 on the importance of the agricultural sector as a sediment 

source in England and Wales. Catena, 79(3), pp.243--250. 

Collins, A., Zhang, Y., Hickinbotham, R., Bailey, G., Darlington, S., Grenfell, S., Evans, R. 

and Blackwell, M. (2013). Contemporary fine-grained bed sediment sources across the 

River Wensum Demonstration Test Catchment, UK. Hydrological Processes, 27(6), 

pp.857--884. 



  References 

 

318 

 

Collischonn, W. and Pilar, J. (2000). A direction dependent least-cost-path algorithm for 

roads and canals. International Journal of Geographical Information Science, 14(4), 

pp.397--406. 

Colombo, R., Vogt, J., Soille, P., Paracchini, M. and de Jager, A. (2007). Deriving river 

networks and catchments at the European scale from medium resolution digital elevation 

data. Catena, 70(3), pp.296--305. 

Coombes, M., Curini, A., Howard Keeble, A., Green, T. and Soar, P. (2007). River Wensum 

Restoration Strategy. Natural England Research Reports, Number 024. 

Cooper, R., Krueger, T., Hiscock, K. and Rawlins, B. (2014). High-temporal resolution 

fluvial sediment source fingerprinting with uncertainty: a Bayesian approach. Earth 

Surface Processes and Landforms. 

Costa-Cabral, M. and Burges, S. (1994). Digital elevation model networks (DEMON): A 

model of flow over hillslopes for computation of contributing and dispersal areas. Water 

resources research, 30(6), pp.1681--1692. 

Csafordi, P., Podor, A., Bug, J. and Gribovsyki, Z. (2012). Soil Erosion Analysis in a Small 

Forested Catchment Supported by ArcGIS Model Builder. Acta Silvatica et Lignaria 

Hungarica, 8(1), pp.39--55. 

Da Ros, D. and Borga, M. (1997). Use of digital elevation model data for the derivation of the 

geomorphological instantaneous unit hydrograph. Hydrological processes, 11(1), pp.13--

33. 

Darnell, A., Lovett, A., Barclay, J. and Herd, R. (2010). An application-driven approach to 

terrain model construction. International Journal of Geographical Information Science, 

24(8), pp.1171--1191. 

Darnell, A., Tate, N. and Brunsdon, C. (2008). Improving user assessment of error 

implications in digital elevation models. Computers, Environment and Urban Systems, 

32(4), pp.268--277. 

Datta, P. and Schack-Kirchner, H. (2010). Erosion relevant topographical parameters derived 

from different DEMs - A comparative study from the Indian Lesser Himalayas. Remote 

Sensing, 2(8), pp.1941--1961. 



  References 

 

319 

 

Defra, (2002). Directing the flow Priorities for future water policy. London: Department for 

Environment, Food and Rural Affairs. 

Defra, (2005). Controlling Soil Erosion: a Manual for the Assessment and Management of 

Agricultural Land at Risk of Water Erosion in Lowland England. London: Department 

for Environment, Food and Rural Affairs. 

Defra, (2009). Safeguarding our Soils: A Strategy for England. London: Department for 

Environment, Food and Rural Affairs. 

Defra, (2010). Fertiliser Handbook. London: Department for Environment, Food and Rural 

Affairs. 

Defra, (2013). Catchment based approach: improving the quality of our water environment. 

London: Department for Environment, Food and Rural Affairs. 

Desmet, P. and Govers, G. (1996). Comparison of routing algorithms for digital elevation 

models and their implications for predicting ephemeral gullies. International Journal of 

Geographical Information Science, 10(3), pp.311--331. 

Desmet, P., Poesen, J., Govers, G. and Vandaele, K. (1999). Importance of slope gradient and 

contributing area for optimal prediction of the initiation and trajectory of ephemeral 

gullies. CATENA, 37(3-4), pp.377-392. 

DLR, (2014). DLR Portal - DLR. [online] Available at: http://www.dlr.de/ [Accessed 5 Mar. 

2014]. 

Do, H., Limet, S. and Melin, E. (2011). Parallel computing flow accumulation in large Digital 

Elevation Models. Procedia Computer Science, 4, pp.2277--2286. 

Dobos, E. and Daroussin, J. (2005). The derivation of the potential drainage density Index 

(PDD). In Dobos et al.  2005. An SRTM-based procedure to delineate SOTER terrain 

units on 1:1 and 1:5 million scales. EUR 21571  EN, 55pp. Office of Official 

Publications of the European Communities, Luxemburg.. 

Dowman, I. (2004). Integration of LIDAR and IFSAR for mapping. International Archives of 

Photogrammetry and Remote Sensing, 35(B2), pp.90--100. 

Drzewiecki, W., Wkezyk, P., Pierzchalski, M. and Szafranska, B. (2013). Quantitative and 



  References 

 

320 

 

Qualitative Assessment of Soil Erosion Risk in Malopolska (Poland), Supported by an 

Object-Based Analysis of High-Resolution Satellite Images. Pure and Applied 

Geophysics, pp.1--29. 

Ebdon, D. (1978). Statistics in Geography: A Practical Approach. Oxford: Blackwell. 

Ehlschlaeger, C. and Goodchild, M. (1994). Dealing with uncertainty in categorical coverage 

maps: defining, visualizing, and managing errors. 1(2), pp.101--106. 

El-Sheimy, N., Valeo, C. and Habib, A. (2005). Digital terrain modeling. Boston: Artech 

House. 

ENTEC, (2012). Defra Wensum Demonstration Test Catchment: Conceptual and  Numerical 

Catchment Modelling. Doc Reg No. 26982rr016, Abbey Foregate,  Shrewsbury. 

Environment Agency, (2004). Model Procedures for the Management of Land 

Contamination. Bristol: Environment Agency September 2004. 

Environmental Agency, (2014). LIDAR data, aerial LIDAR, height data, DSM and DTM from 

Geomatics Group. [online] Geomatics-group.co.uk. Available at: http://www.geomatics-

group.co.uk/GeoCMS/Products/LIDAR.aspx [Accessed 4 Aug. 2014]. 

Evans, R. (1981). Assessments of Soil Erosion and Peat Wastage for Parts of East Anglia, 

England, a Field Visit. In: R. Morgan, ed., Soil Conservation: Problems and Prospects, 

1st ed. Chichester, UK: Wiley, pp.521--530. 

Evans, R. (2002). An alternative way to assess water erosion of cultivated land - field-based 

measurements: and analysis of some results. Applied Geography, 22(2), pp.187--207. 

Evans, R. (2010). Runoff and soil erosion in arable Britain: changes in perception and policy 

since 1945. Environmental Science & Policy, 13(2), pp.141--149. 

Evans, R. and Brazier, R. (2005). Evaluation of modelled spatially distributed predictions of 

soil erosion by water versus field-based assessments. Environmental Science & Policy, 

8(5), pp.493--501. 

Farr, T., Rosen, P., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., 

Rodriguez, E., Roth, L. and others, (2007). The shuttle radar topography mission. 

Reviews of geophysics, 45(2). 



  References 

 

321 

 

Fernandez, C., Wu, J., McCool, D. and Stockle, C. (2003). Estimating water erosion and 

sediment yield with GIS, RUSLE, and SEDD. Journal of Soil and Water Conservation, 

58(3), pp.128--136. 

Ferrier, R. and Jenkins, A. (2010). The catchment management concept. In: R. Ferrier and A. 

Jenkins, ed., Handbook of catchment management, 1st ed. Chichester, UK: Wiley-

Blackwell, pp.1--17. 

Ferro, V., Porto, P. and Yu, B. (1999). A comparative study of rainfall erosivity estimation for 

southern Italy and southeastern Australia. Hydrological sciences journal, 44(1), pp.3--

24. 

FGDC, (1998). Geospatial Positioning Accuracy Standards Part 3: National Standard for 

Spatial Data Accuracy. Reston, VA: US Federal Geographic Data Committee. [online] 

Available at: htpp://www.fgdc.gov/FGDC-standards projects/accuracy/part3/chapter3. 

Field, A. (2009). Discovering statistics using SPSS. 3rd ed. London: Sage Publications. 

Fisher, P. (1998). Improved modeling of elevation error with geostatistics. GeoInformatica, 

2(3), pp.215--233. 

Fisher, P. and Tate, N. (2006). Causes and consequences of error in digital elevation models. 

Progress in Physical Geography, 30(4), pp.467--489. 

Foody, G. and Atkinson, P. (2002). Uncertainty in remote sensing and GIS. Hoboken, NJ: J. 

Wiley. 

Forkuor, G. and Maathuis, B. (2012). Comparison of SRTM and ASTER Derived Digital 

Elevation Models over Two Regions in Ghana - Implications for Hydrological and 

Environmental Modeling. Studies on Environmental and Applied Geomorphology, 

pp.219--240. 

