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Abstract

Lip-reading is mostly used as a means of communication by people with hearing

difficulties. Recent work has explored the automation of this process, with the aim

of building a speech recognition system entirely driven by lip movements. However,

this work has so far produced poor results because of factors such as high variability

of speaker features, difficulties in mapping from visual features to speech sounds,

and high co-articulation of visual features.

The motivation for the work in this thesis is inspired by previous work in dysarthric

speech recognition [Morales, 2009]. Dysathric speakers have poor control over their

articulators, often leading to a reduced phonemic repertoire. The premise of this

thesis is that recognition of the visual speech signal is a similar problem to recog-

nition of dysarthric speech, in that some information about the speech signal has

been lost in both cases, and this brings about a systematic pattern of errors in the

decoded output.

This work attempts to exploit the systematic nature of these errors by mod-

elling them in the framework of a weighted finite-state transducer cascade. Results

indicate that the technique can achieve slightly lower error rates than the conven-

tional approach. In addition, it explores some interesting more general questions for

automated lip-reading.
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Chapter 1

Introduction

1.1 Motivation and Aims

Lip-reading uses information obtained from the movement of the lips and the po-

sitions of the visual articulators to provide a transcription of a spoken utterance.

Although this is predominately used as a method of communication by people with

hearing difficulties, some degree of visual information is used subconsciously by peo-

ple with normal hearing as a method of verifying their interpretation of a spoken

utterance especially when the signal-to-noise ratio (SNR) is low. It is fair to assume

that the information in speech is more dominant in the audio. However, people with

hearing difficulties are able to successfully interpret spoken language with visual-only

cues.

There are many applications of automated lip-reading. One is to enhance au-

ditory information in conventional automated speech recognition (ASR) systems

[Luettin and Thacker, 1997; Petajan, 1984; Potamianos et al., 2003a]. This proves

to be vital when the acoustic conditions deteriorate (for example, when the acoustic

speech signal is severely degraded by noise). Other applications include camera-

based security systems, medical applications with hearing impaired patients and

recovering speech from a mute or noisy video. Visual speech also provides informa-

1
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tion on the position of the visible articulators (the tongue, teeth and lips). This can

provide disambiguation between phonemes such as /p/ and /k/ (unvoiced conso-

nants) and /b/ and /d/ (voiced consonants) [Potamianos et al., 2003b]. Lip-reading

can also be used as a standalone recognition method to use if the audio track is not

available.

Phonemes are abstract signalling units that discriminate words. In audio speech,

a single phoneme encompasses a set of speech sounds that are interpreted to be

the same signal. Their visual counterparts have been called visemes, which are

considered as the smallest units of visual speech. Although these can provide dis-

crimination between words in the visual domain, the relationship between visemes

and phonemes is not considered to be one-to-one [Chen and Rao, 1998]. Visemes

are very loosely defined because of the intra-speaker variation of phonemic sounds

produced on the lips. [Cox et al., 2008] discusses the difficulties surrounding multi-

speaker lip-reading, concluding from experiments in near-ideal conditions that the

variability in visual-only recognition is much greater than that of auditory speech

recognition. This is due to the wide variability in speaker features from one speaker

to another, despite the effort to remove this by normalisation.

There are two approaches to build ASR systems: speaker-dependent and speaker-

independent. In a speaker-dependent system, the classifier is trained on data from

a single speaker before being tested on unseen data from the same speaker. This

provides the model with previous knowledge of the speaker before recognition. Con-

versely, a speaker-independent system uses several speakers’ data to train the clas-

sifier. In the testing phase, a data set (with different speakers) is used. Although

speaker-independence is an ideal for most ASR systems, a trade-off exists between

these two methods with the simplification of the task (e.g. the vocabulary size cov-

ered). A compromise between speaker-dependent and speaker-independent recogni-

tion is multi-speaker recognition. This uses the same speakers to train the classifier

and test but uses different speech utterances for each phase. This method has been

widely used within visual-only speech recognition [Cox et al., 2008; Matthews et al.,
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2002]. Unfortunately, the relative success of this approach has made researchers ig-

nore the fact that accuracy on speaker-independent testing is often very poor. This

problem has only recently been addressed [Cox et al., 2008].

Recent work in visual-only recognition has yielded few positive results [Theobald

et al., 2006; Lan et al., 2010; Cox et al., 2008], with most work concentrated on rather

simple tasks with small vocabularies. The most difficult task presented to date [Lan

et al., 2010], used a database consisting of 12 speakers reciting 200 sentences from the

Resource Management Corpus [Price et al., 1988]. Best viseme accuracy was about

50% for a multi-speaker system and approximately 43% for a speaker-independent

system. However, the relative word accuracy of the systems is much lower (about

10%).

The performance of an ASR system can be viewed as a perfect classifier operating

on a signal that contains varying degrees of noise. This noise is much more prominent

in automated lip-reading than in standard audio ASR, introducing more erroneous

hypotheses. These recognition errors can be regarded as confusions between the

hypothesised sequence and the “ground-truth” (i.e. correct) sequence. Confusions

are of three kinds: substitutions, where one symbol is replaced by another, insertions,

where one or more symbols are inserted into the ground-truth sequence, and deletions

where a symbol is removed from a sequence at a certain index.

Visual speech has an interesting relationship to dysarthric speech. Dysarthric

speakers have poor control over their articulators because of medical conditions

that affect their motor functions (such as cystic fibrosis, stroke etc.). This leads to

a phonemic repertoire that is both reduced and distorted, and hence to speech that

has low intelligibility, and is difficult to recognise. There is an obvious parallel with

visual speech, where certain sounds cannot be distinguished visually because they

differ only in a feature that is not available in the visual signal (e.g. voicing). In pre-

vious work on dysarthric speech recognition, patterns of phonemic confusions made

by a particular talker were learnt by the system. When these confusions were com-

pensated at recognition time, a statistically significant gain in accuracy was achieved
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of up to 15% [Morales, 2009]. In this work, we take a similar approach to lip-reading:

we model visual speech as if it were a speech signal produced by a speaker who has

a limited phonemic repertoire, and learn the patterns of confusion by comparing the

ground-truth sequences and the recognised sequences. At recognition time, we find

the most likely interpretation of a reduced/distorted phoneme output sequence in

the light of these patterns, as was successfully explored in [Morales and Cox, 2008].

Standard 
Lip-Reading 
Recogniser

Confusion
Model

Visual 
Features

Noisy 
Recognised 

Transcription
Corrected

Transcription

Figure 1.1: The standard approach to automatic lip-reading with the proposed
additional system to clean up the noisy output transcription. The confusion model
part of this system is the focus of this project.

This work presents an investigation into modelling confusion patterns to improve

the recognition accuracy of automated lip-reading. The proposed system, which is

broadly illustrated in Figure 1.1, is an additional component added to the existing

standard approach. This additional module, namely the confusion model, aims to

improve recognition accuracy by correcting sounds that have been confused in the

standard recognition process.

1.2 Thesis Structure

Chapter 2 provides technical descriptions of the techniques used throughout this

work. It covers a range of existing methods in computer vision, speech recogni-

tion, and finite-state automata theory. The Chapter starts with a description of

the feature extraction process using active shape and active appearance models

(AAMs). It then describes the dominant pattern recognition tool that has been

used in automated speech recognition (ASR) for over 30 years — Hidden Markov

Models (HMMs). This chapter also provides an overview of language modelling and

confusion matrices. Finally, this chapter describes weighted finite-state transducers
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(WFSTs), a tool for symbol translation that has been used in previous work to

implement ASR systems.

Chapter 3 reviews the current literature in the related areas of work. Firstly, it

presents a brief description of the human speech production system with definitions

for the auditory unit of speech, phonemes, and the visual unit of speech, visemes.

This chapter describes current state-of-the-art techniques that are used in audio-

visual ASR and visual-only ASR (also known as lip-reading). Motivation for the

work in this thesis is described in more detail with the recent work in confusion

modelling for dysarthric speech recognition, and finally, this chapter describes the

use of weighted finite-state transducers in state-of-the-art speech recognisers.

Two new datasets recorded specially for these experiments are described in Chap-

ter 4. The first new dataset consists of isolated words and is used for the prelimi-

nary work in confusion modelling which is described in Chapter 5. The second new

dataset is motivated from the work conducted in Chapter 5 and is used in Chapters

6 and 7 for work on continuous speech. We also describe an existing dataset that

has been used for lip-reading experiments in previous work.

The first set of experiments are presented in Chapter 5. Here, we use the isolated

word database described in Chapter 4 to focus on accurately estimating a phoneme

confusion matrix for a speaker. We construct a confusion system using a network

of weighted finite-state transducers with a pre-trained (offline) confusion model and

extend our technique further by presenting a method for classifying confusion pat-

terns as ‘spurious’ or ‘genuine’. We also explore the use of using multiple hypotheses

as the input to our confusion modelling system and find the best way to model these

as a weighted finite-state transducer. Finally, we extend our approach, firstly with

a system in which the confusion weights are iteratively updated in an adaptive pro-

cess, and finally by adding context to the confusion information (i.e. modelling the

phoneme in the context of the preceding phoneme).

The limitations of the isolated word task are discussed at the end of Chapter

5. We extend our system for the continuous speech task in Chapter 6 by using
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two datasets: an existing audio-visual database that has been used in previous

automated lip-reading literature [Lan et al., 2010], and a new, larger dataset that

has been specially recorded for the purpose of this work. With this larger dataset,

we answer two important questions for automated lip-reading. Firstly, how much

training data is required to achieve peak recognition accuracy? Secondly, is it better

to use phoneme or viseme units for automated lip-reading. We also explore a number

of phoneme-to-viseme mappings, identifying any that provide an increase in unit or

word recognition accuracy.

Our final body of work explores the use of our confusion modelling techniques

for continuous speech in Chapter 7. We apply the techniques that are presented

in Chapter 5 to our new, large database and explore additional standard approach

techniques that require a large amount of training data. Finally, we use a recognition

lattice as the input to our confusion model system instead of the multiple hypothesis

list that was used previously.

Chapter 8 concludes this thesis by summarising and discussing the results. We

also discuss future work to be explored in confusion modelling for lip-reading and

we comment on the limitations of this work.



Chapter 2

Technical Background

2.1 Introduction

Lip-reading is the process of recognising speech using only information from the

visible articulators. Previous work in automated lip-reading has followed standard

approaches to audio speech recognition where the speech signal is represented as a

sequence of feature vectors that are passed through a classifier to produce a recog-

nised output. Figure 2.1 illustrates this approach. Here, a set of training data are

used to optimise the parameters of the classifier (i.e. to train it). At recognition

time, the testing data are passed through the system and a decoded sequence of

phonemes or words is produced.

This chapter will discuss the various techniques used this thesis, including tech-

niques from speech recognition, pattern recognition, computer vision and finite-state

automata theory. Firstly, in Section 2.2, we discuss the visual feature extraction pro-

cess where visual speech is represented as a sequence of observation vectors at a rate

of a single feature vector per video frame.

Once the frame-wise features are extracted, the models can be trained for pat-

tern recognition. In audio speech recognition, hidden Markov models (HMMs) are

most commonly used [Rabiner, 1989]. Models can be trained on the smallest units

7
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Training Data

Testing Data

Recognised 
Output

N-dimensional 
feature vectors

N-dimensional 
feature vectors

Train 
Models

Feature
Extraction

Feature
Extraction

Pattern
Recognition

Figure 2.1: The lip-reading recognition task. Features are extracted from the video
before the training data is used to build the models for pattern recognition. The
testing (unseen) data is passed through the system independently to produce the
recognised output.

of speech (phonemes) to produce the most likely phoneme sequence. Section 2.4

describes hidden Markov models and their particular application in speech recogni-

tion. Section 2.3 describes the language constraint techniques that can be applied

to improve recognition. n-gram language models can be used to boost likelihood

of sequences (of n tokens) that have been observed frequently in the training data

whilst also accounting for rare or unseen events at training.

Confusion matrices can be used to evaluate the performance of an ASR system

based on patterns of substitutions, insertions and deletions. Section 2.5 describes the

structure of a confusion matrix and the smoothing techniques used to re-distribute

the probability mass over unseen events.

Finally, weighted finite-state transducers (WFSTs) are described in Section 2.6.

As a derivative of the widely-used finite-state automaton, weighted finite-state trans-

ducers can be applied as a method of statistical pattern recognition to translate sym-

bols with an associated weight — an attribute that is of particular interest when

modelling confusion patterns.
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2.2 Visual Feature Extraction

The audio and visual speech signal can be represented as a time-series sequence

of events at a certain sampling frequency. In the United Kingdom, the frequency

standard for recording video is 25 frames per second. Smoother sequences can be

achieved by using specialised video cameras that are able to capture at a higher

frequency. Most audio equipment is capable of sampling a much higher frequency of

48,000 samples per second (48kHz). However, for most applications, this sampling

rate is too high for audio speech recognition, so the audio is usually downsampled.

The process of extracting visual speech features from a video frame has been

the topic of much work in visual speech processing [Matthews et al., 2002; Hong

et al., 2006; Lan et al., 2009]. Variation in shape, rotation and scale all provide

considerable difficulties when developing robust visual features. Recent lip-reading

experiments have used simple geometric-based features [Zhi et al., 2004], Discrete

Cosine Transform (DCT) features [Hong et al., 2006; Almajai and Milner, 2008]

or active appearance models (AAMs) to represent shapes of interest in an image

[Newman et al., 2010; Hilder et al., 2009; Cox et al., 2008; Lan et al., 2010; Cootes

et al., 1995; Cootes and Taylor, 2001]. With comparisons drawn between these

techniques in their application to automated lip-reading, we use active appearance

model features as we have found that they perform best in automated lip-reading

tasks [Cox et al., 2008; Lan et al., 2009]. This section describes the extraction of

active appearance model features for use in automated lip-reading, which are the

features used throughout this thesis.

2.2.1 Active Appearance Models

Active Appearance Models (AAMs) are frequently used to represent shapes and

textures in a compact form. The term AAM is most frequently used to define

a composite model which consists of: the 2D shape — initially extracted from

the image as x and y coordinates and to be represented by the Point Distribution
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Model (PDM), and the appearance model, representing the pixel intensities of the

image inside the shape boundary. Both features are compactly represented by a

linear model that is usually computed using Principal Components Analysis (PCA)

— a common technique to decorrelate and reduce the dimensionality of correlated

features.

Figure 2.2: Example frames taken from a corpus. Frames have been carefully
selected to describe extremities in lip movements in an attempt to capture maximum
variation. Each selected frame is manually labelled with k points (where k is equal
for all landmark frames)

To build a model of the appearance, a collection of frames is carefully chosen

from the data set to represent the extremities of movement — e.g. mouth open,

mouth closed etc. [Cootes, 2000] discusses the suitability of landmark locations and

defines clear corners or ‘T’ junctions between boundaries as the best landmarks for

face tracking and recognition. Inner and outer lip contours are labelled with a set

of k landmarks (Figure 2.2) and all feature points are normalised for translation,

rotation and scale before being subject to PCA to produce a PDM of the form

s = s̄ + Pbs, (2.1)

where s̄ is the mean shape, P is a matrix containing the n eigenvectors of the

covariance matrix, and bs defines the contribution of each variation mode to the
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resulting shape s. The permitted variation is typically restricted to a limit of ±3

standard deviations from the mean shape.

AAMs also model the variation in appearance, with each image being normalised

to the mean shape (̄s). PCA is then performed on the shape normalised pixel

intensities within the labelled images to give an appearance model of the form

a = ā + Rba, (2.2)

where ā is the mean appearance image, R is a matrix containing m eigenvectors to

define variation modes, and ba defines the weighting of each variation in appearance

to the resulting image, a. A graphical example of this model is shown in Figure 2.3.

For this example, the resulting shape and appearance is represented by the mean

shape and three example modes of weighted variation in shape and appearance.

Shape 
(s)

Apperance 
(a)

Mean Shape 
(s̄)

Mean 
Apperance 

(ā)

Shape variation modes

Appearance variation modes

=

=

-17.85
⇥

20.67
⇥

2.26
⇥

-419.50
⇥

82.70
⇥

453.96
⇥

+ + +

+ + +

Figure 2.3: A graphical representation of how the shape and appearance features
are computed. A shape (s) can be obtained from a sum of the mean shape (s̄) and the
weighted modes of variation in shape (e.g. lip rounding, mouth opening etc). Simi-
larly, an appearance image (a) can be computed as the sum of the mean appearance
(s̄) in the shape-free patch with the weighted modes of appearance variation in the
model.
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For an image with a set of labelled landmarks (s), the shape parameters can be

computed using the shape and the model:

bs = PT (s− s̄). (2.3)

Similarly, the appearance parameters are estimated by firstly warping the image

to the mean shape (̄s) to produce a and then using:

ba = RT (a− ā). (2.4)

Manually labelling every image from a video is extremely time-consuming. For

example, a 5 minute video that has been sampled at 25 frames per second will

generate 7,500 image frames, each with k landmark points to synchronise between

frames. To make this process more efficient, the inverse compositional project-

out algorithm was proposed [Matthews et al., 2004] to track landmarks through a

sequence of images.

Shape and appearance features are computed on a per frame basis before being

concatenated together into a time-series of feature vectors where t = 1...T :

F =


s1 s2 st ... sT

a1 a2 at ... aT


 . (2.5)

2.2.2 Post-Processing

The features computed by Equation 2.5 form a sequence of AAM parameters as a

function of time. Each dimension of an AAM vector has a different range. If these

values were used in classification algorithms, some dimensions would dominate over

others. To overcome this, each dimension is z-score normalised in the following form:

norm(Fi,j) =
Fi,j − µi

σi
; (2.6)
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where fi,j is the unnormalised feature at row i and column j in the feature matrix

from Equation 2.5, µi is the row-wise mean and σi is the row-wise standard deviation.

As speech is a signal of temporal nature, in audio speech recognition it is com-

mon practice to append velocity (∆) and acceleration (∆∆) dimensions to capture

the dynamics of speech. Such techniques have also been successfully applied to au-

tomated lip reading using the temporal information from the AAM features [Lan

et al., 2009]. In this thesis, both of these additional features which are computed

over a window of two frames are used.

2.3 Language Modelling

A language model is a statistical model of symbol sequences. Hypothesised symbol

sequences can be ranked with respect to the likelihood of the sequence which is

advantageous to systems (such as ASR systems) that benefit from the constraints

of language. In speech recognition, the language model is used to determine the

most likely word sequence and can be used to discriminate between similar sounds

in different contexts. In the majority of cases, a language model is used to model

the probabilities of whole-word sequences. However, they can also be applied to

sub-word units such as phonemes (phonotactics). The sparsity of available training

data can be a problem when building a language model. Ideally, we wish to compute

the probability of a sequence of words (Pr(w1, w2, ..., wN)) by using the chain rule

of probability, as shown in Equation 2.7.

Pr(w1, w2, ..., wN) = Pr(w1)×P (w2|w1)×Pr(w3|w2, w1)×...×Pr(wN |w1, w2, ..., wN−1)

(2.7)

As N increases, the computation in Equation 2.7 becomes increasingly impossible

because of the difficulty in estimating probabilities conditioned on a large number of

previous events, each of which can have many outcomes. The most popular solution
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to this problem is the n-gram assumption. An n-gram language model provides a

structure from which to compute the probability of the next word given the previous

(n− 1) words, thus reducing the dependence on having a large training set. There

are three popular n-gram models that are regularly used:

1. The unigram model uses only frequency counts from the current word to

determine its conditional probability.

Pr(w1, w2, ..., wi) ≈ Pr(w1)× P (w2)× Pr(w3)× ...× Pr(wi) (2.8)

2. The bigram model computes the probability of the given word based only on

the frequency count of the previous word followed by the current word.

Pr(w1, w2, ..., wi) ≈ Pr(w1)×P (w2|w1)×Pr(w3|w2)× ...×Pr(wi|wi−1) (2.9)

3. The trigram assumption uses two previous words to determine the probability

of a current word. This technique is commonly used in speech recognition

which use large vocabulary data sets.

Pr(w1, w2, ..., wi) ≈ Pr(w1)×P (w2|w1)×Pr(w3|w2, w1)×...×Pr(wi|wi−1, wi−2)
(2.10)

Although these techniques provide good results, issues can still arise with data

sparsity. If an n-gram is not observed in the training procedure, its probability is

zero which means it cannot be decoded. This problem can be addressed by using

smoothing techniques.
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2.3.1 Smoothing Techniques

As the value of n in an n-gram increases, the structure of the language is better

defined because of the larger context, but the training procedure also requires a

larger training set. Smoothing techniques are applied to a language model to remove

some probability from higher frequency sequences and re-distribute probability mass

across to other lower probability sequences [Goodman, 2001]. The term smoothing

refers to the technique which attempts to adjust the probability distribution to be

more uniform, increasing the much smaller probabilities and decreasing the high

probabilities. The main objective in speech recognition is to find the word sequence,

W , that maximises Pr(W |A) and A represents the acoustic signal. This is performed

by using Bayes’ theorem (as shown in Equation 2.11). If Pr(W ) is estimated as zero,

because of the inadequacy of the language model, Pr(W |A) is zero. Smoothing is

applied to the language model to prevent any of these probabilities reaching zero.

P (W |A) =
Pr(A|W )P (W )

P (A)
(2.11)

There are many techniques that can be used to smooth an n-gram vocabulary

distribution. Popular methods include Laplace smoothing, Good-Turing smoothing,

Katz smoothing [Katz, 1987] and Kneser-Ney smoothing [Ney et al., 1994]. [Chen

and Goodman, 1999] presents a study on these different smoothing techniques, pro-

viding analysis on performance and potential issues.

A simple approach to smoothing is to add a constant to the frequency count of

each n-gram, a technique called Laplace smoothing (also known as additive smooth-

ing). Here, a smoothing parameter, δ is added to the frequency counts for a given

bigram, c(wi−1, wi) according to Equation 2.12. Previous studies have shown that

this technique performs rather poorly [Chen and Goodman, 1999].

Pr(wi|wi−1) =
δ + c(wi−1, wi)∑
wi
δ + c(wi−1, wi)

(0 < δ ≤ 1) (2.12)
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An improved smoothing technique is Katz smoothing (introduced in [Katz, 1987]).

Here, models are defined recursively in terms of lower-order n-gram models (known

as a back-off model). For example, if an n-gram sequence is not observed enough

times in the training set, a back-off procedure shortens the context window to (n−1)

symbols. For a more comprehensive description of Katz smoothing, see [Katz, 1987;

Chen and Goodman, 1999]

In this thesis, we use Katz smoothing for all n-gram language models where n > 1

(e.g. bigram models) as it provides the best results using the language model tools

that are part of the Hidden Markov Model Toolkit (HTK) [Young et al., 2006].

2.4 Hidden Markov Models

A Hidden Markov Model (HMM) is a stochastic process commonly used to model

temporal data (e.g. speech). An HMM consists of a number of states which are

connected by arcs (with associated probabilities). Each state has an associated

probability distribution over the feature-space used to characterise the data. An

HMM assumes that output observations and transitions between states are depen-

dent only on the current state (and not any previous states), forming a Markov

chain of states through the model. In a simple Markov chain, the state sequence is

visible. In a hidden Markov model, the underlying state sequence that was used to

produce any sequence of observations is not available, hence, the state sequence is

hidden.

Sections 2.4.1 and 2.4.2 describe HMMs using discrete and continuous probability

densities respectively. HMMs have been successfully applied to temporal pattern

recognition problems such as handwriting recognition, biological DNA sequences,

part-of-speech tagging, speech synthesis and speech recognition.
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2.4.1 HMMs with Discrete Probability Densities

In a discrete observation probability HMM, the observed outputs are drawn from

a finite alphabet of symbols. When these HMMs are used for speech processing, it

is common to derive the symbols from a vector quantisation process applied to the

continuous speech signal. Figure 2.4 shows a three-state HMM with discrete obser-

vation probabilities for three symbols: a, b, and c, in each state. The parameters

for this model can be defined as follows:

• X = {x1, x2, ..., xN} — a set of N observation symbols

• S = {s1, s2, ..., sM} — a set of M states

• π = {π1, π2, ..., πM} — a vector of initial state probabilities

• A =




a11 a12 ... a1M

a21 a22 ... a2M

... ... ... ...

aM1 aM2 ... aMM




— a state transition matrix providing a probability for each transition be-

tween every state where aij is the probability of moving from state i to state

j.

• O =




o11 o12 ... o1N

o21 o22 ... o2N

... ... ... ...

oM1 oM2 ... oMN




— a matrix defining the discrete observation probabilities where rows represent

different states and observations are represented in the columns. Therefore,

an observation oij provides the probability of being in state i and observing

symbol j.
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1.0 0.6 0.3 0.1

0.4 0.7 0.9

Pr(a) = 0.8

Pr(b) = 0.1

Pr(c) = 0.1

Pr(a) = 0.2

Pr(b) = 0.5

Pr(c) = 0.3

Pr(a) = 0.9

Pr(b) = 0.05

Pr(c) = 0.05

Figure 2.4: A three-state HMM with discrete probability densities. In this example,
there are three possible observations: a, b and c, each with likelihoods associated in
all three states.

2.4.2 HMMs with Continuous Probability Densities

Using discrete observation probabilities (as detailed in Section 2.4.1) can lead to a

loss of accuracy due to the speech signal being quantised [Cox, 1988]. To overcome

this problem, it would be possible to increase the number of quantisation points.

However, this increases computational cost. If the observations can be represented

by a parametric continuous probability density function, the observation matrix will

require only the parameters of this distribution. HMMs using continuous probabil-

ity densities have the same underlying structure as HMMs using discrete probabil-

ity densities. However, the observations are continuously valued vectors and the

observation probability is a likelihood from a parametric distribution. A Gaussian

Probability Distribution Function (GPDF) can be used to model observation vec-

tors under the assumption that they are normally distributed. For a multivariate

distribution, only the mean vector (µ) and covariance matrix (Σ) are required to

characterise the distribution. Hence, we can use a Gaussian distribution (shown in

Figure 2.5) to model the probability of observing feature vector ot in state j (bj(ot))

as follows:
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bj(ot) =
1

(2π)
D
2 |Σj|

1
2

exp

(
− 1

2
(ot − µj)

TΣ−1j (ot − µj)

)
; (2.13)

where D is the Gaussian dimensionality, µj is the mean at state j and Σj is the

covariance matrix at state j.

1p
(2⇡�2)

µ�2� �� +� +2�

Figure 2.5: An example of a Gaussian PDF centered around the mean denoted as µ
with a standard deviation, σ. Likelihoods can be produced for a given input feature
vector to describe the fit to the GPDF.

In practice, the observed features from a speech signal, even those modelling a

single speech sound, are far from normally distributed. Therefore, ASR systems

usually model the speech feature vectors using a Gaussian Mixture Model (GMM).

GMMs combine a set of independent Gaussian PDFs into a single model, consisting

of a mean (µ) and variance (σ) for each GPDF along with an associated weight. The

individual mixture components are combined to form a more complex distribution

(as shown in Figure 2.6).

Using the weighted sum of GPDFs to form GMMs, an HMM can be redefined as

follows:

• S = {s1, s2, ..., sM} — a set of M states,

• π = {π1, π2, ..., πM} — a vector of initial state probabilities,
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• A =




a11 a12 ... a1M

a21 a22 ... a2M

... ... ... ...

aM1 aM2 ... aMM




— a state transition matrix providing a probability for each transition be-

tween every state where aij is the probability of moving from state i to state

j,

• Pi =
∑K

k=1WikN(µik,Σik) — where Pi represents the probability distribution

over the continuous features for state i, Wik is the weight of the kth mixture

component, µik is the mean of mixture component k for state i, and Σik is the

covariance matrix for the mixture component k in state i (
∑K

k=1Wik = 1).

µ1 µ2 µ3

Figure 2.6: An illustration of a Gaussian Mixture Model (GMM). In this exam-
ple, there are 3 mixture components that form a resulting distribution that is non-
Gaussian. Each GPDF has its own mean (µ) and variance (σ).
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2.4.3 Hidden Markov Models in Speech Recognition

The speech signal can be thought of as a time series, producing data points as a

function of time. Because of the nature of speech, backward transitions (i.e. moving

back from the current point in the time series) is an impossible concept. Therefore,

the standard HMM topology used in ASR is a left-to-right configuration where the

transitions from state i to j for j < i are impossible.

In speech recognition, separate HMMs can be used to model units that make

up words. For audio ASR, these units usually represent phonemes — the smallest

useful unit of acoustic speech. In audio ASR systems, each word is usually modelled

as a sequence of phoneme HMMs (as depicted in Figure 2.7) with each phoneme

model being a simple HMM. The sequence of HMMs shown in Figure 2.7 models

the word hello by using the four phoneme models — /hh/, /ax/, /l/ and /ow/.

hh ax l ow

Pr(l | hh,ax) Pr(ow | hh,ax,l)Pr(ax | hh)

Figure 2.7: Words can be modelled as network of HMMs. Here, the word hello is de-
composed into phoneme units and represented as a network of sub-HMMs. Segmented
acoustic features can be passed through this network and output the likelihood that
the input features came from the set of models. The probabilities between the HMMs
relate to the language model likelihoods.

Given the topology of an HMM, there are three issues to address when modelling

in this way for speech recognition [Rabiner, 1989]:

1. Given a model (λ) and a sequence of observations (O = {O1, O2, ..., On}), com-

pute the probability of the observation sequence given the model (Pr(O|λ))

[Rabiner, 1989]. This is known as the evaluation problem and can be solved

using the forward probability matrix.

2. Given an initial model for each phoneme and some training observations, O,

find the model parameters that maximise Pr(O|λ) — known as the estima-

tion problem. An obvious approach to maximising Pr(O|λ) is to consider all
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combinations of state sequences that could be used to produce the observation

O, and attempt to find the sequence that maximises the probability. This

quickly becomes an impossible task as the number of states and observations

increases, as it would require too many possible sequences to be evaluated.

The Baum-Welch algorithm uses the forward and backward probabilities to

maximise Pr(O|λ). For a description of this algorithm and how it estimates

the new HMM parameters, see [Cox, 1988].

3. The final problem is concerned with finding the most likely state sequence

for a given observation sequence, O, and a model, λ (i.e. trying to uncover

the ‘hidden’ part of the HMM). This is solved using the Viterbi algorithm

[Viterbi, 1967]. Unlike the Baum-Welch algorithm, which estimates the tran-

sition and observation probabilities from a set of training observations, the

Viterbi algorithm finds the most likely state sequence from an HMM (with

known transition and observation probabilities) by searching over paths in a

Viterbi matrix. For a more detailed description of the Viterbi algorithm, see

[Cox, 1988; Viterbi, 1967; Rabiner, 1989].

To compute the accuracy of an HMM system, the recognised sequence is aligned

to the ground-truth sequence using dynamic programming (DP). The optimal align-

ment is considered as the sequence matching that has the lowest score where dele-

tions and insertions carry a weight of 7, substitutions carry a score of 10, and iden-

tical symbols carry a zero weight [Young et al., 2006]. Using the optimal alignment,

the accuracy of a system is defined as:

accuracy =
N −D − S − I

N
× 100%, (2.14)

where D is the number of deleted symbols, I is the number of inserted symbols, S

is the number of substituted symbols, and N is the total number of symbols in the

ground-truth sequence [Young et al., 2006].
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2.4.3.1 Monophone HMMs

In a monophone HMM system, each model represents an isolated unit. These units

can take the form of sub-word units such as phonemes or whole word units. In some

ASR applications, monophone HMMs are built for all phonemes in the English lan-

guage. Additional silence models and optional short-pause models are also included

for word termination and inter-word separation respectively.

