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Abstract 

Silicon nanoparticles (SiNPs) can be synthesised by a variety of methods. A one-pot synthesis 

based on the chemical reduction of inverse micelles has been used to produce SiNPs with ligands 

of varying alkyl chain length. These particles were characterised to determine how the chain 

length affects the surface functionalities and particle size. The particles produced show optical 

properties typical of SiNPs produced by solution methods. 

Silicon based materials are a potential alternative to current thermoelectric materials (e.g. 

Bi2Te3) due to their abundance and low toxicity. Phenylacetylene functionalised SiNPs have been 

synthesised using a bottom up approach. A cold pressed pellet of this material displays an 

electrical conductivity of 18.1 S m-1, in addition to a high Seebeck coefficient and a low thermal 

conductivity. These properties combine to give a figure of merit (ZT) of 0.6 at 300 K. This ZT value 

is significant for a silicon based material, and comparable to that of other thermoelectric materials 

such as Mg2Si, PbTe and Si-Ge alloy. 

To investigate the effects that the doping of ligands have on the thermoelectric properties of 

such materials, terthiophene functionalised SiNPs were synthesised and subsequently doped using 

varying levels of NOBF4. The electrical resistivity shows a decrease of 7 orders of magnitude 

between the undoped and optimised material although the electrical resistivity is still higher than 

required for application. In addition, the material produced displays a modest ZT of 0.08. 

Top down methods allow control of the carrier concentration of the silicon core, as the 

material is doped prior to being broken down. Phenylacetylene SiNPs were synthesised using 

electrochemical etching followed by functionalisation via a two-step chlorination-alkylation 

process. These particles were characterised and their thermal stability analysed, showing a 

maximum operation temperature of 200oC. 
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1.1. Introduction 

The prefix nano is derived from the Greek word meaning dwarf and in science nano means one 

billionth of or a factor of 10-9. Nanoscience and nanotechnologies deal with materials which 

possess at least one dimension in the nanoscale. Despite this fundamental similarity nanoscience 

and nanotechnology are different; this can be seen from the formal definitions of each of these 

terms: 

Nanoscience - The study of phenomena and manipulation of materials at atomic, molecular and 

macromolecular scales, where properties differ significantly from those at a larger scale.
1 

Nanotechnology - The design, characterisation, production and application of structures, devices 

and systems by controlling shape and size at nanometer scale.
1
  

Nanochemistry – The utilisation of chemistry to make nanoscale building blocks of different size 

shape, composition and surface structure, charge, and functionality.” 2 

Although historical artefacts such as ‘The Lycugus Cup’(Figure 1)) show use of nanoscience and 

nanotechnology as far back as 1000 years ago, nanoscience and nanotechnology are relatively 

new areas of science.  

 

Figure 1: a) The Lycugus Cup out of light b) When held to the light. 

The movement toward conceptual understanding started with underpinning of the concept in 

a lecture by Richard Feymann entitled “There’s plenty of room at the bottom”.3, 4  Where he 

eluded to the idea of being able to manipulate matter on an atomic scale. Initially he tried to 

visualise this using the idea of being able to write the entire 24 volumes of the Encyclopaedia 

Britannica on the head of a needle.4 
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In the past 30 years nanoscience and nanotechnology have come to the forefront of scientific 

research as a result of the development of the first scanning tunnelling microscope (STM) by Gerd 

Binnig and Heinrich Rohrer of IBM Zurich in the early 1980s.5 This key development allowed the 

direct observation of nanostructures. Since then nanomaterials have shown potential applications 

in a variety of different areas ranging from biomedicine to engineering.6-9 

1.2. Nanomaterials 

Nanomaterials are materials with at least one dimension or feature in the nanoscale. These 

materials take any number of forms, including materials which have 1, 2 or 3 dimensions in the 

nanoscale or bulk materials with features within them which show dimensions on the nanoscale, 

e.g. nanoporous materials.  

1.2.1. Nanosheets 

Nanosheets are a good example of a material with only a single dimension on the nanoscale. 

When considering the idea of nanosheets it is possible to think of them as a thin film of a material 

which is under a single micron thick. This is much thinner than the majority of commercial 

polymer films. Today these types of materials are of great research interest especially graphene,10 

silicene,11 and phospharene.12 

Initially synthesised in 2003 by Novoselov et. al.,10 graphene is a hot topic in nanosheet type 

materials and Geim’s original paper has become one of the most cited papers in materials science. 

Graphene is a layer of graphitic material which is a single atomic layer thick.  

 

Figure 2: STM image (1000×1000 Å2) showing the formation of a graphitic structure on a 

metal surface; the image was obtained at room temperature after annealing ethylene over Pt 
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(111) at 1230 K.13 

Since it’s discovery there have been a high number of publications on its synthesis, isolation, 

properties and its potential applications.13-19 Potential applications of graphene include; 

biosensors,15, 20, 21 electronics,14 photonics22 and optoelectronics.18
 

1.2.2. Nanowires and Nanorods 

Nanowires have two dimensions in the nanoscale, although nanowires can be less than 100 nm 

in length. These materials as suggested by the name have long wire-like shapes with a narrow 

diameter and a considerably longer length. Nanowires like many types of nanomaterial can be 

synthesised from a variety of different materials, from metals to organics. There are also examples 

of molecular nanowires such as DNA. Nanowires are currently of interest to the scientific 

community and a lot of current work in nanowires focuses on semiconductor nanowires, such as 

zinc oxide, silicon and indium phosphide.23-26 These display some interesting size dependant 

properties such as diameter-dependant fluorescence.24 Their potential applications range from 

electronics to biomedicine. 27-30  

 

Figure 3: Cross-sectional SEM of an electrochemically etched Si nanowire array.31 

Nanorods differ from nanowires in that they have all 3 dimensions on the nanoscale, although 

they still have a greater length than diameter as would be expected. The difference lies in the ratio 

between the length and the diameter being between 3 and 5. So if a rod has a diameter of 2 nm 
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then the rod should be between 6 and 10 nm in length. Just like nanowires these can be 

composed of a similarly wide variety of materials.30, 32 

 

Figure 4: TEM images of shape-separated 18 aspect ratio gold nanorods.33 

1.2.3. Nanotubes 

Nanotubes are similar to nanowire except for one major difference in that as suggested by the 

name they are hollow. Nanotubes do however show similar dimensional characteristics generally 

displaying 2 dimensions in the nanoscale and having a diameter which is greatly exceeded by thier 

length. 
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Figure 5: SEM images of palladium nanotubes generated by reacting silver nanowires with 

aqueous Pd(NO3)2 solutions. The nanotubes were broken via sonication for a few minutes to 

expose their cross-sections.34 

An important example of nanotubes is carbon nanotubes. These materials have been of great 

interest in the scientific community since the reported synthesis by Lijima et. al. in 1991.35 This 

was not the first synthesis of carbon nanotubes, but this work initiated interest in the scientific 

community. Today carbon nanotubes have been applied in areas such as mechanical materials and 

photovoltaic devices. 6, 36, 37 

1.2.4. Nanoparticles 

Nanoparticles have 3 dimensions in the nanoscale. Depending on the nature of the material 

they may also be described as nanocrystals or quantum dots. The terms for each expression are 

given below: 

‘Nanoparticle: A cluster of atoms or molecules e.g. Si or Fe2O3 with three dimensions in the 

nanoscale.’  

‘Nanocrystal: A cluster of atoms or molecules with 3 dimensions in the nanoscale in which the 

material is crystalline.’ 
1  

‘Quantum dot (QD): A cluster of atoms or molecules (generally semiconductors) with 3 dimensions 

on the nanoscale where the dimensions are of a similar magnitude to the exciton Bohr radius of 

the material.’ 
1
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Nanoparticles like nanowires are widely documented for a wide range of materials from metals to 

polymers each possessing different properties and advantages suitable for different applications.9, 

31, 38-40 

1.2.5. Nanostructured Materials 

Nanostructured materials are more complicated than the other types of nanomaterials to 

clarify as they can vary greatly in form. A nanostructured material can be defined as: 

‘a bulk material which possesses an aspect of its structure with dimensions on the nanoscale’ 

Some examples of nanostructured materials include; porous materials and nanostructured bulk 

materials i.e. bulk materials made up of Nano sized crystallites. In both cases this has led to the 

engineering of new materials or materials with very different properties to the bulk material.41-45  

One example of a nanostructured material is porous silicon, this differs greatly from bulk silicon, 

most noticeably due to its visible photoluminescence and high surface area. 43 

1.3. Semiconductor Nanoparticles 

As mentioned previously nanomaterials can be made up of a large range of different materials. 

One area of particular interest to the scientific community has been semiconductor nanoparticles. 

This research has generally been centred on semiconductor quantum dots.  

Semiconductor quantum dots range from 2 to 20 nm in size depending on the material and 

display interesting size dependant optical, electronic and physical properties.46-49 These properties 

stem from, the surface area to volume ratio and an effect known as the quantum confinement 

effect. As a result of this, semiconductor nanoparticles have found uses in applications ranging 

from photoelectronics to bioimaging.50 51, 52 

1.3.1. Quantum confinement 

A characteristic feature of semiconductor quantum dots is that their optical and electronic 

spectra greatly change with particle size. This is due to the quantum confinement effect.53 This 

effect is well documented in many different semiconductor quantum dots.54-57 One of the most 

simplistic explanations of this effect uses the “electron in the box model” or “potential well”.58 

Quantum confinement is essentially the reduction of the size of the box in 3 dimensions, which 

gives rise to discrete electronic levels rather than a continuous band as observed in the bulk 

material. Practically this means that a decrease in the particle size results in an increase in the 

energy gap between the valence and conduction band.59-61 This is because as we decrease the size 

of the particle we increase the certainty of where the electrons are and as a result decrease the 
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certainty of its energy and/or crystal momentum.  This is in agreement with the Heisenberg 

uncertainty principle. 

∆�∆� ≥ ħ
�  ( 1 ) 

In terms of the optical properties of semiconductor quantum dots this means that we observe 

discrete absorption bands and fluorescence. In the bulk material, a series of nearby transitions 

occur at slightly different energies whereas in QDs transitions are compressed to a single intense 

transition i.e. a discrete absorption band is observed.61 In QDs the electron-hole pair produced is 

delocalised over the interior of the particle and the recombination of the electron and hole results 

in the emission of a photon which results in fluorescence. This effect is only efficient when the size 

of the QD is smaller than the exciton (electron-hole pair) Bohr radius.2, 62 

 

Figure 6:  Schematic energy diagrams showing the difference between the energy electronic 

states of bulk semiconductor, semiconductor QDs and molecular species. 

1.4. Silicon Nanoparticles  

Silicon is used as a primary building block in semiconductor electronics and as a result is widely 

available, and relatively cheap. Other advantages of silicon include its low toxicity and low 

environmental impact. These are major factors which have helped drive interest in the synthesis 

and application of silicon nanoparticles (SiNPs) over the past 20 years.63, 64 Quantum confinement 

effects give SiNPs interesting optical, electronic and mechanical properties.46, 48, 49, 65-68 These are 

responsible for their wide range of potential applications in electronics, photovoltaics, and 

bioimaging.69-75 In addition to this they can be functionalised, which allows the tuning of some of 
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these properties so that they are better suited to the desired application, e.g. polar ligands for 

water solubility for introduction in to biological systems.41, 74, 76-79 

1.4.1. Methods of Synthesis 

SiNPs can be synthesised by number of different methods. Generally physicochemical and 

electrochemical methods are utilised. Synthetic methods include; electrochemical etching, micelle 

reduction, pyrolysis of silane and steel ball milling, amongst others. 

1.4.1.1. Electrochemical Etching 

Electrochemical etching is generally considered the most reliable way to produce hydrogen-

terminated SiNPs.63 A major reason for this is that they are prepared in HF and as a result the 

particles surfaces are usually highly hydrogen terminated, crystaline and contain low levels of 

surface oxide. The synthesis of particles by this method is made up of two steps; electrochemical 

etching to produce porous silicon followed by a fracturing process in a dry solvent to acquire H 

terminated SiNPs. Commonly the etching solution used contains a mixture of aqueous HF and 

ethanol in varying ratios. Typically a 1:1 ratio of 48% aqueous HF and ethanol is used.41, 80, 81 A 

typical electrochemically etched particle is synthesised as follows: 

 

Scheme 1: A typical synthesis of hydrogen terminated SiNPs using galvanostatic 

electrochemical etching. 

The idea of breaking up porous silicon to produce SiNPs was originally put in to practice by 

Heinrich et. al. in 1992.80 B-doped and P-doped wafers were etched at a current density between 

0.1 to 5 mAcm-2 for 1 or 6 hours in a HF bath, proceeded by an electropolishing step removing the 

nanostructured silicon from the surface of the wafer. These particles displayed a visible 

luminescence in the red region. 

This new method attracted great interest and optimisation of this process was a hot topic 

during the mid to late 1990s, leading to improvements such as ultrasonic fracturing as opposed to 

electrochemical polishing to remove the particles from the electrochemically-etched wafer. Bley 

et. al.
82, 83 in 1996, conducted an informative study into the effect of a number of factors on both 

the optical and physical properties of the resulting particles. This included varying the composition 

of the HF etching solution, current density, etching time and sonication time. Their study offered 

better understanding of how to control electrochemical etching to optimise the desired properties 

of the particles. Later in 2002 Belomoin et. al.
84, by varying the etching time and the current 
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density, were able to use electrochemical etching to obtain particles with average diameters of 

1.0, 1.67, 2.15, and 2.9 nm showing resulting blue, green, yellow and orange luminescence 

respectively. This demonstrated the ability to achieve more precise control of the particle size 

using electrochemical methods.  

Some recent incarnations of electrochemical etching are documented by Lie et. al. in 2002 81 

and Chao et. al. in 200785 and 201176 showing a method for electrochemical etching which uses a 

1:1 mixture of 48% aqueous HF and ethanol as etching solution. The etching solution is placed 

over silicon wafer in a cell and a current density of 210 – 550 mAcm-2 is passed through a silicon 

wafer in a specially designed PTFE cell. This is followed by removal of solvent in vacuo and ultra-

sonication for 10 mins in dry solvent to give hydrogen terminated SiNPs, ranging from 2-10 nm in 

size. These methods give hydrogen terminated SiNPs using a synthetic method that uses a low 

etching time, high current density, and a low sonication time. 

1.4.1.2. Micelle Reduction 

Micelle reduction is a relatively mild chemical - based method for the synthesis of SiNPs. This 

involves the reduction of micelles of a silicon based precursor (e.g. SiCl4 or SiBr4) using a suitable 

reducing agent, such as LiAlH4, magnesium silicide or sodium phenylacetylide.78, 86-88 The nature of 

the reducing agent used has a direct effect on the termination of the silicon nanoparticle 

produced. This method was first documented by Wilcoxon et. al. in 1998 who, based on previous 

inverse micelle work on gold nanoparticles, produced a method using anhydrous metal hydrides 

such as LiAlH4 as a chemical reducing agent to reduce SiX4 (where X=Cl, Br or I) contained in 

micelles of non-ionic aliphatic polyethers, or alternatively quaternary ammonium cationic 

surfactants, to produce hydrogen-terminated SiNPs.89 This method has been used widely with very 

few changes in reagents. Such methods have been followed up by functionalisation of the surface, 

generally using hydrosilylation reactions to introduce Si-C links to the surface. 78 90 

 

Scheme 2: Synthesis of hydrogen terminated SiNPs by reduction of SiCl4 within an 

inverse micelle using a metal hydride reducing agent. 
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A later method using a metal hydride reducing agent, reported by Wang et. al., bypassed the 

hydrogen terminated particles by using a RSiCl3 based surfactant, where R = C6H13.
91 This then 

becomes part of the particle as well as behaving as a surfactant, resulting in R terminated SiNPs. 

This method was investigated further using different surfactants including trichlorododecylsilane, 

trichlorooctylsilane, trichlorooctadecylsilane and trichlorophenylsilane showing the use of this 

method to yield SiNPs of different and potentially more useful functionality.92 

 

Scheme 3: Synthesis of functionalised SiNPs by the reduction of SiCl4 within an inverse micelle of 

and alkyltrichlorosilane using a LiAlH4 reducing agent. 

One issue with such methods is that they produce high levels of surface oxide which can be 

attributed to the step in which LiAlH4 is quenched, where the reaction of the alcohol with some of 

the available H functionalities on the surface of the particle causes oxidation or alkoxylation of the 

particle surface. Successful methods of avoiding this have been developed by using CuCl2 to 

quench the LiAlH4 but these methods require a more extensive purification procedure than the 

alcohol quenched reactions. 93 

Another micelle reduction method developed in the early 2000’s uses non-hydride reducing 

agents which produce halide-terminated particles, rather than H-terminated particles. This area 

has been pioneered by Kauzlarich and co-workers by reducing micelles of SiCl4 in 1,2-

dimethoxyethane using various non-hydride reducing agents such as Mg2Si, KSi or sodium 

naphthalide to give chloride-terminated particles.86-88, 94  These surfaces are more reactive and are 

open to a wider variety of surface chemistry compared to hydrogen-terminated particles; as a 

result these surfaces can undergo nucleophillic substitutions with reagents such as primary 

alcohols and organometallic nucleophiles.87, 88, 95, 96 
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Scheme 4: Synthesis of chloride terminated SiNPs from the reduction of a micelle of 

tetrachlorosilane using a non-hydride reducing agent. 

Another more recent method uses even more facile conditions. This synthesis reported by 

Wang et. al. in 2013 uses sodium ascorbate as a reducing agent to reduce 

aminopropyltriethoxysilane in water at ambient conditions to give water soluble amine 

terminated SiNPs with an average diameter of 1.5 nm in water. 91 

1.4.1.3. Pyrolysis and Thermolysis 

The decomposition of both liquid and gas precursors are an attractive synthetic approach to 

the synthesis of SiNPs. However the decomposition of gas phase precursors has been the most 

successful of these approaches. 97 One of the major drawbacks of using liquid precursors is their 

high decomposition temperature and the susceptibility of the particle surface to react with other 

solvent borne impurities.  