Friedli, S. (2006). Digital soil erosion hazard map of Switzerland in acres grid - with special 

emphasis on agricultural land; CDE University of Bern. 

Gallant, J. and Hutchinson, M. (1996). Towards an Understanding of Landscape Scale and 

Structure. In: Third International Conference/Workshop on Integrating GIS and 

Environmental Modeling. Santa Barbara: National Center for Geographical Information 

and Analysis. 



  References 

 

322 

 

Gallego, J., Fernandez, V. and Velez, J. (2010). Uncertainty in the extracted drainage network 

associated to the applied DEM correction method: Implementation of a new DEM 

correction approach. In: Proceedings of the Accuracy 2010 Symposium. Leicester, UK, 

pp.209-212. 

Gamache, M. (2004). Free and low cost datasets for international mountain cartography. 

Proceedings, 4th ICA Mountain Cartography Workshop, Vall de Nuria, Catalonia, 

Spain, 2004. 

Gandolfi, C. and Bischetti, G. (1997). Influence of the drainage network identification method 

on geomorphological properties and hydrological response. Hydrological Processes, 

11(4), pp.353--375. 

Gatziolis, D. and Fried, J. (2004). Adding Gaussian noise to inaccurate digital elevation 

models improves spatial fidelity of derived drainage networks. Water resources 

research, 40(2). 

Gehrke, S. and Uebbing, R. (2011). Quantification of turbulence for airborne line-scanner 

images. In: ASPRS 2011 Annual Conference. Milwaukee, Wisconsin. 

Gitas, I., Douros, K., Minakou, C., Silleos, G., Karydas, C. and others, (2009). Multi-temporal 

soil erosion risk assessment in N. Chalkidiki using a modified usle raster model. EARSeL 

eProceedings, 8(1), pp.40--52. 

Goncalves, J. and Oliveira, A. (2004). Accuracy analysis of DEMs derived from ASTER 

imagery. International Archives of Photogrammetry and Remote Sensing, 35, pp.168--

172. 

Gonga-Saholiariliva, N., Gunnell, Y., Petit, C. and Mering, C. (2011). Techniques for 

quantifying the accuracy of gridded elevation models and for mapping uncertainty in 

digital terrain analysis. Progress in Physical Geography, 35(6), pp.739--764. 

Gonzales Inca, C. (2009). Assessing the Land Cover and Land Use Change and Its Impact on 

Watershed Services in a Tropical Andean Watershed of Peru. A Master’s Thesis. 

University of Jyvaskyla. 

Goodchild, M. (1993). Data models and data quality: problems and prospects. Environmental 

modeling with GIS, pp.94--103. 



  References 

 

323 

 

Goodchild, M. (2009). Geographic information systems and science: today and tomorrow. 

Procedia Earth and Planetary Science, 1(1), pp.1037-1043. 

Goodchild, M. and Hunter, G. (1997). A simple positional accuracy measure for linear 

features. International Journal of Geographical Information Science, 11(3), pp.299--

306. 

Gordon, N., McMahon, T., Finlayson, B., Gippel, C. and Nathan, R. (2004). Stream 

Hydrology: An Introduction for Ecologist. 2nd ed. Chichester, West Sussex, England: 

Wiley. 

Gorokhovich, Y. and Voustianiouk, A. (2006). Accuracy assessment of the processed SRTM-

based elevation data by CGIAR using field data from USA and Thailand and its relation 

to the terrain characteristics. Remote Sensing of Environment, 104(4), pp.409--415. 

Hahn, C., Prasuhn, V., Stamm, C., Milledge, D. and Schulin, R. (2013). A comparison of 

three simple approaches to identify critical areas for runoff and dissolved reactive 

phosphorus losses. Hydrology and Earth System Sciences Discussions, 10(11), 

pp.14495--14534. 

Haile, T. and Rientjes, T. (2005). Effects of LIDAR DEM resolution in flood modeling: a 

model sensitivity study for the City of Tegucigalpa, Honduras. In: Proceedings of ISPRS 

WG III/3, III/4, V/3 workshop, “Laser scanning 2005”,. Enschede, The Netherlands. 

Hancock, G. and Evans, K. (2006). Channel head location and characteristics using digital 

elevation models. Earth Surface Processes and Landforms, 31(7), pp.809--824. 

Harris, G. and Heathwaite, A. (2005). Inadmissible evidence: knowledge and prediction in 

land and riverscapes. Journal of hydrology, 304(1), pp.3--19. 

Haygarth, P., Condron, L., Heathwaite, A., Turner, B. and Harris, G. (2005). The phosphorus 

transfer continuum: Linking source to impact with an interdisciplinary and multi-scaled 

approach. Science of the Total Environment, 344(1), pp.5--14. 

Heathwaite, A. (2010). Multiple stressors on water availability at global to catchment scales: 

understanding human impact on nutrient cycles to protect water quality and water 

availability in the long term. Freshwater Biology, 55(s1), pp.241--257. 

Heathwaite, A., Quinn, P. and Hewett, C. (2005). Modelling and managing critical source 



  References 

 

324 

 

areas of diffuse pollution from agricultural land using flow connectivity simulation. 

Journal of Hydrology, 304(1), pp.446--461. 

Hebeler, F. and Purves, R. (2009). The influence of elevation uncertainty on derivation of 

topographic indices. Geomorphology, 111(1), pp.4--16. 

Heine, R., Lant, C. and Sengupta, R. (2004). Development and comparison of approaches for 

automated mapping of stream channel networks. Annals of the Association of American 

Geographers, 94(3), pp.477--490. 

Hengl, T. and Reuter, H. (2008). Geomorphometry: Concepts, Software, Applications. 

Amsterdam: Elsevier. 

Hengl, T., Grohmann, C., Biv, Conrad, O. and Lobo, A. (2009). SAGA vs GRASS: a 

comparative analysis of the two open source desktop GIS for the automated analysis of 

elevation data. Proceedings of Geomorphometry. 

Hengl, T., Heuvelink, G. and Van Loon, E. (2010). On the uncertainty of stream networks 

derived from elevation data: the error propagation approach. Hydrology & Earth System 

Sciences Discussions, 7(1). 

Henkle, J., Wohl, E. and Beckman, N. (2011). Locations of channel heads in the semiarid 

Colorado Front Range, USA. Geomorphology, 129(3), pp.309--319. 

Hensley, S., Munjy, R. and Rosen, P. (2007). Interferometric Synthetic Aperture Radar 

(IFSAR). In: D. Maune, ed., Digital Elevation Model Technologies and Applications: 

The DEM Users Manual, 2nd ed. Bethesda, Md: American Society for Photogrammetry 

and Remote Sensing, pp.141 - 194. 

HGCA, (2008). The wheat growth guide. HGCA. 

Hirt, C., Filmer, M. and Featherstone, W. (2010). Comparison and validation of the recent 

freely available ASTER-GDEM ver1, SRTM ver4. 1 and GEODATA DEM-9S ver3 

digital elevation models over Australia. Australian Journal of Earth Sciences, 57(3), 

pp.337--347. 

Hiscock, K. (2011). Catchment science and the Wensum Demonstration Test Catchment 

Project, UK-China Sustainable Agriculture Innovation Network Workshop 18 March 

2011. 



  References 

 

325 

 

Hiscock, K., Lister, D., Boar, R. and Green, F. (2001). An integrated assessment of long-term 

changes in the hydrology of three lowland rivers in eastern England. Journal of 

environmental management, 61(3), pp.195--214. 

Hodgson, M., Jensen, J., Schmidt, L., Schill, S. and Davis, B. (2003). An evaluation of 

LIDAR-and IFSAR-derived digital elevation models in leaf-on conditions with USGS 

Level 1 and Level 2 DEMs. Remote Sensing of Environment, 84(2), pp.295--308. 

Hogg, S. (1982). Sheetfloods, sheetwash, sheetflow, or ... ?. Earth-Science Reviews, 18(1), 

pp.59-76. 

Hohle, J. and Hohle, M. (2009). Accuracy assessment of digital elevation models by means of 

robust statistical methods. ISPRS Journal of Photogrammetry and Remote Sensing, 

64(4), pp.398--406. 

Holden, J. (2014). Water Resources: An integrated approach. London: Routledge. 

Holmes, K., Chadwick, O. and Kyriakidis, P. (2000). Error in a USGS 30-meter digital 

elevation model and its impact on terrain modeling. Journal of Hydrology, 233(1), 

pp.154--173. 

Hooke, J. (2003). Coarse sediment connectivity in river channel systems: a conceptual 

framework and methodology. Geomorphology, 56(1), pp.79--94. 

Hoyos, N. (2005). Spatial modeling of soil erosion potential in a tropical watershed of the 

Colombian Andes. Catena, 63(1), pp.85--108. 

