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Thesis abstract 
 
How species originate and how communities of species assemble are among the most 

intriguing questions in biology, and colonisation is a key element to understand them. 

Using two island scenarios and applying molecular tools, this thesis looks within 

species to investigate the themes of colonisation (both island colonisation and European 

continental recolonisation) and diversification processes in invertebrates. The aim was 

to address three gaps in our understanding about island colonisation, speciation and the 

assembly of biota. In the Canary Islands, an oceanic island system, the gaps addressed 

were: (i) the possibility that genomic admixture among multiple founding lineages has 

featured in the diversification of a very species rich coleopteran genus; and (ii) the lack 

of information regarding the colonisation history and dynamics of the small arthropod 

soil dwelling fauna. In Great Britain, a continental island system, the gap addressed was 

the under-explored possibility that the UK was not completely defaunated during 

glaciations, then recolonised from external sources, but that a more complex pattern, 

involving persistence within small cryptic refugia, may have featured in the history of 

its invertebrate soil dwelling fauna. I reveal two instances of shared mtDNA variation 

among weevil species from different Canarian islands for which I was able to dismiss 

explanations of incomplete lineage sorting and reveal a history of colonisation and 

speciation involving genetic admixture (first gap). I characterise Collembola 

evolutionary diversity within Tenerife and the distribution of lineage colonisation times, 

and reveal this fauna to be represented by a mosaic of very old lineages and a large 

number of very recently arrived lineages (second gap). Finally, I reveal signatures of 

survival and persistence of the Collembola fauna through the last Pleistocene glaciation 

in Great Britain (third gap). How these results fit into a broader evolutionary and 

conservation context as well as future directions are discussed.  
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Chapter 1 – General Introduction 
 
1.1 Background 
 
How species originate and how communities of species assemble are among the most 

intriguing questions in biology, and colonisation is a key element to understand them.  

Insights on how biological communities are formed and the relative roles of factors such 

as immigration, establishment, speciation, and extinction, operating at broad 

spatiotemporal scales, have been obtained in a variety of molecular studies and field 

experiments (e.g. Roderick & Gillespie, 1998; Thornton et al., 2001; Emerson & 

Gillespie, 2008; Wilson et al., 2011). Insular systems have been particularly useful for 

such studies, due to their simplication, when compared to continental systems (Warren 

et al., 2014 and references therein). Colonisation provides the primary source for the 

assembly of species within a newly available area, as well as contributing species to 

already established assemblages. Lineages from a regional gene pool have distinct 

historical and ecological features, of which a subset will be involved in the colonisation 

of a given site (Ricklefs, 2004; Emerson & Gillespie, 2008). After arrival, lineages will 

pass through an environmental filter (and a biotic filter in the case of non-empty areas), 

with their species-specific features influencing the success of establishment and any 

subsequent evolutionary change (Emerson & Gillespie, 2008; HilleRisLambers et al., 

2012). These evolutionary changes are affected by microevolutionary processes, 

including genetic drift, selection, gene flow, and mutation, that act separately or in 

concert to promote the rise of divergences that may follow colonisation (e.g. Grant, 

1998; Roderick & Gillespie, 1998; Clegg, 2010).  

 

Insular systems, especially oceanic islands, have great appeal over continental systems 

for studying evolution because of their discrete boundaries, limited size and isolation. 

This results in terrestrial populations that are discretely bounded with reduced gene flow 

between them (Emerson, 2002). Island areas and inter-island distances are easily 

measured, and island communities tend to be less species rich than continental 

communities, facilitating the cataloguing of their fauna and flora (e.g. Heaney et al., 

2005). Furthermore, when the time of emergence of an island is known, studies can be 

placed within a temporal framework, while if islands form an archipelago, studies can 
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potentially be replicated (e.g. Parent et al., 2008). Thus, insular systems provide ideal 

theatres (both geographical and historical) to study colonisation and species 

diversification (Emerson 2002).  

 

Traditionally, two types of islands are recognized, those that emerged from the ocean 

(oceanic islands, Darwinian islands, de novo islands) and those that were separated from 

an existing landmass, or an existing habitat (continental islands or fragment islands) 

(Gillespie & Roderick, 2002; Whittaker & Fernandez-Palacios, 2007). The fundamental 

difference between them is that de novo islands are completely devoid of life when they 

appear from the ocean, thus requiring colonisation events for the establishment of their 

biota, while continental islands are already populated when they become separated from 

the continent. Consequently, in oceanic islands, immigration will increase species 

number at the early stages of community assembly with rate being dependent on the 

distance to source areas. Over time, if isolation persists, diversification will result in 

new endemic species (Gillespie & Roderick, 2002). By contrast, in continental islands, 

ecological niches are already filled at the initial stage of their insularisation, and over 

time species numbers will decrease as a result of relaxation, where extinction rate 

exceeds colonisation (Whittaker & Fernandez-Palacios, 2007).  

 

In this thesis, the history and dynamics of invertebrate colonisation and diversification 

were investigated in two systems: the Canary Islands, a de novo islands system that 

began to emerge from the ocean around 25 million years ago and its currently formed 

by seven major islands and several islets (Fernández-Palacios et al., 2011) (for details 

see Appendix 1); and the United Kingdom, a continental insular system that falls in-

between the two types of islands. On the one hand, it was first fragmented from the 

European continent with the formation of the English Channel around 450 thousand 

years ago1 (Gupta et al., 2007), thus supporting a biota upon formation. On the other 

hand, it was extensively covered by ice and permafrost during Pleistocene glaciations 

(Chiverrell & Thomas, 2010), resulting in the extirpation of its biota over much of the 

modern land mass. Postglacial recolonisation from the mainland would then have been 

                                                        
1 Changing of sea levels following cycles of glaciations allowed Britain to be connected to Europe 
repeated times after the formation of the English Channel – e.g. Doggerland. It is argued that it finally 
became physically disconnected from the continent with the complete flooding of Doggerland around 
6,500 years ago (Weninger et al., 2008; Pettitt & White, 2012) 
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required to fill newly opened ecological spaces (Yalden, 1982; Hewitt, 2000a; 

Montgomery et al., 2014), although it remains possible that some species could have 

survived in refugia through glaciations, thus also contributing to the re-establishment of 

the biota (Stewart et al., 2010) . Within these two island scenarios, this thesis looks 

within species to investigate the themes of colonisation (both island colonisation and 

European continental recolonisation), differentiation and diversification processes in 

invertebrates. 

 

1.2 Oceanic Island system: aids, difficulties and bias 
 
Typically, studying colonisation on oceanic islands is facilitated by the simplified 

nature of islands (as described above) in relation to continental systems, and by the 

easiness of determining the progression rule (Wagner & Funk, 1995), which is the most 

common colonisation scenario predicted and tested on island systems, also known as 

stepping stone colonisation. Within an archipelago, islands emerge at different times, 

and by contrasting the age of the islands with the phylogenetic content of a lineage, 

inferences of the colonization pathways and speciation can be obtained (e.g. Parent et 

al., 2008). The progression rule predicts that colonisation will follow the formation of 

the islands with direction starting from the old islands down to the young islands 

(Wagner & Funk, 1995). This is the predominant pattern of colonisation described for 

Hawaiian taxa (reviewed in Gillespie & Roderick, 2002), and it has also been observed 

for several Canary Island taxa (reviewed in Juan et al., 2000). Island systems also 

facilitate the study of the processes that lead to diversification and species formation, 

and phylogenetic information have helped to define a number of factors responsible for 

generating species richness on a given archipelago. Multiple colonization events, 

increased speciation through bottleneck and founder flush events, diversification in situ 

from a founding population into a number of species caused by vicariant events or by 

adapting to diverse environmental niches, are some of these factors (Emerson 2002). 

The main assumption   is   that   “for   a   given   species   group   within   an   archipelago,   the  

species assemblage of an individual island within the archipelago is the result of a 

single colonisation event, thus, suggesting within island diversification to be the 

mechanism generating diversity”  (Emerson  2002,  pg.  952).   
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Despite the simplicity of predictions and assumptions provided by insular systems, the 

interpretation of phylogenetic information and inference of colonisation pathways can 

be problematic due to several issues that are likely to confound genetic signatures. 

These issues include back colonisation to the source (continent or another island), intra-

island differentiation, recent colonisation, incomplete sampling, extinction, 

hybridization and incomplete lineage sorting (Juan et al., 2000; Emerson, 2002). For 

example, within a complex of species of the beetle Nesotes from the western Canary 

Islands, inferences of island taxa monophyly have been complicated by the apparent 

retention of ancestral genetic polymorphism, and an intricate pattern of colonisation has 

been suggested for the group (Rees et al., 2001). Moreover, a phylogenetic signature of 

a single colonisation episode may result from hybridization and introgression between 

two colonising lineages that arrived independently to an island (Emerson 2002). This is 

a complex issue, difficult to evaluate, and only detected in a small number of studies to 

date, including the Hawaiian Lapaula crickets (Shaw, 2002), Canary Island 

Aphanathrum beetles (Jordal et al., 2006), and mockingbirds and giant tortoises of the 

Galápagos archipelago (Nietlisbach et al., 2013; Garrick et al., 2014). The potential for 

a species within an insular setting to be the result of genomic admixture following two 

distinct colonisation events does not seem to be negligible. In fact, it could be a 

representative feature within island organisms, but the genetic signatures of this 

phenomenon are transient, thus complicating its detection (Emerson and Faria 2014, see 

Appendix). For example, Garrick et al. (2014) present strong evidence that the 

Galápagos giant tortoise, Chelonoidis becki, is the result of a double colonization event 

involving C. darwini from Santiago island. Their data reveal the two founding lineages 

not to be reproductively isolated as they have started to coalesce back into one. As time 

moves forward, coalescence of the two lineages will reach completion and the signature 

of genomic admixture will be eroded (Emerson and Faria, 2014). 

 

1.2.1 The first bias 
 

Studies of colonisation and diversification on islands are typically directed toward 

describing evolutionary events (such as species radiation) that follow single 

colonisation events, and there are only a limited number of studies describing the 

evolutionary consequences following multiple colonisation events. This is likely due to 
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the difficulty of predicting where this phenomenon is going to be found, and a potential 

way to circumvent this difficulty is by looking within single species, or complexes of 

closely related species, distributed across multiple islands in an archipelago. As the unit 

of branch length in a phylogenetic tree indicates the evolutionary distance, which is the 

product of the rate of evolution (number of substitutions per site per unit time) (Baum & 

Smith, 2012), this can be used to get a temporal estimate for the age of the group, which 

in turn will indicate the possibility of detecting this phenomenon. If very long branches 

(deep genetic divergence) connect species within this complex, representing millions of 

years since each one originated on its islands, then no signature of potential double 

colonisation is likely to be found as it has been overwritten. However, if very short 

branches (shallow genetic divergence) connect species, evolutionary time has not been 

long enough to erode this signature, then, double colonisation events are more likely to 

be found.  

 

Chapter 2 addresses this issue by investigating the history of diversification within a 

species complex belonging to the most diverse genus in the Canary Islands, the weevil 

genus Laparocerus, with 128 described species that are endemic to the archipelago 

(Warren et al., 2014).  Molecular work looking at phylogenetic relationships among 

many of these species (Machado, unpublished), revealed a complex of 9 closely related 

species – the Laparocerus tessellatus complex, all single island endemics distributed 

across 4 different islands, to be connected by shallow genetic distance (short branch 

lengths). This suggests a recent origin for the group, and provides an opportunity to 

investigate the relationships among individuals sampled from the different islands to 

evaluate the fit of mtDNA and nuclear sequence data to a colonisation history where 

species are the product of a single founding event.  

 

1.2.2 The second bias 
 

Studies of invertebrate colonisation on islands are also biased toward large arthropods 

occurring above the soil surface in the most widely investigated archipelagos. For 

example, in the Galápagos archipelago, studies have focused on arthropods from Insecta 

orders such as Lepidopetra, Hemiptera, Homoptera and Coleoptera (e.g. weevils and 

darkling beetles) (reviewed in Parent et al., 2008). In the Hawaii, Aranea and Insecta 
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(Isopoda, Odonata, Lepidoptera, Hemiptera, Orthoptera, Pscoptera and Diptera) are the 

main orders investigated (e.g. Gillespie & Roderick, 2002; Jordan et al., 2005; Medeiros 

& Gillespie, 2011; Croucher et al., 2012; Lapoint et al., 2013), while in the Canary 

Island studies have mainly focused on Coleoptera, Orthoptera and Aranae (e.g. Juan et 

al., 2000; Contreras-Díaz et al., 2007; Lopez et al., 2013; Macías-Hernández et al., 

2013; Husemann et al., 2014; Opatova & Arnedo, 2014). Thus, there is a tendency 

towards large above-soil arthropods and against small-bodied soil-dwelling 

invertebrates, such as springtails and mites, for which very little information is currently 

available.  

 

Even though soil species are one of the biggest components of biodiversity (accounting 

for approximately 25% of the 1.5 million described living species on the Earth, 

[Decaëns, 2010]), the invertebrate component of soil has barely been investigated in 

terms of the dynamics of colonisation and community assembly. In part this is probably 

related to the difficulty of demarcating species boundaries, and their complex 

taxonomy.   Soil   fauna   has   been   referred   to   as   the   ‘third   biotic   frontier’   due   to   its  

enormous diversity (below-ground species richness is much higher than that found for 

above ground fauna and vegetation), which makes the tasks of identifying and 

quantifying soil fauna species virtually unmanageable. The estimated average 

taxonomic deficit for overall soil species is 76%, and it is higher than 90% for soil 

organisms   smaller   than   100   μm   (Decaëns, 2010). Additionally, species boundaries 

traditionally described by morphology are being challenged by recent molecular studies 

that reveal high levels of cryptic species, frequently associated with very deep genetic 

divergences (e.g. Garrick et al., 2007; Cicconardi et al., 2010; Mortimer et al., 2012). As 

a result, previous assumptions about shared species between islands and continents are 

being refuted and the apparently wide distributions and morphological stasis of many 

morphospecies in different groups (e.g. Collembola, Nematodes, Acari) are being 

reconciled with their limited dispersal ability (Emerson et al., 2011).  

 

Likewise, the frequently vast population densities found for below-ground fauna (e.g. 

up to 60 000 individuals per m2 for Collembola [Hopkin, 1997]) complicates the tasks 

of demarcating community boundaries which also contributes to the bias towards large 

arthropods studies with more discretely delimited communities (Vamosi et al., 2009). 
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The much better fit between morphological species and biological species typically 

found for large arthropods allows a great number of inferences about patterns of 

colonisation to be made based on presence and absence data, however, the problematic 

taxonomy of soil dwelling fauna (such as springtails, mites, and earthworms) greatly 

constrain the acquisition of presence and absence data, thus, limiting what can be 

inferred about their colonisation histories.  

 

To overcome this limitation and bias, second-generation sequencing techniques like 

pyrosequencing, originally developed to address similar issues of demarcating 

community and species boundaries in the microbial fauna (e.g. Chu et al., 2010), are 

emerging as a possible solution. Second-generation sequencing techniques have been 

applied to cryptic complex eukaryote systems, such as fungi (Rousk et al., 2010), 

protists (Medinger et al., 2010), marine benthic meiofauna (Fonseca et al., 2010), and 

arthropods (Yu et al., 2012) including soil dwelling fauna (Ramirez-Gonzalez et al., 

2013), and have proved to be a useful tool to obtain information for some of these 

elements of biodiversity that are otherwise very difficult to study.  

 

Chapter 3 deals with these issues of bias and limitation by employing pyrosequencing 

data of the mtDNA COI gene obtained from a 454-sequencing platform to investigate 

the history of colonisation of the Collembola community in the Canary Islands, by 

sampling the island of Tenerife. As very little data is currently known, the aim was to 

describe general broad patterns that could provide some information regarding: (i) how 

many Collembola lineages are there in Tenerife; (ii) where do they come from; (iii) the 

extent to which the Collembola community is composed of older or more recently 

arrived lineages. Results acquired from such an analysis may serve as a baseline for 

more detailed studies investigating specific details of colonisation, diversification and 

community structure within the Collembola community of the Canary Islands. 

 

1.3 Continental island systems: historical facts and gaps 

 

Although oceanic island have been the focus of the majority of island studies 

investigating colonisation, colonisation also concerns establishment into new areas 

within more continuous continental landscapes, where the interaction of geography and 
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climate may also lead to periods of isolation and biotic extirpation, such as the 

relationship between Great Britain and the European continent. At the present time, 

there is an apparently simple scenario because island and mainland are separated by the 

English Channel, a clear boundary for colonisation to Great Britain from the continent. 

However, through periods of geological time Great Britain was connected to the 

continent, and for repeated cycles it was glaciated (revised in White & Schreve, 2001). 

The result is a complex scenario within which to understand the dynamics of 

colonisation and species diversification.  

 

In this continental island setting, climate and geography have had a much greater 

importance (when compared to oceanic islands) in defining the hospitable terrains 

where species could colonise and establish. Over the last 700 thousands of years, 

climatic oscillations massively changed the habitable landscape of Great Britain and 

European surroundings due to the repeated advance and retreat of ice sheets, directly 

affecting biogeographic distributions, species richness and the assembly of biota (Webb 

& Bartlein, 1992; Hewitt, 2003). The primary consequence of these climatic changes 

was that species shifted their ranges to track suitable habitats and confirmation for this 

came initially from fossil and pollen data (Huntley & Birks, 1983; Huntley & 

Thompson Webb, 1989; Bennett et al., 1991). Comprehensive analysis of pollen fossil 

diagrams and macrofossils demonstrated that during cold periods, as ice and permafrost 

covered most part of northern Europe, species went extinct over large parts of their 

ranges, while others dispersed to new areas or survived in refugia with suitable climate 

(Bennett et al., 1991 and references therein). These refugia were mainly located in 

southern Europe, which maintained suitable habitats due to their latitudinal position. 

During warm periods, ice released areas became hospitable and surviving species were 

able to expand their distributions and colonise new territories. These expansion and 

contraction range changes occurred repeatedly following the climatic oscillations and 

fossil data in ice cores indicated these post-glacial expansions to have been remarkably 

rapid for many species (e.g. Coope et al., 1977; Huntley & Birks, 1983; Bennett, 1985).  

 

With the advent of molecular genetics, the consequence of these climatic changes on the 

genetic structure of species was also revealed. Paleontological studies were 

corroborated and advanced since it was possible to describe intraspecific geographical 



 
 

9 

structure (through the identification of lineages) and identify postglacial colonisation 

routes, when the location of refugia were known (Hewitt, 1996, 1999; Taberlet et al., 

1998). The processes associated with range shifts (reduction in population size, 

fragmentation and range expansion) during the Pleistocene also impacted the genetic 

variability of species and this has been demonstrated for many plant and animal species 

(e.g Petit et al., 2003; Hewitt, 2011 and references therein). In southern Europe, as a 

result of the long-term isolation in refugia and varied topography, lineages are generally 

highly divergent, particularly if they were not the source of postglacial expansion. 

Likewise, due to the successive founder events following rapid postglacial colonisation, 

intraspecific diversity tends to decline away from refugia thus being especially low in 

northern Europe (e.g. Hewitt, 2004).  

 

Concordant geographical structures found among many taxa have demonstrated how 

refugial genomes contributed to the re-colonization of central and northern Europe, and 

three general expansion routes from the southern Mediterranean refugia have been 

proposed (Hewitt, 1999). Contemporary biotas in northern European areas are either the 

result of postglacial expansion predominantly from a Balkan refugium (as exemplified 

by the grasshopper Chorthippus parallellus), or they are the result of expansion from 

refugia in the three Mediterranean peninsulas (as with the hedgehog Erinaceus 

concolor). The third pattern identifies distinct western and eastern lineages, suggesting 

expansion from both Iberian and Balkan refugia (as in the case of the brown bear Ursus 

actors [reviewed in Hewitt, 2011]). Particularly for Great Britain, the prediction that has 

arisen from these model studies is that, following the retreat of the British-Irish ice sheet 

after the last glacial maximum, fauna and flora arrived in the island exclusively from 

southern European refuges. Studies have supported this prediction, revealing many 

species that re-colonised Great Britain from Spain, such as oaks, shrews, hedgehogs and 

bears, while others recolonised from the Balkans, such as grasshoppers, alder, beech 

and newts (Hewitt, 2000).  

 

In concert with the findings of general extinction in northern European areas and 

survival in southern refugia, fossil and genetic data have also provided evidence for the 

survival of species in unexpected areas outside the Mediterranean refugia (e.g. Kullman, 

1998; Ukkonen et al., 1999; Stewart & Lister, 2001; Hänfling et al., 2002). Although 
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initially less recognised, possibly due to inconclusive data and their smaller impact 

(small size, much less number of taxa is found on them) and rarity (very improbable), it 

is now well recognised that non-Mediteranean refugial areas may also be considered 

when interpreting current genetic structures. The first genetic evidence for the existence 

of  ‘northern  cryptic  refugia’  was  identified  for the pygmy shrew (Sorex araneus and S. 

minutus) and the bank vole (Clethrionomys glareolus) in central Europe (Bilton et al., 

1998). Since then, a variety of studies have revealed evidence for non-Mediterranean 

refugia in a number of taxa (revised in Bhagwat & Willis, 2008; and Benke et al., 

2009), including some species in the southern region of the British Isles, as well as in 

the North Sea (e.g. Bernatchez, 2001; Hänfling et al., 2002; Hoarau et al., 2007) (see 

Appendix 2, Tab S1).  

 

The phylogeographic study of invertebrates, particularly those with very limited 

dispersal ability, has been recognised to be suitable for highlighting patterns of survival 

and recolonisation during Pleistocene glaciations (Nieberding et al., 2005; Garrick et al., 

2007). Despite this, only a few studies to date have looked into the phylogeography of 

invertebrates within Europe and Great Britain (Thomaz et al., 1996; Davison, 200; 

Goodacre et al. 2006; Nieberding et al., 2005; McInerney et al., 2014) and to our 

knowledge none exist for very low dispersive taxa, such as soil dwelling fauna. In fact, 

Pleistocene phylogeographic studies looking at European taxa are biased towards 

vertebrate taxa (e.g. fishes, amphibians, birds and mammals), above ground taxa, single 

species, and taxa that survived the Pleistocene in southern refugia (Benke et al., 2009; 

also see Appendix 2, Tab S1).  

 

The final two chapters of the thesis address these issues by investigating the 

recolonisation history of the Collembola fauna of Great Britain following the last 

maximum glacial retraction, using the mtDNA COI barcode gene. Besides looking at 

the patterns of diversification and lineage richness within this continental island, the 

main question addressed was whether Collembola recolonisation has been entirely from 

mainland Europe or whether there is evidence that part of the fauna persisted within 

Great Britain through the Last Glacial Maximum, thus contributing to the process of 

post-glacial recolonisation.  
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In summary, this thesis employs molecular tools (mtDNA and nuclear Sanger 

sequencing and high throughput parallel sequencing) to investigate the history of 

invertebrate colonisation and diversification within two scenarios, (1) an oceanic 

archipelago; and (2) a continental island setting where climate and geography have a 

long-term historical role. The aim was to address three gaps in our understanding about 

island colonisation, speciation and the assembly of the biota. In the oceanic islands 

system - the Canary Islands, the gaps addressed were: (i) the possibility that genomic 

admixture among multiple founding lineages has featured in the recent history of 

diversification of a very species rich coleopteran genus; and (ii) the lack of information 

regarding the colonisation history and dynamics of the small arthropod soil dwelling 

fauna. In the continental island system - Great Britain, the gap addressed was the under-

explored possibility that the UK was not completely defaunated and recolonised from 

external sources, but that a more complex pattern, involving persistence within small 

cryptic refugia, may have featured in the history of its invertebrate soil dwelling fauna. 

 

The timeframes involved in colonisation of the two island scenarios investigated 

(Canary Islands versus postglacial Great Britain) are very different when comparing the 

age of their formation and the time available for colonisation. The Canary Islands were 

available for colonisation much earlier (upon their formation, from 20 Ma for the oldest 

up to 1.1 Ma for the youngest islands, with the age of the islands providing upper limits 

for their colonisation from the continent and other islands) than the lands of Great 

Britain, which were greatly affected by the Quaternary glaciations due to their 

latitudinal position as explained above. The surface of Great Britain was still 

dramatically covered by ice up to 15,000 years ago (the Last Glacial Maximum 

extended from approximately 27,000-15,000 years, [Clark et al. 2012]), thus, fauna and 

flora are thought to have arrived from the mainland only recently, following the retreat 

of the British-Irish ice sheet after the Last Glacial Maximum. On the other hand, when 

taking into account the dynamic history of geological events that affected the Canary 

Islands (for example, the giant landslide in Tenerife that formed the Orotava Valley is 

estimated to have occurred around 0.72 -0.27 Ma [Watts and Masson, 1995]; the 

periodic volcanic activity that has occurred within the last million years in most of the 

Canary Islands [Carracedo et al. 1998]), which likely provoked local extinctions of 
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many taxa, the discrepancy between the timeframes is greatly (at least for the land 

affected by these events). 

 

Despite the different time frame, the evolutionary processes operating in these two areas 

are expected to be similar (e.g. migration, colonisation, differentiation, adaptation, 

population expansion, speciation, extinction) although their frequency and spatial and 

temporal scale may be different. For example, large local extinctions (caused by ice or 

volcanisms), founder flush events, diversification in situ, historical habitat disjunctions, 

recent expansions are operating in both island scenarios. When taking into account time 

since colonisation, for the older Canary Islands, lineages have had time to colonise 

different niches, differentiate and adapt to different habitats. Whereas for the younger 

post-glacial Great Britain, time since colonisation is recent, species are found colonising 

different habitats but they have not had the time to specialise and differentiate yet. Thus, 

we are more likely to find species on the Canary Islands that are at later stages of 

species formation than those species that are the result of post-glacial colonisation in 

Great Britain. Moreover, when considering the diversity of habitats in these two areas, it 

is clear that the Canary Islands is naturally much richer in habitats than Great Britain, 

thus there are more opportunities for genetic differentiation in the oceanic islands which 

is reflected by its much greater diversity. 
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1.5 Appendices 
 
Appendix 1 - Canary Islands: brief outline on their formation and biodiversity   
 

The Canary Islands are of particular interest both historically and biologically, and from 

a geological point of view they are one of the best-studied oceanic island systems 

(Fernández-Palacios et al., 2011), which make them an ideal template for the study of 

evolution.  The archipelago is an island chain of seven major islands and several islets 

situated in the northeast Atlantic Ocean, about 500 km north from the Tropic of Cancer. 

The main islands are aligned from east to west: Lanzarote, Fuerteventura, Gran Canaria, 

Tenerife, La Gomera, La Palma and El Hierro, with Fuerteventura lying closest to the 

African continent (110 km), and La Palma situated the most distant (460 km). The 

origin of the archipelago is controversial, but there is geological support for a hotspot 

origin (van den Bogaard, 2013). The central and western islands are separated by deep 

water and have never been connected to one another, or to the continent. The most 

easterly islands Lanzarote, Fuerteventura and their outlying islets formed a single 

landmass during Pleistocene sea-lowering events. All the islands were formed in the 

past 25 million years (Mya), and recent K-Ar and Sr-Nd-Pb isotopic dating shows a 

general reduction in the age of the islands from east to west: El Hierro arose 

approximately 1.1 Mya, La Palma 1.7 Mya, La Gomera 12 Mya, Tenerife between 11.9 

and 8.9 Mya, Gran Canaria 14.5 Mya, Lanzarote 15.5 Mya, and Fuerteventura 20 Mya 

(Guillou et al., 2004; van den Bogaard, 2013). These ages provide upper limits for their 

colonization from the continent and other islands. With the exception of La Gomera, all 

islands have had periodic volcanic activity after their formation, even within the last 

million years (Carracedo et al., 1998; Fernández-Palacios et al., 2011). 

 

Species endemism are high in the Canary Islands for many groups of plants and 

invertebrates which diversified throughout the islands in a series of distinct species and 

subspecies: about 27% of the approximately 1000 native vascular plant species and 50% 

of the terrestrial invertebrate fauna (c. 6500 species) are endemic (Juan et al. 2000). 

Diversification within the archipelago is found among vertebrates, markedly in geckos 

(Nogales et al., 1998), lizards (Cox et al., 2010) and skinks (Brown & Pestano, 1998); 

with subspecies divergences within some birds (finches and blue tits) (Illera et al., 
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2012), but the most notable examples of diversification can be found among the 

invertebrates  (Juan et al., 2000). The species richness of the Canary Islands has in part 

been attributed to the great variety of habitats present within the archipelago, and this 

has attracted much attention from evolutionary biologists and ecologists. The islands 

have a subtropical climate with warm temperatures and the variation between seasons is 

small. Humid trade winds from northeast strongly influence the climate which, together 

with the drier northwest winds blowing at higher levels and the altitude of the volcanoes 

(e.g. 3718 m, El Teide, Tenerife), create an inversion zone and a distinct vertical 

stratification of the vegetation. Five vegetational strata can be distinguished: (1) from 

sea level up to 250 m - arid subtropical scrub; (2) from 250 to 600/800 m altitude – 

humid and semi-arid subtropical scrub and woods; (3) from 600 to 1200 m – humid 

laurel forest in the cloud belt (windward slopes); (4) from 800/1000 to 2000 m – humid 

to dry temperate pine forest; and (5) over 2000 m – dry subalpine scrub. Above 3000 m, 

a  ‘stone  desert’  stratum,  with  almost  no  vegetation,  also  appears  in  Tenerife  (Morales & 

Pérez, 2000). The Canary Island flora and fauna has been linked to that of Madeira and, 

in part, to that of the Azores and the Cape Verde Islands but it also presents affinities to 

the Mediterranean region and, for a few groups, with other more distant regions such as 

East Africa, India, South America, Australia, and America. Two probable sources of 

colonizers are neighbouring North Africa and the Iberian Peninsula, in view of the 

prevailing winds and the sea currents (Juan et al., 2000). 

 

The Canary Islands have been the focus of many phylogenetic studies with molecular 

techniques being employed to investigate the evolution of several groups of plant and 

animal species, such as Gallotia (lizard) (Thorpe et al., 1994), Laurus azorica (Canary 

Island laurel) (Arroyo-García et al., 2001), Steganacarus (oribatid mites) (Salomone et 

al., 2002), Napaeus (land snail) (Alonso et al., 2006), bringing insights into the origins 

of species diversity on islands.  The arthropod fauna has in particular been a focus of 

investigation for understanding the origins of diversity (Juan et al., 1995, 1996; Arnedo 

et al., 2001; Jordal & Hewitt, 2004; Emerson & Oromí, 2005) due to its high species 

richness within the archipelago. While many genera have been subject to higher-level 

phylogenetic analysis, detailed studies charting the course of evolution over shorter time 

periods within species are less common (but see Rees et al., 2001; Jordal et al., 2006)  
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Appendix 2  
 

Table S1 - Overview of previous studies suggesting refugia in British Isles taxa. The data used for this review were compiled from previous 
revisions up to 2008 (e.g. Baghawart & Willis 2008, Benke et al. 2009), and from searches in Web of Science 2008-2015. Articles were searched 
for the terms: "refug*" and "glacial" or "Pleistocene" and "England" or "British Isles" or "Great Britain" or "UK" 
 

Scientific name Group Attribute Evidence British Isles refugia References 

Ursus arctos brown bear cold adapted fossil Great Britain (Aldhouse-Green & Pettitt, 
1998) 

   
contemporary and 
ancient mtDNA Northern England (Edwards et al., 2014) 

Pinus sylvestris  tree cod adapted  mtDNA  Ireland, Scotland (Sinclair et al., 1998, 
1999) 

Salmo trutta  fresh water fish  cod adapted mtDNA Southern England (Bernatchez, 2001) 

Cottus gobio fresh water fish  temperate/cold 
tolerant 

microsatellite/mtDNA, 
allozyme Southern England (Hänfling et al., 2002)  

Carex digitata tree temperate/cold 
tolerant allozyme Ireland, Scotland (Tyler, 2002) 

Heligmosomoides 
polygyrus 

nematode 
(parasite) temperate  mtDNA Ireland, Scotland (Nieberding et al., 2005)  

Fucus serratus seaweed temperate mtDNA English Channel (Coyer et al., 2003; 
Hoarau et al., 2007) 

Palmaria palmata seaweed artic-cold 
temperate nuclear and plastid English Channel (Provan et al., 2005) 

Mustela erminea stoats thermally adapted mtDNA Ireland (Martínková et al., 2007) 
Tree vegetation 
(Quercus, Pinus, etc.) tree thermophilous speleothem pollen Yorkshire, Lancashire, 

Mendip Hills  (Caseldine et al., 2008) 
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Table S1 (cont) 

 

Scientific name Group Attribute Evidence British Isles refugia References 
Rana temporaria common frog cold tolerant mtDNA Ireland (Teacher et al., 2009) 

Lepus timidus mountain hare cold tolerant mtDNA, nuclear, 
microsatellite Ireland (Hughes 2009 unpub. report 

in Montgomery et al., 2014) 

Vulpes vulpes red fox cold adapted contemporary and 
ancient mtDNA Britain and Ireland (Edwards et al., 2012) 

Niphargus glenniei, N. 
irlandicus amphipoda obligate 

groundwater mtDNA Ireland, Southern 
England (McInerney et al., 2014) 

? shrub and tree 
vegetation ? ? Southern England (Soffer 1990 in Hänfling et 

al., 2002) 

? heath ? ? Southern England (Vincent 1990 in Hänfling et 
al., 2002) 

? gastropoda ? ? Southern England (Vincent 1990 in Hänfling et 
al., 2002) 

? not specified 
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A well-used metaphor for oceanic islands is that they act
as ‘natural laboratories’ for the study of evolution. But
how can islands or archipelagos be considered analogues
of laboratories for understanding the evolutionary pro-
cess itself? It is not necessarily the case that just because
two or more related species occur on an island or archi-
pelago, somehow, this can help us understand more
about their evolutionary history. But in some cases, it
can. In this issue of Molecular Ecology, Garrick et al.
(2014) use population-level sampling within closely
related taxa of Galapagos giant tortoises to reveal a com-
plex demographic history of the species Chelonoidis becki
– a species endemic to Isabela Island, and geographically
restricted to Wolf Volcano. Using microsatellite genotyp-
ing and mitochondrial DNA sequencing, they provide a
strong case for C. becki being derived from C. darwini
from the neighbouring island of Santiago. But the inter-
est here is that colonization did not happen only once.
Garrick et al. (2014) reveal C. becki to be the product of a
double colonization event, and their data reveal these
two founding lineages to be now fusing back into one.
Their results are compelling and add to a limited litera-
ture describing the evolutionary consequences of double
colonization events. Here, we look at the broader implica-
tions of the findings of Garrick et al. (2014) and suggest
genomic admixture among multiple founding popula-
tions may be a characteristic feature within insular taxa.

Keywords: archipelago, colonization, genomic admixture,
hybridization, island, speciation
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Understanding the significance of patterns of shared genetic
variation among species or populations is frequently a thorn
in the side of population geneticists. Although progress is
being made through the development of analytical methods,
distinguishing between gene flow and incomplete lineage
sorting remains a challenge (e.g. Navascu!es et al. 2014).
Island archipelagos potentially offer a geographical frame-
work that can help to distinguish between these two expla-
nations. The geographical isolation of islands means that the
colonization of new islands, or the exchange of alleles
among existing island populations, is expected to involve
only one or a few individuals for taxa with naturally low
dispersal capacity. As a consequence of this dynamic, the
sharing of ancestral genetic variation among island taxa of
low dispersal ability will be limited. Within such a frame-
work, Nietlisbach et al. (2013) were able to exclude an expla-
nation of incomplete lineage sorting among mockingbirds of
the Gal!apagos archipelago to reveal a hybrid origin between
Mimus parvulus and M. melanotis for the Genovesa Island
endemic subspecies M. parvulus bauri. In this issue of Molec-
ular Ecology, Garrick et al. (2014) reveal the Gal!apagos giant
tortoise species Chelonoidis becki (Fig. 1) to be in the process
of admixture among two founding gene pools. Underlying

Fig. 1 Chelonoidis becki, a species of Galapagos giant tortoise
endemic to Wolf Volcano on Isabela Island. Photo credit: Yale
University.
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the apparent morphological uniformity of C. becki, Garrick
et al. (2014) were able to distinguish two gene pools, derived
from two separate colonization events involving C. darwini
from a neighbouring island, that are in the process of admix-
ing. By calibrating their molecular data, they estimate an
interval of approximately 150 000 years between the two
colonization events, and using simulation analyses and for-
ward in time projections, they estimate eventual complete
introgression of the two C. becki gene pools.