In 2001 Korgel et. al. reported an effective method for producing SiNPs via the thermal 

decomposition of a liquid precursor. Diphenylsilane was thermally decomposed in a supercritical 

solvent mixture of octan-1-ol and hexane at a temperature of 500oC and pressure of 140-345 bar 

resulting in alkoxy functionalised SiNPs.98 Additionally a level of size control was also achieved, by 

varying the octanol:Si ratio, suggesting that octanol acted both as a functionalising and a 

quenching agent (Scheme 6).99 

 

 

Scheme 5: Pyrolysis of diphenylsilane 

CO2 laser-induced decomposition of silane as developed by Li et. al. is one of manyexamples of 

a synthetic procedure using a gaseous precursor molecule. This procedure shows the potential to 

be an efficient method of producing large quantities of SiNPs, with reported production rates as 

high as 200 mg h-1 , producing particles of approximately 5 nm diameter (Scheme 6).100, 101. 
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Scheme 6: Laser induced pyrolysis of silane 

Recently, decomposition of solid precursors such as silicon rich oxides and hydrogen 

silsesquioxane has been reported as another method for the synthesis of SiQDs.102, 103 SiQDS can 

be generated from the pyrolytic decomposition of hydrogen silsesquioxane or other silicon rich 

oxides by heating at 1000oC in a reductive atmosphere (5% H2 95% N2) followed by HF etching 

(Scheme 7) to remove silicon oxide.102, 103  

 

Scheme 7: Thermolysis of silicon rich oxide 

1.4.1.4. Ball Milling 

Ball milling is a mechanical method by which silicon particles can be ground down in to smaller 

particles. Typically this method does not produce small quantum dots like the above methods but 

larger particles in the range of 40 to 800 nm, which contain smaller crystallites within. 104These 

particles are still in the range of nanometers but generally do not display the properties that are 

typically associated with quantum confinement effects; e.g. photoluminescence. However in 2007 

work by Heintz et. al. showed that it is possible to produce particles which exhibit quantum size 

effects by using ball milling in tandem with a primary alkene or alkyne base medium. This reacts 

with the freshly fractured surfaces preventing agglomeration. They observed an average crystal 

size of 5-10 nm and photoluminescence at 450 nm.105  

1.4.2. Surface Functionality and Passivation 

Generally SiNPs produced by the above methods yield hydrogen terminated surfaces and these 

surfaces are very sensitive to oxidation, as are chloride terminated surfaces. In many cases a 

surface with a minimal level of oxidation is desired as the presence of surface oxide can alter the 

optical properties quite significantly. This is usually indicated by a blue shift in the emission 
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spectrum. This is particularly an issue for bioimaging applications, where emitters in the orange 

region are more desirable. One way in which passivation of the surface can be achieved is by the 

introduction of covalently-bound carbon species. 49, 81 

In addition to the passivation of the particle surface it can be advantageous to functionalise a 

particle in a way that will alter the way in which it behaves. This is particularly key in obtaining 

water solubility, introducing more complex functionalization and increasing surface reactivity to 

particular reagents.73, 75, 106 

The types of surface functionalisation for SiNPs are wide and varied ranging from alkylation 

reaction, based on hydrosilylation to radical halogenation. In some micelle reduction methods the 

surface passivation can be determined prior to particle synthesis by altering the surfactants used. 

A summary of some methods of functionalization can be seen in Scheme 8. 
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Scheme 8: Surface functionalisation of hydrogen and chloride terminated SiNPs 
107 

From hydrogen terminated SiNPs the most common functionalization method uses 

hydrosilylation. This process is initiated by one of four methods; initiation using radical initiator 

(benzoyl peroxide), thermal initiation, photo initiation and metal complex catalysed (Speier’s 

catalyst). 81, 108 75, 109 
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When performing hydrosilylation using a radical initiator, such as benzyl peroxide, either heat 

or light is used to homolytically split the initiator to generate radicals. These go on to react with 

hydrogen on the surface of the particle forming a radical site on the silicon surface, this site is then 

able to react directly with an alkene as shown. This terminates by picking up hydrogen from a 

neighbouring silicon atom (Scheme 9). 108 

The thermally-initiated hydrosilylation is a well-documented method for the functionalization 

of hydrogen terminated SiNPs. This method is usually carried out in a solvent with a boiling point 

higher than 100oC such as toluene, which is heated at reflux for several hours with a primary 

alkene of the desired chain length, to yield alkyl functionalized SiNPs. The mechanism by which 

this process occurs is still contested, but it is thought that the mechanism is also radical based as 

shown in Scheme 9 . 81, {Chao, 2007 #87, 85, 85, 90 

 

Scheme 9: Mechanism for radical hydrosilylation. 108 

Photoinitiated hydrosilylation reactions can be initiated by UV or white light. Both methods use 

an intense light source to initiate the reaction. However due to the difference in energy of the 

photon from each light source the mechanisms for reaction varies slightly from one another. 
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Scheme 10: Exciton mediated mechanism for the hydrosilylation of SiNPs 108 

The UV initiated mechanism proceeds by radical initiation as shown in Scheme 9. Alternatively 

the white light initiated reaction is thought to proceed via an exciton mediated mechanism 

(Scheme 10).  

The metal complex catalysed hydrosilylation uses Speier’s catalyst (H2PtCl6) and is proposed to 

proceed through the catalytic cycle shown in Scheme 11. 
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Scheme 11: Metal complex catalysed hydrosilylation of SiNPs using Speier’s catalyst. 

One drawback with hydrosilylation reactions is that some molecules such as phenylacetylene 

and other conjugated alkynes, once attached, are able to quench the reactive states.110 This limits 

the achievable coverage of the surface and limits the variety of molecules that can be effectively 

attached using this type of method. However even when using 1-alkenes the surface coverage 

achieved is modest.111, 112  

There are two methods in which the potential functionalities attached to the particles can be 

broadened. One method would be the attachment of a reactive functional group such as an amine 

or cyanate, which can then go on to react with other molecules to alter the functionality.31 The 

other method is to make the surface more reactive using halogenation or by producing halogen 

terminated particles.113, 114 

Halogen terminated SiNPs can be synthesised directly by micelle reduction 86-88 or produced 

from hydrogen terminated particles. 113, 115 Halogenation of hydrogen terminated particles uses a 

halogenated reagent or solvent such as PCl5 in chlorobenzene or trichlorobromomethane in the 

presence of UV light or a radical initiator and heat resulting in more reactive halogenated surfaces. 

These surfaces can react with a number of nucleophiles such as organolithium/magnesium 

reagents, primary alcohols and amines. This is a useful reaction as it greatly broadens the variety 

of functional molecules that can be attached to the surface of these particles. 
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1.5. Thermoelectric Effect 

The thermoelectric effect is the effect that allows the production of a voltage directly from a 

temperature gradient and also the development of a temperature gradient from a voltage. This 

concept can be manipulated by a range of different devices including temperature sensors, 

temperature measurement devices and electronic generation.116 This effect is the combination of 

three thermodynamically reversible effects the Seebeck effect, the Peltier effect and the Thomson 

effect.117 

1.5.1. Seebeck Effect 

The Seebeck effect is the conversion of a temperature gradient into an electrical potential. It is 

named after the German physicist Thomas Johann Seebeck, who observed the movement of a 

compass needle when it was placed in the vicinity of a closed loop of two metals at different 

temperatures. He described this purely as a magnetic effect called thermomagnetism.118 However 

it was observed by a Danish physicist Hans Christian Ørsted that this was an electromagnetic 

process as a consequence of the production of a potential difference/ voltage.119 The kind of 

closed loop used by Seebeck is shown in Figure 7. 

 

Figure 7: Schematic diagram showing the closed loop used in Thomas Johann’s Seebeck 

experiment. 

Using such a system the voltage (V) produced can be estimated by the following equation: 

	 
 ��
 � ���. ��� � ���  ( 2 ) 
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Where SA and SB are the Seebeck coefficients of material A and B and T1 and T2 are the 

temperatures at junctions 1 and 2 as depicted on the diagram.   

The Seebeck coefficient or thermopower is a measurement of how much voltage is produced 

as a result of a change in temperature across a material.120 This can be defined as follows: 

� 
 � ∆	
∆�  ( 3 ) 

Where ΔV	is the change in voltage produced and ΔT equals the temperature difference across 

the material. 117 

1.5.2. Peltier Effect 

The Peltier effect is the reverse of the Seebeck effect. The phenomenon involves heating at one 

junction and cooling at another when an electrical current is maintained through two different 

conducting or semiconducting materials. 121 

This was discovered by the French physicist Jean-Charles-Athanase Peltier in 1834. His 

experimental work used a circuit made up of two materials, bismuth and copper, with two 

junctions between the bismuth and copper. An electrical current was maintained using a battery 

source and it was observed that at the junction where current flows from bismuth to copper the 

temperature increased, but decreased where current passed from copper to bismuth. The 

experimental set up is shown in Figure 8. 122 

 

Figure 8: Schematic diagram showing a circuit connected to a battery with 2 junctions between 

two different materials used by Peltier. 
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The Peltier heat (�� � absorbed by the lower junction is given as: 

�� 
 ��
� 
 ��
 �	����  ( 4 ) 

Where I is the current,	�� is the peltier coefficient of material A and �
 is the peltier 

coefficient of material B. The Peltier coefficient is a measure of the units of heat current produced 

per unit of charge that passes through a material. 117 

1.5.3. Thompson effect 

The Thomson effect states that any current carrying homogeneous conductor with a 

temperature difference between two points will either absorb or emit heat (q).117 Providing that 

the temperature difference is small q is given as follows:  

" 
 #�∆�  ( 5 ) 

Where β is the Thompson coefficient with units V K-1,	I is the current and ΔT is the temperature 

difference.117 

1.5.4. Kelvin Relationships 

All of the above effects can be related using the Kelvin relationships. The relationship between 

the Seebeck and Thompson coefficient is as follows: 

# 
 � %�
%�  ( 6 ) 

Where	#	 is the Thomson coefficient, S is the Seebeck coefficient and T is the absolute 

temperature.  

The relationship between the Peltier coefficient  and the Seebeck coefficient is as follows: 

� 
 �. �  ( 7 ) 

Where T is the absolute temperature, S is the Seebeck coefficient (calculated using relation 

above) and Π is the Peltier coefficient. 117 

1.6. Thermoelectric materials 

Thermoelectric materials are materials that are able to display the effects described above. 

There are a variety of materials which display these effects, some are well established in the 

thermoelectric industry such as Be2Te3 and silicon germanium alloys, and some less-developed, 

such as silicon, and polymer based thermoelectric materials. When considering thermoelectric 

materials there are a number of values which can indicate how well a material will perform. 
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Typical measurements of a materials suitability for use in thermoelectrics are the power factor 

and the figure of merit (ZT).  

1.6.1. Power Factor and Figure of Merit (ZT) 

The power factor is a useful indicator of ability of a thermoelectric material to produce a useful 

electrical output under a given temperature difference. The power factor is defined by the 

following equation: 

&'()*	+,-.'* 
 	/��  ( 8 ) 

Where S  is the Seebeck coefficient and σ is the electrical conductivity. This value varies quite 

dramatically between classes of materials. Inorganic materials display power factors of up to 1 

Wm-1K-2 whereas organic semiconductors typically display power factors of 1 μWm-1K-2 or lower.123 

One figure that is used as a demonstration of the overall thermoelectric efficiency of a material 

is the figure of merit (ZT) and can be calculated from the following equation: 

1� 
 /��
2 �  ( 9 ) 

Where σ is the electrical conductivity, S is the Seebeck coefficient, k is thermal conductivity and 

T is temperature. It is also worth noting that the power factor is a constituent of this value. Most 

commercially available materials give a ZT>1 and some Bi2Te3 alloys have been reported to display 

a ZT as high as 2.5. 124 

It is apparent from the above equation that thermoelectric performance by its nature is a 

compromise between the Seebeck coefficient and the electrical and thermal conductivity. As a 

result, this value does not always give the full picture of the materials thermoelectric 

performance. For example; if the ZT is high as a result of an exceptionally low thermal conductivity 

but the power factor is also low, then this would not necessarily be a material suitable for use in a 

thermoelectric device. 

1.6.2. Thermal Conductivity and Phonon Scattering 

Thermal conductivity is the ability of a material to transfer heat energy across a material. In 

condensed matter physics, thermal conductivity is considered to be the movement of phonons 

across a material. A phonon is defined as an elementary vibrational mode within a lattice of a 

material. The thermal conductivity can be calculated using the following equation:  

2 
 34�%  ( 10 ) 
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Where α is the thermal diffusivity, Cp is the specific heat capacity of the material and d	is the 

density. The thermal conductivity is made up of two contributions. These are the lattice and 

electronic thermal conductivity. These are related by the following equation:44, 125 

2.'. 
 28,.. + 2)  ( 11 ) 

Where ke	is the electronic thermal conductivity and kLatt	is the lattice thermal conductivity. The 

ke can be estimated from the electrical resistivity by using the Wiedermann–Franz law: 104
 

2) 
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Where L is the Lorenz factor, T	 is the temperature and ρ is the electrical resistivity. The 

electronic contribution is generally negligible and has a small effect on the overall thermal 

conductivity and as a result a lot of work has been carried out focusing on the reduction of the 

lattice thermal conductivity. 45, 126, 127 

The lattice thermal conductivity can be reduced by a phenomenon known as phonon scattering 

which is caused by anharmonicity in the lattice of a material. This causes phonons to disperse and 

scatter throughout a material. Phonon scattering can be achieved by the following methods: 

1. Grain boundary scattering – a phonon being scattered by the boundaries between 

crystals within the material.  

2. Mass defects scattering – a phonon being scattered by an impurity in the system.  

3. Phonon-phonon scattering – a phonon splitting or combining with another phonon. 

Increasing grain boundary and mass defect scattering can easily be achieved by 

nanostructuring or the introduction of elements with high atomic mass as dopants, respectively. 

128, 129 

1.7. Materials 

1.7.1. Bi2Te3 

Be2Te3 is a narrow gap, layered semiconductor and is currently the most effective and most 

widely used material in the thermoelectric industry. This is despite of its disadvantages, such as; 

the toxicity, and low abundance of the required raw materials. Although a lot of effort has been 

made in the scientific community to find an alternative to Bi2Te3, other materials have not been 

able to match the high ZT values reported for these materials. The highest documented ZT for 

Bi2Te3 based materials is 2.5 at 300 K for Be2Te3/Sb2Te3 alloy as reported by Rama 

Venkatasubramanian et. al.
126, 130-133

 This value is exceptionally high and Bi2Te3 based materials 

generally have a ZT in the range of 1 - 2 at 300 K. 134 
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1.7.2. Skutlerudite 

Skutlerudites are another material that shows potential for use in high temperature 

thermoelectric applications. The first skuttlerudites discovered were based on cobalt arsenide 

with iron or nickel impurities however cobalt antimonide, which shares its lattice arrangement has 

shown ZT in excess of 1 in both the n and p- type materials at temperatures ranging from 550 to 

800 oC. 135-137 

The highest documented skuttlerudite ZT was reported for the n-type Sr0.07 Ba0.07Yb0.07Co4Sb12 

by Rogl et. al. in 2011. The ZT of this skutlerudite was 1.4 at 800 K and further work by the same 

laboratory in 2012 saw this increased to 1.8 using high pressure torsion to introduce lattice 

defects. 138 

Rogl and co-workers also reported a record high value for a p-type skuterudite of 1.3 at 775 K 

for DDy(Fe1−x Cox)4Sb12 where DD stands for didymium, a natural double filler consisting of 4.76% 

Pr and 95.24% Nd. 136 

1.7.3. Silicides 

Metal silicide and more specifically magnesium silicide have shown real promise as a 

thermoelectric material, especially for mid to high temperature applications. It has been thought 

that magnesium silicide and tin silicide have potential for high ZT materials as they possess large 

effective masses, high mobilities and relatively low lattice thermal conductivities.139, 140 One major 

advantage of metal silicide based materials is the relative abundance of their constituent elements 

and as a result, these materials are financially viable for mass production and device fabrication. In 

recent years interest in magnesium silicide based materials has spiked after Fedrov et. al. reported 

a ZT at 775 K of 1.1 in a n-type Mg2Si0.4Sn0.6 alloy in 2008.141 This is the highest reported ZT for a 

metal silicide to date and other alloys have achieved a ZT close to 1 at similar temperatures, e.g. 

Bux et. al. in 2011 documented a ZT of 0.8 at 775 K using Mg2Si0.85Bi0.15
142 

1.7.4. Silicon 

Heavily doped electronic grade bulk silicon has a very low electrical resistivity (3.3 x 10-4 Ωcm-1) 

and a relatively high Seebeck coefficient (-86 µVK-1) giving it a high power factor. Silicon’s high 

power factor, abundance, low toxicity and low cost makes it an attractive material for use in the 

thermoelectrics industry. However despite silicon’s many advantages it also displays a high lattice 

thermal conductivity (87.3 Wm-1K-1) and as a result bulk silicon has a ZT of approximately 0.01.104 

Despite this, a lot of work has been carried out to try and reduce the thermal conductivity enough 

so that its potential can be realised.    
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Silicon nanostructures show much lower thermal conductivities as a result of a more efficient 

boundary scattering of phonons, which can lead to a marked improvement to the figure of 

merit.143 For silicon nanowires, alteration of surface roughness, diameter and doping 

concentrations of nanowires has resulted in a ZT ≈1.144, 145  Although it is worth noting, this was 

obtained from a single narrow nanowire, it is not yet demonstrated if the value can be translated 

into bulk materials. These studies suggest that silicon nanowire arrays could be a potential silicon 

based thermoelectric material146 but preparation methods typically use harsh conditions or toxic 

and expensive reagents, such as trisilane,147, 148 hydrogen fluoride and silver nitrate.149 

Another potential silicon based thermoelectric material is nanostructured bulk silicon. 

The key purpose of this is to increase the phonon scattering effect by increasing the 

number of grain boundaries and hence lowering the thermal conductivity, ideally without 

greatly affecting the high power factor associated with the bulk.132, 145, 150, 151 Theoretical 

studies suggest the potential for these nanostructured bulk materials to reach a ZT of 0.3 

at ambient conditions and as high as 1 at high temperatures.132, 152 However this potential 

has not yet been realised in such materials without the introduction of significant 

quantities of germanium.152, 153 There are a number of advantages to such an approach, 

including low cost of raw materials, relative ease of production and scalability.154  

In 2010 Tang et. al. discussed the potential of porous or holey silicon ribbons (Figure 9) as a 

thermoelectric material. 155 The holey silicon ribbons we prepared by the deep reactive ion 

etching of silicon-on-insulator substrates masked by a thin chromium layer, templated by self-

assembled block copolymer film. This material displayed a ZT of 0.4 at ambient temperature which 

is 400 times higher than that of bulk silicon and 4 times higher than has been observed in 

nanostructure bulk silicon.152 Although as with silicon nanowires this has only been achieved on a 

single ribbon and proof to feasibility is yet to be documented. 
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Figure 9: Bright-field TEM image of a section of holey silicon ribbon. The porosity is estimated as 

∼35% through the entire ribbon. Selected area electron diffraction pattern (inset) indicates its 

single crystalline nature.155 

1.7.5. Polymers 

The typical thermal conductivity values for organic semiconductors are generally four to five 

orders of magnitude lower than that of nanostructured Bi2Te3 alloys. However unlike inorganic 

semiconductors like silicon or bismuth telluride, conductive polymers are limited by their low 

power factors.156 Polyacetylene is a good example of an organic semiconductor with a high power 

factor. Work published by Nogami et. al. in 1990 shows that a power factor of 10-4 Wm-1k-2 can be 

achieved for a polyacetylene with optimised iodine doping.157 This is mainly attributed to its high 

electrical conductivity of 105 Scm-1 but this highly doped conductive form is not very stable.156, 157 

As a result, a lot of time has been invested into other organic semiconductors based on 

polythiophene or polyanilines. 