We use a tool that has been standardised in the ASR community, namely, the

Hidden Markov Model Toolkit (HTK) [Young, 2001] for all HMM-based work in this

thesis. HTK can be used in two ways to build monophone HMMs. The first method

requires a time-aligned transcription. HMMs are initialised by dividing the observa-

tions equally amongst the states of a model (specified by the manually segmented,

time-aligned training transcription). The Viterbi algorithm is used to find the state

alignment that maximises the likelihood for the given observation. This process is

performed iteratively until there is no change in the resulting state alignments. Af-

ter initialisation, HMM parameters are trained using the Baum-Welch re-estimation

algorithm. One disadvantage of this technique is the requirement for time-aligned

transcriptions. Usually, this procedure is performed manually by a human. How-

ever, for sub-word units such as phonemes, alignments may be time-consuming and

inaccurate because of the rather subjective nature of manual sub-word segmenta-

tion. To avoid these errors in segmentations, a second method known as the flat

start can be used. Model initialisation is performed using a uniform segmentation

strategy, assigning a global mean and variance to each Gaussian distribution in

each HMM. After initialisation, the re-estimation procedure uses embedded training

where all of the HMM parameters of the HMMs are updated with one iteration

of the Baum-Welch algorithm using all of the training data [Young, 2001]. After

multiple iterations of embedded training, the parameters of the HMMs are trained

and ready for recognition of a test sequence using the Viterbi decoding algorithm.
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2.4.3.2 Triphone HMMs

There have been many studies investigating the influence of surrounding sounds in

human speech production, namely, the coarticulation effect. This has led to extend-

ing monophone HMM systems to model a certain phoneme in a given context. This

is known in ASR as triphone modelling. A triphone HMM is constructed using the

same approach as a monophone HMM except, this time, each phoneme has a left and

right context. An example of a triphone transcription is shown in Figure 2.8. Here,

the phrase “Hello Sir” is converted to a sequence of monophones using a dictionary.

To construct the triphone sequence, each phoneme in the monophone transcription

is considered as a subject with a left (-) and right (+) context. The sequence shown

in Figure 2.8 also shows two special monophones: the termination label (sil) which

models the silence before and after an utterance; and the short-pause inter-word

boundary label (sp). The triphones that cross over the word boundaries include

context information from previous or next words. This is known as a cross-word

triphone system [Young, 2001].

Monophone: sil   hh             ax          l           ow      sp        s          er   sp   sil

Hello Sir 

Triphone:    sil   hh+ax   hh-ax+l   ax-l+ow   l-ow+s   sp   ow-s+er   s-er   sp   sil

Figure 2.8: An example of both monophone and triphone transcriptions for the
phrase “Hello Sir”. For monophones, a simple look-up dictionary is required to con-
vert words into phoneme sequences. The sil label denotes sentence termination whilst
the sp label is used to divide phoneme sequences into words. In the triphone case,
a cross-word example is shown where boundaries are isolated as monophones but
triphones span over the inter-word boundaries.

Ideally, a triphone system would construct an HMM for every triphone sequence

encountered in a language. For the 44 phonemes in the English language, this

could potentially involve building 85,184 (443) separate HMMs, each needing enough

training data to model the triphone successfully. However, because the training data

is limited, this is an unachievable target. Initial work in sparsity tying for HMMs was

centered around the use of simply tying triphone models to similar sounds [Lee et al.,
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1990]. However, as the left and right contexts of a triphone are not independent,

model training can be sub-optimal [Young et al., 1994]. The work carried out in

[Young, 1992; Young and Woodland, 1993] provides a method for a more effective

coupling of triphone models — at the state level.

In state-tying, unseen triphone models from training are tied by the states within

the HMM. There are two approaches to deciding the coupling of triphone states:

data-driven and tree-based clustering. The work carried out in [Young et al., 1994]

introduces the tree-based clustering and provides a performance comparison with

previous data-driven clustering methods, concluding that recognition performance is

improved using tree-based state clustering. This work uses the tree-based clustering

technique to produce a set of tied-state triphone models.

Up until the work published in [Young et al., 1994], data-driven clustering was

used to tie HMM states to reduce the number of models required. This method

works well for word-internal triphone systems as it is always possible to find some

training data for a particular triphone. However, for cross-word triphone systems,

the number of different training examples required is much larger, leading to data

sparsity issues with some triphones that are unseen in the training data. This is

where the tree-based clustering methods are advantageous.

In tree-based clustering, a phonetic decision tree is built where each node holds

a question that relates to the phonetic context. An example of such a decision

tree is shown in Figure 2.9. Here, the root node is associated with the question

“Is the right phoneme a fricative?”. A tree is constructed for each state of each

subject phoneme. The corresponding states are partitioned into the leaf nodes of

the tree (in the example shown in Figure 2.9, there will be 8 partitions). Each tree

is optimised to maximise the likelihood using all permutable locations of question

nodes and different tree topologies. Once the trees have been optimised, unseen

triphones can be synthesised by traversing the binary trees for a given phoneme

in a specific context. From this optimisation process, states from unseen triphone

models can be tied to states in models that have been observed during training.
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R = fricative?

L = plosive?
L = fricative?

L = /b/?
R = plosive?R = /t/?

L = /v/?

yesno

yes

yes

no

noyesnoyesnoyesno

yesno

Figure 2.9: An illustrated example of a phonetic decision tree. Each node stores
a question pertaining to the context surrounding the subject phoneme. ‘L’ and ‘R’
refer to the left and right context respectively. Questions can be wide in their scope
or channelled down to identifying specific phonemes.

2.4.4 Networks for Decoding

Sequences of HMMs can be combined together to form a network. Nodes represent

units which can either be in the form of sub-word units (e.g. phonemes) or whole

words. The decoding network is formed by connecting nodes with edges to form

a sequence of units (e.g. words or phonemes). Figure 2.11 demonstrates a simple

example of a decoding network with whole word nodes connected by edges which hold

two likelihoods: the acoustical likelihood that has been produced by the HMMs given

some input data, and the grammar likelihoods which are defined by the language

model.

At decoding time, the networks are traversed to produce a most likely hypothesis

using the Viterbi decoding algorithm with a technique named token passing. Here,

tokens are passed through the nodes of the network with the total likelihood being

recorded at every stage. If a token arrives at transition to multiple nodes, the

token is duplicated to continue on all paths through the network, with the history

of a token (i.e. the previously visited nodes) being recorded all of the way through

the network. The best path through the decoding network is evaluated as the token

which reaches the end of the network with the highest likelihood. To aid the decoder

in finding a path, an insertion penalty may be used. This fixed value is added to each

edge (i.e. the transition between words) to penalise the transition to the next node.
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Figure 2.10 shows how the number of inserted and deleted units is affected by values

of the insertion penalty between -20 and 20. As the insertion penalty is increased,

the decoder recognises fewer deleted units but more inserted units, whereas lower

insertion penalty values will introduce more deletions but fewer insertions. This

value can be vary depending on the task and is therefore optimised at recognition

time to find the best performance.

In all ASR tasks, a language model has proven to significantly improve decoding

performance. With most commercial ASR systems being trained with thousands of

utterances and large vocabularies, the use of grammar becomes imperative. Each

edge in a decoding lattice stores two likelihoods: acoustic and grammar. Because

the grammar and model likelihoods are separated until decoding time, weighting

can be applied independently to introduce more influence for either likelihood. The

grammar scale factor is defined as a fixed positive real number that is applied to

the language model likelihood for recognition.
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Figure 2.10: The number of deleted and inserted phonemes in the hypothesised
sequence as a function of the insertion penalty. A smaller insertion penalty attracts
less insertions but more deletions whereas a larger insertion penalty causes more
inserted tokens but less deletions.
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By using a combination of acoustic and language model likelihoods together with

the insertion penalty and grammar scale factor constants, a total likelihood can be

computed at each stage in the decoding lattice:

P = log(Pr(A|λ)) + (log(Pr(w2|w1))× s) + p; (2.15)

where Pr(A|λ) is the likelihood of observing the acoustical features from the model

(λ), Pr(w2|w1) represents the language model likelihood (in this case, using a bigram

language model to find the probability of observing symbol w2 after w1). Due to

the underflow of dealing with small likelihoods, log likelihoods are used throughout

the HMM training and decoding process. In addition, a grammar scale factor is

used to boost the reliance of the language model over the acoustic information (s)

and an insertion penalty (p) that is added to each transition to favour/penalise the

movement out of a node are used.

When decoding speech, it is occasionally necessary to produce multiple hypothe-

ses (n-best decodings). When decoding an utterance, a list of hypotheses is pro-

duced, ranked in order of decreasing likelihood. An n-best list can be generated

to retrieve the top ranked n most likely hypotheses. For this task, lattices are ad-

vantageous as they provide the ability to traverse multiple paths to produce n-best

decoded lists efficiently.

2.5 Confusion Matrices

Confusion matrices document patterns of confusions between recognised units. For

a phoneme confusion matrix, columns represent the recognised phoneme from a

speaker (i.e. input) whilst rows represent the input phoneme. A significant benefit

of using confusion matrices is that patterns of confusions can often be observed.

In speech recognition, confusion matrices can be used to model the patterns of

insertions, substitutions and deletions that occur at phoneme ([Morales, 2009]) or

word-based ([Green et al., 2003]) levels.
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Figure 2.12 is a simple example of a typical recognition confusion matrix using

five classes (letters ‘a’ to ‘e’). To estimate this confusion matrix, the hypothesised

sequence of symbols are aligned to the ground-truth symbols using dynamic pro-

gramming described further in Section 5.3.2). Taking each pair of mapped symbols

in turn, the confusion matrix is populated with counts, where the columns represent

the recognised sequence (i.e. the response) and the rows represent the ground-truth

data (i.e. the input). Deletions and insertions are also described using an additional

column and row respectively.

a   b   c   d   e   DEL

a
b
c
d
e

INS

6   1   0   2   2   1  
2   3   7   2   1   1
0   0   5   2   1   0
0   0   0   4   1   2
1   0   3   0   2   3
1   2   1   5   2

Response

I
n
p
u
t

Figure 2.12: An example of a typical confusion matrix for five classes (letters ‘a’ to
‘e’. The hypothesised and ground-truth sequences are matched together to form a set
of confusions. Substitutions are modelled by the 5x5 square section in the middle with
rows representing the ground-truth (input) and columns representing the hypothesised
symbol (response). Insertions and deletions are represented by an additional row and
column. Each entry in this confusion matrix represents a frequency count for the
given confusion.

[Morales, 2009] discusses the use of confusion matrices in recognition of dysarthric

speech. Using the information obtained from confusions for a particular speaker at

the phoneme level, the approach used in [Morales, 2009] introduces a foundation for

initialising a weighted finite state transducer to model confusions using states and

transductions (more details about weighted finite state transducers can be found in

Section 2.6).

2.5.1 Confusion Matrix Smoothing

Smoothing techniques have been previously discussed in Section 2.3.1 as a method

to re-distribute a portion of the observed probability mass to unseen events in the
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language structure. In the same manner, smoothing techniques can also be applied

to confusion matrices to redistribute probability to unobserved confusions. For any

given input symbol, there are multiple responses — some of which are not observed

in the training set and therefore have zero probability. Smoothing techniques share a

segment of the probability mass to these events, ensuring that unobserved confusions

have a small probability.

In this thesis, we use two different confusion matrix smoothing methods: base

smoothing — a technique described in [Morales, 2009] to re-distribute a fixed per-

centage to off-diagonal events (described in Section 2.5.1.1), and exponential smooth-

ing which uses the exponential function and a smoothing parameter to determine

the spread of the probability mass over the rows of a confusion matrix (described in

Section 2.5.1.2).

2.5.1.1 Base Smoothing

In a typical confusion matrix, it is common to have a high percentage of confusion

count on the diagonal elements (i.e. correctly recognised elements). However, in this

work, which relies on the correction of recognised events, the main focus is on off-

diagonal elements (i.e. substitutions or insertions and deletions). Base smoothing

[Morales, 2009] attempts to solve this problem by re-distributing a proportion of

the leading diagonal of a confusion matrix to other classes. For a given matrix

containing confusion counts (C), a smoothed count matrix (S) is estimated. An

off-diagonal element in this matrix at row i, column j is defined as:

S(i, j) = C(i, j) +
C(i, i)× d

n
∀j 6= i, (2.16)

where d defines the smoothing parameter where (0 < d < 1), and n is the total

number of classes (i.e. the number of columns in the confusion matrix). After giving

count mass to the off-diagonal elements, the smoothing parameter percentage is then

deducted from the on-diagonal elements according to Equation 2.17.
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S(i, i) = C(i, i)− (C(i, i)× d) (2.17)

Using these rules, the smoothing parameter, d, can be adjusted to change the

amount of mass that is re-distributed from the diagonal elements. Figure 2.13 shows

the effect of this smoothing technique on an example confusion matrix which has

been estimated by performing recognition on the ISO-211 dataset (see Section 4.2).

Here, three different distribution parameters (d) are used to produce new estimates

of the confusion matrices: 0.25, 0.5, 0.75 (i.e. 25%, 50%, and 75% respectively).

These examples demonstrate how the probability of off-diagonal substitutions is

increased as a larger percentage of the diagonal elements are re-distributed across

the rows.

No Smoothing d = 25

d = 50 d = 75

Figure 2.13: Examples of the effects of base smoothing using three different smooth-
ing parameter values (d): 0.25, 0.5, and 0.75. Off-diagonal confusions become stronger
and the diagonal is weakened as the distribution parameter is increased.

2.5.1.2 Exponential Smoothing

Exponential smoothing provides an alternative method to weaken the influence of

the diagonal count and provide a smoothed matrix using the exponential function
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as shown in Equation 2.18.

S(i, j) =
eαC(i,j)

∑
k e

αC(k,j)
, (2.18)

where C(i, j) is the number of times phoneme i has been confused with phoneme j, α

is a data-dependent constant, and S is the resulting smoothed confusion matrix. The

introduction of the parameter α adds stronger control to the degree of smoothing

applied. As α → 0, the probability mass is equally distributed over the row i.

Conversely, as α→∞, the mass is more concentrated in the highest element. Figure

2.14 illustrates the effect of the smoothing parameter (α) on a confusion matrix

using confusions produced by recognition on the ISO-211 dataset (see Section 4.2).

Compared with the original confusion matrix (‘No Smoothing’), the smaller values of

α (e.g. 0.01) distribute more of the probability mass across the rows. When α = 1,

the probability mass becomes significantly concentrated in the diagonal elements

which makes off-diagonal substitutions less likely. In this thesis, we explore values

of α in the range 0.01 < α < 1 and find that the smaller value of 0.01 works best.

No Smoothing α = 0.01

α = 0.1 α = 1

Figure 2.14: Exponential smoothing examples using three different values for α:
0.01, 0.1, and 1. Smaller α values re-distribute more of the larger probability mass
across the row whereas a much larger α value concentrates the probability on the
stronger (i.e. the diagonal) elements.
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2.6 Weighted Finite-state Transducers

A finite state automaton (FSA) is a mathematical model of a sequence of events.

An FSA is defined by a finite set of states which are connected by transitions (i.e.

actions). Unlike an HMM, where observations are produced by the state visits,

FSAs model discrete actions in the transitions between states. Weighted Finite-

state Transducers (WFSTs) are built using the same theory as FSAs, except that a

transition between two states becomes a translation between an input and output

symbol. These transitions (also known as transductions) can also store weights that

can be used to implement a probability distribution over a set of events. With the

extra ability to perform this binary translation, a WFST can convert a sequence

of input strings to a sequence of output strings with an associated total weight.

In finite-state theory, the weighting system is defined over a semiring — defined

as an algebraic structure over the five-tuple — (K,⊕,⊗, 0̄, 1̄) where (K,⊕, 0̄) is a

commutative and associative monoid with an identity element defined by 0̄, (K,⊗, 1̄)

is an associative monoid with an identity element defined by 1̄. The abstraction to

semiring weighting systems allows the WFST algorithms (described in Sections 2.6.1

and 2.6.2) to be generalised over a range of weighting sets. Table 2.1 lists the most

widely used semiring weighting systems for WFSTs [Mohri, 2004].

Semiring Type Set a⊕ b a⊗ b 0̄ 1̄

Boolean {0, 1} a ∨ b a ∧ b 0 1

Probability R+ a+ b a× b 0 1

Log R ∪ −∞,+∞ −log(e−a + e−b) a+ b +∞ 0

Tropical R ∪ −∞,+∞ min(a, b) a+ b +∞ 0

Table 2.1: A selection of widely used semirings and their binary relations [Mohri,
2004]. ⊕ and ⊗ denote the binary operations and 0̄ and 1̄ represent the identity
elements provided by the two monoids respectively. The definition of the binary
operations (⊕ and ⊗) allows the flexibility to apply these WFSTs to the four weighting
systems described in this table. Combinatorial and pruning operations (described in
Sections 2.6.1 and 2.6.2 respectively) can then be defined on the definition of the
binary relations.
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A WFST can be defined over a semiring, K as an eight-tuple: T = (Σ,Ω, Q,E, I, F, λ, f)

[Mohri et al., 2002; Mohri, 2004] where:

1. Σ: a finite, non-empty set of input symbols

2. Ω: a finite, non-empty set of output symbols

3. Q: a finite, non-empty set of states

4. E: a finite set of transitions that define the relationship between states (Q)

5. I: a set of intial states (I ∈ Q)

6. F : a set of final states (F ⊆ Q)

7. λ: an initial weighting function where λ : I → K

8. f : a final weighting function where f : F → K

Using this definition, a weighted finite-state transducer provides a mechanism to

encode sequences of mapped symbols (i.e. an input symbol mapped to an output

symbol), with an associated weight. As defined by the semiring, weights can rep-

resent probabilities, penalties (i.e. cost), duration or any other weighting function

that can be used to define a total weighting system through a path sequence. In this

thesis, we use the tropical semiring where arc weights are encoded as costs which can

be used to favour/penalise a given path. Figure 2.15 is an example illustration of a

3-state WFST over a tropical semiring. The starting states are defined by the bold

outline surrounding the state (state 0 in Figure 2.15) and final states are defined

by double-line borders around the state (state 3 in Figure 2.15). The advantage of

WFSTs over other types of automaton is the ability to take an input string (in this

case ‘abc’) and transduce (i.e. convert) it to an output string (‘xyz’) with an asso-

ciated total weighting derived from the individual transduction weights. The visual

example of a WFST model shown in Figure 2.15 could be compared to an HMM

where, for a given input, an output is produced. However, the two models operate
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for different purposes and under different conditions. In a WFST, the conversion of

a discrete input to a discrete output symbol is performed on the weighted transition.

Therefore, the states in a WFST are purely to provide a means of maintaining a

current position in an input sequence, unlike the states in an HMM, which model

the probability distribution of the features.

0 1
a:x/1.2

2
b:y/3.2

3
c:z/3.3

Figure 2.15: A example of a weighted finite-state transducer over the tropical semir-
ing. This transducer has one initial state (0) and one final state (3) and only allows
one path translating the string ‘abc’ to ‘xyz’ with a total path weight under the
tropical semiring of 1.2 + 3.2 + 3.3 = 7.7.

A transition e ∈ E can be used to define a relationship between two states with

a start state s[e] and end state k[e] with a weight defined by w[e]. A path (φ) can

be defined as a set of successive transitions e1, e2, ..., en ⊆ E with a set of weights

w[φ] = w[e1], w[e2], ..., w[en]. Given a path π(p, x, y, q) from states p to q with an

input label x and an output label y, a total path weight [T ](x, y) can be defined

[Mohri, 2004; Cortes et al., 2004] as:

[T ](x, y) =
⊕

φ∈π(I,x,y,F )

λ[s[φ]]⊗ w[φ]⊗ f [k[φ]], (2.19)

where w[φ] is the total weight for the path φ using the ⊗-multiplication operation

over all transitions:

w[φ] =
n⊗

i=1

w[ei]. (2.20)

In the tropical semiring weighting system, the ⊗-multiplication operation denotes

the sum (using the + operation) of all weights along a given path and the best path
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(using the ⊕-operation) is computed using a shortest-path algorithm. The work

shown in [Mohri, 2002] introduces a new algorithm to find shortest paths through

weighted transducers defined over any type of semiring listed in Table 2.1. This

Generic-Single-Source-Shortest-Distance algorithm covers a general framework of

shortest distance algorithms with Bellman-Ford and Dijkstra being special cases

of the generic algorithm based upon using the ⊗ and ⊕ operations defined by the

semiring framework.

2.6.1 Combinatorial Operations

Weighted transducers can be combined together to form larger, more complex mod-

els. Some of these binary and unary techniques have been previously defined for

other applications (such as automata theory) and adopted to work with the much

richer weighted transducer models [Mohri, 2004]. This section explores some of these

operations, namely; composition, union, epsilon removal and closure.

2.6.1.1 Composition

The composition operation (denoted by ◦) provides the ability to combine multiple

transducers using the binary relationship between the input and output symbol

domains. Simply, if the transduction a→ p is performed by transducer T1 and the

transduction p→ x is performed by transducer T2, then T1 ◦ T2 (i.e. the transducer

built from the composition of T1 and T2) models the transitive transduction a→ x.

Many composition algorithms for weighted automata have been proposed to improve

performance and provide more functionality [Allauzen et al., 2009; Oonishi et al.,

2008; Cheng et al., 2007; Hori et al., 2004].

WFST composition has been used to perform complex translations in speech

recognition, natural language processing, computational linguistics and many other

applications [Roche and Schabes, 1997; Karttunen, 2001; Morales and Cox, 2008;

Mohri, 1997]. Successful work has composed transducers together to form a multi-
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level cascade that models different aspects to aid the recognition process. The

applications of WFST composition are described in more detail in Section 3.6.

The weight between two composed weighted transducer paths, with a transitive

relationship (T1(a, p) and T2(p, x)) can be defined as:

[T1 ◦ T2](a, x) =
⊕

p

T1(a, p)⊗ T2(p, x); (2.21)

� �������� 	
������ �������

(a) T1

� �������	 	
�����	 �������

(b) T2

� �������� 	
������ �������

(c) T1 ◦ T2

Figure 2.16: (a) T1 is a weighted transducer with an output symbol domain that
matches the input domain of T2, (b) T2 is a weighted transducer with an input symbol
domain that matches the output domain of T1, and (c) T1◦T2 is the resulting weighted
transducer after T1 is composed (◦) with T2.

2.6.1.2 Union, Epsilon Removal, and Closure

The union (or sum) operation uses a combination of multiple transducers. The input

string is accepted by the union of two finite state transducers (T1 ∪ T2) if the string

is accepted by either of the original transducers (for example T1 or T2) [Mohri et al.,

2002]. Figures 2.17(a), 2.17(b) and 2.17(c) show three simple weighted transducers,

each accepting one string. The union (shown in Figure 2.17(d)) accepts all three

strings from the original weighted transducers with their respective arc weights in-

cluded. Unfortunately, the weighted transducer union algorithm introduces epsilon

(‘-’) state transitions into the resulting T1 ∪ T2 ∪ T3 transducer. Therefore, it is nec-

essary to remove these and re-configure the transducer topology to improve search
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and combinatorial efficiency. The lazy epsilon (ε) removal algorithm for weighted

automata was introduced in [Mohri et al., 2000] and produces an equivalent weighted

transducer as shown in Figure 2.18.

The union between two weighted transducers uses the ⊕ semiring operation to

combine weights for a given path (x, y) that is common between the two WFSTs:

T1 and T2:

[T1 ⊕ T2](x, y) = [T1](x, y)⊕ [T2](x, y) (2.22)

� �������� 	
������ �������

(a) T1

� �������	 	
�����	 �������

(b) T2

� �������� 	��
���� �������

(c) T3

0

1
a:x/1.3

4
-:-

8

-:-

2b:y/1.9

5
a:x/4.2

9
a:x/5.1

3c:z/0.3

6
b:t/3.2 7c:s/3.3

10
a:t/1.7

11
b:c/3.1

(d) T1 ∪ T2 ∪ T3

Figure 2.17: (a) T1 is a single-path weighted transducers, (b) T2 is an alternative
single-path weighted transducer, (c) T3 is an alternative single-path weighted trans-
ducer, and (d) T1 ∪ T2 ∪ T3 is the resulting weighted transducer after performing the
union operation on T1, T2, and T3.

When modelling speech confusions in terms of insertions, substitutions and dele-

tions, it is important to introduce the possibility of multi-term output. The closure

operation introduces additional arcs to enable sequences of output symbols to be

duplicated using the work introduced in [Kleene, 1956]. The transducer shown in
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Figure 2.18 has three unique paths, each with three transitions. The equivalent

closed transducer is shown in Figure 2.19 where additional ‘free’ transitions are

added to allow for any path to be repeated.

0

4
a:x/4.2

7
a:x/5.1

1

a:x/1.3

5b:t/3.2

8
a:t/1.7

2
b:y/1.9

3
c:z/0.3

6c:s/3.3

9
b:c/3.1

Figure 2.18: ε-removal of the transducer T1 ∪ T2 ∪ T3 pictured in Figure 2.17(d).
Here, epsilon transitions (represented by the ’-’ symbol in Figure 2.17(d)) exiting the
start state (0) from the original transducer are removed, ensuring maximum traversal
efficiency when it is required. For much larger transducers, ε-removal can significantly
improve composition and shortest-path operational efficiency.

10 0
-:-

4a:x/4.2

7

a:x/5.1

1

a:x/1.3

5
b:t/3.2

8
a:t/1.7

2
b:y/1.9

3c:z/0.3

-:-

6

c:s/3.3

-:-

9b:c/3.1

-:-

Figure 2.19: A closed weighted transducer derived from the original topology shown
in Figure 2.18. The closure operation has introduced epsilon arcs that can be used as
a free transition back to the start of the sequence.
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2.6.2 Pruning Operations

When using combinatorial operations on weighted automata, networks can expand

very quickly, causing potential searching issues at decoding time. For such eventu-

alities, pruning operations provide a means to prepare an automaton for efficient

computation. The dominant forces in weighted transducer pruning, namely, deter-

minization and minimization are described in this section.

2.6.2.1 Determinization

A finite state automaton is defined as deterministic if there are no input epsilon

symbols and every state has one or no transition with any given input symbol. The

determinization algorithm was first applied to improve efficiency of finite-state au-

tomata [Mohri, 1996]. Further work extended this algorithm for weighted transducer

applications [Mohri et al., 2002; Mohri, 1997; Mohri and Riley, 1997]. Figure 2.20

demonstrates the process of determinizing a weighted finite state transducer. In

this example, Figure 2.20(a) is not deterministic as two arcs with the input symbol

‘a’ are exiting from the starting state (state 0). A new, determinized version is

illustrated in Figure 2.20(b) where no two transitions are exiting a state with the

same input symbol. [Mohri, 1997] discusses the time complexity of determinization,

stating that in the general case it is exponential. However, in the case of speech

recognition and word lattices, there is significant improvement due to large amounts

of redundancy (i.e. many states can be reached by the same set of strings). In

this work, a lattice containing 83 million paths is derived from a 2000-word vocab-

ulary speech recogniser. After determinization, efficiency is dramatically improved

with only 18 possible paths through an equivalent weighted transducer containing

38 states and 51 transitions [Mohri, 1997].

For successful determinization of a weighted transducer, the algorithm is required

to re-distribute weights forward to ensure that an equivalent model is produced. To

do this, weights are carried forward through respective paths as shown in the example
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0

1
a:x/0.6

2
a:x/0.3

3

a:x/0.8

b:y/0.4

c:z/0.3

(a) T

0 1
a:x/0.3

2
b:y/0.7

c:z/0.8

(b) Tdet

Figure 2.20: (a) a WFST (T ) over the tropical semiring, and (b) Tdet - a deter-
minized version of weighted transducer T that provides equivalent input and output
paths and transductions. From the determinization algorithm, residual weights are
carried forward through to ensure original path costs from T are maintained.

in Figure 2.20. Here, the minimum weight for all paths with an input symbol, a

is assigned as the new path weight whilst the residual weight from the remaining

paths (from state 0 to 1 with a residual weight of 0.3 and from state 0 to 3 with a

residual weight of 0.5) are carried forward to the weight on the succeeding arcs.

2.6.2.2 Minimization

The process of minimizing a weighted finite state transducer is to enable a new

transducer such that it has the least number of states and transitions among all

deterministic finite state transducers equivalent to it [Morales, 2009; Mohri, 1997].

The minimization algorithm relies on unique input on the arcs out of any given state
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in the original weighted transducer — therefore, it is important to note that this

operation can only be performed after determinization. [Mohri, 1997] introduces

an efficient algorithm to minimise a weighted finite state automata with a time

complexity of O(m log n) where m represents the number of states and n is the

number of transitions in the network. Figure 2.21(a) shows this operation being

performed on weighted transducer T . As a result of performing minimization on

this transducer T , the number of arcs have been reduced from nine to seven whilst

also reducing the number of states from four to three. More specific to the changes

in the topology, the minimization algorithm has merged states 1 and 2 together

(removing one state), and collapsed the identical transitions between states 1 to 3

and states 2 to 3 into one transition (the transition from state 1 to 2 in the minimised

WFST shown in Figure 2.21(b)).
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Figure 2.21: (a) a WFST, T , defined over the tropical semiring, and (b) Tmin - a
minimized equivalent of transducer T .



Chapter 3

Literature Review

3.1 Introduction

This chapter presents a review of the current literature relating to auditory and

visual speech and confusion modelling techniques used in audio dysarthric speech

recognition. Section 3.2 focuses on the production of human speech with a descrip-

tion of the vocal apparatus and the production of words to form sentences with

the use of sub-word units (i.e phonemes). Section 3.3 discusses previous work in

audio-visual speech — a research topic that has attracted audio speech recogni-

tion scientists in an attempt to improve speech recognition systems further using

visual cues. Section 3.4 explores previous work in lip-reading and visual-only speech

recognition (speech-reading), presenting results from recent developments and ex-

ploring the state-of-the-art performance. Section 3.5 discusses the work conducted

specifically in [Morales, 2009] to improve recognition accuracy of dysarthric speech.

Finally, Section 3.6 explores the use of weighted finite-state transducers (as de-

scribed in Section 2.6) in speech recognition systems before concluding on a review

of current literature.

44
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3.2 Human Speech Production

Nasal Cavity

Teeth
Upper Lip

Lower Lip

Palate

Oral Cavity

Vocal 
Folds

Trachea

Aveolar 
Ridge

Esophagus

Tongue

Nostril

Larynx

Uvula

Velum

Figure 3.1: A diagram describing the positions of organs in the human speech
production system.

Speech is a multi-modal method of communication. The speech signal emanates

from the mouth of the speaker as air is exhaled from the lungs before travelling to

the ear of the destination [Tatham and Morton, 2011]. As the vocal tract muscles

contract and relax, a time-varying signal is produced. For each speech sound pro-

duced by the vocal tract, there is a different configuration of the articulators that

make up the human speech production system. These articulators are: the vocal

folds, tongue, teeth, jaw, velum, lips and are shown in Figure 3.1. Different artic-

ulatory positions can be configured to produce two broad sound categories: vowels

— produced by a continuous flow of unrestricted air passing from the lungs up to

the larynx, and consonants — the air flow emanating from the lungs is restricted

by a movement by the articulatory organs, causing different sounds to be produced.
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Due to the large variation of vocal tract configuration in consonant sounds, there

are many different types of sounds that can be produced by adjusting the manner

of articulation — how the articulators interact with each other in the system, and

place of articulation — the point at where an obstruction of air-flow occurs to pro-

duce the distinctive consonant sound [Ladefoged and Johnson, 2014]. Table 3.1 and

3.2 describe the different types of place and manner of articulation configurations

respectively, each with an example phoneme sound highlighted in bold.

Predominantly, speech communication is most informative in the audio domain,

with the key ability to distinguish between sounds. However, the visual domain of

speech also provides some important cues that can aid understanding. The visual

component of speech is composed of the visible articulators : the tongue, lips and

teeth. Although these are visible articulators, the lips and teeth are only visible

when certain sounds are made. The process of decoding speech purely from the

information on the visible articulators is known as lip-reading. With the complete

occlusion of the non-visible articulators and the occasional occlusion of some of the

visible articulators, it is common for lip-reading recognition systems to miss cues

in the visual domain that are present in the audio domain. This leads to deleted

sounds in the hypothesised sequence.