The population genetic and adaptive consequences of

genomic admixture

The results of Garrick et al. (2014) offer an interesting
insight into island colonization dynamics and their conse-
quences. In the context of island colonization, founding

events that involve only one or a few individuals will
result in low genetic diversity within the founding popula-
tions, which can only be recovered over an evolutionary
timescale of mutation. Genetic admixture provides a poten-
tial escape from reduced genetic variation via the produc-
tion of novel genotypic combinations of alleles, coupled
with new opportunities for recombination among divergent
genomes that may also facilitate adaptation within novel
adaptive landscapes (Mallet 2007). In the case of C. becki,
Garrick et al. (2014) note that the fusion of the two gene
pools has little consequence for population-level heterozy-
gosity, as heterozygosity is already high in both gene
pools. However, introgression of the two genomes does
result in a substantial increase in allelic richness, which
suggests an increase in genotypic variation, and thus adap-
tive potential (Fig. 2). Mallet (2007) has noted that admix-
ture of divergent gene pools may facilitate speciation and

Fig. 2 A two-locus (locus A and locus B) Punnett square of all possible genotypes resulting from admixture and random segregation
and independent assortment between two gene pools G1 and G2. G1 (green) and G2 (blue) are represented by two nonshared alleles
at each locus: G1 contains alleles A1, A2 and alleles B1, B2; G2 contains alleles A3, A4 and alleles B3, B4. Unique genotypes are repre-
sented numerically. A twofold increase in allele richness following admixture has little consequence for average heterozygosity, but
results in a greater than ten-fold increase in genotype richness, with nine possible two-locus genotypes within each parental popula-
tion, and 100 within an admixed population.

© 2014 John Wiley & Sons Ltd
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adaptive radiation, and the evolutionary success of the
Hawaiian silversword alliance provides one probable
example. The reservoir of adaptive potential contained
within the allopolyploid ancestor of the silversword alli-
ance, resulting from the hybridization of two ecologically
divergent species, has been suggested to be a factor for
their evolutionary success (Barrier et al. 1999). In the case
of C. becki, it seems unlikely that genomic admixture will
be the source of subsequent radiation (cladogenesis). How-
ever, an increase in genetic variation, and thus adaptive
potential, could facilitate anagenetic change within C. becki,
potentially contributing to the increased phenotypic diver-
gence within the genus Chelonoidis, something that has
been suggested for the mockingbirds of Gal!apagos
(Nietlisbach et al. 2013).

Genomic admixture and island colonization dynamics

So, to what extent are the results of Garrick et al. (2014) an
oddity – an interesting, but potentially low frequency
event, chanced upon by serendipity? Or alternatively,
could genomic admixture perhaps be a significant player
in the field of island biogeography? In the case of C. becki,
mitochondrial haplotypes shared with a third species,
C. vandenberghi, suggest that the observations of Garrick
et al. (2014) may not be a one-off event within the history
of Chelonoidis. Considering the broader diversity on oceanic
islands, there are good reasons to expect a more than
minor role for admixture among multiple founding
lineages. High colonization rates among islands will push
populations towards genetic homogeneity, while low colo-
nization rates will facilitate divergence among populations
on different islands and high rates of inter-island cladoge-
netic speciation. At intermediate rates, there are two poten-
tial scenarios: (i) when barriers to gene flow are complete,
founding taxa will remain genetically distinct, facilitating
inter-island cladogenetic speciation; (ii) when barriers to
gene flow may not have reached completion, the potential
for admixture may arise, which may either inhibit or facili-
tate inter-island cladogenetic speciation. The data of Gar-
rick et al. (2014) clearly point to the inhibition of
cladogenetic speciation, with the two colonization events
from Santiago to Isabela resulting in only one species.
However, if admixture results in negative fitness conse-
quences, divergent evolution may be facilitated. Mitochon-
drial and nuclear DNA sequence data have been used to
infer a double colonization of the Canary Island of La
Palma from El Hierro by the beetle species Aphanarthrum
glabrum. The molecular data indicate a limited period of
admixture between the two founding populations, presum-
ably with negative fitness consequences, facilitating repro-
ductive character displacement and the completion of
reproductive isolation (Jordal et al. 2006).
The work of Garrick et al. (2014), together with previous

studies such as those of Nietlisbach et al. (2013), Jordal

et al. (2006) and Shaw (2002), provides strong evidence for
genomic admixture among independent founding popula-
tions or species within an insular setting. Serendipity may
have played a role in these discoveries, but rather than
being a rare event, it may just be that the phenomenon is
not easy to detect. In the case of C. becki, if fusion were
complete, and allelic richness had returned to pre-admix-
ture levels via the joint actions of drift and selection, there
may be little information content from the molecular data
to indicate an origin from multiple colonizations and
admixture. Similarly, if the Santiago species C. darwini
were to go extinct, the evidence for multiple colonizations
underpinning the origin of C. becki would disappear with
it. Given (i) the favourable conditions for genomic admix-
ture that island archipelagos can provide and (ii) the
potential for recombination between parental genomes to
counter founder effects, the phenomenon observed by Gar-
rick et al. (2014) could be a characteristic feature of the evo-
lutionary process on islands. Detecting it may be
complicated by the aforementioned issues, but it should
never-the-less be given due consideration when interpret-
ing molecular patterns of relatedness and genetic diversity
in insular settings.
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Chapter 2 
Speciation success on islands: evolution of the Laparocerus 

tessellatus complex (Curculionidae) in the Canary 
archipelago 

 
 

 
 
 
 
 
 
 

Laparocerus tessellatus - species that gives the name to the complex.  
Photo by Antonio Machado 
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2.1 ABSTRACT 
 

Aim To infer colonisation and speciation history for a closely related complex of nine 

species within the enigmatic Canary Island Laparocerus weevil radiation of 128 

species. Using molecular dating and the spatial and temporal context that islands 

provide, we evaluate the possible explanations of incomplete lineage sorting and gene 

flow for the origin of shared variation among species from different islands. 

Location Canary Islands (Gran Canaria, Tenerife, La Palma and El Hierro). 
Methods Phylogenetic analyses of mitochondrial (COII) and nuclear (ITS2) sequence 

data and molecular dating techniques were used to infer the origin of the group in the 

archipelago and their history of colonisation and differentiation.  

Results Gran Canaria seems to be the geographic origin of the complex, with the onset 

of diversification within the complex estimated to have occurred approximately 3.9 Ma. 

An unexpected result is that mtDNA reveals each of the single species on La Palma and 

El Hierro to be the product of more than one colonisation event from more than one 

source island. In both cases nuclear ITS2 data reveals these multiple colonisations to 

have been followed by genomic admixture. Complex genetic patterns within the island 

of Tenerife suggest that morphologically defined species are unlikely to represent 

biological species, but also present evidence of cryptic speciation. 

Main conclusions The two gene trees present very different topologies, with a rather 

simple colonisation history required to explain the pattern of nuclear gene relationships, 

while the mtDNA gene tree implicates a much more complex history of colonisation. 

Explanations of incomplete lineage sorting are ruled out and a history of colonisation 

and speciation for the L. tessellatus complex involving genetic admixture is revealed. 
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2.2 INTRODUCTION 
 

Charles   Darwin’s   stop   in   the   Galapagos   Islands   during   his   five-year voyage on the 

HMS Beagle revealed to him that islands are an important source of evidence for 

evolution.  Since  Darwin’s  time, islands have become not just a source of evidence, but 

theatres for investigating and understanding mechanistic explanations for evolution 

itself (Emerson, 2002). Research on islands continues to advance and develop our 

general understanding of the evolutionary process, and biologists have come to regard 

islands as natural laboratories for the study of evolution (e.g. Roderick & Gillespie, 

1998; Parent et al., 2008). The evolutionary proliferation of biodiversity has progressed 

much farther on some islands than on others (Losos and Ricklefs, 2009), and an equally 

important observation is that on a given island or archipelago it is often apparent that 

the proliferation of life has progressed much farther within some lineages than others. 

For example, among the 88 genera of weevil (Coleoptera, Curculionidae) occurring 

naturally within the Canary Islands, there is an average of only three species per genus 

(Oromí et al., 2010). However 128 species, more than 1/3 of all the native weevil 

species in the Canary Islands, belong to a single genus, Laparocerus Shonherr, 1834 

(Machado in prep.). This raises an important question, why do some lineages diversify 

so extensively on islands, while others do not?  

 

The addition of molecular phylogenetic techniques to the evolutionary biologist’s  

toolkit has seen renewed focus on the study of evolution within oceanic islands over the 

last two decades, enabling researchers to address why a given lineage may have 

speciated more extensively in some archipelagos compared to others (e.g. Amorim et 

al., 2012). However, the extent to which molecular phylogenetic analyses have gone 

beyond describing pattern to inferring process has been limited, with most focusing on 

defining the relationships among species, and inferring the timing of speciation events 

(e.g. Juan et al., 1995; Emerson et al., 2000a; Emerson & Oromí, 2005; Amorim et al., 

2012). Such analyses can help to elucidate the role of geography and the relative 

importance of within island and between island speciation. However, by typically 

sampling only a few individuals within a species, phylogenetic sampling does not 

capture diversification processes occurring below the species level. Recent or ongoing 

diversification may be captured with intraspecific genetic sampling (e.g. Jordal et al., 

2006; Spurgin et al., 2011), and this can be complemented by phylogeographic 
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sampling, for a more explicit assessment of geography and its potential role as an agent 

of diversification.  

 

While phylogenetic techniques chart the histories of island biotas, the integration of 

population-level studies with higher order phylogenetic studies may provide greater 

opportunity to connect pattern and process (Losos & Ricklefs, 2009). We agree with 

Losos and Ricklefs (2009), that detailed population level studies can chart the course of 

evolution over short time periods, directly measuring the extent to which natural 

selection changes in strength and direction over time, but advocate a broadening of 

approach for population-level studies. Population-level studies that incorporate 

geographically explicit sampling of individuals for the reconstruction of gene 

genealogies can reveal the extent to which natural selection or alternative mechanisms 

offer explanations of evolutionary change. Molecular sampling within species and 

species complexes that have diverged over Quaternary timescales optimises the ratio of 

extant informative haplotypes to extinct uninformative haplotypes with evolutionary 

time, increasing the information content of DNA sequence data to connect pattern with 

process (Benton & Emerson, 2007). Such studies have frequently revealed substantial 

genetic structuring within species within islands, and evolutionary processes 

underpinning diversification. The repeated convergent selection for, and evolutionary 

origins of, cave dwelling Palmorchestia hypogaea amphipod populations of the Canary 

Island of La Palma would have been all but missed with phylogenetic sampling 

(Villacorta et al., 2008), as would have been conclusions of ancestral and derived 

ecological associations and niche shifts in the Nesotes beetles of Gran Canaria (Rees et 

al., 2001). A revealing example of the combined power of geographic sampling with 

both  mitochondrial   and   nuclear   genomic   sampling   comes   from   Jordal   et   al.’s   (2006)  

study of the sympatric and closely related Aphanarthrum weevil species A. subglabrum 

and A. glabrum on the island of La Palma in the Canary Islands. Representative 

geographic sampling of these two species and other taxa from the A. glabrum complex 

on other islands, combined with the analysis of mitochondrial and nuclear loci, reveals 

the combined roles of geography (allopatric isolation and subsequent secondary contact) 

and species interactions (hybridisation and reinforcement) in driving diversification.  

 

With 128 described species from the Canary Islands and 34 described species from the 

Madeira archipelago, the genus Laparocerus stands out as an evolutionary enigma. It is 
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estimated that there may be as many as 200 species distributed in the Canary and 

Madeira archipelagos, with single species occurring in West Morocco, and the Salvages 

Islands (Machado, 2011). It is the most species rich of all animal and plant genera 

within the Canary Islands (Arechavaleta et al., 2010). Species richness within the 

Laparocerus is eight times higher than that of the next most species rich weevil genus, 

Acalles, represented by 16 species (Oromí et al., 2010), but there is little understanding 

of what evolutionary processes may underpin the evolutionary success of this group. All 

Laparocerus species are flightless and most are oligophages that climb vegetation to 

feed upon leaves, while a few species dwell in the leaf litter or are adapted to the 

underground environment (Machado, 2003). 

 

The extensive diversity within the Laparocerus has for many years both intrigued and 

intimidated biologists, but recent efforts have successfully partitioned this diversity into 

taxonomic units (e.g. Machado, 2006; Machado, 2009; Machado, 2012), and species 

complexes within this diversity have been delineated with both mtDNA and nuclear 

sequence data (Machado et al., 2008; Machado, in prep.). As a first approach to 

understand why Laparocerus has diversified so dramatically within Macaronesia, we 

have sampled within the well-defined Laparocerus tessellatus species complex across 

its distribution on four of the Canary Islands (Gran Canaria, Tenerife, La Palma and El 

Hierro). Using sequence data from mitochondrial COII and nuclear ITS2 gene regions, 

we investigated inter-island colonisation within the complex, and the distribution of 

genetic variation among species. Using the spatial and temporal context that islands 

provide, we evaluate the possible explanations of incomplete lineage sorting and gene 

flow for the origin of shared variation among species from different islands, and discuss 

the implications of this shared variation for the speciation process in Laparocerus. 

 
2.3 METHODS 
 

2.3.1 Sampling and laboratory procedures 
 
The Laparocerus tessellatus complex comprises nine species that have been identified 

as monophyletic based on both mitochondrial and nuclear sequence data (Machado, 

unpublished data). All species are single island endemics, with five on Gran Canaria 

(Laparocerus microphthalmus Lindberg, 1950, Laparocerus obsitus Wollaston, 1864, 
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Laparocerus osorio Machado, 2012, Laparocerus tirajana Machado, 2012, and 

Laparocerus sp. aff. tirajana), two on Tenerife (L. tessellatus Brullé, 1839 and L. freyi 

Uyttenboogaart, 1940) and one on each of La Palma (Laparocerus sp. 1) and El Hierro 

(Laparocerus bimbache Machado, 2011). Samples were collected from 39 sites from 

1999 to 2011 (Fig 2.1). Laparocerus vicinus (Gran Canaria) was sampled as outgroup, 

based on its close phylogenetic relationship to the L. tessellatus complex (Machado, 

unpublished data). Upon collection, samples were stored in absolute ethanol at 4oC prior 

to species identification (AM) and DNA extraction. 

 

Total genomic DNA was extracted from the head and prothorax using the DNeasy 96 

well Blood and Tissue Extraction Kit (QIAGEN, West Sussex, UK) following the 

manufacturer’s  instructions.  After  extraction,  both  head  and  prothorax  were  placed  back  

in absolute ethanol with the remainder of the body and maintained at 4o C as vouchers 

within the collection of AM. A fragment of approximately 785 bp of the mitochondrial 

gene cytochromec oxidase subunit II (COII) was amplified using primers TL2-J-3038 

(5’-TAATATGGCAGATTAGTGCATTGGA) (Emerson et al., 2000b) and TK-N 3782 

(5’-GAGACCATTACTTGCTTTCAGTCATCT) (EVA-Harrison Laboratory, Cornell 

University, Ithaca, NY, USA). Primers M13REV-CAS5p8sFt   (5’- 

CAGGAAACAGCTATGACCTGAACATCGACATTTYGAACGCATAT) (Ji et al., 

2003; as modified in Regier & Shi, 2005) and   CAS28sB1d   (5’-

TTCTTTTCCTTCSCTTAYTRATATGCTTAA) (Ji et al. 2003) were used to amplify a 

fragment of approximately 540 bp of the nuclear gene internal transcribed spacer 2 

(ITS2). 
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Polymerase chain reactions (PCR) contained NH4 buffer (1x), 3.0 mMMgCl2(for COII 

reactions and 4.0 mM MgCl2 for ITS2 reactions), 0.2 mM of each dNTP, 0.4 µM of 

each primer and0.5 U of Taq polymerase (Bioline)in 25 µl final volume. PCR cycles 

were carried out using the following thermal profile for COII: 95oC for 3 min, 32 cycles 

at 95oC for 1 min, annealing temperature 48oC for 1 min, 72oC for 1 min, and a final 

extension at 72oC for 3 min. For ITS2 the thermal profile used was: 94oC for 3 min, 34 

cycles at 95oC for 40 sec, annealing temperature 50oC for 1 min, 72oC for 40 sec, and a 

final extension at 72oC for 2 min. Sequencing was performed in a PerkinElmer 

ABI3700 automated sequencer with BigDyeTerminator v3.1 Cycle Sequencing kit 

(applied Biosystems, California, USA). The thermal profile used for all sequencing 

reactions was: 96ºC for 10 sec, 50ºC for 5 sec and 60ºC for 4 min, 25 cycles. Sequences 

for COII were obtained with the forward primer only. The majority of COII PCR 

products yielded clean and unambiguous sequences with the forward primer (TL2-J-

3038), but in some samples the first 48 nucleotides were not clear, requiring the use of 

Figure 2.1. Distribution of sampling sites in the Canary Islands; a complete 

list of the locality names, species collected and number of individuals can 

be found in Table 2.1. Universal Transverse Mercator coordinates (UTM) 

for each site can be provided upon request. Numbers in parentheses refer to 

the proposed maximum estimated geological ages of the islands in millions 

of years. 
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an  internal  reverse  primer  (LapCOIIRev1  5’-GGYATRAATCTATGATTTGTT), which 

binds at positions  588   to  608  at   the  end  3’  of   the  aligned  sequences.  Sequencing  was  

performed in both directions for the ITS2, due to heterozygosity and indel (insertion and 

deletion) variation. 

 

2.3.2 Sequence alignment, haplotype reconstruction, and sequence properties 
 

All sequences were processed and ambiguous base calls manually assessed with 

GENEIOUS PRO 5.4.5 (Drummond et al., 2010). COII sequences were aligned using 

MAFFT 6.814 (Katoh et al., 2002) and ITS2 consensus sequences were aligned using 

FAST 1.15.7 (Bradley et al., 2009), as it outperformed MAFFT when dealing with ITS2 

indel variation. Both alignments were then checked by eye. Haplotypes for ITS2 

sequences that were heterozygous only for single nucleotide polymorphisms (SNPs) 

were resolved either by direct comparison to homozygous sequences or with PHASE 

2.1.1 (Stephens et al., 2001; Stephens & Scheet, 2005). The web tool SEQPHASE (Flot, 

2010) was used to create PHASE input files and to interpret PHASE output files. 

Haplotype determination for out of phase sequence traces, caused by alleles with indel 

variation, was inferred from related homozygous sequences, or with the program 

Indelligent (Dmitriev & Rakitov, 2008). 

 

The total number of variable and parsimony informative sites, average and maximum 

pairwise genetic distances (both uncorrected and corrected) overall, within and between 

species were computed with MEGA 6.0 (Tamura et al., 2013). The entropy-based index 

as implemented in DAMBE 5.2.78 (Xia et al., 2003) was used to assess substitution 

saturation within the mtDNA and ITS2 genes and the RDP4 software (Martin et al., 

2015) was applied to detect potential historical recombination events within the ITS2 

nuclear gene. 

 
RDP4 implements a range of non-parametric recombination detection methods 

(including BOOTSCAN, MAXCHI, CHIMAERA, 3SEQ, GENECONV, SISCAN, PHYLPRO, RDP 

VISRD) to analyse a given set of aligned nucleotide sequences (Martin et al., 2015). As a 

result, RDP4 specifies a breakdown of recombination breakpoint locations and the 

identities of recombinant and parental sequences. RDP4 method (Martin and Rybicki, 

2000), GENECONV method (Padidam et al., 1999), MAXCHI method (Maynard Smith, 
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1992; Posada and Crandall, 2001) and CHIMAERA method (Posada and Crandall, 2001) 

are the primary exploratory recombination signal detection methods implemented in 

RDP4 software. BOOTSCANning method (Salminien et al., 1995; Martin et al., 2005) and 

SISCAN method (Gibbs et al., 2000), are designed to check the validity of the 

recombination results produced by the primary detection methods, but they can also be 

used for primary exploratory analysis in order to detect signals of recombination. All 

these methods were used to scan the ITS2 alignment for recombination because they 

treat the data in different ways (e.g. RDP, GENECONV, MAXCHI, and CHIMAERA methods 

only examine variable nucleotide positions in triplets of sequences sampled from the 

alignment, BOOTSCAN and SISCAN methods examine all variable and conserved 

positions, and the optimal window size varies slightly from method to method) and they 

all have potential problems (see RDP4 manual for details, 

http://web.cbio.uct.ac.za/~darren/RDP4Manual.pdf). By using a combination of 

approaches, there was a greater probability to detect signals of recombination, so that 

the consequences could be offset. Window sizes were set small enough to ensure that 

events involving exchanges of small tracts of sequence (<200bp) were detectable in the 

most divergent sequences being examined. The MAXCHI and CHIMAERA methods were 

set to run with a variable window size that got respectively bigger and smaller with 

lower and higher degrees of parental sequence divergence.  

 

2.3.3 Evolutionary tree and haplotype network construction 
 

Bayesian inference (BI) analyses were performed for the mtDNA and nuclear gene 

separately, using the parallel version of MRBAYES 3.2.1 (Ronquist, 2012). Eight 

analyses were run each for 10 million generations using 8 MCMC (Markov chain 

Monte Carlo) chains, discarding 25% of samples as burn-in. The general time reversible 

model of sequence evolution with a gamma correction (GTR + G), with priors set to the 

default values, was used for both genes as recommended by Stamatakis in the RAXML 

7.0.4 Manual (http://www.phylo.org/archive/news/RAxML). Trees were rooted with L. 

vicinus. The output was assessed for stationarity and convergence in TRACER v.1.5 

(Rambaut & Drummond, 2009) with only estimated sample size (ESS) above 200 for all 

parameters being accepted. Trees were visualised in FIGTREE 1.3.1 (Rambaut, 2011). 

TCS v.1.21 (Clement, 2000) was employed to infer haplotype networks of the less 

divergent nuclear gene sequences using statistical parsimony (Templeton et al., 1992) 

http://web.cbio.uct.ac.za/~darren/RDP4Manual.pdf
http://www.phylo.org/archive/news/RAxML
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with 95% confidence limit, and the software HAPSTAR (Teacher & Griffiths, 2011) was 

used to draw the network. 

 

2.3.4 Testing hypothesis of monophyly 
 
The monophyly of species within an island was assessed comparing the log likelihoods 

of alternative tree topologies. Topological constraints were constructed in MRBAYES 

3.2.1 (Ronquist, 2012). A hard constraint was used to force a monophyletic species 

group to be present in all the sampled trees and it was compared to a negative 

constraint, which sampled across all trees that did not contain that monophyletic group. 

For each constraint, four analyses of 1x106 generations each were run using 8 MCMC 

chains and the GTR + G model, discarding 25% of samples as burn-in and checking the 

stationarity and convergence of runs. Bayesian consensus tree files were then used for 

Maximum likelihood (ML) analyses in PAMLX (Yang, 2007; Xu & Yang, 2013) with 

the branch lengths used as starting values for maximum likelihood iterations. The 

matrix of site log likelihood generated for the ML trees was used for bootstrapping 

(n=10 000 replicates) and compared by the one-tailed Shimodaira–Hasegawa (SH) test 

(Shimodaira & Hasegawa, 1999) with a correction for multiple comparisons as 

implemented in PAMLX (Xu & Yang, 2013). The null hypothesis considered that all 

topologies were equally good. 

 

2.3.5 Analysis of linkage disequilibrium and Hardy–Weinberg equilibrium 
 

The joint analysis of mitochondrial and nuclear markers provides the opportunity to 

assess the biological significance of divergent genetic lineages when those lineages are 

sampled in sympatry (e.g. Cicconardi et al., 2013). Divergent lineages can be formally 

evaluated for consistency with the biological species concept (BSC) (Mayr, 1942) by 

testing for Hardy–Weinberg equilibrium (HWE) and linkage disequilibrium (LD) when 

they occur sympatrically within sampling sites. In the case of divergent genetic lineages 

sampled sympatrically within species of the L. tessellatus complex, HWE and LD were 

calculated using ARLEQUIN 3.5.1.2 (Excoffier & Lischer, 2010), and statistical 

significance was tested using 100 000 dememorization steps and 100 000 steps in 

Markov chain, with Bonferroni adjustments (Benjamini & Hochberg, 1995) for multiple 
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comparisons. The null hypothesis considered that individuals within a sampling site 

belong to a panmictic population. 

 

2.3.6 Dating analysis 
 

When trying to identify the evolutionary processes that shape species formation, 

distinguishing between introgression and incomplete lineage sorting is generally 

difficult (Toews & Brelsford, 2012). However oceanic islands offer an ideal framework 

to unravel these processes, mainly due to the dynamics of speciation by founder events. 

In an insular setting, incomplete lineage sorting is of minor consequence within species 

derived from a limited number of founding individuals from a different island. Thus, 

gene flow among species that are derived from independent colonisation events can be 

evaluated in a background of limited or no incomplete lineage sorting (e.g. Jordal et al., 

2006; Nietlisbach et al., 2013). To further evaluate the possibility of incomplete lineage 

sorting we use the spatial context provided by islands and the temporal information 

provided by DNA sequences to identify the colonisation directions and times for genetic 

variation shared between species on different islands. As our interest is not the absolute 

timings of lineage colonisation, but the relative timings, we applied a general 

coleopteran COII mutation rate of 0.015 substitution/site/myr (Cicconardi et al., 2010) 

with a restricted uniform distribution interval [1.49, 1.51]. Because the L. tessellatus 

complex is comprised of closely related species that are likely to have similar biological 

properties and molecular rates, a strict molecular clock model was applied. The 

MRBAYES output trees for both the mtDNA and nuDNA gene partitions were used as 

starting trees for the analyses with BEAST 1.7.3 (Drummond et al., 2012). The estimated 

root age of the COII tree was used as prior information to calibrate the root height of the 

ITS2 tree. Analyses used a GTR+G substitution model with 4 gamma categories, a Yule 

tree prior, and nodes with BP support of 0.90 or higher constrained to be monophyletic. 

To account for the possibility of either the extinction or non-sampling of molecular 

lineages (Emerson, 2002), nodes representing both the earliest and the most recent 

possible lineage colonisation times were estimated, and the time intervals among 

colonising lineages compared. Input files were generated in BEAUTI 1.7.3 (Drummond et 

al., 2012), and 15 runs of 100 million generations each, sampled every 1000 

generations, were performed and combined, checking sampling, mixing and 
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convergence to a stationary distribution with TRACER 1.5 (Rambaut & Drummond, 

2009).  

 

2.4 RESULTS 
 
A total of 173 specimens were collected from 11 sites in Gran Canaria (L. 

microphthalmus, L. obsitus, L. osorio, L. tirajana, L. sp. aff. tirajana, and the outgroup 

L. vicinus), 18 in Tenerife (L. tessellatus and L. freyi), six in La Palma (Laparocerus sp. 

1) and three in El Hierro (L. bimbache) islands (Fig 2.1). Site locations and number of 

individuals per site are detailed in Table 2.1. 

 

2.4.1 Mitochondrial COII gene 
 

All but one of the 173 specimens were successfully amplified and sequenced for the 

mitochondrial COII gene, producing an alignment of 172 sequences of 633bp. Across 

the ingroup, 122 polymorphic sites (of which 96 were parsimony informative) and 76 

unique alleles were identified. The average pairwise p-distance was 4% across all 

species with a maximum of 6.9%. Within species, average pairwise p-distances ranged 

from 0.7% (L. osorio) to 3.9% (Laparocerus sp. 1), and between species, average 

pairwise p-distances ranged from 1.7% (L. osorio and L. microphthalmus) to 5.2% (L. 

bimbache and L. tirajana) (Table 2.2). 
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Species 
Locality 
code Locality N  

Laparocerus sp. 1 LP1 La Palma: Montaña de Tagoja, 1250 m 3 

 LP2 La Palma: Llanada de Barlovento, 650 m 5 

 LP3 La Palma: s. El Paso, 870 m 7 

 LP4 La Palma: Breña Alta, Pared Vieja, 1350 m 2 

 LP6 La Palma: Mazo: Venijobre, 830 m  29 

 LP7 La Palma: El Paso: Mña Don Mendo, 1075 m 3 

L. bimbache Machado, 2011 EH9 El Hierro: Monte Ajares, 600 m 2 

 EH10 El Hierro: San Andrés: Piedras Blancas, 912 m 2 

 EH11 El Hierro: Cruz de Isora, Infra Masilva, 1247 m 2 

L. freyi Uyttenboogaart, 1940 TF28 Tenerife: El Portillo, 2000 m 3 

 TF12 Tenerife: Cumbres de Arico, 1070 m 3 

 TF13 Tenerife: Granadilla: Las Vegas, 630 m 6 

 TF14 Tenerife: Arico: Contador, 1200 m 2 

 TF15 Tenerife:  Tanque Bajo, 500 m 1 

 TF20 Tenerife: Cumbre de Bolicos, 1200 m 2 

 TF21 Tenerife: s. Mña. Bermeja, 1600 m  2 

 TF22 Tenerife: Güímar: Bco. del Agua, 700-800 m 9 

 TF23 Tenerife: s. Icod El Alto, 1200 m 4 

 TF24 Tenerife: Santa Úrsula: Bco. Bensa, 1463 m 3 

 TF25 Tenerife: Tacoronte: FuenteFría, 1014 m 1 

 TF27 Tenerife: Santa Úrsula: La Corujera, 600 m 3 

 TF48 Tenerife: Las Raíces, 930 m 11 

 TF49 Tenerife: Ifonche, 990 m  2 

 

Table 2.1 - Details of sampling within the Canary Islands for species within the 

Laparocerus tessellatus complex. Locations coded according to Fig 2.1. 
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Xia’s  index  for  substitution  saturation  produced  values  of  0.015  (first  and  second  codon  

positions) and 0.16 (third codon position) which were significantly lower than the 

critical value for symmetric topologies (0.69-0.79, P<0.001; 0.64-0.77, P<0.001, 

respectively), suggesting that sites have reached little saturation and sequences can be 

reliably used for phylogenetic reconstruction.  

Species 
Locality 
code Locality N  

L. tessellatus Brullé, 1839 TF43 Tenerife: Pista LasYedras, 740 m 1 

 TF45 Tenerife: Anaga: El Pijaral Km 4.5, 700 m 12 

 TF46 Tenerife: Anaga: Chinobre, 900 m 1 

 TF47 Tenerife: Anaga: Cruz del Carmen, 900 m 2 

L. microphthalmus Lindberg, 
1950 

GC32 Gran Canaria: Tamadaba NW, 1200 m 8 

L. obsitus Wollaston, 1864 GC31 Gran Canaria: Valsendero: Bco. Oscuro, 900 m  2 

L. tirajana Machado, 2012 GC35 Gran Canaria: San Bartolomé, Km 1, 940 m 12 

 GC36 Gran Canaria: San Bartolomé: Bco. Tirajana, 
900 m 

1 

L. sp. aff. tirajana GC34 Gran Canaria: Bco. de los Cernícalos, 1400 m 4 

 GC37 Gran Canaria: Degollada de Osorio, 875 m 5 

 GC39 Gran Canaria: Cumbre: Roque Redondo, 1900 
m 

5 

L. osorio Machado, 2012 GC31 Gran Canaria: Valsendero: Bco. Oscuro, 900 m 6 

 GC40 Gran Canaria: Valsendero: Bco. Cazadores, 
1080 m 

3 

 GC41 Gran Canaria: Las Huertecillas, 650 m 1 

 GC42 Gran Canaria: Bco. de la Mina, 1200 m 2 

L. vicinus Lindberg, 1953 GC31 Gran Canaria: Valsendero: Bco. Oscuro, 900 m  1 

    
     

   
     

    

   
     

    

    

   
     

Table 2.1. (cont) 
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Table 2.2 - Mean pairwise genetic distances between mitochondrial species groups (n=76 alleles). Fre = L. freyi, Lap = Laparocerus 

sp.1, Bim = L. bimbache, Tess = L. tessellatus, Atir = L. sp. aff. tirajana, Tir = L. tirajana, Mic = L. microphthalmus, Oso = L. 

osorio, Obs= L. obsitus. Average pairwise genetic distances within species are represented in diagonal. Values in diagonal inside 

brackets and above diagonal represent uncorrected genetic distances (p-distances). Values in diagonal outside brackets and under 

diagonal represent genetic corrected distances using the Tamura Nei model for nucleotide substitution. 

 
 Fre Lap Bim Tess ATir Tir Mic Oso Obs 
 Uncorrected p-distances (%) 
Fre 4.5 (2.7) 4.35 4.17 2.77 4.60 4.80 3.83 4.46 4.34 

Lap 8.1 8 (3.9) 4.3 4.6 3.6 3.6 4.6 4.8 4.6 

Bim 7.6 8.9 7 (3.3) 4.3 5.2 5.2 3.8 4.4 4.1 

Tess 4.6 8.7 7.9 5.6 (3.3) 4.7 4.8 4.0 4.8 4.5 

ATir 8.7 6.9 10.6 9.0 2 (1.6) 1.7 4.0 4.3 3.7 

Tir 9.1 6.9 10.6 9.2 2.3 1.4 (1.1) 4.0 4.6 3.9 

Mic 6.5 9.1 7.9 7.1 6.9 7.1 0.9 (0.8) 1.7 1.7 

Oso 8.6 9.7 9.0 9.9 7.9 8.7 2.1 0.8 (0.7) 2.5 

Obs 7.9 8.8 7.7 8.6 6.2 6.9 2.2 3.6 2.7 (2.1) 

 Tamura Nei + G corrected (%) 
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2.4.2 Nuclear ITS2 gene  
 

All but two of the 173 sampled beetles were successfully amplified and sequenced for 

the ITS2 gene. Of the 170 beetles of the ingroup, 64 were homozygotes and 106 were 

heterozygotes. All but five heterozygotes were successfully resolved for indel and SNP 

variation. The five unphased samples were removed from the dataset. The number of 

SNPs per heterozygote ranged from 1 to 6. Indels ranged in length from 1-19 bp and 

only one individual presented more than a single indel differing between its two alleles. 

The ITS2 alignment consisted of 330 sequences resulting in a final alignment of 411 bp 

after the removal of two variable poly-A regions, and a hyper-variable region of 35 bp 

that could not be aligned. Across the ingroup there were 48 polymorphic sites (of which 

24 were parsimony informative) and 52 unique alleles were identified. The average 

pairwise p-distance was 1%, with a maximum of 3.4%. Within species, average 

pairwise p-distance ranged from 0.3% (L. tirajana) to 1.4% (L. sp. aff. tirajana), and 

between species, average pairwise p-distance ranged from 0.4 (Laparocerus sp. 1 and L. 

bimbache) to 2.5 % (L. microphthalmus and L. tessellatus) (Table 2.3). 