Polyanilines are attractive polymers for use as thermoelectric materials due to their high 

environmental stability and the ease in which they can be processed. However to date the highest 

ZT obtained from a polyaniline based material is 0.01 at 445 K for a multi-layered film of undoped 

emeraldine and 10-camphorsulfonic acid doped emeraldine salt.156, 158, 159 This work reported by 

Toshima et. al. demonstrated a power factor six times than that of bulk film 10-camphorsulfonic 

acid doped of polyaniline.159, 160 

Another class of polymers that are attractive for use in thermoelectrics are polythiophenes.161 

Two interesting variants of polythiophene applied to thermoelectrics are poly (3-

hexylthiophene)(P3HT)162 and poly(3,4–ethylenedioxythiophene) (PEDOT).163 In 2010 Xuan et. al. 
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studied the optimisation of the power factor by doping such polymers and although respectable 

electrical conductivity was achieved the optimum power factor was only 1.4 x 10−7 W m−1 K−2, as a 

result of a very low Seebeck coefficient . In 2011 Bubnova et. al. reported a similar study for 

PEDOT-toslate with a conductivity of 300 S cm−1, they were able to optimize the power factor by 

gradually reducing the oxidised (p-doped) polymer with tetrakis(dimethylamino)ethylene. The 

conductivity reduces from 300 S cm−1 at 36% oxidation to 10−4 S cm−1 at 15% oxidation. The 

Seebeck coefficient increases by a factor of 20 upon exposing the reduction of the polymer, from 

40 μV K−1 at 36 % oxidation to a maximum of 780 μV K−1 at the low levels of oxidation. As a result 

of this study the optimum power factor reported is 324 μW m−1 K2 at 22 % oxidation. With the 

powerfactor optimised a ZT of 0.25 at ambient temperature is obtained making it comparable to 

other inorganic materials.163 

1.7.6. Organic-Inorganic Nanocomposites 

For many years inorganic nanocomposites and alloys have been investigated as a way to 

improve the efficiency of solid state thermoelectric materials. Recently, organic-inorganic 

nanocomposites have also been considered. This approach is based on the concept of combining 

the processability of organic semiconductors with the thermoelectric performance of the 

inorganics. An organic or polymer can be used to reduce electrical resistance between inorganic 

nanostructures in addition to maintaining a low thermal conductivity.123 This is an interesting 

alternative to nanostructured bulk materials as they do not require the same high temperature 

processing.123 As a result these materials are compatible with other low temperature fabrication 

techniques such as printing. 164 

In 2014 Wang et. al. reported a theoretical study to understand the potential of polymer-

inorganic nanocomposites to obtain suitably high power factors. In this model they use a 

semiconductor quantum dot and trapped it between two leads of aligned conductive polymer. 

The conclusions of the work suggest the potential of using semiconductor quantum dot – polymer. 

This work also adds some theoretical guidance to the effect of both nanoparticle choice and 

polymer choice for the design of better inorganic – organic nanocompsite thermoelectric 

materials 165 

To date there are many examples of polymer-inorganic nanocomposites and their 

thermoelectric properties. The best of these was reported by See et. al. in 2010 using a composite 

of PEDOT:polystyrenesulfanoate (PSS) and tellurium nanowires. This material is documented to 

have achieved a ZT of 0.1 at ambient temperature. 166 

Another interesting insight into this type of material is highlighted by Zhang et. al. In this work 

a composite of 10% P-type PEDOT:PSS and 90 % n-type Bi2Te3 nanoparticles was produced.167  One 
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surprising insight in this work is that the p-type PEDOT:PSS did not affect the negative Seebeck 

coefficient of the bismuth telluride particles opening up an attractive method for the development 

of n-type organic inorganic nanocomposite materials.  Although in this study the ZT was not 

calculated a conservative estimate suggests a ZT of approximately 0.08 at ambient temperature. 

123 

1.8. Thesis Overview 

Chapter 2 describes the synthetic procedures for the production of different functionalised 

SiNPs and describes the techniques used to analyse and characterise the resulting materials. In 

addition, methods used for the measurement of thermoelectric properties are discussed. 

Chapter 3 describes a one-pot synthetic procedure for the synthesis of alkyl functionalised 

SiNPs using micelle reduction.  The material was characterised using a variety of techniques 

including FTIR, 1H-NMR, XPS and TEM. To follow this, the photophysics were investigated using 

UV/Vis and PL as well as chemical stability studies using FTIR and XPS. This chapter is based on 

work from (Ashby S, Thomas J, Coxon P, et al. The effect of alkyl chain length on the level of 

capping of SiNPs produced by a one-pot synthesis route based on the chemical reduction of 

micelle. Journal of Nanoparticle Research 2013;15(2): 1-9.) and (Coxon PR, Ashby SP, Frogley MD, 

Chao Y. Thermal evaporation and x-ray photostability of dodecyl-passivated silicon nanoparticles. 

Journal of Physics D: Applied Physics 2012;45: 355303.) 

Chapter 4 discusses the synthesis of phenylacetylene functionalised SiNPs using a solution 

reduction to produce Cl functionalised SiNPs followed by alkylation using lithium phenylacetylide. 

The material was characterised using FTIR, 1H-NMR and 13C-NMR, TEM, EDS, and XPS. The 

thermoelectric properties were tested on a consolidated pellet. This chapter is based on work 

from (Ashby S, Thomas JA, Garcia-Canadas J, et al. FD 176: Bridging Silicon Nanoparticles and 

Thermoelectrics: Phenylacetylene Functionalization. Faraday Discussions 2014) and (Ashby S, 

García-Cañadas J, Min G, Chao Y. Measurement of Thermoelectric Properties of Phenylacetylene- 

functionalised Silicon Nanoparticles and Their Potential in Fabrication of Thermoelectric Materials. 

Journal of Electronic Materials 2012: 1-4.) 

Chapter 5 discusses the synthesis of terthiophene functionalised SiNPs using a solution 

reduction to produce Cl functionalised SiNPs followed by alkylation using lithium phenylacetylide. 

The material was characterised using FTIR, TEM, EDS, and XPS. The thermoelectric properties and 

thermostability were tested on a consolidated pellet.  

Chapter 6 discusses the synthesis of phenylacetylene functionalised SiNPs from 

electrochemically etched porous SiNPs using a halogenation/alkylation two step functionalisation. 
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The material was characterised using FTIR, 1H-NMR, 13C-NMR and 31P-NMR, TEM, EDS, and XPS. 

The thermalstability of this material was tested using TGA and DSC. This chapter is based on work 

from (Ashby S, Chao Y. Use of Electrochemical Etching to Produce Doped Phenylacetylene 

Functionalized Particles and Their Thermal Stability. Journal of Electronic Materials 2014;43: 2006-

10.)168 
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2.1. Materials 

The following materials reagents and solvents have been used in the following work: Toluene 

(Fisher Scientific, 99.9 %, dried by reflux over molten sodium and collected by distillation), 

tetrahydrofuran (Fisher Scientific, 99.5 %, dried by reflux over sodium and benzophenone and 

collected by distillation), diethyl ether (Sigma Aldrich, 99.5 %, dried by reflux over sodium and 

benzophenone and collected by distillation), chlorobenzene (Sigma-Aldrich, 99 %, dried by 

refluxing over calcium hydride and collected by distillation), ethanol (Sigma-Aldrich, 99.8 %), 

methanol (Fisher Scientific, 99.7 %), dichloromethane (Sigma-Aldrich, 99 %) and hexane (Fisher 

Scientific, 99.9 %). lithium aluminium hydride solution (Fisher Scientific, 1 M in tetrahydrofuran), 

silicon tetrachloride (Sigma-Aldrich, 99 %), trichloro(hexyl)silane (Sigma-Aldrich, 97 %), 

trichloro(dodecyl)silane (Sigma-Aldrich, 95 %), trichloro(octyl)silane (Sigma-Aldrich, 97 %), 

trichloro(octadecyl)silane (Sigma-Aldrich, 90 %), lithium phenylacetylide (Sigma-Aldrich, 1 M 

solution in tetrahydrofuran), sodium metal (Acros Organics, 99.8 %), naphthalene (Acros Organics, 

99 %), hydrofluoric acid (Acros Organics, 48 % in water), silicon wafer (Compart Technology Ltd., 

orientation: 111, Resistivity: 10-100 Ωcm, Type/dopant: n/boron, thickness: 500 μm, one side 

polished), phosphorous pentachloride (Sigma-Aldrich, 99 %), benzoyl peroxide (Luperox A75) 

(Sigma-Aldrich, 75 %), magnesium turnings (Sigma-Aldrich, 95 %), 2,5-dibromothiophene (Acros 

Organics, 95 %), 2-bromothiophene (Sigma-Aldrich, 98 %), dichloro(diphenylphosphinopropyl) 

nickel (Sigma-Aldrich), nitrosyl tetrafluoroborate (Sigma-Aldrich, 95 %) and chloroform-d (Acros 

Organics, 99.8 atom % D) 

2.2. Synthetic Procedures 

2.2.1. One-Pot Synthesis of Alkyl Functionalised SiNPs 

Based on a preparation by Wang et. al.
91 dry toluene (50 ml) was degassed by ten repetitions of 

1 minute of sonication under vacuum followed by filling the flask with N2 gas after each repetition. 

To this an alkyl-SiCl3 based surfactant (0.7 mmol) and SiCl4 (0.1 mL, 0.7 mmol) were introduced 

and dispersed by vigorous shaking for 1 min followed by sonication for 30 mins. This was then 

reduced using a 1M LiAlH4 solution in THF (4 mL, 4 mmol) which was added dropwise over 5 

minutes followed by ultra-sonication for 120 minutes. Methanol or ethanol (40 mL) was carefully 

introduced to the reaction mixture, followed by ultra-sonication for 60 minutes to quench the 

unreacted reducing agent. See reaction Scheme 12: 
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Scheme 12: One pot micelle reduction synthesis of alkyl functionalised SiNPs. 

All solvent was removed to give a white powder, which contained a mixture of by-product and 

SiNPs. This was sonicated in hexane (25 ml) for 10 mins, filtered using a polyvinylidiene (PVDF) 

syringe filter (450 nm) and dried in vacuo to give a clear pale yellow oil (≈120 mg) as the product.  

For some samples a further functionalisation step was required using thermal hydrosilylation 

Scheme 13). The SiNPs produced above were ultrasonicated for 5 minutes in a 0.04 M solution of 

the corresponding 1-alkene in toluene (10 ml, 0.4 mmol). This mixture was heated at reflux for 5 

hours and dried in vacou to give alkyl functionalised SiNPs as clear pale yellow oil.169 

 

Scheme 13: Hydrosilylation of unreacted Si-H species on the surface of alkyl functionalised 

SiNPs. 

2.2.2. Bottom Up Synthesis of Phenylacetylene Functionalised SiNPs 

Based on a preparation by Baldwin et. al.
87 a solution of sodium naphthalide (70 ml) was 

prepared by sonication of sodium metal (1 g, 43 mmol) and naphthalene (4.3 g, 34 mmol) in dry 

THF (70 ml) under a nitrogen atmosphere for 2 hr to give a dark green suspension. In a round 

bottom flask flushed with nitrogen SiCl4 (1 ml, 7 mmol) was dispersed in dry THF (200 mL) using an 

ultrasonic bath for 15 mins. The freshly prepared sodium naphthalide solution was added quickly 
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through a cannula and the flask placed in an ultrasonic bath for 15 mins, giving a dark brown 

suspension. To this a solution of lithium phenylacetylide (5 ml, 1 M in THF, 5 mmol) was added 

slowly over 5 mins and placed in an ultrasonic bath for a further 2 hr, giving an orange/red cloudy 

suspension.  See reaction Scheme 14: 

 

Scheme 14: Synthesis of phenylacetylene functionalised SiNPs using a bottom up approach. 

The reaction mixture was quenched with acidified water (50 ml) and extracted with 

diethylether (100 ml). The organic layer was washed with water (50ml) and brine (50ml). All 

solvent was removed in vacuo and heated to 100 oC under reduced pressure with an inline trap to 

remove the residual naphthalene, giving phenylacetylene functionalised SiNPs as an orange waxy 

solid. 

2.2.3.Bottom Up Synthesis of Terthiophene Functionalised SiNPS  

2.2.3.1. Terthiophene 

Using a previously published method developed by Smeets et. al.
170 magnesium turnings (3 g, 

0.12 mol ) and a stirrer bar were added to a flask and flushed with nitrogen. Dry diethyl ether (50 

ml) was added and the mixture was cooled down to 0 oC in an ice bath. 2-bromothiophene (6.3 

ml, 65 mmol) was added slowly and the flask was allowed to warm to ambient temperature for 1 

hr. This was used without further purification. The 2-bromomagnesiumthiophene was added over 

5 mins to a mixture of 2,5-dibromothiophene (3.6 ml, 32 mmol) and 

dichloro(diphenylphosphinopropyl) nickel] (60 mg, 0.1 mmol) in dry diethyl ether (20 ml). This was 

heated at reflux for 5 hr to give a dark orange/red solution.  Aqueous HCl (40 ml, 0.1 M) was 

added to quench the reaction and the mixture was extracted with toluene (50 ml). The organic 

layer washed with water (40 ml) and brine (40 ml). The organic layer was collected and the volume 

of toluene was reduced using a rotary evaporator. The product was precipitated by the addition of 

cold methanol to give an orange solid. This was filtered out to give terthiophene as a 

green/orange crystalline solid with a 60 % yield. m.p. 94-95 oC;1H NMR (CDCl3, 500 MHz):  7.20 

(dd, 2H, J= 5.1, 1.2 Hz), 7.11 (dd, 2H, J=3.7, 1.2 Hz), 7.06 (s, 2H), 7.01 (dd, 2H, J= 5.1, 3.7 Hz). 13C 

NMR (CDCl3, 500 MHz):  137.07, 136.14, 127.84, 124.26, 77.00. 
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Scheme 15: Synthesis of terthiophene. 

2.2.3.2. Terthiophene Functionalised SiNPs. 

Using the procedure previously described in the synthesis of phenylacetylene functionalised 

SiNPs, a solution of sodium naphthalide (70 ml) was prepared by sonication of sodium metal (1 g, 

43 mmol) and naphthalene (4.3 g, 34 mmol) in dry THF (70 ml) under a nitrogen atmosphere for 2 

hr. In a round bottom flask flushed with nitrogen, SiCl4 (1 ml, 7 mmol) was dispersed in dry THF 

(200 mL) using an ultrasonic bath for 15 mins. The freshly prepared sodium naphthalide solution 

was added quickly through a cannula and the flask placed in an ultrasonic bath for 15 mins, giving 

a dark brown suspension. Meanwhile terthiophene (0.65 g, 2.6 mmol) was dissolved in dry THF 

(20 ml) in a flask flushed with nitrogen. This was cooled to 0 °C using an ice bath and n-

butyllithium solution (2 ml, 1.6 M in hexane, 3.2 mmol) was added dropwise and stirred for 1 hr to 

give a yellow suspension. This was added slowly over 5 mins to the suspension of chlorine 

terminated SiNPs and heated at reflux for 48 hr as described by He et. al.
171

:  see reaction Scheme 

16: 

 

Scheme 16: Synthesis of terthiophene functionalised SiNPs s using a bottom up approach. 

 The functionalised SiNPs were then washed with acidified water and brine and extracted 

with diethyl ether. All solvent was removed in vacuo and the residue heated to 100 oC under 

reduced pressure to remove the residual naphthalene, giving terthiophene functionalised SiNPs as 

a yellow/green crystalline solid. 

To oxidise/dope the ligands, terthiophene functionalised SiNPS were dissolved in 

dichloromethane. To this NOBF4 was added.  This process was repeated for ratios varying from 0.1 

by up to 2 by weight. This was sonicated for 3mins to give a dark green/blue suspension (Scheme 

17).  
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 Scheme 17: Oxidation/doping of terthiophene functionalised SiNPs using a bottom up 

approach. 

The resulting doped and undoped materials were pressed into pellets. Approximately 200 mg 

of the material was measured in to a hardened steel dye with a diameter of 13 mm and max. 

pressure of 740 MPa. This was pressed using a hydraulic press at a pressure of 740 MPa for 3 mins 

to give a solid pellet of thickness 2 mm. This pellet was used for all electrical and thermal 

measurements.  

2.2.4. Top Down approach to Phenylacetylene Functionalised SiNPs 

For the initial synthesis of SiNPs by electrochemical etching, a previously documented method 

was used73. Four chips (11 × 11 mm) of boron doped silicon of resistivity 10 Ωcm were 

electrochemically etched using a 1:1 solution of aqueous hydrofluoric acid and ethanol in a PTFE 

etching cell designed in house (Figure 10).  

 

Figure 10: Annotated photograph of electrochemical etching set up. 
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These chips were etched at a current density 400 mAcm-2, for 5 min. After etching the chips 

were dried in vacuo to remove residual hydrofluoric acid, and were stored under nitrogen gas until 

use. Once dried, benzoyl peroxide (0.4 g, 1.6 mmol) and phosphorus pentachloride (1.2 g, 5.8 

mmol) were added, followed by dry, degassed chlorobenzene (10 ml). The mixture was sonicated 

for 10 mins and then heated to 90 oC for 2 h. The solvent was removed in vacuo and the product 

was re-dispersed in dry tetrahydrofuran. To this, lithium phenylacetylide solution (1 ml, 1 M in 

tetrahydrofuran, 1 mmol) was added. This was heated at 50 oC for 16 h. See reaction Scheme 18: 

 

Scheme 18: Functionalisation of hydrogen functionalised SiNPs using a chlorination- alkylation 

approach. 