Place of Artic-
ulation

Place of Air Restriction Example

Bilabial Upper and lower lip bat
Labiodental Both lips and teeth fog
Interdental Tongue between teeth think
Alveolar Small gap between the alveolar ridge

and tongue
door

Alveopalatal Small gap between the area behind the
alveolar ridge and tongue

check

Velar Small gap between the velum and
tongue

gate

Table 3.1: A list of the different places of articulation in production of consonant
sounds. Letters highlighted in bold indicate which sound has a specific place of
articulation within a word.
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Manner of Ar-
ticulation

Speech Apparatus Configuration Example

Plosive Stop air flow for an amount of time be-
fore releasing quickly

bat

Affricate Stop air flow for an amount of time be-
fore releasing to create a friction sound

check

Fricative Impeding air in the vocal tract to re-
lease a friction sound

fought

Nasal No air escaping from the oral passage
but instead from the nasal passage

mum

Lateral Air being allowed to emanate from
sides of the mouth

let

Retroflex Tongue to the roof of the mouth before
retracting

ridge

Semivowel Small enough gap to differentiate from
a vowel

work

Table 3.2: Configurations of different manners of articulation shown with examples.

3.2.1 Phonemes

In linguistics, a phoneme is defined as “the smallest contrastive linguistic unit which

may bring about a change of meaning” [Cruttenden, 2008]. For example, the words

bat and cat differ in only the first sound (/b/ or /k/ ). Phonemes can be combined

together into a time-series to form words in a given language. Each language has

its own set of phonemes that form the foundation for a vocabulary. Throughout

this thesis, we use the BEEP phoneme set [Cambridge-University, 2012], which con-

tains 45 phonemes, each providing a distinctive sound and vocal tract configuration

including plosive bilabials such as /p/ to fricative labiodentals such as /f/ and stan-

dard open-mouth vowels such as /oh/. Although these phonemes are considered as

isolated units, their target properties (both acoustically and visually) can be severely

affected by neighbouring sounds, a phenomenon known as the coarticulation effect.

The production of speech sounds also introduces different variants, also known as

allophones. These describe a group of phonemes that have the same phonetic mean-

ing but are produced in a different way. An example of this is the produced /k/

sound in word calculator and the same produced sound in the word skeleton.
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Sounds that are produced by the articulatory process that involve the vibration

of the vocal cords are known as voiced sounds (e.g. the first sound from the word

zip). However, there are also sounds which do not require vocal cord vibration,

named unvoiced sounds (e.g. the first sound from the word pat). Phonemes in the

English language are typically classified into these two groups.

3.2.2 Visemes

Phonemes are the smallest unit of speech that can change the meaning of a word.

Although phonemes are abstract entities, representing the speech signal as a se-

quence of phonemes and modelling the acoustical properties of these phonemes has

formed the basis for successful speech recognition algorithms for the past thirty

years. A speaker must be capable of producing sounds that are recognisable as dis-

tinct phonemes in order for their speech to be understood. However, because speech

is perceived (by the vast majority of people) in audio form, there is no requirement

for a speaker’s visual signals (e.g. mouth shapes) to form contrastive patterns, and

hence there is no natural visual equivalent of the phoneme.

The term viseme was introduced by [Fisher, 1968] (made from a combination of

the words visual and phoneme) and is still used in visual speech recognition and

synthesis. Usually, a viseme is defined by grouping together a number of phonemes

that have a similar visual appearance. Hence phonemes that differ only in a feature

that cannot be perceived visually (e.g. in voicing, or in a place of articulation near

the back of the mouth) are grouped together as a single viseme. Several many-to-one

mappings from phonemes to visemes have been proposed, with much disagreement

on the best mapping in the research community [Fisher, 1968; Binnie et al., 1976;

Woodward and Barber, 1960; Binnie et al., 1974; Visser et al., 1999; Cappelletta

and Harte, 2012; Hilder et al., 2010]. These ambiguities are derived by discrepancies

in speaker variation, coarticulation, type of stimuli presented and the phoneme-to-

viseme grouping that is being used [Theobald, 2003].

However, although the term viseme, as a visual equivalent of phoneme, is in
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common use, it is controversial, because there is no evidence that people are capable

of perceiving such visemes as separate visual entities that discriminate between

words.

3.3 Audio-Visual Speech Recognition

Speech is predominantly a multimodal method of communication. For face-to-face

interaction, humans use a combination of cues from both the audio and visual modal-

ities. With most of the articulatory information in the audio signal, speech recog-

nition research has focussed on the use of the audio signal only for over 30 years.

However, recent work in ASR has used the visual signal as an additional source of

information to improve the performance of state-of-the-art ASR systems.

The addition of visual information is effective in environments where noise in

the audio is having an adverse effect on recognition [Almajai and Milner, 2009].

However, certain acoustic sounds are easier to recognise in the visual modality. For

example, place of articulation information is sometimes easy to see, and this can

reduce confusion. For instance, /b/ (a bilabial) and /d/ (an alveolar), or nasal

sounds like /m/ (a bilabial) and /n/ (an alveolar) are visually distinct but often

confused in the audio domain [Potamianos et al., 2004]. The study conducted in

[Liang et al., 2002] explores the use of the visual modality to assist audio ASR in

noisy environments. The results show that, in noisy environments, error rates in

audio ASR can be as high as 80% (at a 0dB signal-to-noise ratio) whereas, audio-

visual recognition error rates are much lower at 25%. From these experiments, it is

clear that the ASR recognition performance is being improved significantly because

the signal from the visual domain is not affected by acoustical noise.

Audio-visual speech recognition (AVSR) has been an interest of speech research

for many years [Almajai and Milner, 2008, 2009; Dupont and Luettin, 2000; Neti

et al., 2000; Potamianos et al., 2003a, 2001; Tomlinson et al., 1996; Petajan et al.,

1988; Potamianos et al., 2003b]. The first speech recognition system to use informa-
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tion from the visual domain was introduced in [Petajan, 1984], using a isolated-word

dataset containing 100 words including simple digits and letters. The features were

extracted using simple binary images of the mouth and lips, determining shape pa-

rameters such as the height, width, area and perimeter of the mouth. The results

produced in [Petajan, 1984] sparked an interest in the speech community for audio-

visual speech recognition research to improve the accuracy of existing audio ASR

systems. Figure 3.2 shows the main components of a typical audio-visual speech

recogniser. In this system, the front-end feature extraction for the audio modality

can use established techniques that have been employed in state-of-the-art audio

ASR systems. However, the feature extraction method for the visual modality is

a topic of many strands of research [Almajai and Milner, 2009; Zhi et al., 2004;

Dupont and Luettin, 2000].

Visual Signal

N-dimensional 
feature vectors

N-dimensional 
feature vectors

Face tracking and 
Visual Feature 

Extraction

Audio Feature 
Extraction

Audio Signal

Audio-Visual  
Feature Fusion

Audio-Visual 
ASR

Figure 3.2: A diagram describing the components in an audio-visual speech recogni-
tion system. Feature extraction of the audio and visual signal is performed indepen-
dently before using a fusion method to combine the feature sets to aid recognition.

Various combinations of features have been used in AVSR. The original geometric

features used in AVSR such as mouth and lip height, width, area and perimeter have

been successfully applied in previous work [Zhi et al., 2004; Sujatha and Santhanam,

2010; Cetingul et al., 2006]. However, such features only represent changes in shape,

providing no information about important visual cues such as the appearance of

teeth and rounding of lips. Therefore, an alternative appearance-based method
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can be used — specifically capturing information contained within the region of

interest. The appearance information can be used in isolation or in combination

with the shape information to build an active appearance model (AAM) [Cootes

et al., 1998]. This process is detailed in Section 2.2.1.

The fusion between the audio and visual modalities can be performed using two

different methods: feature fusion, and decision fusion. In feature fusion, the feature

vectors are combined (e.g. concatenated) to produce features that describe both

modalities whereas decision fusion uses two separate classifiers (one for audio and

another for video) and combines them to model the reliability of both modalities

[Potamianos and Graf, 1998; Teissier et al., 1999; Hennecke et al., 1996; Bregler

et al., 1993; Adjoudani and Benoit, 1996]. For an overview of these algorithms, see

[Potamianos et al., 2004].

3.4 Visual-Only Speech Recognition

When the audio signal is not available or is severely corrupted, visual cues become

the only source of information, and in this case, the listener or computer system is

performing lip-reading. The lack of information obtainable from the visual modality

alone has led to automated lip-reading systems achieving low performance [Lan

et al., 2010]. As described in Section 3.1, the production of human speech employs

the use of all of the articulators to produce the sound. With some of these organs

either completely hidden or occasionally obfuscated from the camera’s view, many

phonemes are deleted in visual speech recognition. Furthermore, sounds such as /p/,

/b/, and /m/ (all bilabials) are impossible to separate in their visual appearance,

introducing patterns of substituted phonemes.

A recent study presented in [Newman et al., 2010] uses electromagnetic articu-

lography (EMA) data, providing 2-dimensional feature points to model the position

of a speaker’s speech apparatus. Each articulator is withheld in-turn starting from

the back of the apparatus (the velum) and eventually reaching the front (the upper
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lip). The results from this study are presented in Figure 3.3. As each feature is

removed, the lip-reading performance decreases monotonically, suggesting that the

recognition accuracy of visual speech will always be inferior to audio ASR due to the

frequent occurrence of events that can not be observed on the lips. However, many

deaf people are capable of performing lip-reading with enough accuracy to function

in a hearing world. The outcome from the experiment conducted in [Newman et al.,

2010] confirms that human speech recognition is heavily dependent on knowledge of

the context of the discourse. The high level constraints are influenced by the context

and expectations of particular words, whereas the lower-level constraints consider

the legal words and phrases from the supplied information using the language model.

Both of these constraints are used to help the lip-reader decide on the most likely

hypothesis.

CHAPTER 8. LIMITATIONS OF VISUAL SPEECH RECOGNITION 158

until only one articulator remains. This allows us to simulate the loss of informa-

tion due to the limited visibility of the articulators toward the back of the mouth

during lip-reading. To benchmark the performance against features used in tra-

ditional acoustic phone recognition, tied-state multiple mixture speaker-dependent

HMMs also are trained and tested using mel-frequency cepstral coefficients (MFCC)

features extracted from the acoustic speech signal.
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Figure 8.2: Speaker-dependent phone recognition using articulatory features. The
left-most label on the x-axis denotes that all articulators were used by the recogniser.
Each subsequent score denotes the removal of an articulator (named on the axis),
and the removal is cumulative moving left-to right (e.g. -dorsum indicates that both
the velum and the dorsum were not included). The plot shows the mean accuracy
averaged over the five-folds, and the error bars denote ±1 times the standard error.
The accuracy (and the trend) for both speakers is very similar, and as is expected the
performance degrades as information is withheld from the recogniser.

The mean phone recognition accuracy of the speaker-dependent recognisers is

illustrated in Figure 8.2. A mean accuracy of 65% is obtained using MFCC features

in a speaker-dependent recogniser for both the male and the female subjects. This is

in contrast to the mean accuracy of only 45% achieved using all articulatory features.

Cumulation of articulators removed

Figure 3.3: Speaker-dependent phone accuracy results for audio and visual speech
recognition using different combinations of articulatory features. Each point along
the x axis represents a cumulative removal of the information that is obtained from
the specified articulator [Newman et al., 2010].
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The study conducted in [Matthews et al., 2002] evaluates different visual features

for automated lip-reading. In this work, they evaluate each set of features using their

own, specially recorded audio-visual database consisting of 780 utterances which was

divided into training (520 utterances) and testing (260 utterances). Each utterance

consisted of a letter being recited from the alphabet and all videos were of low-

resolution grayscale quality. Word (letter)-level HMMs were constructed and the

different feature sets were evaluated by the conventional word accuracy score. Best

results produced a multi-speaker word accuracy of 41.9% using AAM features (shape

and appearance information) and 26.9% using shape-only features.

[Lan et al., 2009] presented a comparison between AAM-based features, Sieves

and DCT-based features. In this work, the constrained GRID database [Cooke

et al., 2006] was used, consisting of 1,000 utterances from 15 speakers. Viseme

HMMs were built using the same procedure as adopted by previous state-of-the-

art lip-reading systems. For this speaker-independent task, AAM-based features

performed best, achieving 65% word accuracy. Although this is a promising result,

audio ASR systems perform significantly better, reporting error rates because the

recognition accuracies are so high [Cooke et al., 2006].

Further work conducted in [Lan et al., 2010] provides a comparison of systems

using different audio and visual features. The audiovisual corpus consisted of 200

sentences being recited by 12 speakers. The extracted features are passed through

a network of viseme HMMs (described in Section 2.4) to perform recognition. The

reported viseme accuracies (i.e. an accuracy measure based on counting viseme

tokens, not on whole word tokens) demonstrate the significant divide between audio

and visual ASR. As expected, the audio task using MFCC features obtained a

high accuracy (80%) — a figure that can be expected from state-of-the-art audio

ASR systems. However, using AAM features (consisting of shape and appearance

information), the viseme accuracy drops significantly to 35%. Although viseme

accuracies provide an indication of how well a recogniser is performing, there is no

clear translation into word accuracy results.
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[Cox et al., 2008] presents word-level accuracies based on a simple isolated letter

task. Here, each of the 26 letters of the alphabet are recited for seven repetitions.

AAM, Sieve and MFCC (audio) features are extracted and used independently to

train word-level HMMs (i.e. an HMM for each isolated letter) for recognition. The

results presented from this work show some promise. For the single-speaker case,

results using visual AAM features are consistently over 80%. Similarly, for multi-

speaker, reported accuracies are also consistently high at over 80%. However, in

the speaker-independent task, AAM visual accuracy drops significantly to below

10%. When considering this is a highly-constrained task, it is clear that, in the

speaker-independent task, inter-speaker variability is having a detrimental affect on

accuracy. Logically, this is due to the large variation in a speaker’s mouth shapes

both when at rest and during speech production. This work also presents findings

from analysis of the MFCC (audio) and AAM (visual) features, illustrating that

AAMs are almost entirely speaker-dependent, unlike its audio equivalent.

Finally, [Hilder et al., 2009] presents a comparison between human-based and

machine-based lip-reading. This work compares the use of shape-only features

(point-lights projected on a black surface providing positional data of the main

landmarks of the face) and shape and appearance features (describing texture vari-

ation). The first part of the experiment involved using a small, restricted vocabu-

lary (containing the letters A through F). Using only shape-based information, the

machine-based approach is significantly superior to humans with a machine multi-

speaker accuracy of 74.29% and a human letter accuracy of 42.9%. [Hilder et al.,

2009] concludes that this is likely due to the amount of confusion between the final

vowel sounds in three of the letters: C, D, and E. When using shape and appearance

(i.e. including the texture information), human performance improved to 71.6% but

was still slightly inferior to machine-based performance, obtaining 75.24%.

A further experiment explored the advantages of having data to train the machine-

based lip-reading system. Here, a new dataset is recorded consisting of one speaker

reciting 225 monosyllabic words and 120 nonsense words consisting of either a vowel-
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consonant-vowel (VCV) or consonant-vowel-consonant (CVC) structure. For the hu-

man recognition task, 19 people were tested on their lip-reading ability before and

after training. The results show that, for the simple monosyllabic word task, humans

were able to improve their scores, with a word accuracy increase of 3.95%. In com-

parison with the machine-based approach, humans were able to perform significantly

better at recognising whole words (word accuracy scores of 18.42% for humans and

3.75% for machines). However, for the recognition of phonemes, human scores were

poor (31.60%) whilst machine-based scores were very high (80.27%). As discussed

in [Hilder et al., 2009], this probably is due to the prior knowledge of the language

and the constraints that the language model brings to allowed words, knowledge

which is not available to the machine-based system.

3.5 Dysarthric Speech Recognition

Dysarthria is a disorder affecting the control and coordination of articulatory mus-

cles, causing less intelligible speech. The muscles affected may include the lungs,

pharynx, soft palate or front-end articulators such as the lips, teeth or jaw. Poor

control over articulatory muscles can cause speech to become slurred, introducing

errors in the produced speech in the form of substitutions, insertions, and deletions.

The work introduced in [Morales, 2009] attempts to improve the recognition ac-

curacy of dysarthric speech recognition by studying confusion patterns in phoneme

substitutions, deletions and insertions that are a direct result of poor muscle control.

Initial work introduced in [Morales and Cox, 2007] explores the use of metamodels to

model the speaker’s confusion matrix. [Morales and Cox, 2007] describes the meta-

model as a structure similar to an HMM whereby a sequence of states are connected

with weighted transitions which model the possible phoneme sequence (including

insertions) to be produced by the recogniser. These metamodel structures are used

to model the observed confusion patterns of a speaker and used to correct decoded

phoneme sequences. For low-intelligibility speakers, accuracy increased significantly

using this method due to the strong substitution patterns observed by the system
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during training. However, this accuracy gain is not observed in more intelligible

dysarthric speakers. Furthermore, the modelling of deleted phonemes is difficult

within the metamodel framework so they are usually modelled using an additional

phoneme class labelled DELETION [Morales and Cox, 2007] — another limitation

which could affect recognition accuracy for certain speakers. [Morales, 2009] con-

tinued by exploring the use of a weighted finite-state transducer (WFST) cascade

to correct decoded sequences. Unlike metamodels, WFSTs have the advantage of

modelling a deletion (or an insertion) with the use of an epsilon arc (described in

Section 2.6.1.2). WFST cascades require a large amount of phoneme-level confu-

sion information in order to estimate their parameters. Therefore, the work extends

the confusion model to use non-negative matrix factorisation (NMF) to build a less

sparse confusion matrix estimate for a dysarthric speaker. Using these techniques,

Morales was able to improve recognition of dysarthric ASR for both low- and high-

intelligibility speakers from 59% to 74% word accuracy.

The work presented in [Morales and Cox, 2008] was predicated on the patterns

of substitutions, deletions and insertions that are produced by a dysarthric speaker.

In this way, the requirements of a confusion model for dysarthric speech can be

compared to that of a lip-reading system. With information that is not observed on

the visible articulators in speech, many acoustical sounds are incorrectly recognised

because they have identical lip shapes (e.g. /b/ and /m/ ). Deletions are also a

common occurrence in automated lip-reading, with missing information from the

velum and vocal cord in the visual speech signal. With the epsilon (i.e. the ‘free

move’) arc, WFSTs can model deleted sequences easily. The comparison between

confusion modelling for dysarthric ASR and automated lip-reading provides the

main motivation for this work.
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3.6 Weighted Finite-state Transducers in ASR

Weighted finite-state transducers (WFST) are described in Section 2.6. Here, the

idea of composition was introduced as a method to perform complex transitive trans-

lation between symbols. This has significant relevance for applications to ASR, with

much work focussing on using finite-state theory to improve recognition performance

[Mohri et al., 2005; Mohri, 1997; Pereira and Riley, 1997]. The ASR composition

cascade consists of a set of WFSTs that, when composed together, form an effi-

cient speech recognition system. [Mohri, 1997] defines each of these models as the

following:

• O: the acoustic observations,

• A: an acoustic model to map the acoustical observations to context-dependent

phones,

• C: a model to map context-dependent to context-independent phones,

• L: a lexicon (pronunciation dictionary) to map the sequences of context-

independent phones to words,

• G: the sentence-level grammar model to map words to sentences.

For decoding using weighted transducers over the tropical semiring (as described

in Section 2.6), a hypothesis is produced as the path with the shortest cost (denoted

by π) through the set of composed weighted transducers:

π

(
O ◦ A ◦ C ◦ L ◦G

)
(3.1)

In general, these composed networks can expand exponentially in size through

the composition cascade, introducing space and time efficiency issues. Therefore,

it is necessary to prune networks at each level of the composition cascade using

determinization and minimization for weighted automata (described in Sections

2.6.2.1 and 2.6.2.2 respectively).
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The WFST approach to ASR can be adapted to incorporate confusion patterns.

Substitutions, insertion and deletion patterns can be modelled explicitly using a

dedicated confusion weighted transducer, taking advantage of the transducer’s ability

to translate symbols given a specified weight. This technique has been applied to

open-vocabulary spoken utterance retrieval [Hori et al., 2007], keyword-spotting

[Karanasou et al., 2012], and dysarthric ASR [Morales and Cox, 2008]. In the

work presented by [Morales and Cox, 2008], observed confusion patterns are used to

build a confusion matrix modelling the substitutions, insertions, and deletions of a

dysarthric speaker. In this work, the four weighted transducers that are included in

the composition cascade are defined as: P ∗, C, L, and G. Each weighted transducer

is described in detail with an example in Figures 3.4, 3.5, 3.6, and 3.7.

• P ∗: the decoded sequence of phonemes produced by the recogniser,

0 1hh:hh 2ih:ih 3l:l 4ow:ow 5hh:hh 6aw:aw
uw:uw

7aa:aa 8r:r 9w:w 10uw:uw

Figure 3.4: P ∗ - the phoneme-level hypothesis produced by the state-of-the-art ASR
system. This symbol sequence is most likely to contain incorrect (noisy) entries that
can be corrected in the cascade.

• C: a transducer modelling the possible confusions and associated probabilities

of insertions, substitutions and deletions. The confusion matrices are used in

this process to model substitutions whilst information regarding patterns of

deletions and insertions are observed from the training sequences and modelled

using additional columns in the confusion matrix (see Section 2.5),
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Figure 3.5: C performs the substitutions, insertions and deletions according to
the confusion patterns in the estimated confusion matrix. In this example, most
translations are taken from the diagonal elements of the confusion matrix (‘null’ sub-
stitutions). Off-diagonal substitutions (recognising /w/ instead of /y/, an insertion
of /ax/ and a deletion of /ih/ ) are also modelled here.

• L: the lexicon (dictionary) transducer - mapping sequences of legal phoneme

sequences into complete words,
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Figure 3.6: L - the lexicon WFST maps sequences of ground-truth phonemes to
whole words. This example models a five-word vocabulary — {HELLO, HOW, ARE,
YOU, WHO}. The input alphabet is a set of phoneme strings whilst output alphabet
on the final arc of each path are words. In most cases, words are treated as equally
weighted entities in a non-weighted transducer.
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• G: defines a sentence-level grammar which has been defined by the language

model.
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Figure 3.7: G - a sentence-level language model can take the form of an n-gram
model (described in Section 2.3). This example is a unigram (1-gram) language model,
allowing any word to follow any other word with an associated cost (defined over the
tropical semiring).

This framework provides a powerful decoding system whereby speaker confusions

can be corrected before the enforcement of the language model. However, as with

the standard WFST cascade used for ASR tasks, the composition of these weighted

transducers can expand the resulting network by exponential growth. Depending

on the topology and complexity of the confusion transducer (C), these problems

can be overcome with the use of determinization and minimization. The work pre-

sented in [Mohri and Riley, 1997] evaluates the efficiency gain that can be obtained

by performing determinization and minimization in a LVASR task. They use word

networks taken from the ARPA ATIS task with a 1500-word vocabulary. For an

example sentence (one of the smallest in the corpus), the network contains approx-

imately 151 million paths. Using only determinization, the number of states can be

reduced by a factor of three and the number of transitions also reduced by a factor

of nine. After determinization and minimization, the network is optimised further,

producing a pruned network that contains five times less states and 17 times less

transitions than the original network [Mohri and Riley, 1997].

In this thesis, we use the OpenFST library [Allauzen et al., 2007] to construct,

manipulate and compose WFSTs. We also use an additional tool, OpenGRM [Roark
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et al., 2012], to construct word-level n-gram language models which are used in the

composition cascade.

3.7 Conclusions

This chapter has presented a review of the current literature in fields related to this

work. Firstly, the human speech production system is described — focussing on the

adjustable parameters that produce distinctive sounds (i.e. the articulators). From

understanding the physiology of the speech system, phonemes provide a quantifiable

unit of acoustic sound, with a sequence of phonemes being concatenated together

to form words in any language. Although the phoneme provides a strongly-defined

unit of acoustical speech sounds, the lack of information in the visual modality

introduces phoneme confusions. For phonemic sounds that are similar in their visual

appearance, visemes have been defined as a visual equivalent to the well-defined

audio phoneme. However, finding a strongly defined phoneme-to-viseme mapping

has been the subject of much research for many years.

Recent work in multi-modal ASR has sparked an interest in the visual speech

signal, with visual cues providing an additional source of information. Under noisy

acoustical conditions, information extracted from the visual modality can provide

important cues to improve ASR decoding accuracy. The work presented in [Liang

et al., 2002] shows that ASR word error rates decrease dramatically when noise is

introduced into the acoustic signal where the visual signal is unaffected. Automated

lip-reading can be considered as an extreme case of audio-visual speech recognition,

where the auditory contribution of speech is unintelligible as a result of a noisy

channel [Stork and Hennecke, 1996].

Recent work in visual-only ASR has mimicked that of a conventional audio ASR

system. Visual feature extraction methods have been compared in previous litera-

ture, with AAMs being the best compact representation of the lip shape and ap-

pearance. Despite some initial promise, automated lip-reading systems have yielded
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low accuracies, with most lip-reading systems either reporting viseme accuracy or

performing recognition on simple, language-constrained tasks.

The structure of sound-based confusions in lip-reading can be compared to that

of a dysarthric speaker. With very little control over articulatory muscles, dysarthric

speakers introduce confusability into their speech sounds in the form of substitutions,

insertions and deletions. [Morales, 2009] presents work that focuses on modelling

these confusion patterns to improve decoding of dysarthric speech. The initial work

uses a series of metamodels to correct the confusions occurring in speech production.

However, due to the structure of these models, limitations exist for modelling deleted

sounds. A more flexible solution is proposed, using a powerful network of weighted

finite-state transducers to perform corrections. WFSTs provide a framework to

model deletions using the ε-symbol transition.



Chapter 4

Description of Datasets

4.1 Introduction

Collecting audio-visual speech corpora is a time-consuming process. Unlike audio-

only speech corpora, these datasets need to be recorded in an environment that is

appropriate for both modalities. Consequently, there are few publically-available

audio-visual speech corpora that can be used for lip-reading experiments, and most

include some undesired variability that could affect the visual signal. To fulfill the

requirements of this work, two new datasets have been specially recorded.

Section 4.2 describes a new isolated word dataset that is designed to concentrate

on modelling the confusion patterns in visual speech on a small scale. A small

vocabulary consisting of 211 words is carefully selected. Words are selected to cover

a broad range of phoneme bigram frequencies.

An isolated word task provides a simple framework to concentrate on techniques

to model visual confusions in speech. However, it does lack the richness that contin-

uous speech provides. Section 4.3 describes an existing dataset used for the language

independent lip-reading (LILiR) project and introduced in [Lan et al., 2010]. With

200 sentences of continuous speech, the LILiR dataset provides a rich context, and

more natural speech from which to build confusion models.

63
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Finally, Section 4.4 describes a new, much larger dataset that has been specially

recorded for the purpose of this work, consisting of 3000 sentences taken from the

Resource Management corpus [Price et al., 1988], a standard corpus used previously

in ASR work. This is the largest-known single-speaker, continuous dataset that has

been designed for automated lip-reading tasks.

4.2 ISO-211 - An Isolated Word Dataset

An isolated-word dataset has been specially-recorded for the purpose of this work.

In this work, we are attempting to construct confusion models of phonemes. For

our initial efforts, we need as little influence as possible from a language model and

from complex coarticulation effects that can occur across several words. Hence, we

start with an isolated word task.

Co-articulation has a significant influence of the lip movements of speech [Benguerel

and Pichora-Fuller, 1982; Cohen and Massaro, 1993; Fowler, 1984]. To avoid coar-

ticulation having an effect on the initial experiments, words were chosen from the

BEEP dictionary [Cambridge-University, 2012] with careful consideration to pro-

vide the maximum coverage of bigram phonemes over the total bigram phoneme

count observed in the corpus. Figure 4.1 shows the distribution of bigram occur-

rences in the dictionary (consisting of 257,059 words). As expected, the majority

of the dictionary can be covered by selecting a relatively small number of bigrams.

For example, by taking only 800 bigrams (just over half of the total amount), the

dictionary coverage can be as high as 98%. To minimise the amount of recording

required by the guest subject, it was important to find a good compromise between

maximising the number of bigram phonemes observed and the total percentage of

the dictionary covered by these bigrams. Hence, it was considered acceptable to

cover 80.2% of the dictionary with a total of 211 words. These words can be found

in Appendix A.

Figure 4.2 compares bigram coverage in the BEEP dictionary with coverage in



CHAPTER 4. DESCRIPTION OF DATASETS 65

the new isolated word corpus. Although the frequencies are more well-defined in the

BEEP dictionary, it is clear to see similarities in bigram relationships between these

two sets of data. Both sets contain higher frequencies of vowel followed by consonant

and consonant followed by vowel. Patterns away from these highly populated areas

are also similar between the two sets, suggesting strong similarities in the nature of

bigram occurrences. Ultimately, Figure 4.2 shows that the extracted words used in

the new isolated word dataset provide a good representation of the BEEP dictionary

data but with very few words.

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600
0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

Number of Bigrams

P
e

rc
e

n
ta

g
e

 o
f 

D
ic

ti
o

n
a

ry
 C

o
v
e

re
d

Figure 4.1: ss from the BEEP dictionary [Cambridge-University, 2012] with the
percentage of the dictionary covered.
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The data were captured from a single female speaker in a specialised recording

environment with the equipment setup as pictured in Figure 4.3. Video was recorded

using a Sanyo Xacti camera in portrait orientation at 1080 x 1920 pixel resolution

using progressive scan at a sampling frequency of 59.94 frames per second (fps).

Audio was captured using a clip microphone recording at a sampling frequency of

48kHz. The microphone was positioned on the shirt collar of the subject (as pictured

in Figure 4.4). To provide an easier video to track and to avoid any potential issues

with the camera focus, video was recorded from the whole face with a full-frontal

pose. Six repetitions were captured and words were mixed between folds to avoid

any session bias. Although this mix was performed, no fold obtained more than

one repetition of a word. This was done to maintain an even word and phoneme

distribution across all folds.

The complete dataset consists of six repetitions of each word. To eliminate any

bias towards the order, words were randomised for each repetition. Each word was

displayed in turn on a laptop screen positioned in front of the subject and there was

a five second interval to pronounce the word before prompting the next word with

a beep tone. The subject was advised to sit as still as possible and to pronounce

the words to the best of her ability. Recording repetitions lasted approximately 30

minutes each and were collected over three separate sessions. As expected, during

this time, the subject occluded the areas of interest for a small number of frames,

but, these occurred mostly during the silence or sound of the beep and so did not

affect the resulting data. Words where the subject did occlude the lip region were

removed from the dataset. A description of the recording plan can be found in Table

4.1.

[Newman, 2011] explores the use of three different video resolutions (640 x 360,

1080 x 720 and 1920 x 1080) in visual-phone lip-reading recognition and find no

gain in accuracy when using higher resolutions. Therefore, to improve the time

efficiency of the feature extraction process, videos were down-sampled to a third of

their original resolution to 360 x 640 pixels. Firstly, a selection of between 20 to
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30 frames were selected from each of the six session videos for hand-labelling. A

total of 111 2D points were labelled over the whole face to ensure stability when

tracking using the inverse compositional project-out algorithm. An example frame

is shown in Figure 4.4 with landmark points labelled on the face: eight points on

each eyebrow, 12 points on each eye, 2 points per nostril, 19 points around the chin

and up the edge of the head to eye-level, 28 points on the outer lip contour, and

20 on the inner lip contour. After tracking, inner and outer lip contour points are

the only landmarks to be retained for the AAM feature extraction process. PCA is

performed on the shape and appearance features and 85% of variation is retained in

both modes (described in more detail in Section 2.2.1). Velocity (∆) and acceleration

(∆∆) features are also concatenated before a dimension-wise z-score normalisation

is performed (as described in Section 2.2.2). Finally, words are randomised between

repetitions to remove any session bias.