Huggel, C., Schneider, D., Miranda, P., Delgado Granados, H. and KÃÃb, A. (2008). 

Evaluation of ASTER and SRTM DEM data for lahar modeling: A case study on lahars 

from Popocatepetl Volcano, Mexico. Journal of Volcanology and Geothermal Research, 

170(1-2), pp.99-110. 

Hui, L., Xiaoling, C., Lim, K., Xiaobin, C. and Sagong, M. (2010). Assessment of soil erosion 

and sediment yield in Liao watershed, Jiangxi Province, China, Using USLE, GIS, and 

RS. Journal of Earth Science, 21(6), pp.941--953. 

Hunter, G. and Goodchild, M. (1995). Dealing with error in a spatial database: A simple case 

study. Photogrammetric Engineering and Remote Sensing, 61(5), pp.529--537. 



  References 

 

326 

 

Hunter, G. and Goodchild, M. (1997). Modeling the uncertainty of slope and aspect estimates 

derived from spatial databases. Geographical Analysis, 29(1), pp.35--49. 

Ijjasz-Vasquez, E. and Bras, R. (1995). Scaling regimes of local slope versus contributing 

area in digital elevation models. Geomorphology, 12(4), pp.299--311. 

Illian, J., Penttinen, A., Stoyan, H. and Stoyan, D. (2008). Statistical analysis and modelling 

of spatial point patterns. Chichester, England: John Wiley. 

Inman, A. (2006). Soil erosion in England and Wales: causes, consequences and policy 

options for dealing with the problem. Surrey: WWF - UK. 

Intermap Technologies, (2011). NEXTMap Data: digital terrain models, digital surface 

models | Intermap. [online] Intermap. Available at: 

http://www.intermap.com/data/nextmap [Accessed 8 Sep. 2011]. 

Intermap, (2004). Intermap Product Handbook and Quick Start Guide. v3.3. Englewood: 

Intermap Technologies, Inc. 

Intermap, (2010). Intermap Product Handbook and Quick Start Guide. Standard Edition 

v4.4.1. Denver: Intermap Technologies Inc. 

Jamshidi, R., Dragovich, D. and Webb, A. (2013). Estimating catchment-scale annual soil 

loss in managed native eucalypt forests, Australia. Forest Ecology and Management, 

304, pp.20--32. 

Jarvis, A., Reuter, H., Nelson, A. and Guevara, E. (2008). Hole-filled SRTM for the globe 

Version 4. available from the CGIAR-CSI SRTM 90m Database (http://srtm. csi. cgiar. 

org). 

Jenson, S. and Domingue, J. (1988). Extracting topographic structure from digital elevation 

data for geographic information system analysis. Photogrammetric engineering and 

remote sensing, 54(11), pp.1593--1600. 

Joowon, P. (2011). Comparison of the Positional Accuracy of Stream Mapping Methods: 

Considering the Effects of Minimum Contributing Area and Spectral Data. PhD. UMI. 

Jordan, G. (2007). Digital Terrain Analysis in a GIS Environment: Concepts and 

Development. In: R. Peckham and G. Jordan, ed., Digital Terrain Modelling, 1st ed. 



  References 

 

327 

 

Berlin: Springer, pp.1--39. 

Kallis, G. and Butler, D. (2001). The EU water framework directive: measures and 

implications. Water Policy, 3(2), pp.125-142. 

Kamaludin, H., Lihan, T., Rahman, Z., Mustapha, M., Idris, W. and Rahim, S. (2013). 

Integration of remote sensing, RUSLE and GIS to model potential soil loss and sediment 

yield (SY). Hydrology & Earth System Sciences Discussions, 10(4). 

Karaburun, A. (2010). Estimation of C factor for soil erosion modeling using NDVI in 

Buyukcekmece watershed. Ozean journal of applied sciences, 3(1), pp.77--85. 

Kenny, F. and Matthews, B. (2005). A methodology for aligning raster flow direction data 

with photogrammetrically mapped hydrology. Computers & Geosciences, 31(6), pp.768-

-779. 

Khan, U., Sharma, A. and Tuteja, N. (2009). A new approach for delineation of hydrologic 

response units in large catchments. In: 18th world IMACS / MODSIM Congress. Cairns, 

Australia 13 - 17 July 2009. 

Khan, U., Tuteja, N. and Sharma, A. (2013). Delineating hydrologic response units in large 

upland catchments and its evaluation using soil moisture simulations. Environmental 

Modelling & Software, 46, pp.142--154. 

Kienzle, S. (2004). The effect of DEM raster resolution on first order, second order and 

compound terrain derivatives. Transactions in GIS, 8(1), pp.83--111. 

Kim, H. and Julien, P. (2006). Soil erosion modeling using RUSLE and GIS on the Imha 

watershed. Water Engineering Research, 7(1), pp.29-41. 

Kinnell, P. (2005). Raindrop-impact-induced erosion processes and prediction: a review. 

Hydrological processes, 19(14), pp.2815--2844. 

Kinnell, P. (2010). Event soil loss, runoff and the Universal Soil Loss Equation family of 

models: A review. Journal of Hydrology, 385(1), pp.384--397. 

Kouli, M., Soupios, P. and Vallianatos, F. (2009). Soil erosion prediction using the revised 

universal soil loss equation (RUSLE) in a GIS framework, Chania, Northwestern Crete, 

Greece. Environmental geology, 57(3), pp.483--497. 



  References 

 

328 

 

Kraus, K., Briese, C., Attwenger, M. and Pfeifer, N. (2004). Quality measures for digital 

terrain models. In Altan, O. (ed.) International Society for Photogrammetry and Remote 

Sensing XXth Congress Proceedings, Vol. XXXV.Part B/2 (2004) ISPRS, Istanbul, pp. 

113-118. 

Krieger, G., Moreira, A., Fiedler, H., Hajnsek, I., Werner, M., Younis, M. and Zink, M. 

(2007). TanDEM-X: A Satellite Formation for High-Resolution SAR Interferometry. 

IEEE Trans. Geosci. Remote Sensing, 45(11), pp.3317-3341. 

Kuleli, T. (2009). Quantitative analysis of shoreline changes at the Mediterranean Coast in 

Turkey. Environmental Monitoring and Assessment, 167(1-4), pp.387-397. 

LaLonde, T., Shortridge, A. and Messina, J. (2010). The Influence of Land Cover on Shuttle 

Radar Topography Mission (SRTM) Elevations in Low-relief Areas. Transactions in 

GIS, 14(4), pp.461--479. 

Landmap, (2011). Landmap - Spatial Discovery. [online] Available at: 

http://www.landmap.ac.uk/ [Accessed 9 Sep. 2011]. 

Landmap, (2014). Bluesky 5m resolution Digital Terrain Model (DTM) for England and 

Wales. NERC Earth Observation Data Centre. 

Lane, S., Brookes, C., Louise Heathwaite, A. and Reaney, S. (2006). Surveillant science: 

challenges for the management of rural environments emerging from the new generation 

diffuse pollution models. Journal of Agricultural Economics, 57(2), pp.239--257. 

Larocque, A. (2013). Universal Soil Loss Equation (USLE). Encyclopedia of Natural 

Hazards, pp.1062--1062. 

Lastoria, B., Miserocchi, F., Lanciani, A. and Monacelli, G. (2008). An estimated erosion 

map for the Aterno-Pescara river Basin. European Water, 21(22), pp.29--39. 

Lee, G. and Lee, K. (2006). Scaling effect for estimating soil loss in the RUSLE model using 

remotely sensed geospatial data in Korea. Hydrology & Earth System Sciences 

Discussions, 3(1). 

Lee, J. and Stucky, D. (1998). On applying viewshed analysis for determining least-cost paths 

on digital elevation models. International Journal of Geographical Information Science, 

12(8), pp.891--905. 



  References 

 

329 

 

Lee, J. and Wong, D. (2001). Statistical analysis with ArcView GIS. New York: John Wiley. 

Lee, S. (2004). Soil erosion assessment and its verification using the universal soil loss 

equation and geographic information system: a case study at Boun, Korea. 

Environmental Geology, 45(4), pp.457--465. 

Li, J. and Wong, D. (2010). Effects of DEM sources on hydrologic applications. Computers, 

Environment and urban systems, 34(3), pp.251--261. 

Li, X., Temant, J. and Lawrence, G. (2004). Three-dimensional mapping with airborne 

IFSAR based STAR technology – Intermap’s experiences. Istanbul, Turkey: Proceedings 

of XXth ISPRS Congress, 12-23 July, 2004. 

Li, Z. (1992). Variation of the accuracy of digital terrain models with sampling interval. The 

Photogrammetric Record, 14(79), pp.113--128. 

Li, Z., Zhu, Q. and Gold, C. (2005). Digital terrain modeling: Principles and Methodology. 

New York: CRC Press. 