The dark suspension was quenched with dilute hydrochloric acid (10 ml) and extracted with 

dichloromethane (20ml). The organic layer was washed with water and brine (10ml). The solvent 

was removed in vacuo to give a dark orange solid. 

2.3. Characterisation Techniques 

2.3.1. Chemical Analysis 

2.3.1.1. Fourier Transform Infrared Spectroscopy 

Fourier transform infrared spectroscopy (FTIR) is a particularly useful tool for the identification 

of a specific functionalisation on the surface of SiNPs s for example; the presence of the ligand, Si-

O or even Si-H.  

FTIR spectra were recorded using a Perkin-Elmer Spectrum 100 ATR FTIR spectrometer. The 

initial background was taken on a blank crystal between the range of 4000 and 600 cm-1
, 8 scans. 

The sample was placed on the crystal and a spectrum was taken between 4000 and 600 cm-1, 8 

scans. 
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2.3.1.2. Nuclear Magnetic Resonance Spectroscopy 

Nuclear magnetic resonance spectroscopy (NMR) is an important characterisation technique in 

the identification of molecular species. However with regards to functionalised SiNPs it can be less 

useful; especially in solution NMR. In many cases, especially with larger particles (approx. 10 nm) 

the signals for molecular species on the surface are often broadened and can be invisible to the 

technique, even when the particles are well dispersed. 172, 173. 

1H, 13C and 31P-NMR was run on samples dissolved in CDCl3 using a Bruker 500MHz NMR 

spectrometer. These samples were measured relative to chloroform from the lock solvent (CDCl3).
  

2.3.1.3. Energy Dispersive X-ray Spectroscopy 

Energy dispersive X-ray spectroscopy (EDX) useful for analysing the elemental components of a 

material. This technique uses a high energy electron beam to eject electrons from inner energy 

levels, which are bound to the nucleus of an atom. EDX detects the energy of the photon emitted 

as electrons from the outer energy levels fall in to the vacant inner levels. The energy of the X-rays 

emitted is characteristic of the energy difference between the two levels, and of the atomic 

structure of the element. As a result the elemental composition can be obtained.174 However this 

technique is not particularly sensitive to atomic ratios and the data obtained from this technique 

is generally indicative. 

 

Figure 11: Schematic diagram of processes occurring during EDX. 
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EDX analysis was performed using a JEOL SEM machine with an attach EDX sensor. Using the 

SEM, points of interest on the material were identified and an individual spectrum was run for 

each spot of interest. Gold was used as a reference material for EDX but also to allow conduction 

away from the surface of the material when observed under the SEM. 

2.3.1.4. X-ray Photoelectron Spectroscopy  

X-ray photoelectron spectroscopy (XPS) is a useful technique in the analysis of the elemental 

composition of the surface of materials. This technique compared to EDX is also quantitative and 

subtle differences in the binding energies gives insight into the bonding environment and 

surrounding elements. This technique uses a source of x-ray radiation to irradiate the sample with 

X-rays. All electrons whose binding energy is less than that of the incident x-rays are ejected from 

the atom. The detector measures the kinetic energy of these electrons. The energy of these 

electrons is characteristic of specific energy levels, elements and environments. The kinetic energy 

can then be converted to the binding energy using the following relationship: 

	C2 
 	DE � CF � G  ( 13 ) 

Where Ek	is the kinetic energy, hν is the photon energy, Φ  is the characteristic work function 

of the material and Eb	is the binding energy of the electron to the atom.174  

 

Figure 12: Schematic diagram of processes occurring during XPS. 
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X-ray photoelectron spectroscopy (XPS) from Beamline D1011, Maxlab, Lund, Sweden was run 

using a Scienta SES200 electron energy analyser with an energy resolution, E/dE of 1.5 × 103 – 1.3 

× 104 running SES analyser control software. A synchrotron light source was used. For core level 

and valence band XPS spectra acquisition, the analyser pass energy was set at 150 meV with 

energy steps of 0.05 eV and a dwell time of 1 s. All measurements were carried out at room 

temperature in normal emission geometry. Measurements were made on both evaporated films 

and drop cast films on a clean gold foil. To evaporate the SiNPs, the temperature of the crucible 

was increased to 240 oC. Once reached a target of freshly sputtered Au foil was placed in direct 

line of the flow of material. XPS data analysis and high resolution peak fitting was performed with 

CasaXPS software (version 2.3.15). 

XPS analysis by NEXUS nanolab was carried out on a K-Alpha XPS instrument (Thermo 

Scientific, East Grinstead, UK). A monochromatic Al Kα x-ray source (1486.6 eV) was used with a 

spot size of 400 μm diameter. A pass energy of 200 eV and step size of 0.4 eV was used for survey 

spectra, and a pass energy of 40 eV and step size of 0.1 eV was used for high resolution spectra. 

Samples were prepared by drop-casting a concentrated dispersion of the sample to produce a 

thick film on to gold foil (10mm  x 10mm). XPS data analysis and peak fitting was performed with 

CasaXPS software (version 2.3.15). 

2.3.1.5. X-ray Absorption Spectroscopy 

X-ray absorption spectroscopy (XAS) or X-ray absorption near edge structure (XANES) can be a 

useful tool for the identification specific elements and the quantity of said element present within 

a sample. Each individual element has a characteristic set of K, L and M and other absorption 

edges. As a result the wavelength at which these edges occur can be used to identify the elements 

present in a sample. It is also possible to use the magnitude of the change to identify the amount 

of an element present within the sample.174 

X-ray absorption spectroscopy (XAS) spectra were collected across the silicon L edge and the 

carbon K edge in total electron yield (TEY) mode. A synchrotron light source was used. The TEY 

was recorded by the drain current method measured via a diode coupled directly to the sample 

holder. Spectra have been normalized to the live current of the beamline D1011 MAXlab, Lund, as 

measured by a gold grid monitor placed before the sample. The sample was measured on a drop 

cast film on a clean gold foil substrate (10 mm x 10 mm). 
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2.3.2. Microscopy 

2.3.2.1. Transmission Electron Microscopy and Super Scanning Tunnelling Electron Microscopy 

Particle and crystal size plays a key part in the properties observed in SiNPs and the resulting 

materials produced. As a result, it is important to be able to measure the particle size and the 

distribution. Transition electron microscopy (TEM) is the best way to identify this for unsolvated 

particles. High resolution TEM and super scanning tunnelling electron microscopy (SuperSTEM) 

are useful tools when identifying if the particles are crystalline, especially when organic impurities 

are present which are able to affect the result obtained from x-ray powder diffraction.  

Low resolution TEM micrographs were taken using a JEOL JEM2000 electron microscope. TEM 

samples were prepared by drop casting a dilute suspension of the sample dispersed in chloroform 

onto a 200 mesh copper grid with a holey carbon film. The solvent was evaporated in air for 5 

mins before it was attached to the sample holder and inserted into the microscope chamber. TEM 

micrographs were taken at different spots of the grid. These micrographs were processed and 

analysed using Image J software. Average diameter of these particles was given by measuring 300 

particles manually from different spots on the grid and calculating a mean and standard deviation 

of the sample. 

High resolution TEM studies were performed with a JEOL (JEM- 2000 Ex) microscope and high-

resolution TEM was performed with a Philips CM200 FEGTEM microscope. TEM samples were 

prepared by dipping a carbon-coated 300 mesh copper grid into a filtered solution of SiNPs in 

water. The solvent was evaporated and TEM micrographs were typically taken at different spots of 

each grid 

Super scanning tunnelling electron microscopy (SuperSTEM) facility at Darsbury was used to 

obtain atomic number contrast (Z-contrast) STEM images. This was performed on a Nion 

UltraSTEM 100, operated at 100 kV using a cold field emission electron source, and a corrector 

capable of neutralizing aberrations up to fifth order. Samples were prepared by drop casting SiNPs 

solution onto a graphene substrate. The solvent was evaporated and micrographs were taken at 

different regions of each grid. Samples were baked at 135 oC for approximately 7 h in a turbo 

backed vacuum oven before SuperSTEM imaging to reduce contamination. The micrographs 

obtained were analysed and processed using Digital Micrograph software (version 3.5.2). 

2.3.3. Optical Properties 

2.3.3.1. Ultraviolet - Visible Spectroscopy  

UV/Vis spectroscopy is used to show the maximum absorbance of the materials produced. In 

SiQDs this is typically seen as a shoulder on the spectrum as the SiNPS scatter shorter 
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wavelengths. As a result as the spectrum moves towards 200nm the absorbance increases as 

more scattering occurs. 

The UV/Vis absorption spectrum was taken for samples dissolved in a suitable solvent; in a 

quartz cell (10 mm × 10 mm) were taken using a Perkin-Elmer 35 UV–Vis double-beam 

spectrophotometer. Scan range was 200-700nm at a rate of 900 nmmin-1. The background was 

corrected by subtracting the spectrum for the blank solvent. 

2.3.3.2. Photoluminescence Spectroscopy  

Photoluminescence is a key property of semiconductor QDs such as SiQDs. This technique can 

be used to calculate the emission wavelength and the optimum excitation wavelength. This 

information is vital in the design of imaging experiments using these materials.  

The photoluminescence spectrum was taken for alkyl-functionalised SiNPs dissolved in a 

suitable solvent; in a quartz cuvette (10 mm × 10 mm), using a Perkin-Elmer LS55 

spectrofluorimeter. A background was corrected by subtracting the spectrum of the pure solvent 

under the same conditions. 

2.3.3.3. Quantum Yield 

By calculating the quantum yield we are able to estimate the quantum efficiency. This value is a 

ratio of photons in compared to the photons out. This is particularly important for materials for 

imaging applications. This can be calculated either as an “absolute” value or a “relative” value. It is 

typically calculated using the simpler “relative” method where it is compared to a material of 

know quantum yield. 

A reliable “relative” quantum yield can be calculated using a method published by Williams et. 

al.
175

 Firstly solutions of the sample at varying concentrations in a suitable solvent were prepared, 

and the absorbance was measured at the excitation wavelength. For each dilution the emission 

spectrum was taken and the area under the peak was calculated. Only samples with an 

absorbance between 0.1 and 0.01 were used. The absorbance was plotted against the area and 

compared to a reference of known quantum yield (quinine sulphate, 54.6 % at 340 nm excitation).  

The reference was prepared in 0.5 M H2SO4 solution at different concentrations and the procedure 

repeated as above. The gradient of both the sample and the reference were used in the following 

equation to give the quantum yield of the sample. Using the gradient of both of the above plots 

the following equation was used to calculate the quantum yield. 

� 
 �M N O*,%
O*,%M

P NQ�
QM�

P  ( 14 ) 
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Where Q is the quantum yield, QR	 is the quantum yield of reference, η = refractive index of 

sample, ηR = refractive index of reference. 

2.4. Thermal Analysis and Measurement of Thermoelectric Properties 

2.4.1. Thermal Gravimetric Analysis and Differential Scanning Calorimetry. 

Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) are useful 

techniques when considering the thermal stability of materials produced and the ligand coverage 

of the silicon particles produced. TGA is a gravimetric trace which gives weight change over both 

dynamic and isothermal heat programs. DSC gives an indication of the nature of the process for 

example a trough in the heat flow is associated with an endothermic process such as phase 

change and a peak in the heat flow an exothermic process such as combustion. Using these two 

techniques in conjunction gives more information on the process shown in DSC for example a 

trough in heat flow in DSC with a drop in mass on the TGA is indicative of evaporation however 

without a drop in weight is indicative of a process such as a glass transition or melting. 

TGA and DSC analysis was performed using a METTLER-TOLEDO TGA-DSC1. The solid sample 

(approx. 5 mg) was placed in a 40 μL aluminium pan and measurements were taken while heating 

the sample between the specified temperature limits. The background measurements were taken 

while heating the empty pan over the same temperature range.  

2.4.2. Measurement of Thermoelectric Properties  

2.4.2.1. Measurement of Thermoelectric Properties of Phenylacetylene Functionalised SiNPs 

A four probe DC current equipment was used to measure the room temperature electrical 

resistivity. A current I	 = 10 mA was applied between two probes and the voltage difference V 

generated at the other two probes was measured. The resistivity R was calculated using:  

M 
 	
� × + × 4 × %  ( 15 ) 

Where F and C are geometrical correction factors and d the pellet thickness. In both 

measurements the data was taken at different regions of the pellet. The individual resistivities 

reported are the average of two measurements with applied electrical current in two opposite 

directions. The contacts are spring loaded pressure contacts. The influence of the parasitic 

capacitance is ignored because the measurement was carried out under DC conditions as 

thermoelectric devices operate in DC mode.   

The Seebeck coefficient was measured at room temperature using a hot probe apparatus at 

Cardiff University.176 This technique is a relative method and uses a hot and ambient probe to 
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create a temperature difference. The probes contain a thermo couple so the potential between 

the hot and ambient probes for both materials in the thermocouple are measured.  

 

Figure 13: Schematic diagram showing the hot probe experimental setup. 

This technique uses the difference in potential between circuit A and B (ΔV) and the difference 

in temperature (ΔT) between T1 and T2 to obtain the Seebeck coefficient (S):   

� 
 � ∆	
∆�  ( 16 ) 

All measurements were taken at different points near the centre of the material. 

Thermal diffusivity measurements were performed at 373 K and 423 K using an Anter Flashline 

3000 instrument. Measurements were made on pellets of phenylacetylene functionalised SiNPs. 

This instrument determines both the thermal diffusivity (α) and the heat capacity (Cp) of the 

sample. The thermal conductivity (κ) is calculated from the relationship:  

Y 
 34�A  ( 17 ) 

Where ρ is the sample density which was estimated by dividing the mass by the volume 

calculated from the pellet dimensions. For the determination of the heat capacity, side-by-side 

testing of a reference material, PyroceramTM 9606, of known heat capacity, was carried out. The 

procedure used for the determination of the heat capacity has been described in detail.177, 178.  

2.4.2.2. Measurement of Thermoelectric Properties of Terthiophene Functionalised SiNPs 

The electrical resistivity and the Seebeck coefficient was measured by a multifunctional 

apparatus developed by García-Cañadas et. al. This apparatus uses 4 multifunctional probes that 
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comprise of a junction of two conductors at the tip and serve as both thermocouples and 

electrical contacts. Additionally one of the probes has an inbuilt heater which allows a 

temperature gradient to be established in the sample for the measurement of the Seebeck 

coefficient (Figure 14:).179 This technique is not geometry specific and has a maximum 

experimental error of 4% and 5% for electrical conductivity and Seebeck coefficient respectively. 

The measurements were taken on pellets 13 mm in diameter and 1.5 mm thick at room 

temperature. 

 

 

Figure 14:Photograph of multifunctional electrical resistivity/ Seebeck coefficient measurement 

apparatus.179 

The thermal diffusivity and heat capacity were measured using a Netszch thermal diffusivity/ 

conductivity instrument, LFA 447. The materials were run using PyroceramTM 9606 as a standard 

so that the heat capacity could be accurately measured. Using Equation 10 the thermal 

conductivity is calculated. This apparatus requires a density to calculate the thermal conductivity. 

The density of the pellet was estimated by dividing the pellet mass by the volume calculated from 

the dimensions of the pellet. Measurements were taken at 30, 50, 75, 100, 125 and 150 oC and 

each reported value is the average of 3 measurements. 
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3.1. Overview 

As discussed previously, the key disadvantages of top down methods for the synthesis of SiNPs 

is scalability and with regards to electrochemical etching, the toxicity of reagents such as 

hydrofluoric acid. As a result, bottom up synthetic approaches are far more attractive. One such 

method is the reduction of micelles of a precursor molecule using a suitable reducing agent.87, 88, 

94, 96 Many approaches use surfactants to control the size of micelles and ultimately the size of the 

resulting nanoparticles.49, 74, 78, 180, 181 However these processes require a lot of purification to 

remove surfactants after the passivation step. In 2011 Wang et. al. reported a synthetic procedure 

that used trichloroalkylsilanes as a surfactant. This surfactant was incorporated into the resulting 

particle to achieve corresponding alkyl functionalisation.91 This one-pot method removes the extra 

purification steps required as a result of using a conventional surfactant such as 

tetraoctylammonium bromide. 

In the following study, alkyl functionalised SiNPs were synthesised using surfactants of different 

alkyl chain length and employing the previously published one-pot micelle reduction method 91. 

The surfaces of these particles were studied to understand how the length of the alkyl chain 

length and how the quenching agent can affect the surface coverage and impurities on the 

surface. In cases where SiNPs showed hydride functionality, an additional process was introduced 

to fully cap the surface. Thermal hydrosilylation was run by adding the sample to a mixture of 

toluene of the corresponding 1-alkene and heating at reflux for 5 hours.81 

Characterisation shows the successful synthesis of crystalline alkyl functionalised SiNPs and 

shows changes in surface functionality depending on the quenching agent and the alkyl chain 

length of the surfactant used. Surface characterisation shows that this is related to variation in the 

susceptibility of the surface to oxidation by the two quenching agents. 

3.2. Synthesis of Alkyl Functionalised SiNPs 

Based on a preparation by Wang et. al.
91 an emulsion of micelles of alkyl-SiCl3 and SiCl4 was 

reduced using LiAlH4 to form a suspension of alkyl functionalised SiNPs, This method was carried 

out for 4 different alkyl chain lengths. Hexyl, octyl, dodecyl and octadecyl functionalised SiNPs 

were produced: primarily to investigate how the surfactant alkyl chain length affected the levels of 

Si-O observed, but additionally to investigate whether the chain length had any effect on the 

particle size produced Scheme 12. After the reduction step, any excess reducing agent was 

quenched using either methanol (pKa=15.5), as reported in Wang’s method, or alternatively 

ethanol (pKa = 15.9), which is less acidic and has more steric bulk. This would limit the level of 

oxidation caused by the quenching solvent. 
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Scheme 19: One pot micelle reduction synthesis of alkyl functionalised SiNPs. 

This synthetic procedure gave a yield of approximately 120 mg of yellow gel like material. This 

is moderately high when compared to top down methods such as electrochemical etching.106 

3.3. Characterisation of Alkyl Functionalised SiNPS 

3.3.1. Studies of Functionalisation, Oxidation and Incomplete Capping 

Wang’s one-pot method was extended to include surfactants of varying chain length (C6-C18), 

using methanol as a quenching reagent. Additionally, the procedure was modified to explore the 

use of ethanol as a quenching reagent. 