Light

Video Camera
Subject

Reflective 
Surface

Figure 4.3: An illustration describing the setup used for recording the single-speaker
isolated word dataset. The controlled environment was achieved with the use of a spot
light against a reflective surface. The subject was sat upright in a chair with the video
camera focussed into the whole face and turned into portrait mode.
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Repetition Session
No. of
Words

No. of
Frames

No. of
Hand-

Labelled
Frames

Example
Frame

1 1 211 70,024 20

2 2 205 72,648 16

3 2 210 72,471 18

4 3 209 73,609 15

5 3 211 73,669 15

6 3 210 73,788 15

Table 4.1: A description of the specially-recorded audio-visual isolated word dataset.
Six repetitions were recorded from one female speaker reciting 211 carefully-selected
words. Recordings spanned over three separate sessions, lasting between 20 to 30
minutes each. Each video was down-sampled from 1920 x 1080 pixels to 640 x 360
pixels to improve tracking and feature extraction computational efficiency.
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Figure 4.4: An example frame from the isolated-word dataset consisting 6 repetitions
of 211 words by a female speaker. Landmarks are hand-labelled on 20 to 30 images
on the face to aid tracking. Points on other parts of the face other than the lips are
discarded for feature extraction.
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4.3 LILiR-200 - A Small Continuous Speech Dataset

The Language Independent Lip Reading (LILiR) project is a collaboration between

the Speech and Language Processing Laboratory at the University of East Anglia

with the Centre for Vision, Speech and Signal Processing Laboratory at the Univer-

sity of Surrey. When the project began, very few audio-visual speech corpora were

publicly available. Therefore, the first task on the LILiR project was to construct a

large, multi-speaker, audio-visual dataset.

Data were collected in a specialised recording environment in controlled lighting

conditions. The original dataset consists of 20 speakers each reciting 200 sentences

from the Resource Management Corpus [Price et al., 1988]. Each speaker records

their contribution in a single sitting to avoid any subtle differences in illumination.

The video was recorded using a tri-chip Thomson Viper FilmStream high-definition

camera at a sampling frequency of 25 frames per second and recorded with the

subjects in full-frontal pose. To provide a smoother frame transition and a frame

rate that was comparable with the audio, the original video is up-sampled to 100

frames per second. All speakers were instructed to remain as still as possible and to

avoid the occlusion of any facial area.

Speaker variability in lip-reading is an area that has been clearly identified in

previous work [Cox et al., 2008; Lan et al., 2010]. However, as this work focuses on

developing an improved technique for lip-reading, for present purposes, we use the

data of a single (male) speaker here. An example of a single frame from the chosen

speaker’s session is shown in Figure 4.5. Here, the lips are tracked using the inverse

compositional project-out algorithm with additional points added to the eyebrows

and eyes to ensure the tracker remains in the correct position. These points are

then removed before the feature extraction process to leave 16 points on the inner

lip contour and 22 points on the outer lip contour.
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4.4 RM-3000 - A Large Continuous Speech Dataset

It was found in Chapter 5 that the isolated word task was too easy for development

of our confusion modelling techniques, and a new dataset was required that used

continuous speech. The already-available LILiR dataset was ideal for preliminary

experiments. However, although this dataset benefits from being a realistic task with

a rich set of speakers, the amount of data for an individual speaker is 200 sentences,

which was found to be inadequate to train the confusion matrix. To avoid speaker

variability, work continued on the speaker-dependent case to refine the confusion

modelling techniques. The RM-3000 dataset was recorded for the work described in

Chapter 6 and Chapter 7.

The data consists of 3000 sentences spoken by a native English male speaker.

The sentences were randomly chosen from the 8000 sentences in the Resource Man-

agement (RM) Corpus [Price et al., 1988]. The choice of corpus was motivated by

the popularity of the RM corpus in previous audio and lip-reading tasks. Further-

more, recent work in automated lip-reading that has been conducted by our research

group has used the RM corpus for their experiments [Lan et al., 2010], so it will be

possible to make comparisons to current state-of-the-art lip-reading systems. The

RM database has a vocabulary of almost 1000 words — an appropriate size for the

current state-of-the-art in visual speech recognition. Phoneme transcriptions were

derived from the first (the most common) pronunciation found in the BEEP Dictio-

nary [Cambridge-University, 2012]. Statistics from the captured data are shown in

Table 4.2.

Sentences were recorded in 19 sessions spanning a three day period. Videos were

captured using a Sanyo Xacti high-definition camera using progressive scan at 59.94

frames per second. High quality audio was captured simultaneously using a clip-

microphone attached to the subject’s shirt collar and recording at a bit depth of

16-bit and a sampling rate of 48 kHz on a mono channel. The videos were recorded

with the camera in portrait mode with the subject in full-frontal pose and down-

sampled from 1920 pixels x 1080 pixels to 360 pixels x 640 pixels (one third of the
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Statistic
Total number of sentences 3,000
Total number of unique phonemes 45
Total Number of phoneme tokens 105,561
Total Number of unique words 979
Total number of word tokens 26,114
Average number of phonemes per sentence 35.19
Average number of words per sentence 8.70
Average number of phonemes per word 4.04

Table 4.2: Statistics from the captured data taken from the selected subset of the
Resource Management (RM) corpus.

original size). The recording apparatus was set up in the room using an identical

configuration to that used in the isolated word dataset capture (illustrated in Figure

4.3).

After recording, the videos were post-processed to extract image frames and

a small set of between 20 to 30 images were hand-labelled from each session to

define the landmarks. To improve the accuracy of the tracking process, as with

previous data capture, additional landmarks were labelled including the eyes, eye-

brows, nose, and jaw-line up to the forehead. Using the hand-labelled images and

an AAM, the landmarks are tracked using the inverse compositional project-out

algorithm (described in Section 2.2.1). Only inner (12 points) and outer (16 points)

lip contour points were retained from the complete set of 93 landmarks for the feature

extraction process. For the entire corpus, a manual segmentation was performed to

obtain the start and end frame marker for each sentence. Combining the tracked

image sequences and the sentence frame boundaries, landmark points were defined

for each frame before AAM parameters are computed, retaining 95% of variation in

the shape mode and 90% variation in the appearance mode.
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Figure 4.6: An example frame from a recording of the 3000-sentence RM database.
A total of 93 points are labelled on the face to improve accuracy of the tracking
procedure. After tracking, only inner (12 points) and outer (16) points are retained
for feature extraction.
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4.5 Summary

This chapter presents the three audio-visual datasets which have been used through-

out this thesis. For initial experiments, we avoided the effects caused by continuous

speech and maintained a focus on modelling the patterns of confusions by recording

an isolated word dataset (ISO-211) consisting of approximately 1250 words from a

single speaker. This gives us a controlled environment in which to perform an initial

investigation but also comes with its limitations.

The progression of our work leads to the continuous speech task where we use

two datasets. The first is LILiR-200 — a subset of an existing dataset which has

been used in previous lip-reading work. At the start of Chapter 6, we evaluate

the recognition accuracy for the LILiR-200 dataset using the standard approach

and find that word accuracy is severely affected. Finally, we record a much larger

dataset, named RM-3000, which contains 3000 sentences and uses a medium-sized

vocabulary of approximately 1000 words.

Throughout this thesis, we maintain the use of single-speaker datasets to avoid

the variation between the lip movements of different speakers. All of the subjects

that were recorded in these datasets were native English speakers and videos were

recorded in controlled lighting conditions in all datasets.



Chapter 5

Confusion Modelling for Isolated

Words

5.1 Motivation and Aims

Chapter 3 presented a review of the current state-of-the-art automated lip-reading

systems, with recent studies having shown that automated lip-reading performs

significantly worse than audio speech recognition [Cox, 2008; Lan et al., 2010]. These

poor results are most likely due to the lack of speech information available in a

visual signal. For example, the position of some articulators cannot be seen, so

there is no way to tell, for example, whether a sound is voiced or unvoiced. In

addition, the purpose of speech is to produce distinctive sounds to convey a message,

and the particular mouth-shapes used to produce these sounds are (usually) of no

concern to the speaker: it is quite possible to produce a perfectly intelligible audio

signal from mouth-shapes that are not distinct, something that is verified by human

lip-readers who report that some people are much more “readable” than others.

Furthermore, mouth shapes are severely affected by co-articulation [Jackson, 1988].

These limitations lead human lip-readers to make heavy use of pragmatics and

contextual information to understand what is being spoken [Hansen and Coleman,

2005].

78
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The original motivation for this work (detailed in Section 1.1) comes from previ-

ous work in confusion modelling for dysarthric speech recognition (see Section 3.5).

Dysarthric speakers have poor control over their articulators which leads to the sub-

stitution, insertion, and deletion of sounds in the speech signal. The visual speech

signal has an interesting relationship with the audio speech signal from a dysarthric

speaker, with both paradigms producing a limited phonetic repertoire. We exploit

patterns of confusions between the ground-truth and recognised sequences to find

the most likely decoded sequence.

This chapter describes the first set of experiments in confusion modelling with

the aim of improving the recognition accuracy of automated lip-reading. We start

by using a simple, isolated word dataset which has been specially recorded for the

purpose of this work (described in Section 4.2). The isolated word dataset has

a vocabulary of only 211 words where each utterance consists of just one of these

words. The simplicity of the task ensures that the work can concentrate on modelling

the observable lip confusion patterns without additional variability (e.g. speaker-

variability or word boundaries in a sentence) being introduced. The baseline system

is known as the “standard approach” (described in Section 5.2) whilst our new

confusion modelling technique is known as the “proposed approach”. A comparison

of these two approaches is illustrated in Figure 5.1. In the proposed system, a

correction module is inserted at the end of the recognition pipeline to correct the

noisy transcriptions produced by the standard approach. With a model that is able

to correct phoneme strings based on confusion likelihoods, a cascade of weighted

finite-state transducers (as discussed in Section 3.6) can be used to find the best

translation of the input phoneme string to a word string.

This chapter is structured as follows: Section 5.2 describes the standard approach

to lip-reading and the application to the isolated word dataset, presenting baseline

recognition results using a network of HMMs. Following this, a WFST composition

cascade is introduced with an additional confusion model that is aimed at improving

recognition accuracy.
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Although the results from preliminary experiments show some promise, we ad-

dress the issues with using confusions derived purely from a symbolic alignment

and propose a new classification method using timing information of the aligned

phonemes. A new algorithm is proposed in Section 5.3.2.1 to identify confusions pro-

duced by a symbolic alignment as ‘genuine’ or ‘spurious’ by enforcing constraints on

allowed confusions. Section 5.4 describes two additional techniques to improve the

performance of the confusion modelling system further: adaptive confusion training

(Section 5.4.1), and bigram confusion modelling (Section 5.4.2). Finally, this chap-

ter is concluded in Section 5.5, where limitations are discussed and motivations for

the next chapter are presented.

5.2 The Standard Approach

A baseline accuracy is first set using the standard approach. We build a state-of-

the-art automated lip-reading system following a similar approach to that presented

in previous literature [Lan et al., 2010; Newman et al., 2010]. In these works, a

collection of viseme HMMs are built, each representing a (supposedly) unique ges-

ture in the visual domain of speech. The phoneme-to-viseme groupings typically

collapse the 45-phoneme symbol space into approximately 14 symbols (depending

which phoneme-to-viseme mapping is deployed). A typical example of a phoneme-

to-viseme mapping is combining the bilabial phonemes /p/, /b/, and /m/ into a

single visemic class. However, we are attempting to model the confusion patterns

between phonemes to ‘correct’ noisy phoneme output strings. To group the con-

fusable phonemes together from the outset would defeat the purpose of the work.

Therefore, we retain phoneme models of visual speech. The issue of viseme/phoneme

modelling is discussed at length in Chapter 6.

The standard approach to automated lip-reading uses a network of mono-viseme

HMMs (described in Section 2.4) to capture the variation in the time-series visual

features (computed on a frame-by-frame basis). As with a typical state-of-the-art
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audio ASR systems, an HMM is built for each of the 44 phonemes in the English

language with an additional phoneme to model silence (for the isolated word task,

silences will only appear at the start and end of each word). These monophone

HMMs have a left-to-right topology, conforming to the progressive nature of speech

production and are initialised using the flat start procedure and ten iterations of

embedded training with the Baum-Welch algorithm using HTK.

The 1256 words are split evenly into six folds. To avoid any bias towards a

particular session, words are randomised between folds such that no word appears

in the same fold more than once. The six folds are then split into two sets for

standard automated lip-reading: a training set consisting of five folds, and a testing

set consisting of the remaining fold. Cross-fold validation is performed to provide a

fair test with each fold being used for testing. Results over cross-fold tests can be

computed as the average accuracy over the six recognition tests.

All conceivable left-to-right HMM topologies were explored during these tests,

with the number of states and number of mixture components per model individually

ranging from 1 to 15. Figure 5.2 presents the results from performing phoneme-level

recognition using phoneme HMMs with a phoneme bigram language model. Over all

topologies, the HMM with five emitting states and eleven mixture components per

state provided the best parameters to maximise the word recognition accuracy at

60%. The results presented in Figure 5.3 provide word-level recognition results using

the standard approach. In this case, the word-level accuracy peaks at 59% — an

accuracy that is very close to the phoneme accuracy. When recognising whole words

using phoneme-level HMMs, the HTK toolkit [Young, 2001] builds a word recogni-

tion network containing sub-word (phoneme) HMMs. Along with a language model,

the decoding process chooses the most likely word from the vocabulary (in this case,

only 211 possible words). However, when performing phoneme-level recognition,

each word consists of six to eight phonemes on average, with each phoneme having

a maximum of 44 possible symbols (the remaining sil model is reserved only for

termination purposes). An insertion penalty is also optimised to reduce or increase
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the number of decoded phonemes.
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Figure 5.2: Phoneme recognition results on the isolated word dataset using a net-
work of phoneme HMMs - a technique considered to be state-of-the-art in automated
lip-reading. A phoneme bigram language model is used to improve recognition accu-
racy.
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Figure 5.3: Word recognition results on the isolated word dataset using the standard
approach to automated lip-reading (HMMs). This result provides the optimal baseline
recognition accuracy for the isolated word task.
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5.3 The Proposed Approach

The lip-reading accuracy reported in Section 5.2 (60%) is significantly inferior to

that of a state-of-the-art audio ASR system. The proposed technique builds an ad-

ditional confusion model to correct noisy phoneme strings produced by the standard

ASR recogniser. Dysarthric audio ASR uses a WFST cascade structure and here,

we adopt a similar approach to [Morales, 2009] by adding a confusion transducer to

make corrections to the noisy transcriptions based upon visually-confused lip move-

ments of sounds. The confusion cascade used for this work consists of three WFSTs

composed as shown in Equation 5.1 where: P ∗ models the noisy decoded phoneme

sequence, C models the confusion patterns (observed in the form of substitutions,

insertions, or deletions), and D provides a mapping for phoneme sequences to be

translated into words. For sentence-level experiments, an additional language model

transducer is composed after the final stage to restrict sequences of words using an

n-gram model. However, for the application to the isolated word task, this WFST

is not required. Thus, the output from the recogniser is given as the best path (π)

through the network:

π

(
P ∗ ◦ C ◦D

)
, (5.1)

where π denotes an operation to find the shortest path through the composed net-

work of WFSTs.

In the standard approach, the data were split into two sets: a training set consist-

ing of five folds, and a testing set consisting of one fold. However, in the proposed

approach, the additional confusion model also needs to be trained using a further

held-out segment of the data. Therefore, for the experiments conducted on the pro-

posed approach, the dataset is divided into three segments: training — four folds

used to train the HMMs in the same procedure as the standard approach, testing

— one fold used to train the confusion model, and the final validation fold to test

the performance of the new confusion model.
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5.3.1 Use of the top decoding only

The first WFST to be constructed in the composition cascade is P ∗, a weighted trans-

ducer that represents the phoneme string to be corrected (i.e. the noisy phoneme

sequence produced by the standard decoding approach). Phoneme recognition (us-

ing the standard approach) is performed independently on the testing set and the

validation set over all folds using a phoneme bigram language model. This produces

a set of decoded phoneme strings. To ensure maximum accuracy is achieved, the

HMM parameters are chosen based on the most accurate phoneme decoding from

the results presented in Figure 5.2. These decoded strings are then used to build a

set of P ∗ WFSTs.

As the P ∗ WFST is the first transducer in the WFST cascade, there is no re-

quirement for symbol translation. For this reason, P ∗ WFSTs are constructed such

that each input symbol is always transduced to the same output symbol (equivalent

to a finite-state automaton). A P ∗ WFST for a 1-best (i.e. most-likely) decoded

sequence is modelled as a sequential path from a start state to an end state. Each

arc represents a symbol decoded at a specific time. Section 3.6 introduces the use

of the composition cascade in audio ASR, providing an example of a P ∗ WFST for

a small example sentence (see Figure 3.4). In this chapter, the P ∗ WFST repre-

sents the decoded phonetic sequence of a single, isolated word (including the ‘sil’

termination symbols). The example illustrated in Figure 5.4 represents the noisy

decoded phoneme sequence that has been produced by the standard phoneme HMM

recogniser. The weights associated with each path are the negative log likelihood of

observing the specific phoneme at a specified time. These are computed by the HMM

network using a combination of acoustic and language model likelihoods following

Equation 2.15.
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Figure 5.4: A standard ASR system has decoded a phoneme sequence that has been
used to construct a sequential P ∗ WFST. The arc weights are calculated using the
negative log likelihood for a specific symbol that has been produced by the standard
recogniser.

5.3.2 The Confusion Model

A confusion matrix can be derived from the decoded sequences produced by the

standard approach to lip-reading. Each decoded phoneme sequence is aligned to its

corresponding ground-truth phoneme sequence using a dynamic programming algo-

rithm. Figure 5.6 illustrates an example of an alignment between a ground-truth and

a decoded sequence. A confusion matrix can be estimated from these alignments in

the form of substitutions, insertions and deletions, where rows represent the ground-

truth phoneme and columns represent the recognised/decoded phoneme. Figure 5.7

illustrates a confusion matrix that has been estimated from the phoneme alignment

in Figure 5.6 with counts representing the frequency of the confusion between two

phonemes.

There are two possible methods of inferring the entries in a phoneme confusion

matrix. These are illustrated in Figure 5.5:

1. Decode the visual speech to be one of the 211 words in the vocabulary. Then,

translate the decoded word into a phoneme string and align it to the phoneme

transcription of the ground-truth word.

2. Decode the visual speech using a phoneme recogniser as a sequence of phonemes

and align this sequence to the phoneme transcription of the ground-truth word.

A phoneme bigram language model is used in the decoding process to guide the

decoding towards more likely bigrams. Unlike method 1, the decoded output
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Figure 5.5: An illustration of the two approaches to populating a phoneme confu-
sion matrix. Top shows the method of decoding one out of the 211 words from the
vocabulary. The decoder is forced to take one of the valid 211 paths through the net-
work of phoneme HMMs and produces the one with the highest likelihood. Bottom
illustrates an alternative approach, using a phoneme bigram language model to guide
the decoder to bigrams with a larger probability.
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is not restricted to a specific vocabulary and it is often made up of a sequence

that is not a word in the vocabulary.

Del.

Ground-Truth:    d  ih  f     r  ax  n  t

Recognised:        t  ih  f  v  r      n  t

Sub. Ins.

Figure 5.6: An alignment between the ground-truth and recognised sequences using
dynamic programming for the phonetic transcription of the word different. Counts in
a confusion matrix can be populated using the substitutions (Sub.), insertions (Ins.),
and deletions (Del.) observed from the alignment.

d   f   n   t   r   v   ax  ih  DEL

d
f
n
t
r
v

ax
ih

INS

0   0   0   1   0   0   0   0   0
0   1   0   0   0   0   0   0   0
0   0   1   0   0   0   0   0   0
0   0   0   1   0   0   0   0   0
0   0   0   0   1   0   0   0   0
0   0   0   0   0   0   0   0   0
0   0   0   0   0   0   0   0   1
0   0   0   0   0   0   0   1   0
0   0   0   0   0   1   0   0   

Response

I
n
p
u
t

Figure 5.7: A confusion matrix that has been estimated from the phoneme alignment
in Figure 5.6. The input rows represent the ground-truth phonemes and the response
columns represent the decoded phonemes. The counts in the matrix represent the
frequency of each confusion between a ground-truth and decoded phoneme with an
additional row for insertions and column for deletions.

Figure 5.8 illustrates the phoneme confusion patterns that are produced by

these approaches: using a strict network enabling paths through legal sequences

of phonemes to build words, and using a phoneme bigram language model to enable

non-legal sequences of phonemes to be decoded. Strong visual confusion patterns

can easily be identified in Figure 5.8(b) using the phoneme bigram language model.
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Strong visually-confused sounds are substituted using this technique such as /d/

being mis-recognised as /s/ and the phoneme /s/ being confused with /t/, both

entirely plausible confusions in visual speech. However, the confusions in Figure

5.8(a) have little structure due to the influence of the strong language model, forc-

ing the decoded string to be derived from one of the 211 possible word paths.

The method of correction using these confusion patterns can be considered as

being a translation between two symbols with an associated probability. To correct

isolated phonemes in a given string, the translation can be modelled to replace the

hypothesised (incorrect) symbol with the ground-truth (correct) symbol. For exam-

ple, the first confusion observed in the alignment illustrated in Figure 5.6 can be

considered as a substitution, mapping the hypothesised symbol /t/ to the ground-

truth symbol /d/. Similarly, the deletion of the phoneme /ax/ can be modelled as

a translation from the hypothesised phoneme, the empty string, /-/, to the ground-

truth phoneme /ax/. This translation flips the original insertions to become dele-

tions and the deletions to become insertions. Figure 5.9 illustrates the use of these

confusions to correct the hypothesised phoneme sequence produced by the recog-

niser. The confusion WFST adopts a cyclic structure so that it can be applied in

the composition cascade with a P ∗ WFST of any size as input. By passing this incor-

rect sequence through this cyclic confusion transducer, the incorrect phonemes are

corrected whilst phonemes that are already considered to be correct are unchanged

after the transduction.

The output of the network that is produced by the composition of P ∗ and C is

a rich set of hypotheses. To ensure that the confusion model can perform plausible

translations that will improve the noisy phoneme sequence using the large set of

hypotheses available, a probabilistic framework needs to be used. Rows from the

count confusion matrix (as shown in Figure 5.8(b)) can be normalised using Equation

5.2 to produce a set of confusion probabilities where c(i, j) is the number of times

that phoneme pi was recognised as phoneme pj, and prob(i, j) is the new entry in

the probability confusion for the corresponding confusion:
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(a) A phoneme confusion matrix produced by performing word-level decoding using the standard
approach with a phoneme-to-word dictionary. Decoded words are decomposed into phonemes af-
ter recognition and aligned to the ground-truth to produce a set of substitutions, insertions, and
deletions.

(b) A phoneme confusion matrix derived from recognition using a phoneme bigram language model.
In contrast to using a word lattice, the bigram language model only favours phoneme pairs that
frequently occur at training but does not restrict the output to sequences of phonemes that make
words.

Figure 5.8: A comparison of the confusion patterns that can be observed when per-
forming recognition using the standard approach to automated lip-reading. The two
methods both require phoneme HMMs to be trained in the normal procedure. How-
ever, when performing recognition, words can be decoded using the HMM likelihoods
and a phoneme-to-word dictionary or a simple phoneme bigram language model can
be used to output a phoneme string.
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0

t:d/1.2
ih:ih/0.5
f:f/0.21
r:r/1.87
-:ax/3.23
n:n/1.22
t:t/-0.9
v:-/1.35

Figure 5.9: A cyclic confusion weighted finite-state transducer to correct the hy-
pothesised sequence produced by the recogniser in Figure 5.6. The deletion of the
phoneme ax in the hypothesised sequence is modelled in the confusion transducer
using the epsilon symbol (-) to reverse the error and insert a phoneme into the hy-
pothesised sequence. This epsilon symbol is reserved to allow ‘free’ transitions between
states and is used to model both insertions and deletions.

prob(i, j) =
c(i, j)∑n

m=1 c(i,m)
. (5.2)

Once an initial probabilistic model of confusions has been estimated, it is impor-

tant to smooth it to re-distribute some of the diagonal probability mass to other

elements on the row. This ensures that the diagonal (‘null substitution’) path is

not always taken. We can do this using confusion matrix smoothing techniques (as

described in Section 2.5.1). In this work, three smoothing methods are used:

1. Base smoothing — re-assigning a fixed percentage of the diagonal probabil-

ity to all other classes on the same row. More detail on base smoothing can

be found in Section 2.5.1.1.

2. Exponential smoothing — giving more control of the probability mass that

is re-distributed using a smoothing parameter α in Equation 2.18 to compute

the new probability.
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3. Base smoothing using visemic classes — using the same theory as base

smoothing (described in Section 2.5.1.1) but re-distributing probability mass

based upon prior knowledge of expected confusions in visual speech. Firstly, we

re-distribute an amount from the diagonal count across the row to all phonemes

except those in the same visemic class. For phonemes in the same visemic class,

the remaining diagonal count is split evenly between these classes. Smoothing

the counts for a given phoneme in this class — a specified percentage of the

diagonal count is re-distributed across the row (as with the standard base

smoothing procedure) before distributing the residual diagonal count evenly

between these three classes, making them equally likely to be confused. For

this experiment, we use the Fisher phoneme-to-viseme mapping [Fisher, 1968].

Finally, once the smoothing technique has been applied, the new probabilities can

be translated into negative log likelihoods using Equation 5.3. This conversion allows

the WFSTs to adopt the tropical semiring (described in Section 2.6) framework using

the following weight computation:

weight(p1, p2) = −log(Pr(p2|p1)), (5.3)

where Pr(p1, p2) is the probability of observing p2 (the decoded phoneme) when it

should have been p1 (the ground-truth phoneme) after smoothing. After composing

the P ∗ WFST with the confusion WFST (C), a rich set of hypotheses is produced.

For example, the composition of the P ∗ WFST shown in Figure 5.4 and the confusion

WFST shown in Figure 5.9, the first symbol could be translated from /t/ to either

/t/ or /d/. The next WFST in the cascade further narrows the set of possible paths

by only allowing the input to accept valid phoneme strings that produce words (the

dictionary transducer (D)).

Initial work was carried out using the confusion information obtained using a

standard recogniser. The HVite tool (which is part of HTK) produces a phoneme-

level confusion matrix based on an alignment between the recognised output and
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the ground-truth transcription. This is used to build a simple one-state transducer

modelling the unigram phoneme confusions (as illustrated in Figure 5.9). Because

we have a limited dataset consisting of 211 isolated words per fold, we produce the

top 100-best phoneme hypotheses from the standard approach recogniser to train

the confusion model, where the word accuracies are shown in Figure 5.10 using the

confusion matrix produced from the output of the standard recogniser. These results

are produced by using the three-level WFST composition with two confusion matrix

smoothing methods; base smoothing and base smoothing with visemic classes (both

described in previously in this section). The preliminary results are clearly inferior

to the results achieved by the standard approach with our system achieving a best

word accuracy of 21.42% using base smoothing with 5% distribution.
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Figure 5.10: Word-level recognition results using weighted finite-state transducers
to correct noisy output transcriptions. The confusion model is trained using the
output confusion matrix from the HMM recognition.

When forming the confusion matrix, because of the purely symbolic nature of the

DP alignment when forming the confusion matrix, the timing information of aligned

phonemes is ignored. It is considered that this could introduce noise into the confu-

sion model. To overcome this, an alternative method has been used to populate the

confusion matrix, which filters confusions based on the timing of decoded phonemes.
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5.3.2.1 Timing Offset Classification

System Word Accuracy
(std. deviation)

Standard Approach HMM
System

60.0% (4.2)

WFST Confusion System
with confusion from a
symbolic alignment

21.4% (3.3)

Table 5.1: Word recognition accuracies for the two approaches used in this work
so far. The ‘Standard Approach HMM System’ uses the standard approach to lip-
reading (using a network of HMMs), and ‘WFST Confusion System with confusion
from a symbolic alignment’ uses a WFST cascade with a confusion model that has
been trained using the confusion patterns that have been produced from the standard
approach phoneme recogniser.

The results shown in Table 5.1 compare the baseline system (i.e. the standard

HMM approach) with our confusion modelling approach using the confusion ma-

trix produced by the standard phoneme recogniser. The alignment procedure used

in the confusion modelling approach uses dynamic programming (an illustration of

this alignment is shown in Figure 5.6). This provides a purely symbolic alignment

of the two sequences. Although this is a reasonable method to produce recognition

statistics (such as decoding accuracy), if the alignment is used to produce confusion

patterns, some may be spurious. Figure 5.11 illustrates an example alignment be-

tween a ground-truth and recognised phoneme sequence for a single word. The DP

algorithm finds the alignment with the shortest cost and therefore gives precedence

to aligning correctly recognised phonemes in the correct position. Despite these

considerations, the DP algorithm is based purely on the alignment of symbols in a

sequence. Figure 5.12 illustrates the discrepancies in the time registration of each

recognised phoneme. Here, the audio ground-truth timing information is produced

from a forced-alignment procedure using the MFCC features — a segmentation that

corresponds to the patterns that can be seen in the audio spectrogram. However,

the video ground-truth alignment (also estimated by performing a forced-alignment

but using the AAM features) is different from the audio alignment, a result that

we would expect as the time registration of events on the visible articulators might
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come before or after the events that are produced by the unseen articulators.

Ground-Truth:    sil  b  aa  th  ch  ea  sil

Recognised:        sil     ih      ch  ea  sil
Figure 5.11: An example alignment between the ground-truth and recognised
phoneme sequences for the word “bath-chair”.

sil    b   aa   th   ch   ea             sil
Video Ground-Truth 

sil ih    ch              ea              sil
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Figure 5.12: A time alignment example for the word “bath-chair” taken from the
isolated word dataset. The ground-truth alignments are captured using a forced align-
ment procedure using the audio and video features individually, and the recognised
alignment is the output sequence that has been produced by the standard HMM ap-
proach. In this example, although the symbolic alignment would align ih with aa
and ch with ch, their respective starting points are poorly synchronised and could be
considered as spurious confusions.

Figure 5.12 also shows the time registration of the recognised phoneme sequence

produced by the standard HMM approach. The time registration of the recognised

phoneme /ea/ is perfectly aligned with the video ground-truth alignment. However,

the timing offset (defined as the absolute difference between the time registration

of the ground-truth phoneme and the time registration of the recognised phoneme)

is large for the recognised phonemes /ih/, and /ch/. Therefore, even though these
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sil    b   aa    th  ch   ea              sil

Ground-Truth 
Alignment

sil ih   ch               ea              sil
Recognised
Alignment

Figure 5.13: An illustration of how the timing offset window is enforced for each
ground-truth phoneme against its aligned decoded phoneme. The windows (shown
as double-arrowed lines above the transcripts) are centered from the ground-truth
phoneme and defined as ±x standard deviations away from the mean offset for the
ground-truth phoneme.

phonemes have been symbolically aligned, the difference in the time registration

of these phonemes (i.e. the timing offset) is very large. This poor alignment may

lead to spurious confusion patterns introducing noise into the confusion model. We

introduce a new timing offset classification algorithm, providing a system to filter

nonsensical confusions.

Firstly, we align recognised and ground-truth sequences, but for each alignment,

we also note the time registration of the decoded and ground-truth symbol. The

absolute difference between these two points (i.e. the timing offset) is recorded along

with the identity of the ground-truth phoneme. All aligned phonemes are required

to be in the same articulatory class (vowel or consonant) before their timing offset

is considered. When this process has been completed for each training utterance,

the timing offsets for a particular phoneme are summarised as a mean and a stan-

dard deviation. The algorithm used to train the offset windows for all phonemes is

described in Algorithm 1.