 

Xia’s   index   for   substitution   saturation, performed on all sites for the nuclear ITS2 

dataset, produced values of 0.10-0.15 which were significantly lower than the critical 

values for symmetric topologies (0.69-0.79, P<0.001), suggesting that sites have 

reached little saturation and sequences can be reliably used for phylogenetic 

reconstruction. No signal of recombination was detected for the ITS2 gene for any of 

the methods used. Table 2.4 describes the time taken for each method implemented in 

RPD4 to scan the ITS2 alignment for recombination signals and the numbers of unique 

events detected (none). 
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 Lap Fre Bim Tess Atir Oso Tir Mic Obs 
 Uncorrected p-distance (%) 

Lap 0.67(0.71) 0.9 0.4 1.0 1.5 1.3 1.8 2.5 1.9 

Fre 1.0 0.95 (0.9) 0.7 0.9 1.5 1.3 1.8 2.5 1.9 

Bim 0.4 0.8 n/a 0.8 1.3 1.1 1.5 2.3 1.7 

Tess 1.1 0.9 0.9 0.95 (0.89) 1.6 1.4 1.9 2.5 1.9 

Atir 1.7 1.6 1.4 1.7 1.52 (1.42) 1.1 1.4 2.0 1.0 

Oso 1.4 1.4 1.2 1.5 1.1 0.68 (0.65) 1.0 1.7 0.9 

Tir 1.9 1.9 1.6 2.0 1.5 1.0 0.26 (0.25) 2.3 1.2 

Mic 2.8 2.7 2.5 2.8 2.2 1.8 2.5 0.32 (0.31) 1.6 

Obs 2.1 2.1 1.9 2.1 1.1 1.0 1.3 1.7 0.81 (0.79) 

 Tamura Nei + G corrected (%) 
 

Table 2.3 - Mean pairwise genetic distances between nuclear species groups (n=52 alleles). Lap = Laparocerus sp.1, Fre = L. freyi, 

Bim = L. bimbache, Tess = L. tessellatus, Atir = L. sp. aff. tirajana, Oso = L. osorio, Tir = L. tirajana, Mic = L. microphthalmus, 

Obs= L. obsitus. Average pairwise genetic distances within species are represented in diagonal. Values in diagonal inside brackets and 

above diagonal represent uncorrected genetic distances (p- distances). Values in diagonal outside brackets and under diagonal 

represent genetic corrected distances using the Tamura Nei model for nucleotide substitution. n/a – no variation within L. bimbache 

(unique haplotype) 
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2.4.3 Phylogenetic analysis of mtDNA COII gene sequences 
 

The bayesian tree of mtDNA sequence data reveals most of the morphologically 

described species within L. tessellatus complex to be paraphyletic or polyphyletic for 

this gene (Fig 2.2). Four major groups are described by the mtDNA sequence data: two 

poorly supported but geographically distinct clades (1 and 2) and two well supported 

clades (3 and 4). Within the island of Gran Canaria, L. osorio is the only species clearly 

recovered as monophyletic (Posterior Probability, PP=0.98). However, when 

considering only DNA sequence variation within Gran Canaria, the SH test did not 

reject the null hypothesis of equally good topologies for L. microphthalmus (p=0.457), 

L. sp. aff. tirajana (p=0.529) and L. obsitus (p=0.253) indicating they are not 

inconsistent with monophyly. For L. tirajana, SH test rejected the null hypothesis 

(p=0.027) and selected the negative constraint (no monophyly) as the best tree. The two 

species from Tenerife, L. freyi and L. tessellatus are polyphyletic and share four 

mtDNA haplotypes (h15, h25, h29 and h76). Laparocerus sp. 1 from La Palma is 

polyphyletic, originating from three founding mtDNA lineages (uncorrected p-distance 

among lineages ranges from 3.2 to 6.3%). The first of these lineages (Lap-1) comprises 

clade 3 with sequences from Gran Canaria (PP=1). The second (Lap-2) and third (Lap-

3) La Palma lineages comprise clade 4 with sequences from Tenerife and El Hierro 

(PP=1).  

 

Within clade 4, lineage Lap-2 forms a moderately supported clade with sequences from 

Tenerife (PP=0.86), while Lap-3 contains sequences from El Hierro and forms a highly 

supported clade with sequences from Tenerife (PP=1). Similar to La Palma, mtDNA 

sequences from the El Hierro species L. bimbache are polyphyletic with two lineages of 

independent origin (uncorrected p-distance between lineages 5.3%). The first of these 

(Bim-1) forms a strongly supported clade (PP=1) with sequences from La Palma while 

the second lineage (Bim-2) is more closely related to sequences from Gran Canaria. 
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Table 2.4 – Non-parametric methods (as implemented in RPD4 software) used to detect 

recombination signals for the ITS2 sequence data (see text for details). The time elapsed 

for scanning the alignment and the numbers of unique events detected are described.  

 

Method Time Elapsed Unique Events 
(Recombination Signals) 

RDP 0.30 s 0 (0) 
GENECONV 0.00 s 0 (0) 
BOOTSCAN 3.27 s 0 (0) 
MAXCHI 0.20 s 0 (0) 
SISCAN 0.34 s 0 (0) 
CHIMAERA 0.00 s 0 (0) 
                 Total 4.11 s 0 (0) 
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2.4.4 Phylogenetic and network analyses of nuclear ITS2 sequences 
 

Within the bayesian ITS2 tree the earliest branching events are comprised solely of 

DNA sequences from Gran Canaria, with the remaining sequences from Gran Canaria 

forming a well supported clade (clade C, PP=1) with sequences from the remaining 

islands (Fig. 2.3). Only L. microphthalmus and L. tirajana from Gran Canaria are 

recovered as monophyletic. Although L. osorio is not monophyletic, the nuclear data is 

not inconsistent with its monophyly when only Gran Canarian species are considered 

(SH test, p=0.202). However, Shimodaira-test rejected the hypothesis of equally good 

topologies for L. obsitus and L. sp. aff. tirajana (p=0.043 and p=0.029 respectively), 

and in both cases the negative constraint (no monophyly) was selected as the best tree. 

The Tenerife species L. freyi and L. tessellatus are polyphyletic and share six haplotypes 

(h6, h20, h21, h24, h29, and h28). For a more resolved understanding of haplotype 

relationships within the clade comprising sequences from all islands (clade C), they 

were used for a network analysis, with closely related sequences from L. osorio (h48, 

h49 and h50) included as an outgroup to provide temporal information regarding 

derived and ancestral haplotypes (e.g. Zarza et al., 2008). A single network with no 

reticulations among haplotypes was recovered (Fig. 2.4) with haplotype h20 from 

Tenerife identified as the most recent common ancestor (MRCA) haplotype within the 

clade. Haplotype h20 would appear to be either unsampled, or extinct on Gran Canaria, 

Figure 2.2. Bayesian phylogenetic tree of the mtDNA COII haplotypes (633 

bp) inferred using the GTR+G model of sequence evolution showing 

relationships and estimated divergence times of the Canarian Islands L. 

tessellatus complex. The tree is rooted with L. vicinus. Bayesian posterior 

probabilities are shown above nodes. Italic numbers in some selected nodes 

indicate the estimated age of the divergence event of that node and the 95% 

highest posterior density intervals obtained with a fixed substitution rate 

(see Materials and Methods). Letters and numbers immediately to the right 

of species names correspond to island codes and sampling localities, see 

Table 2.1. Shared haplotypes are highlighted in bold. A full version of the 

tree with all sampled individuals is provided in Fig. S2.1. 
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given that L. sp. aff. tirajana haplotypes (h42 and h43) are directly derived from it. Two 

haplotypes are shared between Tenerife and La Palma (h2 and h6), with one of these 

(h2) also being shared with El Hierro (Fig.2.4). 

 

2.4.5 Species boundaries in Tenerife 
 
Mitochondrial divergent lineages occurring sympatrically were found at two sampling 

sites in Tenerife (Fig. 2.2, locations TF45 and TF48) and the possibility of cryptic 

speciation was evaluated by assessing co-segregation of alleles (e.g. Cicconardi et al., 

2013). The genotypes sampled at these sites are listed in Table 2.4. For all 11 

individuals sampled at locality TF45, mitochondrial lineages correspond to different 

nuclear groupings, while at locality TF48, individuals from divergent mitochondrial 

lineages share the same nuclear grouping. At site TF45, both null hypotheses of linkage 

equilibrium and HWE were rejected (p-adj<0.001), while at site TF48 none of the null  

hypotheses could be rejected (p>0.05). 

 
2.4.6 Dating analysis 
 
The BEAST analysis of mtDNA COII sequences yielded an estimate of approximately 

6.32 Ma [95% HPD: 4.42-8.32 Ma] for the divergence of the L. tessellatus complex 

from its sister lineage L. vicinus, with initial diversification within the complex 

estimated at approximately 2.71 Ma [HPD 2.08-3.38]. These two absolute age estimates 

are tentative, as they are reliant on a general coleopteran mtDNA rate, and thus should 

be viewed as suggestive. For the remaining nodes age estimates are used for the relative 

comparison of the earliest and most recent possible times for inter-island DNA 

sequence colonisation events (Fig. 2.2 and Table 2.5). La Palma is estimated to have 

been colonised by a Gran Canaria lineage (node C) approximately 0.96 Ma [0.66-1.28], 

and by two Tenerife lineages, one colonising between 0.21 Ma [0.06-0.4] (node D) and 

0.07 Ma [0.02-0.16] (node E), and the other between 0.98 Ma [0.63-1.35] (node F) and 

0.38 Ma [0.21-0.55] (node G). El Hierro is estimated to have been colonised by a La 

Palma lineage between 0.29 Ma [0.15-0.45] (node H) and 0.12 Ma [0.02-0.23] (node I) 

and by a lineage from Gran Canaria between 0.4 Ma [0.14-0.71] (node J) and 0.08 Ma 

[0.015-0.19] (node K). Nodes D, H and J are not well supported but their ages were 
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calculated in order to obtain an estimate of the earliest possible time for a colonisation 

event. 

 

Figure 2.3. Bayesian phylogenetic tree inferred from the ITS2 nuclear gene 

(411 bp) using the GTR+G model of sequence evolution showing relationships 

and estimated divergence times of the Canarian Islands L. tessellatus complex. 

The tree is rooted with L. vicinus. Bayesian posterior probabilities are shown 

above nodes. Italic numbers in some selected nodes indicate the estimated age 

of the divergence event of that node and the 95% highest posterior density 

intervals obtained with a constrained root (see Materials and Methods). Letters 

and numbers immediately to the right of species names correspond to location 

codes, see Table 2.1. Shared haplotypes are highlighted in bold. A full version 

of the tree with all sampled individuals is provided in Fig.S2.2. 
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Using the root age of the mtDNA gene tree (Fig. 2.2, 6.32 Ma) as a prior to calibrate 

the ITS2 tree root height (Fig. 2.3), ages were estimated for the MRCA of the L. 

tessellatus complex and nodes representing sequence divergence events involving 

more than one island (Fig. 2.3 and Table 2.6). The time of MRCA of the L. tessellatus 

complex was estimated to be 3.92 Ma [HPD 2.17-5.87]. Tenerife, La Palma and El 

Hierro nuclear sequences are estimated to have diverged from Gran Canaria 

sequences (node C) at approximately 1.85 Ma [HPD 0.95-2.85]. 

 

 

 

 

 

Figure 2.4. Haplotype network corresponding to the ITS2 sequence variation 

in the less divergent group of the L. tessellatus complex (clade C in Fig 2.3, 

see text for more details). Colours correspond to islands, and differently 

coloured segments within circles represent haplotype sharing across islands. 

The Gran Canarian outgroup L. osorio is represented by green haplotypes 48, 

49 and 50. Lines represent a mutational step; black circles represent missing 

or unsampled haplotypes. 

 



 

 52 

 
2.5 DISCUSSION 
 

We investigated the history of diversification within the L. tessellatus species 

complex in the Canary Islands using a combination of sequence data from one 

mitochondrial and one nuclear gene. The two gene trees present very different 

topologies, with a rather simple colonisation history required to explain the pattern of 

nuclear gene relationships, while the mtDNA gene tree implicates a much more 

complex history of colonisation. Using the geographic context of the islands 

themselves, and relative temporal information from the gene trees, we were able to 

identify the geographic origin of the complex, and dismiss explanations of incomplete 

lineage sorting to reveal a history of colonisation and speciation involving genetic 

admixture. 

TF45 (El Pirajal) TF48 (Las Raíces) 

Individual 
COII 

lineage 
Genotype Individual 

COII 

lineage 
Genotype 

150 

Clade 2 

C76 IT20/29 165 

Clade 2 

C76 IT24/24 

153 C76 IT51/51 167 C76 IT06/06 

154 C76 IT51/51 169 C76 IT24/24 

155 C76 IT20/52 172 C76 IT24/24 

156 C76 IT20/52 174 C76 IT24/24 

158 C76 IT51/51 175 C76 IT24/24 

        

148 

Clade 4 

C25 IT06/24 166 

Clade 4 

C22 IT20/24 

151 C29 IT20/28 171 C22 IT24/24 

152 C29 IT29/29 173 C23 IT24/24 

147 C33 IT06/06 170 C24 IT20/24 

149 C33 IT06/06 168 C28 IT24/24 

 

Table 2.4 - Genotypes of individuals collected sympatrically in two localities in 

Tenerife (TF45 – El Pirajal and TF48 – Las Raíces), which represent divergent 

lineages (according to Figs. 2.2 and 2.3). MtDNA alleles are preceded by letter C 

and nuclear alleles are preceded by letters IT. 
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Node Description 
Mean value 

(Ma) 
95% HPD 

A root of the tree 6.32 4.45-8.36 

B Ingroup 2.71 2.08-3.38 

C Divergence of LP sequences from GC 

sequences 
0.96 0.66-1.28 

D ET for colonisation of LP from TF 

sequences (Lap-2) 
0.21 0.06-0.4 

E MRT for colonisation of LP from TF 

sequences (Lap-2) 
0.07 0.02-0.16 

F ET for colonisation of LP from TF 

sequences (Lap-3) 
0.98 0.63-1.35 

G MRT for colonisation of LP from TF 

sequences (Lap-3) 
0.38 0.21-0.55 

H ET for colonisation of EH from LP 

sequences (Bim-1) 
0.29 0.15-0.45 

I MRT for colonisation of EH from LP 

sequences (Bim-1) 
0.12 0.02-0.23 

J ET for colonisation of EH from GC 

sequences (Bim-2) 
0.4 0.14-0.71 

K MRT for colonisation of EH from GC 

sequences (Bim-2) 
0.08 0.015-0.19 

 

Table 2.5 - Estimated relative times in million years (Ma) of L. tessellatus complex 

mitochondrial lineages expressed as mean values with 95% highest posterior 

density (HPD) intervals. ET = earliest possible time; MRT = most recent possible 

time. Island codes: EH- El Hierro, GC-Gran Canaria, LP– La Palma, TF-Tenerife. 

La Palma lineages= Lap-2 and Lap-3; El Hierro lineages = Bim-1 and Bim-2. 
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2.5.1 Geographic origin of the L. tessellatus complex 
 

The nuclear sequence data indicates the geographic origin of the complex to be Gran 

Canaria and, assuming a rate of molecular evolution not dissimilar from a general 

coleopteran rate, initial diversification within the complex would have started around 

3.92 Ma. The earliest branching events within the ITS2 tree are uniquely composed of 

individuals from Gran Canaria, with sequences from all other islands restricted to a 

single well defined clade that also includes DNA sequences from Gran Canaria (clade 

C, Fig. 2.3). The complex relationships within the clade composed of sequences from 

all islands are best understood when viewed as a network (Fig. 2.4). All nuclear ITS2 

DNA sequence variation sampled on the islands of Tenerife, La Palma and El Hierro 

is derived from a single ancestral sequence that is identified as haplotype h20 from 

Tenerife. Given the inferred Gran Canaria origin for the complex, h20 must be either 

unsampled or extinct on Gran Canaria, but the derived haplotypes h42 and h43, 

sampled from L. sp. aff. tirajana, implicate this taxon in the colonisation of Tenerife, 

La Palma and El Hierro. Relationships among mtDNA sequences provide little 

evidence that can be used to infer the geographic origin of the group. However, the L. 

tessellatus complex is nested within a well supported monophyletic clade comprised 

of an additional nine mitochondrial lineages, of which all are almost exclusively 

comprised of species from Gran Canaria (Machado, unpublished data), which 

supports a Gran Canarian origin for the complex. 

Node  Description 
Mean value 

(Ma) 
95% HPD 

A root of the tree 6.32 6.12-6.51 

B Ingroup 3.92 2.18-5.87 

C Divergence of TF, LP and EH 

sequences from GC sequences 

1.85 0.95-2.85 

 

Table 2.6 - Estimated relative times in million years (Ma) of L. tessellatus complex 

ITS2 lineages expressed as mean values with 95% highest posterior (HPD) density 

intervals. Island codes = EH-El Hierro, GC-Gran Canaria, LP-La Palma, TF-

Tenerife. 
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2.5.2 Gran Canaria species and the founding of neighbouring islands 
 

When considering Gran Canarian species alone (i.e. ignoring all other islands), 

monophyly is either supported, or not rejected, for both molecular markers, for two 

species, L. osorio and L. microphthalmus. Laparocerus osorio is monophyletic for 

mtDNA, while L. microphthalmus is monophyletic for the nuclear marker, and for 

both species a hypothesis of monophyly cannot be rejected (Shimodaira Hasegawa 

test) for the second molecular marker. The other species are monophyletic or not 

inconsistent with monophyly for only one marker. Laparocerus tirajana is 

monophyletic for the ITS2 gene but monophyly is rejected for mitochondrial data 

(Shimodaira Hasegawa test). Laparocerus obsitus and L. sp. aff. tirajana are not 

inconsistent with a hypothesis of monophyly for the mitochondrial gene but they are 

for the nuclear marker. When taking into account species from all islands, hypotheses 

of monophyly are rejected for L. microphthalmus, L. obsitus, L. tirajana and L. sp. 

aff. tirajana. The molecular data identify colonisation events to neighbouring islands 

involving two of the five Gran Canarian species. Mitochondrial DNA sequences 

sampled from L. bimbache (El Hierro) are recovered within L. microphthalmus (Gran 

Canaria), while mtDNA sequences from Laparocerus sp. 1 (La Palma) are recovered 

within L. tirajana and L. sp. aff. tirajana (Gran Canaria). All nuclear variation from 

all species occurring outside Gran Canaria is recovered within L. sp. aff. tirajana 

(Gran Canaria). 

 

2.5.3 Tenerife species and the founding of neighbouring islands 
 

Most DNA sequences sampled within L. tessellatus were also found in L. freyi. Of the 

five mitochondrial and eight nuclear sequences sampled from L. tessellatus, four and 

six are shared with L. freyi, suggesting that L. tessellatus may be of recent origin from 

an L. freyi like ancestor. Both markers present an absence of monophyly for genetic 

variation within Tenerife and identify colonisation events from Tenerife to both La 

Palma and El Hierro. Mitochondrial DNA sequences sampled from both Laparocerus 

sp. 1 (La Palma) and L. bimbache (El Hierro) are recovered within a clade of 

sequences from Tenerife (Fig. 2.2) and nuclear haplotypes from Laparocerus sp. 1 

(La Palma) and L. bimbache (El Hierro) are shared with Tenerife (Fig. 2.4). 
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2.5.4 La Palma and El Hierro–single species with multiple origins 
 

The nuclear sequence data indicates both of the younger islands of La Palma and El 

Hierro to be derived from a single founding event and island. ITS2 sequences from La 

Palma are consistent with Tenerife as a source, while those of El Hierro are derived 

from either La Palma or Tenerife (Figs. 2.3 & 2.4). In contrast, mitochondrial 

relationships are in sharp disagreement with this simple colonisation scenario. 

Laparocerus sp. 1 (La Palma) is composed of multiple mitochondrial lineages, 

derived from either Tenerife (L. freyi and L. tessellatus) or Gran Canaria (L. tirajana 

and L. sp. aff. tirajana) (Fig. 2.2). Laparocerus bimbache (El Hierro) is composed of 

two mitochondrial lineages, one derived from Laparocerus sp. 1 (La Palma), while 

the other is derived from L. microphthalmus (Gran Canaria) (Fig. 2.2). This pattern of 

mixed ancestry suggests either: (i) species origin on La Palma and El Hierro involving 

genetic admixture from multiple founding species, or (ii) incomplete lineage sorting 

(Funk & Omland, 2003; Toews & Brelsford, 2012). Distinguishing between these two 

processes is typically a challenge, but the dynamics of speciation by founder events 

between islands enables us to exclude lineage sorting by evaluating three expectations 

from incomplete lineage sorting. We deal with each of these three expectations below 

in turn. 

 

Expectation 1: All sequence variation shared among islands was present in the 

ancestral gene pool. This would require colonisation events between islands involving 

large numbers of founding individuals, such that a substantial amount of the standing 

ancestral genetic variation would be transferred. This is not consistent with the 

colonisation dynamics of flightless beetles (Ikeda et al., 2012; Vogler & 

Timmermans, 2012). This would then need to be followed by non-random extinction 

(or sampling) of genetic variation within both the source and founded islands. As an 

example, the following scenario would be necessary to explain patterns of genetic 

diversity on La Palma if Laparocerus sp. 1 were the result of a single colonisation 

event from Gran Canaria. All sequence variation within lineage 4 (Fig. 2.2) would 

have been present within the ancestral population of Gran Canaria. Additionally, all 

sequence variation within lineage 3 (Fig. 2.2) would have been present within Gran 

Canaria. Reciprocal and extensive non-random mtDNA lineage extinction on both 

islands would then be required to explain the absence of Tenerife sequences within 
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lineage 3, and Gran Canaria sequences in lineage 4. As we sampled across the range 

of each species, it is equally unlikely that such a large number of sequences are 

present, but were not sampled. 

 

Expectation 2: If the species from La Palma and El Hierro are each the product of a 

single colonisation event, colonisation times of all molecular lineages shared between 

these and other islands should coincide. The relative time interval for the colonisation 

of a lineage to an island ranges from the lowest to the highest bound of the two time 

intervals (earliest and most recent possible) measured for each lineage, e.g. La Palma 

was colonised from one Tenerife lineage between 0.02-0.4 Ma (minimum and 

maximum HPD values for nodes D and E, Fig. 2.2). There is substantial overlap in the 

time intervals estimated for different lineages colonising La Palma and El Hierro, and 

this is a consequence of the wide 95% posterior intervals estimated by the Bayesian 

MCMC method when dealing with shallow genetic divergence (Brown & Yang, 

2010). Despite this difficulty, results clearly reject the hypothesis of a single 

colonisation for La Palma. The mitochondrial lineage Lap-1 on La Palma involved a 

colonisation event (node C, between 0.66 and 1.28 Ma) that does not coincide with 

lineage Lap-2 (node D and E, between 0.02 and 0.4 Ma) (Fig. 2.2). Thus temporal 

information alone indicates that La Palma was colonised at least two times.  

 

Expectation 3: A signature of incomplete lineage sorting for nuclear gene is expected 

to be more exaggerated than for the mitochondrial gene, due to its much bigger 

effective population size (Ballard & Whitlock, 2004). In contrast to this expectation, 

the signature of potential incomplete lineage sorting among islands presented by the 

nuclear gene (Fig. 2.4) is much less than expected if the patterns of mtDNA 

relatedness are due to incomplete lineage sorting. If we consider the shared mtDNA 

variation observed between Gran Canaria and both La Palma and El Hierro to be the 

result of incomplete lineage sorting, its absence within the more slowly evolving 

nuclear gene, with its much larger effective population size becomes difficult to 

explain. 

 

It should be noted that many other studies have found mtDNA gene trees to be less 

resolved than nuclear gene trees and while many of them have indicated retention of 

ancestral polymorphism as the possible explanation, several others were able to 
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explain this difference through the acts of genomic admixture (e.g. Shaw et al., 2000; 

Peters et al., 2007; Roos et al., 2011; Choleva et al., 2014; Dong et al., 2014). In fact, 

a search in the literature for mito-nuclear discordance reveals the majority (if not all) 

of the studies favour hybridization. In the few cases where incomplete lineage sorting 

was clearly demonstrated (Rheindt et al., 2009; Wilson et al., 2011; Tang et al., 2012; 

Pagès et al., 2013), our prediction of a more exaggerated signature of incomplete 

lineage sorting for the nuclear gene was met. For example, Rheindt et al. (2009) 

investigated species-level paraphyly and polyphyly in the montane Neotropical 

Elaenia flycatchers using a combination of mitochondrial and nuclear genes and 

population genetic methods. They demonstrated the pattern of polyphyly to be based 

on an interplay of three different factors:   “(i)   faulty   taxonomy   […]; (ii) a late 

Pleistocene hybridization event that resulted in two morphologically and ecologically 

distinct species sharing extremely similar mitochondrial DNA but distinct nuclear 

DNA profiles; and (iii) incomplete lineage sorting in a nuclear marker that results in a 

polyphyletic placement of species that are otherwise well-differentiated in 

mitochondrial  DNA,  morphology  and  ecology”  (Rheindt  et  al.,  2009,  pg  143). 

 

2.5.5 Species boundaries in Tenerife 
 

An interesting genetic pattern within Tenerife is the finding of divergent mtDNA 

lineages occurring in sympatry in two locations. While in one location (site TF48), the 

two mtDNA lineages show no evidence that they might represent biological species, 

in the other location (site TF45), there is a strong nuclear signature of limited gene 

flow among individuals from these two mtDNA lineages. This complex pattern of 

sympatric coexistence may be explained by differences in environmental backgrounds 

that might facilitate contact and gene exchange between lineages in one site but 

enhance isolation and prevent gene flow in the other. It is not an unusual pattern and it 

has been reported for other species such as the Towhee birds Pipilo maculatus and P. 

ocai in southern Mexico, which hybridize extensively in several locations, but coexist 

in sympatry with no evidence of gene flow in other locations (Sibley & Sibley, 1964). 

Thus, while molecular data does not support the division of the L. tessellatus complex 

in Tenerife into L. tessellatus and L. freyi, it does suggest that there to be more than 

one species, potentially related to the two mtDNA lineages within the islands. 

However, more sampling is required to specifically address this issue. 
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2.5.6 Conclusions 
 

Species that are the product of genetic admixture among multiple colonising lineages 

within island archipelagos, as demonstrated here, have rarely been reported for animal 

taxa. However, this is perhaps not to be unexpected, because island archipelagos 

present a geographic matrix where both geographic isolation and secondary contact 

are a function of colonisation dynamics and frequency in space and time. High 

colonisation rates among islands will push populations toward panmixia, while low 

colonisation rates will facilitate divergence. At intermediate rates, where genomic 

divergence is promoted, but where barriers to gene flow may not have reached 

completion, the potential for admixture may arise. Indeed, genomic admixture has 

been invoked to explain discordant mito-nuclear tree topologies for a subspecies of 

the Galápagos mockingbird genus Mimus (Nietlisbach et al., 2013). Our findings, like 

those of Nietlisbach et al. (2013) raise an interesting question – to what extent might 

admixture be a driver of diversification itself? The potential importance of genetic 

admixture as a driver of speciation is well recognised (e.g. Shaw, 2002; Mallet, 2007; 

Schwenk et al., 2008). In the context of island colonisation, founding events that 

involve only one or a few individuals will result in low genetic diversity within the 

founding populations, which can only be recovered over an evolutionary time-scale of 

mutation. Genetic admixture provides a potential escape from reduced genetic 

variance via recombination among divergent genomes that may also facilitate 

adaptation within novel adaptive landscapes (Mallett, 2007). Further work is needed 

to address this issue, and new techniques such as reduced genome sequencing and 

genotyping by sequencing (e.g. Mastretta-Yanes et al., 2014) should prove very 

useful in this respect. 
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2.7 Appendices (electronic version) 
 

Figure S2.1 

Bayesian phylogenetic tree of the complete mtDNA COII data set (172 sequences, 

633 bp) inferred using the GTR+G model of sequence evolution showing 

relationships within the Canarian Islands L. tessellatus complex. The tree is rooted 

with L. vicinus. Bayesian posterior probabilities are shown below nodes. Letters and 

numbers immediately to the right of species names correspond to location codes, see 

Table 2.1.  

 

Figure S2.2 

Bayesian phylogenetic tree of the complete ITS2 nuclear gene dataset (330 sequences, 

411 bp) inferred using the GTR+G model of sequence evolution showing 

relationships within the Canarian Islands L. tessellatus complex. The tree is rooted 

with L. vicinus. Bayesian posterior probabilities are shown below nodes. Letters and 

numbers immediately to the right of species names correspond to location codes, see 

Table 2.1.  
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Figure S2.1 
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Figure S2.2 
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Chapter 3 
 
 

Community level assessment of arthropod colonisation 
history: an example using the Collembola of Tenerife 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Sampling site in the laurel forest of Anaga, northeast of 
Tenerife. Photo by Conrad Gillett 
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3.1 ABSTRACT 
 
Oceanic islands offer an ideal temporal and spatial framework to study community 

processes, in particular the dynamics of colonisation within mainland-island models 

over time. However, only a few studies to date have examined this dynamic using the 

historical information provided by molecular data for a large number of species. 

Collembola is an ancient group of small, wingless invertebrates, extremely abundant in 

soil and leaf litter, and widely distributed throughout the world. Due to their high 

density, virtual ubiquity and limited dispersal abilities, they represent a good model 

system to study evolutionary processes.  In this study, Collembola were sampled from 

Tenerife to understand the process of island colonisation for small soil dwelling 

invertebrate fauna, an understudied component of biodiversity despite its significant 

representation. Specifically, a high throughput parallel sequencing approach with the 

barcode gene COI was used to quantify species richness, estimate the genetic 

relatedness of island and mainland taxa, and infer the distribution of lineage 

colonisation times. In total, 117 Collembola lineages are described for Tenerife 

community with an average of 15 lineages sampled per site. The majority of lineages 

are restricted to a single site, and only a few lineages are widely distributed. The plot of 

frequency distributions of the observed genetic distances reveals a clear bimodal 

distribution of pairwise distances between the Tenerife OTUs and their closest matches 

outside the archipelago (BOLD database). These results indicate the Collembola of 

Tenerife to be a mosaic of taxa that are either genetically very closely related to non-

Canary Island species, or taxa that are genetically very divergent from non-Canary 

Island species, with a scarcity of lineages of intermediate relatedness. The broad 

geographic distribution, and apparent genetic uniformity of many of non-Canary Island 

taxa that are genetically very close to Canary Island taxa reveals a probable origin by 

human introduction for some of these species. 
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3.2 INTRODUCTION 
 
Community composition at any point in time results from the interplay between 

immigration, speciation and extinction. It is constrained by the evolutionary history and 

availability of species in the regional species pool (Ricklefs, 2004), the dispersal 

abilities of these species that allow them to reach a new area (e.g. an island) (Lomolino 

et al., 2010), and their ability to tolerate abiotic (environmental filtering) and biotic 

(interactions among species) conditions once they arrived in the newly colonised area 

(HilleRisLambers et al., 2012).  There has been increasing interest in understanding 

community assembly and the processes that drive it at multiple spatio-temporal scales 

(e.g. Parent & Crespi, 2006; Emerson & Gillespie, 2008; Papadopoulou et al., 2011), 

and this has been facilitated by the use of molecular data together with developments in 

computing power and informatics tools. Studies of phylogenetic community ecology 

have greatly illuminated our knowledge about the formation and structuring of 

biological communities and we now have a better understanding of the processes 

driving community assembly, maintenance and changes over time (Cavender-Bares et 

al., 2009; Vamosi et al., 2009; Vellend et al., 2014).  This is fundamental in a time of 

rapid global change and pervasive anthropogenic threats to biological communities 

worldwide. 

 

The theory of island biogeography (MacArthur and Wilson, 1967) provides the most 

influential general framework to study biological communities, specifying that the rates 

of interisland colonization and extinction are responsible for the generation and 

maintenance of an island biota (Hengeveld, 2002). The theory was later expanded to 

incorporate within-island speciation as another important process in generating diversity 

on islands at particular spatial and temporal scales (Losos & Schluter, 2000). In the 

early stages of community formation, immigration is thought to be the dominant 

process, and the dispersive, adaptive and competitive quality of colonists will determine 

their establishment success in the new colonized area. Island biogeography theory (IBT) 

predicts that the size of an island and its distance to a source area are important 

variables because they determine the amount of empty niches available to colonize, and 

the immigration probability, which will vary negatively with distance. Over time, niches 

are filled, migrant alleles are less likely to become fixed in the island population and 
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speciation can become a more important process (Emerson & Gillespie, 2008). Despite 

efforts to place phylogenetic analyses of communities within deeper temporal scales, 

studies have mostly focused on ecological times (examining recent dispersal, 

colonization, establishment) rather than evolutionary times where speciation features. 

Several recent examples have included a multi-taxa approach to assess genetic diversity 

of local assemblages, including tenebrionid beetle communities sampled across 

continental islands of the Aegean archipelago (Papadopoulou et al., 2011), and a large-

scale DNA sequencing approach to study the genotypic diversity of the entire aquatic 

communities of beetles across Europe (Baselga et al., 2013). While these studies 

considered evolutionary time taking age of the islands and age of clades into account, 

they have addressed very different temporal scales. 

 

Understanding the processes underlying community assemblage (immigration, 

speciation and extinction) depends on the ability to measure their rates and variation 

over time, and this can be facilitated by the application of molecular data and use of 

appropriate model systems. Oceanic islands offer an ideal temporal and spatial system 

to study community processes, in particular the dynamics of colonisation within 

mainland-island models over time, because of their discrete nature and often known 

geological history. However, only a few studies have examined this dynamic using the 

historical information provided by molecular data for a large number of species. For 

example, Ricklefs and Bermingham (2001) examined the connectivity between island 

and mainland bird species by estimating genetic distances between populations and 

analysing the distribution of colonisation times of extant island lineages (Ricklefs & 

Bermingham, 2001). They plotted the cumulative curve of lineages of land birds in the 

Lesser Antilles as a function of increasing relative age of colonisation. This curve was 

expected to increase exponentially towards an equilibrium point, when colonisation and 

extinction are constant over time and homogeneous over lineages (Ricklefs & 

Bermingham, 2004). However, they found it did not reach equilibrium for the Lesser 

Antilles birds and presented a striking change in slope at a mitochondrial DNA genetic 

distance of approximately 2% (Fig 3.1). An explanation put forward for this result was 

the speciation threshold model (Johnson et al. 2000), according to which the genetic 

divergence among recent colonists is slowed by migration from the source, and species 

accumulate at a low genetic distance prior to a speciation threshold. Once this threshold 
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is achieved, source and island populations diverge more rapidly generating a 

heterogeneous distribution of apparent ages (genetic distance values) of island taxa. The 

shape of this distribution is expected to be a negative exponential decay (Fig 3.2) with a 

high density prior to the speciation threshold and a sparser distribution over a wider 

range of divergence values above that threshold (Fig 3, Johnson et al., 2000). This 

approach and expectations (cumulative curve of lineages with an abrupt change of slope 

and negative exponential decay of island taxa ages) are useful because they give 

insights about the dynamics of colonisation over time and the build-up of island biota. 

However, they are only useful for very dispersive taxa, and we lack data or models for 

other groups, especially low dispersive taxa such as flightless groups. 

 

 
 

 

 

 

 

 

 

Collembola is an ancient group of flightless invertebrates whose families evolved more 

than 200 million years ago (Hopkin, 1997). They are small, wingless animals, extremely 

Figure 3.1. Cumulative curve of lineages of land birds in the Lesser Antilles as 

a function of increasing relative age of colonisation (genetic distance, dA). 

Contrary to expectations, the curve did not reach equilibrium (and it presented 

a striking change in slope at a mitochondrial DNA genetic distance of 

approximately 2% (reproduced from Rickelfs and Bermingham [2001]). 
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abundant in soil and leaf litter, and widely distributed throughout the world, including 

areas of extreme climates such as deserts and polar regions (Hopkin, 1997). Their key 

role for ecosystem functioning lies in influencing soil structure and decomposition 

through feeding on fungal hyphae and releasing faecal pellets, which become part of the 

black humus (Hopkin, 1997). Due to their high density, virtual ubiquity and limited 

dispersal abilities, they represent a good model system to study evolutionary processes. 

Although one of the weaknesses of the group is the difficulty to assign taxonomy (the 

“taxonomic  impediment”),  molecular  studies  addressing  springtails  as  model  organisms  

demonstrate their ability to inform about evolutionary history even at very fine 

geographical scales (e.g Garrick et al., 2007; Cicconardi et al., 2010). High levels of 

genetic differentiation consistent with cryptic diversity has been recently documented 

for many collembolan genera and species around the world, e.g. Lepidocyrtus from the 

North-Western Mediterranean basin and Panama (Cicconardi et al., 2010, 2013), 

Megalothorax from France (Schneider et al., 2011), Tomocerus from China (Zhang et 

al., 2014),  Bilobella aurantiaca from France (Porco et al., 2012a), Frisea frisea from 

Antartica (Torricelli et al., 2010),  Parasitoma notabilis from many regions in Europe 

and Canada (Porco et al., 2012b). These studies have also repeatedly revealed deep 

divergences among lineages within species defined by classical taxonomy, indicating 

that the broad distributions of many species recognised by traditional morphological 

taxonomy in fact represent cryptic species diversity.  

 

The aim of this chapter is to use Collembola sampled from the island of Tenerife to 

understand the process of island colonisation for small invertebrates from the soil fauna. 

Specifically, a molecular approach is used to estimate the genetic relatedness of island 

and mainland taxa, and infer the distribution of lineage colonisation times. In the 

Canary Islands, Collembola diversity has been mainly documented based on 

morphological taxonomy and although most of the species are thought to be native, the 

possibility that some species could be the result of introductions has been suggested 

(Arechavaleta et al., 2010) and recently reported. Ramirez-Gonzalez et al. (2013) found 

three Tenerife sequences assigned to Parasitoma notabilis to be identical to sequences 

sampled from Europe, North Africa and Australia. Attempts to solve the possible 

origins (whether native or introduced) of the species become more complex due to the 

fact that many species have broad geographic ranges that extend beyond the archipelago 
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(Emerson et al., 2011) and by the fact that cryptic diversity is extensive within 

Collembola (e.g Porco et al., 2012a).  