Using FTIR as a spectroscopic tool it was possible to analyse the differences between the 

surface coverage of different SiNPs samples which were prepared using different 

trichloroalkylsilane surfactants and/ or quenching agents. Although the alkyl peaks were 

essentially identical in all samples, the effect on the free Si-H on the surface of the SiNPs differed 

with varying chain lengths and was highly dependent on quenching agent. 

FTIR spectra for each surfactant chain length show a level of alkyl functionalisation irrespective 

of the quenching method. The spectra are shown in Figure 15 and Figure 16  show strong features 

which are characteristic of alkyl groups, such as three strong sharp peaks at 2980, 2921, and 2852 

cm-1, which are representative of the C-H stretching modes, as well as observed peaks at 

approximately 1460 and 1261 cm-1, representing the C-C and Si-C stretching and bending modes 

respectively. There is also a presence of a peak at 1354 cm-1 which is representative of C-H 

scissoring. The combination of these peaks shows successful capping on all accounts of this 

synthetic procedure.  
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Figure 15: FTIR of hexyl, octyl, dodecyl and octadecyl functionalised SiNPs when methanol was 

used as a quenching agent. 

In addition to the peaks expected for the alkyl functionalisation of silicon, the initial study of 

this method by Wang et. al. described a strong broad peak observed in the region 1100-1000 cm-1, 

with 2 maxima at approximately 1090 and 1020 cm-1. This peak shape is characteristic of Si-O-C 

stretching and therefore highly indicative of surface oxidation.96 In Wang’s method, the oxidation 

of any unpassivated regions of the SiNPs is likely to occur during the quenching of unreacted 

LiAlH4 with excess methanol. The choice of the quenching reagent may have an effect on the level 

of SiNP oxidation. One way to limit the extent of surface oxidation would be to use a less acidic 

and more sterically hindered alcohol as a reagent such as ethanol (Figure 16) or to use an oxygen 

free salt such as copper (II) chloride as described by Dung et. al.
93

 However the use of copper (II) 

chloride makes the sample more difficult to purify. 
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Figure 16: FTIR of hexyl, octyl, dodecyl and octadecyl functionalised SiNPs when ethanol was 

used as a quenching agent. 

Quenching both the hexyl and octyl functionalised SiNPs with ethanol gave a very similar 

results to the corresponding SiNPs quenched with methanol. However some significant 

differences can be observed in the spectra obtained for both the dodecyl and octadecyl 

functionalised SiNPs. When quenched with methanol the FTIR spectra showed strong Si-O-C 

peaks. However when quenched with ethanol a significant reduction in the intensity and 

broadening of the Si-O-C peaks relative  to the Si-C and C-C stretch were observed. The peak 

observed is more characteristic of the native oxide observed in top down approaches to alkyl 

functionalised SiNPs.81 In addition to this a sharp peak at 2149 cm-1 was observed, which is 

characteristic of Si-H. In both of these samples the Si-H peak remained unchanged when left to 

age under atmospheric conditions for 1 week (Figure 17). 
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Figure 17: Aging of FTIR spectrum of dodecyl functionalised SiNPs showing Si-H stretch showing 

the initial and after 7 days spectrum. 

When the micelle is reduced with LiAlH4, some areas of the particle are not functionalised by 

the alkyl chain, leaving some areas of the particles terminated with hydrogen. This explains the 

observation of the Si-H peak at 2149 cm-1 on both dodecyl functionalised samples and the 

octadecyl functionalised samples but does not explain the lack of a Si-H stretch for the hexyl and 

octyl samples. 

The quenching of the reaction holds the key to explaining this. The quenching of the reaction with 

a primary alcohol means that the Si-H functionality is susceptible to alkoxylation or oxidation from 

the solvent. In the samples of dodecyl and octadecyl functionalised SiNPs the steric influence 

around the particle is high enough to protect the Si-H surface functionality from reaction with 

ethanol but the octyl and hexyl functionalised particles do not prevent such reactions as they do 

not display enough steric influence. In the case of methanol this effect is not sufficient on all 

accounts. 

Initial analysis of the products of this method attributed the high oxide levels observed in the 

hexyl functionalised SiNPs to the Si-H bonds undergoing oxidation with long term exposure to 

air.91 The FTIR spectra were taken immediately after drying so there has been minimal exposure to 

air. In addition FTIR aging of partially passivated SiNPs (dodecyl) shows no significant oxidation of 

the Si-H functionalities after 1 week (Figure 17). However   rapid oxidation was observed in the 

octyl and hexyl samples. It has been shown that the introduction of a protic solvent such as water 

or a primary alcohol can lead to oxidation.182 The quenching step of LiAlH4 introduced ethanol in to 

the reaction flask prior to exposure to air. Previous FTIR data of alkoxy SiNPs show a relatively 

sharp Si-O-C peak, observed at 1091cm-1, rather than the typically broad Si-O peak observed in 
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most alkyl functionalised SiNPs 96, 98, 183. The spectra for the alkoxy SiNPs have similar-shaped oxide 

profiles as those for both the hexyl- and octyl- functionalised SiNPs. This suggests that the higher 

oxide observed in these two samples is a result of the reaction of ethanol with the exposed Si-H 

surface, which is a consequence of incomplete surface functionalisation. This reaction can occur at 

room temperature when stirred vigorously.98 The longer chain capping layers act as a steric barrier 

to the ethanol preventing reaction with the Si-H sites and thus lower Si-O levels observed.  

As a result of these observations, an extra hydrosilylation was carried out on the dodecyl and 

octadecyl functionalised SiNPs when ethanol was used as a quenching reagent for two reasons; to 

confirm the presence of Si-H functionality on the surface and to fully passivate the surface of the 

SiNPs. The use of thermally induced hydrosilylation using the respective 1-alkene resulted in a 

reduction in the intensity of the Si-H peak relative to the C-C /C-Si stretch at 1464 cm-1 in both 

cases. Additionally in both cases a slight increase in the relative intensity of the peak 

corresponding to SiO could be observed.  

 

Figure 18: FTIR of dodecyl and octadecyl functionalised SiNPs before and after thermal 

hydrosilylation with the corresponding 1-alkene. 

The increase in the relative intensity of SiO after the reflux step cannot be attributed to alkoxy 

capping due to the absence of a quenching reagent and the shape of the peak, but the increased 

temperature and the presence of oxygen and contaminants in the reagents and solvents (e.g. 

water) would lead to further oxidation. 

1H-NMR was also used to analyse the surface functionalisation of ethanol-quenched octyl and 

dodecyl functionalised SiNPS. For octyl functionalised SiNPs, the 1HNMR spectra display alkyl and 
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alkoxy functionalisation. In this spectrum a symmetrical multiplet can be observed at 3.66 ppm 

representing the two CH2 protons and a small triplet at 0.78 ppm representing the CH3 protons 

(Figure 19). These features are absent from the NMR spectrum of the dodecyl- functionalised 

SiNPs. The 1H-NMR for both the dodecyl and the octly functionalised samples supports the alkyl 

capping of SiNPs. These spectra show three proton environments, one at 1.25 ppm which is 

characteristic of a CH2 attached to silicon, as it is shifted downfield from the other CH2 protons 

which are shown at 1.18 ppm, and the CH3 peak is observed at 0.55 ppm.  

 

 

Figure 19: 1H-NMR spectrum obtained from octyl-functionalised SiNPs dissolved in CDCl3. 
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Figure 20: 1H-NMR spectrum obtained from dodecyl-functionalised SiNPs dissolved in CDCl3. 

3.3.2. Microscopy and Particle Size 

TEM micrographs for each sample are displayed in Figure 21. The mean diameters and standard 

deviation from the measurement of 100 particles for each functionalisation is given in Table 1. The 

mean diameter differs slightly for each capping agent (surfactant) used and for hexyl, octyl and 

dodecyl shows a pattern of increasing mean size with increasing chain length. However, the 

octadecyl surfactant breaks this pattern. It is to be expected that the surfactant will affect the size 

as shown in the results, but the way in which the increase of alkyl chain affects size requires 

further study, since these results do not show a definitive pattern and the pattern may be related 

to inaccuracy in measuring particles using the software 
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Figure 21: Low resolution TEM image showing a)hexyl b)octyl c) dodecyl d)octadecyl functionalised 

SiNPs synthesised by micelle reduction. 

Table 1: The mean diameter and standard deviation of SiNPs from a sample of 100 particles. 

 

Capping Mean diameter (nm) Standard deviation (nm) 

Hexyl 6.0 1.60 

Octyl 6.3 1.61 

Dodecyl 6.5 1.94 

Octadecyl 6.2 1.71 
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Figure 22: SuperSTEM image showing the distribution of sizes of alkyl-functionalised SiNPs 

obtained from the reduction of hexyltrichlorosilane/SiCl4 micelles, inset: high resolution Z-

contrast STEM image of an individual SiNP showing it to be crystalline of alkyl-functionalised 

SiNPs. 
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Figure 23: Histogram showing an example size distribution of alkyl-functionalised SiNPs. 

The Z-contrast STEM image (Figure 22) for hexyl functionalised SiNPs also shows well defined 

SiNPs. These images were used to investigate the monodispersity of the sample. The histogram in 

Figure 23 shows the range of 100 particle diameters within the sample. The range is moderately 

wide with particles varying from 2 to 10 nm being produced. In addition the maximum is at 

approximately 4 nm which is 2 nm lower than the mean diameter. In addition, high resolution 

STEM imaging showed that the particles are crystalline in nature and the Z-contrast STEM image 

shown in the inset of Figure 22 shows the lattice fringes of the crystalline particle. The measured 

lattice fringe spacing in these crystalline particles is 0.31 nm, corresponding to the (111) 

interplanar spacing of the diamond cubic structure of silicon.184 

3.3.3. XPS and XAS 

XPS and XAS were used to give an indication of the elemental composition of the silicon 

particles produced. The peaks observed from each capping layer are very similar. Figure 24: is a 

typical XPS survey spectrum for the alkyl functionalised SiNPS (dodecyl) produced. From this 

spectrum peaks for O1s C1s Si2p and Si2s can be observed as well as the two peaks for Au4f. All 

XPS spectra are calibrated to the Au4f peak. 
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Figure 24: XPS spectra obtained from dodecyl functionalised SiNPs showing Survey spectrum. 

Photoelectron spectrum was collected with incident photon energy of 630 eV. 

 

 

Figure 25 : High resolution spectrum XPS spectrum obtained from dodecyl functionalised SiNPs 

showing Si2p region. Photoelectron spectrum was collected with incident photon energy of 630 

eV. 

In Figure 25, the Si2p spectrum for dodecyl- functionalised SiNPs is fitted with three components: 

at 99.92 eV, 101.53 eV, and 102.73 eV representing contributions from Si-Si, Si-C and Si-O 

respectively. 185, 186 The peak at 99.92 eV representing the Si-Si bonding within the centre of the 
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nanoparticles contributes 14.2 % of the total spectrum area within the fitted energy window. The 

remaining 85.8 % is from Si-C and Si-O at the particle surface. Of this remainder 63.8 % is from Si-C 

and 22 % is Si-O meaning an estimated 75 % of the available surface has undergone alkyl capping. 

This compares favourably with H-terminated Si (111) surfaces bound by organic monolayers where 

50 % surface coverage is typical.111, 112  

  

Figure 26: High resolution spectrum XPS spectrum obtained from dodecyl functionalised SiNPs 

showing C1s region. Photoelectron spectrum was collected with incident photon energy of 630 

eV. 

In Figure 26, the C1s spectrum for dodecyl- functionalised SiNPs is fitted with two components: C-

C at 284.9 eV and C-Si at 283.9 eV. 91.8 % of the spectrum area is from C-C within the carbon 

chains and the remaining 8.2% is made up by the Si-C where the passivating layer is bound to the 

silicon centre. The ratio of the area of the spectrum represented by each component is close to 

1:11, which is the exact ratio of Si-C to C-C bonds in the functionalised SiNPs. 

In Figure 27 the O1s spectrum for dodecyl- functionalised SiNPs is fitted with one component; this 

is a peak representative of Si-O and is in part due to chemical oxidation and in part due to X-ray 

induced oxidation. 
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Figure 28 shows the XAS spectrum in total electron yield mode over the Si L edge for a thick film 

of dodecyl functionalised SiNPs prior to x-ray irradiation. The XAS profiles collected over the softer 

L edge allow highly localized chemical and structural information to be obtained thus taking 

advantage of the narrow spatial separation between the initial photoionization upon X-ray 

absorption and the final carrier combination events. At the silicon L2,3 edge this spatial-separation 

is approximately 1 nm,187 which is smaller than the diameters of the nanocrystals. A general 

noticeable trend is the increase of the total electron yield towards higher photon energies. This is 

attributed to the increasing absorption coefficient (μ) as a result of the electron multi-scatterings 

from high energy photoelectrons into multiple low energy Auger electrons.188 The doublet peaks 

at 105.7 and 106.5 eV are strongly characteristic of silicon oxide.189 Similar doublet features have 

been observed close to 105 eV and identified as such within porous silicon and in thin (1.1–2.6 nm 

thick) Si/SiO2 layers.190, 191 The broad peak at 115 eV is close to that for silicon oxide at 115.3 eV.192, 

193 At the excitation energies used here, the escape depth of the Auger and low energy electrons 

detected within the TEY is ∼5 nm, thus the effective sampling depth is largely confined to sample 

surfaces. 

At lower energy, much weaker shoulders can be observed in the spectrum: one at 99.9 and one 

at 100.5 eV, which are characteristic of elemental silicon and SiC respectively. 

 

Figure 27: High resolution spectrum XPS spectrum obtained from dodecyl- functionalised SiNPs 

showing O1s region. Photoelectron spectrum was collected with incident photon energy of 630 

eV. 

540 538 536 534 532 530 528 526

 Exp data
 Fitting/Si-O

 

 

C
o

u
n

ts

Binding Energy / eV



Chapter 3:  One-Pot Bottom Up Synthesis of Alkyl Functionalised Silicon Nanoparticless by Micelle Reduction. 

Page | 62 

 

Figure 28: TEY for thick film of dodecyl-functionalised SiNPs over the Si L absorption edge. The 

spectrum region from 97–104 eV is overlaid and scaled x 10 

3.4. Optical properties of SiNPs 

The origin of the photoluminescence observed in Figure 29 is complicated by the combination of 

both indirect and direct band gap transitions present in SiNPs. 98 However, there is strong 

theoretical evidence suggesting that 1-2 nm SiNPs with a hydrogen or carbon-terminated surface 

have direct band gap optical transitions that lead to photoluminescence in the blue region 78, 194. 
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Figure 29: PL spectra for alkyl functionalised SiNPs. Excitation spectrum (Emission wavelength = 

400nm, emission bandwidth = 10nm, excitation bandwidth = 10nm) Black and emission spectrum 

(excitation wavelength = 340 nm emission bandwidth = 10nm, excitation bandwidth = 10nm) 

Green 

 

 

Figure 30: UV/Vis Spectrum for alkyl- functionalised SiNPs in hexane. 
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Figure 29 and Figure 30 show the room temperature PL and UV/Vis spectra respectively. The PL 

emission shows a broad multi component emission in the blue region with a maximum at 407 nm 

when excited at the optimum wavelength of 340 nm. The irregular shape of this peak suggests a 

complex mix of direct and indirect band gap transitions68 

The UV/Vis spectrum shows a gradual increase in absorbance from high to low wavelengths as a 

result of increasing levels of scattering, as expected with any dispersions of this nature. However a 

shoulder is observed at 280 nm which is evidence of an absorption rather than scattering. This is 

evidence of the successful synthesis of quantum dots. 

3.4.1. Quantum yield 

Figure 31 and Figure 32  show the UV/Vis and PL spectra of SiNPs respectively, at different 

concentrations. Using all spectra where the absorbance at 340 nm is greater than 0.01 and less 

than 0.1 the integrated intensity has been plotted against the absorbance for both the dodecyl 

functionalised SiNPs and the quinine sulphate reference as shown in Figure 33. 
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Figure 31: UV/Vis spectra at varying dilutions of alkyl functionalised SiNPs in hexane 
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Figure 32: Emission spectrum; Excitation wavelength = 340 nm excitation bandwidth = 10 nm 

emission bandwidth = 2.5 nm at varying concentration of alkyl functionalised SiNPs in hexane 

 

Using the gradient obtained from Figure 33 the quantum yield was calculated from the 

following equation: 
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Figure 33:  Plotted integrated intensity of emission against absorbance for both alkyl  

functionalised  SiNPs in hexane and quinine sulphate in 0.1 M H2SO4 
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Where QRef = 54.6, ηTouene = 1.497 and ηRef = 1.346. A quantum yield of 10.6 % was calculated.    . 

Previously reported quantum yields for alkyl functionalised SiNPs typically lie between 4 % and 25 

% 73, 91, 195. 

Interestingly, the differences in capping layer did not greatly affect the optical properties or the 

size of the SiNPs. Each sample shows an identical UV/Vis absorption peak at 280 nm and in each 

case the PL emission spectrum shows emission in the blue region at a wavelength of between 400 

and 407 nm under excitation of 340 nm, Figure 5a). This shows there are no significant changes in 

optical properties between the differing lengths of the capping layers used. This is unsurprising 

due to the similar nature of the functionalisation. 

3.5. Thermal Stability 

The thermal stability of SiNPs was analysed by TGA. Figure 34 shows the TGA curve and its first 

derivative for dodecyl functionalised SiNPs as they undergo heating from 50 to 550 oC with a 

heating rate of 20 oCmin-1 under a nitrogen atmosphere. For undecyl functionalised SiNPs 

produced via electrochemical etching/ hydrosilylation the onset of the mass drop occurs at 

approximately 200 oC. However for dodecyl functionalised SiNPs produced using the described 

solution reduction, the onset is at approximately 240 oC. The form is typical for a volatile melt with 

an ultimate mass loss of approximately 27%. This increase in desorption temperature may be due 

to the greater length of the hydrocarbon chain and/ or the higher surface coverage, both of which 

can stabilise the structure against evaporation due to the presence of a greater number of Van Der 

Waals attractions. The weight derivative of the TGA curve illustrates the transition temperature 

where the greatest mass loss occurs. The rest of the material decomposes between 270 and 550 

oC. The peaks in the 300-350 oC range can be assigned to decomposition and desorption of Si-C 

from the passivating layer which is stable up to temperatures of 310 oC.196 The intermediary peaks 

up to 550 oC may be indicative of the presence of potential sample impurities or by-products, or 

the removal of bound functional groups from the silicon surface.  
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Figure 34: TGA and derivative of dodecyl functionalised SiNPs between 50 and 550 oC at a 

heating rate of 20 oCmin-1 

3.6. Summary 

The successful one-pot synthesis of alkyl-functionalised SiNPs for four different ligands systems 

shows that this method is viable for a wide range of different functionalising agents (surfactants). 