Ligonja, P. and Shrestha, R. (2013). Soil erosion assessment in Kondoa eroded area in 

Tanzania Using Universal Soil Loss Equation, Geographic Information Systems and 

Socioeconomic approach. Land Degradation & Development. 

Lim, K., Sagong, M. and others, (2010). Assessment of soil erosion and sediment yield in 

Liao watershed, Jiangxi Province, China, Using USLE, GIS, and RS. Journal of Earth 

Science, 21(6), pp.941--953. 

Lin, K., Zhang, Q. and Chen, X. (2010). An evaluation of impacts of DEM resolution and 

parameter correlation on TOPMODEL modeling uncertainty. Journal of hydrology, 

394(3), pp.370--383. 

Lin, S., Jing, C., Coles, N., Chaplot, V., Moore, N. and Wu, J. (2013). Evaluating DEM 

source and resolution uncertainties in the Soil and Water Assessment Tool. Stochastic 

Environmental Research and Risk Assessment, 27(1), pp.209--221. 

Lin, W., Chou, W., Lin, C., Huang, P. and Tsai, J. (2006). Automated suitable drainage 

network extraction from digital elevation models in Taiwan's upstream watersheds. 

Hydrological Processes, 20(2), pp.289--306. 



  References 

 

330 

 

Lindsay, J. (2006). Sensitivity of channel mapping techniques to uncertainty in digital 

elevation data. International Journal of Geographical Information Science, 20(6), 

pp.669--692. 

Lindsay, J. and Evans, M. (2008). The influence of elevation error on the morphometrics of 

channel networks extracted from DEMs and the implications for hydrological modelling. 

Hydrological Processes, 22(11), pp.1588--1603. 

Ling, F., Zhang, Q. and Wang, C. (2005). Comparison of SRTM Data with other DEM 

sources in Hydrological Researches. In: International Symposium on Remote Sensing of 

Environment, June 20--24. St Petersburg, Russia. 

Liu, X. and Bian, L. (2008). Accuracy Assessment of DEM Slope Algorithms Related to 

Spatial Autocorrelation of DEM Errors. In: Q. Zhou, B. Lees and G. Tang, ed., Advances 

in Digital Terrain Analysis, 1st ed. Berlin: Springer, pp.307 - 322. 

Liu, X. and Zhang, Z. (2011). Drainage network extraction using LiDAR-derived DEM in 

volcanic plains. Area, 43(1), pp.42--52. 

Liu, Y. (2008). An evaluation on the data quality of SRTM- DEM at the alpine and Plateau 

area, north-western  of china. The International Archives of the Photogrammetry. 

Remote Sensing and Spatial Inform, 37(B1), pp.1123--1128. 

Longley, P., Goodchild, M., Maguire, D. and Rhind, D. (2005). Geographical information 

systems and science. 2nd ed. Chichester: Wiley. 

Lovett, A. and Appleton, K. (2008). GIS for environmental decision-making. Boca Raton: 

CRC Press. 

Lu, D., Li, G., Valladares, G. and Batistella, M. (2004). Mapping soil erosion risk in 

Rondonia, Brazilian Amazonia: using RUSLE, remote sensing and GIS. Land 

Degradation & Development, 15(5), pp.499--512. 

Lunetta, R. and Lyon, J. (2004). Remote sensing and GIS accuracy assessment. Boca Raton, 

Fla.: CRC Press. 

Lyon, J. (2003). GIS for water resources and watershed management. London: Taylor & 

Francis. 



  References 

 

331 

 

Maidment, D. (2002). Arc Hydro: GIS for Water Resources. Redlands, Calif.: ESRI Press. 

Mainstone, C., Dils, R. and Withers, P. (2008). Controlling sediment and phosphorus transfer 

to receiving waters--a strategic management perspective for England and Wales. Journal 

of Hydrology, 350(3), pp.131--143. 

Mantelli, L., Barbosa, J. and Bitencourt, M. (2011). Assessing ecological risk through 

automated drainage extraction and watershed delineation. Ecological Informatics, 6(5), 

pp.325--331. 

Marechal, D. and Holman, I. (2004). Comparison of hydrologic simulations using 

regionalised and catchment-calibrated parameter sets for three catchments in England. 

Cranfield University at Silsoe Institute of Water and Environment, p.116. 

Martinez, C., Hancock, G., Kalma, J., Wells, T. and Boland, L. (2010). An assessment of 

digital elevation models and their ability to capture geomorphic and hydrologic 

properties at the catchment scale. International Journal of Remote Sensing, 31(23), 

pp.6239--6257. 

Martz, L. and Garbrecht, J. (1995). Automated recognition of valley lines and drainage 

networks from grid digital elevation models: A review and a new method - Comment. 

Journal of Hydrology, 167(1), pp.393--396. 

Mati, B., Morgan, R., Gichuki, F., Quinton, J., Brewer, T. and Liniger, H. (2000). Assessment 

of erosion hazard with the USLE and GIS: A case study of the Upper Ewaso Ng'iro 

North basin of Kenya. International Journal of Applied Earth Observation and 

Geoinformation, 2(2), pp.78--86. 

Maune, D. (2007). Digital elevation model technologies and applications. Bethesda, Md.: 

American Society for Photogrammetry and Remote Sensing. 

McDougall, K., Liu, X., Basnet, B. and Apan, A. (2008). Digital elevation model accuracy 

requirements for catchment management. Proceedings of Queensland Spatial 

Conference Gold Coast, Queensland, Australia. 

McGonigle, D., Burke, S., Collins, A., Gartner, R., Haft, M., Harris, R., Haygarth, P., Hedges, 

M., Hiscock, K. and Lovett, A. (2014). Developing Demonstration Test Catchments as a 

platform for transdisciplinary land management research in England and Wales. 



  References 

 

332 

 

Environmental Science: Processes & Impacts. 

McMaster, K. (2002). Effects of digital elevation model resolution on derived stream network 

positions. Water Resources Research, 38(4), pp.13--1. 

McNamara, J., Kane, D. and Hinzman, L. (1999). An analysis of an arctic channel network 

using a digital elevation model. Geomorphology, 29(3), pp.339--353. 

McNamara, J., Ziegler, A., Wood, S. and Vogler, J. (2006). Channel head locations with 

respect to geomorphologic thresholds derived from a digital elevation model: A case 

study in northern Thailand. Forest ecology and management, 224(1), pp.147--156. 

Mercer, B. (2004). DEMs created from airborne IFSAR--an update. In Proceedings of ISPRS 

Commission II Symposium. Istanbul. 

Mercuri, P., Engel, B. and Johannsen, C. (2006). Evaluation and accuracy assessment of high-

resolution IFSAR DEMs in low-relief areas. International journal of remote sensing, 

27(13), pp.2767--2786. 

Metz, M., Mitasova, H. and Harmon, R. (2011). Efficient extraction of drainage networks 

from massive, radar-based elevation models with least cost path search. Hydrology and 

Earth System Sciences, 15(2), pp.667--678. 

Meyer, D., Tachikawa, T., Abrams, M., Crippen, R., Krieger, T., Gesch, D. and Carabajal, C. 

(2012). Summary of the Validation of the Second Version of the Aster Gdem. ISPRS-

International Archives of the Photogrammetry, Remote Sensing and Spatial Information 

Sciences, 1, pp.291--293. 

Milledge, D., Lane, S., Heathwaite, A. and Reaney, S. (2012). A Monte Carlo approach to the 

inverse problem of diffuse pollution risk in agricultural catchments. Science of the Total 

Environment, 433, pp.434--449. 

Mokrech, M., Nicholls, R., Richards, J., Henriques, C., Holman, I. and Shackley, S. (2008). 

Regional impact assessment of flooding under future climate and socio-economic 

scenarios for East Anglia and North West England. Climatic Change, 90(1-2), pp.31--

55. 

Molnar, D. and Julien, P. (1998). Estimation of upland erosion using GIS. Computers & 

Geosciences, 24(2), pp.183--192. 



  References 

 

333 

 

Montgomery, D. and Foufoula-Georgiou, E. (1993). Channel network source representation 

using digital elevation models. Water Resources Research, 29(12), pp.3925--3934. 

Moore, I., Grayson, R. and Ladson, A. (1991). Digital terrain modelling: a review of 

hydrological, geomorphological, and biological applications. Hydrological processes, 

5(1), pp.3--30. 

Morgan, R. (1980). Soil erosion and conservation in Britain. Progress in Physical Geography, 

(4), pp.25 - 47. 

Morgan, R. (1985). Soil erosion measurement and soil conservation research in cultivated 

areas of the UK. Geographical journal, 151(1), pp.11--20. 

Morgan, R. (2005). Soil erosion and conservation. 3rd ed. Malden, MA: Blackwell Pub. 