After the training phase, the testing process populates the confusion model using

the trained timing offsets. Each recognised phoneme sequence is passed through the
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alignment algorithm again. However, this time, a check is performed to ensure that

the timing offset is within a boundary (defined as ±x standard deviations away from

the mean timing offset for the ground-truth phoneme). Given the timing offset for a

given alignment, a decision is made to classify the confusion as genuine if it fits within

the window (i.e. within (±x)σp from the mean offset (µp)), or as a spurious confusion

(i.e. outside of the window defined as ±x standard deviations from the mean).

All timing considerations are made with respect to the ground-truth phoneme in

the confusion (p). This algorithm ensures that implausible confusions with respect

to their timing, are ignored whereas genuine confusions (defined using the offset

boundary) are used to build a cleaner confusion model. Figure 5.13 illustrates how

the phoneme timing windows relate to an example alignment and the algorithm used

to populate confusion matrix in this way is shown in Algorithm 2.

Figure 5.14 illustrates the effect that the timing offset classification has on the

number of observed confusion patterns that are used to construct the phoneme

confusion matrix. The timing offset window is defined as ±x standard deviations

from the mean timing offset for the reference (ground-truth) phoneme. At first, the

number of ‘allowed’ confusions linearly increases as a function of the timing window

(for the timing windows 0.5, 1, and 1.5). After this, the number of confusions

are stable up to 3 standard deviations, meaning that most ‘spurious’ confusions

are expected to be outside of the window defined by three standard deviations.

Most importantly, the enforcement of a timing window (with any value between

0.5 and 3 standard deviations) reduces the number of confusions dramatically from

the number of counts in the original confusion matrix (i.e. with no timing offset

window and using every observed confusion pattern in the training data). One would

expect that the number of confusions when using an offset window of ±3 standard

deviations would capture over 99% of the confusions assuming that the timing offsets

are normally distributed. However, we found that, although most offset windows for

the consonant sounds were normally distributed, there were many confusion counts

for vowels that did not conform to a parametric distribution in the same way. This

is expected due to the inherent difficulties with observing articulatory cues for vowel
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sounds in visual speech. The contribution of these confusions can be measured in

Figure 5.14 from ±3 standard deviations to ‘No Window’ — approximately 11% of

the total number of confusions.

Timing Offset Window (±x standard deviations)
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Figure 5.14: Analysis of the number of confusion patterns that are accepted as a
function of the timing window. Error bars are not shown here because they are too
small.

The word recognition results presented in Figure 5.15 are produced by our WFST

confusion modelling system using the timing offset classification algorithm. Here,

we compare the three confusion matrix smoothing methods described in Section

5.3.2 and report word accuracy using different timing offset windows ranging from

0.5 standard deviations to 3 standard deviations. The results for all smoothing

methods show no significant gain in word accuracy can be achieved for any specific

timing window. However, the two base smoothing methods (base smoothing and

base smoothing with visemic classes) provide a significant improvement over the

previous system using no timing information giving a word accuracy of 46.1%, an

increase of approximately 24%.
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Data: Testing set for fold x
Result: Statistics to characterise the timing offset window for each distinct

ground-truth phoneme

phonemeList ← {p,b,m...iy}; /* containing all distinct phonemes */

offsets ← ∅;
/* populate with an empty array for each phoneme */

for i ← length(phonemeList) do
offsets[i] ← ∅;

end
for rec ← each transcription in the testing set for fold x do

gt ← ground-truth transcription for the test utterance;
{alignedGT,alignedRec} ← align(gt,rec);
for p ← all phonemes in this alignment do

/* Check if the aligned phonemes are in the same phoneme

class (i.e. consonant, vowel, or silence) */

if class(alignedRec[p])==class(alignedGT[p]) then
recTime ← retrieve time stamp for phoneme alignedRec[p];
gtTime ← retrieve time stamp for phoneme alignedGT[p];
timingOffset ← abs(recTime - gtTime);
idx ← find index of phoneme alignedGT[p] in phonemeList;
offsets[idx] ← {offsets[idx] timingOffset};

end

end

end
/* Finally, characterise the timing offset of each phoneme

alignment by computing the mean and standard deviation. */

meanOffsets ← ∅;
stdDevOffsets ← ∅;
for i ← each element in offsets do

meanOffsets ← mean(offsets[i]);
stdDevOffsets ← standardDeviation(offsets[i]);

end

Algorithm 1: Algorithm to train the timing offset window for all unique
phonemes. After alignment and classification, the timing offset is characterised
by the mean and standard deviation over the set of offset measurements for
the respective ground-truth phoneme.
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Data: Testing set for fold x
Result: Populate the confusion matrix by accepting or rejecting counts

based on the timing offset window

/* Variables ‘phonemeList’, ‘meanOffsets’ and ‘stdDevOffsets’

have been pre-computed using Algorithm 1 */

/* ‘win’ is a variable defining the timing window to use (can be

0.5, 1, 1.5, 2, 2.5, 3) */

/* Populate a 2D confusion matrix */

confMat ← ∅;
for i ← 1...length(phonemeList) do

confMat[i] = ∅;
for j ← 1...length(phonemeList) do

confMat[i][j] = 0;
end

end
for rec ← each transcription in the testing set for fold x do

gt ← ground-truth transcription for the test utterance;
{alignedGT,alignedRec} ← align(gt,rec);
for p ← all phonemes in this alignment do

recTime ← retrieve time stamp for phoneme alignedRec[p];
gtTime ← retrieve time stamp for phoneme alignedGT[p];
timingOffset ← abs(recTime - gtTime);
idx ← find index of phoneme alignedGT[p] in phonemeList;

if ((timingOffset > (meanOffsets[idx]−(stdDevOffsets[idx] * win)) &&
timingOffset < (meanOffsets[idx]+(stdDevOffsets[idx] * win))) &&
(class(alignedRec[p])==class(alignedGT[p]))) then

/* The timing window is within the parameters and in

the same class so this is classified as a genuine

confusion */

gtIndex ← find index of alignedGT[p] in phonemeList;
recIndex ← find index of alignedRec[p] in phonemeList;
confMat[gtIndex][recIndex] ← confMat[gtIndex][recIndex] + 1;

end

end

end
save(confMat); /* Save the confusion matrix for this window */

Algorithm 2: Algorithm to populate the phoneme count confusion matrix.
Due to the possibility of poor alignment introducing noise to the confusion
model, the timing offset between the forced-aligned ground-truth and the de-
coded phoneme sequences are used to classify confusions as genuine or spurious.
The length of the offset window can be altered by adjusting the number of ac-
cepted standard deviations away from the mean offset.
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Figure 5.15: Word recognition results using different timing offset windows to re-
strict the confusion patterns that are used to populate the confusion matrix. The best
accuracy that was achieved without the timing window (shown in the results from
Figure 5.10) is shown as a dotted line. The input P ∗ WFST is modelled using the top
decoding that is produced by the standard approach phoneme recogniser (described
in Section 5.3.1)

System Word Accuracy
(std. deviation)

Standard Approach HMM System 60.0% (4.2)
WFST Confusion System with
confusion from a symbolic alignment

21.4% (3.3)

WFST Confusion System with timing
confusion matrix and top decoding
only and base smoothing

46.1% (1.0)

Table 5.2: The word recognition performance of three techniques used so far in this
work. The ‘Standard Approach HMM System’ uses a network of phoneme-level HMMs
formed to recognise one word from the 211-word vocabulary, the ‘WFST Confusion
System with confusion from a symbolic alignment’ system uses the confusion matrix
produced by the standard HMM phoneme recogniser in the WFST confusion cascade,
and ‘WFST Confusion System with timing confusion matrix and top decoding only
and base smoothing’ presents the best result using the timing offset classification
algorithm and base smoothing.
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5.3.3 Use of top n decodings

In a typical ASR system, the best decoded sequence is considered to be the path

through the network of HMMs with the largest likelihood. However, it is not nec-

essarily the most accurate. An alternative approach is known as n-best decoding.

Here, n decoded sequences are produced, ranked in order of decreasing likelihood.

In a similar approach to building WFSTs from the single most likely decoding (de-

scribed in Section 5.3.1), the set of decodings can also be modelled as a P ∗ transducer

which accepts the n decoded sequences. In this work, we explore two approaches to

modelling the n-best decodings.

The first method builds isolated P ∗ WFSTs for each of the n decoded sequences

(adopting the approach described in Section 5.3.1). The set of n WFSTs are then

combined using the WFST union operation (see Section 2.6.1.2) to produce a single

WFST that accepts all n decodings (an example of this is shown in Figure 5.16).

The algorithm used to derive these WFSTs is described in Algorithm 3. To improve

performance, determinization and minimization are applied to the resulting WFST

to provide a pruned, more efficient, network.

We conduct a set of experiments using this technique to create the P ∗ WFSTs

for n-best decodings and use the confusion model described earlier in this section

in the WFST cascade. The results presented in Figure 5.17 are shown for the three

confusion matrix smoothing methods adopted in this work and the different timing

window sizes. Base smoothing performs significantly better than the other two

smoothing methods but can only achieve 35.97% which provides a decline in word

accuracy of about 23% from the standard approach.

As discussed previously, the most likely (1-best) transcription is not necessarily

the most accurate. We construct a WFST using the union of single-path P ∗ WF-

STs from the top n decodings produced by the standard HMM phoneme recogniser.

However, it could also be considered that the most likely phoneme sequence is actu-

ally a combination of the top n transcriptions with all n transcriptions participating

in a vote to determine which phoneme is decoded at each point in time. Although
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the union of WFSTs does provide the ability to model the n-best transcriptions, it

only aims to model the n paths from the WFSTs that have been combined. This

produces a WFST which accepts strings from either of the original WFSTs. Using

this technique, the P ∗ model does not accept combinations of symbols from multiple

n transcriptions. To overcome this, an alternative approach is proposed using an

n-dimensional alignment procedure.

Data: The n-best decoded phoneme strings produced by the standard
approach ASR

Result: A weighted finite-state acceptor that accepts the n-best decoded
phoneme strings.

/* The n-best decoded phoneme sequences are stored in a 2-D

array named ‘sentences’. The first dimension represents the

sentence ID and second provides the indices into the n
transcription */

for i ← each sentence in the validation set for fold x do
nBestSentences ← ∅;
for j ← each n-best decoded transcription for this sentence do

startState ← 0;
endState ← 1;
for m ← number of phonemes in transcription j for sentence i do

phoneme ← sentences[i][j][m];
weight ← weights[i][j][m];
arcs[m] = BuildWFSTArc(startState,endState,phoneme,weight);
startState++;
endState++;

end
wfst = BuildWFST(arcs);
nBestSentences[j] = wfst;
if j==1 then

nBestWfst = wfst;
else

nBestWfst = WFSTUnion(nBestWfst,wfst);
end

end

end

Algorithm 3: A simple algorithm to combine all n-best strings into a sin-
gle transducer. The output WFST only accepts the n-best decoded strings
produced by the standard approach ASR.
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Figure 5.17: Recognition results when using the original union method for the input
P ∗ transducer

System Word Accuracy
(std. deviation)

Standard Approach HMM System 60.0% (4.2)
WFST Confusion System with
confusion from a symbolic alignment

21.4% (3.3)

WFST Confusion System with timing
confusion matrix and top decoding
only and base smoothing

46.1% (1.0)

WFST Confusion System with timing
confusion matrix and n-best decodings
combined into a WFST using
Algorithm 3

36.0 (0.1)

Table 5.3: A comparison of the word recognition results achieved with the systems
used so far.
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Data: The n-best decoded phoneme strings produced by the standard
approach ASR

Result: A finite-state acceptor that accepts all n-best strings and all
combinations of phoneme strings from the top n phonemes
decodings by using an n-dimensional alignment.

/* sentences is a 2-D array containing the n-best strings. The

first dimension represents the sentence ID and second

provides the indices into the n transcription. */

alignedNBestSentences ← ∅;
for i ← each sentence in the validation set for fold x do

nAlignedTrans = ← ∅;
/* n is the number of decoded strings (i.e. n-best) */

longestTranscIdx ← find index of longest transcription;
longestTransc = sentences[i][longestTranscIdx];
j ← 1;
while j ≤ n do

if j != longestTranscIdx then
gt ← ground-truth transcription for the test utterance;
{alignedGT, alignedRec} ← align(gt,transcriptions[j]);
if length(alignedRec > length(longestTransc)) then

longestTranscIdx ← j /* Reset the longest trans */

longestTransc = sentences[i][longestTranscIdx];
j ← 1;

else
nAlignedTrans[j] = sentences[i][longestTranscIdx];

end

end

end
alignedNBestSentences[i] ← nAlignedTrans ;

end
startState ← 0; endState ← 1;
for i ← length(alignedNBestSentences) do

for t ← length(longestTransc) do
{phns, liklihds} ← get all phonemes and log liklihoods at timeslot t;
{uniqPhns, uniqWgts} ← unique(phns, liklihds); /* Find all

unique phonemes at a given timestamp in the warp. Also

sum log likelihoods where the symbols are equal. */

for m ← 1...length(uniqPhns) do
arcs[m] =
BuildWFSTArc(startState,endState,uniqPhns[m],liklihds[m]);

end
startState++; endState++;

end

end

Algorithm 4: An algorithm to align n-best decoded strings to build a WFST
which can model combinations of phoneme sequences from the top n decodings.
The output WFST accepts all n-best strings and all paths through all n-best
strings
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Figure 5.19: Recognition results when using the adapted version for the input P ∗

transducer. All n transcriptions are warped together to form the input transducer.

To align the top n sequences together, we use a reference sequence which is the

longest decoded sequence from the n-best decodings. All other transcriptions are

aligned to the reference sequence to produce a set of aligned n-best transcriptions

that are of the same length. The n-best sequences can then be modelled using a

WFST (an example is pictured in Figure 5.18) where multiple transitions are in-

cluded where the top n decodings disagree with each other. This technique produces

more compact WFSTs to allow faster computation in the cascade with a minimum

number of arcs and states whilst also modelling all combinations of phoneme se-

quences from all n decodings. However, it also increases the out-degree, i.e. the

number of arcs exiting from each state, which could hinder performance in bigger

systems. Algorithm 4 describes the process of performing the n-dimensional align-

ment to build the P ∗ WFSTs.

The word-level recognition results produced using this new n-best P ∗ transducer

are shown in Figure 5.19. This new technique provides an increase of approximately
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System Word Accuracy
(std. deviation)

Standard Approach HMM System 60.0% (4.2)
WFST Confusion System with
confusion from a symbolic alignment

21.4% (3.3)

WFST Confusion System with timing
confusion matrix and top decoding
only and base smoothing

46.1% (1.0)

WFST Confusion System with timing
confusion matrix and n-best decodings
combined into a WFST using
Algorithm 3

36.0 (0.9)

WFST Confusion System with timing
confusion matrix and n-best decodings
combined into a WFST using
Algorithm 4

49.7 (1.6)

Table 5.4: A comparison of the word recognition results achieved with the systems
used so far.

14% in word accuracy over the previous technique. However, these results indi-

cate that this method is inferior to using HMMs with the standard approach (60%

word accuracy). Simple base smoothing (without visemic classes) provides the best

results, whereas, exponential smoothing proves to be the most ineffective for this

task.

5.3.4 Discussion

The work presented so far introduces a new confusion modelling technique for au-

tomated lip-reading. Many parameters have been adjusted during this series of

experiments, with over 1500 experiments being performed over six folds. The full

list of parameters that have been explored in this work are shown in Table 5.5. Be-

cause of the number of parameters and their possible values, the presented results

are chosen as the parameter values that achieve the highest word accuracy.

Most interestingly, Table 5.6 shows that the proposed approach does correctly

recognise some words that are recognised incorrectly by the standard approach.
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Table 5.5: The list of parameters and the values tested in the set of confusion WFST
experiments.

Parameter Parameter Description Range of Possible Val-
ues

Best Pa-
rameter
Value

n the number of top likelihood
transcriptions to include in
the P ∗ transducer

1, 3, 5, 7, 9, 13, 11, 15 9

smoothMeth the type of smoothing ap-
plied to the confusion trans-
ducer counts

Base Smoothing,
Base smoothing with
visemic classes, Expo-
nential Smoothing

Base
Smoothing

win the number of standard
deviations from the mean
phoneme offset acceptance
window

0.5, 1, 1.5, 2, 2.5, 3 0.5

percentDist the percentage of the di-
agonal confusion count to
distribute to unseen events
(only used for base smooth-
ing and its derivatives)

5%, 10%, 15%, 20%,
25%, 30%, 35%, 40%,
45%, 50%, 55%, 60%,

10%

α the variable used in ex-
ponential smoothing (see
Equation 2.18)

0.01 0.05 0.1 0.15 0.25
0.5 1

0.01

training n the number of n-best tran-
scriptions used to train the
confusion model

100 100

However, the standard approach recognises a total of 173 words correctly where

the proposed approach recognises incorrectly, meaning that the standard approach

is still superior in the recognition task. The results in Table 5.6 show that there

is clearly scope for fusing the outputs of the two algorithms to arrive at a more

accurate decision, but this has not been pursued in this work.

Table 5.7 gives a comparison of the results of the experiments on isolated word

recognition. The Baseline 1 result (row A) using the standard approach achieved

60%, which is quite good for a vocabulary of 211 words, although it should be noted

that this is a speaker-dependent system. The Baseline 2 (row B) result shown in

Table 5.7 (20.2%) is produced from a system which finds the ground-truth phoneme
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sequence from all possible 211 words that has the lowest alignment cost (using

the dynamic programming algorithm) to the recognised phoneme sequence. As

described in Section 2.4.3, we use an alignment procedure where penalties are set

for each alignment: 7 for an insertion or deletion, 10 for a substitution, and zero for a

correct symbol alignment. Because of the noise in the decoded phoneme sequences,

the baseline 2 result is significantly inferior to the baseline 1 result. Turning to

the experiments on our proposed method, using an identity confusion-matrix (row

C) with very small uniform probabilities on the off-diagonal elements to enable

the cascade to explore substitutions, insertions and deletions (but with no prior

knowledge of the confusion patterns), gives an accuracy of 35.4%. The small off-

diagonal probability are required because the confusion matrix must have non-zero

probabilities in the off-diagonal elements in order for any legal word to be decoded

by the dictionary (D) transducer, which enables a rich set of candidate words. By

contrast, the dynamic programming algorithm of Baseline 2 (row B) uses a cost

function that finds only the closest match.

If the confusion matrix is estimated from the output of the baseline recogniser

with no timing information being used, accuracy falls to 21.4% (row D). This result

suggests that many of the alignments are not genuine confusions, but are in fact

an artefact of the alignment process (discussed in Section 5.3.2.1). Using timing

information improves the accuracy hugely (rows E, F, and G) with base smooth-

ing giving a better result (49.7%) than exponential smoothing (42.7%). However,

the best result from the WFSTs is still about 10% lower than the standard HMM

approach.
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WFST

Correct Incorrect

HMM
Correct 580 173

Incorrect 55 448

Table 5.6: A contingency table to provide a comparison between the two approaches.
‘HMM’ denotes the standard approach using a network of phoneme-level HMMs, and
‘WFST’ represents our new approach using a confusion model in a WFST cascade
with the decoded phoneme strings that are produced by a standard approach phoneme
recogniser.

System Word Accuracy
(std. deviation)

A
Standard Approach HMM System as shown in
Figure 5.1 (Baseline 1)

60.0% (4.2)

B
Phone decoding followed by string-matching
(Baseline 2)

20.2% (1.4)

C
WFSTs with identity confusion matrix (to avoid
−∞ log probabilities on off-diagonal elements, a
small probability mass is added to every element)

35.4% (2.3)

D
WFST Confusion System with confusion from a
symbolic alignment

21.4% (3.3)

E
WFST Confusion System with timing confusion
matrix and top decoding only and base smoothing

46.1% (1.0)

F
WFST Confusion System with timing confusion
matrix and n-best decodings combined into a
WFST using Algorithm 3

36.0 (0.9)

G
WFST Confusion System with timing confusion
matrix and n-best decodings combined into a
WFST using Algorithm 4

49.70 (1.6)

Table 5.7: A summary of the word-level recognition results using different methods.
Word accuracy and standard deviation are both reported.

5.4 Extending the Proposed Approach

The results presented so far (shown in Table 5.7) show that our new approach is still

inferior to the standard HMM system. In this section, we explore two extensions to

improve the recognition accuracy of the new system: adaptive confusion training,

and bigram confusion modelling.
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Firstly, in Section 5.4.1, we explore a new method of iteratively updating the

confusion matrix based upon the evaluation of word accuracy from the WFST cas-

cade — a technique that we term adaptive confusion modelling. Finally, we extend

the confusion model to introduce phonemic context. This increases the complexity

of the confusion model, adding confusions of phoneme pairs to the existing unigram

phoneme confusion matrix.

5.4.1 Adaptive Confusion Model

The unigram confusion model presented in previous work has shown promise with a

peak accuracy of 49.7%. However, this recognition accuracy is still inferior to that

of the standard approach (60%). The results presented in Table 5.7 show that a gain

of 28.3% in recognition accuracy can be achieved by discarding spurious confusions

using the timing offset classifier described in Section 5.3.2.1. A possible limitation

with this work could be that the confusion model is estimated offline only once at

training time. Here, we explore a new technique for confusion modelling whereby

the confusion probabilities are updated iteratively.

To improve the reliability of the confusion model, an adaptive training approach

is presented. Unlike the previous offline-trained confusion model, the adaptive con-

fusion framework iteratively updates the probability confusion matrix based upon

decoding errors observed on a known set (in this case, the testing set). Figure 5.20

illustrates the components in our adaptive system. The approach is performed as

follows:

1. A standard phoneme recogniser is used to produce a set of decoded strings

using the testing set.

2. The confusion WFST is constructed using the alignment between the decoded

strings produced by step 1 and the ground-truth strings (using the techniques

presented in Section 5.3.2).
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Figure 5.20: A description of the adaptive confusion model. Confusion probabilities
are updated in an iterative process by running the testing set through the standard
approach recogniser and the WFST cascade. Computed errors are then used to up-
date the confusion probabilities before the process is repeated. The iterative process
continues until the total error starts to increase — representing a point at where the
recognition accuracy can not improve any more.

3. The phoneme strings produced by step 1 are modelled as WFSTs and passed

through the WFST cascade using the confusion WFST that has been trained

in step 2.

4. The word output from the WFST cascade is converted to a phoneme string

using a word-to-phoneme dictionary and aligned to the ground-truth phoneme

string.

5. An error confusion matrix is produced which documents the incorrectly de-

coded phonemes.

6. If the phoneme error is decreasing, the confusion matrix weights are updated

using the new phoneme strings with Equation 5.4.
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7. If the phoneme error is increasing, it is likely that the confusion matrix weights

have been overtrained on the testing set, so we revert to the confusion weights

that were used for the previous iteration.

8. A standard phoneme recogniser is used to produce a set of decoded strings

using the validation set.

9. Run the WFST cascade with the phoneme strings produced by the validation

set (in step 8) and the recent confusion matrix (from step 7) and report the

final word accuracy.

Confusion weights are updated by adapting the original probability confusion

matrix. At each iteration, updated probabilities (posteriors) are derived by using

a combination of the current information and the new information (obtained from

the error confusion matrix) as follows:

P ′(i, j) =
(1− α)P (i, j) + αN(i, j)∑
j(1− α)P (i, j) + αN(i, j)

, (5.4)

where P is the current probability confusion matrix before the update, P ′ is the

updated probability confusion matrix, N is the error confusion matrix containing

the new information observed on this iteration, (i, j) represents the entry in the

confusion matrix for ground-truth phoneme i and recognised phoneme j, and α

determines the learning rate (i.e. the degree of influence that the new information

has on the updated probability) where 0 < α < 1. Lower learning rate values (α)

force prior probabilities (P ) to have more influence on the posterior probabilities

(P ′) whereas higher learning rates will give more weighting to the newly observed

information (N). Using the WFST tropical semiring (described in Section 2.6), all

posterior confusion probabilities are used to compute the negative logarithm costs

used in the WFST arc weights.

If the total error on a specified iteration is decreasing, the recognition performance

is improving — therefore, the adaptive process should continue. However, as soon

as the error increases (and recognition accuracy decreases), the adaptive process is



CHAPTER 5. CONFUSION MODELLING FOR ISOLATED WORDS 116

stopped and the confusion matrix used on the previous iteration is used in a WFST

cascade with a special held-out validation set.
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Figure 5.21: Word recognition results using adaptive confusion modelling. The
configuration that achieved the best results in Section 5.3 was used in an iterative
training process. These results were achieved using a learning rate (α) of 0.1 —
putting a strong influence on the prior probabilities with the new information obtained
by the error confusion matrix only contributing 10% of the overall weighting.

The set of adaptive experiments conducted here have used an identical configura-

tion to the best word accuracy results presented in Section 5.3 with 9-best decoded

phoneme strings being used as input to the WFST cascade, and base smoothing

used to re-distribute 10% of the diagonal elements to off-diagonal elements. The

initial confusion matrix also uses a timing offset window of ±0.5 standard devia-

tions. However, after the first iteration, a timing offset window is not defined as

the WFST cascade output is incapable of including timing information. Cross-fold

validation is performed as in previous experiments with the dataset divided into six

repetitions. Different learning rates (α) have been tested to update the probabili-

ties in Equation 5.4 where α = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. The results

presented in Figure 5.21 compare the word accuracy on each iteration for both the
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testing set (used to compute the error and adapt the weights) and validation set (an

unseen segment of the data). Iteration 0 represents the initial state of the confusion

weights which are derived from the best WFST system shown in Table 5.7. The

best results in Figure 5.21 are presented and use a learning rate (α) value of 0.1.

This brings a 10% contribution from the new information (produced by the error

confusion matrix on a given iteration) and a 90% contribution from the existing

information (priors). Although the accuracy improves at a very slow rate for the

testing set, the accuracy on the unseen validation set first increases by 0.08% to and

then declines by 3.03% over 10 iterations.

One major advantage of the WFST composition cascade is its ability to trans-

late illegal sequences of phonemes into legal words (with the use of the lexicon —

mapping legal phoneme sequences to whole words). This feature, however, does also

provide limitations for the adaptive system with a small vocabulary. To update the

phoneme confusion probability matrix from the WFST output, a decoded isolated

word is converted to a phoneme sequence before alignment to the ground-truth is

performed. For the isolated word task, the WFST cascade will output a single word

from 211-word vocabulary, based on the input phoneme string and the decoded con-

fusion patterns. With such a limited vocabulary, it is possible that an incorrectly

decoded word could be very different from the ground-truth word. When aligning

these incorrect words to the ground-truth, spurious confusions could be introduced.

The propagation of this error through each iteration of the adaptive system could

have a detrimental affect on the update procedure and, hence, hinder the recognition

accuracy of unseen data. The results in Figure 5.21 show that the initial confusion

matrix produces the best word accuracy on the validation set. As the confusion ma-

trix is updated in a slow process (using α = 0.1), the word accuracy of the (unseen)

validation set climbs for the first three iterations before slowly deteriorating. Mean-

while, the performance on the testing set improves very slightly (by nearly 1%). The

decline in validation set performance is likely because the initial confusion matrix is

becoming corrupted by spurious confusions that have been introduced by unrealistic

word alignments.
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5.4.2 Bigram Confusion Model

Contextual information is often used to improve the performance of state-of-the-art

speech recognisers. This information can be provided in the form of an n-gram model

(described in Section 2.3). The simplest form of contextual n-gram modelling is the

bigram language model. Here, pairs of symbols are coupled together to form a bigram

sequence. A simple counting procedure on these bigrams means that Pr(p2|p1)
(the probability of observing p2 given that the preceding phoneme was p1) can be

estimated. The binding of two context-dependent phonemes forms an interesting

framework for which to model confusions in lip-reading. The co-articulation effect

has a larger impact on the visual modality than the audio. Therefore, the addition of

contextual information to confusion patterns is a promising technique for modelling

visual speech confusions.

We extend the work conducted so far to include bigram confusion patterns. In

the unigram confusion model (shown in Figure 5.9), we use a single-state, cyclic

WFST. In the bigram confusion model, this is extended to account for valid sets of

two phonemes — i.e. with the transitions coming in and out of state 0 to states 1,

2, 3, and 4 in Figure 5.22. It is unlikely that we will observe all possible phoneme

pairs (bigrams) in the corpus. Therefore, most conventional n-gram models employ

a back-off procedure to revert to the unigram model when required (see Section 2.3).

In this work, we maintain the unigram confusion matrix used in Section 5.3 as a

back-off model. The unigram confusions are inserted in the same configuration as

previous work, a cyclic structure entering and exiting from state 0 in Figure 5.22.

The bigram confusion matrix is populated using the same alignment procedure as

described in Section 5.3.2 but with a window covering two phonemes instead of

one. However, owing to the sparsity of the populated bigram confusion matrix,

only observed bigrams are used in the construction of the WFST confusion model.

For unseen bigrams, the flexible structure of the confusion model allows for a back-

off event to the unigram probability. A simple illustrated example of a bigram

confusion model is shown in Figure 5.22. This model has been constructed using
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a small vocabulary of only three symbols: a, b, and c. Arc weights are defined

using the negative logarithm of the entries in the bigram and unigram probability

matrices. Owing to the strong influence of the unigram confusion matrix, a back-off

weight, β is applied to each unigram probability (where 0 < β < 1). To counteract

this weighting, the bigram probabilities are weighted by (1 − β). A higher β value

allows more unigram probability to filter through whereas a lower β value allows

the bigram probabilities to influence the decoded path. Experiments were conducted

using a β value with a 0.1 increment from 0.1 to 0.9 with the best accuracy being

achieved when β = 0.7 (i.e. a 70% contribution from the unigram confusion patterns

and a 30% contribution from the bigram confusion patterns).

The extension of the confusion model to allow for context does improve the ability

to capture the contextual effects present in visual speech. However, it does come at a

computational cost. In the unigram confusion model described in Section 5.3.2, each

entry in the confusion matrix is included as an arc, allowing all possible substitutions,

deletions, and insertions. Therefore, for a set of 44 phonemes, the confusion model

consists of 442 substitution arcs, 44 deletion arcs, and 44 insertion arcs — a total of

2024 arcs. In the bigram confusion model, the 2024 unigram arcs are also included

as back-off paths. However, the addition of bigram paths can significantly expand

the model (if all bigram substitutions are observed at training time, this would

total 3, 751, 968 arcs). The sparsity of the bigram confusion matrix enables the

model to be simplified. The statistics shown in Table 5.8 demonstrate the degree of

sparsity in the computed bigram confusion matrices. Although there are 3, 751, 968

possible entries in the bigram confusion matrix, there are only 6785 populated entries

on average. If one assumes that all diagonal elements are populated, this leaves

only 4849 non-zero entries. With a unigram back-off employed, this sparsity can

be managed by only including non-zero bigram entries in the confusion WFST.