 

 
 

 

To characterise Collembola evolutionary diversity in Tenerife and infer the history of 

colonisation of the island, we analysed sequence data (220 bp of the barcode gene COI 

obtained from a 454 sequencing platform) from 2500 individuals collected at 25 

sampling sites from across the island. Next generation sequencing (NGS) allows large-

scale DNA sequencing of entire species assemblages and this provides a way to 

quantify species and genetic diversity collectively for a given community (Baselga et 

al., 2013). The barcode gene COI is used as the amplicon for high throughput parallel 

(HTP) sequencing because of its distinct advantages for the assessment of intra and 

Figure 3.2. Mean allelic divergence times of alleles across species on the same 

island. This distribution is a negative exponential decay with ahigh density 

prior to the speciation threshold and a sparser distribution over a wider range 

of divergence values above that threshold (reproduced from Johnson et al. 

[2000]). 
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interspecific analyses of mesofaunal taxa compared to commonly used markers for 

amplicon HTP sequencing, such as 16S for bacteria  (e.g. Chu et al., 2010), rRNA for 

fungi (e.g. Rousk et al., 2010), protists (e.g. Medinger et al., 2010) and marine 

mesofaunal elements (e.g. Fonseca et al., 2010).  MtDNA COI is a single copy gene, 

has highly conserved regions spanning variable regions which facilitates cross-taxon 

amplification, it maximises the capture sample of taxonomic diversity for 

pyrosequencing within a focal group, and has faster evolutionary substitution rate 

compared to the nuclear rRNA genes (Emerson et al., 2011). Furthermore, it has no 

indels (facilitating the identification of non-target sequences) and it is well represented 

on public databases (Ramirez-Gonzalez et al., 2013). At the time of this study, there 

were 50,294 Collembola specimens with barcodes in the BOLD Identification System 

(http://www.boldsystems.org) from different parts of the world. This represents a 

valuable tool to assign taxonomy for the 454 sequences from Tenerife and to understand 

the dynamics of colonisation and community assembly of islands and archipelagos. 

A previous pilot study analysed sequence data from two of the 25 sampling sites of this 

study to develop an algorithm to separate pyrosequencing noise from true sequence 

diversity (Ramirez-Gonzalez et al., 2013). The study revealed the potential for 

pyrosequencing data to successfully recover both interspecific and intraspecific 

sequence diversity. Furthermore, the comparison of Canary Island sequence data to the 

BOLD database revealed it to be mainly comprised of two classes of sequences, across 

the 24 divergent lineages found. Seven sequences (30%) were genetically identical or 

nearly identical to sequences sampled outside the archipelago, while 13 sequences 

(54%) did not have any close match outside the archipelago (between 89-92% 

similarity). Although a rather small dataset, it suggested a bimodal distribution for the 

frequency of allelic divergences across species on a single island. Here we extend the 

sampling of Ramirez-Gonzalez et al. (2013) to a dataset of 25 sites for a broader 

analysis of the Collembola community assembly within the Canary Islands to assess 

whether this bimodal distribution could represent a general pattern for the group. 

 

3.3 MATERIALS AND METHODS 
 

3.3.1 Sample collection and laboratory work 
 

http://www.boldsystems.org/
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Soil samples were collected at 25 sampling sites from across Tenerife (Fig 3.2) and 

placed in Tullgren funnels to extract Collembola, as described in Ramirez-Gonzalez et 

al. (2013). For each site, one hundred Collembola were randomly sampled and 

combined for DNA extraction, followed by amplification of 307 bp mtDNA COI 

barcode region using primers 454ColFol-for and 454Col307-rev, with 454 adaptors A 

and  B  at   the  5’   ends  of the respective primers. For each of the 25 pools, PCRs were 

performed in triplicate; with each replicate having a different multiplex identifier MID-

tagged A adaptor (only the forward direction was pyrosequenced).  MIDs allow 

different samples to be sequenced together on a single 454 plate and then separated 

bioinformatically for downstream analysis. DNA extraction, PCR and sequencing 

conditions are described in detail in Ramirez-Gonzales et al. (2013). PCR products were 

purified, normalized and equimolar pooled, then sequenced on two 1/2 plates of the 

Roche 454 GSFLX pyrosequencing platform within The Genome Analysis Centre, 

Norwich Research Park, Norwich, United Kingdom.   

 

Figure 3.3. Distribution of sampling sites in the island of Tenerife; a complete 

list with geographic coordinates and number of lineages sampled per localities 

can be found in Table 3.1. 
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3.3.2 Data analysis 

 
Sequences generated from the Roche 454 GSFLX platform were processed using the 

PyroClean denoising algorithm (Ramirez-Gonzalez et al., 2013). PyroClean involves 

five steps for the removal of non-target sequences (sequencing error, PCR error, 

pseudogenes, chimeric sequences, or contamination) and the generation of a 

PyroCleaned output alignment. In the first step, the raw 454 library data was split by 

MID and converted to fasta format. The forward primer was trimmed from the fasta file 

and reads were collapsed to unique sequences, with the number of reads appended to 

each sequence name. In step 2, an informative consensus reference sequence was 

constructed to detect and correct read errors in homopolymer regions (e.g. insertion and 

deletions - indels) that are quantifiable as frameshift events. This reference sequence 

was then used in step 3 as anchor points for denoising reads generated from 

pyrosequencing. Reads were analysed individually by identifying and correcting indels 

as well as insertion deletion compensation events that are associated with 

homopolymers. In step 4 reads divergent from the consensus reference sequence (with 

nucleotide variation attributable to PCR error, sequencing error, numts, or non-target 

sequence) were filtered out and the filter threshold used was 1 permissible mismatch 

between a read and the consensus reference sequence. Low frequency sequences such as 

singletons were excluded a priori. The alignment was then trimmed to exclude 

remaining  3’  homopolymer  error  and  sequences that differed by only an ambiguity code 

from another sequence were merged into a single sequence without the ambiguity code. 

Finally, in step 5, reads presenting nucleotide variation consistent with the consensus 

reference sequence, but still attributable to PCR or sequencing error, or numts, were 

removed. The PyroCleaned output alignment obtained was then processed to obtain 

clusters of sequences presumably representing Collembola species and to remove 

clusters of sequences that cannot be reliably attributed to Collembola clusters 

(remaining non-target sequences that persisted in the alignment).   

 

3.3.3 Cluster assignment 
 
DNACLUST (Ghodsi et al., 2011) was used for clustering the large number of 

sequences of the PyroCleaned output alignment down to OTUs (Operational Taxonomic 
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Unit,   “OTU  picking”).  Here   lineages   are   defined   operationally   as   a   cluster   of   similar  

sequences. To define the similarity threshold for clustering, the alignment was subjected 

to DNACLUST analyses using a range of similarities values (from 85% to 99% 

similarity, with increments of 1%) and the number of clusters obtained at each value 

was quantitatively compared in relation to the rate of increase in the number of OTUs 

produced by increasing the similarity level. The threshold that generated the maximum 

number of clusters with the smallest rate of increase (i.e. minimum number of singleton 

clusters) was chosen as the similarity value for defining lineages. Then, to assign 

taxonomy and accept (or not) an OTU as a Collembola lineage, the most frequent 

sequence of each cluster (i.e. the one with the highest number of reads) was submitted 

to the BOLD Identification System (http://www.boldsystems.org), and using 

bioinformatic tools implemented within this system, a distance analysis was performed. 

By default, BOLD uses the Kimura 2 parameter distance model to calculate pairwise 

distances between the searched sequence and all the other sequences on the database, 

and returns the percentage of similarity for the top 99 closest matches found. The 

maximum similarity hit to a non-Canarian Collembola and the number of matches to 

both Collembola and non-Collembola sequences within the 99 top matches were 

computed and compared. The limited taxonomic resolution of the first 220 bases of the 

barcode gene and the disproportionately higher number of non-Collembola sequences 

on the BOLD database when compared to Collembola resulted in many PyroCleaned 

sequences matching to non-collembolan taxa on the BOLD database in Ramirez-

Gonzalez et al. (2013). To take this into account, we took two approaches to define a 

threshold for accepting a cluster to be a Collembola species. First, we assessed the 

taxonomic resolution of the first 220 bases of the barcode gene by submitting 20 

randomly chosen Collembola sequences downloaded from GenBank and 27 Tenerife 

Sanger sequences derived from Collembola (provided by BCE) both in their full (~600 

bp) and short (220 bp) lengths to BOLD and compared how many matches to a 

Collembola each sequence length retrieved. Second, we evaluated the impact of the 

much greater representation of Insecta sequences within the BOLD database (2,257,609 

Insecta specimens with barcodes as opposed to 50,294 Collembola specimens) by 

computing the number of matches to a collembolan sequence that is retrieved when 

submitting a random Insecta sequence to the BOLD system. Fifty randomly chosen 

Insecta sequences from the dataset in Liu et al. (2013) were downloaded from GenBank, 
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trimmed down to the first 220 bp and submitted to BOLD. These two approaches 

provided us with the cut off point, i.e. the minimum number of matches to Collembola-

taxa for accepting an OTU as a true Collembola. To further assign taxonomy and 

estimate the number of lineages in Tenerife, all genuine Collembola clusters (one 

representative sequence per cluster again chosen as the one with the highest number of 

reads) were subjected to a neighbour-joining analysis with the 27 Tenerife Sanger 

Sequences using p-distances in MEGA6 (Tamura et al., 2013) and the uncorrected 

genetic distances between all pair of sequences in the alignment was computed. 

Tenerife Sanger sequences that were closely related to any barcode cluster were 

collapsed to a single cluster.  

 

Table 3.1 – Sampling sites within the island of Tenerife. Locations coded according to 

Fig 3.3. 

Locality 
Code Latitude Longitude N 

lineages 
1  28° 32.161  016° 17.660 17 
2 28° 32.977 016° 12.080 19 
3 28° 33.508 016° 12.220 17 
4 28° 31.579 016° 16.878 15 
5 28° 32.211 016° 18.111 11 
6 28°31.913 016°18.054 13 
7 28° 32.374 016° 16.544 13 
8 28° 32.519  016° 13.742 17 
9  28° 33.613 016° 09.625 12 
10 28° 33.507 016° 09.998 12 
11 28° 20.288  016° 49.865 19 
12 28° 19.876 016° 49.554 15 
13 28° 19.748 016° 49.506 14 
14 28° 19.687 016° 48.708 13 
15 28° 25.356 016° 22.921 14 
16 28° 26.014 016° 23.036 21 
17 28° 24.402 016° 25.390 14 
18 28° 18.891 016° 50.871 19 
19 28° 20.514  016° 51.762 18 
20 28° 20.343  016° 52.198 23 
21  28° 20.270 016° 51.746 26 
22 28° 04.966 016° 38.454 12 
23 28° 04.969 016° 41.024 11 
24 28° 07.031 016° 40.656 13 
25 28° 06.884 016° 37.225 12 
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3.3.4 Frequency distribution and cumulative frequency plots 
 

Once genuine Collembola short barcode clusters were separated from non-Collembola 

clusters (by checking the similarity hit and number of matches to Collembola sequences 

returned when queried on BOLD), and OTUs were verified (by the joint neighbour-

joining analysis with the taxonomically referenced Sanger sequences), a frequency 

distribution of pairwise genetic distances between every lineage and its closest sequence 

outside the archipelago (which is the first match to a non-Tenerife Collembola retrieved 

by BOLD) was computed, and a cumulative frequency plot of the number of lineages 

with increasing genetic distance was constructed.  

 

3.4 RESULTS 
 
3.4.1 PyroCleaning results  
 

After data processing with the Roche 454 software package, amplicon PCRs for the 

three MIDs within each pool (25 sites) yielded broadly similar unique raw 

pyrosequence counts with a few exceptions (Table S3.1). Unique raw reads had a mean 

maximum length of 537 bp and were on average 348 bases long. The consensus 

reference sequence for Collembola (step 2) was built using 1556 collembolan COI gene 

sequences that were available from EMBL/GenBank. In step 3, the PyroClean algorithm 

was implemented to correct homopolymer error and singletons were excluded. The 

alignment was then trimmed to the first 220 nucleotides and filtered for 1 mismatch to 

the consensus reference (step 4). A second filter was performed in step 5 and the 

average number of unique sequences within each pool was 42 (ranging from 28 to 76). 

None of the sequences were found to be of chimeric origin. The final PyroCleaned 

output alignment consisted of 3,400 unique sequences. 

 

3.4.2 Clustering thresholds 
 

The rate of increase in the number of clusters obtained when running DNACLUST at a 

range of similarities was small when increasing the threshold from 85% up to 95% 

(with an average of 10 clusters added for each threshold increase), medium, when rising 
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from 96% to 98%, and very big when rising from 99% to 99.9% (Table 3.2). We chose 

95% similarity for clustering, as this is the highest similarity value before the number of 

lineages greatly increased.  The rate of increase in the number of clusters was smaller 

than in the previous two thresholds (additional 10 as opposed to 17 and 14 clusters 

added at similarities 94% and 93%, respectively), indicating this to be a suitable 

similarity threshold for clustering. The 3,400 sequences in the PyroCleaned output 

alignment were then clustered at 95% similarity and reduced down to a total of 182 

clusters that are at least 5% divergent from each other.  

 

3.4.3 Taxonomic assignment 
 

Seventeen out of the 20 randomly chosen Collembola Sanger sequences submitted to 

BOLD matched only to Collembola taxa within the top 99 matches when searched with 

their full length (Table 3.3). The three remaining sequences matched mostly to 

Collembola but presented 1 to 3 matches (out of the top 99) to an Insecta sequence. 

When reduced to the first 220 bp, only two sequences matched only to Collembola 

sequences. The remaining 18 sequences presented at least a few, but usually many 

matches to non-Collembola taxa, especially to Insecta. The majority of the Tenerife 

Sanger sequences, when reduced to 220 bp, had very low frequency matches to another 

Collembola sequences on BOLD (<10% out of the top 99) and they mostly presented 

low similarity hits (<94%) (Table S3.2). Surprisingly, two of these sequences (Col213 

and Col226) matched to not a single Collembola on BOLD. When queried in its full 

length (692 bp), Col226 matched only to 4 Collembola, and its top similarity hit was 

79.8%, the lowest hit found among all sequences searched on BOLD for this study. The 

full length of Col213 was only 282 bp long, and it matched to a single Collembola 

sequence, with top similarity hit 91.3%. These tests indicated that true Collembola 

sequences may exhibit low matches to Collembola sequences on BOLD, and apparent 

higher matching to Insecta sequences, and that, although this is most dramatic at 

reduced sequence lengths, it is also a feature of full sequence lengths. When submitting 

randomly chosen Insecta sequences to BOLD, also reduced to the first 220 nucleotides, 

the majority of them matched only to Insecta sequences on the database (Table 3.4). 

Five out of the 50 Insecta sequences presented Collembola matches in very low 
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frequencies (maximum number of Collembola matches retrieved was 5 out of the 99 top 

matches).  

 

Based on the above findings, and in the absence of high similarity matches, we set a 

threshold of at least 6 Collembola matches within the top 99 BOLD matches for a 

cluster to be considered to be a species of Collembola. With this threshold, a total of 

129 out of the 182 clusters submitted to BOLD were considered to represent a species 

of Collembola (Table S3.3), with 29 of these having an identical or nearly identical 

(≥99% match) sequences on the BOLD database. The remaining 100 clusters presented 

a variety of low to high levels of genetic similarity (98% to 83%) to the most closely 

related Collembola sequence outside the Canary Islands (Table S3.3).  

 

Table 3.2 - Number of clusters produced when clustering the PyroCleaned output 

alignment (n=3,400 sequences) at increasing similarity values, and the number of 

additional clusters added (rate of increase) at each threshold.  

 

Similarity threshold N of clusters Rate of Increase 

0.85 82 - 
0.86 93 11 
0.87 103 10 
0.88 110 7 
0.89 117 7 
0.9 124 7 
0.91 133 9 
0.92 141 8 
0.93 155 14 
0.94 172 17 
0.95 182 10 
0.96 221 39 
0.97 271 50 
0.98 359 88 
0.99 567 208 

0.995 803 236 
0.999 1056 253 
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The 53 clusters that matched to none or to a very few Collembola sequences were 

removed from the dataset. Highest matching hits for presumably non-Collembola 

clusters ranged from 89% to 98% similarity to another sequence on the database and the 

identities of those with high matches (≥96% similar) were mostly Lepidoptera, Diptera 

and Coleoptera (Table S3.4).  Among the clusters with low similarity hits (90 to 92%), 

the highest hit for 13 clusters was not to an Insecta sequence but to the following taxa: 

Amphipoda (5), Actinopterygii (2), Anura (1), Decapoda (1), Euonychophora (2), 

Rodentia (1), Passeriformes (1). It should be noted that, based on the analyses described 

above, some of these may actually represent Collembola. This type II error (rejection of 

Collembola lineages as Collembola) should be offset by a lower type I error (acceptance 

of non-Collembola lineages as Collembola). 

 

Table 3.3 Number of matches to Collembola, Insecta or other taxa within the top 99 

matches returned by the BOLD System Identification database when querying with 

randomly chosen full length Collembola Sanger sequences, and shorter lengths of these.  

  

Query 
Sequence 

Full length (~600 bp) Short length (220 bp) 

Collembola Insecta Other 
taxa Collembola Insecta Other 

taxa 
1 99 0 0 25 73 1 
2 99 0 0 4 95 0 
3 99 0 0 93 6 0 
4 99 0 0 44 52 3 
5 99 0 0 4 95 0 
6 99 0 0 96 3 0 
7 99 0 0 99 0 0 
8 99 0 0 1 98 0 
9 99 0 0 29 65 5 
10 96 3 0 2 97 0 
11 99 0 0 25 49 25 
12 99 0 0 98 1 0 
13 99 0 0 26 47 26 
14 97 2 0 36 63 0 
15 99 0 0 63 10 26 
16 99 0 0 48 51 0 
17 99 0 0 99 0 0 
18 99 0 0 53 40 6 
19 99 0 0 26 68 5 
20 98 1 0 2 97 0 
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Table 3.4 - Number of matches to Insecta, Collembola or other taxa within the top 99 

matches returned by BOLD System Identification database when querying with 

randomly chosen Insecta sequences reduced to 220 bp.   

 

 
                      Number of matches to: 

Query Sequence Insecta Collembola Other taxa* 
1 JQ344393 94 5 0 
2 JQ344935 99 0 0 
3 JQ344793 99 0 0 
4 JQ344582 99 0 0 
5 JQ344597 99 0 0 
6 JQ344719 99 0 0 
7 JQ344720 99 0 0 
8 JQ344696 99 0 0 
9 JQ344697 99 0 0 
10 JQ344468 99 0 0 
11 JQ344529 99 0 0 
12 JQ344857 99 0 0 
13 JQ344965 96 2 1 
14 JQ344967 99 0 0 
15 JQ344828 98 0 1 
16 JQ345029 99 0 0 
17 JQ344361 98 0 1 
18 JQ344842 82 0 17 
19 JQ344545 99 0 0 
20 JQ344788   99 0 0 
21 JQ344413 99 0 0 
22 JQ344508 99 0 0 
23 JQ344768 97 0 2 
24 JQ344777 97 1 1 
25 JQ344784 99 0 0 
26 JQ344788 99 0 0 
27 JQ344880 99 0 0 
28 JQ344949 97 0 2 
29 JQ344975 99 0 0 
30 JQ345012 99 0 0 
31 JQ344413 98 0 1 
32 JQ344437 99 0 0 
33 JQ344470 99 0 0 
34 JQ344536 99 0 0 
35 JQ344564 99 0 0 
36 JQ344660 99 0 0 
37 JQ344676 99 0 0 
38 JQ344782 97 0 2 
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Table 3.4 (cont.) 

 

 
                      Number of matches to: 

Query Sequence Insecta Collembola Other taxa* 
39 JQ344869 99 0 0 
40 JQ344879 99 0 0 
41 JQ344888 99 0 0 
42 JQ344890 99 0 0 
43 JQ344917 98 1 0 
44 JQ344939 99 0 0 
45 JQ344956 99 0 0 
46 JQ345001 96 3 0 
47 JQ344524 99 0 0 
48 JQ344527 99 0 0 
49 JQ344577 99 0 0 
50 JQ344694 99 0 0 

 

 

 
 
3.4.4 Neighbour joining and distance analyses  
 

The NJ and uncorrected pairwise distance analyses with the 129 presumed Collembola 

clusters (the sequence with the highest number of reads selected per each cluster) plus 

the 27 Tenerife Sanger sequences revealed 14 pairs of OTUs to be less than 5% 

divergent from each other. Although they mostly represent comparisons between Sanger 

sequences and closely related short barcode clusters (n=10 pairs), they were also found 

in comparisons between pairs of short barcode clusters (n=4 pairs) indicating 

DNACLUST failed to group them into single clusters in these instances. The 14 pairs 

were each collapsed to a single cluster. Furthermore, the NJ analysis revealed a well-

supported group of clusters (99 bootstrap) assigned to Neanuridae comprised of 15 

clusters of low frequency of reads (maximum number of reads was on average 21) 

closely related to a single cluster of high frequency of reads (maximum number of reads 

= 660) revealing an unexpected pattern of presumed numts. These numts were removed 

from the dataset and the Neanuridae group was reduced to the single cluster of highest 

frequency of reads. The final NJ dendrogram comprises 117 lineages of which eight are 

Sanger sequences lineages (Fig 3.4). Uncorrected pairwise divergence comparisons 

among OTUs ranged from 5 to 37% with a mean of 21%.  

*These taxa include Arachnida, Malacostraca, Maxillopoda, Decapoda, 
Onychophoridae, Amphibia and Mammalia 
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  Fig 3.4 (cont.) 
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3.4.5 Tenerife community and distributions 
 

Of the 117 Collembola lineages, based on sequence identity to the Tenerife Sanger 

sequences and ≥99% similarity to a sequence within the BOLD database, the following 

genera were identified: Lepidocyrtus, Ceratophysella, Brachystomella, Deuteraphorura, 

Dicyroma, Heteromurus, Sminthurinus, Entomobrya, Parasitoma, Folsomia, Frisea, 

Pseudosomita, Neanura, Paratullbergia, Protaphorura, Cryptopygus, Folsomides. The 

geographic distribution of the 29 lineages with ≥ 99% similarity to BOLD sequences 

revealed the presence of related sequences in relatively close continents (Europe and 

North Africa) as well as much further away (Canada, USA, South Africa, Australia and 

New Zealand) (Table S3.5). Across the sampling sites, the total number of lineages per 

site ranged from 11 to 26, with a mean of 15.8 (Table 3.1). The average number of sites 

at which a lineage occurs is 3.6, with the majority of lineages restricted to a single site, 

and only a few lineages being relatively widely distributed (Fig 3.5). 

 

The plot of frequency distributions of the observed genetic distances (Fig 3.6) reveals a 

clear bimodal distribution of pairwise distances between the Tenerife OTUs (n=115, 

because two Sanger Sequence had no match to a Collembola on the database) and their 

closest matches outside the archipelago (BOLD database). The bimodal distribution has 

a peak at 0 per cent divergence (representing 20% of all sequence comparisons), which 

Figure 3.4. Neighbour joining tree of PyroCleaned sequences derived from 25 

sampling sites in the island of Tenerife, and 27 taxonomically identified Sanger 

sequences sampled from Tenerife (in bold). Clusters were assessed for 

taxonomic identity against the BOLD Identification Database, and matches 

higher than 99% are reported. Taxonomy assignment for all lineages can be 

found in Table S3.3.  
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decreases to reach 4 per cent divergence (with only 1 sequence comparison). A second 

peak appears at 8 percent divergence (representing 15% of all sequence comparisons) 

that is slightly reduced up to 10 percent divergence (summing up frequencies at 9 and 

10 percent divergences it represents 24% of all sequence comparisons), after which the 

number of sequences reduced (Fig 3.6). This distribution indicates two main classes of 

data for Tenerife Collembola sequences, they are either very closely related or very 

distantly related to Collembola sequences sampled from outside the archipelago. 

 

 

 

 
 

 

 

 

 

 

 

The lineage accumulation curve with increasing genetic distance reveals two main 

changes in the slope of the curve indicating changes in the rate at which lineages are 

being accumulated. The first change occurs between 2 and 4 % divergence when 

Figure 3.5. Right-skewed distribution of Collembola lineages across 25 sampling 

sites in the island of Tenerife. The majority of lineages occur in only a single or 

a few sites, with only a few lineages being comparatively widely distributed. 
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lineages accumulate at a much slower pace compared to the previous divergence values 

(0 and 2%). Then, lineages start to accumulate increasingly faster up to 10% 

divergence, after which another change in slope shows a reduction in the number of 

lineages being accumulated (Fig 3.7). This curve also indicates Tenerife Collembola to 

be composed of two main groups, one group of very closely related sequences and 

another group of more distantly related sequences to Collembola sequences sampled 

from outside the archipelago.  

 
 

 

 

 

 

 

Figure 3.6. Bimodal distribution of pairwise genetic distances between Tenerife 

Collembola lineages and their closest matches outside the archipelago (BOLD 

database). 
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A comparison between figures 3.5 and 3.6 reveals that all widespread lineages (those 

that occur in more than 20 sites) are closely related to their mainland counterparts 

(similarity >99%). Whereas most of the unique/single site lineages are more diverged 

from their mainland counterparts than widespread lineages (63% of the unique site 

lineages are less than 92% similar to their mainland counterparts). However, at least 

12% of these single site lineages are as closely related to their mainland counterparts as 

the widespread lineages are (being >99% similar to their mainland counterparts).  

 

 

 
3.5 DISCUSSION 
 
We investigated the colonisation history of the Collembola fauna of the Canary Islands 

by sampling Collembola DNA sequences from Tenerife, and comparing their 

relatedness to a database of sequences sampled from outside the Canary Islands. Results 

indicate the Collembola of Tenerife to be a mosaic of taxa that are genetically very 

closely related to non-Canary Island species, and taxa that are genetically very divergent 

from non-Canary Island species, with a scarcity of lineages of intermediate relatedness. 

The broad geographic distribution, and apparent genetic uniformity of many of non-

Canary Island taxa that are genetically very close to Canary Island taxa reveals a 

probable origin by human introduction for some of these species. 
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3.5.1 Short barcodes and diversity estimation  
 

Short DNA barcode sequences from the PyroCleaned sequencing output alignment were 

delineated with a 95% similarity threshold criterion, as it represented an optimal 

threshold for the number of clusters produced.  This similarity threshold implies a 

Figure 3.7. Cumulative frequency graph of Tenerife Colembolla lineages with 

increasing relative colonisation time (pairwise genetic distance, d, between 

Tenerife lineages and their closest matches outside the archipelago - BOLD 

database). 
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minimum divergence limit of 5% to delineate lineages/OTUs, which is consistent with 

previous Collembola studies that applied coalescent tree models to identify lineages 

based on coalescent units - branches below which tree shape shifts from a species to a 

population pattern (Cicconardi et al., 2010, 2013; Zhang et al., 2014). For example, 

using the GMYC model (Pons et al., 2006) to define OTUs, Cicconardi et al. (2010, 

2013) provided evidence that lineages as low as 5% divergence are consistent with 

biological species within Lepidocyrtus morphospecies sampled from the northwestern 

Mediterranean basin and from Panama. Similarly, Zhang et al. (2014) reported a 

minimum interspecific distances of 4% among species within the Tomocerus nigrus 

complex and only 2% among species within Tomocerus ocreatus complex, both 

sampled from China. These small minimum divergences contrast with those reported in 

other Collembola studies that typically applied higher divergence thresholds to define 

OTUs (e.g. 14% in Porco et al., 2014). However, these studies based their choices of 

threshold on the estimate of barcode gaps (Meyer & Paulay, 2005) between intraspecific 

and interspecific distances. More importantly, they did not consider coalescent units to 

define species, likely resulting in an underestimation of diversity as closely related 

species are lumped together.  

 

After filtering the data for clusters that were not consistent with Collembola sequences 

and removing presumed numts, presumed Collembola clusters were assessed against the 

BOLD database and reference Sanger sequences to assign taxonomy. This facilitated 

the identification of some taxa to family, genus or species levels. The mean interlineage 

distance detected in this study (26.8%) is in accordance with those observed in prior 

studies on Collembola communities, e.g. mean distance of 28.7% among 97 lineages of 

the Churchill collembolan community (Porco et al., 2014), although we sampled a wider 

range of divergences (5-53% in Tenerife compared to 14-44% in Churchill). 

 

It should be noted that the number of lineages found here are based on the best model 

provided by previous studies that indicate minimum divergence threshold as low as 5% 

to be consistent with biological species within Lepidocyrtus morphospecies sampled 

elsewhere (Cicconardi et al. 2010, 2013). Results from Chapter 2 demonstrate the 

difficulties to assign mtDNA lineages to species, for example, indicating that a single 

species can be formed by admixture of two divergent lineages of independent origin 



 
 

94 

(e.g. Laparocerus bimbache is originated from two founding mtDNA lineages that are 

5.3% divergent). Although this fact could point to the possibility that some of the 

Collembola lineages could in fact represent a single biological species (indicating we 

have overestimated lineages diversity), the nature of Collembola data is quite distinct 

from the coleopteran data evaluated in Chapter 2 in terms of intraspecific and 

interspecific variation. For example, high levels of cryptic diversity have been 

documented within many collembolan species around the world, and low minimum 

interspecific distances (<5%) have been found among species, for example, of the 

Tomocerus nigrus complex (4%) and Tomocerus ocreatus complex (2%) (Zhang et al. 

2014). Thus, these findings together with the fact that we were not able to assess cryptic 

diversity with our data, point to the possibility that our results could be an 

underestimation (more than overestimation) of diversity as we could be lumping 

together closely related species. 

 

3.5.2 Lineages colonisation 
 

The bimodal distribution of the pairwise distances between Tenerife lineages and their 

closest match outside the archipelago is consistent with two main cohorts of 

colonisation in the history of community assemblage in the island (Fig 3.6). Taking 

genetic distances as a proxy for colonisation time, it would seen clear that there is an 

older colonisation cohort, which seems to have been followed by a period of less 

frequent immigration events or decreased ability to establish. A more recent 

colonisation cohort indicates that niches were either not saturated, or perhaps became 

available after local extinctions. The cumulative lineage curve also shows the existence 

of two periods of increased lineage accumulation indicating two main cohorts of 

colonisation, an older and a more recent one (Fig 3.7). These figures differ considerably 

from the negative exponential decay predicted for the distribution of allelic divergence 

time across species on a single island under the speciation model (Johnson et al. 2000, 

Figs 3 & 6) and from the lineage accumulation curve with a single change of slope that 

fit the speciation-divergence model observed for land birds in the Lesser Antilles 

(Ricklefs and Bermingham 2004, Fig 1). While different distribution plots and 

cumulative curves would not be unexpected for Collembola, based on their much lower 

dispersal capability when compared to high dispersal taxa, such as birds, the effect of 
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this would might be expected to affect more the rate of decay or rate of accumulation 

(slopes) of the graphs, rather than their shapes. To understand the shape of these curves, 

we need to consider island biogeography theory, Collembola life history, and recent 

human impact. 

 

With regard to the older distribution of Collembola divergences, two possibilities can be 

suggested to explain this. The first is that these taxa do not have a genetically close 

relative outside of the Canary Islands, due to them being the product of a relatively old 

colonisation event, as has been demonstrated for many insect groups, e.g. the 

tenebrionid genera Hegeter and Pimelia inhabiting Gran Canaria are estimated to result 

from a colonisation event occurred at least 8 and 9 Ma, respectively (Juan et al., 1995, 

1996). The second potential explanation is the limited resolution of the BOLD database, 

such that some of these lineages may also occur outside the Canary Islands, but have 

not been sampled. While such a limitation of the BOLD database is real and 

unavoidable, if we take into account the range of relatedness among lineages of 

Collembola  (e.g. Cicconardi et al. 2010, 2013), then lineages of intermediate 

relatedness would also be expected to have been sampled. We cannot exclude the 

possibility that some divergent lineages may have closely related lineages outside the 

Canary Islands. However, a bimodal distribution for the divergences among Collembola 

species has also been demonstrated in a broad taxonomic assessment of cryptic diversity 

within Collembola using publicly available sequence data (Emerson et al., 2011).  The 

frequency plot of the pairwise genetic distances observed among 866 public sequences 

belonging to 105 species of Collembola for the mtCOI DNA gene, also revealed two 

peaks, one comprised of very distantly related species and another of very closely 

related species (Fig 4, Emerson et al., 2011), suggesting that a bimodal distribution is 

likely to be a feature (more than an artefact) for the frequency of genetic relatedness 

among Collembola species. 

With regard to the distribution of relatively young lineages, both natural and non-natural 

introductions would seem to be the most plausible explanation. Springtails lack an 

effective way to avoid desiccation during dispersal but several studies have collectively 

showed that some species can survive both on and in seawater for long periods (e.g. 

more than 15 days, as reported in Moore, 2002), and survival could be extended by 

rafting or in floating debris (Stevens et al., 2006). Passive dispersal has been related to 
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natural introductions of Collembola in several regions, for example, in the Galápagos 

archipelago, transport of various terrestrial arthropods (including springtails) on the sea 

surface between islands has been recorded (Peck, 1994). Wind has also been linked to 

natural introductions for a set of taxa in the Southern Hemisphere (Greenslade et al., 

1999; Muñoz et al., 2004). Therefore, similar natural passive dispersal could also 

account for Tenerife lineages that are closely related to sequences from near or 

relatively near sources. However, reliable estimates of dispersal and establishment for 

Collembola are lacking.  In contrast, molecular data indicates that dispersal over 

timescales measured in millennia is very limited (e.g. Stevens et al., 2006; Garrick et 

al., 2007; Cicconardi et al., 2010, 2013) 

 

Human mediated introductions are more likely to explain Tenerife lineages that are 

genetically identical or nearly identical to sequences sampled in remote continents. 

Passive dispersal of Collembola through human activity has been implicated in the 

sharing of lineages across distant continents, e.g. Cerathophysella denticulata lineage 

L3 found in Canada, South Africa, Australia and New Zealand (Porco et al., 2012a), and 

such introductions are considered to have mainly been accidental, e.g. in soil used as 

ship ballast (Vázquez & Simberloff, 2001). It has also been demonstrated that these 

unintentional introductions have resulted in similar genetic structure between 

populations of species occurring in different continents, e.g. European and North 

American populations of Parasitoma notabilis, Neanura muscorum, Orchesella cincta 

and O. villosa, suggesting massive and multiple introductions (Porco et al., 2013). Our 

data set presents similar examples of faunal exchange. For example, four lineages 

sampled on Tenerife have also been sampled in Canada, and another two Tenerife 

lineages have also been sampled in Australia.  Genetic identity, or near identity across 

vast geographic distances is consistent with passive transport through human activities. 

 

3.5.3 Lineage distribution 

 

The distribution of lineages sampled in Tenerife with the majority of lineages restricted 

to a single site, and only a few lineages being widely distributed across the 25 sites in 

Tenerife (Fig 3.5), fits classic expectations for species-range-size distributions (Gaston, 

1996). Within most natural taxonomic assemblages, the geographic ranges of species 
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generally present a right-skewed distribution, as the majority of species tend to be rare, 

and only a few species tend to be common (Gaston, 1996).  The identity of the three 

most common lineages (which occur in > 20 out of the 25 sites sampled in Tenerife) 

reveals these to be presumed recently introduced species that belong to common 

widespread taxa, the genera Entomobrya and Parasitoma and the family 

Hypogasturidae. Their relatedness to sequences outside the archipelago indicate they 

could be the result of natural introduction but also human introduction, since the three 

of them are identical or nearly identical to sequences sampled both in Europe (France 

and Moldova) and in further continents (USA, Canada and Australia, respectively). This 

approach provides a minimum quantitative estimate of probable human introduction, i.e. 

we can categorise species being a probable or not human introduction. Also, from a 

conservation point of view, given that geographic range size and risk of extinction are 

often negatively correlated (Gaston, 1994), one of the consequences of this strong right 

skew to species-range-distribution is that a disproportionate number of species need to 

be screened if one has to identify species with a high probability of loss (Gaston, 1996). 

 

3.5.4 Diversity comparison with previous Tenerife surveys 
 

Since 2001, information on species diversity from published data, reports and 

taxonomists personal communications have been collected and made public as a list of 

species by the Biodiversity database of the Canary Islands (Arechavaleta et al., 2010). 

