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We consider small-amplitude deformations of a thin-wakéaktic tube, which initially has a uniform
elliptical cross-section and is subject to a large axiatgiress. We derive a boundary-layer model for
the deformations near an end of such a tube that is pinned ighdaedliptical support. The model is
appropriate in the limit in which# = d?F /[24mmaK (1 — v?)] < 1, whered is the wall thickness is the
axial tension that gives rise to the pre-stregg B the tube circumferenc is the bending stiffness of
the tube wall, and is its Poisson ratio. In particular, the model takes intamaaot in-plane shear forces
arising because of geometrical constraints. These foreeasymptotically small outside the boundary
layer, and so were not present in the previous tube-law nafd#&hittakeret al. (2010;Q. J. Mech. Appl.
Math. 64(4), pp465-492).

Deformation profiles from the boundary-layer model are imadcto solutions for the interior arising
from the tube-law model of Whittakeat al. (2010). The net effect is to modify the previous tube-end
boundary condition on the interior solution, from zero natmisplacement to a Robin type condition.
The predictions from the matched models compare favouraithyfull numerical simulations of the tube
wall deformations. While the additional shear forces arg anportant in the boundary layer near the
end, they can have a significant effect on the global solwiben.# <« 1.

Keywords shell theory, boundary layers, in-plane shear, elastttea tubes

1. Introduction

Fluid flows through elastic-walled tubes are common in kgatal and industrial systems, and have
received much attention through experimental, numeritékaalytical studies. Comprehensive reviews
of recent work can be found in Heil & Jensen (2003), Grotbergefasen (2004), and Heil & Hazel
(2011). Of particular interest are instabilities that caiseas a result of the kinematic and dynamic
coupling between the interior fluid and the tube wall, in stled ‘fluid—structure interaction’ problems.

Because of the complicated nature of even the simplest gmgequations for the fluid and solid
components, those wishing to undertake analytic studies loaked to simplify the equations to form
reduced models. Examples of simplifications for the fluid floelude lumped parameter models (e.g.
Bertram & Pedley, 1982), the assumed flow-field used by Steetaal. (2009) and the asymptotic
analysis of Whittakeet al. (2010).

For the solid mechanics of the tube wall, these reduced madtdn take the form of a ‘tube law’
— a relationship between the cross-sectional &eéthe tube and the transmural presspre pin; —
Pext at each axial position. Such laws have been derived bothriexgetally (e.g. Shapiro, 1977) and
theoretically (e.g. Flahertgt al, 1972). Extensions to the bagic= f(A) relationship have also been
used (e.g. McClurkeat al,, 1981; Reyn, 1987), incorporating terms dependent on dri@atives ofA
(to capture axial bending or tension effects) and tempaavdtives ofA (to capture the effects of wall
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Fic. 1. A typical starling resistor setup, with an initially iplical tube clamped between two rigid pipes and enclosed in
pressure chambera)(A view in the plane of the tube centre-line, showing the@ffsf a negative transmural pressymg — Pext.
(b) The undeformed elliptical cross-section of the tube, Whiatches the cross-section of the rigid pipep A(typical deformed
cross-section from the middle of the tube.

inertia).

The canonical experimental and computational setup falystig self-excited oscillations in elastic-
walled tubes is the Starling resistor. In this setup, shawiigure 1, a length of elastic-walled tube is
clamped between two rigid sections of tube. The flexibleiseds enclosed in a pressure chamber to
allow the external pressure to be controlled. Flow is drigémg the tubes by imposing the pressure
and/or flux at the far upstream and downstream ends.