This offers a wide range of potential functionalisations such as amine or allyl end groups. In this 

work the level of alkyl capping, despite initial appearances, is broadly consistent for all capping 

layers, although some experiments show a raised level of Si-O. This is because the quenching 

solvent used in this method reacts with the unfunctionalised Si-H on the surface of the particle. It 

has been shown that the SiNPs produced by this method are silicon rich, crystalline, luminescent, 

and functionalised with alkyl chains. Additionally these particles can be produced in higher yields 

and with higher surface coverage than those produce by other methods and as a result make 

them a more viable candidate for the mass production of functionalised SiNPs. 
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4.1. Overview 

As discussed there are a number of different approaches to silicon based thermoelectrics such 

as SiNWs and nanostructured bulk silicon.31, 106, 152, 153 However these processes either require high 

temperature processing, are difficult to produce in bulk, or uses toxic reagents in their 

preparation. Solution approaches are a good way to produce low dimension silicon 

nanostructures, with the potential to scale up as well as offering an aspect of size control.89, 181 

One issue of avoiding high temperature processing to produce a bulk material is that the porous 

nature of the material makes it a poor electrical conductor which compromises the reduction in 

thermal conductivity.197 

The attachment of a conductive or conjugated ligand has the potential to improve the electrical 

conductivity between particles.103 In addition, organic molecules and polymers are generally poor 

thermal conductors so the attachment of such a ligand would not increase the thermal 

conductivity.134, 158 Additionally, recent theoretical studies suggest that once optimised, a system 

made up of ligands/organics and quantum dots have great potential for use as thermoelectric 

materials.165 

By attachment of conjugated molecules to the surface of silicon particles it has been observed 

that there is a flow of current to the chains from the SiNP surface 198 and it has also been observed 

that small conjugated molecules attached to the surface of silicon such as; phenylacetylene, can 

improve the efficiency of semiconductor-metal junctions.199  

In the following study, phenylacetylene functionalised SiNPs were produced via a solution 

reduction method. Micelles of SiCl4 were reduced using sodium naphthalide to produce chlorine 

terminated SiNPs followed by the reaction of this surface with an organolithium reagent to 

functionalise them.87 The resulting material was characterised using FTIR, 1H-NMR, 13C-NMR, EDS, 

XPS and TEM. The thermal stability was studied using TGA and DSC. 

Phenylacetylene functionalised SiNPs were pressed into a pellet and the electrical conductivity 

and Seebeck coefficient were measured at ambient temperature. The thermal conductivity was 

measured at 100 and 150oC. These measurements were then used to work out the figure of merit 

ZT to give a measure of thermoelectric performance. These were carried out to help identify the 

potential of SiNPs functionalised with conjugated molecules for thermoelectric applications and to 

determine if charge can be transported from particle to particle through conjugated organic 

molecules attached to the surface. 
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4.2. Synthesis of phenylacetylene Functionalised SiNPs 

Using a method outlined by Baldwin et. al. 87 a dark brown suspension of chlorine terminated 

SiNPs was produced by reducing micelles of SiCl4 with a solution of sodium naphthalide. These 

particles where then functionalised using lithium phenylacetylide to give the desired surface 

functionalization. After washing and removal of residual naphthalene by heating under reduced 

pressure, approximately 500-750 mg of phenylacetylene functionalised SiNPs were obtained as an 

orange waxy solid. See reaction Scheme 14: 

 

Scheme 20: Synthesis of phenylacetylene functionalised SiNPs using a bottom up approach. 

4.3. Characterisation of Phenylacetylene Functionalised SiNPs 

4.3.1. FTIR and NMR 

The FTIR spectrum (Figure 35) shows peaks that are characteristic of phenylacetylene 

functionalised SiNPs. The spectrum shows peaks at 3051 cm-1, representative of aromatic C-H, and 

at 1596 and 1487 cm-1 which are representative of aromatic C-C bonds. Also, a sharp peak is 

observed at 2161 cm-1, which is characteristic of the C≡C stretching mode. This, combined with the 

absence of a sharp peak at 3300 cm-1, which would correspond to alkyne C-H stretching, suggests 

that the terminal side of the alkyne is attached to silicon. This is also supported by the Si-C≡C 

peaks at 1441 and 1221 cm-1. The Si-O peak between 1100 and 1000 cm-1 is observable but is 

broad and weak when compared with the sharp peaks at 1068 and 1026 cm-1 which are 

characteristic of phenylacetylene. 
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Figure 35: FTIR spectrum of phenylacetylene functionalised SiNPs 

Further evidence of phenylacetylene functionalisation is given by the 1H-NMR Figure 36 and 

13C-NMR Figure 37 spectra. 1H-NMR shows two multiplet peaks at 7.53 and 7.30 ppm with an 

integration of 2:3 respectively, characteristic of the phenyl protons of phenylacetylene. Also, there 

was no presence of the peak expected for a terminal proton on the alkyne at 3 ppm. These 

features are evidence of the molecule being bound to the SiNPs.  

The 13C-NMR shows the four peaks for the phenyl carbons at 132, 129, 128 and 121 ppm and 2 

peaks for the alkyne at 106 and 86 ppm, characteristic of the carbon closest to the phenyl and the 

silicon respectively. In both the 1H-NMR and 13C-NMR the peaks for residual naphthalene can be 

observed at 7.47, and 7.84 and at 127, 125, and 133 respectively. 

3500 3000 2500 2000 1500 1000
0

20

40

60

80

100

64
4

68
5

10
68

10
26

84
5

91
4

75
2

12
21

14
41

14
87

15
95

21
61

T
ra

n
sm

is
si

o
n

/ %

Wavenumber/ cm-1

30
51



Chapter 4:  Solution Synthesis of Phenylacetylene Functionalised Silicon Nanoparticles for Thermoelectric Applications. 

73 | Page 

 

Figure 36: 1H-NMR of phenylacetylene functionalised SiNPs. 

 

 

Figure 37: 13C-NMR of phenylacetylene functionalised SiNPs. 

4.3.2. Microscopy 

The TEM micrograph shows that SiNPs have been synthesized (Figure 38). The SiNPs show a 

wide distribution of particle diameters from 2 to 10 nm (inset Figure 38). The mean diameter of 
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measurement of the diameter of 150 particles from different regions of the grid. The high 

standard deviation and wide size distribution can be explained by the lack of controlling influence 

on the micelle size, i.e. lack of use of surfactants.91 

 

Figure 38: TEM image and size distribution of phenylacetylene functionalised   SiNPs . Inset, size 

distribution of silicon nanoparticle. 
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4.3.3. EDX and XPS 

 

Figure 39: EDX of phenylacetylene functionalised SiNPs. 

The phenylacetylene functionalised SiNPs are rich in both silicon and carbon. This can be 

observed in the EDX spectrum obtained from a number of spots on the material. EDS shows the 

elemental components of the material to be silicon, carbon and oxygen (Figure 39).  

This can also be observed from the XPS survey spectrum of the SiNPs (Figure 40). This 

spectrum shows an elemental composition ratio of Si:C:O of approximately 1:7:2.7. The level of 

oxygen observed in this material is considerably higher than expected, however lower levels of 

oxygen were observed on EDX (Figure 39). The increased oxygen level observed using XPS is 

typical of the X-ray induced oxidation of SiNPs as described in chapter 3.185, 200 Additionally, XPS 

does not show any signals from elemental impurities of potential by-products such as sodium, 

lithium and chlorine. Individual fittings for the Si2p C1s and O1s give a better grasp on the 

elemental ratios of the material, however the silicon signal is lower than would be expected. This 

is likely to be due to the shallow penetration depth of the technique. 
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Figure 40: XPS survey spectrum for phenylacetylene functionalised SiNPs. Photoelectron 

spectrum was collected with incident photon energy of 1486.6 eV.  

In Figure 41, the Si2p spectrum for phenylacetylene functionalised SiNPs is fitted with three 

components: at 99.9 eV, 101.5 eV, and 102.3 eV representing contributions from Si-Si, Si-C and Si-

O respectively 185, 186. The peak at 99.9 eV representing the Si-Si within the centre of the 

nanoparticles contributes 2 % of the total spectrum area within the fitted energy window. The 

remaining 98 % is from Si-C and Si-O at the particle surface. Of this remainder, 78 % is from Si-C 

and 20 % is from Si-O. This shows an estimated 79.5 % of the available surface has undergone 

functionalisation. This compares favourably with H-terminated Si(111) surfaces bound by organic 

monolayers where 50 % surface coverage is typically obtained 111, 112.  
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Figure 41: XPS spectra obtained for phenylacetylene functionalised SiNPs showing high resolution 

spectrum of Si2p region. Photoelectron spectrum was collected with incident photon energy of 

1486.6 eV. 

In Figure 42, the C1s spectrum for phenylacetylene functionalised SiNPs is fitted with three 

components: at 283.3 eV, 284.4 eV and 285.3 eV representing contributions from C-Si, C-C 

(aromatic) and C-C (aliphatic) respectively. 92 % of the spectrum area is from the peaks 

representing C-C within the carbon chains and the remaining 8 % is made up by the Si-C where the 

passivating layer is bound to the silicon centre. The ratio of the area of the spectrum represented 

by each component is close to 1:11.5, which is higher than the expected ratio of Si-C to C-C bonds 

in the phenylacetylene functionalised SiNPs. However some of this may be related to unbound 

carbon impurities such as naphthalene. 

In Figure 43, the O1s spectrum for phenylacetylene functionalised SiNPs is fitted with one 

component at 531.8 eV, which makes up 100 % of the spectrum and represents Si-O.  
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Figure 42: XPS spectra obtained for phenylacetylene functionalised SiNPs showing high 

resolution spectrum of C1s region. Photoelectron spectrum was collected with incident photon 

energy of 1486.6 eV. 
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Figure 43: XPS spectra obtained for phenylacetylene functionalised  SiNPs showing high 

resolution spectrum of O1s region. Photoelectron spectrum was collected with incident photon 

energy of 1486.6 eV. 
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4.4. Thermal Stability  

The DSC trace (Figure 45) begins at a flat level of heat flow before a negative peak can be 

observed at 165oC, representing a solid-liquid phase transition. Meanwhile, the weight on the TGA 

trace (Figure 44) remains close to 100 %. After this feature the heat flow into the sample begins to 

decrease relatively rapidly, which suggests that the sample is beginning to undergo degradation. In 

this region a minimum is observed in the derivative of the TGA, showing a higher rate of weight 

loss at this point. The DSC trace reaches a maximum at 320 oC showing completion of the initial 

degradation. After 330 oC the heat flow into the sample increases again, the TGA trace shows that 

the weight continues to decrease; becoming more rapid at approximately 500 oC, as depicted by 

another minimum on the derivative. This is likely to be due to continued degradation. This 

corresponds to a shoulder in the DSC.  After 650 oC, little change in weight occurs on the TGA 

which suggests that degradation is complete, however a small peak in the DSC trace suggests that 

an exothermic process occurs. The overall percentage weight loss at 1000 oC is 40 %. Assuming 

that all remaining material is silicon as a result of heating in an inert atmosphere, the initial ligand 

to silicon ratio of the phenylacetylene functionalised SiNPs is 1 to 5. However this is a rough 

estimation of the coverage as it assumes all remaining material is solely silicon and all weight loss 

is as a result of degradation of ligands, which may also be related to other processes such as 

desorption of physisorbed ligands and the evaporation of functionalised SiNPs.85 In this respect 

XPS offers a more accurate and complete estimation of surface coverage. 

 

Figure 44: TGA and derivative of phenylacetylene functionalised SiNPs 
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solid to liquid phase transition at 175 oC suggests that the material could only be used up to 

approximately 150oC, before the melting process begins warping the material. Thus, the material 

would only be suitable for low temperature thermoelectric applications. Examples include: energy 

scavenging from hot water/cooling water outflow from a plant or thermal spring, or the 

conversion of heat from light harvesting. 

4.5. Thermoelectric Measurements 

The initial and aged thermoelectric measurements for a pellet made up of phenylacetylene 

functionalised SiNPs are given in Table 2. The measurements obtained at ambient temperature 

show that the material produced has an exceptionally high Seebeck coefficient and a low thermal 

conductivity. These two values offset the low electrical conductivity in the equation for the figure 

of merit (ZT). The ZT of approximately 0.6 at ambient temperature is comparable to many better 

established materials. However after 1 month this value has reduced by an order of magnitude, 

which points toward significant stability issues. Closer inspection of the individual components 

within the calculation for ZT reveals that there is clearly room for further reduction in the 

electrical resistivity.  This could be achieved by optimising the doping of the system although in 

this system there are two components that must be considered, the ligand and the SiNP. 

 

Figure 45: DSC of phenylacetylene functionalised SiNPs. 
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Table 2: Thermoelectric measurements of a pellet of phenylacetylene functionalised SiNPs at 

room temperature. 

Age of Pellet ρ [kg m-3] σ [S m-1] S [μV K-1] κ [W m-1 K-1] ZT 

Initial 1022 18.1 3228.8 0.1 0.6 

1 month 1022 0.85 -1765 0.1 0.03 

 

4.4.1. Electrical Resistivity 

The electrical resistivity of this material as given in table 1 is an average of 6 measurements at 

different points on the pellet. These points are plotted in Figure 46. Relative to other silicon 

materials of similar porosity, the electrical conductivity of a pellet of phenylacetylene SiNPs is 

significantly large. 31, 201, 202 However, when compared with materials typically involved in 

thermoelectric applications, the electrical conductivity is not high enough.132, 151 This conductivity 

could however be optimized through the doping of the SiNPs or the doping of the ligands in order 

to increase the charge carrier concentration. 

Measurements taken 1 month later (Figure 46) show an increase in the electrical resistivity by 

an order of magnitude. Suggesting that stability of the material is another weakness that would 

need to be addressed in order to make it a suitable material for thermoelectric applications. 

 

Figure 46: Electrical conductivity measurements of a pellet of phenylacetylene functionalised 

SiNPs at room temperature initial and after a month. 
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4.4.2. Seebeck Coefficient  

The Seebeck coefficient of this material as given in table 1 is an average of 4 measurements at 

different points on the pellet. Each of these are plotted in Figure 47. The magnitude of the 

Seebeck coefficient is much higher than that documented for other silicon based materials.106, 152 

This can be attributed to the low carrier concentration and high resistivity, as discussed previously. 

If the charge carrier concentration is optimised, the Seebeck coefficient would be expected to 

become reduced by a factor of 10 to 100, based on previous work regarding silicon based 

materials.106, 152 Optimization of doping would result in a compromise between the magnitude of 

the electrical conductivity and the Seebeck coefficient, which in practical terms would make for a 

more useful material but may alter the ZT positively or negatively.  

In addition to this, individual measurements greatly fluctuate in value between different points 

on the pellet (Figure 47). This fluctuation suggests a high level of inhomogeneity in the sample as 

a result of it being made up of more than one component. 

After 1 month there was no significant change observed in the magnitude of the Seebeck 

coefficient, however a change in sign was observed. This result is unexpected for a number of 

reasons. Firstly, with the greatly increased electrical resistivity it would be expected that an 

increase in the magnitude of the Seebeck coefficient would be observed. Secondly, the change in 

sign would typically be representative of doping, p or n type. However this has not been actively 

pursued. A reason for these two observations may lie in the inhomogeneity of the sample, as 

suggested by the observed variation in the measured Seebeck coefficient values. 
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Figure 47: Seebeck coefficient measurements of a pellet of phenylacetylene functionalised 

SiNPs at room temperature initial and after a month. 
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4.4.3. Thermal Conductivity 

The thermal conductivity was measured at 373 K and 423 K, and the values were 0.15 and 0.19 

W m-1 K-1 respectively. The listed value in Table 2 is an extrapolated value expressed to one 

decimal place. This gives an ambient temperature ZT of 0.6. This value is comparative to other 

materials under investigation in thermoelectrics.144, 145  

The low thermal conductivity values may be in part due to the low density. As the samples 

were simply cold pressed, the density might be well below the theoretical (crystallographic) value. 

The effect of densification on thermal conductivity (κ) is of the form below:203, 204 

2�'*'_e
2%)`e)


 � � f
g h ( 19 ) 

where φ is the porosity and is defined as  

h 
 � � A�'*'_e
A%)`e)

  ( 20 ) 

Where ρporous  is the density of the sample and ρdense  is the theoretical density  of the dense 

material  	 
Unfortunately, given the presence of the organic capping agents, the calculation of the 

theoretical density is difficult. If the organic component is neglected, then the density is expected 

to be that of silicon, which is 2329 kg m-3. The measured density is approximately 1022 kg m-3. This 

suggests, compared to pure silicon, the sample is approximately 44% dense. Of course this is a 

gross approximation as it ignores the organic component completely, but it does suggest that the 

sample is quite porous and that κ is well below that of the dense material.  

4.6. Summary 

Phenylacetylene functionalised SiNPs have been successfully synthesised using a solution 

reduction method to produce chlorine terminated SiNPS and an organometallic for surface 

functionalization. This opens up the potential for a number of other conjugated ligands such as 

oligothiophenes. 

Although the material after the processing is not suitable for use in a device in its current state 

as a result of its thermal stability and high resistivity, some key advancements have been made. 

Firstly the ability to produce a pellet which shows higher conductivity than purely silicon materials 

of comparable porosity is an encouraging sign. This has been achieved without any control of 

charge carriers which would allow further optimisation of the system. Additionally the thermal 
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conductivity has been reduced to a level comparable with organic materials. Both of these are 

useful developments. 

Further to the work performed here it is important to find a way in which control of the charge 

carriers can be achieved. However this material has two components, an organic and an inorganic 

component. To understand this system it is important that we understand exactly how the doping 

of each of these components affects the thermoelectric properties of organic-SiNP nanocomposite 

materials. 
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5.1. Overview 

Chapter 4 shows that the use of a suitable ligand could aid the thermoelectric performance of 

silicon materials processed at much lower temperatures and open them up to similar processing 

techniques to polymers e.g. inkjet printing. Phenylacetylene functionalised SiNPs synthesised by a 

bottom up method, gave a ZT at ambient temperature of 0.57 for a cold pressed pellet. The main 

reason for this was its very low thermal conductivity, comparable to that of some polymers. This is 

to be expected due to its organic characteristics. However, the material’s major downfall was that, 

although the electrical conductivity was high compared to materials of similar porosity, it was too 

low to be suitable in electronic devices. This can be attributed to the low concentration of charge 

carriers. 