In its last edition from 2009, it reported the presence of 80 Collembola species in 

Tenerife among which 19 are endemic. Our dataset reveals the presence of 117 lineages 

as a result of sampling a limited volume of soil from 25 point localities within the island 

of Tenerife (Fig 3.1). Despite the fact that most sequences could not be assigned to 

taxonomy because they did not have any close match to sequences on the BOLD 

database, the taxonomic identity of the 29 clusters with high matches (t99%) on BOLD, 

together with the identity of the Sanger sequences, added several taxa to the currently 

known diversity of Collembola in the island: three families (Dicyrtomidae, Katiannidae 

and Tullbergiidae), six genera (Cryptopygus, Deuteraphorura, Friesea, Neanura, 

Micranurida, Paratullbergia) and nine species (Entomobrya atrocincta, Folsomia 

quadrioculata, Lepidocyrtus cyaneus and L. curvicollis, Sminthurinus niger and S. 

elegans, Friesea truncata, Protaphorura fimata and Cryptopygus tricuspis) are newly 
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recorded for Tenerife based on this study. It also confirmed the presence of genera and 

species listed previously: Brachystomella, Pseudosomita, and Folsomides, 

Ceratophysella gibbosa, Heteromurus nitidus, Parasitoma notabilis (also P. notabilis 

L1 and L3), and Folsomia candida. Although we have not directly assessed cryptic 

speciation, neither have we been able to identify most of our clusters, we are reporting a 

remarkable increase in the number of OTUs for Tenerife compared to previous reports 

based solely on morphology. These results confirm the utility of short 454 mini 

barcodes for rapid assessment of the biodiversity of poorly known groups such as soil 

invertebrates and support previous suggestions that the species diversity in Collembola 

has been severely underestimated (Cicconardi et al. 2010).  

 
3.5.5 Limitations and future directions 
 

Technical restrictions of 454 next-generation sequencers (see below) and limitations of 

the BOLD database are potential limitations within this study. Our barcode sequences of 

220 bp length retrieved a greatly reduced number of matches to Collembola sequences 

from the public database when compared to the long Sanger sequences, but they were 

still able to capture the main taxa identities, supporting the idea that a small portion of 

DNA barcode gene, a mini-barcode (Meusnier et al., 2008), can also provide species-

level resolution (James et al., 2010). Furthermore, by using a conservative approach to 

accept clusters as presumed Collembola species, we were able to exclude probable non-

Collembola sequences.  

 

NGS technologies have revolutionised the field of DNA sequencing by enabling rapid 

and inexpensive sequencing of large amount of data. As demonstrated here, the 454 

pyrosequencing and data handling with the PyroClean algorithm efficiently produced a 

large number of sequences facilitating the study of Collembola community diversity in 

Tenerife. However, a significant drawback of many NGS technologies is the short 

length of the reads produced and, specifically to 454 pyrosequencing, errors associated 

with homopolymers. Developments in computational tools are helping to deal with 

these types of errors, e.g. the PyroClean algorithm applied here, and NGS technology is 

advancing at an unprecedented speed (with focus in increasing read-lengths). One 

potentially promising direction is the bulk de novo mitogenome assembly from pooled 
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total DNA, which has been demonstrated to efficiently and economically produce a 

large number of complete or near complete mitogenome DNA sequences from 

numerous samples, without the need of PCR amplification or any enrichment (Gillett et 

al., 2014). As well as producing long sequences, this approach also removes PCR bias, 

which should improve the detection of species within a pool of DNA samples. 

Obtaining longer barcode sequences would result in better matches to BOLD sequences, 

thus enhancing taxonomic assignment, while the ability to obtain whole or partial 

mtDNA genomes would also permit broader taxonomic assessments with other gene 

regions stored within other public databases such as GenBank. 
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3.7 Appendices 
 

Table S3.1 - PyroClean results for mtDNA COI amplicons generated from community 

samples of Collembola from 25 sites on the island of Tenerife. Each site has been 

amplified in triplicate (indicated by the MID code). Total count of raw reads and read 
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counts after steps 3, 4 and 5 (described in the text) of the PyroClean process are 

presented.  

Sites Code Raw reads step 3 step 4 step 5 

1 
COI01.MID1 7206 4059 144 25 
COI01.MID2 6744 3769 130 24 
COI01.MID3 6829 3855 140 35 

2 
COI01.MID4 5524 3155 64 33 
COI01.MID5 6629 3930 83 37 
COI01.MID6 5359 3220 78 34 

3 
COI01.MID7 7942 4743 187 22 
COI01.MID8 8122 4963 170 20 
COI01.MID9 6736 4068 139 19 

4 
COI01.MID10 5505 3357 125 26 
COI01.MID11 8588 5234 211 31 
COI01.MID12 8522 5474 200 30 

5 
COI01.MID13 11260 6642 211 32 
COI01.MID14 10020 5988 208 36 
COI01.MID15 10847 6441 200 30 

6 
COI02.MID1 5228 5176 121 36 
COI02.MID2 5049 4976 111 33 
COI02.MID3 4773 4710 125 35 

7 
COI02.MID4 5759 5700 114 26 
COI02.MID5 4937 4880 115 28 
COI02.MID6 4777 4711 112 25 

8 
COI02.MID7 5781 5720 150 30 
COI02.MID8 4354 4325 125 30 
COI02.MID9 7415 7360 169 35 

9 
COI02.MID10 852 837 43 19 
COI02.MID11 5040 4986 129 36 
COI02.MID12 7990 7898 175 38 

10 
COI02.MID13 8822 8721 243 56 
COI02.MID14 6932 6864 210 54 
COI02.MID15 9799 9685 242 57 

11 
COI02.MID16 7171 7023 124 53 
COI02.MID17 5553 5456 115 42 
COI02.MID18 7460 7316 140 49 

 
 
 
 
 
Tab S3.1. (cont) 
 

Sites Code Raw reads step 3 step 4 step 5 
12 COI02.MID19 6816 6758 220 48 
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COI02.MID20 7776 7711 220 54 
COI02.MID21 4767 4743 184 48 

13 
COI02.MID22 1923 1906 99 28 
COI02.MID23 3566 3517 137 36 
COI02.MID24 3280 3243 134 39 

14 
COI02.MID25 14931 14782 229 52 
COI02.MID26 7486 7422 197 49 
COI02.MID27 7405 7325 169 47 

15 
COI02.MID28 6813 6730 165 32 
COI02.MID29 5129 5087 112 32 
COI02.MID30 7704 7628 175 32 

16 
COI03.MID1 4564 4538 129 45 
COI03.MID2 5589 5530 168 42 
COI03.MID3 5032 5002 159 38 

17 
COI03.MID4 7844 7815 241 50 
COI03.MID5 6274 6251 233 52 
COI03.MID6 5148 4895 189 47 

18 
COI03.MID7 5539 5509 195 44 
COI03.MID8 6214 6185 213 43 
COI03.MID9 7465 7428 268 58 

19 
COI03.MID10 1322 1322 79 31 
COI03.MID11 4907 4891 191 63 
COI03.MID12 10769 10738 270 71 

20 
COI03.MID13 10713 10671 278 73 
COI03.MID14 6988 6966 267 56 
COI03.MID15 12281 12243 289 69 

21 
COI03.MID16 4033 4011 149 37 
COI03.MID17 4431 4418 172 43 
COI03.MID18 3614 3596 156 44 

22 
COI03.MID19 7153 7129 229 58 
COI03.MID20 9284 9239 238 55 
COI03.MID21 5734 5725 204 47 

23 
COI03.MID22 8678 8628 199 50 
COI03.MID23 7832 7805 196 49 
COI03.MID24 8709 8672 214 54 

24 
COI03.MID25 10999 10937 178 52 
COI03.MID26 4990 4961 119 33 
COI03.MID27 8406 8356 146 43 

25 
COI03.MID28 8356 8295 275 76 
COI03.MID29 4067 4053 173 70 
COI03.MID30 5771 5717 231 82 
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Table S3.2 - Taxonomy of Collembola Tenerife Sanger sequences (n=28, length=220 bp) submitted to the BOLD Identification System 

(http://www.boldsystems.org). Col counts = number of matches to a collembolan sequence within the top 99 matches returned by BOLD.  

 

    BOLD taxonomy 

Sanger seq Col counts  Order Family Genus Species Similarity 
hit (%) 

Col023 15 Entomobryomorpha Entomobryidae Lepidocyrtus cyaneus 100 
Col024 1 Symphypleona Katiannidae Sminthurinus elegans 100 
Col025 6 Poduromorpha Hypogastruridae   100 
Col026 99 Entomobryomorpha Isotomidae Parisotoma notabilis L1 100 
Col027 3 Poduromorpha Onychiuridae Deuteraphorura sp. 100 
Col034 94 Entomobryomorpha Entomobryidae Entomobrya atrocincta 100 
Col210 3 Poduromorpha Onychiuridae   94.83 
Col211 13 Poduromorpha Neanuridae Friesea  89.37 
Col212 83 Entomobryomorpha Isotomidae   90.29 
Col213 0     na 
Col215 32 Poduromorpha Hypogastruridae   91.58 
Col216 58 Entomobryomorpha Isotomidae   99.07 
Col217 35 Entomobryomorpha Entomobryidae Lepidocyrtus cyaneus 100 
Col218 71 Collembola Poduromorpha Onychiuridae Protaphorura 99.54 
Col219 5 Poduromorpha Onychiuridae Orthonychiurus  98.1 
Col221 11 Poduromorpha Onychiuridae Protaphorura  100 
Col226 0     na 
Col228 8 Entomobryomorpha    92.24 
Col229 34 Entomobryomorpha Entomobryidae   90.83 

http://www.boldsystems.org/
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Tab S3.2. (cont) 
 
 

    BOLD taxonomy 

Sanger seq Col counts  Order Family Genus Species Similarity 
hit (%) 

Col230 4 Symphypleona Bourletiellidae   89.58 
Col232 42 Entomobryomorpha Isotomidae   92.59 
Col234 91 Entomobryomorpha Entomobryidae   100 
Col235 92 Entomobryomorpha Entomobryidae   100 
Col236 38 Collembola    92.73 
Col237 38 Collembola    92.73 
Col238 53 Collembola    92.38 
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Table S3.3 - Taxonomy assignment of Collembola lineages (n=129) obtained after clustering the PyroCleaned output alignment of the Tenerife 

454 sequencing data at 95% similarity threshold (see text for details). Sequences were submitted to the BOLD Identification System 

(http://www.boldsystems.org), and both taxonomy and similarity hit for the first sequence match within the top 99 matches returned by BOLD 

are shown. Taxonomy is accepted only for clusters with similarity hit t 99%, highlighted in bold. N seq = number of unique sequences per 

cluster. Col counts = number of matches to a collembolan sequence within the top 99 matches. 

      BOLD taxonomy 

Cluster N seq Col counts Order Family Genus Species Similarity hit (%) 

2 21 4 Poduromorpha Tullbergiidae 
  

99.04 
4 52 30 Entomobryomorpha Tomoceridae Tomocerus 

 
90.36 

6 82 20 Entomobryomorpha Isotomidae 
  

91.18 
9 90 11 Entomobryomorpha Entomobryidae Lepidocyrtus cyaneus 100 

11 3 10 Poduromorpha Hypogastruridae Ceratophysella 
 

100 
12 64 21 Poduromorpha Protaphorura 

  
99.05 

14 17 18 Symphypleona Sminthurididae 
  

97.88 
15 7 3 Poduromorpha Onychiuridae Deuteraphorura sp. 100 
16 44 1 Symphypleona Katiannidae Sminthurinus elegans 99.03 
17 8 6 Poduromorpha Neanuridae Neanura muscorum 89.53 
18 2 9 Entomobryomorpha Isotomidae Cryptopygus tricuspis 92.5 
19 3 11 (Collembola) 

   
100 

20 1 78 (Collembola) 
   

92.62 
21 7 3 Poduromorpha  Tullbergiidae 

  
100 

22 7 2 Symphypleona Katiannidae Sminthurinus elegans 99.5 
23 14 32  Poduromorpha Neanuridae 

  
91.38 

25 3 14 Poduromorpha Neanuridae Friesea 
 

87.75 
26 7 17 Entomobryomorpha 

   
89.74 
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Table S3.3. (cont) 
      BOLD taxonomy 

Cluster N seq Col counts Order Family Genus Species Similarity hit (%) 

28 44 24 (Collembola) 
   

89.44 
29 3 15 Entomobryomorpha Entomobryidae Entomobrya  marginata 91.3 
30 10 24 Entomobryomorpha Entomobryidae 

  
91.57 

31 9 44 Entomobryomorpha Entomobryidae 
  

90.36 
32 260 93 Entomobryomorpha Entomobryidae Entomobrya atrocincta 100 
34 34 5 Poduromorpha Onychiuridae Orthonychiurus 

 
98.09 

35 5 8 Neelipleona Neelidae 
 

sp. DPCOL68266 98.11 
37 55 23 Poduromorpha Hypogastruridae Hypogastrura 

 
94.44 

38 204 99 Entomobryomorpha Isotomidae Parisotoma notabilis L1 100 
39 151 99 Entomobryomorpha Isotomidae Parasitoma notabilis 100 
40 15 19 Entomobryomorpha Entomobryidae Entomobrya  gisini 91.67 
41 130 40 Entomobryomorpha Oncopoduridae 

  
90.98 

42 4 35 Symphypleona Dicyrtomidae 
  

92.65 
43 11 62 Entomobryomorpha Isotomidae Folsomia quadrioculata/ penicula 100 
45 140 6 Poduromorpha Hypogastruridae 

  
100 

48 13 11 Poduromorpha Neanuridae Neanura muscorum 94.19 
50 6 12 Entomobryomorpha 

   
83.33 

51 15 36 Entomobryomorpha Isotomidae Folsomia candida 99.52 
53 3 27 Entomobryomorpha 

   
91.18 

54 6 8 Poduromorpha Onychiuridae Orthonychiurus 
 

94.2 
56 4 3 Poduromorpha Neanuridae Micranurida 

 
100 

57 3 23 Entomobryomorpha Isotomidae 
  

92.11 
59 10 8 Entomobryomorpha Entomobryidae Entomobrya 

 
88.17 
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Table S3.3. (cont) 

      BOLD taxonomy 

Cluster N seq Col counts Order Family Genus Species Similarity hit (%) 

60 29 9 Entomobryomorpha Entomobryidae 
 

sp. DPCOL12495 92.22 
61 11 42 (Collembola) 

   
91.06 

63 43 83 Entomobryomorpha Isotomidae 
  

92.27 
65 2 50 Entomobryomorpha 

   
90.36 

66 2 17 Poduromorpha Neanuridae 
  

99.52 
68 1 28 Entomobryomorpha Entomobryidae 

  
92.25 

70 9 13 Poduromorpha Hypogastruridae 
  

100 
71 5 26 Entomobryomorpha 

   
90.4 

73 9 99 (Collembola) 

   
94.66 

74 25 50 (Collembola) 

   
87.5 

75 5 60 Poduromorpha Neanuridae Neanura muscorum 97.67 
76 13 99 Poduromorpha Neanuridae Neanura muscorum 95.38 
77 12 90 Poduromorpha Neanuridae Neanura muscorum 94.83 
78 36 68 Poduromorpha Neanuridae Neanura muscorum 99.52 
79 6 69 Poduromorpha Neanuridae Neanura  muscorum 94.39 
80 61 18 Entomobryomorpha Entomobryidae Entomobrya 

 
94.17 

81 4 18 Entomobryomorpha Entomobryidae 
  

95.18 
82 49 94 Poduromorpha Neanuridae Neanura muscorum 100 
83 34 11 Entomobryomorpha Entomobryidae 

  
100 

84 9 99 Poduromorpha Neanuridae 
  

96.77 
85 7 96 Poduromorpha Neanuridae 

  
95.16 

86 51 64 Poduromorpha Neanuridae Neanura muscorum 96.55 
87 23 91 Entomobryomorpha Entomobryidae 

  
90.36 

88 9 99 Poduromorpha Neanuridae Neanura muscorum 96.55 
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Table S3.3. (cont) 

      BOLD taxonomy 

Cluster N seq Col counts Order Family Genus Species Similarity hit (%) 

89 6 19 Entomobryomorpha Isotomidae Parisotoma  notabilis 98.49 
90 3 7 Entomobryomorpha Isotomidae 

  
100 

91 25 22 Poduromorpha Tullbergiidae Paratullbergia 
 

100 
92 6 61 Entomobryomorpha Tomoceridae Tomocerus 

 
90.36 

93 1 21 Entomobryomorpha Isotomidae Parisotoma notabilis 95.5 
94 2 86 (Collembola) 

   
90.15 

95 1 93 Entomobryomorpha Isotomidae Parisotoma notabilis L1 93.72 
96 13 18 Entomobryomorpha Tomoceridae Tomocerus 

 
93.98 

97 40 7 Entomobryomorpha Isotomidae 
  

92.27 
98 3 23 Entomobryomorpha Isotomidae 

  
91.18 

99 4 13 Entomobryomorpha Isotomidae 
  

92.65 
100 7 91 Entomobryomorpha 

   
91.97 

102 1 12 Poduromorpha Brachystomellidae Brachystomella 
 

99.45 
103 12 17 (Collembola) 

   
89.74 

104 5 8 Poduromorpha Onychiuridae 
  

93.48 
107 11 9 Poduromorpha Onychiuridae 

  
91.3 

110 2 7 Entomobryomorpha Isotomidae 
  

91.23 
111 11 39 Entomobryomorpha Isotomidae 

  
91.78 

112 19 8 Entomobryomorpha Entomobryidae Entomobrya nivalis 88.89 
113 1 70 (Collembola) 

   
97.57 

114 7 18 Neelipleona Neelidae 
  

100 
116 21 12 Poduromorpha Onychiuridae 

  
91.3 

118 11 34 Entomobryomorpha Entomobryidae 
  

91.54 
119 20 73 (Collembola) 

   
93.94 
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Table S3.3. (cont) 

      BOLD taxonomy 

Cluster N seq Col counts Order Family Genus Species Similarity hit (%) 

121 7 70 Entomobryomorpha Entomobryidae 
  

90.65 
123 13 7 Poduromorpha Hypogastruridae Xenylla humicola 92.39 
124 6 56 Poduromorpha Neanuridae Neanura  muscorum 96.55 
127 17 34 Poduromorpha Onychiuridae Protaphorura fimata 100 
128 6 10 Poduromorpha Tullbergiidae 

  
100 

130 16 6 Poduromorpha Hypogastruridae Xenylla humicola 92.05 
131 6 11 Entomobryomorpha Isotomidae Isotoma  marionensis 92.5 
132 6 7 Entomobryomorpha Isotomidae Isotoma 

 
88.62 

134 1 82 Entomobryomorpha Entomobryidae   
98.36 

137 8 59 Entomobryomorpha Bombinatoridae Bombina maxima 90 
138 1 21 Entomobryomorpha Tomoceridae Pogonognathellus flavescens 92.5 
139 3 79 Collembola 

   
91.82 

140 3 98 Entomobryomorpha Isotomidae Cryptopygus caecus 90 
141 7 12  Entomobryomorpha 

   
92.31 

142 1 7 Collembola 
   

97.44 
143 7 56 Entomobryomorpha Entomobryidae Entomobrya nivalis 91.23 
145 1 7 Poduromorpha Neanuridae Neanura muscorum 87.37 
147 1 12 Entomobryomorpha Entomobryidae 

  
94.33 

151 12 36 Poduromorpha Hypogastruridae 
  

100 
152 5 10 Poduromorpha Hypogastruridae 

  
93.81 

153 4 27 Entomobryomorpha Isotomidae 
  

99.02 
154 6 72 Poduromorpha Neanuridae 

  
97.79 

155 4 68 Poduromorpha Neanuridae Neanura  muscorum 97.67 
156 3 26 Entomobryomorpha Isotomidae Desoria tshernovi 92.54 



 
 

112 

Table S3.3. (cont) 

      BOLD taxonomy 

Cluster N seq Col counts Order Family Genus Species Similarity hit (%) 

159 4 33 Entomobryomorpha Isotomidae Cryptopygus  tricuspis 91.67 
160 1 94 Poduromorpha Neanuridae Neanura muscorum 100 
161 3 97 Poduromorpha Neanuridae Neanura muscorum 97.08 
162 1 83 Poduromorpha Neanuridae Neanura muscorum 98.54 
164 1 8 Entomobryomorpha Entomobryidae Entomobrya nivalis 91.23 
166 9 31 Entomobryomorpha 

   
90.7 

168 14 32 Entomobryomorpha Entomobryidae 
  

93.98 
169 1 99 Isotomidae Parisotoma notabilis 

 
97.7 

171 15 14 Entomobryomorpha Isotomidae 
  

89.15 
172 7 36 Entomobryomorpha Isotomidae Folsomia quadrioculata 91.5 
174 6 18 Entomobryomorpha Isotomidae 

  
92.86 

175 3 94 Poduromorpha Hypogastruridae Ceratophysella 
 

98.57 
176 7 31 Entomobryomorpha Isotomidae 

  
99.05 

177 1 33 Collembola 
   

87.88 
178 2 9 Poduromorpha Onychiuridae 

 
sp. DPCOL95864 94.38 

179 1 18 Entomobryomorpha Isotomidae Cryptopygus tricuspis 100 
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Table S3.4 - Taxonomy assignment of non-Collembola lineages (n=53) obtained after clustering the PyroCleaned output alignment of the 

Tenerife 454 sequencing data at 95% similarity threshold (see text for details). Sequences were submitted to the BOLD Identification System 

(http://www.boldsystems.org), and both taxonomy and similarity hit for the first sequence match within the top 99 matches returned by BOLD 

are shown. N seq = number of unique sequences per cluster. Col counts = number of matches to a collembolan sequence within the top 99 

matches. Table S3.5 - Geographic distribution of the most related sequence (in BOLD database) to the 29 Collembola lineages sampled in 

Tenerife.  

      BOLD taxonomy 

Cluster n seq Col counts Order Family Genus Species Similarity hit (%) 

1 10 3 Diptera Xyloryctidae Scieropepla sp. ANIC1 92.22 
3 4 1 Lepidoptera Lycaenidae Phengaris  teleius 97.47 
5 56 5 Lepidoptera Noctuidae Agrotis infusa 96.3 
7 8 2 Hemiptera Coreidae Gralliclava horrens 93.83 
8 3 4 Diptera Agromyzidae 

  
93.69 

10 4 1 Lepidoptera Oecophoridae Sympoecila  callisceptra 92.86 
13 1 0 Actinopterygii Perciformes Apogonidae 

 
90.48 

24 5 5 Poduromorpha Hypogastruridae Hypogastrura 
 

92.22 
27 8 2 Diptera 

   
93.59 

33 31 0 Lepidoptera Nymphalidae Napeogenes sylphis rindgei 95.56 
36 15 0 Lepidoptera Hepialidae Phassus 

 
97.53 

44 48 0 Diplostraca Daphniidae Ceriodaphnia 
 

92.31 
46 5 3 Lepidoptera Geometridae Epyaxa subidaria 94.87 
47 11 3  Lepidoptera Oecophoridae Palimmeces sp. ANIC19 93.33 
49 15 0 Lepidoptera Nymphalidae Oleria onega janarilla 88.89 
52 7 2 Coleoptera Chrysomelidae Cassida murraea 92.31 
55 7 5 Lepidoptera Noctuidae 

  
91.03 
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Tab S3.4. (cont) 
 
      BOLD taxonomy 

Cluster n seq Col counts Order Family Genus Species Similarity hit (%) 

58 9 0  Lepidoptera Crambidae Patissa tinctalis 94.25 
62 3 0 Lepidoptera Hepialidae Phassus 

 
97.53 

64 3 1 Lepidoptera Lycaenidae Phengaris  teleius 97.47 
67 3 1 Lepidoptera Oecophoridae Sympoecila  callisceptra 92.86 
69 15 3 Passeriformes Prunellidae Prunella modularis 92.31 
72 31 0 Diptera Culicidae Anopheles crucians  97.7 
101 12 5 Poduromorpha  Hypogastruridae Ceratophysella gibbosa 95.24 
105 23 1 Coleoptera Scarabaeidae Brachysternus 

 
91.18 

106 22 0 Lepidoptera Choreutidae Tebenna balsamorrhizella 92.22 
108 3 5 Plecoptera Perlodidae Isoperla 

 
92.86 

109 4 2 Diptera 
   

91.67 
115 28 3 Lepidoptera Hesperiidae Polytremis pellucida 93.83 
117 46 4 Amphipoda Acanthogammaridae Eulimnogammarus vittatus 90.72 
120 11 0 Diptera Culicidae Aedes albopictus 96.55 
122 10 4 Lepidoptera Ampeliscidae 

  
94.12 

125 22 2 Lepidoptera Noctuidae 
  

93.59 
126 32 0 Lepidoptera Nolidae Meganola albula 97.62 
129 8 0 Euonychophora Peripatidae Epiperipatus 

 
92.31 

133 4 3 Amphipoda Ischyroceridae 
  

92.16 
135 1 3 Lepidoptera Geometridae Epyaxa subidaria 93.59 
136 3 2 Diptera Stratiomyidae 

  
92.59 

144 3 3 Lepidoptera Tortricidae Ancylis 
 

90.12 
146 3 2 Trichoptera Uenoidae Neophylax splendens 93.59 
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Tab S3.4. (cont) 
 
 
      BOLD taxonomy 

Cluster n seq Col counts Order Family Genus Species Similarity hit (%) 

148 2 5 Poduromorpha Onychiuridae Orthonychiurus 
 

94.29 
149 2 0 Perciformes Sparidae Pagrus auriga 90.12 
150 5 4 Odonata Macromiidae Macromia illinoiensis  89.29 
157 3 0 Hymenoptera Braconidae Notiospathius sp. AZR-2011 89.29 
158 2 0 Euonychophora Peripatidae Epiperipatus 

 
91.03 

163 5 4 Coleoptera Curculionidae Falsanchonus emeishanicus 92.31 
165 3 2 Lepidoptera Gracillariidae Phyllonorycter lucetiella 94.81 
167 6 3 Poduromorpha Hypogastruridae 

  
91.9 

170 1 0 Oecophoridae Philobota scitula 
 

96.15 
173 3 5 Coleoptera Curculionidae Acalyptus carpini 90.12 
180 5 0 Diptera Simuliidae Simulium ornatum 94.05 
181 1 1 Symphypleona Sminthuridae 

  
93.69 

182 6 2 Lepidoptera Xyloryctidae Cryptophasa phaeochtha 94.87 
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Table S3.5 - Geographic distribution of the most related sequence (in BOLD database) 

to the Collembola lineages with similarity hit t 99% sampled in Tenerife.  

 
  

Cluster Similarity (%) Geographic distribution of related sequence 

2 99.04 France, South Africa 
9 100 not provided 
11 100 Croatia 
12 99.05 France, Argelia 
15 100 not provided 
16 99.03 not provided 
19 100 Finland 
21 100 South Africa 
32 100 Moldova, France, USA, South Africa 
38 100  France  
43 100 France, Italy 
45 100 Australia, France 
51 99.52 Canada, Germany, France, South Africa, Cameron 
56 100 France 
66 99.52 France 
70 100 France, Corsica 
82 100 France, South Africa, Canada, Poland, Moldova 
83 100 France, Australia, South Africa  
90 100 France 
91 100  France 
102 99.45 Australia, South Africa 
114 100 France, South Africa  
127 100 Norway, France 
128 100 France 
151 100 South Africa 
153 99.02 France 
175 98.57 Australia, New Zealand 
176 99.05 South Africa 
179 100 New Zealand, South Africa 
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Chapter 4 
 
 

Quantifying genetic diversity of Entomobrya (Hexapoda, 
Collembola) lineages in the UK: have they survived through 

the last Pleistocene glaciation? 
 

 

 

 
 
 
 

Entomobrya albocincta (top left), E. nicoleti (bottom left), E. nivalis (right), UK.  
Photos from http://www.stevehopkin.co.uk/collembolagallery/ 
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4.1 ABSTRACT 
 
Great Britain represents a complex continental island system within which to 

understand the dynamics of colonisation and species diversification due to its 

geographic and climatic history. Through periods of geological time, this island was 

connected to the continent, and for repeated cycles it was glaciated, resulting in the 

extirpation of its biota over much of the modern land mass. While postglacial 

recolonisation from the mainland must have been required to fill newly opened 

ecological spaces, it remains possible that some species could have survived in local 

refugia during glacial periods, thus also contributing to the re-establishment of biota. 

Sedentary soil dwelling invertebrates present unique features that may allow them to 

survive through periods of dramatic climatic change at the regional scale, and have 

demonstrated remarkable genetic signatures of local persistence through such periods. 

Despite this, only a few studies to date have looked into the phylogeography of 

invertebrates within Great Britain. Using the mtDNA COI barcode gene, this study 

investigated the impact of the last Pleistocene glaciation on the diversity of Collembola 

within Great Britain, and evaluated signatures of long-term survival. In total, thirteen 

Entomobrya lineages were identified for Great Britain with an overall mean divergence 

of 20%. Within lineages, overall mean divergences ranged from 0.1 to 4%. The 

investigation of geographical variation in genetic diversity revealed that overall lineage 

richness and intra lineage richness are equivalent in glaciated and unglaciated areas. 

Non-random geographic patterns of genetic variation (i.e. a geographically localised 

range for a monophyletic group) were found, indicating the existence of genetic 

variation that evolved within the UK. Using a conservative mtDNA COI evolutionary 

substitution rate of 0.0504 substitutions/site/myr, estimated dates of the onset of these in 

situ diversification events indicate they have been present for extended periods of time 

(21,000 and 45,000 years), implying survival through historical climatic and 

environmental changes. Similar investigations for other soil dwelling fauna, particularly 

for more species rich groups, may provide stronger evidence for species diversity 

differences between glaciated and unglaciated areas and further support for endemism 

and ancient fauna in the UK.  
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4.2 INTRODUCTION 
 

The diversity and distribution of a particular present-day biota is the result of its 

combined biogeographic response to both historical and recent processes.  While 

environmental and physiological conditions, particularly the ability to disperse, play a 

major role in determining a species range (Blackburn & Gaston, 2003), it is undeniable 

that historical factors have also greatly shaped contemporary patterns of biodiversity, 

sometimes even in a greater extent than contemporary factors such as climate regimes 

(Stevens, 2006). In other words, species richness at different spatial and temporal scales 

is constrained not only by environmental factors but also by evolutionary and ecological 

history. Thus, the current geographical distribution of species reflects their ability to 

adapt to local environmental conditions, interact with other species and successfully 

reproduce in a given location. It also reflects their capacity to successfully colonise 

areas once an appropriate niche becomes available, as well shift latitudinal and 

altitudinal range in response to climate change over historical time frames (Brown et al., 

1996; Hewitt, 2000; Strona et al., 2012; Wisz et al., 2013).  

 

A prime example of historical climate change affecting the distribution of species is the 

repeated cycles of global periods of cooling (with increased advance of ice sheets) 

followed by global periods of warming (when ice sheets retracted and melted with 

resulting rise of the sea levels) that occurred during the Quaternary (Webb & Bartlein, 

1992) . These climate oscillations have significantly affected the distribution of species 

worldwide particularly causing repeated cycles of expansion and contractions of their 

distributions, which led to the structured distribution of genetic diversity observed in 

populations today (e.g. Hewitt, 2004). In the northern hemisphere, during the 

Pleistocene glaciations (from 2.59-0.01 Ma), as high latitudes were covered by ice and 

permafrost, northern populations either went extinct or retreated their distributions 

southward, surviving in refugia - locations that provided suitable habitats for the long-

term persistence of populations, over several glacial-interglacial cycles, representing a 

reservoir of evolutionary history (Tzedakis et al., 2013). As the temperature rose, during 

the interglacials, southern populations expanded northwards enlarging their 

distributional ranges, and mixed, or not, to various degrees where they met (Hewitt, 

1996; Taberlet et al., 1998). In Europe, these refugia were mainly located in the Iberian, 

Italian and Balkan peninsulas and evidence to support surviving in these refugia with 
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subsequent shift of distribution has been clearly demonstrated using DNA relationships 

for a variety of European species, including the meadow grasshopper-Chorthippus 

parallelus (Hewitt, 1999), the hedgehog Erinaceus concolor (Seddon et al., 2001), and 

the brown bear Ursus arctos (Sommer & Benecke, 2005) among others (reviewed in 

Hewitt, 2011). 

 

Due to their northern geographical latitudinal range, Britain and Ireland had large areas 

repeatedly covered by glaciers and permafrost throughout the Pleistocene glaciations 

(Chiverrell & Thomas, 2010), thus becoming inhospitable and restricting the persistence 

of terrestrial fauna. As these islands were probably isolated from the continent during 

the interglacials, especially with the formation of the English Channel approximately 

0.45 Ma (Gupta et al., 2007), colonisation of terrestrial taxa from continental Europe 

was also largely prevented. These factors had biogeographical and ecological impacts 

for the fauna in Britain and Ireland and consequently, these islands have historically 

been considered of reduced diversity, limited endemism, and with the majority of the 

current fauna relatively recent and mainly derived from continental Europe (Yalden, 

1999; Searle, 2008; Montgomery et al., 2014). Colonisation from Europe is thought to 

have occurred during a short period after ice retreat and before rising sea levels 

submerged the land bridge between them (Yalden, 1982; Hewitt, 2004). These 

considerations, however, have been challenged by evidence of several species that 

present high levels of diversity, local endemism or persistence through glaciations in 

some areas of Ireland (Teacher et al., 2009), the English Channel (Coyer et al., 2003; 

Provan et al., 2005; Hoarau et al., 2007) and more recently in the UK (Edwards et al., 

2012; McInerney et al., 2014). For example, in a study investigating the biogeography 

of the marine red seaweed Palmaria palmata along its distribution across Europe and 

North America coasts, the highest levels of haplotype and nucleotide diversity were 

found in the English Channel and several haplotypes from this region were not found 

anywhere else along its distribution revealing a Pleistocene marine glacial refugium in 

the English Channel (Provan et al., 2005). A recent study provides evidence of an 

ancient groundwater fauna endemic to Britain and Ireland, of which two amphipod 

species from the genus Niphargus were found to have survived the entire Pleistocene in 

refugia and also persisted for at least 19.5 million years (McInerney et al., 2014). In the 

case of groundwater dwelling organisms, persistence through climate changes may have 

been facilitated by the relative stability of aquatic environments, due to the slower 
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change in temperature and chemistry of the groundwater compared to the surface water 

(Gibert et al., 1994; McInerney et al., 2014). However, with the exception of red foxes 

there has been no other clear evidence for terrestrial fauna persisting the Pleistocene 

glaciations in the UK. In the case of the red fox Vulpes vulpes, it is an ecologically 

adaptable species whose cytb haplotypes have been found in England during the 

Pleistocene, also in the Holocene, as well as in modern samples (Edwards et al., 2012).  

 

The possibility of a surface biota surviving in refugia within the UK has been suggested 

from radiocarbon dates of fossil and vertebrate remains found in several caves sites 

(Stewart & Lister, 2001; Sommer et al., 2008). Red deer Cervus elaphus remains from 

Ossom’s  cave,  dated   to  14263  cal.   yr  BP   (Meiri et al., 2013),   and   from  Kent’s  Cave,  

estimated to be pre-LGM (between ca. 60,000 and 25,000 cal.yr BP) based on 

associated dates (Higham et al., 2011; Meiri et al., 2013), are suggested to imply a 

possible existence of red deer surviving in refugium in England during the LGM 

(Stewart & Lister, 2001; Meiri et al., 2013). Although analysis of ancient and 

contemporary red deer DNA do not support such existence (it shows instead red deer 

disappeared from central and northern regions and were mainly restricted to European 

southern refugia during glaciations, and expanded from the Iberian refugium to England 

and other Central and Northern Europe countries at the end of the LGM, Meiri et al., 

2013), persistence of certain species in southern areas is not to be unexpected, as the 

glaciers did not reach the most southern parts of the UK. Latest estimates indicate that, 

during the last glacial maximum, the British ice sheet achieved its maximum extent at 

different times (between 27 and 15 ka) in different sectors, and at maximal extent it 

spread to the south and east incorporating ice grounds as far as Wales, the Lake District, 

and Kerry (Clark et al., 2012). Thus, ice free habitats in different places at different 

times may have been available in some parts of Britain, especially in the South, which 

could have facilitated refugia and long-term persistence for certain species. If this had 

happened, the survival of populations in southern British refugial areas would have 

allowed their lineages to diverge and accumulate genetic differences and with the rising 

of temperature and retraction of the ice sheet, they could have expanded and colonised 

northern areas of the UK in a similar way as it has been demonstrated for northern and 

southern European species (Hewitt 1996, 1999). Genetic signatures of these processes 

are likely to be seen in the geographical structuring of alleles and in the variation of 

haplotype richness between unglaciated and glaciated areas. However, these signatures 
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may be obscured depending on the life history traits of the species, i.e., those with great 

dispersal abilities and high levels of gene flow.  