Because of the frequent use of this setup, it is importaritahg derived tube laws can reproduce
the appropriate boundary conditions at the ends of theielssttion where it is clamped to the rigid
sections. It is not obvious that this will always be possiblace tube laws are typically lower-order in
the axial coordinate than the full 8th-order shell equation

Such problems were seen to arise in Whittaiaal. (201M). There, the authors presented a rational
derivation of a tube-law model from the Kirchhoff-Love dhetjuations. The derived law involved
terms proportional to the change in cross-sectional aré@srecond axial derivative (see (2.2) below).
Solutions from the model generally compared well with nuo@rsimulations of a Starling resistor
under uniform and axially varying transmural pressuresweier, in a certain region of parameter
space, which corresponded to particularly thin tube waéative to other parameters), the agreement
was less good. The problems were ascribed to the secondtalmelaw not being able to satisfy the
full set of four boundary conditions (three displacememtd a rotation) at each point on the clamped
circumference of tube. It was argued that the issue was eatellect of axial bending, but rather the
neglect of certain in-plane shear forces within the modglli

In the present work, we address these issues with the motéhibfakeret al. (201(), by deriving
a boundary-layer description of the tube wall that re-idtrees the neglected shear forces. The extra
axial derivatives in the boundary-layer equations, meahttiey are capable of matching between the
interior tube-law solution and a more complete set of bomndanditions at the tube end.

This paper is organised as follows. & we describe the work of Whittaket al. (201) in more
detail, and explain why a new boundary-layer model is regLiiin§3 we describe the tube geometry
and the governing shell equations, and obtain the apptemaalings for the boundary layer. 44 the
leading-order equations are derived, and we considerwssolution methodologies ib. It is found
that the system depends crucially on a dimensionless p&earie(a rescaled axial tension), and that
the boundary layer only has a significant effect on the smhuvhen.# is small. In§6, we present an
asymptotic solution for the boundary layer féf < 1. In §7 we derive effective boundary conditions
on the interior solutions and show that the boundary layeoises aD(.# ~1/2) off-set in the boundary
condition. In§8, we compute solutions for a tube subject to a uniform tramahpressure, and compare
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FIG. 2. The geometry and coordinates for the undeformed elagiE The tube has length wall thicknessd and an elliptical
cross-section with diameters 6Xa). It is aligned with Cartesian ax€s,y,z), and the two ends &= 0 andz= L are fixed to
rigid supports. The whole tube is subject to a pre-stresingrirom an axial forcé .

these with full numerical simulations. Finally, some cartthg remarks are presenteds@

2. Mathematical Background

The initially elliptical tube geometry considered by Whkeret al. (201() is shown in figure 2. The
surface is parameterised by dimensionless Lagrangiadictdes 7, Z) in the azimuthal and axial direc-
tions respectively.(is an elliptical polar coordinate, azd=z/L is scaled on the tube length) Defor-
mations of the tube wall are then described by three dimetess functlon$E n, Z) of T andz which
give the displacements in the nornfielazimuthak and axialz directions respectively.

In the tube-law model developed in Whittaletral. (201 M), the full Kirchhoff-Love shell equations
for the tube wall are reduced to a single second-order ODE Hirst, asymptotic methods are used
(based on a regime of small-amplitude long-wavelengthrdedtions of a thin-walled tube) to obtain a
single PDE form (1,2). The PDE has the form

2
£ 2 22(h) ~ 2ol = (D), @)

where the%, arenth-order linear differential operatorsinF is the dimensionless axial tension applied
to the tube, and is the dimensionless applied transmural pressure. Thé @xdar of the system is
reduced from 8 to 2, because of the asymptotic neglect ofattee$ that result from axial bending and
in-plane shearing. The normal and axial displacement fiéldsd { have been eliminated by using
the asymptotic result that, geometrically, there is nelgléigshear and negligible azimuthal stretching.
(These geometric constraints alldnand{ to be written in terms ofj at leading order.)

Whittaker et al. (201() then further simplify the PDE (2.1) using the observatibatta single
azimuthal mode dominates the deformations. They apprdrima- e;(Z)sin(27) and show that, at
leading order, the amplitudg (2) is proportional to the dimensionless chamgé) in the cross-sectional
area of the tube. An ODE was thus obtaineddoas a function of”

2
kzF(;—; — koo = —P(2), (2.2)
whereky andk; are numerically determined constants related to the shafgée initial cross-section
and the deformation mode.
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FiG. 3. Exaggerated sketches showing a deformation of the tallen@ar one end under the asymptotic model of Whittastex.
(201M). In the absence of in-plane shearing and axial bendingpiaalydeformation in the bulk of the tube forces a non-zero
axial displacemen{ and a non-zero surface gradiehf /dz at the tube end.