Muller, J., Morley, J., Walker, A., Kitmitto, K., Mitchell, K., Smith, A., Barnes, J., Keenan, 

R., Cross, P., Dowman, I. and Quarmby, N. (2000). The LANDMAP project for the 

automated creation and validation of multi-resolution orthorectified satellite image 

products and a 1â€• DEM of the British Isles from ERS tandem SAR interferometry. In: 

Adding Value to Remotely Sensed Data. Proceedings of the 26th Annual Conference of 

the Remote Sensing Society. RSS2000, pp.12--14. 

Munafo, M., Cecchi, G., Baiocco, F. and Mancini, L. (2005). River pollution from non-point 

sources: a new simplified method of assessment. Journal of Environmental 

Management, 77(2), pp.93--98. 

Munlv, N. (2007). Bodenerosion durch Wasser, Ursachen, Bedeutung und Umgang in der 

landwirtschaftlichen Praxis von NRW. 

Murphy, P., Ogilvie, J., Meng, F. and Arp, P. (2008). Stream network modelling using lidar 

and photogrammetric digital elevation models: a comparison and field verification. 

Hydrological Processes, 22(12), pp.1747--1754. 

Nelson, A., Reuter, H. and Gessler, P. (2009). DEM production methods and siurces. In: T. 

Hengl and H. Reuter, ed., Geomorphometry: Concepts, Software, Applications, 1st ed. 

Amsterdam: Elsevier, pp.65 - 85. 

Nigel, R. and Rughooputh, S. (2010). Soil erosion risk mapping with new datasets: An 

improved identification and prioritisation of high erosion risk areas. Catena, 82(3), 



  References 

 

334 

 

pp.191--205. 

Nikolakopoulos, K., Kamaratakis, E. and Chrysoulakis, N. (2006). SRTM vs ASTER 

elevation products. Comparison for two regions in Crete, Greece. International Journal 

of Remote Sensing, 27(21), pp.4819--4838. 

O'Callaghan, J. and Mark, D. (1984). The extraction of drainage networks from digital 

elevation data. Computer vision, graphics, and image processing, 28(3), pp.323--344. 

OECD, (2012). Water Quality and Agricultural: Meeting the Policy Challenge. OECD 

Studies on Water, OECD Piblishing. 

Oksanen, J. and Sarjakoski, T. (2005). Error propagation of DEM-based surface derivatives. 

Computers & Geosciences, 31(8), pp.1015--1027. 

OMAFRA, (2012). Universal Soil Loss Equation (USLE). Order No. 12-051. OMAFRA. 

Ordnance Survey, (2009a). OS MasterMap Topography Layer, user guide and technical 

specification. v1.8. December 2009 Ordnance Survey, Southampton. 

Ordnance Survey, (2009b). OS VectorMap Local, user guide and technical specification. 

v1.1. September 2009 Ordnance Survey, Southampton. 

Ordnance Survey, (2010a). Landform panorama user guide and technical specification. v5.1. 

December 2010 Ordnance Survey, Southampton. 

Ordnance Survey, (2010b). Landform Profile user guide and technical specification. v5.2. 

December 2010 Ordnance Survey, Southampton. 

Ordnance Survey, (2013a). OS Terrain 5 User guide and technical specification. v1.1. July 

2013 Ordnance Survey, Southampton. 

Ordnance Survey, (2013b). OS Terrain 50 User guide and technical specification. v1.0. April 

2013 Ordnance Survey, Southampton. 

Orlandini, S., Tarolli, P., Moretti, G. and Dalla Fontana, G. (2011). On the prediction of 

channel heads in a complex alpine terrain using gridded elevation data. Water Resources 

Research, 47(2). 

Owens, P. and Collins, A. (2006). Soil erosion and sediment redistribution in river 



  References 

 

335 

 

catchments: Measurement, Modelling and Management. Wallingford, UK: CABI Pub. 

Owusu, G. (2013). A GIS-Based Estimation of Soil Loss in the Densu Basin in Ghana. West 

African Journal of Applied Ecology, 20(2), pp.41--51. 

Paik, K. (2008). Global search algorithm for nondispersive flow path extraction. Journal of 

Geophysical Research: Earth Surface (2003--2012), 113(F4). 

Pandey, A., Chowdary, V. and Mal, B. (2007). Identification of critical erosion prone areas in 

the small agricultural watershed using USLE, GIS and remote sensing. Water resources 

management, 21(4), pp.729--746. 

Parveen, R. and Kumar, U. (2012). Integrated Approach of Universal Soil Loss Equation 

(USLE) and Geographical Information System (GIS) for Soil Loss Risk Assessment in 

Upper South Koel Basin, Jharkhand. Journal of Geographic Information System, 4, 

p.588. 

Paz, A., Collischonn, W., Risso, A. and Mendes, C. (2008). Errors in river lengths derived 

from raster digital elevation models. Computers & Geosciences, 34(11), pp.1584--1596. 

Peckham, R. and Jordan, G. (2007). Digital terrain modelling: Development and Applications 

in a Policy Support Environment. Berlin: Springer. 

Penas, F., Fernandez, F., Calvo, M., Barquin, J. and Pedraz, L. (2011). Influence of data 

sources and processing methods on theoretical river network quality. Limnetica, 30(2), 

pp.197--216. 

Podobnikar, T. (2009). Methods for visual quality assessment of a digital terrain model. SAPI 

EN. S. Surveys and Perspectives Integrating Environment and Society, 2(2), p.19. 

Poggio, L. and Soille, P. (2011). A probabilistic approach to river network detection in digital 

elevation models. Catena, 87(3), pp.341--350. 

Posen, P., Hutchins, M., Lovett, A. and Davies, H. (2011). Identifying the catchment size at 

which robust estimations of agricultural land use can be made, and implications for 

diffuse pollution modelling. Applied Geography, 31(3), pp.919--929. 

Prasuhn, V., Liniger, H., Gisler, S., Herweg, K., C, inas, A. and Cl'ement, J. (2013). A high-

resolution soil erosion risk map of Switzerland as strategic policy support system. Land 



  References 

 

336 

 

use policy, 32, pp.281--291. 

Prato, T. and Herath, G. (2007). Multiple-criteria decision analysis for integrated catchment 

management. Ecological Economics, 63(2), pp.627--632. 

Quinn, P., Beven, K., Chevallier, P. and Planchon, O. (1991). The prediction of hillslope flow 

paths for distributed hydrological modelling using digital terrain models. Hydrological 

processes, 5(1), pp.59--79. 

Raaflaub, L. and Collins, M. (2006). The effect of error in gridded digital elevation models on 

the estimation of topographic parameters. Environmental Modelling & Software, 21(5), 

pp.710--732. 

Rabia, R. (2012). Mapping Soil Erosion Risk Using Rusle, Gis and Remote Sensing 

Techniques. In: The 4th International Congress of ECSSS, EUROSOIL 2012. soil 

science for the benefit of mankind and environment, 2-6 June, Bari, Italy. 

Rabia, R. and Harb, A. (2012). Mapping Soil Erosion Risk Using RUSLE, GIS and Remote 

Sensing Techniques. p.1082. 

Rabus, B., Eineder, M., Roth, A. and Bamler, R. (2003). The shuttle radar topography 

missionâ€”a new class of digital elevation models acquired by spaceborne radar. ISPRS 

Journal of Photogrammetry and Remote Sensing, 57(4), pp.241--262. 

Ranzi, R., Le, T. and Rulli, M. (2012). A RUSLE approach to model suspended sediment load 

in the Lo river (Vietnam): Effects of reservoirs and land use changes. Journal of 

Hydrology, 422, pp.17--29. 

Ravibabu, M. and Jain, K. (2008). Digital Elevation Model Accuracy Aspects. Journal of 

Applied Sciences, 8(1). 

Rawlins, B. (2011). A pilot study to assess soil spectroscopic methods for mapping key topsoil 

properties in the Blackwater sub-catchments (Wensum DTC). British Geological Survey 

Internal Report, OR/11/053. 

Rayburg, S., Thoms, M. and Neave, M. (2009). A comparison of digital elevation models 

generated from different data sources. Geomorphology, 106(3), pp.261--270. 

Reaney, S. (2014). What are the scale and data requirements for SCIMAP?. [online] 



  References 

 

337 

 

SCIMAP - Diffuse Pollution Risk Mapping. Available at: 

http://www.scimap.org.uk/2014/02/what-are-the-scale-and-data-requirements-for-

scimap/ [Accessed 5 Jul. 2014]. 

Reaney, S., Lane, S., Heathwaite, A. and Dugdale, L. (2011). Risk-based modelling of diffuse 

land use impacts from rural landscapes upon salmonid fry abundance. Ecological 

Modelling, 222(4), pp.1016--1029. 