 

Sedentary invertebrates, in particular soil invertebrates like Collembola, present unique 

features that allow them to survive harsh conditions and they have exceptional ability to 

capture and retain geographic signatures of historical long-acting processes such as 

climatic cycles (e.g Garrick et al., 2007, Cicconardi et al., 2010, Cicconardi et al., 

2013).  They are very small, requiring little habitat (i.e. free ice habitat) to live, 

wingless, with highly restricted dispersal capability and thus reduced gene flow, and are 

probably the most abundant hexapods on Earth, reaching densities of up to 60 000 

individuals per m2 (Hopkin, 1997). This high abundance level possibly confers on them 

an increased probability, relative to the majority of arthropod species, of viable 

fragmented populations persisting and surviving during periods of climatic and/or 

ecological change (Emerson et al., 2011). Previous molecular studies have demonstrated 

Collembola to present ancient phylogeographical patterns, which are less likely to be 

obscured or overwritten by local extinctions induced by the Quaternary glaciations, and 

also indicate lineages to have persisted through severe climatic conditions such as the 

Pleistocene glaciations in the Antarctic continent and in the southeast Australian 

highlands (Garrick et al., 2007; Stevens et al., 2007; Ávila-Jiménez & Coulson, 2011) 

and also the Messinian Salinity crisis in the Mediterranean basin (Cicconardi et al., 

2010). Thus, they offer an ideal opportunity to investigate faunal persistence and 

survival in possible refugial areas within the UK. Currently, 322 Collembola species are 

listed for the UK, of which only one has been clearly identified as an endemic species 

(Shaw et al., 2013). This chapter focuses on a common and widespread Collembolan 

genus, Entomobrya, looking at the geographical distribution of lineages and haplotype 

diversity across glaciated and unglaciated areas of the UK. It is hypothesised that 

southern regions of the UK that have remained ice free have higher haplotype diversity 

than northern areas as a consequence of the extent of coverage by the ice sheet. To 

evaluate the relative importance of southern areas of the UK in determining the current 

distribution of genetic diversity in this continental island, we have sequenced the 

mtDNA COI gene of 722 specimens of Entomobrya sampled from across Britain and 

Wales. Specifically we ask (i) Are there lineages that survived the Pleistocene 

glaciations? (ii) Are there non-random patterns of geographical distribution of lineages 

(e.g. geographically localized distribution of monophyletic clades)? (iii) Are there 
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signatures of greater lineage diversity in the South (or unglaciated areas) compared to 

the North (or glaciated areas)? (iv) Are there signatures of greater intra-lineage genetic 

diversity in the South compared to the North? 

 

4.3 MATERIAL AND METHODS  
 

4.3.1 Sampling and laboratory work 
 

Samples were collected from leaf litter and tree surfaces from 98 sites distributed across 

Britain and Wales from 2011 to 2012  (Fig 4.1). Animals were extracted with Tullgren 

funnels from litter samples and by vacuum from tree surfaces. Samples were 

individually placed in 96-well PCR plates and stored into absolute ethanol at 4oC prior 

to identification by PS. Identification to morphospecies followed Hopkin (2007) and at 

least 1 photo per morphospecies per site was taken to help posterior identification 

checks. 

 

A total of 722 individuals were individually extracted for their DNA using the DNeasy 

96 well Blood and Tissue Extraction Kit (QIAGEN,  West  Sussex,  UK).  Manufacturer’s  

instructions were used with the following modifications aimed to preserve the 

exoskeleton of each animal. The digestion step was performed directly within the PCR 

plates where samples had been stored after removing ethanol, to avoid touching the 

samples. A reduced volume (of 100 µL) of proteinase K + Buffer ATL working solution 

was added per sample to fit the smaller volume of each well of the PCR plate (200 µL) 

compared to that of the collection tubes of the DNeasy 96 plate kit (1.500 µL). Samples 

were incubated for just one hour to avoid lysing the skeleton. After incubation, the 

lysate was transferred to the DNeasy 96 collection tubes and the PCR plates with 

remaining exoskeletons were refilled with absolute ethanol and stored as vouchers at 

4oC. 

  

Each sample was amplified for the 658 bp barcode with primers ColFol-for and ColFol-

rev which are a modification of the primer LCO1490 (Ramirez-Gonzalez et al., 2013). 

Polymerase chain reactions (PCR) contained NH4 buffer (1x), 3.0 mM MgCl2, 2.5 mM 

of each dNTP, 0.4 µM of each primer and 0.5 U of Taq polymerase (Bioline) in 25 µL 

final volume. PCR cycles were carried out using the following thermal profile: 95oC for 
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2 min, 40 cycles of 95oC for 1 min; 52oC for 45 s, 72oC for 1 min; and finally 72oC for 

5 min. PCR products were cleaned with ExoRap protocol, normalized and sent to 

Eurofins for sequencing with the reverse primer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Figure 4.1. Distribution of sampling sites in Great Britain; a complete list 

of geographic coordinates and number of individuals sampled per locality 

can be found in Table S4.1. Blue triangles indicate the maximum extent 

of the British-Irish ice sheet during the last Pleistocene glacial period. 

 

 

ands in millions of years. 
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4.3.2 Sequence alignment and molecular lineage delineation  
 

MtDNA COI sequences were processed and ambiguous base calls manually assessed 

with Geneious Pro 5.6.4 (http://www.geneious.com, Kearse et al., 2012) and aligned 

using mafft 6.814 (Katoh et al., 2002). Haplotypes were collapsed using DNACollapser 

(Villesen, 2007).  The total number of variable and parsimony informative sites, and 

uncorrected pairwise genetic distances (overall mean, minimum and maximum) both 

within and among lineages (the most frequent sequence with the minimum number of 

differences was selected to represent each lineage) were computed with MEGA6 

(Tamura et al., 2013). Sequences were subjected to a neighbour-joining analysis (NJ) 

using p-distances in MEGA6 (Tamura et al., 2013), and their uncorrected genetic 

pairwise distances were also computed. Molecular lineages, here defined operationally 

as a cluster of similar sequences, were delineated using as a threshold the minimum 

pairwise p-distance found among 19 Lepidocyrtus (Collembola, Entomobryidae) 

mtDNA COI lineages collected sympatrically in six sampling sites in Panama in a 

previous study by Cicconardi et al (2013). In this study, the mtDNA COII gene was 

used and lineages, delineated based on coalescent units, diverging from as low as 5% 

were shown to be consistent with biological species. MtDNA COI sequences for the 

same sympatric lineages were obtained from Emerson et al. (2011). After identifying 

clusters, one sequence per lineage was submitted to the BOLD Identification System 

(http://www.boldsystems.org) to verify geographical distribution of identical or nearly 

identical sequences sampled from outside the UK.  

 

4.3.3 Evolutionary rate estimation and dating analysis 
 

In the absence of fossil or geological points to estimate divergence times, general 

molecular clocks are frequently applied (Cicconardi et al., 2010). For the mtDNA COII 

gene, rates ranging from 1.2% to 4.96% pairwise divergence per million years (Ma), 

have been proposed for arthropods (Papadopoulou et al., 2010; Ho & Lo, 2013, and 

references therein). From a comparative analysis of the mtDNA COII rate variation 

among 20 arthropod groups, Cicconardi et al. (2010) found the genus Lepidocyrtus to 

fall within medium-high rates and indicated a mean rate of 0.0245 substitutions/site/Ma 

to be a conservative (fast) estimate for the COII.  This rate was used to estimate the 

evolutionary rate of the mtDNA COI for the same group. To do that, eight Lepidocyrtus 

http://www.geneious.com/
http://www.boldsystems.org/
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COII sequences that occur sympatrically in Panama, obtained from Cicconardi et al. 

(2013), and their corresponding COI sequences (Emerson et al. 2011), were used to run 

two independent BEAST analyses (Drummond et al., 2012) setting the rate of 0.0245 

substitutions/site/Ma to both. The model of nucleotide substitution for each gene was 

assessed in MEGA6 (Tamura et al., 2013) and the Yule speciation prior was used. The 

root height of each gene tree was calculated in five independent runs of 108 MCMC 

generations, sampling every 1000 generations. Convergence among the independent 

runs, and expected sampling sizes (ESS) for the posterior distribution and parameters 

were evaluated using Tracer v1.6 (Rambaut et al., 2014). The two root ages obtained 

were quantitatively compared to calculate the rate of substitution for the COI gene. This 

rate was then applied to another BEAST analysis to estimate the time of the most recent 

common ancestor (MRCA) for nodes of interest in the Entomobrya NJ tree. The most 

appropriate substitution model for the Entomobrya dataset was inferred using MEGA6 

(Tamura et al., 2013). An uncorrelated lognormal relaxed clock (Drummond et al., 

2006) and a Yule speciation prior were used with the same settings for the MCMC. 

 

4.3.4 Geographical distribution and species diversity analysis 
 

To assess geographical patterns in the distribution of genetic diversity, the localities of 

occurrence of each haplotype were mapped using QGIS (QGIS Development Team, 

2014), then visually inspected for non-random patterns of geographical distribution, i.e., 

monophyletic clades of mtDNA sequences limited to geographically closely located 

sites. To evaluate genetic diversity differences between glaciated and unglaciated area, 

abundance matrices with lineages (OTUs) as rows and localities as columns were 

created and imported to EcoSim v7.72 (Gotelli & Entsminger, 2000). Analyses were 

also performed for genetic diversity within each lineage, in which haplotypes were used 

as rows in the abundance matrices. Localities were grouped into two biogeographical 

areas: glaciated and unglaciated and they were defined according to the maximum limits 

of the British-Irish ice sheet (BIIS) during the last Pleistocene glacial period reported in 

Clark et al. (2012, see Fig. 5). This is the most updated reconstruction of the extent and 

times of BIIS, based on different lines of evidences such as moraines, lateral meltwater 

channels, and subglacial melt. The ice sheet was around 0.72 million km2 in area and 

with a probable volume of just below 800,000 km3 (Clark et al., 2012). Although it 

reached its maximum extent at different times in different sectors (see Fig. 15 in Clark 
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et al 2012), its overall extent, independent of the time, was used to classify each locality 

as occurring in a glaciated or unglaciated area (Fig 4.1). To test whether genetic 

diversity (total lineage richness and haplotype richness within each lineage) is 

equivalent between these two areas, controlling for differences in sampling and 

abundances, a rarefaction algorithm as implemented in EcoSim v7.72 (Gotelli & 

Entsminger, 2000), in which a specified number of individuals are randomly drawn 

from a community sample, was used to rarefy the larger community down to the 

abundance level of the smaller. The total abundance of the smaller community being 

compared was used as the single abundance threshold for each analysis. Simulations 

were   run   using   the   “Species   Richness”   as   the   species diversity index. The random 

number seed was set to 10 and simulations were run for 1000 iterations. Diversity 

curves and their 95% confidence intervals were inspected to check whether assemblages 

were significantly different from one another. The mean and variance of diversity 

generated in each simulation were used to formally test the hypothesis of equivalent 

species diversity for glaciated and unglaciated communities by checking whether the 

observed diversity of the smaller community fell within the 95% confidence interval of 

the simulations for the rarefied community.  

 

4.4 RESULTS 
 

4.4.1 Overview of Entomobrya in Great Britain 
 

A total of 722 specimens were sampled from the genus Entomobrya from across 90 

sampling sites (Tab S4.1, Fig 4.1), which were assigned to 6 morphospecies 

(Entomobrya albocincta, E. intermedia, E. marginata, E. multifasciata, E. nicoleti and 

E. nivalis). Two Katianna sp. sequences were sampled as an outgroup. Five 

morphospecies were found in high numbers and they occur in many locations while 

only a small number of E. marginata individuals were found in a few sites (Tab 4.2). 

This morphospecies is known to be rare and scarce in the UK contrasting with the 

common and widespread status of the other five morphospecies. Sequences from the 

mitochondrial gene COI were obtained from 659 specimens from across the 90 

sampling sites. The remaining 63 specimens either failed to amplify or produce 

sequences of good quality traces. The final COI alignment, with 659 sequences, was 

561 bp long and yielded 173 unique haplotypes. Across the ingroup (657 sequences), 
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there were 217 polymorphic sites of which 200 were parsimony informative. Among the 

nineteen Lepidocyrtus COI lineages collected sympatrically in six Panama localities 

(see methods for details), the minimum pairwise p-distance value found was 4% 

divergence (Tab 4.1), thus 96% similarity was the threshold used for clustering 

sequences down to molecular lineages. In total, thirteen OTUs were identified using 

DNA barcoding of which three were singletons (Fig 4.2). The minimum, maximum and 

overall mean divergence among lineages was 7%, 20% and 16% respectively. Within 

lineages, overall mean divergences ranged from 0.1 to 4 and maximum divergences 

ranged from 0.2 to 4% (Tab 4.2). Sequences assigned to the morphospecies E. 

albocincta corresponded to a single COI lineage, while the other five morphospecies 

were composed of two or three divergent mtDNA lineages (Tab 4.2, Fig 4.2). The 

number of haplotypes per lineage ranged from 7 to 44 for the six more abundant 

lineages and 1 to 2 for the remaining seven lineages (Tab 4.2). The geographic 

distribution of the nine lineages with >99% similarity to BOLD sequences revealed the 

presence of related sequences mainly in Canada and France, but also in Moldova, 

Norway and South Africa (Tab 4.2).  

 

 

Table 4.1 - Minimum, maximum and overall mean uncorrected p-distances found 

among Lepidocyrtus COI lineages collected sympatrically from six localities in Panama 

(see text for details). 

Localities 

N sympatric 

lineages Min p-dis Max p-dis 

Overall 

p-dist 

L.b1b-SanFelix  3 0.15 0.17 0.11 

L.b2b-ElValle  3 0.05 0.17 0.08 

L.ve-Fortuna  3 0.21 0.19 0.13 

L.ve-P.I.L.A.  3 0.04 0.11 0.07 

L.ve-Darien  4 0.04 0.20 0.17 

L.ve-SanFelix 3 0.12 0.22 0.15 
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Table 4.2. Summary data for each lineage, reporting the number of individuals (n ind) and of mtDNA COI haplotypes (n hap) found, the 

number of sites each lineage was sampled (n sites), the number of sequences sampled from single localities (n single), the number of 

localities sampled in glaciated (n glac) and unglaciated (n unglac) areas, the mean and maximum observed intraspecific p-distances, and 

BOLD information on the locality of occurrence of the identical or near identical sequence found in this database. 

 
morphospecies n ind  n hap n sites n single n glac n unglac 

Mean/max 

intra-lineage p-dist 

BOLD most frequent 

sequence 

Lineage 1  intermedia* 165 22 47 11 21 26 2.1/4 Canada 

Lineage 2 intermedia 5 2 5 1 3 2 0.1/0.2 Canada 

Lineage 3 nivalis/marginata 2 2 2 2 1 1 0.2/0.2 - 

Lineage 4 nivalis* 94 38 33 29 12 21 1.3/3.2 France, Canada 

Lineage 5 nivalis* 54 16 24 12 6 18 0.4/1.6 Norway 

Lineage 6 mutifasciata  52 7 14 4 8 6 0.1/0.5 France, Canada, S. Africa 

Lineage 7 nivalis 1 1 1 1 0 1 - - 

Lineage 8 nicoleti  2 2 1 0 1 0 1.4/1.4 - 

Lineage 9 marginata 3 2 2 2 0 2 2.4/3.6 - 

Lineage 10 multifasciata 1 1 1 1 0 1 - France, Canada 

Lineage 11 multifasciata 1 1 1 1 0 1 - France, Canada 

Lineage 12 nicoleti* 106 44 33 37 16 17 0.3/1.6 - 

Lineage 13 albocincta 172 37 55 27 15 40 1.2/2.9 France, Canada, Moldova 

*Indicates lineages mostly composed of one morphospecies but individuals from different morphospecies are also found within these 

lineages 
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4.4.2 Geographical distribution and species diversity analysis  
 

To geographically illustrate the ranges of individual lineages, they were mapped 

according to their sampling localities (Figs 4.4, S4.1 to S4.3), and checked for non-

random patterns of geographical distribution of genetic variation. Lineages 1, 4, 12 and 

13 are the most abundant (n individuals > 90) and widespread (n localities > 30) 

lineages with ranges extending across the geographic extent of sampling sites (Figs 4.4 

and S4.1). Lineages 5 and 6 have medium abundances (n individuals >50) and are also 

relatively well distributed (Fig S4.2). The remaining lineages are represented by a very 

small number of individuals and occur in a single or very few localities (Fig S4.3). 

Among the six more abundant lineages, only lineage 4 presented a pattern of non-

random geographical structuring of genetic variation (Fig 4.2). Within this lineage, clear 

structuring of genetic variation was found in two monophyletic clusters of DNA 

sequences, NivG1 and NivG2, comprised of ten individuals (7 haplotypes) and 6 

individuals (3 haplotypes), respectively (bootstrap support: NivG1 = 0.91; NivG2 = 

0.67) (Figs 4.2, 4.3 and 4.4).  Both clades are found in only a few geographically 

proximate sites in the North, Northwest and Yorkshire regions.    

 

 

 

 

 

Figure 4.2. Neighbour joining tree of 659 Entomobrya mtCOI Sanger sequences 

derived from 90 sampling sites across Great Britain (see Fig 4.1). A threshold of 

96% similarity was used to cluster sequences into molecular lineages (see 

methods for details). Katianna sp. was sampled as an outgroup. Numbers 

immediately to the right of morphospecies names correspond to sampling 

localities. Further lineage details can be found in Table 4.2 
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After delimiting the maximum extent of the BIIS ice sheet onto Great Britain (Fig. 4.1), 

sampling localities were classified as being located in the glaciated or unglaciated area 

and their incidence data were pooled together to test the predictions that lineage 

diversity and intra-lineage diversity are greater in unglaciated than glaciated areas. 

Figure 4.3. Neighour joining tree of mtCOI Entomobrya lineage 4 sequences 

derived from 33 sampling sites across Great Britain. Highlighted are two 

monophyletic groups NIVG1 and NIVG comprised of 9 haplotypes that were 

only found in six proximate sampling sites (see Fig 4.4) 

 

 

ands in millions of years. 
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Overall lineage richness and intra-lineage haplotype richness (haplotypes within each of 

the six more abundant lineages) were compared between these two areas, after 

controlling for sampling and abundance differences in Ecosim. In total, 43 sampling 

sites were located in areas covered by the ice sheet, while 56 were located in areas that 

have not been covered by ice during glaciations. The investigation of geographical 

variation in Entomobrya genetic diversity revealed that overall lineage richness is 

equivalent in glaciated and unglaciated areas (Tab 4.3). After rarefying the unglaciated 

community data down to the abundance level of the glaciated community, it was found 

that for 1000 random samples of 264 individuals, there was an average of 11 lineages 

with a variance of 0.9 (Tab 4.3). The confidence interval indicates that 95% of the times 

that a random sample of 264 individuals is drawn from the unglaciated community, it is 

expected to find between 9-12 different lineages. The observed diversity of the glaciated 

community (n=9 lineages) is inside this confidence interval, indicating these 

communities are equivalent in diversity. Looking within lineages, observed haplotype 

richness of the smaller communities fell within the simulated 95% confidence interval 

for all but one lineage. Thus, haplotype richness did not differ between glaciated and 

unglaciated communities for all lineages, except lineage 12 for which haplotype 

richness was greater in glaciated than unglaciated areas (Tab 4.3).    

 

4.4.3 MtDNA COI rate estimation and dating analysis 
 

A dataset of both COII and COI sequences for eight Lepiocyrtus lineages sampled in 

Panama (Cicconardi et al., 2013) were used to estimate the rate of substitution of the 

COI gene. Tamura 3-parameter plus Gamma (T92+G) was selected as the best model of 

molecular evolution for the COII data, and Tamura-Nei plus Gamma (TN93+G) as the 

best model for the COI data. Using a conservative Lepidocyrtus COII evolutionary rate 

of 0.0245 substitutions/site/Ma (Cicconardi et al., 2010), BEAST estimated the root age 

of the eight Panama Lepidocyrtus COII sequences to be 35 Ma  (HPD=12.8-60 Ma), 

and for the COI sequences, this age was 72 Ma (HPD=24-142 Ma). Therefore, the COI 

gene is revealed to be approximately twice faster than COII, and a rate of 0.0504 

substitutions/site/Ma is used for subsequent COI dating analysis. 

 

The best model of molecular evolution for the two monophyletic groups detected within 

E. nivalis lineage 4 (NivG1 and NivG2) was T92. Adopting the closest model in BEAST 
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(TN93) and the estimated COI substitution rate (0.0504 substitutions/site/myr), the age 

of the MRCA for NivG1 is 45,000 years ago (HPD= 10,000-85,000) and for NivG2 is 

20,100 years ago (HPD=3,380-49,800). By using this conservative (fast) substitution 

rate, the ages of lineages are more likely to be underestimates than overestimates 

(Cicconardi et al. 2013). Thus, it is possible to hypothesize that these E. nivalis 

sequence variations must have survived through the last Pleistocene glaciation, whose 

last glacial ice sheet subsumed most of Britain from 27,000 and 15,000 years ago (Clark 

et al., 2009), persisted through the different climatic changes that followed it, and 

evolved independently with limited, if any, gene flow among neighbouring sites. 

 

4.5 DISCUSSION 
 

Through the analysis of mtDNA COI DNA sequence data, this study presents new 

information on the spatial pattern of genetic diversity within the springtail genus 

Entomobrya across the UK. We have investigated the impact of the last Pleistocene 

glaciation on lineage richness and haplotype richness between glaciated and unglaciated 

areas and identified signatures of long-term persistence of Entomobrya through the last 

Pleistocene glaciation. 

 

4.5.1 Long-term persistence of Entomobrya in the UK 
  

The Pleistocene is regarded as the most influential climatic period that shaped 

contemporary biogeographical patterns in Europe (Taberlet et al., 1998; Hewitt, 2004). 

In Britain and Ireland, glaciations had a major impact on the terrestrial fauna, and both 

genetic and paleontological lines of evidence suggest a reduction in species richness, 

little endemism and a recent origin for the fauna that currently inhabit both regions 

(Yalden, 1999; Hewitt, 2000; Searle, 2008). This fauna is thought to have arrived from 

continental Europe during the late part of the Pleistocene/Holocene (Yalden, 1982; 

Hewitt, 2004), consequently endemic biota is uncommon and limited to a few species, 

such as the Celtic woodlouse (Metatrichoniscoides celticus), subterranean amphipod 

(Niphargus glenniei, N. irlandicus), Dorset tineid moth (Eudarcia richardsoni), Lundy 

Cabbage flea beetle (Psylliodes luridipennis) and Lundy weevil (Ceutorhynchus 

contractus pallipes) (Proudlove et al., 2003; Barnard, 2011; McInerney et al., 2014), 

that have probably only been present for a few thousands of years. Our data are 
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consistent with this scenario, but also reveal evidence for population persistence of 

Entomobrya within Great Britain, estimated to extend back at least some 45,000 years.  

Six geographically proximate sampling sites are represented exclusively by 9 

haplotypes that comprise two monophyletic groups, not sampled within any other site.  

These six sites (Fig 4.4) span both glaciated and unglaciated terrains of Great Britain, 

with most sequence variation concentrated within the sampling sites extending well into 

the glaciated northern areas.  The estimated age of 45,000 years for the onset of genetic 

differentiation within the oldest of these two clades indicates persistence through the 

abrupt climatic and geological changes that have occurred over the last Pleistocene 

glaciation, at least during the Middle, Late Pleniglacial, Lateglacial and Younger Dryas, 

in the North and North West of Britain, which was covered by the ice sheet.  One 

possible explanation is survival of Collembola in ice-free habitats within the glaciated 

area. Although the idea of ice-free areas within glaciated northern regions may seem 

unlikely, it is important to consider scale.  The small size of Collembola, their 

potentially high population densities of up to 60,000 individuals per m2, and their soil 

dwelling habit means that the persistence of populations across time scales measured in 

tens of thousands of years may be accommodated by relatively small areas of ice-free 

habitat. 

 

4.5.2 Species diversity analysis 
 

The extent of the BIIS in Great Britain reached as south and east as Wales, the Lake 

District, and Kerry during the last glaciation (Clark et al., 2012). If soil-dwelling micro-

fauna survived within these southern regions that remained ice free, they would be 

expected to exhibit higher species richness and higher genetic diversity within species, 

compared to glaciated areas. Our analysis of species diversity, considering divergent 

genetic lineages to approximate biological species, does not support this hypothesis and 

indicates north and south communities to have equivalent lineage richness. This is 

perhaps not surprising due to the small number of Entomobrya mtDNA COI lineages 

found across the UK, potentially limiting statistical power. However, within lineages, 

genetic diversity also did not differ between glaciated and unglaciated areas for all but 

one lineage (lineage 12), which in contrast to our expectation presented greater DNA 

sequence diversity in the North.  
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Figure 4.4 Geographical distributions of a) lineage 1 – pink dots, and b) lineage 4 – green dots, according to their 

sampling localities. Black and red ellipses in b) indicate geographically localized ranges of two monophyletic groups 

(NIVG1 and NIVG2 respectively) found in lineage 4 (see text for details). Black dots indicate remaining sampling sites. 

Blue triangles indicate the maximum extent of the British-Irish ice sheet during the last Pleistocene glacial period. 

.  

 

a) b) 



 137 

Table 4.3. Summary of Ecosim data entry and diversity results (mean and 95% confidence interval – CI) for the overall lineage richness and for each of 

the most abundant lineages. For all simulated pairs, the larger community was rarefied down to the abundance level of the smaller community being 

compared and the observed diversity (n lin/hap) of the smaller community was tested to see if it fell within the estimated 95% confidence interval of 

the larger community. N ind = number of individuals, N lin/hap = observed number of lineages or of haplotypes, glac = community in the glaciated 

area, unglac = community in the unglaciated area.     

 

 

  All lineages lineage 1 lineage 4      lineage 5    lineage 6 lineage 12 lineage 13 

 

glac unglac glac unglac glac unglac glac unglac glac unglac glac unglac glac unglac 

N ind 264 394 75 87 30 63 14 40 20 32 58 50 31 141 

N lin/hap 9 12 14 16 15 26 6 12 3 6 27 20 6 33 

Mean - 11 - 14.7 - 16 - 6.3 - 4.4 23.7 - - 10 

95% CI  - 9 to 12 - 13 to 16 - 13 to 20 - 4 to 9 - 2 to 6 21 to 26 - - 6 to 14 
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To our knowledge, this is the first study to compare genetic diversity of extant 

communities from glaciated and unglaciated areas across the UK. Other studies have 

looked at the consequences of the ice ages on the genetic variation of different species 

but they have frequently taken a broader spatial scale. One example is provided by 

McInerney et al (2014), who investigated genetic variation and patterns of geographical 

distribution of Niphargus species across its entire European distribution (Spain, British 

Isles, West Europe, central Europe, Italy, Balkans, Ponto-Danubian, Caucasus), and 

found species richness to be highest in south-east Europe compared to the north-west. 

Although Great Britain is considered in this study, samples sites were mainly 

concentrated in unglaciated areas and species richness was not compared between 

glaciated and unglaciated areas within the UK. They also found a very ancient 

groundwater fauna in NW Europe, with lineages surviving in Britain and Ireland for 

approximately 20 millions years, thus persisting throughout the multiple glaciations of 

the Quaternary (McInerney et al., 2014).  Our analysis considered much smaller spatial 

(Great Britain only) and temporal scales (45 Ka for Entomobrya vs. 19.5 Ma for 

Niphargus), and although signatures of higher lineage diversity in the southern areas of 

England as opposed to the northern areas was not found (probably due to the low 

number of species), signatures of higher haplotype richness in the northern areas were 

detected for one lineage (lineage 12), as well as signatures of haplotypes surviving and 

persisting in ice-free habitat of glaciated areas at least during the middle and late stages 

of the last glaciation in the UK.  

 

This finding of Entomobrya lineages persisting through the last glaciation is congruent 

with those of other studies that demonstrate Collembola surviving extreme climatic 

disturbances, such as glaciations in Australia and in the Antarctic, and the Messinian 

Salinity Crisis in the Mediterranean basin (Garrick et al., 2007; Stevens et al., 2007; 

Cicconardi et al. 2010; Ávila-Jiménez & Coulson, 2011).  For example, in Tallaganda, 

southeast Australia, analysis of Acanthanura sp. n. mtDNA COI and nuclear haplotypes 

found marked population structure and deep phylogeographical breaks dating back to 

the Early-Mid Pliocene (5.0-3.5Ma), which are explained by survival through 

Pleistocene or earlier climatic cycles in moist forest refuges (Garrick et al 2007). Deep 

mtDNA COII divergences and strong fine scale population structure were also found for 

Lepidocyrtus lineages in the Mediterranean basin, and their ages of divergence indicate 

that at least 36 distinct lineages were already established by the time of the Messinian 
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salinity crisis (~5.5 Ma), implying survival through the abrupt climatic and ecological 

changes that occurred in the region (Cicconardi et al. 2010). Together, these studies 

demonstrate the marked resilience of small, abundant Collembola fauna to historical 

climate cycles and their utility to investigate the impacts of such changes on the current 

genetic structuring of the soil diversity. 

 

4.5.3 Conclusions 
 

Our study provides evidence of endemic genetic variation and persistence of 

Collembola lineages in the UK through extreme climatic changes that characterized the 

Pleistocene. Non-random geographic patterns of genetic variation, revealed by the 

geographically localized range of monophyletic groups, indicate the existence of genetic 

variation that evolved within the UK. Estimated dates of the onset of these in situ 

diversification events indicate they have been present for extended periods (21,000 and 

45,000 years) of time, thus implying survival through historical climatic and 

environmental changes. Similar investigations for other soil dwelling fauna, particularly 

for more species rich groups, may provide stronger evidence for species diversity 

differences between glaciated and unglaciated areas and further support for endemism 

and ancient fauna in the UK. This is a fertile ground for research that, coupled with a 

detailed sampling in the continental Europe, may shed light into our knowledge about 

the sources of genetic variation and phylogeographical consequences of Pleistocene 

glaciations for terrestrial invertebrate fauna in the UK.  
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4.7 Appendices 

 

Figure S4.1 Geographical distributions of a) Entomobrya lineage 12 – red dots, and b) Entomobrya lineage 13 – purple dots, 

according to their sampling localities. Small black dots indicate remaining sampling sites. Blue triangles indicate the maximum 

extent of the British-Irish ice sheet during the last Pleistocene glacial period. 

 

a) b) 
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Figure S4.2 Geographical distributions of a) lineage 5 – grey dots, and b) lineage 6 – yellow dots, according to their 

sampling localities. Small black dots indicate remaining sampling sites. Blue triangles indicate the maximum extent of the 

British-Irish ice sheet during the last Pleistocene glacial period. 

 

a) b) 
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Figure S4.3. Geographical distributions of Entomobrya mtDNA COI lineages 

according to their sampling localities. Lineage 2 – green dots, lineage 3- dark 

purple dots, lineages 7 and 10 – dark blue ellipse, lineage 8 - orange dot, 

lineage 9 – dark blue dot and ellipse, lineage 11- yellow dot. Black dots 

indicate remaining sampling sites. Blue triangles indicate the maximum extent 

of the British-Irish ice sheet during the last Pleistocene glacial period. 

 

 

ands in millions of years. 
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Table S4.1. Sampling sites within the island of Great Britain, reporting the geographic 

coordinates and number of Entomobrya individuals collected per locality. Locations 

coded according to Fig 4.1. 

 
Locality Latitude Longitude N individuals 

1 57.226940 -3.744723 3 
2 57.250828 -3.646657 1 
3 57.056782 -3.650115 2 
4 56.992771 -3.484993 3 
5 53.567368 -2.232038 11 
6 53.574394 -2.140705 7 
7 53.711956 -1.745219 4 
8 53.621056 -1.544229 8 
9 53.267548 -3.517447 12 
10 53.270206 -3.332264 9 
11 53.390812 -3.188403 9 
12 53.191521 -3.080297 3 
13 53.269020 -2.800899 7 
14 53.383728 -2.403826 2 
15 53.348923 -2.387444 5 
16 53.383045 -2.369771 8 
17 53.401390 -2.331261 3 
18 53.403618 -2.281280 2 
19 52.886627 -2.164448 22 
20 53.400555 -2.160005 2 
21 53.374790 -1.511842 3 
22 51.768250 -4.620054 10 
23 52.215801 -1.503167 15 
24 51.653542 -4.957234 10 
25 51.647945 -4.937279 17 
26 51.678989 -3.993226 19 
27 51.534397 -3.574383 19 
28 51.539238 -3.128327 4 
29 51.511406 -2.158805 17 
30 51.482948 -1.557258 15 
31 50.512501 -4.822230 9 
32 50.369995 -4.786108 9 
33 50.487782 -4.762217 5 
34 50.470009 -4.720558 5 
35 50.654724 -4.290828 5 
36 50.426395 -4.275012 4 
37 50.376942 -4.034168 5 
38 50.633892 -3.565275 3 
39 50.716389 -3.465000 3 
40 53.723221 -0.479807 9 
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Table S4.1. (cont) 
 

Locality Latitude Longitude N individuals 
41 53.727322 -0.369791 4 
42 53.800648 -0.057395 14 
43 52.623665 1.246741 36 
44 52.419460 0.515290 2 
45 52.423801 0.527952 4 
47 52.341007 0.537557 11 
48 52.414165 0.542738 17 
49 51.718281 0.523698 1 
50 52.146744 1.081943 11 
51 51.321110 -0.475282 11 
52 51.313606 -0.466388 3 
53 51.316383 -0.464724 1 
54 51.299717 -0.374997 11 
55 51.173615 -0.371669 2 
56 51.176941 -0.360549 23 
57 51.312778 -0.335275 2 
58 51.248577 -0.320651 14 
59 51.248592 -0.320650 3 
60 51.215530 -0.314491 1 
61 51.157887 -0.314006 10 
62 51.433052 -0.276102 13 
63 51.626289 -4.256871 2 
64 51.456116 -0.244719 0 
65 51.448338 -0.242504 20 
66 51.135246 -0.249651 0 
67 51.273663 0.042656 2 
68 51.490414 0.285921 3 
69 51.200829 0.518717 0 
72 57.032429 -3.625677 1 
73 57.005009 -3.541238 0 
74 55.684959 -1.838683 6 
75 55.675194 -1.799497 1 
76 55.606403 -1.705754 10 
77 55.054352 -2.617450 8 
78 54.451942 -2.606670 4 
79 54.991104 -2.363755 11 
80 54.798607 -2.868619 5 
81 55.056610 -1.632874 8 
83 54.190464 -2.797168 0 
84 54.191376 -2.795045 0 
85 53.498901 -1.774891 6 
86 53.698200 -1.264826 7 
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Table S4.1. (cont) 
 

Locality Latitude Longitude N individuals 
87 53.291092 -3.712894 8 
88 52.697304 -3.519311 1 
89 52.699707 -3.621308 2 
90 52.638248 -3.716803 11 
91 52.587330 -3.784479 5 
92 52.711727 -3.575345 0 
93 51.269722 -2.919990 1 
94 50.955917 -3.952013 1 
95 51.665211 -3.712372 0 
96 53.411362 -1.830386 1 
97 53.383255 -1.602855 12 
98 52.666122 -3.282838 11 
99 52.700470 -3.060518 18 
100 52.672260 -3.407084 3 
101 52.722786 -2.839915 40 
102 52.362823 -1.945560 13 
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Chapter 5 

 
Genetic diversity and persistence of Lepidocyrtus (Hexapoda, 

Collembola) lineages through historical climate changes in the 
island of Great Britain 

 
 

 

 

 

 

Lepidocyrtus curvicollis (Entomobryidae), UK. Photo from 
http://www.stevehopkin.co.uk/collembolagallery/ 
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5.1 ABSTRACT 
 
Recent work on British soil dwelling fauna has revealed evidence for endemic genetic 

variation indicating the survival of springtail lineages (genus Entomobrya) through the 

abrupt climatic and geological changes that occurred over the last Pleistocene glaciation 

in Great Britain. To investigate support for this evidence and the generality of these 

findings for the British Collembola fauna, we further sampled within the more species 

rich genus Lepidocyrtus with the mtDNA COI gene across Great Britain to (i) assess 

lineage richness between glaciated and unglaciated communities, (ii) evaluate 

signatures of disjunct distributions and structuring of genetic variation, and (iii) estimate 

the ages of the onset of diversification within geographically localised lineages. Using 

96% similarity threshold to cluster sequences into molecular lineages, a total of 22 

Lepidocyrtus OTUs were identified, with an overall mean divergence of 14%. Lineages 

presented widespread ranges (n=3), disjunctive distributions (n=3), or were 

geographically restricted to a few proximate sites (n=7). Lineage richness was 

significantly different between glaciated and unglaciated communities, with lower than 

expected lineage richness found for the glaciated community. Within widespread 

lineages, haplotype richness did not differ between these two communities. Using a 

conservative mtDNA COI rate of 0.0504 substitutions/site/Ma, estimated ages for 

lineages with genetic variation geographically structured ranged from 112,800 to 

326,400 years ago, which substantially predates the Last Glacial Maximum. Theses 

results corroborate previous signatures of differentiation and persistence of Collembola 

lineages in Great Britain and are also congruent with other studies showing soil 

dwelling fauna surviving harsh climatic conditions, possibly due to their particular life 

history traits, which confer on them abilities to resist extreme conditions. Placing these 

findings into the European context, Collembola extend the list of species showing 

evidence of survival in high latitude refugia, confirming a more mosaic model of 

persistence during Pleistocene glaciations, which involves not only southern peninsulas 

but also northern refugia areas. 
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5.2 INTRODUCTION  
 

Understanding species distributions across the Earth has been of general interest to 

ecologists, evolutionary biologists and biogeographers for centuries (Ricklefs, 2004 and 

references therein), who have faced the challenging tasks of characterizing general 

spatial patterns of biodiversity, and determining the main factors that describe them.  