Furthermore, by reducing the number of bigrams in the confusion model to only

allow for non-zero entries (i.e. only observed sequences), the exponential growth in

the number of arcs is avoided.
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Experiments were conducted using cross-fold validation over the six randomised

repetitions of each isolated word. To reduce the computation time, this work uses

the best-performing smoothing method from the experiments conducted in Section

5.3, with simple base smoothing achieving the highest word accuracy by distributing

10% of the diagonal mass to unseen confusions. The tests were also conducted over

0

a:a / -log(βPr(a:a))

b:b / -log(βPr(b:b))

c:c / -log(βPr(c:c))
a:b / -log(βPr(a:b))

a:c / -log(βPr(a:c))

b:a / -log(βPr(b:a))

b:c / -log(βPr(b:c))

c:a / -log(βPr(c:a)) 

c:b / -log(βPr(c:b))

a:- / -log(βPr(a:-))

b:-/ -log(βPr(b:-))

c:- / -log(βPr(c:-))

-:a / -log(βPr(-:a))

-:b / -log(βPr(-:b)) 

-:c / -log(βPr(-:c))

1 a:a

2

a:b

3

b:b

4c:b

a:b / -log((1-β)Pr(a:b | a:a)) 

b:b / -log((1-β)Pr(b:b | a:b))
c:b \ -log((1-β)Pr(c:b | b:b))

c:c / -log((1-β)Pr(c:b | c:c)) 

Figure 5.22: An illustration of a bigram confusion model with backoff weights. The
vocabulary consists of three symbols: a, b, and c. The unigram backoff arcs are
derived from the unigram confusion matrix containing nine entries. Bigram arcs are
added to transition out of the start state, to an isolated state and then back to the
start state. Only one arc in the bigram sequence requires a weight, defined as the
negative logarithm of the bigram probability. The backoff weight, β is applied to all
unigram probabilities to determine the influence of the backoff weights. A factor of
(1− β) is also applied to the bigram probabilities.
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Number of Unique
Bigrams Observed

Total number
of Bigrams
Observed

Total
Number of

Arcs

6785 73452 8810

Table 5.8: Bigram occurance statistics in the isolated word dataset. Phoneme pairs
(bigrams) are used to populate a bigram confusion matrix before being used to build
a bigram confusion model. Figures represent an average over the six folds.

all n-best decoded phoneme strings where n = {1, 3, 5, 7, 9, 11, 13, 15} with 11-best

strings achieving the best word accuracy. The timing offset classification algorithm

is also used on the unigram and bigram confusion matrices. The bigram confusion

results presented in Figure 5.23 give a word accuracy of 53%, an improvement over

the previous unigram confusion system of approximately 3.2% (using a timing offset

window of ±0.5 standard deviations). However, it is also interesting to note that,

unlike the unigram confusion work discussed previously in this chapter, the accu-

racies obtained with the best timing offset window of ±0.5 standard deviations are

not statistically significant over using any other offset window up to ±3 standard

deviations.

The results presented in Table 5.9 show a contingency table of correct and incor-

rect words for the standard approach (HMM) and the bigram proposed approach

(WFST). When comparing this table to that for the unigram confusion model anal-

ysis in Table 5.6, most of the observations are expected. Firstly, the number of

words that both systems correctly decoded has increased (from 578 to 589) whereas

the number of incorrectly decoded words has decreased (from 445 to 426). A more

interesting finding is observed in the off-diagonal elements of the matrix (HMM

correct WFST incorrect, and HMM incorrect WFST correct). As the accuracy of

the WFST system has improved, there are 10 fewer words that have been correctly

decoded by the HMM and incorrectly decoded by the WFST. Furthermore, the

number of words decoded incorrectly by the HMM but decoded correctly by the

WFST has increased by 24 — indicating that the WFST system is able to correctly

decode 24 more words using bigram confusions which the standard approach would
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decode incorrectly.
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Figure 5.23: Word-level results for the isolated word dataset using a new bigram
confusion model. Results are derived from cross-fold validation over six repetitions.
These experiments have been conducted using the best confusion matrix smoothing
method from the results presented in Section 5.3.

WFST

Correct Incorrect

HMM
Correct 589 163

Incorrect 78 426

Table 5.9: A contingency table to provide a comparison between the HMM and
WFST approaches. The ‘HMM’ approach consists of a standard phoneme HMM
recogniser, and the ‘WFST’ approach is our system using the confusion WFST cascade
using a bigram confusion model.
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5.5 Summary

We have presented a new approach to confusion modelling for automated lip-reading

using a WFST cascade. Initial WFST experiments using the confusion matrix out-

put from the standard approach were significantly inferior to the baseline (60% word

accuracy), with a word accuracy of 21.4%. We attribute this to the poor quality

of the estimated confusion matrix. The alignments that are produced by the dy-

namic programming algorithm take no account of the time registration of the sym-

bols aligned, leading to possible spurious confusions being identified. To overcome

this problem, a timing offset classification algorithm is presented in Section 5.3.2.1.

Firstly, at training time, a timing registration offset mean and standard deviation

are estimated from the training data. When a new confusion is being considered, a

timing offset window for a given ground-truth phoneme defines the boundaries for

which the confusion can be considered ‘genuine’. If the offset falls outside of this

boundary, it is discarded and considered as a ‘spurious’ confusion. Word accuracy

dramatically improves with the introduction of the timing offset algorithm to 49.7%.

Further work described in Section 5.4 focuses on improving the confusion model

to improve the word accuracy. Firstly, an adaptive confusion technique is proposed.

Here, the confusion probability matrix is updated in an iterative process with the

errors produced by the WFST cascade being used to update confusion probabili-

ties. However, there are limitations that have been identified during this work with

recognition accuracy on the unseen data declining on each iteration of the confusion

model update. This is likely because the decoded words (one out of the 211 words in

the vocabulary) can be very different from the ground-truth words, which will intro-

duce spurious confusion patterns. Finally, we extended the current confusion model

to use contextual information with a bigram confusion model, which improved on

the unigram confusion model results (from 49.7% to 53%).

However, limitations with the dataset have been identified. With 1256 words

in the corpus divided over six repetitions, the number of observed bigrams is very

small, resulting in a sparse bigram confusion matrix. We use an additional back-
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System Word Accuracy
(std. deviation)

Standard Approach HMM System as shown in
Figure 5.1 (Baseline 1)

60.0% (4.2)

Phone decoding followed by string-matching
(Baseline 2)

20.2% (1.4)

WFSTs with identity confusion matrix (to avoid
−∞ log probabilities on off-diagonal elements, a
small probability mass is added to every element)

35.4% (2.3)

WFST Confusion System with confusion from a
symbolic alignment

21.4% (3.3)

WFST Confusion System with timing confusion
matrix and top decoding only and base smoothing

46.1% (1.0)

WFST Confusion System with timing confusion
matrix and n-best decodings combined into a
WFST using Algorithm 3

36.0 (0.9)

WFST Confusion System with timing confusion
matrix and n-best decodings combined into a
WFST using Algorithm 4

49.7 (1.6)

WFST Adaptive Confusion System with timing
confusion matrix and learning rate (α) set to 0.1

49.8% (0.8)

WFST Bigram Confusion System with a timing
confusion matrix with the backoff weight (β) set
to 0.7

53.0% (3.3)

Table 5.10: All word-level recognition results obtained during the set of experiments
in the isolated word task

off parameter to scale the unigram and bigram probabilities and find that the best

recognition accuracy can be obtained by using a back-off value where the unigram

probabilities dominate over the bigram probabilities (by 70% to 30%). This indicates

that the sparsity of the bigram confusion matrix is having an effect on its ability to

perform corrections.

The simplicity of the isolated word task is important because it enables us to

focus on the core technique of modelling confusion patterns without interference

from longer-range coarticulation effects. However, we have shown that the lack of

data available to train a confusion model also has a detrimental affect on the ability

to model strong patterns of confusions.



Chapter 6

Lip-reading for Continuous Speech

6.1 Motivation and Aims

Chapter 5 presents a new approach to lip-reading recognition, using a trained phone-

mic confusion model to correct the decoded string produced by the standard ASR

system. Performance on the isolated word task using this technique was lower than

the conventional approach. There are several possible reasons for this, but the most

likely one is the sparsity of data available, with only six repetitions of 211 different

words provided. A bigram confusion model was proposed in Section 5.4.2, where the

unigram confusions are extended to include contextual information. However, with

limited data, the number of observed bigrams in the corpus is too small to reliably

model contextual confusions (the degree of this sparsity is illustrated in Table 5.8).

This chapter presents work on a much larger corpus of continuous speech data.

Section 6.2 presents work using a single speaker from the LILiR corpus, a dataset

used in recent lip-reading work [Lan et al., 2010]. We demonstrate that, although

this data provides more ‘realistic and fluent speech’ in a richer context, it provides

poor word accuracies. We examine the most likely cause for these poor lip-reading

accuracies.

Until now, the automated lip-reading community has primarily focussed on refin-

125
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ing classification techniques and features to improve recognition accuracy. However,

most work has concentrated on restricted tasks (i.e. isolated letters or digits), or

small amounts of continuous speech data. Here, we record a new dataset consisting

of 3000 sentences of natural speech (described in Section 4.4). The availability of

such a large corpus invites an interesting question — how much training data do

we need to reach the peak recognition rate for automated lip-reading? We also ex-

plore the use of phoneme-to-viseme mappings in automated lip-reading and provide

comparisons to using the standardised acoustic unit of speech, phonemes.

6.2 LILiR Continuous Speech Task

The complete LILiR dataset (described in Section 4.3) consists of 20 speakers reciting

200 sentences each from the Resource Management corpus. We continue our work

using a single speaker to avoid the influence of inter-speaker variability on recognition

(e.g. different speaking rates, different accents etc), and, therefore, use the first

speaker from this multi-speaker corpus.

Firstly, the data were split evenly into five folds providing 40 sentences per fold.

Two groups of folds were used in the standard approach experiments: training —

consisting of four folds, and testing — consisting of one fold. Cross-fold validation

was performed whereby each fold was used as the testing data with all other folds

being used for training. The language models (a phoneme bigram language model for

the phoneme recogniser and a word bigram language model for the word recogniser)

were trained using the 160 training sentences for each cross-fold experiment. For the

standard ASR approach, we build 44 monophone left-to-right HMMs (one for each

phoneme) with an additional silence HMM (sil) used at the start and end of each

utterance. The progression to continuous speech introduces an additional HMM to

model any short pauses between words (sp). This model consists of a single emitting

state to enable the decoder to recognise a minimum of one short pause frame, and

its parameters are copied from the middle state of the silence model. The HMMs



CHAPTER 6. LIP-READING FOR CONTINUOUS SPEECH 127

are initialised in a flat-start procedure and trained using 20 iterations of the Baum-

Welch re-estimation algorithm. We tested many different HMM topologies, with

the number of states ranging from 3 to 13 and the number of mixture components

from 1 to 15, and with many grammar scale factor and insertion penalty values.

Only relevant results are presented here. Figure 6.1 and Figure 6.2 show phoneme

accuracy and word accuracy respectively on the LILiR dataset. Both results are

significantly worse than those achieved in the isolated word task. Word accuracy

peaks at ∼9% and phoneme accuracy peaks at ∼32%. Audio word and phoneme

accuracies are 75.40% and 63.45% respectively. The decrease in word performance

is likely due to the expansion of the grammar task. Unlike with the isolated words,

the continuous speech decoding process uses a less-restrictive grammar model (i.e.

a bigram grammar model), providing probabilistic influence on the decoded path,

rather than forcing the decoder to output one word from the vocabulary, as was the

case in the isolated word task.

Following the techniques used for the isolated word task, the phoneme decoder

uses a bigram phoneme language model to aid recognition. One interesting obser-

vation is the low phoneme accuracy that is achieved here (shown in Figure 6.1).

In the isolated word task, the phoneme accuracy was approximately 60%, a figure

that could be considered as typical for audio speech recognition. However, the peak

phoneme accuracy reported in Figure 6.1 is much lower (approximately 32%). This

is likely to be caused by the lack of data to train the phoneme bigram language

model (only 160 sentences), and to reliably train the parameters of the HMM.

The proposed approach presented in Chapter 5 relies on the presence of strong

phonemic confusion patterns to correct decoded strings and, hence improve word

recognition accuracy. However, with such low phoneme accuracies as those observed

in Figure 6.1, it may be impossible to find strong confusion structure. There are

three factors that have contributed to the inferior performance compared with the

isolated word task: the increase in the complexity of the problem (i.e. from a simple,

predictable language structure to an utterance of unknown length), the extra co-
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Figure 6.1: Phoneme-level recognition results on the LILiR dataset using a network
of phoneme HMMs - a technique considered to be state-of-the-art in automated lip-
reading. A phoneme bigram language model is used to improve recognition accuracy.
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Figure 6.2: Word-level recognition results on the LILiR dataset using the standard
approach to automated lip-reading (HMMs).

articulation from continuous speech, and lack of training data.

Although an audio ASR system can achieve good recognition accuracy with lim-

ited data, most state-of-the-art audio ASR systems are trained on large speech
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databases to enable optimal performance. With this in mind, it was decided that this

work should focus on recording a larger audio-visual dataset from a single speaker

to obtain the peak recognition rates.

6.3 Issues in Modelling for Lip-Reading

Previous work in automated lip-reading has been performed on tasks of varying dif-

ficulty. For example, the work presented in [Cox et al., 2008] achieves high speaker-

dependent accuracy on the 26 letters of the alphabet. However, the task with more

natural speech conducted in [Lan et al., 2010] achieved only 35% viseme accuracy.

In this work, we utilise a new dataset (RM-3000) consisting of 3000 sentences from

a single speaker (described in Section 4.4). This provides us with a large database of

natural speech to explore the peak recognition accuracy that can be achieved with

speaker-dependent automated lip-reading.

Much attention in visual speech recognition has focused on building viseme

models. Visemes (discussed in more detail in Section 3.2.2) are visually similar

phonemes that are mapped to the same visual class, producing a smaller class set

than phonemes (e.g. 14 visemes instead of 45 phonemes). We utilise our new

speaker-dependent video dataset to investigate another fundamental question: is it

optimal to use phonemes or visemes as modelling units for lip-reading?

6.3.1 Viseme mapping and Homophenous Words

Homophones are words that sound the same but have a different meaning (e.g. “for”

and “four”, or “bored” and “board”). Similarly, homophenous words look visually

identical, but sound different (e.g. “bat”, “pat” and “mat”). Some studies have cal-

culated that as many as 40%–60% of English spoken words could be homophenous,

something that poses a significant problem for visual speech recognition [Berger,

1972]. In this work, we define a set of words to be homophenous if they all have the

same viseme transcription. Of the 979 different words spoken in our database, 106



CHAPTER 6. LIP-READING FOR CONTINUOUS SPEECH 130

Viseme Class Mapped Phonemes

V1 /b/ /p/ /m/

V2 /f/ /v/

V3 /t/ /d/ /s/ /z/ /th/ /dh/

V4 /w/ /r/

V5 /k/ /g/ /n/ /l/ /ng/ /hh/ /y/

V6 /ch/ /jh/ /sh/ /zh/

V7 /eh /ey/ /ae/ /aw/ /er/ /ea/

V8 /uh/ /uw/

V9 /iy/ /ih/ /ia/

V10 /ah/ /ax/ /ay/

V11 /ao/ /oy/ /ow/ /ua/

V12 /aa/

V13 /oh/

V14 /sil/

Table 6.1: Description of the Fisher phoneme-to-viseme mappings to collapse 45
phoneme classes into 14 viseme classes. A viseme is reserved for the silence model
(/sil/)

(10.83%) are homophenous. However, because of the uneven distribution of words

over the 3000 sentences, these homophenous words account for 8988 (34.42%) of

all word tokens out of a total of 26114 tokens. Therefore, even with perfect viseme

recognition, the recogniser’s performance could be as low as 65.58% if it were always

to make the wrong choice between a group of homophenous words. We have used

the Fisher mapping from phonemes to visemes [Fisher, 1968], shown in Table 6.1.

Notice that it maps 45 phonemes to only 14 visemes.

6.3.2 Experiments

As with previous experiments, we use left-to-right HMMs for recognition, an ap-

proach that has been successful for both audio ASR and automated lip-reading

[Cox et al., 2008; Luettin and Thacker, 1997; Hilder et al., 2009; Rabiner, 1989].

As with previous work, we perform segmentation using the ‘flat-start’ initialisation



CHAPTER 6. LIP-READING FOR CONTINUOUS SPEECH 131

process. We build monophone models of recognition units in all cases and train

using 20 iterations of the embedded Baum-Welch re-estimation algorithm. We per-

form an exhaustive search to find the optimum number of states (three) and mixture

components (19 per state). The RM-3000 dataset is split randomly into 10 folds

(providing 300 sentences per fold). Following conventions used for recognition of

continuous speech, a short-pause model (sp) is tied to the centre state of the HMM

that models silence to allow short-duration silence between words.

In our recognition system, there are two sets of probabilities that determine the

decoded output sequence of words or units: the probabilities of the input features

being generated by the HMMs of the units, and the language model probabilities

(we use bigram probabilities of either words or units). Because visual speech does

not convey as much information as audio speech, best performance in lip-reading is

achieved by placing more weight on the language model probabilities when compared

with audio ASR. This is done by using a grammar scale factor (GSF) as described

in Section 2.4.4 to boost the importance of the language model probabilities over

the model or visual probabilities.

Our 3000-sentence speaker-dependent dataset is taken as a subset from the 8000-

sentence RM corpus. Therefore, for these experiments, we build word, viseme and

phoneme bigram language models that have been trained on the remaining (unseen)

5000 RM sentences.

Figure 6.3 shows the results obtained for audio and visual recognition as a func-

tion of the number of sentences used as training data. Audio Phoneme shows

the phoneme accuracy obtained on audio data using 45 phoneme units, and Au-

dio Viseme the accuracy on audio data when the 45 phonemes are mapped to 14

visemes. Visual Phoneme and Visual Viseme show the accuracy under the same

conditions but using visual rather than audio data. As expected, we can achieve

very good phoneme recognition accuracy on single-speaker audio data. It is inter-

esting to note that viseme recognition accuracy is actually a little lower (about 2%)

than phoneme accuracy when using audio data, despite the number of viseme classes
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Figure 6.3: Unit recognition performance on 3000 speaker-dependent sentences from
the Resource Management Corpus (RM). Phoneme and viseme (unit) accuracies are
shown for audio and visual speech recognition as a function of the size of the training
set.

being less than one third of the number of phoneme classes. We can attribute this

to the fact that the phoneme-to-viseme mapping groups phonemes that have very

different acoustic features, and so the variation in the features within the classes

would be very high and therefore difficult to model. Using visual data, the situation

is reversed: we obtain better accuracy (near 10% better) using visemes rather than

phonemes, which is what we would expect from using the phoneme-to-viseme map-

ping, which is designed to combine visually similar phonemes into a lower number

of relatively homogeneous classes. However, the accuracy is significantly lower than

that obtained with audio data.

Figure 6.4 shows what happens when we use either phoneme or viseme units to

recognise words. For audio data, it is not a surprise to find that the best performance

(about 96% accuracy) is obtained when the units are phonemes. When viseme units

are used with audio data, performance suffers considerably (about 15% lower). There

are, presumably two reasons for this: the accuracy on viseme units is lower anyway,
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Figure 6.4: Word recognition performance on 3000 speaker-dependent sentences
from the Resource Management Corpus (RM). Word recognition results are shown
for audio and visual speech recognition using both phoneme and viseme models as a
function of the size of the training set.

and visemes introduce homophenous words resulting in ambiguity and thus lower

performance.

It is interesting that, for visual data, much better word recognition results are

obtained using phoneme units than viseme units, about 15% better. Of course, the

presence of homophenous words accounts for some of this loss in performance, but

it was expected that the combination of higher accuracy on viseme units (as shown

in Figure 6.3) and a high value of the grammar scale factor (we found a GSF of 30

gave the best results for word recognition on visual data using visemes) would mean

that visemes would be superior for word recognition.

For phoneme, viseme or word recognition, Figure 6.3 and Figure 6.4 show that

with audio data, optimum recognition performance is obtained with about 600 train-

ing sentences, whereas for visual data, performance is still increasing when the full

set of 2700 sentences has been used for training. This confirms our suspicion that
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lip-reading requires much more data for the same task than audio ASR, because of

the inherent ambiguity in the classes and the noise in the features. It is also interest-

ing to note that word recognition performance is about the same using both viseme

and phoneme units when only 200 sentences are used for training, but performance

using phonemes outstrips performance using visemes as more training sentences are

added. This may be explained by the fact that phonemes require more training

to achieve maximum performance because there are three times as many phoneme

classes as viseme classes.

6.3.2.1 Analysis of the effect of the language model on viseme decoding

The operation of the grammar scale factor (GSF) is of interest in understanding the

interaction between unit and word recognition. It seemed to us that the language

model would be essential in aiding the recogniser choose the most likely word from

a set of homophenous words. However, if the GSF is too large, it would override

the information from the unit HMMs at the expense of the language model, and

accuracy might be adversely affected.

To test this theory, we synthesised a set of “perfect” features for a set of sentences

from our corpus. The mean vector of each state of the sequence of viseme HMMs

that corresponded to the transcribed word sequence of a sentence was output as a

“feature”. This resulted in a sequence of synthetic “features” that actually matched

perfectly to the sequence of viseme HMMs corresponding to the sequence of words in

the sentence. However, there was inherent ambiguity present in the different possible

segmentations of the viseme string, and also in the presence of homophenous words.

Figure 6.5 shows the effect on the word accuracy of increasing the GSF when these

features were decoded by the recogniser. When the GSF is 0, any word is allowed

to follow any other word with equal probability, i.e the language model is having

no effect, and the word accuracy is rather low (92%) because of the ambiguity

of different possible segmentations and the presence of homophenous words. If

the GSF is increased to 1, the language model now chooses more correctly from
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the possible segmentations and from the sets of homophenous words, and accuracy

increases. As an example, the words “TEXAS” and “SENSORS” have the same

visemic transcription (V3 V7 V5 V3 V10 V3). When the GSF is zero, the system

recognises “SENSORS” as “TEXAS”, which is an error. When the GSF is one, this

error is corrected under the influence of the language model. However, as the GSF is

further increased, performance deteriorates, because the language model “overrules”

the evidence from the features and chooses word sequences that have high bigram

probabilities.
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Figure 6.5: The effect of the language model on word accuracy when the recogniser is
given “perfect” features (i.e. ground-truth features generated by the trained HMMs).
With a grammar scale factor of zero, the bigram word-pairings are preserved but
each has equal probability. Thereafter, the bigram language model has an increasing
influence.

6.3.2.2 Analysis of the role of different viseme classes in recognition

Viseme classes vary in both the accuracy with which they are recognised and in the

degree of ambiguity that they introduce into word transcriptions. To investigate

the effect on viseme and word recognition accuracy, we ran an experiment in which

each of the viseme classes shown in Table 6.1 was created in turn whilst keeping the

remaining set of phonemes intact (i.e. for any experiment, there was a single viseme

class constructed whilst the other classes remained as phonemes). The resulting

set of units was trained, and then used to perform word recognition. Using these

results, we are able to rank the viseme mappings in order of their effect on both unit
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and word accuracy.

Figure 6.6 shows how the word and unit recognition accuracy is affected by the

grouping together of phonemes to form each of the viseme classes. The first accuracy

along the set of viseme classes is a basic recogniser using all 45 phonemes separately.

After this, each viseme class is established according to the Fisher phoneme-to-

viseme mapping from Table 6.1 and recognition is performed. For unit accuracy,

there is consistency in most of the results with most around the 43% to 44% region.

Although some mappings provide an increase in unit accuracy, none of the mappings

improve the word accuracy over using phonemes. An example of this is shown

with V1, containing the bilabial phonemes (/b/, /p/, and /m/ ) that are considered

indistinguishable in the visual speech signal. This mapping gives over a 1% increase

in unit accuracy, however, it fails to provide the improvement in accuracy that we

would have envisaged.
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Figure 6.6: Unit and word recognition accuracies that are achieved for forming
an isolated viseme from the set of visemes in the Fisher mapping (shown in Table
6.1). Each viseme group is formed in turn whilst keeping the other classes remain as
phonemes to see if unit or word accuracy could be improved using a partial phoneme-
to-viseme mapping.

Word accuracies reported in Figure 6.6 have more variation across the viseme

groupings. The viseme classes that include the most phonemes in a single group
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come from V3, V5, and V7. Figure 6.7 shows the average unit and word accuracies

for each viseme class size in the Fisher mapping (shown in Table 6.1). The unit

accuracy is highest when we use the Fisher classes that contain six phonemes. This is

likely due to the reduced symbol set that large classes require. For word recognition,

there is an interesting relationship between the class size and word accuracy. Higher

class sizes (six and eight) give lower word accuracies than smaller classes. This

decrease in accuracy may be due to the increase in the number of homophenous

words that are introduced by the large class sizes.
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Figure 6.7: Average unit and word accuracies for the different viseme class sizes.
The Fisher phoneme-to-viseme mapping does not have any classes that consist of five
or seven phonemes.

Figure 6.8 demonstrates how the systems are affected by the progressive cate-

gorisation of phonemes into visemes. Here, we sorted the visemes by their effect on

accuracy and introduced the classes in order of effect on accuracy (from Figure 6.6),

lowest effect first. We start with 45 phonemes (ALL) and progressively reduce the

number of phonemes by introducing a new viseme and performing recognition. The

initial mappings have no effect on word or viseme accuracy (V12, V13 and V14 are

one-to-one mappings). Thereafter, viseme recognition accuracy improves but word
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recognition accuracy declines. Mapping lip-rounded shapes together (i.e. V6) does

not affect either word or viseme accuracy because of the nature of this distinctive lip

shape and its weaker coupling with neighbouring sounds (co-articulation). However,

mapping sounds that are highly dependent on neighbouring sounds improves viseme

accuracy (i.e. V3) whilst lowering word recognition (i.e. V3 and V5). Furthermore,

there is a strong correlation between the steep improvement/decline in viseme/word

accuracy and the distribution of visemes over the 3000 recorded sentences.

To take this point further, Figure 6.9 shows the distribution of visemes over the

3000 sentence dataset. The uneven distribution is because viseme classes have a

different number of phonemes mapped to a single class. Comparing Figure 6.9 to

the results for word recognition in Figure 6.8, we see that the phoneme-to-viseme

mappings that have the greatest effect on performance are those that occur the most

frequently (e.g. for V3, V5, V7, V9 and V10). Although viseme recognition perfor-

mance increases as these large classes are introduced, because more phonemes are

mapped to a small number of classes, these mappings also introduce more ambiguity

into word transcriptions and hence, word accuracy decreases.
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Figure 6.8: The effect on recognition accuracy of progressively mapping phonemes
to visemes. Each viseme class is made in turn, reducing the number of classes pro-
gressively from 45 to 14. ALL represents using all 45 phoneme classes.
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Figure 6.9: Distribution of Fisher visemes over RM-3000 dataset

6.3.2.3 A Data-Driven Phoneme-to-Viseme Mapping

Phoneme-to-viseme mappings have been the subject of much debate in the percep-

tion of visual speech, with many different mappings being suggested. Although the

Fisher mapping describes a good viseme grouping, there may be a more optimal

mapping to maximise the performance of an automated lip-reading system. So an

interesting idea is to use confusion information that has been obtained during recog-

nition to guide the formation of viseme classes, rather than defining viseme classes

from phonetic principles. We first perform phoneme recognition using the standard

approach to automated lip-reading. As in previous experiments, we build a network

of phoneme HMMs and use a phoneme bigram language model to direct the recog-

niser to a decoded phoneme sequence. The HTK toolkit [Young, 2001] provides a

post-recognition tool to align the decoded sequences to their corresponding ground-

truth sequences to produce a phoneme confusion matrix, here a matrix containing

452 frequency entries (we ignore insertions and deletions here). We use the com-

puted confusion matrix to identify strong confusion patterns. Phonemes that are
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confused with each other are then grouped together into viseme classes.

Confusion matrix entries are ranked in descending count order. Starting from

the confusion pair (i.e. aligned phonemes that come from the ground-truth and

recognised sequence) with the largest count, phonemes are grouped together itera-

tively through the ranked frequency counts until all phonemes have been assigned

to a class. Because this method is purely based on the confusions that occur during

recognition, the final number of viseme classes that are produced by the algorithm

cannot be controlled. The grouping algorithm defines three rules by which to classify

phonemes into the set of viseme classes:

1. If both phonemes in a confusion pair are not already members of a viseme

class, they are assigned to a newly created viseme class.

2. If a confusion pair occurs in which only one of the phonemes is already assigned

to a viseme class, the other phoneme is added to the classified phoneme’s

viseme class.

3. If a confusion pair is found in which both phonemes have already been assigned

to different classes, the confusion is ignored.

Using this set of rules on the RM-3000 dataset, the algorithm used 39 grouping

steps to construct seven different viseme classes (including a class reserved for the

/sil/ phoneme). These grouping steps are shown in Table 6.2 and the final group-

ings are shown in Table 6.3. The results presented in Figure 6.10 correspond to the

mapping steps shown in Table 6.2 with the trends in both unit and word accuracy

following the Fisher mapping strategy shown in Figure 6.8. However, the gain in

unit accuracy and drop in word accuracy are much more emphasised than the pre-

vious work using the Fisher mapping because the final mapping is to seven symbols

rather than the 14 symbols. Therefore, the unit accuracy increases monotonically

to 60% because there are fewer possible symbols, and the word accuracy declines

from approximately 60% to 10% as the symbol set is much reduced and many more
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ambiguous word transcriptions (homophenous words) are introduced. In compar-

ison with the Fisher mapping described in Section 6.3.2.2, the data-driven results

show a large increase in unit accuracy (from 51% to 60%) which is expected because

the number of classes is reduced from 14 to 7. Word accuracy using the data-driven

mapping only reaches 60% on the first step which is still lower using phoneme

classes (approximately 65%). For completeness, Figure 6.11 shows results from con-

structing each of the final phoneme-to-viseme mappings produced by this approach

independently (i.e. constructing each viseme class whilst keeping all other phonemes

unmapped). As expected, unit accuracy is dramatically improved with the larger

consonant mapping (V1), but this introduces ambiguity into word transcriptions,

leading to a significant fall in word accuracy.

Step Phonemes to Viseme Class Step Phonemes to Viseme Class

1 {/t/ /n/} to V1 20 {/g/} to V1

2 {/s/} to V1 21 {/ao/} to V2

3 {/ih/ /iy/} to V2 22 {/r/} to V1

4 {/z/} to V1 23 {/ng/} to V2

5 {/ae/ /eh/} to V3 24 {/ch/} to V1

6 {/d/} to V1 25 {/hh/} to V1

7 {/ax/} to V2 26 {/ah/} to V2

8 {/b/ /p/} to V4 27 {/ea/} to V3

9 {/m/} to V4 28 {/ay/} to V2

10 {/dh/} to V1 29 {/ia/} to V2

11 {/k/} to V1 30 {/sh/ /jh/} to V6

12 {/ey/} to V3 31 {/th/} to V5

13 {/w/} to V1 32 {/er/} to V2

14 {/y/} to V1 33 {/aa/} to V2

15 {/l/} to V1 34 {/aw/} to V3

16 {/f/ /v/} to V5 35 {/uh/} to V1

17 {/oh/} to V2 36 {/ua/} to V2

18 {/uw/} to V1 37 {/zh/} to V1

19 {/ow/} to V2 38 {/oy/} to V2

Table 6.2: Algorithm steps in the data-driven phoneme-to-viseme mapping algo-
rithm. The final viseme class set is shown in Table 6.3.
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Figure 6.10: Unit accuracy (top) and word accuracy (bottom) recognition results at
each of the 38 grouping steps described in Table 6.2. Each step is dependent on the
previous mapping whereby the phonemes that have been assigned to viseme groups
previously are maintained and a new grouping is introduced according to the steps in
Table 6.2.

Viseme Class Mapped Phonemes

V1 /t/ /n/ /s/ /z/ /d/ /dh/ /k/ /w/ /y/ /l/
/uw/ /g/ /r/ /ch/ /hh/ /uh/ /zh/

V2 /ih/ /iy/ /ax/ /oh/ /ow/ /ao/ /ng/ /ah/
/ay/ /ia/ /er/ /aa/ /ua/ /oy/

V3 /ae/ /eh/ /ey/ /ea/ /aw/

V4 /b/ /p/ /m/

V5 /f/ /v/ /th/

V6 /jh/ /sh/

Table 6.3: A description of the viseme classes that are produced by the data-driven
phoneme-to-viseme mapping algorithm. Here, 44 phonemes are collapsed into six
viseme classes. An additional silence viseme is also used as the seventh viseme class.
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Figure 6.11: Unit accuracy (top) and word accuracy (bottom) recognition results for
the data-driven phoneme-to-viseme mapping. Here, the final viseme classes (shown in
Table 6.3) that are produced by the mapping steps shown in Table 6.2 are explored.
Standard unit and word recognition is performed on the viseme classes independently
(only a single viseme class is constructed and all other phonemes remain unmapped).