Renard, K. and Freimund, J. (1994). Using monthly precipitation data to estimate the R-factor 

in the revised USLE. Journal of hydrology, 157(1), pp.287--306. 

Renard, K., Foster, G., Weesies, G. and Porter, J. (1991). RUSLE: Revised universal soil loss 

equation. Journal of soil and Water Conservation, 46(1), pp.30--33. 

Renard, K., Foster, G., Weesies, G., McCool, D., Yoder, D. and others, (1997). Predicting soil 

erosion by water: a guide to conservation planning with the revised universal soil loss 

equation (RUSLE). Agriculture Handbook (Washington), (703). 

Reuter, H., Nelson, A. and Jarvis, A. (2007). An evaluation of void-filling interpolation 

methods for SRTM data. International Journal of Geographical Information Science, 

21(9), pp.983--1008. 

Reuter, H., Nelson, A., Strobl, P., Mehl, W. and Jarvis, A. (2009). A first assessment of Aster 

GDEM tiles for absolute accuracy, relative accuracy and terrain parameters. Geoscience 

and Remote Sensing Symposium,2009 IEEE International,IGARSS 2009, (5), pp.240 - 

243. 

Rickson, R. (2014). Can control of soil erosion mitigate water pollution by sediments?. 

Science of The Total Environment, 468, pp.1187--1197. 

Rodriguez, E., Morris, C. and Belz, J. (2006). A global assessment of the SRTM performance. 

Photogrammetric Engineering & Remote Sensing, 72(3), pp.249--260. 

Rojas, R., Velleux, M., Julien, P. and Johnson, B. (2008). Grid scale effects on watershed soil 

erosion models. Journal of Hydrologic Engineering, 13(9), pp.793--802. 

Romkens, M., Helming, K. and Prasad, S. (2002). Soil erosion under different rainfall 

intensities, surface roughness, and soil water regimes. Catena, 46(2), pp.103--123. 



  References 

 

338 

 

Rousseva, S. (2004). Ideas for Physical Interpretation of the USLE. N. Poushkarov Research 

Institute for Soil Science and Agroecology, Sofia, Bulgaria. 

Rulli, M., Offeddu, L. and Santini, M. (2013). Modeling post-fire water erosion mitigation 

strategies. Hydrology and Earth System Sciences, 17(6), pp.2323--2337. 

Schauble, H., Marinoni, O. and Hinderer, M. (2008). A GIS-based method to calculate flow 

accumulation by considering dams and their specific operation time. Computers & 

Geosciences, 34(6), pp.635--646. 

Schonbrodt, S., Saumer, P., Behrens, T., Seeber, C. and Scholten, T. (2010). Assessing the 

USLE crop and management factor C for soil erosion modeling in a large mountainous 

watershed in Central China. Journal of Earth Science, 21(6), pp.835--845. 

Schumann, G., Matgen, P., Cutler, M., Black, A., Hoffmann, L. and Pfister, L. (2008). 

Comparison of remotely sensed water stages from LiDAR, topographic contours and 

SRTM. ISPRS journal of photogrammetry and remote sensing, 63(3), pp.283--296. 

Schwanghart, W., Groom, G., Kuhn, N. and Heckrath, G. (2013). Flow network derivation 

from a high resolution DEM in a low relief, agrarian landscape. Earth Surf. Process. 

Landforms. 

SCIMAP, (2013). SCIMAP - Diffuse Pollution Risk Mapping. [online] Available at: 

http://www.scimap.org.uk/ [Accessed 7 May 2013]. 

Scott, K., Quist, J. and Bakker, C. (2009). Co-design, social practices and sustainable 

innovation: involving users in a living lab exploratory study on bathing. In: Joing 

actions on climate change conference. 

Sear, D., Newson, M., Old, J. and Hill, C. (2006). Geomorphological appraisal of the River 

Wensum Special Area of Conservation. English Nature Research Reports, Number 685. 

Sharma, A., Tiwari, K. and Bhadoria, P. (2011a). Determining the optimum cell size of digital 

elevation model for hydrologic application. Journal of earth system science, 120(4), 

pp.573--582. 

Sharma, A., Tiwari, K. and Bhadoria, P. (2011b). Effect of land use land cover change on soil 

erosion potential in an agricultural watershed. Environmental monitoring and 

assessment, 173(1-4), pp.789--801. 



  References 

 

339 

 

Shen, Z., Chen, L., Ding, X., Hong, Q. and Liu, R. (2013). Long-term variation (1960--2003) 

and causal factors of non-point-source nitrogen and phosphorus in the upper reach of the 

Yangtze River. Journal of hazardous materials, 252, pp.45--56. 

Sheshukov, A. (2015). Predicting location and length of ephemeral gullies with a process-

based Topographic Index model. Proc. IAHS, 367, pp.93-98. 

Shiferaw, A. (2011). Estimating soil loss rates for soil conservation planning in the Borena 

Woreda of South Wollo Highlands, Ethiopia. Journal of Sustainable Development in 

Africa, 13(3), pp.87--106. 

Slater, J., Heady, B., Kroenung, G., Curtis, J., Haase, D., Hoegemann, C. and Kevin, T. 

(2009). Evaluation of the New ASTER Global Digital Elevation Model. Available online 

at: http://earth-info.nga.mil/GandG/elevation/. 

Smith, D. and Wischmeier, W. (1957). Factors affecting sheet and rill erosion. Transactions, 

American Geophysical Union, 38, pp.889--896. 

Smith, H., Blackstock, K., Wall, G. and Jeffrey, P. (2014). River basin management, 

development planning, and opportunities for debate around limits to growth. Journal of 

Hydrology, http://dx.doi.org/10.1016/j.jhydrol.2014.04.022. 

Smith, M. (2010). Digital elevation models for research: UK datasets, copyright and derived 

products. Geological Society, London, Special Publications, 345(1), pp.129-133. 

Smith, M., Rose, J. and Booth, S. (2006). Geomorphological mapping of glacial landforms 

from remotely sensed data: An evaluation of the principal data sources and an 

assessment of their quality. Geomorphology, 76(1), pp.148--165. 

Soille, P. (2007). From Mathematical Morphology to Morphological Terrain Features. In: R. 

Peckham and G. Jordan, ed., Digital Terrain Modelling, 1st ed. Berlin: Springer, pp.45 - 

66. 

Soille, P., Vogt, J. and Colombo, R. (2003). Carving and adaptive drainage enforcement of 

grid digital elevation models. Water Resources Research, 39(12), p.1366. 

Sonneveld, B. and Nearing, M. (2003). A nonparametric/parametric analysis of the Universal 

Soil Loss Equation. Catena, 52(1), pp.9--21. 



  References 

 

340 

 

Sorensen, R. and Seibert, J. (2007). Effects of DEM resolution on the calculation of 

topographical indices: TWI and its components. Journal of Hydrology, 347(1), pp.79--

89. 

Stocking, M., O'Riordan, T. and others, (1995). Soil erosion and land degradation. 

Environmental science for environmental management., pp.223--242. 

Strahler, A. (1952). Hypsometric (area-altitude) analysis of erosional topography. Geological 

Society of America Bulletin, 63(11), p.1117. 

Sun, G., Ranson, K., Kharuk, V. and Kovacs, K. (2003). Validation of surface height from 

shuttle radar topography mission using shuttle laser altimeter. Remote Sensing of 

Environment, 88(4), pp.401--411. 

Suri, M., Cebecauer, T., Hofierka, J. and Fulajtar, E. (2002). Soil erosion assessment of 

Slovakia at a regional scale using GIS. Ecology (Bratislava), 21(4), pp.404 - 422. 

Suwandana, E., Kawamura, K., Sakuno, Y., Kustiyanto, E. and Raharjo, B. (2012). 

Evaluation of ASTER GDEM2 in comparison with GDEM1, SRTM DEM and 

topographic-map-derived DEM using inundation area analysis and RTK-dGPS data. 

Remote Sensing, 4(8), pp.2419--2431. 

Tang, C. and Liu, C. (2009). Surface water hydrologic simulation of Qingshuijiang Watershed 

based on SRTM DEM. Journal Of Liaoning Technical University (Natural Science 

Edition), 28(4), pp.652-655. 

Tarboton, D. (1997). A new method for the determination of flow directions and upslope 

areas in grid digital elevation data. Water Resources Research, 33(2), pp.309 - 319. 

Tarboton, D., Bras, R. and Rodriguez-Iturbe, I. (1992). A physical basis for drainage density. 

Geomorphology, 5(1), pp.59--76. 

Tarboton, D., Bras, R. and Rodriguez-Iturbe, I. (1991). On the extraction of channel networks 

from digital elevation data. Hydrological processes, 5(1), pp.81--100. 

Tarolli, P. and Dalla Fontana, G. (2009). Hillslope-to-valley transition morphology: New 

opportunities from high resolution DTMs. Geomorphology, 113(1), pp.47--56. 