Recent years have seen considerable advances in methodological and analytical tools 

(e.g. Elith & Leathwick, 2009; Jetz & Fine, 2012; Fonseca et al., 2014) that allow 

exploration of global patterns in biodiversity distribution, including hotspots of 

diversity, change with spatial scales such as species-area relationships, and the influence 

of gradients such as latitudinal variation in species richness (Gaston, 2000, 2009). A 

combination of historical (e.g. speciation, extinction, dispersal, continental drift, and 

glaciation) and contemporary (e.g. climate, topographic relief, biotic interactions, 

ecological tolerances) factors have been found to explain these patterns (e.g. Hewitt, 

1996; Hawkins & Porter, 2003; Whittaker et al., 2007). Within this area of interest the 

influence of historical climate change on shaping the evolution and distribution of 

diversity has received a lot of interest within the European landscape, primarily through 

phylogeographic analysis (e.g. Hewitt, 2000; Wilson & Veraguth, 2010; Davison et al., 

2011).  

 

Due to the repeated Pleistocene glaciations and climatic fluctuations, many European 

temperate and boreal taxa were forced to contract their distributions into low-latitudes, 

persisting in three major southern refugial areas within the Mediterranean peninsulas, 

the Iberian, Italian and Balkan peninsulas (Bennett et al., 1991; Taberlet et al., 1998; 

Hewitt, 2004). These southern populations then expanded their ranges towards mid and 

high-latitudes when conditions improved during interglacial periods (e.g. Bennett et al., 

1991; Hewitt, 2004) . More recently, phylogeographic and paleoecological research 

have also begun to provide support for a model where certain species persisted in mid- 

to high-latitude refugia during glaciations and contributed to the recolonization of 

Central and Northern Europe when glaciers receded (Provan & Bennett, 2008; Hofreiter 

& Stewart, 2009; Stewart et al., 2010). This has been demonstrated for a variety of taxa, 

including invertebrates (e.g. Nieberding et al., 2005; Benke et al., 2009), amphibians 

(e.g. Teacher et al., 2009), reptiles (e.g. Ursenbacher et al., 2006), mammals (e.g. 

Deffontaine et al., 2005; Valdiosera et al., 2007) and plants (e.g Petit et al., 2003). 
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Consequently, there is now an increasing recognition of a potentially more mosaic 

model of persistence, involving not only southern but also central and northern refugial 

areas. 

 

Surviving in more northern refugia would require species to exhibit traits that are 

expected to promote persistence in these regions such as cold tolerance, small body 

sizes, short generation time, generalist habitat preference, northerly present-day 

distributions (Bhagwat & Willis, 2008; Hopper, 2009). There are a number of reasons 

these traits are thought to be important: (i) cold tolerance implies a number of 

physiological adaptations to survive in cooler climates such as desiccation tolerance 

(Marshall & Coetzee, 2000); (ii) small body size implies a higher metabolic rate which 

enables survival in cold climates (Li & Wang, 2005); (iii) short generation time would 

also be advantageous as it allows fast reproduction and dispersal in harsh environments 

(Clark et al., 2001); (iv) habitat-generalist species are more tolerant to a varied range of 

environmental conditions than  habitat-sensitive species are (Cooper & Gessaman, 

2004); (v) present-day northerly distributions also presume species that are inherently 

capable of surviving in cooler climates (Bhagwat & Willis, 2008). High mobility is also 

thought to confer an advantage for vertebrates when surviving in refugia surrounded by 

a permafrost landscape conferring the ability to disperse into suitable areas as climate 

changes (Andreev, 1999). These geographical, ecological and life-history traits have 

been investigated in a variety of European woody plants and vertebrates to test their 

correlation with survival in northern refugia during full glacial times (Bhagwat & 

Willis, 2008). Wind-dispersed, habitat generalist trees with the ability to reproduce 

vegetatively, and habitat generalist mammals with present-day northerly distributions 

have been clearly demonstrated to encompass the traits that allowed them to persist in 

northern refugia (Bhagwat & Willis, 2008).   

 

While the analysis of Bhagwat and Willis (2008) looked at a number of woody plants 

and mammals, and traits were based on these groups, we are not aware of similar 

analyses for invertebrates, a very diverse group among which many species naturally 

hold many of these traits (e.g. limited desiccation tolerance and reduced body size of 

Antarctic microarthropods adapted to harsh environmental conditions [McGaughran et 

al., 2010]). Among invertebrates, soil dwelling species present the potential to survive 

through extreme environmental conditions in northern refugia as they have small body 
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sizes, are typically ubiquitous, and are often present in high population densities (which 

potentially confers a degree of local demographic stability, i.e. maintenance of viable 

populations through time at small spatial scales [Garrick et al., 2008; Emerson et al., 

2011]) . They also present low vagility, which, contrary to the model for vertebrates, 

has been suggested to correlate with survival in small refugial areas (Moritz et al., 2001; 

Hugall et al., 2002), suggesting their suitability for recovering phylogeographic 

signatures of persistence through long-acting climatic cycles. While for large 

vertebrates such as deer, fox, alce (Bhagwat and Willis, 2008 and references therein) 

high mobility would be useful to help encounter suitable remaining habitat across the 

landscape, this does not apply to soil dwelling species. Their ubiquity implies that rather 

than needing to disperse to find suitable environmental conditions, they would already 

be present at possible refugial sites. Soil organisms may of course undergo passive long 

distance dispersal (e.g. wind dispersal), but results from molecular work suggest this to 

be of limited importance. Molecular data reveal that soil dwelling Collembola may not 

move even short distances of only tens of kilometers over timescales exceeding the 

Pleistocene (e.g. Garrick et al., 2007; Cicconardi et al., 2010). Phylogeographic 

analyses of some soil fauna (e.g. springtails, mites and roundworms) have frequently 

revealed deep evolutionary divergences among lineages, dating back millions of years, 

which implies lineages to have persisted through multiple glacial cycles and other 

potential vicariant events (Nieberding et al., 2005; Garrick et al., 2007; Stevens et al., 

2007; McGaughran et al., 2008, 2010; Cicconardi et al., 2010; Mortimer et al., 2012). 

As a consequence, remarkable population structuring among geographically proximate 

sites can be found within soil dwelling taxa. For example, a fine scale phylogeographic 

analysis of the long-term population history of the giant springtail Acanthanura sp. 

from the Australian highlands found marked population structure, deep molecular 

divergences and abrupt mtDNA COI breaks among six Acanthanura sp. n., with the 

oldest break possibly dating back to the Early–Mid Pliocene (5.0–3.5 Myr), suggesting 

lineages to have survived through Pleistocene climatic cycles in montane temperate 

forests refuges in southeastern Australia (Garrick et al., 2007). In the North-Western 

Mediterranean basin, deep mtDNA COII divergences and remarkable geographic 

structure were also found for Lepidocyrtus lineages, and their ages of divergence 

indicate many of them were already established by the time of the Messinian salinity 

crisis (~5.5 Ma), implying survival through the abrupt climatic and ecological changes 

that occurred in the region (Cicconardi et al. 2010). 
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Other soil taxa also provide examples of probable persistence of taxa in geographic 

areas subjected to harsh environmental conditions during the glacial periods.  A 

phylogeographic study of the nematode Heligmosomoides polygyrus in the western 

Paleartic region revealed a highly differentiated northern clade in Ireland and Denmark, 

with its time of differentiation, estimated between 2.02±0.21 and 1.46±0.19Myr, 

suggesting it may have survived the Quaternary ice ages in refugia in the southern parts 

of the British Isles and Denmark (Nieberding et al., 2005). In a broad-scale molecular 

analysis of ameronothroid mites from the maritime and sub-Antartic regions, deep 

divergence times were found among groups (e.g. mean dates ranging from 6.15 to 9.47 

Myr among the genera Podacarus, Alaskozetes and Halozetes) that significantly predate 

the Pleistocene, thus suggesting their survival in refugia within the Antarctic Peninsula, 

which remained heavily glaciated since 12 Myr until the end of the Last Glacial 

Maximum (Mortimer et al., 2011).  

 

Although at a smaller temporal scale (thousands instead of million of years), recent 

work on British soil dwelling fauna has also revealed evidence for survival and 

persistence of springtail lineages of the genus Entomobrya through the abrupt climatic 

and geological changes that occurred over the last Pleistocene glaciation in Great 

Britain. This is indicated by the occurrence of two monophyletic groups of mtDNA 

sequences with geographically localized distributions in discrete areas in the North and 

North West regions of England. Together with the estimated age of 45,000 years for the 

onset of genetic differentiation within the oldest of these two monophyletic groups, 

which suggest endemic genetic variation diversifying in situ. Surprisingly, sampling 

sites for both groups were mainly concentrated in the northern glaciated areas of the 

Great Britain, indicating persistence at least through the last Pleistocene glaciation in 

ice-free habitats that may have existed within these areas. While this scenario suggests 

evidence for long-term persistence, it was only found within one out of the 13 

Entomobrya lineages currently sampled across the UK (Faria et al., Chapter 4). If this 

scenario were real, we would expect to find signatures of persistence in other 

Collembola species.  

 

Here we assess the generality of the finding of chapter 4 by further sampling within the 

genus Lepidocyrtus across Great Britain. Like the genus Entomobrya, Lepidocyrtus is 
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also commonly found and widespread in this continental island. If Collembola lineages 

survived the last Pleistocene glaciation in Great Britain, the following genetic signatures 

are expected to be found: (i) lower lineage richness and intra-lineage genetic richness in 

the northern glaciated areas compared to the southern unglaciated areas. This pattern is 

generally   referred   to   as   ‘southern   richness   and  northern  purity,’  derived   from the fact 

that northern areas are expected to be recolonized from subsets of the genetic diversity 

present in southern refugial populations (Hewitt, 1996); (ii) non-random spatial patterns 

of genetic variation structuring (i.e. monophyletic group of sequences with 

geographically localized distribution in discrete areas in the UK) pointing to endemic 

variation that has diversified within and are limited to areas of long-term persistence; 

(iii) divergence times for the onset of this endemic genetic variation that predate the 

Last Glacial Maximum-LGM;  (iv) disjunct distributions of lineages, suggesting 

lineages with previously widespread geographic distributions that became patchy. Such 

patterns are expected when a widespread taxa becomes restricted to a refugial area, but 

fails to achieve a broader distribution as climate and conditions improve. Such a pattern 

is mediated by the leading-edge effect – pioneers population from related taxa rapidly 

expand their distribution and recolonize ice released areas. Once the empty space has 

been filled by these pioneers populations, it is more difficult for related taxa to colonise 

and establish (Hewitt, 2004). We evaluate evidence for these expectations by sampling 

the mtDNA COI gene for 428 specimens of Lepidocyrtus sampled from across Great 

Britain.  

 

5.3 MATERIAL AND METHODS 
 

5.3.1 Sampling and laboratory work 
 

Between 2011 to 2012, as part of a bigger project to estimate Collembola diversity in 

the UK, more than 1000 individuals were collected from 98 sites distributed across 

Britain and Wales (Fig 5.1). Among them, a total of 428 individuals belonging to the 

genus Lepidocyrtus were sampled from 68 of the 98 sampling sites (Table S5.1). The 

remaining individuals belong to the genus Enotmobrya, which were analysed in the 

previous chapter. Animals were collected from leaf litter (extracted with Tullgren 

funnels) and from tree surfaces (extracted by using a vacuum). Table S5.1, Supporting 

Information, lists morphospecies, their collection sites, number of individuals per sites 



 157 

and national grid information. Upon collection, samples were individually placed in 96-

well PCR plates and stored into absolute ethanol at 4oC prior to identification by PS. 

Identification to morphospecies followed Hopkin (2007) and at least 1 photo per 

morphospecies per site was taken to help posterior identification checks. 

 

 
 

 

Figure 5.1. Distribution of sampling sites in Great Britain (a total of 98 

sites were sampled – black dots, and Lepidocyrtus was sampled from 68 – 

labelled sites); a complete list of geographic coordinates and number of 

individuals sampled per locality can be found in Table S5.1. Blue 

triangles indicate the maximum extent of the British-Irish ice sheet during 

the last Pleistocene glacial period. 

 

 

ands in millions of years. 
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DNA was isolated from individual specimens using the DNeasy 96 well Blood and 

Tissue  Extraction  Kit  (QIAGEN,  West  Sussex,  UK).  Manufacturer’s   instructions  were  

used with modifications aimed to preserve the exoskeleton of each animal (for details 

see methods in chapter 4). After incubation, the PCR plates with remaining 

exoskeletons were refilled with absolute ethanol and stored as vouchers at 4oC. 

 

The primers used to amplify a fragment of the cytochrome c oxidase subunit I (COI) of 

658 base pairs (bp) were ColFol-for   (5’-TTTCAACAAATCATAARGAYATYGG-3’)  

and ColFol-rev   (5’-TAAACTTCNGGRTGNCCAAAAAATCA-3’).   ColFol-for is a 

modification of primer LCO1490 (Folmer et al., 1994) aimed to improve matching to 

Collembola   and   to   have   full   degeneracy   across   the   last   three   3’   codons   (Ramirez-

Gonzalez et al., 2013). ColFol-rev is a modification of primer HCO2198 (Folmer et al., 

1994) also aimed to improve matching to Collembola (Ramirez-Gonzalez et al., 2013).  

Polymerase chain reactions (PCR) contained NH4 buffer (1x), 3.0 mM MgCl2, 2.5 mM 

of each dNTP, 0.4 µM of each primer and 0.5 U of Taq polymerase (Bioline) in 25 µL 

final volume. PCR cycles were carried out using the following thermal profile: 95oC for 

2 min, 40 cycles of 95oC for 1 min; 52oC for 45 s, 72oC for 1 min; and finally 72oC for 

5 min. PCR products were cleaned with ExoRap protocol, normalized and sent to 

Eurofins for sequencing with the reverse primer. 

 
5.3.2 Sequence alignment and molecular lineage delineation  
 

MtDNA COI sequences were processed and ambiguous base calls manually assessed 

with Geneious Pro 5.6.4 (http://www.geneious.com, Kearse et al., 2012) and aligned 

using mafft 6.814 (Katoh et al., 2002). Haplotypes were collapsed using DNACollapser 

(Villesen, 2007).  The total number of variable and parsimony informative sites, and 

uncorrected pairwise genetic distances (overall mean, minimum and maximum) both 

within and among lineages (the most frequent sequence with the minimum number of 

differences was selected to represent each lineage) were computed with MEGA6 

(Tamura et al., 2013). Sequences were subjected to a neighbour-joining analysis (NJ) 

using p-distances in MEGA6 (Tamura et al., 2013), and their uncorrected genetic 

pairwise distances were also computed. Molecular lineages, here defined operationally 

as a cluster of similar sequences (Operational taxonomic units, OTUs), were delineated 

using as a threshold the minimum pairwise p-distance of 4% found among 19 

http://www.geneious.com/
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Lepidocyrtus mtDNA COI lineages collected sympatrically in six sampling sites in 

Panama in a previous study by Cicconardi et al (2013) (for details see methods chapter 

4). After identifying clusters, one sequence per lineage was submitted to the BOLD 

Identification System (http://www.boldsystems.org) to test for identical or nearly 

identical sequences sampled from outside the UK.  

 
5.3.3 Molecular dating analysis 
 

In order to obtain a temporal framework for the onset of diversification within 

geographically localized monophyletic groups found in the Lepidocyrtus NJ tree, node 

ages were estimated using Beast v. 1.7.4 (Drummond et al., 2012) under a relaxed clock 

method that assumes a lognormal distribution of rates. The mtDNA COI rate of 0.0504 

substitutions/site/Ma, obtained after quantitatively comparing the root ages of eight 

Panamian Lepidocyrtus COII sequences and their corresponding COI sequences (for 

details see chapter 4), was used following a normal prior distribution. Best-fit 

substitution models were selected independently for each monophyletic group using 

Bayesian information criterion (BIC) in MEGA6 (Tamura et al., 2013). The tree prior 

followed the Yule process speciation model. Five independent Markov Chain Monte 

Carlo searches were run for 108 generations, sampling every 1000 generations. 

Stationarity, convergence, and expected sampling sizes (ESS) for the posterior 

distribution and parameters were evaluated using Tracer v1.6 (Rambaut et al., 2014). 

 
5.3.4 Geographical distribution and haplotype diversity analysis 
 

To assess geographical patterns in the distribution of genetic diversity, the localities of 

occurrence of each lineage haplotype were mapped using QGIS (QGIS Development 

Team, 2014), then visually inspected for non-random patterns of geographical 

distribution, i.e., disjunction distributions and monophyletic clades of mtDNA 

sequences limited to geographically closely located sites. Arbitrary cut-off points (based 

on the mean and maximum number of sites and number of individuals sampled per 

lineage) were used to describe spatial patterns of distribution and abundance levels of 

lineages.  Spatial distributions were classified as widespread = lineage with haplotypes 

sampled from more than 40 sites with ranges widely distributed across the geographic 

extent of sampling sites; spread = lineage with haplotypes sampled from across 20 to 39 

http://www.boldsystems.org/
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sampling sites with ranges relatively well distributed across most of the sampling sites; 

localised = lineage with haplotypes restricted to a few closely located sampling sites; 

disjunctly distributed = linage sampled from a few sampling sites located in opposite 

areas (e.g. east and west) of the geographic extent of the sampling sites. Abundance 

levels were classified as low abundance = 2 to 10 individuals, medium abundance = 11 

to 30 individuals, high abundance = 31 to 50 individuals, very high abundance = above 

51 individuals. To evaluate differences in genetic diversity between glaciated and 

unglaciated areas, abundance matrices with lineages (OTUs) as rows and localities as 

columns were created and imported to EcoSim v7.72 (Gotelli & Entsminger, 2000). 

Analyses were also performed for genetic diversity within each lineage, in which 

haplotypes were used as rows in the abundance matrices. Localities were grouped into 

two biogeographical areas: glaciated and unglaciated and they were defined according 

to the maximum limits of the British-Irish ice sheet (BIIS) during the last Pleistocene 

glacial period reported in Clark et al. (2012). To test whether genetic diversity (total 

lineage richness and haplotype richness within each lineage is equivalent between these 

two areas, controlling for differences in sampling and abundances, a rarefaction 

algorithm as implemented in EcoSim v7.72 (Gotelli & Entsminger, 2000), was used to 

rarefy the larger community down to the abundance level of the smaller. The total 

abundance of the smaller community being compared was used as the single abundance 

threshold  for  each  analysis.  Simulations  were  run  using   the  “Species  Richness”  as   the  

species diversity index. The random number seed was set to 10 and simulations were 

run for 1000 iterations. Diversity curves and their 95% confidence intervals were 

inspected to check whether assemblages were significantly different from one another. 

The mean and variance of diversity generated in each simulation were used to formally 

test the hypothesis of equivalent species diversity for glaciated and unglaciated 

communities by checking whether the observed diversity of the smaller community felt 

within the 95% confidence interval of the simulations for the rarefied community.  
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5.4 RESULTS 
 
5.4.1 Overview of Lepidocyrtus in Great Britain 
 

A total of 428 specimens were sampled from the genus Lepidocyrtus from across 68 

sampling sites (Tab S5.1, Fig 5.1), which were assigned to 4 common morphospecies 

(Lepidocyrtus curvicollis, L. cyaneus, L. lanuginosus, L. lignorum), two unknown 

morphospecies (Lepidocyrtus sp. 1 cf. orange, Lepidocyrtus sp. 2) plus one specimen of 

each of L. ruber and L. violaceus. One Katianna sp. sequence was sampled as an 

outgroup. Sequences from the mitochondrial gene COI were obtained from 391 

individuals, while the remaining 37 specimens either failed to amplify or produce 

sequences of good quality traces. The final COI alignment, with 392 sequences, was 

556 bp long and yielded 92 unique haplotypes. Across the ingroup, there were 240 

polymorphic sites of which 225 were parsimony informative. Using 96% similarity as 

the threshold for clustering sequences down to molecular lineages, a total of 22 OTUs 

were identified of which five were singletons (Fig 5.2). The minimum, maximum and 

overall mean divergence among lineages was 4.5%, 23.9% and 14.4% respectively. 

Within lineages, overall mean divergences ranged from 0.02% to 2.36% and maximum 

divergences ranged from 0.18% to 4.68% (Tab 5.1). Sequences assigned to the 

morphospecies L. cyaneus and L. lanuginosus corresponded to nine and six divergent 

mtDNA COI lineages respectively, while those assigned to L. lignorum and L. 

curvicollis corresponded to three and two divergent COI lineages respectively (Tab 5.1, 

Fig 5.2). Seven out of the 22 lineages are a mixture of morphospecies but they are 

mainly represented by one morphospecies (e.g. most individuals of lineage 3 are L. 

lignorum), apart from lineage 1 which is the most abundant (n=189 specimens) and 

widespread (n=41 sites) lineage with very low sequence variation (only 9 haplotypes), 

equally represented by two morphospecies, L. lanuginosus and L. lignorum (n=83 and 

n=82 respectively), plus a few specimens of L. curvicollis, L. cyaneus and L. ruber. The 

number of haplotypes per lineage ranged from 1 to 14 with an average of 4 haplotypes 

per lineage (Tab 5.1). The geographic distribution of the 13 lineages with >99% 

similarity to BOLD sequences revealed the presence of related sequences mainly in 

Canada and France, but also in Germany, Italy, Poland, USA, Australia and Tasmania 

(Tab 5.1).  

 



 162 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 163 

Fig 5.2 (cont) 
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5.4.2 Spatial distribution of lineages 
 

In total, 34 sites were sampled within each of the glaciated and unglaciated areas of the 

UK (Fig 5.1). Across these sites, three main spatial distribution patterns were identified: 

lineages either presented spread/widespread ranges (n=3 lineages), disjunct distributions 

(n=3), or were geographically restricted to a few closely located sites (n=7) (Tab 5.1). 

The remaining five lineages were found in unique localities and were mainly 

represented by a single individual (Fig 5.2). Lepidocyrtus cyaneus lineages 7.1 and 7.2, 

L. cyaneus lineages 9.1 and 9.2, and L. lanuginosus lineages 15.1, 15.2 and 15.3 were 

considered as single lineages (lineages 7, 9 and 15, respectively) to take into account 

small sample sizes.  The ranges of the widespread lineages 1 and 15 extended across the 

geographic extent of sampling sites, while lineage 9 has not been sampled from more 

northerly areas and it is largely distributed from West Yorkshire down to eastern, 

western and southern regions (Fig 5.3). The following disjunctive distributions were 

found:  North, Wales and South (lineage 11), East Anglia and South West (lineage 17), 

North, Humberside, South, South East and South West (lineage 13) (Fig 5.4). Within 

lineages with geographically localised ranges, lineage 3 and 16 are only found in 

unglaciated sites, while the other lineages (6, 7, 8, 12 and 18) are found in both 

glaciated and unglaciated sites (Figs 5.5). Widespread lineages were also the most 

abundant (n > 40 individuals), while localised and disjunctly distributed lineages 

presented mid to low abundances (Tab 5.1). No pattern of genetic structuring was found 

within clades of the spread/widespread lineages. However, geographical structuring of 

genetic variation was found in five out of the seven geographically localised lineages 

(lineages 3, 7, 8, 12 and 18). These lineages (comprised of 7 to 17 individuals) 

Figure 5.2. Neighbour joining tree of 392 Lepidocyrtus mtCOI Sanger sequences 

derived from 68 sampling sites across Great Britain (see Fig 5.1). A threshold of 

96% similarity was used to cluster sequences into molecular lineages (see 

methods for details). Katianna sp. was sampled as an outgroup. Numbers 

immediately to the right of morphospecies names correspond to sampling 

localities. Most abundant lineages are collapsed. Further lineage details can be 

found in Table 5.1 
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presented some level of haplotype variation (ranging from four to eight haplotypes per 

lineage), which were not found anywhere else but only in a few closely located sites 

(ranging from two to five sites per lineage) that span both glaciated and unglaciated 

terrains (Tab 5.1). Glaciated sampling sites were largely located near the limits of the 

ice sheet extents except for lineage 7 which extended well into the north. Although 

lineages 6 and 16 were also geographically restricted, they did not present sequence 

variation. 

 

5.4.3 Species diversity analysis    
 

To assess whether Lepidocyrtus genetic diversity in the UK displays a pattern of 

‘southern   richness   and   northern   purity’,   overall lineage richness and intra-lineage 

haplotype richness (haplotypes within each of the three widespread lineages) were 

compared between glaciated (northern) and unglaciated (southern) areas, after 

controlling for sampling and abundance differences in Ecosim (Gotelli & Entsminger, 

2000).  This analysis revealed that lineage richness is significantly different between 

glaciated and unglaciated communities with greater richness found in southern areas 

(Tab 5.2). After rarefying the unglaciated community data (n=205) down to the 

abundance level of the glaciated community (n=184), it was found that for 1000 random 

samples of 184 individuals, there was an average of 16.5 lineages with a variance of 0.4 

(Tab 5.2). The confidence interval indicates that 95% of the times that a random sample 

of 184 individuals is drawn from the unglaciated community, it is expected to find 

between 15-17 different lineages. The observed diversity of the glaciated community 

(n=11 lineages) is outside this confidence interval and is below the simulated average, 

indicating that lineage richness is smaller than expected in the glaciated areas. Looking 

within the three widespread lineages (1, 9 and 15), observed haplotype richness of the 

less abundant community (glaciated community for lineages 9 and 15; and unglaciated 

community for lineage1, Tab 5.2) fell within the simulated 95% confidence interval for 

all lineages, indicating that haplotype richness does not differ between glaciated and 

unglaciated communities for these lineages (Tab 5.2).    
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Table 5.1. Summary data for each lineage, reporting: the number of individuals (n ind), number of mtDNA COI haplotypes (n hap) found, 

number of sites each lineage was sampled from (n sites), number of localities sampled in glaciated (n glac) and unglaciated (n unglac) areas, the 

mean and maximum observed intraspecific p-distances, and BOLD information on the locality of occurrence of the identical or near identical 

sequence found in this database. 
 

Lineage Morphospecies n 
ind 

n 
hap 

n 
sites 

n 
glac 

n 
unglac Range  

Mean/max 
intralineage 
p-distances  

BOLD most frequent 
sequence 

1 lanuginosus/lignorum/curvicollis/ 189 9 41 25 16 widespread 0.02/0.5 Canada cyaneus/ruber a 
2 lignorum 2 1 1 0 1 - - France 
3 lignorum/curvicollis/lanuginosusb 9 7 4 0 4 localised 0.86/1.65 not provided 
4 albocincta  1 1 1 0 1 - - <99% match 
5 lanuginosus 1 1 1 1 0 - - <99% match 
6 lanuginosus 13 2 4 3 1 localised 0.07/0.18 France 

7.1 cyaneus 16 7 4 3 1 1.76/4.14 Canada 
7.2 cyaneus 1 1 1 1 0 - - Canada 
8 cyaneus 11 4 5 1 4 localised 2.36/4.14 Tasmania 

9.1 cyaneus 13 5 7 3 4 spread 0.59/1.98 <99% match 
9.2 cyaneus/violaceusc  36 10 19 5 14 0.59/1.80 Australia, Tasmania 
10 curvicollis 1 1 1 0 1 - - France, Italy 
11 curvicollis 4 2 4 1 3 disjunct 0.09/0.18 not provided 
12 cyaneus 13 4 3 2 1 localised 1.09/2.54 no match 
13 cyaneus/sp. 2d 14 8 8 3 5 disjunct 1.12/1.8 Canada, France, Germany 
14 cyaneus 1 1 1 0 1 - - Canada 
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Table 5.1 (cont) 
 

Lineage Morphospecies n 
ind 

n 
hap 

n 
sites 

n 
glac 

n 
unglac Range  

Mean/max 
intralineage 
p-distances  

BOLD most frequent 
sequence 

15.1 
15.2 

lanuginosus/sp. 1e 7 
3 

3 
1 

4 
1 

3 
0 

1 
1 spread 

 

1.6/3.6 
- 

Canada 
<99% match Lanuginosus 

15.3 lanuginosus/lignorum/cyaneus/ 
curvicolis/ sp.1f 43 14 17 7 10 1.9/4.68 Canada, USA, France, 

Poland 
16 cyaneus 4 2 2 0 2 localised 0.09/0.18 no match 
17 lanuginosus/lignorumg 2 2 2 0 2 disjunct 2.16/ - no match 
18 lignorum 7 6 2 1 1 localised 2.36/3.96 Canada 

a lanuginosus (n=83), lignorum (n=82), curvicollis (n=13), cyaneus (n=9), ruber (n=1); b lignorum (n=5), curvicollis (n=3), lanuginosus (n=1); c cyaneus (n=35), violaceus 

(n=1); d cyaneus (n=13), Lepidocyrtus sp. 2 (n=1); e lanuginosus (n=5), Lepidocyrtus sp.1 (n=2); f lanuginosus (n=28), Lepidocyrtus sp.1 (n=7), lignorum (n=5), cyaneus 

(n=2), curvicollis (n=1); g lanuginosus (n=1), lignorum (n=1). Lineages 7.1 and 7.2, 9.1 and 9.2, 15.1, 15.2 and 15.3 are combined into single lineages for description of their 

ranges.   
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5.4.4 Long-term persistence analysis 
 

To obtain a temporal framework for the onset of diversification within the 

geographically localised lineages with signatures of genetic structuring (which provides 

a rough approximation of the time since the most recent ancestor of these lineages were 

present in the UK, thus, indicating their temporal persistence), a conservative mtDNA 

COI rate of 0.0504 substitutions/site/Ma was used under a relaxed clock method (see 

methods for details). The best model of molecular evolution for lineages 3 and 8 was 

K2, while for lineages 7, 12 and 18 it was T92. Adopting the closest models in BEAST 

(HKY for K2 and TN93 for T92), the mean age of the MRCA for these lineages ranged 

from 112,800 years ago (HPD= 47,000-186,400) to 326,400 years ago (HPD=153,900-

506,200) (Tab 5.3). These deep divergence times are more likely to be underestimates 

than overestimates (i.e. fast, mtDNA COI substitution rate was used), and they 

substantially predate the Last Glacial Maximum (which occurred between 27,000 and 

15,000 years ago), indicating that sequences have persisted in the UK through the 

extreme climatic changes of this and previous periods. Apart from lineage 3, which is 

restricted to southern sampling sites, all the other lineages (7, 8, 12 and 18) were 

sampled from both glaciated and unglaciated sites. 

 

Table 2. Summary of Ecosim data entry and diversity results (mean and 95% 

confidence interval – CI) for overall lineage richness and for each of the most abundant 

lineages. For all simulated pairs, the larger community was rarefied down to the 

abundance level of the smaller community being compared and the observed diversity 

(n hap) of the smaller community was tested to see if it felt within the estimated 95% 

confidence interval of the larger community. N ind = number of individuals, N lin/hap = 

number of lineages or of haplotypes, glac = community in the glaciated area, unglac = 

community in the unglaciated area.     

 
All lineages lineage 1 lineage 9 lineage 15 

 
glac unglac glac unglac glac unglac glac unglac 

N ind 184 205 117 72 15 34 19 34 
N lin/hap 11 17 8 3 6 13 9 13 
Mean - 16.5 6 - - 7 - 9 
95% CI  - 15 to 17 3 to 8 - - 4 to 9 - 7 to 11 
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Table 5.3. Estimated times, in thousands of years, of the MRCA of Lepidocyrtus 

mitochondrial lineages sampled across the UK expressed as mean values with 95% 

highest posterior density (HPD) intervals.  

Lineage Mean value  95% HPD 
Lineage 3 112,800 47,700-186,400 
Lineage 7 306,000 110,400-494,600 
Lineage 8 211,200 66,000-398,800 
Lineage 12 164,100 86,500-240,000 
Lineage 18 326,400 153,900-506,200 

 

 

5.5 DISCUSSION 
 
The aim of this chapter was to investigate support for prior evidence of soil dwelling 

fauna survival through Pleistocene glaciations in the continental island of Great Britain. 

By further sampling within the Collembola genus Lepidocyrtus with the mtDNA COI 

gene, we assessed lineage richness between glaciated and unglaciated communities, 

evaluated signatures of disjunct distributions and structuring of genetic variation, and 

estimated the ages of the onset of diversification within geographically localised 

lineages as complementary approaches to detect long-term persistence of soil dwelling 

fauna in Great Britain. Lower than expected lineage richness was found for the 

glaciated  community,  suggesting  it  to  follow  the  ‘southern  richness  and  northern  purity’  

pattern. Furthermore, the finding of lineages with disjunct distributions and of lineages 

with genetic variation geographically structured within a few sites, for which estimated 

ages largely predate the Last Glaciation Maximum, suggests long term persistence for 

Lepidocyrtus (which is in line with previous findings for the Collembola genus 

Entomobrya), thus indicating that survival through abrupt climatic changes in Great 

Britain may be more common than previously thought for soil dwelling fauna.   

 
5.5.1 Molecular lineages and geographic distributions  
 
Glacial events greatly altered distributional ranges of European species as ice or 

permafrost conditions pushed organisms southward or gradually constrained them to 

various refuges (e.g. Taberlet et al., 1998; Hewitt, 2004). As a consequence, high levels 

of endemic genetic variation are found in refugial areas (considered as strong evidence 
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for long-term in situ evolution) (e.g. Hewitt, 2000; Provan & Bennett, 2008; Tzedakis et 

al., 2013), and several taxa show disjunctive modern distributions (e.g Stehlik et al., 

2002; Willis & van Andel, 2004; Hedderson & Nowell, 2006; Schmitt et al., 2006). 

These two basic arguments – endemism and disjunct isolation, have been used to 

support the glacial survival hypothesis (e.g Brochmann et al., 2003) and they were 

investigated within the Lepidocyrtus genus in order to detect lineages with signatures of 

long-term persistence. Five mtDNA COI Lepidocyrtus lineages presented sequence 

variation geographically restricted to a few closely located sites (Figs. 5.2 and 5.5) 

pointing to the existence of endemic genetic variation that has diversified in situ within 

discrete areas in the UK. In total, these lineages represented twenty-nine haplotypes 

distributed across 18 geographically proximate sampling sites (Figs 5.5). Sequence 

variation within these sites is mostly concentrated across unglaciated terrains but it also 

spans into glaciated areas (largely located near the border of the ice sheet except for 

lineage 7 for which sequence variation extends well into the northern glaciated area). 