6.3.2.4 A Principled Phoneme-to-viseme Mapping

So far, we have had little success in finding a phoneme-to-viseme mapping strat-

egy that improves the recognition accuracy for our RM-3000 task. We describe a

final experiment in which we define viseme classes using sounds that can be easily

grouped due to their indistinguishable lip shapes. Unlike the experiments conducted

using a progressive strategy in Figure 6.8, and Figure 6.10 (whereby the phoneme

set is progressively reduced to the number of visemes), we perform independent

recognition experiments, each including only the viseme classes that are required for

the specific step. Table 6.4 describes the viseme mappings used for this experiment

with the step number to correspond to the recognition results in Figure 6.12. Notice

that, unlike the data-driven approach where we could not control the final number

of viseme classes, we group the phonemes into viseme classes as described in Table

6.4 but maintain all other phonemes as individual classes and produce mappings

that have fewer (35) or more (44) total number of classes. One might assume that
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obvious phoneme mappings, would yield much higher word and unit accuracies,

however, this is not true. Step 5 in Table 6.4 describes the mapping of two bilabial

phonemes /b/ and /p/. Here, all examples of these two phonemes are mapped to

the same viseme class with all other phonemes remaining in their own classes. The

results for step 5 in Figure 6.12 show a small improvement in unit accuracy from

42.85% to 43.55% which is purely due to the reduction in the number of possible

symbols to recognise. However, with the introduction of ambiguous transcriptions

(homophenous words), the word accuracy for step 5 suffered a small decline from

59.33% to 59.30%. Other mappings (such as step 2 containing fricatives and stops)

improved unit accuracy significantly but always adversely affected the word accu-

racy with none of the mappings able to achieve better word accuracy than using

phoneme classes. The partial viseme mappings shown here are inferior in both unit

and word accuracy to the Fisher viseme mappings that were described in Section

6.3.2.2, with nine of the partial Fisher mappings achieving over 60% word accuracy

(a figure that is not exceeded by here using the principled mapping technique).
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Figure 6.12: Recognition results using the principled viseme mappings. The 17
mappings are shown in Table 6.4. Here, each viseme class is constructed independently
at each step described in Table 6.4. During each mapping step, all other phonemes
outside of the subject viseme class are maintained as separate classes. Standard error
is too small to be shown for these results.
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Step
Class
Description

Viseme Classes Introduced Total
Number

of
Classes

1 Fricatives
{/s/ /sh/}, {/z/ /zh/}, {/th/ /dh/} ,
{/f/ /v/} 41

2
Fricatives and
stops

{/t/ /d/}, {/b/ /p/}, {/g/ /k/},
{/jh/ /ch/}, {/s/ /z/}, {/sh/ /zh/},
{/f/ /v/}, {/th/ /dh/}

37

3 Stops
{/t/ /d/}, {/b/ /p/}, {/g/ /k/},
{/jh/ /ch/} 41

4 b and p mapping {/b/ /p/} 44

5 f and v mapping {/f/ /v/} 44

6
Fricatives, stops,
and vowel mapping
1

{/t/ /d/}, {/b/ /p/}, {/g/ /k/},
{/jh/ /ch/}, {/s/ /z/}, {/sh/ /zh/},
{/f/ /v/}, {/th/ /dh/}, {/ax/ /aa/
/ae/}

35

7
Fricatives, stops,
and vowel mapping
2

{/t/ /d/}, {/b/ /p/}, {/g/ /k/},
{/jh/ /ch/}, {/s/ /z/}, {/sh/ /zh/},
{/f/ /v/}, {/th/ /dh/}, {/eh/ /iy/
/ih/}

35

8
Fricatives, stops,
and vowel mapping
3

{/t/ /d/}, {/b/ /p/}, {/g/ /k/},
{/jh/ /ch/}, {/s/ /z/}, {/sh/ /zh/},
{/f/ /v/}, {/th/ /dh/}, {/aw/ /ay/
/ow/}

35

9 g and k mapping {/g/ /k/} 44

10 jh and ch mapping {/jh/ /ch/} 44

11 s and z mapping {/s/ /z/} 44

12 sh and zh mapping {/sh/ /zh/} 44

13 t and d mapping {/t/ /d/} 44

14 th and dh mapping {/th/ /dh/} 44

15 Vowel mapping 1 {/ax/ /aa/ /ae/} 43

16 Vowel mapping 2 {/eh/ /iy/ /ih/} 43

17 Vowel Mapping 3 {/aw/ /ay/ /ow/} 43

Table 6.4: Description of the principled phoneme-to-viseme mappings. Each map-
ping referred to using a ‘Mapping ID’ which corresponds to the recognition results
shown in Figure 6.12. The total number of classes is calculated as the sum of number
of viseme classes and the number of remaining phoneme classes (i.e. phonemes that
are not assigned to a viseme class in the mapping).
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6.4 Conclusions

This chapter has presented work on two continuous speech datasets. Firstly, we used

an existing dataset that has been used in previous lip-reading work, the LILiR cor-

pus. However, we found that lip-reading word and phoneme recognition accuracies

with this dataset are too poor to work with.

We recorded a new dataset to eliminate the possibility that lack of data is af-

fecting our results. The new dataset, RM-3000, consists of 3000 sentences recorded

from a single speaker over multiple sessions (described in Section 4.4). We use this

dataset to determine the amount of training data required for peak automated lip-

reading accuracy. The highest word accuracy produced by our speaker-dependent

lip-reading system is 66%. Although this may seem quite low in ASR terms, it

should be compared with a measured accuracy for human lip-reading of 18.4% on

monosyllabic words [Hilder et al., 2009]. We have also found that lip-reading recogni-

tion performance was still increasing slightly after 2700 sentences had been used for

training, whereas audio speech recognition achieved peak accuracy after about 600

sentences were used. This shows that more training data is necessary for lip-reading

because of the inherent ambiguity in the visual features.

Recent work in automated lip-reading has primarily focussed on the assump-

tion that visemes are the most appropriate unit of visual speech. However, with

many different works proposing different phoneme-to-viseme mappings, there seems

to be disagreement amongst the visual speech community. We examined the use of

visemes in automated lip-reading with a large, speaker-dependent task and found

that, although visemes outperform phonemes when measuring unit accuracy, they

introduce more ambiguity amongst word transcriptions, hence, reducing word accu-

racy.

Our work then analysed the effect of different viseme mappings on unit and

word accuracy. Firstly, we performed independent and progressive tests using the

Fisher phoneme-to-viseme mapping, and concluded that the most frequently occur-
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ring visemes provide the largest reduction in word accuracy. We then developed

our own phoneme-to-viseme mapping which was derived from a phoneme confusion

matrix after recognition. We found that, given our grouping algorithm, the number

of symbols was reduced significantly to just seven symbols, causing unit accuracy

to improve (by reducing the number of possible decoded symbols) but also caus-

ing word accuracy to decline (by introducing more ambiguous word transcriptions).

Finally, we derive a phoneme-to-viseme mapping using a principled approach in

Section 6.3.2.4, grouping phonemes into large and small groups (of as little as two

phonemes) using our understanding of visual speech. We find that, although some

of the phonemes mapped to a single viseme class are indistinguishable in thought,

they are in fact separable with most mappings providing higher unit accuracy (be-

cause the number of possible symbols is reduced), but lower word accuracies (after

introducing homophenous words).

Phoneme-to-Viseme Map-
ping

Word Accuracy Unit Accuracy

Best Partial Fisher Mapping
(Section 6.3.2.2)

64.49% 47.29%

Final Data-Driven Mapping
(Section 6.3.2.3)

51.02% 59.43%

Best Partial Principled Mapping
(Section 6.3.2.4)

45.38% 59.62%

Phonemes 65.08% 42.85%

Table 6.5: Comparison of the best unit and word accuracies that are produced by
the phoneme-to-viseme mappings used in this work.

The work presented in this chapter has explored the use of phoneme-to-viseme

mappings to improve the recognition accuracy of an automated lip-reading sys-

tem. Table 6.5 compares the best unit and word recognition accuracies that are

obtained for each mapping strategy (i.e. the best result from using any of the par-

tial mappings). We have discovered the counter-intuitive result that the best word

recognition accuracy in automated lip-reading is achieved by using phoneme classes,
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even though some phonemes can not be visually distinguished. There are two likely

reasons for these findings. Firstly, the reduction of the number of classes introduces

homophenous words that add ambiguity amongst words and cause some words to

be incorrectly recognised. However, the most significant contribution comes from

the wide variety of co-articulatory information of the units. In the viseme case,

phonemes which have indistinguishable lip shapes might not necessarily have simi-

lar co-articulatory features. With the large amount of data used in this work, there

are many examples of each phoneme available to train individual phoneme HMMs.

With the phoneme HMM system producing the best word recognition accuracies,

the system is able to more accurately mode individual phoneme units with respect

to their distinct co-articulatory properties. These results provide an interesting

foundation for future work.



Chapter 7

Confusion Modelling for

Continuous Speech

7.1 Motivation and Aims

Chapter 5 presented a new approach to lip-reading, using a confusion model to cor-

rect the noisy decoded phoneme sequence that has been produced by a phoneme

recogniser. The best recognition accuracy that could be achieved by the new (pro-

posed) approach was still slightly inferior to the standard approach accuracy. How-

ever, there was evidence to suggest that this technique had potential, with a large

word accuracy gain (29.5%) over a shortest-cost alignment using dynamic program-

ming. The work presented in Chapter 5 used a specially-recorded, isolated word

dataset consisting of a 211-word vocabulary, which was a relatively simple task

designed to focus on modelling confusion patterns in lip-reading. However, with

limited data available, the accuracy of the confusion model is limited. This lack of

data also has a detrimental effect on the accuracy of the bigram confusion model in-

troduced in Section 5.4.2, with data sparsity becoming more apparent as the number

of symbols is increased.

In this chapter, we overcome the data sparsity problem by recording a new, large

149
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audio-visual corpus consisting of 3000 sentences (described in Section 4.4), which is

capable of providing a much richer set of confusions, and, hence, stronger confusion

patterns for the confusion WFST to model. We start by performing experiments

with the techniques introduced in Chapter 5 on the RM-3000 dataset and examine

the confusion patterns that are observed in this process. The availability of a larger

dataset is also a catalyst for work to extend the standard approach system (currently

using monophone HMMs) to use context-dependent models (triphone HMMs). This

produces a set of confusions with more structure, leading to a more accurate cor-

rection module. The triphone recognition system also opens up further room for

exploration and in Section 7.3.4, we extend the current confusion system by using

recognition lattices, which provide a richer set of possible hypotheses compared to

the previous n-best approach.

7.2 A Monophone System

To measure the improvement in word recognition accuracy, we first need a base-

line system. Chapter 5 presents the standard approach using a network of HMMs

to recognise isolated words (Section 5.2) and a similar approach is used with the

RM-3000 dataset. Section 6.3.2 describes the standard approach setup for the work

presented in this chapter with word recognition results shown in Figure 6.4. Fol-

lowing the approach described in Section 5.3 and the evidence provided in Section

6.3.2, we continue to use phoneme units as they have proven best to translate into

the best word accuracy. As in the experiments conducted in Sections 5.2 and 6.3.2,

we explore a large number of possible left-to-right HMM topologies for phoneme

models and experiment with the number of mixture components per state to max-

imise recognition accuracy. The best word recognition accuracy that was achieved

using the standard approach was 66.29% (shown in Figure 6.4). This used a word

bigram language model that had been pre-trained on the held-out 5000 sentences

from the RM corpus.
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7.2.1 The Proposed Approach

At the heart of our proposed approach, is the confusion module. Our system (shown

in Figure 5.1) uses the output from a standard approach phoneme recogniser as the

input to a WFST cascade. The most important part of the cascade for our work is

the confusion transducer which models the substitutions, insertions, and deletions.

We presented a set of techniques in Section 5.3.2 for estimating the lip-reading

confusion matrix using the confusions that are present in an offline training phase.

The recognition accuracy of a speech recognition system is based on a count

of correctly decoded symbols versus incorrectly decoded symbols after aligning the

symbol strings using dynamic programming. However, it does not describe the

individual counts of substitutions, insertions, and deletions. In confusion modelling,

it is most desirable to observe substitutions because they form strong patterns in the

confusion matrix. In lip-reading, many sounds are not observed on the lips because

speech involves the use of articulators that cannot be seen, and this leads to deletions

in the decoded sequence. Table 7.1 shows statistics that are produced from the best

phoneme accuracy shown in Figure 6.3. Although these figures have been produced

by the best phoneme recogniser, they expose the issues that are faced when reporting

unit accuracy (using phonemes or visemes) for automated lip-reading. The number

of deleted tokens (phonemes) is more than three times the number of insertions and

over 12000 than the number of substituted tokens. Furthermore, the number of

deleted tokens represents approximately one quarter of the total number of tokens,

meaning that a deletion occurs once for nearly every four other tokens. Figure 7.1

illustrates the extent to which these deletions affect the decoded phoneme sequences,

with many neighbouring phonemes being deleted in long strings of as many as seven

phonemes — usually making up whole words. Figure 7.2 illustrates this problem

further. Here, we count the number of consecutive deleted and inserted phoneme

sequences (i.e. the number of phonemes being inserted/deleted in a row). As one

would expect, there are many more deletion counts than insertion counts. Most

deleted/inserted sequences are between one and three phonemes long but there are
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still 10318 deletions that are more than three phonemes long. For a confusion

model to have a chance of correcting these long sequences of deletions, a high-order

n-gram model would be required to fit over the widest window of deleted phonemes.

However, even with the large database used here, n-gram sparsity is still a significant

issue.

SENTENCE: REDO FIGURES FOR HORNE
GT:  r iy d uw f ih g ax z f ao hh ao r n 
REC:      d uw f      eh t f       ao     

SENTENCE: HOW FAST IS THE SAMPLE
GT:  hh aw f aa s t ay z dh ax s aa m  p l 
REC: hh aw f        ay s    iy s    ah b l 

SENTENCE: WOULDNT IT HAVE TAKEN LONGER WITH JASON
GT:  w uh d n t ih t ae v t ey k ax n l oh ng ax w ih dh jh ey s ax n 
REC: w uh          t iy v l ey        l oh ng ax   b  ax l  ey      z 

SENTENCE: WHERES THE SWORDFISHS HOME PORT 
GT:  w ea r z dh ax s ao d f ih sh ih z hh ow m p ao t 
REC: w        ah n  t ao   f       ih s    ah m p ao t 

SENTENCE: HOW NEAR TO THE MARS IS IT
GT:       hh aw      n ia ay t uw dh ax m aa z t  ax ih   t 
REC: w iy hh aw r iy t b  ay                   th w  ih n t 

Figure 7.1: Five examples of phoneme transcriptions produced by the phoneme
recogniser with the best phoneme accuracy. ‘SENTENCE’ gives the word transcrip-
tion of the sentence, ‘GT’ is the ground-truth phoneme sequence, and ‘REC’ is the
recognised phoneme sequence.
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Figure 7.2: The number of consecutive deletions and insertions that are produced
by the standard phoneme recogniser. The length of each deleted/inserted sequence is
recorded and represented in a histogram plot. The number of deletions is much larger
than the number of insertions as described in Table 7.1

Best Accuracy Configuration
Insertion Penalty 15
No. of Correct Tokens 135,924 (51.68%)
No. of Deleted Tokens 69,712 (26.51%)
No. of Substituted Tokens 57,364 (21.81%)
No. of Inserted Tokens 21,939 (8.34%)
Total No. of Tokens 263,000
Phoneme Accuracy (%) 43.34

Table 7.1: Phoneme Recognition statistics produced by the monophone standard
approach using a phoneme bigram language model.

7.2.2 Minimising the number of deleted phonemes

The highest phoneme recognition accuracy that can be achieved with the standard

approach is 43.34%. However, this recognition accuracy figure fails to describe the

nature of the phoneme confusions that appear in the decoded sequences. Table

7.1 shows a set of statistics that are important for our confusion modelling work.

Although this configuration achieves the best phoneme accuracy, it also introduces

a large number of deletions and insertions. Furthermore, Figure 7.2 shows that

the deleted phonemes can be in long sequences of up to six phonemes. As it is
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easier to delete information rather than insert unknown information, we wish to find

another configuration where the number of deletions (and ideally, insertions too), is

minimised but accuracy is not significantly lower than the best configuration.

An insertion penalty (described in Section 2.4.4) is used in the standard approach

ASR system to control the ratio of inserted phonemes to deleted phonemes in our

recognition system using a fixed value to penalise the transition from one HMM to

another. Figure 7.3 shows the relationship between insertion penalty values and the

frequencies of insertions and deletions, and also with the phoneme accuracy. When

the phoneme accuracy reaches its peak at an insertion penalty value of 15, there are

fewer deletions, but these are still greater than the number of insertions. However,

we also want to avoid a high number of insertions (and low phoneme accuracies) that

come with insertion penalties greater than 30. Therefore, we choose an insertion

penalty of 30 to have fewer deletions than insertions with only a small decline in

phoneme accuracy (7.25%) from the best configuration.
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Figure 7.3: The top plot shows the number of inserted and deleted phonemes as a
function of insertion penalty values in the HTK standard approach recogniser. Below
this is a phoneme accuracy plot as a function of the same insertion penalty. This figure
is used to find the optimal insertion penalty to minimise the number of deletions whilst
also maximising the phoneme accuracy.
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Table 7.2 compares the recognition statistics from the best phoneme accuracy

(with an insertion penalty of 15) and the new phoneme accuracy (with an insertion

penalty of 30). With some sounds not visible on the lips, a typical visual speech

confusion model would include a large number of deleted sounds. For a unigram

confusion model, the deletion pattern is not likely to show much structure, causing

issues when performing correction with an insertion operation. Insertions, however,

are events that have been observed in the decoded sequence but are not present in the

ground-truth sequence. In general, it is easier to delete spurious information than

to have to add information that has been lost. Therefore, we balance the number

of deletions and insertions with minimisation of the former being the priority. By

experimenting with different values for the insertion penalty, the number of deleted

tokens has been dramatically reduced to approximately a half of the original size

(from 69,712 to 36,368) whilst the number of inserted tokens has increased by nearly

three times the original amount (from 21,939 to 62,212).

Best Accuracy Minimised Deletions
Insertion Penalty 15 30
No. of Correct Tokens 135,924 (51.68%) 155,839 (59.25%)
No. of Deleted Tokens 69,712 (26.51%) 36,368 (13.83%)
No. of Substituted Tokens 57,364 (21.81%) 70,793 (26.92%)
No. of Inserted Tokens 21,939 (8.34%) 62,212 (23.65%)
Total No. of Tokens 263,000 263,000
Phoneme Accuracy (%) 43.34 35.60

Table 7.2: Phoneme Recognition statistics produced by the monophone standard
approach using a phoneme bigram language model.

Figure 7.4 shows the improved phoneme transcriptions with the same words from

Figure 7.1. Although the transcriptions include more insertions, the maximum num-

ber of consecutive insertions are much smaller, providing the confusion model with a

more reliable set of confusions in a more localised space. Figure 7.5 draws a compar-

ison between the nature of insertions and deletions in the new decoding (optimised

for deletions), and the previous decoding (using the best phoneme accuracy). As ex-

pected, the new phoneme decoding has fewer deletions but these are (mostly) small

in length with most sequences of less than three deleted symbols. Whilst limiting
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the number of deletions, the number of insertions is increased in the new decoding

but these are also small in length with most sequences under three phonemes but

mostly just single symbol insertions.

SENTENCE: REDO FIGURES FOR HORNE 
GT:     r iy   d uw f ih g ax z f ao hh ao r n 
ORIG:          d uw f      eh t f       ao     
OPT:  d r iy t y uw f ih g    n f       ao   m 

SENTENCE: HOW FAST IS THE SAMPLE
GT:   hh    aw f aa s  t ay z  dh ax s aa m  p l
ORIG: hh    aw f         ay s     iy s    ah b l  
OPT:  hh ae n  f ay z dh ax    dh ax s    ah b l 

SENTENCE: WOULDNT IT HAVE TAKEN LONGER WITH JASON
GT:   w uh d  n t ih t     ae v t ey k ax n l oh   ng ax w ih dh jh ey s ax n
ORIG: w uh           t     iy v l ey        l oh   ng ax   b  ax l  ey      z 
OPT:  w    ih n   dh ax dh ax v   ey   eh n l oh n dh ax      dh ae n  s      

SENTENCE: WHERES THE SWORDFISHS HOME PORT 
GT:   w ea r  z dh ax s ao d f ih sh ih z hh ow m p ao       t  
ORIG: w         ah n  t ao   f       ih s    ah m p ao       t 
OPT:  w    ah n dh ax s ao   f       ay z hh      p ao dh ax 

SENTENCE: HOW NEAR TO THE MARS IS IT
GT:        hh aw      n ia ay z dh ax m aa z  t  ax   ih   t 
ORIG: w iy hh aw r iy t b  ay                 th    w ih n t 
OPT:       hh aw      n       b iy t  m aa th dh ax w ih n t 

Figure 7.4: Five examples of phoneme transcriptions produced by the standard
approach recogniser with the reduced number of deletions. ‘SENTENCE’ gives the
word transcription of the sentence, ‘GT’ is the ground-truth phoneme sequence, ‘OPT’
is the new recognised phoneme sequence with fewer deletions, and ‘ORIG’ is the
recognised phoneme sequence produced by the phoneme recogniser with the best
accuracy (Figure 7.1).

With this improved phoneme decoding, we perform the proposed approach as

shown for the isolated word dataset in Section 5.3. To run preliminary experiments,

we first test our approach using the most likely phoneme sequence produced by

the standard approach (i.e. 1-best). The confusion model is trained using different

timing offset windows (ranging from ±0.5 to ±3 standard deviations). Only base

smoothing is used after the superior results achieved with base smoothing over other

smoothing methods for the isolated word experiments. The best word accuracy using

this approach is 12.79% (shown in Table 7.3) using a±0.5 standard deviation timing
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window. Upon inspection, it was discovered that, although there were fewer longer

sequences of deletions, the overall number of deletions was still too high for the

unigram confusion model to correctly insert phonemes frequently. We also explored

the use of an insertion penalty in the WFST cascade to reduce the large number

of insertions in the confusion model, but these experiments did not improve word

accuracy.
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Figure 7.5: A comparison between the number of consecutive deletion/insertion
sequences in the two hypotheses, using the best phoneme accuracy and using the
decoded output that is optimised to minimise deletions. The top histogram plots the
consecutive deletion counts and the bottom histogram shows the consecutive insertion
counts

System Word Accuracy (%)

Standard Approach with a word
bigram language model

66.29

Proposed approach using WFST
cascade and a bigram language model

12.79

Table 7.3: Best word-level results produced by the proposed approach using
phoneme transcriptions with minimal deletions. A search was performed to find the
optimal timing offset window of ±0.5 standard deviations.
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7.3 A Triphone System

Most state-of-the-art audio ASR systems take advantage of the data available in

thousands of hours of speech data to train triphone HMMs. Triphones are an ex-

tension of monophone HMMs in which each model represents a single phoneme but

with a left (preceding) and right (following) context (triphones are described in more

detail in Section 2.4.3.2). The limited amount of data in visual speech means that

lip-reading recognisers usually use monophone HMM systems. With the new, large

RM-3000 corpus, we have been able to extend the standard monophone approach

system to use triphone HMMs for lip-reading. Furthermore, the use of a more com-

plex standard approach recogniser invites new possibilities in the use of weighted

finite-state transducers in confusion modelling.

7.3.1 The Standard Approach using Triphone HMMs

To maintain consistency in our approach, we use HTK [Young et al., 2006] but

build a triphone HMM system. Firstly, we construct a set of monophone HMMs as

described in previous standard approach experiments. Context-dependent triphone

HMMs are constructed using a copy of the monophone HMMs with an additional

re-estimation using a triphone training transcription. We use cross-word triphones

whereby each word boundary is modelled using the triphone sequences that span over

two words. This improves the modelling of cross-word co-articulatory effects that

are present in the visual speech signal (for more detail on cross-word triphones, see

Section 2.4.3.2). State tying is performed according to a set of clustering rules so that

triphones that have not been observed in the training procedure can be modelled. In

this work, we use the tree-based clustering rules that are used in conventional audio

ASR systems [Young et al., 2006]. As in the previous monophone work, we train

the parameters of the HMMs using the embedded Baum-Welch training algorithm.

We perform an exhaustive search over the number of states and number of mixture

components per state to find the configuration that achieves the best word accuracy.
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We also use a word bigram language model trained on the held-out 5000 sentences

from the RM corpus and find the optimal grammar scale factor (set to 30). We also

perform an exhaustive search to find the best insertion penalty value to produce the

most accurate word decoding using the best combination of insertion and deletion

counts.

Figure 7.6 presents the word recognition results for the triphone HMM system

when varying the number of mixture components per state. We also performed

recognition using more than 19 mixture components per state but found that word

accuracy starts to decline after 19 components. Table 7.4 compares the best word

recognition accuracy that can be achieved using the standard approach with mono-

phone and triphone HMMs. It was expected that the triphone HMM system would

outperform the monophone HMM system in a speech recognition task of this size.

However, the large gain in word accuracy that is observed here (nearly 10%) indi-

cates that co-articulation, which is exactly what triphones are good at modelling, is

very prevalent in the visual signal.
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Figure 7.6: Word recognition results using the standard approach to lip-reading. As
the RM-3000 dataset provides a richer training set, the standard monophone HMM
results presented in Figure 6.4 can be improved by using a triphone HMM system
where an HMM models a phoneme in a specific left and right context.
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Monophone
System

Triphone
System

No. of Correct Words 18,191 (69.66%) 20,500 (78.50%)
No. of Deleted Words 2,860 (10.95%) 2,308 (8.84%)
No. of Substituted Words 5,063 (19.39%) 3,306 (12.66%)
No. of Inserted Words 879 (3.37%) 763 (2.92%)
Total No. of Words in Ground-Truth 26,114 26,114
Word Accuracy (%) 66.29 75.58

Table 7.4: Comparison between the word recognition statistics achieved with a
monophone and triphone HMM system.

7.3.2 Word-Level Confusion Model

Upon examination of the word confusion patterns that are produced by the recog-

niser, we also identify some interesting findings. Figure 7.7 compares five word

transcriptions that are produced by the previous monophone HMM system with

the current triphone HMM system. The increased accuracy from triphones gives

a stronger structure to the word confusions. For example, the confusion between

‘HORNE’ and ‘ON’ in the first transcription, and between ‘WHENS’ and ‘WHERES’

in the fourth transcription. These plausible confusions are of keen interest in our

work. In almost all cases, the triphone decoding provides more information than

the monophone decoding. What is particularly impressive is the reduced number of

deletions that are produced by the triphone system.

The word confusions are phonetically similar, and this means that when the

words are written out as phonemes and aligned, the phoneme confusions are more

accurate. Here, we experimented with building a word-level confusion model to

see if we could improve word accuracy at a higher level. However, if we built a

word-level confusion matrix using the same approach as that implemented in the

phoneme confusion matrix for the isolated word task, we would require a matrix

with 9792 = 958, 441 entries. With most of these elements set to zero, confusion

sparsity would be a significant issue.
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GT:   REDO FIGURES FOR HORNE
MONO: REDO FIGURES FOR  
TRI:  REDO FIGURES FOR ON 

GT:   HOW FAST IS THE SAMPLE 
MONO: HOW FAR  IS THE SUBS 
TRI:  HOW FAR  IS THE SAMPLE 

GT:   WOULDNT IT HAVE TAKEN LONGER WITH JASON 
MONO: WOULDNT IT HAVE TAKEN LONGER WITH TEXAS  
TRI:  WOULDNT IT HAVE TAKEN LONGER WITH TEST

GT:   WHERES THE   SWORDFISHS HOME PORT
MONO:        THE   SWORDFISH  HOME PORT  
TRI:  WHENS        SWORDFISHS HOME PORT 

GT:   HOW NEAR IS THE MARS     TO IT   
MONO: HOW             MANY     TO BERING STRAIT    
TRI:  HOW NEAR IS THE MIDWAYS 

Figure 7.7: Five examples of word transcriptions produced by a monophone HMM
standard approach system and a triphone HMM standard approach system. ‘GT’
is the ground-truth sentence, ‘MONO’ is the recognised sentence produced by the
monophone HMM approach, and ‘TRI’ is the recognised sentence produced by the
triphone HMM approach.

To overcome this, we adopt a similar approach to that taken with the sparsity

problem encountered in the phoneme bigram confusion model (presented in Section

5.4.2). The confusion WFST is built using all of the non-zero elements of the

confusion matrix only. Therefore, if a confusion has never been observed at training

time, we assume that there is a zero probability of the confusion system correcting.

Although this assumption could be considered as naive, the regular occurrence of

plausible confusions (e.g. ‘WHENS’ for ‘WHERES’, and ‘WHAT’ for ‘WHATS’)

should enable the recogniser to correct popular plausible confusions, and hence,

improve the word recognition accuracy. We build a confusion WFST with the same

topology as performed in the experiments presented in Chapter 5, using a single

state cyclic model. The weights are calculated using the proportion of the specific

confusion frequency which is normalised by the total number of confusions for the

ground-truth word. Table 7.5 shows the confusions that are observed for two typical

ground-truth words. The ground-truth word ‘WHATS’ has been confused with



CHAPTER 7. CONFUSION MODELLING FOR CONTINUOUS SPEECH 162

‘WHAT’, ‘WHERE’, and itself, and the ground-truth word ‘WHERES’ is confused

with ‘WHERE’, ‘WHYS’, ‘WHATS’ and itself. The probability of each confusion

(Pr(W,W ∗)) is calculated using Equation 7.1 where C(W,W ∗) is the number of

times that the ground-truth word W is confused with the recognised word W ∗,

and C(W ) is the total number of times that the ground-truth word W has been

encountered over all recognised words. This probability is converted to a negative

log cost and used in the confusion WFST (shown in Figure 7.8).

Pr(W,W ∗) =
C(W,W ∗)

C(W )
(7.1)

Ground-Truth Word Recognised Words

WHATS
WHAT, WHAT, WHATS, WHAT,
WHATS, WHERE, WHERE,
WHATS, WHATS, WHATS

WHERES
WHERE, WHERES, WHERES,
WHERES, WHYS, WHERES,
WHERE, WHERE, WHATS, WHATS

Table 7.5: Example of a set of confusions that have been identified by the training
process. Here, two ground-truth words are confused with different, visually similar
words. The frequency counts of these confusions are used to derive the weights for
the confusion model (pictured in Figure 7.8).

As we are now working with word-level confusion patterns, the P ∗ WFST is

changed to model the word sequence (not the phoneme sequence) that has been

produced by the standard approach triphone system. As in our previous work, we

retain the output token likelihoods (in this case, word log likelihoods) and convert

them to negative costs for use with the WFST. For this set of initial experiments

on word-level confusion modelling, we use the top decoding (i.e. 1-best).

In our new word-level confusion model system, we define a new WFST cascade

consisting of three transducers:

PW∗ ◦ CW ◦M, (7.2)



CHAPTER 7. CONFUSION MODELLING FOR CONTINUOUS SPEECH 163

where PW∗ is the input WFST modelling the word decoding produced by the tri-

phone standard approach recogniser (five examples of PW∗ WFSTs are shown in

Figure 7.9), CW is the word-level confusion model, and M is a word bigram language

model. The sentences in the RM-3000 corpus are divided into ten folds and cross-

fold validation is performed with three sets: training (used to train the standard

approach recogniser), testing (used to train the word-level confusion model), and

validation (used as a test set for the WFST confusion cascade). The M transducer

is a bigram word-level language model that has been trained using the held-out 5000

sentences from the RM corpus [Price et al., 1988]. Table 7.6 compares the recogni-

tion results produced by the word-level confusion system with the results obtained

with the previous standard approach system. Using a combination of triphones and

a word confusion matrix increased the accuracy of our system from 12.79% accuracy

to 66.34%, which is slightly higher than the standard approach using monophones

but not as high as the standard approach using triphones.