Teh, S. (2011). Soil Erosion Modeling using RUSLE and GIS on Cameron Highlands, 



  References 

 

341 

 

Malaysia for Hydropower Development. A Master´s thesis. RES | The School for 

Renewable Energy Science. 

Terranova, O., Antronico, L., Coscarelli, R. and Iaquinta, P. (2009). Soil erosion risk 

scenarios in the Mediterranean environment using RUSLE and GIS: an application 

model for Calabria (southern Italy). Geomorphology, 112(3), pp.228--245. 

Tetzlaff, B., Friedrich, K., Vorderbrugge, T., Vereecken, H. and Wendland, F. (2013). 

Distributed modelling of mean annual soil erosion and sediment delivery rates to surface 

waters. Catena, 102, pp.13--20. 

Thieler, E., Himmelstoss, E., Zichichi, J. and Ergul, A. (2009). Digital Shoreline Analysis 

System (DSAS) version 4.0 - An ArcGIS extension for calculating shoreline change. U.S. 

Geological Survey Open-File Report 2008-1278. 

Thomas, J., Joseph, S., Thrivikramji, K. and Arunkumar, K. (2014). Sensitivity of digital 

elevation models: The scenario from two tropical mountain river basins of the Western 

Ghats, India. Geoscience Frontiers, 5(6), pp.893-909. 

Thompson, J., Bell, J. and Butler, C. (2001). Digital elevation model resolution: effects on 

terrain attribute calculation and quantitative soil-landscape modeling. Geoderma, 100(1), 

pp.67--89. 

Thuringian State Institute of Agriculture, (2013). C-factor table - project. [online] Tll.de. 

Available at: http://www.tll.de/verstola/content/verstola/methodik/dabag/c-faktor/c-

tabelle.html [Accessed Sep. 2013]. 

Tighe, M. and Chamberlain, D. (2009). Accuracy Comparison of the SRTM, ASTER, NED, 

NEXTMAP USA Digital Terrain Model over Several USA Study Sites. ASPRS/MAPPS 

2009 Fall Conference November 16-19, 2009 San Antonia, Texas. 

Toutin, T. (2008). ASTER DEMs for geomatic and geoscientific applications: a review. 

International Journal of Remote Sensing, 29(7), pp.1855--1875. 

Toy, T., Foster, G. and Renard, K. (2002). Soil erosion: processes, prediction, measurement 

and control. New York: John Wiley & Sons. 

Tribe, A. (1992). Automated recognition of valley lines and drainage networks from grid 

digital elevation models: a review and a new method. Journal of Hydrology, 139(1), 



  References 

 

342 

 

pp.263--293. 

Trowbridge, S. (2014). A Comparison of Digital Elevation Models to Accurately Predict 

Stream Locations. A Master's thesis. University of Nebraska. 

Turcotte, R., Fortin, J., Rousseau, A., Massicotte, S. and Villeneuve, J. (2001). Determination 

of the drainage structure of a watershed using a digital elevation model and a digital 

river and lake network. Journal of Hydrology, 240(3), pp.225--242. 

Twining, S. and Clarke, J. (2009). Future of UK winter oilseed rape production. Crop 

Protection Association Agricultural Industries Confederation: ADAS, 14. 

UK Agriculture, (2013). UK agriculture, farming, food, the countryside. [online] Available at: 

http://www.ukagriculture.com/ [Accessed 9 Sep. 2014]. 

Urai, M., Tachikawa, T. and Fujisada, H. (2012). Data acquisition strategies for ASTER 

global DEM generation. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial 

Information Sciences, I-4, pp.199--202. 

Usery, E., Finn, M., Scheidt, D., Ruhl, S., Beard, T. and Bearden, M. (2004). Geospatial data 

resampling and resolution effects on watershed modeling: A case study using the 

agricultural non-point source pollution model. Journal of Geographical Systems, 6(3), 

pp.289--306. 

van der Knijff, J., Jones, R. and Montanarella, L. (1999). Soil erosion risk assessment in Italy. 

European Soil Bureau, EUR 19022 EN, p.52. 

van der Knijff, J., Jones, R. and Montanarella, L. (2000). Soil erosion risk assessment in 

Europe. European Soil Bureau. EUR 19044 EN, p.36. 

Van Rompaey, A., Bazzoff, P., Montanarella, R. and Govers, L. (2003). Validation of soil 

erosion risk assessments in Italy. European Soil Bureau Research Report No. 12, EUR 

20676EN. Office for Official Publications of the European Communities, Luxembourg, 

p.25. 

Vaze, J., Teng, J. and Spencer, G. (2010). Impact of DEM accuracy and resolution on 

topographic indices. Environmental Modelling & Software, 25(10), pp.1086--1098. 

Verheijen, F., Jones, R., Rickson, R. and Smith, C. (2009). Tolerable versus actual soil 



  References 

 

343 

 

erosion rates in Europe. Earth-Science Reviews, 94(1), pp.23--38. 

Vianello, A., Cavalli, M. and Tarolli, P. (2009). LiDAR-derived slopes for headwater channel 

network analysis. Catena, 76(2), pp.97--106. 

Vieux, B. (1993). DEM aggregation and smoothing effects on surface runoff modeling. 

Journal of Computing in Civil Engineering, 7(3), pp.310--338. 

Vieux, B. (2005). Distributed hydrologic modeling using GIS. 2nd ed. Dordrecht: Kluwer. 

Vliet, L., Wall, G. and Dickinson, W. (1976). Effects of agricultural land use on potential 

sheet erosion losses in southern Ontario. Canadian Journal of Soil Science, 56(4), 

pp.443--451. 

Vogt, J., Colombo, R. and Bertolo, F. (2003). Deriving drainage networks and catchment 

boundaries: a new methodology combining digital elevation data and environmental 

characteristics. Geomorphology, 53(3), pp.281--298. 

Volk, M., Moller, M. and Wurbs, D. (2010). A pragmatic approach for soil erosion risk 

assessment within policy hierarchies. Land Use Policy, 27(4), pp.997--1009. 

Vrieling, A. (2006). Satellite remote sensing for water erosion assessment: A review. Catena, 

65(1), pp.2--18. 

Wall, G., Coote, D. and Pringle, E. (2002). RUSLEFAC - Revised Universal Soil Loss 

Equation for Application in Canada: A Handbook for Estimating Soil Loss from Water 

Erosion in Canada. Ottawa: Research Branch, Agriculture and Agri-Food Canada. 

Walling, D. and Amos, C. (1999). Source, storage and mobilisation of fine sediment in a 

chalk stream system. Hydrological processes, 13(3), pp.323--340. 

Walling, D. and Quine, T. (1991). Use of 137Cs measurements to investigate soil erosion on 

arable fields in the UK: potential applications and limitations. Journal of Soil Science, 

42(1), pp.147--165. 

Walling, D., Collins, A., Jones, P., Leeks, G. and Old, G. (2006). Establishing fine-grained 

sediment budgets for the Pang and Lambourn LOCAR catchments, UK. Journal of 

Hydrology, 330(1), pp.126--141. 

Wang, L. and Liu, H. (2006). An efficient method for identifying and filling surface 



  References 

 

344 

 

depressions in digital elevation models for hydrologic analysis and modelling. 

International Journal of Geographical Information Science, 20(2), pp.193--213. 

Wang, X. and Yin, Z. (1998). A comparison of drainage networks derived from digital 

elevation models at two scales. Journal of Hydrology, 210(1), pp.221--241. 

Warren, S., Hohmann, M., Auerswald, K. and Mitasova, H. (2004). An evaluation of methods 

to determine slope using digital elevation data. Catena, 58(3), pp.215--233. 

Warren, S., Mitasova, H., Hohmann, M., Landsberger, S., Iskander, F., Ruzycki, T. and 

Senseman, G. (2005). Validation of a 3-D enhancement of the Universal Soil Loss 

Equation for prediction of soil erosion and sediment deposition. Catena, 64(2), pp.281--

296. 

Wass, P., Marks, S., Finch, J., Leeks, G. and Ingram, J. (1997). Monitoring and preliminary 

interpretation of in-river turbidity and remote sensed imagery for suspended sediment 

transport studies in the Humber catchment. Science of the Total Environment, 194, 

pp.263--283. 

Wechsler, S. (2007). Uncertainties associated with digital elevation models for hydrologic 

applications: a review. Hydrology & Earth System Sciences, 11(4), pp.1481--1500. 

Wechsler, S. and Kroll, C. (2006). Quantifying DEM uncertainty and its effect on topographic 

parameters. Photogrammetric Engineering and Remote Sensing, 72(9), p.1081. 

Weng, Q. (2002). Quantifying uncertainty of digital elevation models derived from 

topographic maps. Springer, pp.403--418. 