Furthermore, three other lineages presented disjunct geographical distributions mainly 

between North-South and East-West regions (Fig 5.4). While this disjunctive pattern 

could be explained by long term dispersal after ice sheet retreat, as noted for other taxa 

previously studied in different contexts (e.g. Brochmann et al., 2003; Beatty & Provan, 

2013; Tzedakis et al., 2013), it seems unlikely for Lepidocyrtus (and Collembola in 

general) due to their limited dispersal capability. This low dispersive ability has been 

well demonstrated by the strong geographic structuring across very short distances 

found for Lepidocyrtus lineages in previous molecular studies in the Mediterranean 

Basin and Panama (Cicconardi et al., 2010, 2013), also for other Collembola species 

studied elsewhere (e.g. Garrick et al., 2007, 2008; McGaughran et al., 2008).  A more 

probable scenario is that these could be native lineages whose origin in Great Britain 

predates the last glaciation, for which previously broader distributions were reduced by 

glacial onset, with persistence in a few favourable micro-niches (ice free areas) in 

otherwise unfavourable habitats. After glaciations, as the ice receded, deglaciated 

regions would have been rapidly recolonised by a few leading front lineages that 

effectively pre-empted space, and reduced the chances of the surviving lineages to re-

expand their populations. 
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Figure 5.3. Geographical distributions of widespread Lepidocyrtus a) Lineage 1 – pink dots, b) lineage 9 – yellow dots, c) 

lineage 15 – green dots. Small black dots indicate remaining sampling sites. Blue triangles indicate the maximum extent of 

the British-Irish ice sheet during the last Pleistocene glacial period. 

 

b) a) c) 
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a) b) 

Figure 5.4 Geographical ranges of Lepidocyrtus lineages with disjunctive distributions a) Lineage 11 – red, lineage 17 – blue 

dots; b) lineage 13 – purple dots. Small black dots indicate remaining sampling sites. Blue triangles indicate the maximum extent 

of the British-Irish ice sheet during the last Pleistocene glacial period. 
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Figure 5.5 Geographical ranges of Lepidocyrtus lineages with geographically localized distributions. a) Lineage 3 – light green, 

lineage 6 – dark blue, lineage 7 – light pink, lineage 18 – dark purple dots; b) lineage 8 – orange, lineage 12  – grey, lineage 16  – 

brown dots. Black arrow indicates another site for lineage 16, which is shared with lineage 8. Small black dots indicate remaining 

sampling sites. Blue triangles indicate the maximum extent of the British-Irish ice sheet during the last Pleistocene glacial period.  

 

a) b) 
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5.5.2 Species richness analysis  
 

A general prediction emerging from many studies that have explored the influence of 

glacial and postglacial events on the geographic structure of genetic variation in Europe 

is that colonisation, after the most recent glacial period, would have left a signature of 

genetic poverty in northern regions (Hewitt, 1999). While the longer history of southern 

European refugial areas would have led to greater genetic diversity in those regions 

(Hewitt, 1996, 1999).  The  prediction  of  ‘southern  richness  and  northern  purity’  (which  

can be seen at the level of species numbers, subspecific division and allelic variation) 

(Hewitt, 1999) was tested with Great Britain, which was mostly covered by the ice sheet 

during the LGM but remained free from ice in its southerly regions. Lepidocyrtus 

lineage richness was found to be different between glaciated and unglaciated 

communities, with a smaller than expected number of lineages in the glaciated areas, 

indicating recolonisation of the north by a subset of species from the south.  This result 

strengthens the evidence of long-term persistence for soil fauna that previously did not 

find northern poverty signatures for Entomobrya communities, potentially due to the 

small number of lineages found within this genus. Placing these findings into the 

European context, both studies extend the list of species that survived in high latitude 

refugia confirming a more mosaic model of persistence during Pleistocene glaciations, 

which involves not only southern peninsulas but also northern refugia areas. The 

unglaciated southern parts of the UK have been previously suggested to act as northern 

cryptic refugia, e.g. fossil remains (Vincent, 1990), fish (Bernatchez, 2001; Hänfling et 

al., 2002), and groundwater amphipod (McInerney et al., 2014). Results presented here, 

and in the previous chapter, go beyond that as they indicate long-term persistence for 

Collembola lineages in sampling sites distributed not only in unglaciated areas but also 

far into the glaciated terrains, pointing to the existence of small ice-free areas that 

allowed survival within northern terrains.  

 

One possible mechanism for the existence of northern ice-free habitats in Great Britain 

comes from recent work suggesting they may result from geothermal activity, i.e. they 

are located close to geothermal heated ground and water (e.g. heated ground and ponds, 

steam fields). These areas would have provided thermal gradients with less extreme 

temperatures (between very high temperatures in the core of geothermal sites, and very 

low temperatures below the ice-sheets), thus, possibly creating a buffer zone where life 
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could survive – the   “geothermal  glacial   refugia”  hypothesis   (Convey & Lewis Smith, 

2006). Such geothermal activity usually persists over extended time scales that could 

encompass glacial cycles and therefore could possibly provide refugia for life (Fraser et 

al., 2014; Pointing et al., 2014). Using Antarctica as a natural model system and a 

comprehensive terrestrial database associated with landscape, climate and geothermal 

data, Fraser et al. (2014) provided strong support for the role of geothermal heated 

terrain in structuring broad-scale contemporary patterns in Antarctic diversity by 

providing glacial refugia. They suggest that for many cases where the existence of small 

refugia within the glaciated regions of northern Europe and northern North America has 

been inferred from phylogographic data, but their causes and precise locations have not 

been identified, there is a great possibility that they may have been geothermal (Fraser 

et al., 2014). A consideration of the geothermal map of Great Britain 

(http://www.largeimages.bgs.ac.uk/iip/mapsportal.html?id=1004780) suggests that 

some of our sampling sites, where Entomobrya and Lepidocyrtus lineages present 

signatures of in situ diversification, coincide with areas around geothermal terrains. For 

example, the oldest E. nivalis lineages (chapter 4) were sampled from localities 76, 77, 

78 and 79, which seem to coincide with terrains that receive heat flow from the 

Northern England Granites. Whereas sampling localities for L. cyaneus lineages 7 (loc: 

10, 101) and 12 (loc: 24, 28) coincide with areas near thermal springs (e.g. taffs Well) 

and close to heat flow from the Cheshire Basin. This suggests that long-term persistence 

of Collembola in glaciated areas of the UK may have been provided by geothermal 

glacial refugia.  

 

5.5.3 Long-term persistence of Lepidocyrtus in the UK 
 

When reconstructing time frames for the evolution of endemic taxa, i.e. endemic 

variation that has diversified in situ, deep divergence times are a key indication of 

ancient origin and long-term persistence of individual lineages over a fine geographic 

scale, despite the occurrence of abrupt climatic changes. With divergences dating at 

least to the Ionian stage of the Pleistocene (~300-100 Kya), it was possible to detect 

Lepidocyrtus lineages differentiation and persistence in isolation over a time span that 

largely predates the Last Glacial Maximum. The implication is that the present 

distribution of the five geographically structured lineages has been influenced by 

relatively old paleogeographic events. These lineages survived through extreme climatic 

http://www.largeimages.bgs.ac.uk/iip/mapsportal.html?id=1004780
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and ecological changes that characterized Great Britain and remained isolated 

genetically from neighbouring lineages. This result corroborates previous study that 

detected signatures of old differentiation and persistence for one Entomobrya lineage in 

the UK. It strengthens evidence of long-term survival due to the greater number of 

geographically structured lineages found with deeper divergence ages compared to the 

Entomobrya genus finding.  Both Collembola genera add to the small list of ancient 

invertebrate fauna in Great Britain (Nieberding et al., 2005; McInerney et al., 2014). 

They are also congruent with other studies showing soil dwelling fauna surviving harsh 

climatic conditions (e.g. Stevens et al., 2006; Garrick et al., 2007; Cicconardi et al., 

2010) possibly due to their particular life history traits (e.g. small body size, abundant 

population in small areas, tolerance to cold) that confer them abilities to resist extreme 

conditions.  

 

As  has  been  discussed   in  other  papers,   “Putative   refugia   are   expected   to   show  higher  

genetic variability compared with surrounding recolonized regions. This is because 

populations   surviving   several   glacial   cycles   should   accumulate   genetic   variation   (…).  

Thus, molecular variation within northern refugia would be expected to contain related 

and, in some cases, locally endemic alleles, distinct from surrounding regions and other 

refugial areas (Tzedakis et al., 2013,  pg  698)”.   

 

It is important to note that we did not date divergence times among closely related 

mtDNA lineages as it has been the case in other studies (e.g. extreme mtDNA 

divergence was found between lineages of the snail Cepaea nemoralis in the UK 

[(Thomaz et al. 1996, Goodacre et al. 2006)]). In fact, we cannot evaluate relationships 

between our Collembola lineages due to the nature of their mtDNA data, which is very 

saturated and thus uninformative). What we did was to estimate the time to the most 

recent common ancestors within lineages that are geographically localised with 

signatures of genetic structuring, i.e., locally endemic alleles, distinct from surrounding 

regions. In this case they do tell us about persistence times because they give us a 

temporal framework for the onset of diversification within these geographically 

localised lineages. In the case of Cepaea nemoralis, no geographic structure of endemic 

variation has been found within the sampling sites indicating that other drivers than 

persistence might have caused this deep divergence.  
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5.5.4 Conclusions, limitations and future work 
 

Our results provided further evidence for lineage diversity differences between 

glaciated and unglaciated areas and further support for endemism and ancient fauna in 

the island of Great Britain. The expectations for the four genetic signatures [(i) southern 

richness   and   northern   purity,’   (ii) geographic structuring of genetic diversity, (iii) 

disjunct distributions and (iv) divergence times predating the LGM] predicted to be 

found in case of long-term persistence in the UK were met. Together with results for the 

genus Entomobrya, these findings increase the list of species presenting evidence for 

survival through extreme climatic changes in Great Britain, also providing new 

evidence for invertebrate persistence in northern European areas during the Pleistocene 

glaciations.  

 

We argue that explanations of persistence/survival during the ice age are more likely to 

explain the genetic patterns found in this study for the UK Collembola than post-

glaciation colonisation for a number of reasons. First, the finding of two non-random 

patterns of genetic distributions (i) endemic genetic variation (locally endemic alleles 

with geographically localised distributions) which have arisen in situ, and (ii) disjunct 

isolation, are themselves considered to be strong evidence for long-term persistence and 

they have been used by several authors as the two fundamental arguments to support the 

glacial survival hypothesis (e.g. Brochmann et al., 2003). Second, the estimated ages for 

the onset of diversification within geographically localised lineages demonstrate they 

largely predate the LGM, suggesting their long-term persistence. Similar old ages (deep 

divergence times within geographically structured lineages) have also been found in 

other Collembola studies (Australia, Mediterranean, Antartic) and have been indicated 

as strong evidence for their survival through abrupt climatic and ecological changes 

(Stevens et al. 2006, Garrick et al. 2007, Cicconardi et al. 2010).  Third, the very 

restricted dispersal ability of Collembola reduces the possibility of long distance 

migration in explaining disjunct distributions of lineages and this low vagility has 

already been correlated with survival in small refugial areas (Moritz et al., 2001; Hugall 

et al., 2002). This trait combined with their small body sizes (only a small area of ice-

free habitat is required for survival), high population densities (which confers local 

demographic stability), and ubiquity (indicate they naturally present a degree of 

tolerance to inhabit a range of habitats, including those with extreme conditions) 
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indicate that Collembola naturally hold traits that are expected to promote long term 

persistence in northern regions greatly affected by ice ages.  

 

Identifying ancestral and derived alleles and exploring their geographic distribution 

(e.g. Miraldo et al., 2011) could help strengthen the species richness analysis. This is 

because a high incidence of ancestral haplotypes is expected to be found in refugial 

areas whereas a greater frequency of derived haplotypes are expected to be found in 

recently colonised area (Wakeley, 2008). Thus, it could be interesting to assess whether 

Lepidocyrtus ancestral and derived haplotypes are mostly found in unglaciated (source 

areas) or glaciated areas.  Furthermore, this analysis would greatly benefit from a wider 

sampling strategy in Europe to identify possible origins and compare richness in a 

broader scale (i.e. the diversity in continental Europe is expected to be greater than the 

diversity in South Great Britain, which in turn is expected to be greater than the 

diversity in North Great Britain), which is more likely to provide a more complete 

history of the evolution of this genus in the UK.   

 

Regarding our species richness analysis, we have used classical rarefaction curves 

which have long been used to compare species richness among empirical samples that 

differ in the total number of individuals (e.g. Sanders 1968; Lee et al., 2007) or among 

sample-based datasets that differ in the total number of sampling units (e.g. Norden et 

al., 2009; Longino and Colwell 2011). However, Colwell et al. (2012) have recently 

discussed that the existing variance estimators for individual-based (classical) 

rarefaction (Heck et al., 1975) and for Coleman rarefaction (Coleman et al., 1982) are 

not appropriate for this purpose because they are conditional on the reference sample. 

They have also discussed that one of the limitations of traditional rarefaction method is 

that, in order to standardize comparisons with the smallest sample in a group of samples 

being compared, much of the information content of larger samples  is  “thrown  away”.  

To deal with that, they developed a method that implements unconditional variance 

estimators (which assumes that the reference sample represents a random draw from a 

larger, but unmeasured, community or species assemblage) and integrates 

mathematically distinct approaches that allow the linking of interpolated (rarefaction) 

curves and extrapolated curves to plot a unified species accumulation curve (Colwell et 

al., 2012). They argue that this ability to link rarefaction curves with their 

corresponding extrapolated richness curves, complete with unconditional confidence 
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intervals (which corrects previous estimators), helps to solve the limitation of throwing 

away information content on large samples. They were able to demonstrate this with 

three empirical examples using beetle, tree and ant data (Colwell et al., 2012). This 

indicates that the rarefaction method used in this thesis (classical) is limited and may 

complicate interpretation of the results. A re-analysis of the data using this novel 

approach is thus warranted and it will follow future work. 

 

Whilst this chapter combined sampling sites into two main groups - glaciated and 

unglaciated, it would be interesting to evaluate whether the different times of retreat (of 

the different sections of the British-Irish ice sheet) could have an effect on the richness 

analysis. Different retreat times result in different length of time an area became free of 

ice and thus available for recolonisation and it could leave a detectable legacy on the 

contemporary history of lineage richness (Hawkins & Porter, 2003; Montoya et al., 

2007). For example, the historical pattern of glacial retreat in response to post-

Pleistocene warming has left a signal in the contemporary richness gradient of trees in 

Europe and North America detectable after at least 14 000 Kya (Montoya et al., 2007). 

Similar analysis could improve our understanding of the influence of glaciation on the 

Collembola richness in Great Britain. Furthermore, while the present study provides a 

general picture of how glaciated and unglaciated areas differ in relation to their 

Lepidocyrtus communities, it does not directly evaluate the correlation between ice 

sheet retreat and richness pattern, as this was not within our aims. A combination of 

contemporary and historical variables would need to be acquired and modeled 

(Montoya et al., 2007; Hortal et al., 2011) to fully explain richness differences across 

North and South regions. We do not have enough data to perform this analysis but 

future work taking into account contemporary (e.g. environmental variables) and 

historical data (including the different times of ice retreat at the different sections of the 

ice sheet) could give a finer picture of the statistical contribution of historical glaciation 

on the contemporary pattern of Collembola lineage richness in Great Britain. 

 

Genetic models and computer simulations have investigated the importance of different 

factors in understanding the effect of colonization on geographic structuring of genetic 

variation (e.g. Ibrahim et al., 1996; Diniz-Filho et al., 2014). Within continuous 

populations, when the number of individuals moving between populations is small and 

distances are relatively short, it is well known that chance can lead to spatially clustered 
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distributions of alleles even when barriers to dispersal or selection are absent (e.g. Crow 

& Aoki, 1982). Occasional extinction and recolonization are also thought to promote 

local genetic differentiation (Wright, 1984), and other parameters such as the history of 

colonists and forms of dispersal have also been demonstrated in simulations to affect 

population structure (e.g. Agnarsson et al., 2014).  Computer simulations could also 

help to understand the origin of the current distribution patterns of Lepidocyrtus 

haplotypes found here. For example, if Great Britain was completely defaunated due to 

the ice coverage, and all Collembola were derived from the post-glacial continental 

recolonisation, we would expect to find lineages largely blended, but the data show non-

random patterns of geographic distribution. Simulations taking into account scenarios 

with different sources of genetic variation (i.e. native or introduced from the mainland) 

could be performed to see whether similar patterns of genetic structures (i.e. 

geographically localised lineages and disjunct distributions) would be recovered after a 

specified number of non-overlapping generations. Three scenarios (1: UK empty, all 

lineages came from mainland; 2: UK full, all lineages are native; 3: UK mixed, lineages 

are a mixture of native and introductions) could be simulated using a constant 

colonization rate, taking into account their low vagility as mode of dispersal, and 

allowing for random mating, gene flow, extinction and recolonization. 

 

Finally,  a  formal  evaluation  of  the  “geothermal  glacial  refugia”  hypothesis (Convey & 

Lewis Smith, 2006) would be fruitful. It could help to explain persistence of 

Collembola in ice-free habitats in glaciated areas of Great Britain during the LGM. 

Under this hypothesis, a greater contemporary diversity is expected near geothermal 

sites than in nongeothermal areas. Also, a significant nestedness by distance of this 

diversity is predicted. To date, only a few studies have suggested possible mechanisms 

to explain glacial refugia in northern Europe, but none have formally tested the potential 

hypotheses put forward. For example, Benke et al. (2009) suggested that unfrozen 

ground within permafrost areas (named taliks) could have enabled the establishment of 

perennial springs by pouring sub-permafrost groundwater to the surface, and this could 

have allowed persistence of the Bythinella spring snail in northern refugia. McInnerney 

et al. (2014) suggested that the relative stability of groundwater environment might 

explain the persistence of amphipod Niphargids in British through changing climates. 

They also argue that there is little relation between modern-day distributions of 

Niphargus in the British Isles and geothermally heated waters, which makes unlikely 
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that geothermal heating of groundwater was the only factor enabling their survival 

during glacial periods.  However, the role of geothermal activity in structuring 

biodiversity patterns has been demonstrated for Antartic species (Fraser et al., 2014), 

suggesting that similar influences could help to explain the patterns of genetic 

structuring and persistence found among British soil dwelling fauna.  
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5.7 Appendix 
 
 
Table S5.1. Sampling sites within the island of Great Britain, reporting the geographic 

coordinates and number of Lepydocyrtus individuals collected per locality. Locations 

coded according to Fig 5.1. 

 

Locality Latitude Longitude N individuals 
1 57.226940 -3.744723 1 
10 53.270206 -3.332264 14 
100 52.672260 -3.407084 17 
101 52.722786 -2.839915 19 
102 52.362823 -1.945560 8 
12 53.191521 -3.080297 1 
13 53.269020 -2.800899 12 
15 53.348923 -2.387444 2 
16 53.383045 -2.369771 2 
18 53.403618 -2.281280 1 
2 57.250828 -3.646657 2 
20 53.400555 -2.160005 6 
21 53.374790 -1.511842 12 
23 52.215801 -1.503167 1 
24 51.653542 -4.957234 11 
25 51.647945 -4.937279 8 
26 51.678989 -3.993226 4 
27 51.534397 -3.574383 3 
28 51.539238 -3.128327 17 
29 51.511406 -2.158805 13 
31 50.512501 -4.822230 5 
34 50.470009 -4.720558 9 
35 50.654724 -4.290828 3 
37 50.376942 -4.034168 6 
38 50.633892 -3.565275 5 
39 50.716389 -3.465000 3 
4 56.992771 -3.484993 6 
40 53.723221 -0.479807 5 
42 53.800648 -0.057395 5 
43 52.623665 1.246741 13 
48 52.414166 0.542738 1 
49 51.718281 0.523698 2 
5 53.567368 -2.232038 1 
51 51.321110 -0.475282 1 
53 51.316383 -0.464724 1 
54 51.299717 -0.374997 18 
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Table S5.1. (cont) 
 
 

Locality Latitude Longitude N individuals 
58 51.248577 -0.320651 7 
59 51.248592 -0.320650 12 
6 53.574394 -2.140705 1 
60 51.215530 -0.314491 2 
62 51.433052 -0.276102 11 
64 51.456116 -0.244719 1 
65 51.448338 -0.242504 7 
66 51.135246 -0.249651 1 
67 51.273663 0.042656 2 
68 51.490414 0.285921 1 
69 51.200829 0.518717 9 
73 57.005009 -3.541238 2 
74 55.684959 -1.838683 6 
75 55.675194 -1.799497 1 
76 55.606403 -1.705754 3 
77 55.054352 -2.617450 9 
78 54.451942 -2.606670 9 
79 54.991104 -2.363755 4 
8 53.621056 -1.544229 7 
80 54.798607 -2.868619 2 
81 55.056610 -1.632874 1 
85 53.498901 -1.774891 3 
86 53.698200 -1.264826 2 
89 52.699707 -3.621308 10 
9 53.267548 -3.517447 3 
91 52.587330 -3.784479 8 
92 52.711727 -3.575345 7 
93 51.269722 -2.919990 4 
95 51.665211 -3.712372 1 
96 53.411362 -1.830386 8 
97 53.383255 -1.602855 8 
98 52.666122 -3.282838 1 
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Chapter 6 – General conclusions and discussion 
 

Molecular phylogenetic tools are invaluable for the study of evolutionary processes, 

providing insights about the patterns of colonization and the diversification of species, 

which ultimately help to gain an understanding of the origin of species and community 

assemblage. In this thesis, I have applied molecular tools (mtDNA and nuclear DNA 

Sanger sequencing and high throughput parallel sequencing) to investigate the processes 

of colonisation and diversification of invertebrates (beetles and springtails) within two 

island scenarios: (i) the Canary Islands, an oceanic island system and (ii) Great Britain, 

a continental island setting with a long-term dynamic of geographic and climatic 

change. The aim of this thesis has been to address three gaps in our understanding about 

island colonisation, speciation, and biota assembly. Below, I present these gaps 

explaining how they were filled and how they fit into a broader evolutionary and 

conservation context. I also discuss future directions and new techniques that could help 

advance each work. 

 

The first gap addressed was the possibility that genomic admixture among multiple 

founding lineages has featured in the recent history of diversification of a very species 

rich coleopteran genus – Laparocerus, in the Canary Islands (chapter 2). To that end, I 

have used a combination of sequence data from one mitochondrial and one nuclear 

gene, molecular dating techniques and the spatial and temporal context provided by an 

oceanic island system to infer the history of colonisation and differentiation within the 

L. tessellatus species complex. This species complex is comprised of nine closely 

related species and I have studied the relationships among individuals sampled from 

four different islands. I have also evaluated the fit of mtDNA and nuclear sequence data 

to a colonisation history where species are the product of a single founding event. Using 

the geographic context of the islands themselves, and relative temporal information 

from the gene trees, I was able to identify the geographic origin of the complex, and 

dismiss explanations of incomplete lineage sorting to reveal a history of colonisation 

and speciation involving genetic admixture. I found two instances of shared mtDNA 

variation among species from different islands: each of the single species on La Palma 

(Laparocerus sp1) and El Hierro (L. bimbache) were found to be the product of more 

than one colonisation event from more than one source island. In both cases nuclear 
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ITS2 data revealed these multiple colonisations to have been followed by genomic 

admixture. My results are consistent with the other few studies to date that have 

detected species within an insular setting to be the result of genomic admixture 

following two multiple distinct colonisation events (Shaw, 2002; Jordal et al., 2006; 

Nietlisbach et al., 2013; Garrick et al., 2014; Lamichhaney et al., 2015). Together, these 

studies indicate that genomic admixture among independent founding populations or 

species may be more common than previously thought for island biota, although its 

detection is not easy. These findings point to the possibility that admixture could be a 

driver of speciation itself and it could be a representative feature of the evolutionary 

process on islands (Emerson & Faria, 2014).  

 

Genomic data from other species, mainly plants but also animal taxa, support the idea 

that hybridisation is an important factor in the origin of species. As reviewed by Soltis 

and  Soltis    (2009,  pg  561)  “recent  developments  in  genomics  are  revolutionizing 

the way we see angiosperm  genomes,  demonstrating  that  […] hybridization has been an 

important force in generating angiosperm species diversity. Hybridization and polyploid 

formation continue to generate species diversity, with several new allopolyploids 

having  originated  just  within  the  past  century  or  so”.  Although  recognized  as  a  common  

phenomenon in plants (Abbott et al. 2010), the role of homoploid hybrid speciation has 

only recently gained support as a speciation mechanism for animal taxa (Gompert et al. 

2006; Mallet 2007) and it remains controversial (Hochkirch 2013, Harrison and Larson 

2014). This is because many think that homoploid hybrid speciation will not become an 

important mode of speciation in animals (Barton 2013; Servedio et al. 2013; Schumer et 

al. 2014). However, novel animal genomic data, especially from island systems, are 

providing strong support for genomic admixture in generating diversity (Shaw, 2002; 

Jordal et al., 2006; Nietlisbach et al., 2013; Garrick et al., 2014; Lamichhaney et al., 

2015 ). Thus indicating that hybridization among independent founding populations or 

species may be more common than previously thought for island biota (at least).  

 

The evolutionary consequences of admixture have been demonstrated in a variety of 

systems, including breeding programs and field studies (e.g. Rieseberg et al., 2003; 

Grant & Grant, 2008; Nietlisbach et al., 2013),  and  it  is  thought  to  “potentially  facilitate  

evolutionary divergence and speciation by refuelling populations and reorienting their 

evolution  when  their  environments  change”  (Grant et al., 2005, pg 63). Its importance in 

http://jhered.oxfordjournals.org/content/105/S1/795.full#ref-50
http://jhered.oxfordjournals.org/content/105/S1/795.full#ref-50
http://jhered.oxfordjournals.org/content/105/S1/795.full#ref-86
http://jhered.oxfordjournals.org/content/105/S1/795.full#ref-16
http://jhered.oxfordjournals.org/content/105/S1/795.full#ref-130
http://jhered.oxfordjournals.org/content/105/S1/795.full#ref-126
http://jhered.oxfordjournals.org/content/105/S1/795.full#ref-126
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affecting both the speed and direction of evolution in new environments has been 

related to the fact that admixture increases levels of genetic variation (Abbott et al., 

2003; Garrick et al., 2014), relaxes genetic covariation among traits (Grant & Grant, 

1994), and produces novel genotypes (Rieseberg et al., 2003a; Mallet, 2007). Thus there 

are also conservation implications with a clear potential for genomic admixture to 

rescue island populations from the deleterious effects of founder events in small 

populations (since islands are typically colonised by only one or a few individuals). It 

may also increase long-term viability as it can rapidly enhance genetic and 

morphological variation (Grant & Grant, 2014) . Detecting genomic admixture may be 

challenging but it is an important area of research and advanced techniques are proving 

very useful in this respect. In a recent study, using whole-genome re-sequencing to 

analyse   intra   and   interspecific   genome   diversity   among   all   species   of   the   Darwin’s  

finches radiation, Lamichhaney et al. (2015) were able to detect extensive evidence for 

interspecies gene flow, with species of mixed ancestry originating from genomic 

admixture. The L. tessellatus complex could be further addressed by applying next 

generation sequencing, such as RAD-seq (restriction-site associated DNA sequencing) 

which has proved to be an economic and efficient tool for sequencing hundreds of 

individuals at thousands of loci for nonmodel organisms (e.g. Lexer et al., 2013; 

Mastretta-Yanes et al., 2014). Applying it to the L. tessellatus complex would provide a 

much larger number of markers, and much greater genome coverage. Such genomic 

data would allow a more in depth quantification of the extent of admixture among 

parental different genomes, and how this variation has segregated both spatially and 

ecologically within founded islands.  

 

The second gap addressed, also in the Canary Islands system, was the lack of 

information regarding the colonisation history and dynamics of the small arthropod soil 

dwelling fauna (chapter 3). To address this, I have analysed next generation sequencing 

data (220 bp of the barcode gene COI obtained from a 454 sequencing platform) from 

2500 individuals collected across the island of Tenerife. With these data, I characterised 

Collembola evolutionary diversity within Tenerife, estimated the genetic relatedness of 

island and mainland taxa (by comparing them to a database of sequences sampled from 

outside the archipelago), and inferred the distribution of lineage colonisation times. My 

analyses recovered broad patterns that indicate the Collembola fauna of Tenerife to be 

represented by a mosaic of very old lineages and a large number of very recently arrived 
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lineages, presumably the result of human mediated introductions. This pattern is likely 

to be quite different from that of large arthropods, although a direct comparison would 

require a parallel study sampling larger above ground arthropods from the same 

sampling locations. However, as an indirect example, in the laurel forest of Anaga, 

northeast of Tenerife, the beetle fauna is found to be essentially native. In a recent 

study, of the 160 coleopteran species sampled from plots across the laurel forest of 

Anaga, only 6 species were found to be introduced taxa (Emerson, unpublished). Many 

of these non-natives were sampled as single individuals, such as a ladybird that 

probably just by chance blew into the forest, rather than residing within it. In contrast, 

the Collembola data, which was mostly sampled from forest areas, suggest great 

penetrance of exotic Collembola into the laurel forest. Regarding diversity in the island, 

despite the fact that most lineages could not be assigned to taxonomy (because they did 

not have any close match to sequences on the public database), I reported a remarkable 

increase in the number of OTUs for the island of Tenerife compared to previous surveys 

based solely on morphology, with several new taxa being added to the current list. 

These results confirm the ability of short 454 mini barcodes to rapidly assess the 

biodiversity of poorly known groups such as soil invertebrates. Results also provide a 

baseline for future studies investigating specific details of colonisation, diversification 

and community structure within the Collembola community of the Canary Islands. This 

is fundamental in a time of rapid global change and pervasive anthropogenic threats to 

biological communities worldwide.  

 

The main limitation of the work was the short length of DNA sequence reads. Although 

sequences as long as 500bp were recovered, I was able to use only 220bp, which greatly 

limited the amount of information that could be used. As sequence lengths get shorter, 

the ability to detect limited genetic divergence among sequences is reduced, and as such 

genetic similarity among individuals may be overestimated. Thus, to resolve 

relationships among sequences of limited divergence, longer sequences are really 

required. It is clear that this work would greatly benefit from recent technical 

developments (aimed to obtain longer sequences) that were not available at the time 

when the data was generated. One example is PCR free techniques such as the parallel 

de novo mitogenome assembly from a single library of pooled genomic DNA from a 

bulk sample consisting of many species. This technique has recently been applied to 

investigate higher-level phylogeny of Curculionoidea beetles (Gillett et al., 2014).  
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DNA extracts of 173 species belonging to a large number of tribes of Curculionidae 

were included in a single sequencing run with an Illumina MiSeq. As a result, a total of 

92 complete or near complete mitogenomes were obtained without any enrichment of 

PCR amplification steps, proving it to be an economic, efficient and reliable technique 

to obtain long sequences reads (sequences in the final aligned data matrix were > 

13,000bp long) (Gillett et al., 2014).  This is a very promising approach that could be 

applied to generate mitogenomes for Collembola studied here, as they have a small 

nuclear genome providing a greater representation of mtDNA sequence data. Complete 

genomes may even not be needed, for example, by getting sequences of 3000bp, the 

whole COI gene may be inside this fragment, which would be enough for comparisons 

against the barcode database. Besides providing long sequences (which enhances 

taxonomic assignment due to the better matches to the public database), this technique 

also improves the detection of species within a pool of DNA samples because it 

removes PCR bias. One complication compared to the work of Gillett et al. (2014) is 

that intraspecific variation may confound mtDNA genome assembly, but preliminary 

work attempting to obtain mitogenomes from a bulk sample of many Collembola 

species suggests this can be overcome (Cicconardi et al., unpublished).    

 

The third and final knowledge gap addressed was the under-explored possibility that the 

island of Great Britain was not completely defaunated during glaciations and thus 

subsequently recolonized exclusively from external sources after glaciations (chapters 4 

and 5). A more complex pattern involving persistence within small cryptic refugia for 

small soil dwelling arthropods, was predicted and tested with the Collembola fauna. To 

assess this possibility, I sequenced the mtDNA COI gene for 722 specimens belonging 

to the genus Entomobrya sampled from across Britain and Wales (chapter 4). I 

evaluated signatures of persistence through the last Pleistocene glaciation and evidences 

for species diversity differences between glaciated and unglaciated areas. I found non-

random geographic patterns of genetic variation, revealed by the geographically 

localized range of monophyletic groups, which provided evidence for genetic variation 

that evolved within Great Britain. Estimated dates for the onset of these in situ 

diversification events revealed lineages to have been present for extended periods of 

time (22,000 and 45,000 years), thus implying survival through historical climatic and 

environmental changes. No difference in species diversity between glaciated and 

unglaciated communities was found, possibly due to the small number of Entomobrya 
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lineages found in Great Britain.  

 

In order to obtain further support for endemism and ancient fauna in the UK, and 

improve the strength of evidence for species diversity differences between glaciated and 

unglaciated areas, I then sequenced the mtDNA COI gene for 428 specimens of the 

genus Lepidocyrtus, a more species rich genus found across Great Britain (chapter 5). I 

identified lower than expected lineage richness for the glaciated community, suggesting 

it  to  follow  the  ‘southern  richness  and  northern  purity’  pattern. I also identified lineages 

with disjunct distributions and lineages with genetic variation geographically structured 

within a few sites, which are two basic genetic signatures of long-term persistence. 

Furthermore, estimated ages for these lineages with endemic genetic variation largely 

predated the Last Glaciation Maximum (between 100 and 300 kya), indicating long-

term persistence for Lepidocyrtus in Great Britain. With these results, I was able to 

corroborate the findings for the genus Entomobrya, and demonstrate a more complex 

evolutionary history for the British soil dwelling fauna, which implicates persistence 

within small cryptic refugia. Both Collembola genera add to the small list of ancient 

invertebrate fauna in Great Britain (Nieberding et al., 2005; McInerney et al., 2014), 

and are congruent with several studies demonstrating soil dwelling fauna to have 

survived harsh climatic conditions elsewhere (e.g. Stevens et al., 2006; Garrick et al., 

2007; Cicconardi et al., 2010; Mortimer et al., 2011). Results also reinforce the 

alternative hypothesis of northern cryptic glacial refugia for European biodiversity, 

which has been demonstrated to have several implications for the way we think about 

Pleistocene phylogeography, and the way we plan conservation priorities (Provan & 

Bennett, 2008; Stewart et al., 2010). New information on cryptic refugia helps to rethink 

species dispersal abilities and postglacial migration histories, which are particularly 

relevant, given the need to predict the effects of the present period of global warming on 

species distributions (Provan & Bennett, 2008). It also influences our understanding of 

spatial organization of genetic diversity with consequences for conservation strategies 

planning, which are aimed to promote long-term sustainability of temperate and boreal 

ecosystems (Tzedakis et al., 2013). To develop our understanding of the results from 

chapters 4 and 5 further, sampling needs to be expanded into neighbouring continental 

areas. This would achieve a more complete understanding of shared and non-shared 

genetic variation between Great Britain and potential source areas for postglacial 

recolonisation. A detailed sampling within continental Europe will help to shed light on 
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our understanding of the sources of genetic variation, and the phylogeographical 

consequences of Pleistocene glaciations, for the soil dwelling terrestrial invertebrate 

fauna of the UK. A formal evaluation of the hypothesis that geothermal activity 

provided glacial refugia for Collembola in Great Britain is also warranted. To achieve 

this, a sampling strategy based on the geothermal map of Great Britain can be used as a 

predictive framework to test whether endemic variation is associated with geothermal 

sites. Finally, next generation sequencing could also be applied to accelerate assessment 

of Collembola diversity in Great Britain and continental areas. Sanger sequences 

obtained here are now an important reference database that can be used to identify 

clusters obtained from bulk sequencing approaches, as detailed above.   

  

To conclude, I have demonstrated the value of molecular tools in addressing gaps in our 

knowledge about colonisation and diversification of invertebrates, particularly on 

islands. I have attempted to place my results in the contexts of evolutionary biology and 

conservation genetics, and demonstrated the importance of studying the consequences 

of multiple colonisation events in insular systems; the relevance of applying clever 

ways to study unknown small soil dwelling fauna; and the potential for Collembola to 

be used as a good model system to investigate genetic signatures of Pleistocene climatic 

changes. Developments in laboratory and computational methods will continue to 

extend the scope of questions and depth of answers that can be obtained, therefore 

enhancing our ability to obtain insights into the evolutionary pattern and process that 

promote species diversity and community structure.    
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