The doping of ligands can be considered to be similar to that of polymers. An oxidant is used to 

remove electrons from the organic molecules to form a hole in the material allowing it to carry 

charge. Polythiophene based polymers are very common commercial conductive polymers e.g. 

PEDOT and have also been used widely in the development of organic thermoelectrics.156, 163 The 

doping approaches with such polymers are very well documented.205-209 Moreover 

oligothiophenes can be easily attached to silicon surfaces in a similar way to phenylacetylene and 

the longer chain results in a better potential for chain overlap.171 

In this study terthiophene functionalised SiNPs have been synthesised via the micelle reduction 

method (described in chapter 4) and characterised using FTIR, TEM, EDX and XPS. Additionally the 

thermal stability of the undoped material was analysed using TGA and DSC.  

The terthiophene units on the surface of these particles have then been doped using different 

mass ratios of NOBF4 as an oxidant (+1.00 V vs. Cp2Fe0/+).210 After oxidation the elemental 

composition was investigated using EDX and XPS to indicate the presence of the counter ion BF4
- 

Cold pressed pellets of the resulting materials were produced and electrical resistivity, Seebeck 

coefficient and thermal conductivity were measured at room temperature to investigate the 

effects of the level of doping of the ligand on the thermoelectric properties of these materials. 

Additionally the stability of the electrical resistivity was monitored over one month. 

5.2. Synthesis of Terthiophene Functionalised SiNPs 

Using a method outlined in Chapter 4, a dark brown suspension of chlorine terminated SiNPs 

was produced by reducing an emulsion of micelles of SiCl4 with a solution of sodium naphthalide. 

These particles were then heated to reflux in THF for 48 hr with lithium terthiophene to give the 

desired surface functionalization. This procedure was based on a procedure described by He et. 

al.
171 for functionalising silicon surfaces with thiophene oligomers. After washing and removal of 
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residual naphthalene by heating under reduced pressure, approximately 500 mg of product was 

obtained as a yellow/green solid. 

 
 

Scheme 21: Synthesis of terthiophene functionalised SiNPs using a bottom up approach. 

5.3. Characterisation of Undoped Terthiophene Functionalised SiNPs 

FTIR gives evidence of successful capping of SiNPs with terthiophene. FTIR (Figure 48) shows a 

peak at 3065 cm-1 which is characteristic of aromatic C-H stretching as well as peaks at 1490 and 

1420 cm-1 which are characteristic of aromatic C=C stretching. The peak at 1490 cm-1 is 

characteristic of the asymmetric stretch of C=C in thiophene oligomers. A peak representing Si-C 

can also be observed at 1203 cm-1. Peaks at 829, 791 and 687 cm-1 are characteristic of the CH 

deformation with the most intense peak at 791 being characteristic of a 2, 5-substituted 

thiophene. Despite of evidence of successful capping of the surface with terthiophene there was 

still a high level of Si-O on the surface as indicated by the strong broad peak between 1100 and 

1000 cm-1. This indicates a moderately low surface coverage, suggesting that further optimisation 

of the surface coverage may be possible. However increasing the reaction temperature and time 

had little effect on the intensity of this peak which suggests that the low surface coverage may be 

related to the steric bulk of the terthiophene. 
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Figure 48: FTIR of Terthiophene functionalised SiNPs. 

TEM micrographs (Figure 49) of the freshly prepared silicon quantum dots show particles 

ranging from 2 to 10 nm and an average particle size of 5.6 nm, with a standard deviation of 1.25 

nm obtained from the measurement of the diameter of 150 particles from different regions of the 

grid. The sample was not very monodisperse, however this is to be expected as no surfactant was 

introduced to control the particle size distribution. 

 

Figure 49: TEM micrograph of terthiophene functionalised SiNPs 

The EDX (Figure 50) spectrum for the undoped product shows the presence of silicon, oxygen, 

carbon and sulphur as would be expected for terthiophene functionalised SiNPs indicating a 

favourable elemental composition. This is also supported by the XPS survey spectrum (Figure 501) 
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as peaks for Si2p and Si2s, C1s, O1s, and S2p and S2s can be observed, indicating the presence of 

the expected elements at the surface of terthiophene functionalised SiNPs. 

 

Figure 50: EDX spectrum of undoped terthiophene functionalised SiNPS 
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Figure 51: XPS survey spectrum obtained from undoped terthiophene functionalised SiNPs. 

Photoelectron spectrum was collected with incident photon energy of 1486.6 eV. 

In Figure 52 the high resolution XPS for Si2p can be fitted to 4 components at 99.7, 101.4 

102.53 and 103.59 eV representing contributions from Si-Si, Si-C, Si-O and SiO2 respectively. The 

peak at 99.92 eV representing the Si-Si bonding within the centre of the nanoparticles contributes 

22.1 % of the total spectrum area within the fitted energy window. The remaining 77.9 % is from 

Si-C, Si-O and SiO2 at the particle surface, 18.7 % is from Si-C and the remainder 59.4 % is from Si-

O and SiO2 combined. An estimated 23.5 % of the available surface has undergone capping. This is 

low when compared with hydrogen terminated Si (111) surfaces bound by organic monolayers 

using hydrosilylation, where 50 % surface coverage is typical.111, 112  
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Figure 52: High resolution XPS spectrum obtained from undoped terthiophene functionalised 

SiNPs showing Si2p region. Photoelectron spectrum was collected with incident photon energy 

of 1486.6 eV. 

In Figure 53 the C1s spectrum for terthiophene SiNPs is fitted with three components at 283.44 

eV, 284.40 eV and 285.38 eV representing C-C, C-Si, and C-S respectively. 61.3 % of the spectrum 

area is from C-C and 32.9 % is from C-S within the ligand and the remaining 5.8% is made up by 

the C-Si where the passivating layer is bound to the silicon centre. The ratio of the area of the 

spectrum represented by each component is close to 1:5.7:10.7, which is close to the ratio of Si-C 

to C-C to C-S carbons in functionalised SiNPs (1:6:11). 
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Figure 53: High resolution XPS spectrum obtained from undoped terthiophene functionalised 

SiNPs showing C1s region. Photoelectron spectrum was collected with incident photon energy 

of 1486.6 eV. 

5.4. Thermal Stability 

The TGA and DSC shows an initial degradation temperature of the ligands at approximately 325 

oC shown as a steep decrease in weight % on the TGA paired with a peak at 325 oC. This indicates 

the maximum operation temperature of this material is 300oC and this would also be the 

maximum temperature in which they can be processed. After this initial degradation there is a 

secondary degradation at approximately 500oC. This is observed by a second steep decrease in 

weight % on the TGA which is again accompanied by a positive peak on the DSC. 

In addition to this the surface coverage of the particles can also be estimated from the TGA. 

The initial weight drop is related to naphthalene in the sample. Assuming that all the reduction in 

mass is related to the decomposition of the surface ligands the percentage mass of ligand to 

silicon can be estimated. The percentage mass of ligand in the sample is approximately 65%, giving 

a molar ratio of ligand to silicon of 1 molecule to 5 silicon atoms.  However this is a rough 

estimation of the coverage as it assumes all remaining material is solely silicon and all weight loss 

is as a result of degradation of ligands, which may also be related to other processes such as 

desorption of physisorbed ligands, loss of organic impurities and the evaporation of functionalised 

SiNPs.85 XPS offers a more accurate and complete estimation of surface coverage. 
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Figure 54: TGA curve and first derivative for terthiophene functionalised  SiNPs 
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Figure 55: DSC curve of terthiophene functionalised SiNPs 

5.5. Doping of Terthiophene Functionalised SiNPs 

Terthiophene functionalised SiNPs were doped using the chemical oxidant NOBF4 which is 

commonly used as a dopant for polythiophene-based polymers.211-213 Different NOBF4 to SiNPs 

particle mass ratios were used in dichloromethane. During the reaction effervescence of NO gas 

was observed and a colour change from yellow to dark green blue. 

Once the oxidising agent was introduced a fluorine signal appeared in addition to the signals 

observed in the undoped sample observed in EDX (Figure 56). This is due to the BF4
- counter ion 
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which stabilises the radical cation species formed. This can clearly be observed on the spectrum 

for doped terthiophene functionalised SiNPs with a terthiophene functionalised SiNPs/NOBF4 

mass ratio of 0.5 (Figure 56). Additionally, the nitrogen of the NO+ cannot be observed suggesting 

that all the oxidising agent had reacted to form NO gas. 

 

Figure 56: EDX spectrum of doped terthiophene functionalised SiNPS 
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Figure 57: XPS survey spectrum obtained from doped terthiophene functionalised SiNPs 

showing Survey spectrum. Photoelectron spectrum was collected with incident photon energy 

of 1486.6 eV. 

The observations made using EDX are also visible in the XPS survey spectrum, where the O1s, 

F1s, C1s, S2p and S2s, and Si2p and Si2s can be observed. As in the EDX the boron peak cannot be 

seen but the fluorine is clear and is evidence of the presence of the counter ion. As in the EDX 

spectrum an N1s peak is not observed, offering further evidence of full reaction of the reducing 

agent. 

5.6. Thermoelectric Measurements 

5.6.1. Electrical Conductivity 

The effects of the doping ratio on the electrical resistivity can be observed in Figure 58. On 

doping of the ligands with NOBF4, a sharp initial decrease in electrical resistivity can be observed 

between a ratio of 0 and 0.4 after this point the improvements in conductivity begin to plateau as 

all oxidisable sites are oxidised. The electrical resistivity at high levels of doping show small 

increases as unreacted oxidant is incorporated in the material with no additional charge carriers 

being introduced. Similar behaviour to this can be observed in the preparation of conductive 

polymers such as polythiophene or polyaniline. 214 
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Figure 58 : Electrical resistivity against doping ratio (Mass Terthiophene functionalised 

SiNPs/Mass NOBF4) 

The electrical resistivity obtained from these materials is much too high to incorporate in to a 

thermoelectric device. This would need to be decreased by at least a factor of 102. However these 

results do demonstrate how the introduction of charge carriers on the surface ligands can 

enhance the electrical conductivity, in this case by 7 orders of magnitude over the undoped form.  

There are a number of factors that could be adding to the high electrical resistivity. These 

include the high levels of surface oxide, low density and low surface coverage, in addition to the 

ligand particle system not being optimised. The ligand particle system could be altered by 

changing the ligand used or using a different dopant.180 

5.6.2. Aging of Electrical Conductivity 

Despite the relatively high resistivity of the materials produced, aging studies on the pellets 

with doping ratios of 0.4 and 0.5 show relatively good stability with the resistivity doubling after 1 

week and then remaining relatively constant for up to 4 weeks. The initial rise could be related to 

evaporation of residual solvent. However this is a good indication of the stability of the doped 

ligands and how effective the counter ions are at stabilising the radical cations formed. This is a 

much better stability than that shown by phenylacetylene functionalised SiNPs processed under 

the same conditions. If this same stability can be translated into a better performing 

nanocomposite, this could lead to a significant move forward in silicon-organic nanocomposite 

thermoelectric materials. However, better stability could possibly be achieved using different 

counter ions.97, 215 This was highlighted by Bubnova et. al. who achieved very stable conductive 

PEDOT using tosylate as the counter ion for the doped polymer.153 This counter ion is much larger 

than BF4 and as a result stabilise the counter cation better.216  Another example of this is the use 
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of the polymeric counter ion system PSS which forms a conductive co polymer when suitably 

doped.123 

5.6.3. Seebeck Coefficient and Power factor 

The measurement of the Seebeck coefficient gives a value more than one order of magnitude 

larger than other silicon based materials. This is in part due to the relatively high resistivity 

discussed earlier. In addition, this value is an order of magnitude higher than that measured for 

polythiophene at a comparable resistivity, suggesting that there may be an influence on the 

Seebeck coefficient as a result of the attachment of terthiophene to SiNPs.158, 217 This is 

comparable with nanocomposites such as polythiophene-silver nanocomposites.218 It is also worth 

noting that this could be related to the inhomogeneity of the material. In materials of this nature 

there are 2 components. This makes understanding the Seebeck coefficient obtained more 

difficult. This inhomogeneity was highlighted when comparing the fluctuation in Seebeck 

coefficient measurements from different parts of the pellet. 

 

Table 3: Seebeck coefficient measurements at different points on pellet 

Position Edge Near Edge Near Middle Middle 

Seebeck Coefficient / μVK-1 -4238 5822 -46851 -6439 
 

The homogeneity may also be an explanation for the unexpected sign of the material. As the 

material is n-doped it would be expected that the Seebeck coefficient would be positive however 

  

Figure 59: Electrical resistivity against time for the doping ratio of 0.4 and 0.5. 
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it is negative. From the measurements above it is clear to see that the sign of the Seebeck 

coefficient changes at random depending on measurement position.  

Using the measurements taken at the edges for each pellet the Seebeck coefficient decreases 

as the doping ratio increases and as a doping ratio of 0.4 is reached a drop in Seebeck coefficient 

is observed. This is to be expected as a result of the relationship between the electrical resistivity 

and the Seebeck coefficient. Increases and decreases in electrical resistivity are generally mirrored 

in the measurement of the Seebeck coefficient. However in these results a change in sign and a 

large increase in the magnitude are observed for the Seebeck coefficient for the pellet with a 

doping ratio of 0.5. Once again this may be as a result of inhomogeneity. When the power factor is 

calculated from these values we see an increase with increasing levels of dopant addition. The 

power factors obtained are fairly high for an organic containing material and comparable to a 

number of polymeric thermoelectric materials studies such as emeralidine.219 123, 153, 220 

 

5.6.4. Thermal Conductivity 

The thermal conductivity of a pellet of doped thiophene functionalised SiNPs shows a linear 

increase between 30 and 75 oC then increases rapidly between 75 and 100 oC before the increase 

in thermal conductivity plateaus as the temperature increases further towards 150 oC. This trend 

mirrors that of the specific heat capacity despite the decreasing thermal diffusivity (Figure 61).  
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Figure 60: Seebeck coefficient and power factor against doping ratio (Mass Terthiophene  

functionalised  SiNPs/Mass NOBF4) 
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Figure 61: Specific heat and thermal diffusivity against temperature for terthiophene 

functionalised SiNPs with a doping ratio of 0.5. 

The thermal conductivities obtained from this material are very low when compared to many 

inorganic materials and are comparable to that of conductive polymers. There are a number of 

reasons for this. Firstly the density of this material is very low and less than 50 % that of bulk 

silicon. It is not surprising that this is observed as this material combines organics and silicon so 

the theoretical density is much higher than what can realistically be achieved. Additionally the 

processing conditions are likely to lead to a lower density, and both a higher pressure and a 

slightly raised temperature would lead to further densification. Regardless of the density the 

ligands should naturally reduce the thermal conductivity to levels more comparable with 

polymeric materials.123 
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Figure 62: Temperature dependant thermal conductivity of a doped pellet of terthiophene 

functionalised SiNPs. 

5.6.5. Figure of Merit 

The ZT of the material as the doping ratio increase shows a linear increase following the trends 

observed in the power factor measurements as would be expected. The ZT values obtained for 

pellets with doping ratios of 0.4 and 0.5 shows a significant improvement on those of bulk and 

nanostructured silicon. Although these values are nowhere near those of silicon nanowires and 

more relevantly those of phenylacetylene functionalised SiNPs, this material offers some valuable 

insights into the doping of organic ligands in such semiconductor-organic composite materials. 

Moreover this offers some evidence that ligand selection may have a vital role in the production of 

more effective silicon-organic composite thermoelectric materials. This is highlighted by the 

comparison with the phenylacetylene functionalised SiNPs describe in Chapter 4.  
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Figure 63: ZT against doping ratio (Mass Terthiophene functionalised SiNPs/Mass NOBF4) 

The ZT values at ambient temperature show the same pattern as observed for the power factor 

showing an increase from 0.2 to 0.5 doping ratio. This is because the thermal conductivity remains 

constant as the doping ratio changes. The values obtained for the ZT have an error of 

approximately 15 % however for 0.4 and 0.5 we see an increase of at least  5 times that of the 

value of bulk silicon.104  

Even though the ZT is very promising it is important to note that like with phenylacetylene 

functionalised SiNPs this is not the full picture. The materials main downfalls lie in its high 

resistivity and low power factor and ligand doping is only half the story 

5.7. Summary 

Terthiophene functionalized SiNPs have been successfully synthesised and this opens up 

potential for the introduction of larger oligomers on to the surface of such particles. However this 

work also highlights that with increased chain length the achievable surface coverage may be 

reduced further. 

Furthermore a large decreasing resistivity was observed when a suitable oxidant was used to 

dope the ligands showing that doping attached ligands can lead to improvements in electrical 

conductivity. The minimum resistivity was observed at a doping ratio of 0.4 and the trends 

observed in the electrical resistivity as the dopant concentration was increased are similar to 

those observed in conductive polymers. 

The Seebeck coefficients measured are very large. This can be mainly attributed to the high 

resistivity but it is also apparent that inhomogeneity in the material also plays a significant role in 



Chapter 5: Effects of Ligand Doping on the Thermoelectric Properties of Terthiophene Functionalised Silicon Nanoparticles  

Page | 102 

the magnitude and the sign of this value. Both of these need to be addressed to move forward 

with such nanocomposite materials. 

However based on these measurements the ZT values obtained are promising. However they 

do not tell the full story about the material with regards to its suitability for incorporation into a 

device and improvements to the power factor and more specifically the electrical resistivity need 

to be achieved before the application of this material can be considered. 

 

 

 

 

 

 

 



 

 

 

 

 

 

  

 

Chapter 6:        

Electrochemical Etching 
Approach to the 
Synthesis of 
Phenylacetylene 
Functionalised Silicon 
Nanoparticles 
 



Chapter 6: Electrochemical Etching Approach to the Synthesis of Phenylacetylene Functionalised Silicon Nanoparticles 

104 | Page 

 

6.1. Overview 

Despite the advantages discussed in chapter 4, solution approaches to SiNPs have two major 

drawbacks limiting their application in thermoelectrics: The first of these is the crystallinity of the 

particles, which is vital for good electronic performance.221 The major issue with bottom up 

approaches to SiNPs is that highly crystalline particles can be difficult to obtain. Secondly, doping 

these materials so they are suitable for electronic applications is difficult. This generally requires 

high temperature processing.222 When using surface functionalization to enhance the 

thermoelectric performance heating the sample to these temperatures is not desirable.  