Wensum Alliance, (2013). River Wensum Demonstration Test Catchment Project | Wensum 

Alliance. [online] Available at: http://www.wensumalliance.org.uk [Accessed 11 Mar. 

2013]. 

Weydahl, D., Sagstuen, J., Dick, O. and Ronning, H. (2007). SRTM DEM accuracy 

assessment over vegetated areas in Norway. International Journal of Remote Sensing, 

28(16), pp.3513--3527. 

Widayati, A., Lusiana, B., Suyamto, D. and Verbist, B. (2004). Uncertainty and effects of 

resolution of digital elevation model and its derived features: case study of Sumberjaya, 

Sumatera, Indonesia. Int. Arch. of Photogrammetry and Remote Sensing, 35, pp.1013--



  References 

 

345 

 

1018. 

Wilson, J. (2012). Digital terrain modeling. Geomorphology, 137(1), pp.107--121. 

Wilson, J. and Gallant, J. (2000). Terrain analysis: Principles and Applications. New York: 

Wiley. 

Wilson, J., Aggett, G., Deng, Y. and Lam, C. (2008). Water in the Landscape: A Review of 

Contemporary Flow Routing Algorithms. In: Q. Zhou, B. Lees and G. Tang, ed., 

Advances in Digital Terrain Analysis, 1st ed. Berlin: Springer, pp.213 - 236. 

Wischmeier, W. and Smith, D. (1978). Predicting rainfall erosion losses: A guide to 

conservation planning. Agricultural Handbook 537. U.S. Department of Agriculture, 

Science and Education Administration, Washington, DC. 

Wise, S. (1998). Digital terrain models - traps for the unwary. In Proceedings of the 3rd 

International Conference on GeoComputation '98 .University of Bristol, UK, pp. 1--18. 

Wise, S. (2000). Assessing the quality for hydrological applications of digital elevation 

models derived from contours. Hydrological processes, 14(11-12), pp.1909--1929. 

Wise, S. (2007). Effect of differing DEM creation methods on the results from a hydrological 

model. Computers & Geosciences, 33(10), pp.1351--1365. 

Wise, S. (2008). The Accuracy of Gridded Digital Elevation Models Interpolated to Higher 

Resolution. In: GIS Research UK 2008 16th Annual Conference. Manchester 

Metropolitan University. 

Wolock, D. and McCabe, G. (1995). Comparison of single and multiple flow direction 

algorithms for computing topographic parameters in TOPMODEL. Water Resources 

Research, 31(5), pp.1315--1324. 

Wu, S., Li, J. and Huang, G. (2005). An evaluation of grid size uncertainty in empirical soil 

loss modeling with digital elevation models. Environmental Modeling & Assessment, 

10(1), pp.33--42. 

Wu, S., Li, J. and Huang, G. (2007). Modeling the effects of elevation data resolution on the 

performance of topography-based watershed runoff simulation. Environmental 

Modelling & Software, 22(9), pp.1250--1260. 



  References 

 

346 

 

Wu, S., Li, J. and Huang, G. (2008a). A study on DEM-derived primary topographic 

attributes for hydrologic applications: sensitivity to elevation data resolution. Applied 

Geography, 28(3), pp.210--223. 

Wu, S., Li, J. and Huang, G. (2008b). Characterization and evaluation of elevation data 

uncertainty in water resources modeling with GIS. Water resources management, 22(8), 

pp.959--972. 

Yang, M., Li, X., Hu, Y. and He, X. (2012). Assessing effects of landscape pattern on 

sediment yield using sediment delivery distributed model and a landscape indicator. 

Ecological Indicators, 22, pp.38--52. 

Zandbergen, P. (2006). The effect of cell resolution on depressions in digital elevation 

models. Applied GIS, 2(1), pp.4(1)-4(16). 

Zhang, J. and Goodchild, M. (2002). Uncertainty in geographical information. London: 

Taylor & Francis. 

Zhang, J., Chang, K. and Wu, J. (2008). Effects of DEM resolution and source on soil erosion 

modelling: a case study using the WEPP model. International Journal of Geographical 

Information Science, 22(8), pp.925--942. 

Zhang, W. and Montgomery, D. (1994). Digital elevation model grid size, landscape 

representation, and hydrologic simulations. Water resources research, 30(4), pp.1019--

1028. 

Zhang, W., Zhang, Z., Liu, F., Qiao, Z. and Hu, S. (2011). Estimation of the USLE cover and 

management factor C using satellite remote sensing: A review. IEEE Conference 

Publications, 19th International Conference on Geoinformatics, pp.1--5. 

Zhang, X., Drake, N., Wainwright, J. and Mulligan, M. (1999). Comparison of slope 

estimates from low resolution DEMs: scaling issues and a fractal method for their 

solution. Earth Surface Processes and Landforms, 24(9), pp.763--779. 

Zhang, X., Zhang, Y., Wen, A. and Feng, M. (2003). Assessment of soil losses on cultivated 

land by using the 137Cs technique in the Upper Yangtze River Basin of China. Soil and 

Tillage Research, 69(1), pp.99--106. 

Zhou, Q. and Liu, X. (2004). Analysis of errors of derived slope and aspect related to DEM 



  References 

 

347 

 

data properties. Computers & Geosciences, 30(4), pp.369--378. 

Zhou, Q. and Liu, X. (2008). Assessing Uncertainties in Derived Slope and Aspect from a 

Grid DEM. In: Q. Zhou, B. Lees and G. Tang, ed., Advances in Digital Terrain Analysis, 

1st ed. Berlin: springer, pp.279 - 306. 

Zhou, Q., Lees, B. and Tang, G. (2008). Advances in digital terrain analysis. Berlin: 

Springer-Verlag. 

 

 



   

 

348 

 

APPENDIX 1: Suspended Sediment – Turbidity Relationship 
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Date/time Stage (m) Discharge (m3/s) Discharge (l/s) Turbidity TSS (mg/l) Filter Load (kg/hour) Total Load (kg) Total load (tonne) 

01/04/2012 00:00 0.20788 0.007937683 7.9376825 6.8 9.639230662 1 0.275447349 1503.527109 1.503527109 

01/04/2012 01:00 0.20788 0.007937683 7.9376825 7 9.916928906 1 0.283382759   

01/04/2012 02:00 0.20788 0.007937683 7.9376825 3.5 5.02837907 1 0.143689236   

01/04/2012 03:00 0.20665 0.0078214 7.821400009 4.3 6.152087914 1 0.173224586   

01/04/2012 04:00 0.20665 0.0078214 7.821400009 3.7 5.309751416 1 0.149506883   

01/04/2012 05:00 0.20299 0.007481437 7.481437024 3.7 5.309751416 1 0.143008455   

01/04/2012 06:00 0.20421 0.007593755 7.593754939 4 5.731239003 1 0.156677848   

01/04/2012 07:00 0.20482 0.00765029 7.650289506 3 4.323480908 1 0.11907317   

01/04/2012 08:00 0.20604 0.007764112 7.764111678 3.1 4.464638786 1 0.124790235   

01/04/2012 09:00 0.20452 0.007622454 7.62245429 5.3 7.550846423 1 0.207201534   

01/04/2012 11:00 0.20604 0.007764112 7.764111678 4.7 6.712304061 1 0.187614282   

01/04/2012 12:00 0.20726 0.00787894 7.878940321 3.9 5.590816551 1 0.158578956   

01/04/2012 13:00 0.20971 0.008112591 8.11259058 4.5 6.432321767 1 0.187858055   

01/04/2012 14:00 0.20604 0.007764112 7.764111678 3.2 4.605704697 1 0.12873314   

01/04/2012 15:00 0.20757 0.007908279 7.908278802 2.6 3.757863723 1 0.106985642   

30/04/2012 16:00 0.66667 0.143965602 143.9656021 7.4 10.47184919 1 5.427309866 
  30/04/2012 17:00 0.66361 0.142327931 142.3279306 4.5 6.432321767 1 3.295796566 
  30/04/2012 18:00 0.65324 0.136861106 136.8611061 4.2 6.011872963 1 2.962049701 
  30/04/2012 19:00 0.64591 0.133073884 133.0738836 5.5 7.829923219 1 3.751049847 
  30/04/2012 20:00 0.64072 0.130430681 130.4306808 4.5 6.432321767 1 3.020299587 
  30/04/2012 21:00 0.63339 0.126751477 126.7514765 4.4 6.292237006 1 2.871181192 
  30/04/2012 22:00 0.62882 0.124489407 124.4894072 4.3 6.152087914 1 2.757131198 
  30/04/2012 23:00 0.62515 0.122690427 122.690427 3.9 5.590816551 1 2.469382811 
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Discharge x TSS x60 x 60 / 10^6 

Conversion of Turbidity to TSS and Stage to Discharge and then the calculation of total sediment loss for April 2012, mini-catchment A 