With the reduced axial order, it is impossible for a geneddition of (2.2) to satisfy the full set
of boundary conditions that we should impose on the sheli@ends of the tube. For example, if the
flexible section is bonded to rigid tubes at each end (e.g.3taging resistor setup) then we should
impose the canonical ‘clamped’ conditions, where positind gradient of the shell are specified at the
boundary (i.eé =N = { = d&/0z=0). However, the tube-law model (2.2) is only second-ordé i
and so allows only one quantity, suchasgor equivalently the azimuthal displacemen)sto be set set
to zero at each end of the tube, e.g.

a=0 at 7Z=0,1 (2.3)

The assumption of negligible azimuthal stretching meaasigrmal displacemenfsarevthen also set
to zero az= 0,1 in the model. However, the axial displacemefnd surface gradie@t /dz (which
are also determined by the solution) will not, in generahtout to be zero a2 =0, 1.

The inability to set the gradiemt§ /9Z = 0 arises from the neglect of the fourth-order axial deriva-
tives that correspond to axial bending forces. The inafiilitset the axial displacemegiis more subtle,
and arises from the neglect of the forces associated wiphane shearing of the shell.

As it stands, the model can only produce solutions with nero-axial displacements and gradients
at the tube ends, as shown in figure 3. The question is therhethet not these solutions are good
approximations to the solution of the full shell equatioritha full set of ‘clamped’ boundary conditions
imposed.

In Whittakeret al. (201(), this issue was investigated by solving the full shell diues numeri-
cally, with three different sets of tube-end boundary ctiads. In addition to the ‘clamped’ boundary
condition, two other conditions were tested: the canorfjgi@ined’ conditions, and a non-standard
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condition that was termed ‘sliding’. The ‘pinned’ condit® fix the position of the shell boundary
(¢ =n = =0), butinstead of fixing the gradient, they fix the end of thellsto be torque-free. The
solution from the model is not precisely torque-free, big ghould be much closer to the behaviour
of the model. The ‘sliding’ conditions fix the normal and amimal displacementsf(= i = 0), but
the axial displacements and gradient are set by the imposifizero axial stress perturbation and zero
torque respectively. Again, this is not precisely what tbkison of the model attains, but should be
much closer.

The numerical solutions presented by Whittakeal. (201M) show that in the regime of interest,
results from the clamped and pinned boundary conditionsemesimilar, suggesting that the inability
to set the gradient does not significantly affect the modelvélrer, the difference between the clamped
and sliding boundary conditions is very significant in sortm®(gh not all) regions of the parameter
space. This suggests that the inability to set the axialaligpnents can significantly affect the model.

In this work, we therefore consider how the tube-law modeWdfittaker et al. (201() can be
amended to give an additional degree of freedom that wolddvahe axial displacements to be set
to zero at the ends. As with other singular perturbationsewmect that a suitable re-scaling of the
governing equations will reveal a boundary-layer regioarriee end, which is governed by a higher-
order equation. This will allow one or more additional cdiudis to be set at the boundary, while still
being able to match to a solution from the previous model étthlk interior.

3. Mathematical setup and scaling analysis
3.1 Problem description

As in Whittakeret al. (201(), we consider an elastic-walled tube which is initially adadly uniform
elliptical cylinder with lengthL, circumference #a, and wall thicknessl, as shown in figure 2. The
ellipticity of the tube is set by a paramety so that the major—-minor axis ratio is given by cagh The
tube wall has bending stiffnegs and Poisson ratie. In its initial elliptical configuration, the tube is
subject to a uniform axial pre-stress, due to an axial teriSioThe two ends of the tube are pinned to
rigid elliptical supports. We wish to consider deformasanduced by an applied transmural presqure
(possibly axially varying), with dimensional scde

We recall the following dimensionless parameters (and 8les) from Whittakeet al. (201):

aF a’P
W_O(l)’ E=—<x1 (3.1)

L d -
l==—>1 o6=-x1, F=
a a K

The parameteré and d are aspect ratios, assumed to be large and small respgdtivel long thin-
walled tube.F is a dimensionless measure of the axial tension, taken @(bgso that the restoring
force from the axial tension has the same magnitude as ttariresforce from azimuthal bending of
the tube wall. Finallyea is a scale-estimate for the size of the deformations indbgetihe external
pressurd®, chosen to be small compared with the typical tube radius