System Word Accuracy (%)

Standard Approach with monophone
HMMs and a word bigram language
model

66.29

Standard approach with triphone
HMMs and a word bigram language
model

75.58

WFSTs using triphone HMM standard
approach and a word confusion model

66.34

Table 7.6: Comparison between the word recognition accuracies achieved with a
monophone and triphone HMM system.
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0

WHAT:WHATS / -log(-0.3)

WHATS:WHATS  / -log(-0.5)

WHERE:WHATS  / -log(-0.2)

WHERE:WHERES  / -log(-0.3)

WHERES:WHERES  / -log(-0.4)

WHYS:WHERES  / -log(-0.1)

WHATS:WHERES  / -log(-0.2)

Figure 7.8: A simple word-level confusion model example derived from the confu-
sions that are observed in Table 7.5. Weights are derived from the ratio of the specific
confusion (i.e. the translation between the ground-truth and recognised word) to the
total number of confusions for the given ground-truth word.
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7.3.3 The Proposed Approach using Word Hypotheses

The HTK triphone system is an established recognition tool for ASR. However,

the built-in recogniser is tailored towards producing word decodings only, which is

a possible limitation for our confusion modelling techniques which use the decoded

phoneme strings under the influence of a phoneme bigram language model. However,

with the attractive gain in word accuracy that can be achieved using the triphone

system, we adapt our WFST confusion system to accommodate the word-level recog-

nition output. Figure 7.10 illustrates a new confusion modelling approach to take

advantage of the triphone HMM standard approach. Here, an additional word-to-

phoneme dictionary is used to provide the translation from a decoded word output

to a phoneme string. This phoneme string can then be used with our confusion

matrix estimation techniques presented in Chapter 5.

Visual 
Speech

Feature 
Extraction

Triphone Phoneme 
Recogniser

Word output

Word 
Transcriptions

Visual Phoneme 
Triphone HMMs

WFST 
Composition

Confusion Model
(C)

Dictionary
(D)

Word output
P* 

WFST

Proposed Additional Confusion Model

Standard Approach

Word-to-phoneme 
Dictionary Phoneme output

Figure 7.10: Showing how the standard approach triphone system is used with an
additional confusion model to correct phoneme strings. The word output is decom-
posed into a phoneme string (with short pauses at word boundaries) which is then
used in the confusion WFST cascade.
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The RM-3000 dataset is split into ten folds, each containing 300 sentences. From

these folds, three sets are formed: a training set (consisting of eight folds) which is

used to train the triphone standard approach recogniser, a testing set (one of the

remaining folds) which is used to train the confusion model with decoded strings

produced by the standard approach recogniser, and a validation set (the final fold)

which is used as test data to the WFST confusion cascade. Cross-fold validation is

performed with each validation set used as unseen test data.

Reverting to a phonemic confusion model ensures that our previously developed

techniques can be explored using our new triphone decodings. We also restore the use

of base smoothing, a confusion matrix smoothing technique that achieved the best

results for the work presented in Chapter 5. As we are now dealing with phoneme

sequences that have been decomposed from word sequences, the probability mass on

the diagonal elements will be much stronger than previous experiments. Therefore,

we experiment with varying the parameter which defines the percentage of diagonal

probability to re-distribute to the off-diagonal elements and find that the best ac-

curacy is achieved using a distribution parameter of 40%, a much higher percentage

than the 10% value that had previously been used in Chapter 5. The built-in word

recogniser in HTK also provides an option to produce sub-word (phoneme) timing

alignments when using the word-level output. Therefore, although there are limita-

tions for our work when using triphone decodings (using the phoneme string that

has been produced by a word decoding), we are able to use these phoneme timing

offset information to classify confusions as ‘spurious’ or ‘genuine’ — a technique

that significantly improves the recognition accuracy of the confusion model for the

isolated word task (described in more detail in Section 5.3.2).

In this set of experiments, we perform an exhaustive search over all possible pa-

rameter combinations, adjusting the timing offset window, the number of n-best

transcriptions to use (we found that 1-best worked best), and the base smoothing

distribution percentage to run over 10000 experiments. Table 7.7 compares the

recognition statistics between our system (WFST proposed confusion system), and
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Standard
Approach HMM
Triphone System

WFST Proposed
Confusion

System
No. of Correct Words 20,500 (78.50%) 20,477 (78.41%)
No. of Deleted Words 2,308 (8.84%) 2,363 (9.05%)
No. of Substituted Words 3,306 (12.66%) 3,274 (12.54%)
No. of Inserted Words 763 (2.92%) 596 (2.29%)
Total No. of Words in Ground-Truth 26,114 26,114
Word Accuracy (%) 75.58 76.14

Table 7.7: Comparison of the word recognition statistics between the standard ap-
proach triphone system and the WFST confusion modelling system using the triphone
decodings.

the standard approach (standard approach HMM triphone system). Most impor-

tantly, our new approach achieves a 0.56% gain in word accuracy over the standard

approach despite correctly recognising fewer words. The number of deletions is also

higher in our proposed system. However, our approach produces a word output with

32 fewer substitutions and 167 fewer insertions. The statistics in Table 7.8 show a

comparison between the correct and incorrect recognition of all words for the WFST

confusion system and the standard HMM system. To construct this table, the de-

coded word sequences from both approaches were aligned to the ground-truth. For

each word in all of the 3000 sentences, the decodings were aligned to one another

using DP and classified as one of four possible outcomes: the standard approach and

the proposed approach both decode correctly, the standard approach and the pro-

posed approach both decode incorrectly, the standard approach decodes correctly

but the proposed approach decodes incorrectly, and the standard approach decodes

incorrectly but the proposed approach decodes correctly. In the off-diagonal ele-

ments of this contingency table, it is interesting to find that our WFST confusion

system recognises 351 words where the standard approach recognises incorrectly,

whereas the standard approach correctly only recognises 214 words correctly where

the WFST confusion system fails. Furthermore, a McNemar’s significance test has

concluded that the difference between the two systems is statistically significant

with p < 0.001 [Gillick and Cox, 1989].



CHAPTER 7. CONFUSION MODELLING FOR CONTINUOUS SPEECH 169

WFST
Total

Correct Incorrect

HMM
Correct 20411 214 20625

Incorrect 351 5901 6252

Total 20762 6115 26877

Table 7.8: Decodings are cross-matched to construct this 2x2 contingency table to
compare the standard approach (HMM) with the proposed confusion system (WFST).
The entries in this table are counts of correctly/incorrectly decoded words.

7.3.4 The Proposed Approach using Lattices

N -best lists provide multiple top hypotheses which can be used to build a richer set

of word sequences. Section 5.3.3 introduced an n-dimensional alignment algorithm

to build a P ∗ WFST for any n-best list. This representation can then be used in

the WFST confusion cascade to model any combination of the aligned sequences

from all of the n transcriptions. The standard approach decoder (built in to HTK)

outputs a recognition lattice using likelihoods produced by the models (known as the

acoustic likelihoods), and the language model. Using this lattice, the system finds

the top n transcriptions (i.e. the transcriptions with the highest likelihoods) and

produces this as an n-best list. However, our idea was to use the raw recognition

network that was produced by the HTK system directly. This section presents a

further extension to the WFST confusion cascade by replacing the n-best P ∗ WFST

at the entry-point to the cascade with a recognition lattice which provides richer

information for the confusion system. We use HDecode, an additional program in

the HTK toolkit, to produce recognition lattices in the Standard Lattice Format

(SLF) using a standard HMM cross-word triphone system. Given the recognition

lattice for a particular test utterance, we present an algorithm to convert a word-level

recognition lattice (in the SLF format) to a phoneme-level WFST.

Although the conversion from a recognition lattice to a WFST might at first be
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considered as a trivial task, the two networks use different topology rules that need

to be considered and translated. The recognition lattices store symbols in the states

and costs on the transitions between the states, whereas the WFST topology only

allows for symbols to be stored with the transitions on the arcs. Therefore, in the

recognition lattice, the arc weights store the log likelihoods of transitioning from a

one symbol to another, whereas, in the WFST, the transition belongs to the arc

which stores the symbol translation itself.

For a straight conversion, each state from the recognition lattice is converted

to an isolated two-state transducer with a single transition (and zero weight) as

shown in Figure 7.11. The start and end state numbers are also stored for each

word. A transition in the recognition lattice from one word to another is converted

to a WFST arc by adding a new weighted transition between the end state of the

WFST which models the first word to the start state of the WFST which models

the second word. The weight for this transition is defined over the tropical semiring

as the negation of the sum of the total log likelihood from the original recognition

lattice using the model likelihood, a, and the language model likelihood, l from

the recognition lattice with an insertion penalty, p, and a grammar scale factor, s

to follow Equation 2.15. We perform an adaptation of this method to convert the

word-level recognition lattice (produced by HDecode using the cross-word triphone

HMMs) to a phoneme lattice by expanding each state conversion (shown in Figure

7.11) to a sequential phoneme WFST. Figure 7.12 illustrates a very simple example

of the conversion procedure from a word recognition lattice to a phoneme WFST.

As discussed previously, each state in the lattice has been represented by a sequence

of states in the WFST with the corresponding phoneme sequence for a given word

(found using a word-to-phoneme dictionary). Determinization and minimization are

performed on the final lattice P ∗ WFST to improve efficiency.

The size of the recognition lattice can be controlled using a pruning parameter

in the HDecode program. This parameter is used to remove any paths through

the recognition lattice where the log likelihood falls under a threshold. If m is the
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DISPLAY

0

3

DISPLAY:DISPLAY /0

Recognition Lattice

WFST

THE
a = Pr(A | λ), l = Pr(THE | DISPLAY)

1

THE :THE /0
2

-:- / -log(a) + (log(l) × s) + p

Figure 7.11: An example of a conversion from a simple recognition lattice to a
WFST. The difference between the two paradigms lies with the location of the sub-
ject symbol. In a recognition lattice, nodes represent the symbols in the network which
are joined using transition likelihoods, whereas in the WFST, only arcs store symbols
together with weights. To apply this conversion, a single state from the recognition
lattice is converted to a mini WFST with two states and a single (unweighted) tran-
sition. Weighted transitions are then used to connect these small WFSTs together.

maximum likelihood of all models in the network, and p is the pruning threshold

defined at recognition time, all models with a likelihood that is less than (m−p) are

removed from the recognition lattice at the pruning stage. We use this parameter to

control the size of the recognition lattice and, hence, we also control the size of the

equivalent P ∗ WFST. With an adjustment in the number of states and arcs in the

input P ∗ WFST, the computational time of the cascade is also controlled. We set

the pruning threshold to p = 400 after experimenting with different possible values

to maximise the rich set of candidate word paths whilst ensuring that the network

is not large enough to cause memory overflow.

We build cross-word triphone HMMs as described in Section 7.3.1 with the RM-

3000 dataset split into training, testing, and validation sets. The phoneme confusion
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model is trained using the most likely word decoding from the triphone standard

approach transcribed with a word-to-phoneme dictionary. We use base smoothing

and perform a search to find the optimal percentage value to re-distribute from the

on-diagonal to off-diagonal elements (calculated at 40%) and maintain the use of

the timing offset classification method, with the best configuration using a window

of ±2 standard deviations.

Table 7.9 presents a comparison between the recognition statistics for the WFST

system with lattices against the n-best system presented in Section 7.3.3. In most

cases, the WFST confusion system with lattices is outperformed by the n-best

WFST system, with 851 fewer correct words and over 600 more deletions. How-

ever, there are over 150 fewer inserted words, a dramatic reduction from the number

of insertions in the standard approach triphone system by over 300.

WFST Proposed
Confusion

System using
n-best

WFST Proposed
Confusion

System using
lattices

No. of Correct Words 20,477 (78.41%) 19,626 (75.16%)
No. of Deleted Words 2,363 (9.05%) 3,003 (11.50%)
No. of Substituted Words 3,274 (12.54%) 3,485 (13.34%)
No. of Inserted Words 596 (2.28%) 442 (1.69%)
Total No. of Words in Ground-Truth 26,114 26,114
Word Accuracy (%) 76.14 73.46

Table 7.9: Comparison of the word recognition statistics between the WFST pro-
posed confusion system presented in Section 7.3.3 and the WFST confusion system
using decoding lattices.



CHAPTER 7. CONFUSION MODELLING FOR CONTINUOUS SPEECH 173

!N
U
L
L

S
E
N
T
_
S
T
A
R
T

ac
=

6
87

6
.3

8 
lm

=
0

.0
0

0
D
IS
P
L
A
Y

ac
=

39
17

.2
8 

lm
=

-3
.2

5
7

S
A
N
-F
R
A
N

ac
=

30
88

.6
6

 l
m

=
-6

.0
6

8
S
E
N
T
_
E
N
D

ac
=

-0
.0

0
 l

m
=

-0
.7

9
8

(a
)

0
1

-:-
2

-:-
/-6
85
6.
4

3
si
l:s
il

4
-:-
/-3
79
9.
6

5
d:
d

6
ih
:ih

7
s:
s

8
p:
p

9

l:l

10
ey
:e
y

11
sp
:s
p

12
-:-
/-2
88
6.
6

13
s:
s

14
ae
:a
e

15
n:
n 16

f:f

17
r:r

18
ae
:a
e

19
n:
n

20
sp
:s
p

21
-:-
/4
3.
94

22
si
l:s
il

(b
)

F
ig
u
re

7
.1
2
:

(a
)

is
a

si
m

p
le

d
ec

o
d

in
g

la
tt

ic
e

th
a
t

h
a
s

b
ee

n
p

ro
d

u
ce

d
b
y

th
e

st
a
n

d
a
rd

ap
p

ro
ac

h
re

co
gn

is
er

u
si

n
g

H
T

K
,

a
n

d
(b

)
is

th
e

eq
u

iv
a
le

n
t

p
h

o
n

em
e-

le
v
el

W
F

S
T

fo
r

th
e

la
tt

ic
e

sh
ow

n
in

(a
).



CHAPTER 7. CONFUSION MODELLING FOR CONTINUOUS SPEECH 174

7.4 Conclusions

The work in this chapter has focussed on modelling confusions in continuous speech

with the use of a large specially-recorded dataset (RM-3000). Using the standard

approach with monophone models, we obtain a 66.29% word accuracy with this data

which is a good result for lip-reading. However, this is still inferior to audio ASR

performance with a standard ASR system, which achieves over 95% word accuracy

(shown in Figure 6.4). The large number of deleted phonemes produced by a lip-

reading phoneme recogniser is a concern when considering a confusion modelling

system. The work presented in Section 7.2.2 uses the insertion penalty value in the

HTK toolkit to define the relative number of insertions and deletions and produce a

phoneme decoding that can be modelled using our confusion system. However, the

results from this approach were poor with a best word accuracy of 12.79%. This

poor result was attributed to the large number of insertions and deletions that were

still in the decoded phoneme sequences even after performing a search to find the

optimal decoding with fewer deletions (see Figure 7.5).

We used the large amount of training data to extend the standard approach from

monophone HMMs to triphone HMMs, increasing the number of models from 44

to 3047. These triphone models are highly relevant for lip-reading because they

model co-articulatory effects which are very strong in lip-reading. The new triphone

standard approach achieves much improved performance over the monophone ap-

proach, reaching 75.58% word accuracy compared to the monophone’s best result

of 66.29%. Furthermore, there appears to be a stronger structure to the confusion

patterns produced by the triphone recogniser, with words becoming phonetically

similar. Section 7.3.2 presents work on building a simpler WFST cascade guided by

word-level confusion patterns. However, we find that these do not improve the word

accuracy from the standard triphone approach.

We then returned to modelling confusions at the phoneme level by taking the

decoded word sequence from the standard triphone HMM approach and using a

word-to-phoneme dictionary to build a phoneme P ∗ WFST. By doing this, we also
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System Word Accuracy (%)

Standard Approach with monophone
HMMs and a word bigram language
model

66.29

Standard approach with triphone
HMMs and a word bigram language
model

75.58

WFSTs using triphone HMM
standard approach and a word
confusion model with a weighted P ∗

66.34

WFSTs using triphone HMM
standard approach and the decoded
word output decomposed to a
phoneme string

76.14

WFSTs using triphone HMM standard
approach and the decoding lattice

73.46

Table 7.10: A summary of all word recognition results for standard approach systems
and all WFST confusion systems.

used the techniques explored in the work on the isolated word dataset in Chap-

ter 5 to improve the recognition performance (i.e. the timing offset classification

method). Here, we are able to improve word accuracy by 0.56% from 75.58% (us-

ing the standard approach with triphones) to 76.14% (using the WFST confusion

system). The statistics presented in Table 7.8 show that, although this gain in accu-

racy is small, there are some words that can be correctly recognised by the WFST

confusion system, but, at the same time, are incorrectly recognised by the HMM

standard approach. A McNemar’s significance test has shown that our accuracy im-

provement is statistically significant. Our final work explored the use of recognition

lattices in confusion modelling. This represents a richer version of the n-best lists

used in previous experiments as it encodes all possible sentence decodings (except

for those that are removed by the pruning threshold). We presented an algorithm

to convert a word recognition lattice to a phoneme-level WFST for use in our con-
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fusion cascade and perform experiments with these new networks. However, these

lattices provide no improvement over the standard HMM triphone approach with

the number of correct words declining by over 800 but the number of deletion errors

rising by over 600 words.

Table 7.10 summarises the results for the HMM standard approach and WFST

confusion modelling approaches used in this chapter with the best recognition accu-

racy (76.14%) being achieved using the WFST confusion modelling technique with

the most likely (1-best) output.



Chapter 8

Conclusions

8.1 Discussion

Automated lip-reading is the process of decoding speech using information obtained

from the visible articulators only. Recent work in lip-reading has produced recogni-

tion accuracies that are significantly inferior to audio ASR. This thesis has presented

a new approach to improve the recognition accuracy of an automated lip-reading

system by modelling the error patterns that have occurred in decoding. We treat

these decoding errors as confusion patterns in the form of substitutions (replacing

one sound for another), insertions (adding a sound into the decoded sequence), and

deletions (omitting a sound that was in the ground-truth sequence).

This thesis has presented work using a series of weighted finite-state transducers

in a composition cascade. We compose four WFSTs consisting of: the phoneme

sequence that has been produced by a standard phoneme (HMM) recogniser; the

confusion model which provides a translation between phonemes in the form of

substitutions, insertions, and deletions; a dictionary which maps the sequences of

phonemes to words; and a grammar which models the word-level language struc-

ture. In our initial experiments on an isolated word dataset, we estimated the confu-

sion matrix from the symbolic alignment between the recognised and ground-truth

177
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phoneme sequences and achieved a word accuracy of 21.42% using our system. Dur-

ing these experiments, we identified potential spurious confusions that were added

to the confusion matrix due to poor alignment. We improved the confusion model

by enforcing an offset timing window on all aligned phonemes and achieved a gain in

word accuracy of nearly 25%. Recognition accuracy was then improved to 49.70%

using the n-best decodings. However, these results were still inferior to the standard

HMM recogniser (60%). We extended our proposed approach using two techniques

to improve the accuracy of the confusion model: adaptive confusion training, and bi-

gram confusion modelling. The bigram system achieved a better accuracy than our

unigram system (by over 3%) but was severely affected by the sparsity of available

training data (211 isolated words with six repetitions of each).

As there is only limited audio-visual speech corpora appropriate for lip-reading

available in the research community, we recorded a new, much larger dataset consist-

ing of 3000 sentences. We continued to use a single speaker to focus on the modelling

of visual speech confusion patterns without introducing variability between speak-

ers. Extending the task from isolated words to continuous speech introduced a large

number of insertions and deletions in the HMM phoneme decoding. We explored the

use of different insertion penalties to reduce the number of insertions and deletions

so that we could use our WFST confusion cascade on the RM-3000 dataset. How-

ever, even though we managed to reduce the number of large sequences of insertions

and deletions, there were still too many of these confusions for our WFST cascade to

correct. We then extended our standard approach recogniser to use triphone HMMs

(where each model represents a phoneme with a left and right context) instead of

monophone HMMs (where each model represents a single, isolated phoneme). Upon

inspection of the word-level confusions that occured in the triphone decodings, we

found that there were many confusions between phonetically similar words. We

modified our existing proposed approach (using phoneme strings as input) to use

words with a word-level confusion model, and were able to improve recognition over

the standard monophone approach (by 0.05%), but not over the triphone standard

approach.
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When using triphone HMMs, the output from the HMM recogniser (and input to

our confusion system) is words, not phonemes. We overcame this by re-writing the

decoded words as phoneme strings and modelling the input to the confusion system

on these phoneme strings. With this new representation and using n-best decodings,

we performed experiments using our confusion system and achieved an accuracy of

76.14%, an improvement over the standard HMM-based triphone system. We also

investigated the use of decoding lattices to improve the accuracy of our system

further. We developed an algorithm to convert a word decoding lattice (produced

by the triphone system) into a phoneme-level WFST to use in our confusion system.

This system achieved a word accuracy of 73.46% — nearly 3% lower than our best

result using n-best decodings.

This thesis has also addressed two unanswered questions in lip-reading with our

new, much larger database (RM-3000): how much training data is required to reach

peak recognition accuracy, and is it better to use phoneme or viseme units for

lip-reading? It seems that, using this 1000-word vocabulary, automated lip-reading

requires around 1500 training sentences to achieve a word accuracy close to its peak,

which is much higher than the training data required to reach a peak word accuracy

with audio ASR (around 400 sentences). Although it was expected that lip-reading

requires more training data than audio ASR, this result shows that most recent

lip-reading work, which has used small amounts of data (e.g. only 200 sentences per

speaker [Lan et al., 2010]), could be improved by training on a larger dataset. Note

however, these figures might vary for different speakers as only a single speaker was

considered here.

We continued by evaluating word, phoneme, and viseme results using phoneme

and viseme HMMs and found, somewhat counter-intuitively, that it was better to

model visual phonemes than visual visemes for word recognition. We investigated

this further by exploring partial phoneme-to-viseme mappings and found that word

recognition with phoneme models was still better than any of the partial viseme sets

that were made. There are two likely reasons for these findings: the phoneme-to-
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viseme mapping produces ambiguous unit transcriptions (i.e. homophenous words)

that cannot be distinguished from one another, causing some words to be incorrectly

recognised. Secondly, the larger dataset (RM-3000) provides many examples of each

phoneme in many different contexts. Therefore, phonemes that are mapped to the

same visemic class could have different neighbouring sounds (co-articulation) which

will lead to inaccurate viseme HMMs being built.

The final word recognition accuracy on our RM-3000 dataset using our confusion

system is 76.14% — an accuracy that is the highest seen in lip-reading recognition

so far and a statistically significant improvement over the word accuracy obtained

by the standard HMM word recogniser (p < 0.001). The work presented on improv-

ing dysarthric ASR improves recognition accuracy by up to 27% [Morales, 2009].

Although we have not seen the same improvements using similar techniques for lip-

reading, we have shown that our confusion system correctly recognises 351 words

which were incorrectly recognised by the HMM recogniser (see Table 7.8). The

smaller improvements compared to the dysarthric ASR work is likely caused by less

predictable confusion patterns, mostly from the effect of coarticulation in visual

speech. To obtain more improvements for lip-reading, there are some interesting

approaches to pursue for future work such as combining the outputs from the two

techniques to provide a more accurate hypothesis.

8.2 Future Work

We have presented new approaches to confusion modelling and explored the applica-

tion of such systems in automated lip-reading. This section identifies the potential

limitations with this work, whilst also exploring areas of further study.

Time and space efficiency are potential issues to address with the WFST com-

position cascade used in this thesis. The WFST composition algorithm used in the

OpenFST toolkit [Allauzen et al., 2007] is dependent on three factors: the number

of states, the maximum out-degree of the first WFST (i.e. the number of transitions
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exiting a state), and the maximum multiplicity of the second WFST (i.e. the maxi-

mum number of times that a symbol is repeated in all transitions exiting the states).

In our confusion WFST system, we model all entries in the confusion matrix. There-

fore, for any phoneme in the P ∗ WFST, the out-degree of the confusion WFST is

to map the input phoneme to every other possible phoneme plus an insertion and

deletion operation. With this, the composed networks become very large, especially

for continuous speech and large vocabulary tasks. Future work could improve the

time and space efficiency of the composition cascade by reducing the out-degree,

multiplicity, and number of states in each WFST from the cascade.

The work described in Section 7.3 uses the word decodings that are produced by

the triphone HMM recogniser. The results using our WFST confusion system show

a statistically significant improvement over the standard approach. A promising

area for future research could focus on combining the decodings from the HMM and

WFST techniques using a confidence measure. Such systems have been developed

for audio-visual speech recognition with decision fusion (described in Section 3.3)

to combine the decodings from the two modalities. If the confidence measure were

accurate enough to correctly decide which system was correct for all words that

one of the systems decoded incorrectly where the other decoded correctly (i.e. the

off-diagonal mass from Table 7.8 is moved to the ‘correct’ entry), the word accuracy

could be improved further by around 2% to 3%, making our system accuracy close

to 80%.

The work presented in this thesis has focussed on modelling the confusion patterns

of a single speaker. An area of future work could investigate speaker-independent

or multi-speaker confusion patterns with a view to making a confusion system that

models common substitutions, insertions, and deletions amongst speakers. In Chap-

ter 6, we discovered that lip-reading recognition accuracy starts to plateau when the

recogniser is trained on about 1600 sentences. To continue our study into confusion

modelling, a much larger database would need to be recorded with multiple speakers.

This would require a substantial investment in time to record and post-process.
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The work presented in Section 5.4.2 uses contextual confusion patterns in the

form of phoneme pairs (bigrams). However, the results indicated that the lim-

ited amount of data used to train the bigram confusion model is too limited. We

recorded a much larger database (RM-3000) and used this to improve recognition us-

ing context-dependent models (triphone HMMs), which produced more phonetically-

plausible confusions than context-independent models (monophone HMMs). Further

work could explore the use of higher order n-gram confusion models with this large

dataset. Possible restrictions to the size of these contextual confusion models could

be enforced by the size of the composed WFST networks and this may require more

computational resources.

Another approach to contextual confusion modelling could reduce the size of

the n-gram confusion model whilst maintaining the higher order information. Dy-

namically expanding context was first introduced in [Kohonen, 1986] and applied to

correction for speech recognition in [Cox, 2004]. In this work, phoneme translations

are modelled with many different context lengths rather than a fixed length model

(e.g. a bigram model). In a similar way to Cox’s approach, future work could con-

struct a dynamically expanding contextual confusion model and represent this as a

WFST in the confusion cascade system. The large amount of data that is available

in the RM-3000 dataset could enable longer, frequently occurring confusion patterns

to be more accurately modelled.

Conditional random fields (CRFs) were first introduced in [Lafferty et al., 2001]

as a statistical model to segment and label sequential data. Since then, they have

been successfully used in many applications including natural language processing,

computer vision, and computational biology. In contrast to an HMM, which models

the joint probability distribution (Pr(x, y)) over the states and observations, CRFs

model the conditional probability directly (Pr(y|x)). This ensures that dependencies

between the input features (x) do not need to be explicitly modelled [Sutton and

McCallum, 2006]. One main advantage of CRFs is the ability to model contextual

information, something that could be essential for our confusion modelling system.
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We have conducted preliminary research into using CRFs for our work and these

have produced some promising results.

During the period taken to complete the work described in this thesis, the state-

of-the-art in speech recognition has evolved with advances in Deep Neural Networks

and additional features increasingly being used in the speech community. Most re-

search in the speech community has switched to using new tools which can integrate

the previously well-established techniques (such as HMMs) with the more recent

technologies in ASR (DNNs, FSTs). The Kaldi toolkit [Povey et al., 2011] is a new

open-source library that has been built on the use of FSTs in speech recognition.

Because this software is built on the OpenFST library (which is also used through-

out this thesis), there is a great opportunity to integrate our confusion system into

the Kaldi composition cascade.

8.3 Publications

The following publication has been produced by the work in this thesis:

Howell, D., Cox, S. and Theobald, B., Confusion Modelling for Automated Lip-

Reading using Weighted Finite-State Transducers. In Proceedings of the Interna-

tional Conference on Auditory-Visual Speech Processing 2013, pages 197-203, 2013
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Isolated Word Vocabulary

A.R BITTAKER GESTURER

ABBOTTS BLACKCAP HALLIERS

ABEYANCE BLIPPERS HASHID

ABJURE BOAT-TRAIN HAYHURST

ABNORMAL BOBBITS HEATHEN

ABSORBED BONNEVILLE HEDGIEST

ACCORDION BOOK-KEEPER HODGEPODGE

ACCOUNTS BOOMTOWN HOI-POLLOI

ACHE BOORSTIN HOOFBEAT

ACTUALS BOOZIEST HORSEHAIRED

ADHESION BOUGIE HORSESHOEING

ADJOINING BOYHOODS HUFFIER

ADJUDGER BRIMMAGE HUTTERER

ADMEASURER BRUSH-OFF HUZZAING

ADMITTEE BUCKLELESS JACK-KNIFE

ADVERBS BUDDIES JAIPUR

ADVOWSON BURRILLS JEU

AERIFIED BUSCARL JOAN
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AEROFOIL C.I.A JORNALLING

AESTHESIA CADDOCKS JUPE

AFFAIRS CAPUCHED LAIRING

AFFIRMEDS CAREPLUS LITHIA

AFFLUENCE CASTELLAW LOADSTAR

AFORE-THOUGHT CATCHPOLE MARE

AGENT CENSURER MAUNDERER

AIR-SHAFTS CERTAINNESS MIAOUED

AIR-TO-AIR CHAMBERER MOOR

ALADDIN CHANDECK MOUTHFUL

ALICKS CHANGCHUN MOUTHY

ALLPATHS CHAWER MOVIEST

ALONENESS CHEER NIGHTTIMES

ALONGSHORE CHEWER NIRVANA

ALTHOUGH CHILDCARE NOISY

ALTHOUSE CHISELLIKE NOUVEAU

ALVECHURCH CHOICER NUTSHELL

AMONGST CHOPPIEST OATHOUT

AMPULLAR CHOWCHOW OF

ANAEMIAS CHUCKHOLE OSAKAR

ANCHOVY COHERER OUTVYING

ANGELOFF COLLIVER OVERACHIEVE

APISHLY CONCURVE OVERASSURED

ARISTAR COSMOS PERSHARE

ARTCARVED COSSACKED PINNATION

ARTICHOKE COURGETTES PREPPIES

ASH-PANS COVERERING PULVAR

ASSOCIATE CUBBISON RIPPEON
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ATHEISM CUSHIEST SAO-PAOLO

ATHLETES D.J SEERESS

AUTOPSY DANNELLEY SHY

BACKCLOTH DARENT SMITHIES

BACKDOORS DECOYER SONGED

BACKSHEESH DEFLOWERER SOY

BALKIEST DEUTSCHMARK SPACE-SUIT

BALSAR DIANTHA SUBMERGE

BANKCARD DOUBTFUL SUDDENNESS

BARRETTER DOURER TERMI

BATH-CHAIR EIGHTHED THEREBY

BATTONS EMPTYING THEY

BEACHCOMB ETHIOPIA THIGH

BEARDLESS EYESHADE THOUING

BEEFIEST FACE-SAVER TOOTHACHES

BEEHIVES FALMOUTH TOOTHY

BELL-BUOYS FAR-FETCHED TORCHLIGHT

BELLINO FEATHERERS TOURAGE

BENNINGS FOLIAGED TOYING

BIASSING FOODTOWN UNBATHED

BIBBINS FORSYTHS UNKNOTTED

BIDDANCE FOULKS VAVASOUR

BIRDFEED FULL-LENGTH VOUCHSAFE

BIRTHDAYS GEORGESON WELSH
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