However with top down approaches the composition of the raw material can be transferred to 

the particles. This way it is possible to control the carrier concentration and as a result enhance 

the conductivity of the silicon based material discussed in Chapter 4. Electrochemical etching or 

ball milling are the most common approaches to producing such particles. Ball milling produces 

large volumes of material at low cost but with much higher particle sizes than bottom up 

approaches, generally no smaller than 60 nm, although crystal sizes lower than 10 nm from such 

methods have been documented.223 With electrochemical etching it is difficult to obtain particles 

on a large scale, making the use of such particles in the fabrication of materials more difficult. 

However the particles produced by this method are generally much smaller and display quantum 

confinement effects.41, 80, 81, 186 

Hydrogen terminated SiNPs were produced via electrochemical etching, using a method 

published by Wang et. al. 73 These freshly etched H terminated SiNPs were chlorinated using 

thermally induced radical halogenation using phosphorus pentachloride and benzoyl chloride, 

followed by alkylation using lithium phenylacetylide to produce phenylacetylene functionalised 

SiNPs.171, 224 This product was characterised by FTIR, 1HNMR, 13CNMR, 31PNMR, TEM and XPS. The 

thermal stability of this material was also analysed using TGA and DSC. 

6.2. Synthesis of Phenylacetylene Functionalised SiNPs 

Silicon chips were etched at a current density 400 µAcm-2, for 5 min. These were chlorinated by 

heating a mixture of benzoyl peroxide and phosphorus pentachloride at 90 oC for 2 h in dry 

chlorobenzene. After drying lithium phenylacetylide was added and the mixture was heated at 50 

oC for 16 hours. See Scheme 18: 



Chapter 6: Electrochemical Etching Approach to the Synthesis of Phenylacetylene Functionalised Silicon Nanoparticles 

105 | Page 

 

 
 

Scheme 22: Functionalisation of hydrogen functionalised SiNPs using a chlorination- alkylation 

approach. 

 

After washing and the removal of solvent 20 mg of a dark orange solid was obtained. This low 

yield meant that insufficient material was produced to make the pellets required to run 

thermoelectric measurements. 

6.3. Characterisation of Phenylacetylene Functionalised SiNPs 

FTIR confirmed the presence of the phenylacetylene functionalization as it showed a peak at 

3054 cm-1 for the aromatic C-H stretches and a sharp peak at 2170 cm-3 which is characteristic of a 

C≡C stretch. Also, C-C and Si-C stretches at 1488 and 1442 cm-1 and C=C aromatic stretches were 

observed at 1598 cm-1 and Si-C stretching at 1206 cm-3. This spectrum also shows a broad peak in 

the region of 1000 and 1100 cm-1 which is characteristic of Si-O stretching. This is as a result of the 

working up process which requires washing in water, which results in the oxidation of any 

unfunctionalised surface. Strong evidence for the attachment of phenylacetylene to the particle 

surface is provided by the lack of a strong peak at 3200 cm-1, which would otherwise correspond 

to a terminal C-H group on the alkyne and provide evidence of free (unbound) phenylacetylene. 
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Figure 64: FTIR of phenylacetylene functionalised SiNPs synthesised by electrochemical etching. 

 

 

Figure 65: 1H-NMR of phenylacetylene functionalised SiNPs synthesised by electrochemical 

etching. 

1H-NMR shows aromatic peaks between 7.75 and 7 ppm. These peaks are characteristic of the 

phenyl ring on phenylacetylene. More importantly the absence of a peak at a chemical shift of 3 

ppm, which is representative of the proton on the alkyne, supports the successful 

functionalisation with phenylacetylene. 
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Figure 66: 13C-NMR of phenylacetylene functionalised SiNPs synthesised by electrochemical 

etching. 

13C-NMR shows a number of alkyne carbons ranging from 95 to 80 to ppm. There is a higher 

number of peaks when compared to the 13C-NMR for the bottom up phenylacetylene 

functionalised SiNPs. This could have been attributed to phosphorus based by-products from the 

functionalisation process. However the 31P NMR does not show any signs of phosphorous 

impurities so this can be neglected. This suggests that the bonding environments may differ on 

the surface of silicon. It is documented that there are a number of different surface environments 

on the surface of porous silicon including; SiH, SiH2, SiH3 and a number environments related to 

bridging oxide species.225 

In addition to this peaks are also observed in the aromatic region. These peaks between 132 

and 120 ppm are in similar positions to the carbons of the phenyl ring of phenylacetylene and 

offer further evidence of successful functionalisation. The same unexpected high number of peaks 

is also observed in the aromatic region.  
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Figure 67: 31P-NMR of phenylacetylene functionalised SiNPs synthesised by electrochemical 

etching. 

The XPS survey spectrum (Figure 68) shows intense peaks for O1s, C1s, Si2s and Si2p, showing 

that the elemental composition of the phenylacetylene functionalised SiNPs does not include any 

of the potential by-products from the functionalization reaction, such as Li, Cl and P. The O1s peak 

is more intense than would be expected from the intensity of the Si-O stretch on the FTIR, but this 

can be attributed to the x-ray induced oxidation of the particle surface.185  
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Figure 68: XPS Survey Spectrum of top down phenylacetylene functionalised SiNPs synthesised 

by electrochemical etching. 

 

In Figure 69 the Si2p spectrum for phenyacetylene functionalised SiNPs is fitted with two 

components: at 101.59 eV, and 102.12 eV representing contributions from Si-C and Si-O 

respectively 185, 186. There is no visible peak at approximately 100 eV representing the Si-Si bonding 

within the centre of the nanoparticles. This is likely to be as a result of the penetration depth of 

the X-rays as a result of the oxide and ligands present on the particles surface. As a result 100% of 

the peak area is as a result of Si-C and Si-O at the particle surface, 38.0 % is from Si-C and the 

remainder 62.0 % is from Si-O and SiO2 meaning an estimated 38 % of the available surface has 

undergone capping. This is low when compared with H-terminated Si(111) surfaces bound by 

organic monolayers using hydrosilylation, where approximately 50 % surface coverage is typical 111, 

112 although when attaching conjugated ligands using hydrosilylation, the surface coverage is much 

lower, as discussed by Veinot et. al.
102 
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Figure 69: XPS spectra obtained for phenylacetylene functionalised SiNPs showing high 

resolution spectrum of Si2p region. Photoelectron spectrum was collected with incident photon 

energy of 1486.6 eV. 

In Figure 70 the C1s spectrum for terthiophene SiNPs is fitted with two components: C-C at 

284.4 eV, Si-C at 283.8 eV. 86.5 % of the spectrum area is from C-C within the carbon chains and 

the remaining 13.5 % is made up by the Si-C where the passivating layer is bound to the silicon 

centre. The ratio of the area of the spectrum represented by each component is close to 1:6.5, 

which is close to the ratio of Si-C to C-C bonds in the functionalised SiNPs. Some of the 

discrepancy in this value could be attributed to the attachment of small amounts of butyl groups 

as a result of unreacted n-butyllithium in the preparation of lithiumphenylacetylide.  
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Figure 70: XPS spectra obtained for phenylacetylene functionalised SiNPs showing high 

resolution spectrum of O1s region. Photoelectron spectrum was collected with incident photon 

energy of 1486.6 eV. 

TEM micrographs of phenylacetylene functionalised SiNPs produced by electrochemical 

etching show irregular due to their porous nature, as can be observed in Figure 71. The average 

particle diameter is taken as approximately 7 nm with a standard deviation of 1.4 nm. This size 

distribution can also be observed from the size distribution chart (see insert Figure 71) which 

shows particle sizes ranging from 3 to 10 nm in diameter. Narrow particle size distributions in 

electrochemical etching of SiNPs result from maintenance of a constant charge density throughout 

the process.73 This distribution is narrower than for SiNPs produced via the micelle reduction 

approach as previously documented. This is not surprising as the synthetic approach used does 

not use surfactants. In micelle reduction processes a suitable surfactant greatly reduces the size 

distribution. 
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Figure 71: TEM image of phenylacetylene functionalised SiNPs synthesized by electrochemical 

etching. Inset histogram showing particle size distribution 

6.4. Thermal Stability 

The DSC trace (Figure 73) has a general downward trend throughout the measurement. Initially 

the weight on the TGA trace (Figure 72Error! Reference source not found.) remains close to 100 %. 

After this feature there is a small shoulder on the heat flow, which suggests that the sample is 

beginning to undergo degradation. In this region a minima is observed in the derivative of the TGA 

showing a higher rate of weight loss at this point. However the weight loss observed is much 

smaller than observed on the bottom up sample. The DSC trace reaches a maximum at 320 oC 

showing completion of the initial degradation. After 330 oC the heat flow into the sample returns 

to the initial downward trend and the TGA trace shows that the weight continues to decrease 

slowly. At 500 °C a rapid weight loss can be observed, as depicted by another sharper minimum on 

the derivative. This is likely to be due to continued degradation. This corresponds to the start of a 

broad shoulder in the DSC.  After 650 oC little change in weight occurs on the TGA which suggests 

that degredation is complete. The overall percentage weight loss at 1000 oC is 90 %. Assuming that 

all remaining material is silicon as a result of heating in an inert atmosphere, the ligand to silicon 

ratio is 3 to 1 suggesting a very high surface coverage. However this is a rough estimation of the 

coverage as it assumes all remaining material is solely silicon and all weight loss is as a result of 
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degradation of ligands which may also be related to other processes such as desorption of 

physisorbed ligands and the evaporation of functionalised SiNPs.80, 85, 168 XPS offers a more 

accurate and complete estimation of surface coverage. 

 

Figure 72: TGA trace and derivative between 50 and 1000 oC for phenyacetylene functionalised 

SiNPs synthesized by electrochemical etching. 

 

 

Figure 73: DSC trace between 50 and 1000 oC for phenylacetylene functionalised SiNPs 

synthesized by electrochemical etching. 

6.5. Summary 

Top down synthesis of PA-SiNPs by electrochemical etching is a viable synthetic method and 

produces suitably functionalised particles. This method, if scaled up, might allow significant study 
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of the effect of the charge carrier concentration of the PA-SiNPs on their thermoelectric 

performance. Furthermore, the thermal stability studies suggest that this material is better suited 

to a wider range of thermoelectric applications than its bottom up counterpart. 

The ability to produce phenylacetylene functionalised SiNPs by this method is a significant step 

towards being able to produce a material where the SiNPs are suitably doped. As a result this will 

aid the study of how doping the nanoparticles would affect the thermoelectric performance of 

materials based on this system. However the scalability is a significant barrier as our typical 

electrochemical etching only offers a maximum of 2- 4 mg of material per chip when at least 250 - 

500 mg is required to produce a pellet suitable for measurement and considerably higher 

quantities are required for fabrication of a device   
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7.1. Conclusions 

The one-pot synthesis of alkyl- functionalised SiNPs, as outlined in Chapter 3 is easy and viable 

for a wide range of capping (surfactant) chains, offering a wide range of potential functionalisation 

such as amine or allyl end groups. In this work the level of alkyl capping, despite initial 

appearances, is broadly consistent for all capping layers, although some experiments show a 

raised level of Si-O. This is because the quenching solvent used in this method reacts with the un 

functionalised Si-H on the surface of the particle. It has been shown that the SiNPs produced by 

this method are silicon rich, crystalline, luminescent, and functionalised with alkyl chains. 

Additionally these particles can be produced in higher yields and with higher surface coverage 

than those produced by other methods and as a result make them a more viable candidate for the 

mass production of functionalised SiNPs. 

Phenylacetylene functionalised SiNPs as synthesised in chapter 4 show a solution reduction 

method to produce more versatile chlorine terminated SiNPS and demonstrates how it is possible 

to functionalise them by nucleophilic substitution using a suitable organometallic or nucleophile. 

In this case the use of a conjugated ligand was highly attractive with regards to its ability to 

transport electrons. A number of other conjugated ligands, such as oligothiophenes, would be 

interesting candidates for fine tuning this system and this approach opens up the potential to 

produce such SiNPS. 

The ZT of 0.6 obtained for a pellet of phenylacetylene functionalised SiNPS is very high for an 

organic inorganic nanocomposite material. Although the materials after the processing are not 

suitable for use in a device in their current state, due to low thermal stability and high resistivity, 

some key advancements have been made. 

Firstly the pellet produced shows a higher conductivity than purely silicon materials, of 

comparable porosity, which has been achieved without any control of charge carriers. This would 

allow further optimisation of the system. Additionally the thermal conductivity has been reduced 

to a level comparable with organic materials, which is a key advantage of combining organics with 

inorganic nanostructures.   

The high resistivity on the material described in chapter 4 is likely to be related to insufficient 

charge carriers. However in this composite material there are two components and the effects of 

doping each of these components must be considered separately. These components are the 

ligand and the nanoparticle. 
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The investigation of doping the ligands was carried out on a different ligand as a consequence 

of the difficulty of doping phenylacetylene. The synthesis of terthiophene functionalised SiNPs 

allowed for the attachment of a form of ligand in which the doping was well documented. 

In materials doped with different levels of NOBF4 it was clear to see that as the level of doping 

of the ligands increased so did the electrical conductivity. An optimum doping concentration was 

obtained when a mass ratio of 0.4 NOBF4 to terthiophene functionalised SiNPs was used. This 

material unsurprisingly behaves in a similar way to conductive polymers with regards to the level 

of doping. 

As described in chapter 4 for phenylacetylene functionalised SiNPs produced by the same 

method, terthiophene functionalised SiNPs also display a high and unstable Seebeck coefficient. 

However unlike the undoped material described previously this material would be expected to be 

n-doped however the sign of the Seebeck coefficient on some measurements suggested that it 

had been p-doped. This evidence further supports inhomogeneity in the sample. 

However based on these measurements the ZT values obtained are promising, although as 

mentioned previously do not tell the full story about the material with regards to its suitability for 

incorporation into a device as once again the electrical resistivity is much too high for commercial 

use. 

The effects of ligand doping is one step toward understanding these inorganic-organic 

nanocomposites but for the full picture it is important to understand the effects of doping the 

nanoparticle. This is synthetically more complicated than ligand doping and bottom up methods 

generally require high temperature processing after the introduction of the impurity, which is 

unpractical with organic surface ligands. Electrochemical etching is a way to produce nanoparticles 

with charge carriers as this can be transferred directly from the starting material. Being able to 

functionalise the particles is essential, before they can be tested.  

The successful production of phenylacetylene functionalised SiNPs by electrochemical etching 

offers a significant step towards optimising phenylacetylene functionalised SiNP based materials. 

However the scalability does offer a significant barrier as our typical electrochemical etching only 

offers a maximum of 2- 4 mg of material per chip when at least 250 - 500 mg is required to 

produce a pellet suitable for measurement.  

The body of work in this thesis describes steps toward understanding and developing organic 

inorganic nanocomposite materials using functionalised SiNPs. However, to date the fundamental 

understanding of both; the potential and the optimisation of such materials are very limited. 
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These types of materials in the future may offer a more versatile alternative for low temperature 

thermoelectrics than the more traditional solid state inorganic materials. 

7.2. Future Work 

Future work on SiNP-organic nanocomposites will mainly relate to a number of variables which 

would lead to improving the electrical resistivity the system. As highlighted by the theoretical 

work by Wang et. al.
226 matching the band gaps suitably between the organic chain and the 

quantum dot is vital so unsurprisingly the ligand is central to producing an effective system. 

However changes to the particle itself may also aid the fine tuning of this system. 

7.2.1. Doping SiNPs 

During this work it was not possible to investigate the effect of the doping SiNPs component of 

the material on the thermoelectric properties. Only a synthetic approach was developed. This is 

something which would be vital for better understanding of these systems. It has been 

documented by See et. al.
166 that the n-doping of BiTe nanorods is transferred to the material 

more strongly than the p-doping in PEDOT:PSS in this particular nanocomposite. This could mean 

that both n and p-type materials can be produced without changing the doping method for the 

polymer. If the same phenomenon is observed in these SiNP based materials, this would make 

these materials a more viable option for use in thermoelectric devices. 

7.2.2. Ligands and Surface Coverage 

For terthiophene functionalised SiNPs, it was apparent that the surface coverage was low and 

as a result the level of oxide on the surface was high. A coating of oxide will have detrimental 

effects on the electrical conductivity of the material. It appears that in this case, there is a trade-

off between the length of the chain and the surface coverage obtained when we compare the 

surface coverage to that of phenylacetylene functionalised particles. Current work in the Chao 

group has also shown that this is the case for thiophene functionalised SiNPS as well. This suggests 

that the introduction of a monomer rather than an oligomer is a more attractive route for the 

development of a SiNP organic nanocomposite material as it reduces the surface oxide. Although 

thiophene has already been attached to SiNPs, other potential candidates include 

ethyldioxythiophene and aniline. 
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Figure 74: SiNPs functionalised with different monomers, a) thiophene b) aniline c) 

ethylenedioxythiophene. 

These monomers are relatively easy to attach, however these materials rely on good overlap 

between organic chains to provided sufficient conductivity. As a result single aromatic rings are 

unlikely to offer sufficient overlap. These monomers are interesting in that they can undergo 

oxidative polymerisation. If a controlled amount of monomer and an oxidising agent are 

introduced, polymerisation of the nanoparticle surface may occur. This is demonstrated below for 

thiophene functionalised SiNPs. 

 

Scheme 23: Oxidative polymerisation on the surface of thiophene functionalised SiNPs 

Although this is demonstrated as a clean reaction above, it is far from such as there are a 

number of other species that may make up the material including; SiNPs cross-linked with poly or 

oligothiophenes and free unattached oligophiophenes. This is something that would be difficult to 

control. 

 For the surface functionalisation and potential crosslinking described above optimisation of 

the doping of the organic species is going to be essential for optimising material performance.  

Chapter 5 shows that the doping of the ligands can have a significant effect on the electrical 
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resistivity. As a result optimisation of doping for any organic component is going to be paramount 

to the success of these types of material. 

7.2.3. Theoretical Understanding 

It was mentioned earlier that a study has been carried out by Wang et. al.
226 This offered some 

very helpful insights into the potential and the optimisation of organic-inorganic nanocomposite 

systems. This work is a significant step forward but, otherwise, there is very little published work 

on understanding these materials. It is clear that a greater depth of theoretical understanding 

would aid the design of materials that could compete with their solid state counterparts. Such 

studies are outside of the scope of this work but would have a significant bearing on the future 

success of these types of materials.  
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