Material points on the tube wall are described by a pair ofedisionless coordinatés, z) defined
so that the position of the un-deformed tube wall is is given b

¢ coshay cost
r(r,zg=a| csinhgpsint | . (3.2)
z

The dimensionless coordinates therefore lie in the ramge§0,2m) andz < (0,¢). The dimensionless
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constant is given by
rtsechog

=2 Egsechop) ’
so that the circumference of the tube is precisetp.2(Here E€k) is the complete elliptic integral of

the second kind.) The deformed position of the tube wall énthvritten as a vector functian(t, z) of
the material coordinates, z). The pinned boundary conditions at the tube ends imply that

(3.3)

r(t,z) =r(r,z at z=0,¢. (3.4)

We also define unit vectofsand2 aligned respectively with the andz coordinates in the unde-
formed surface. The unit normal to the undeformed surfatiesis given by = x 2 These vectors
are shown in figure 2.

For later convenience, we introduce the scale factor

h(t) :c(%coshbof%cosz)l/z, (3.5)

associated with the coordinate, and the dimensionless azimuthal curvag(ré in the undeformed
state. In Appendix A we show that

19t c*sinh2og
hotr 2
For the description of the bulk behaviour of the tube, Wkétaet al. (201) use an axial coordinate
scaled on the axial length We usez= z// to represent this coordinate.

B=h (3.6)

3.2 Kirchhoff-Love shell equations

We adopt the same coordinate system and governing equatiatescribe the elastic tube wall as in
Whittakeret al. (201(). We work with dimensional Lagrangian coordinate$, x?) to parameterise
the shell mid-plane(x*,x?), chosen so that in the undeformed configuration we have

x*=aht, xX*=az (3.7)
The metric tensoa, g and curvature tensdu, g are then defined by

or or 2°r
B8 = oxa 9B PP =3 Guags (3:8)
whereag is the unit normal to the (deformed) shell surface.
In the absence of tangential body forces and wall inertia Kiichhoff—Love shell equations used

by Whittakeret al. (201M) are

0o OsMP + NPy = —p, (3.9)
OsNP—byOsMPY =0, (3.10)

2 2
OpNPZ — bi0sMPY = 0. (3.11)

whereN?B is the in-plane stress tensdi®? is the bending moment tensor, afg is the covariant
derivative in the direction®.
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The deformation of the wall material is characterised bpleme strain and bending strain tensors

1 _ _
Vap = 5 (aaﬁ - aaB) . Kap=—bap+bap+205Vsp, (3.12)

where over-bars denote the values of quantities in the wnohefd configuration.
Linear constitutive laws relate the stress and stress morasultantdN?? andM?P to the strains
Yap andk,g as follows (Fligge, 19729.4)*

F
N = 68 8f -—+D [(1—v)yaﬁ+v;4aaﬂ
+K {(1;2‘/) [2a35bay+aﬁyb"y+ a®pPY — b} (a%aPY + a"VaB‘S)}

+v [a"B b¥° + a’%p?f — a"BaV‘Sbﬂ } Kys (3.13)

M = K [~(1-v)(b5y"P — B} yP) — v(b°F — B)a®)
+%(1—v)(K“B+KB“)+va“BKﬂ, (3.14)

where the extensional stiffneBsis related to the bending stiffneksby

12K
D= 252 (3.15)
The constitutive laws (3.13) and (3.14) arise from insgrtime plane-stress form of Hooke’s law
into the definitions oN?? andM?F, rewriting the resulting equations in terms wig andkgqp, and

neglecting some higher-order termsin

3.3 Scaling analysis

We perform a similar analysis of the magnitudes of the temtlsé equilibrium shell equations to that in
Whittakeret al.(201(). The key difference here is that in boundary layer, theteb&ino knowledge of
the overall tube-length, so this can have no effect on tha &dgth scale. We therefore must determine
the appropriate axial length scale from the equations tkéres.

In order to match on to the bulk interior solution from Whiittaet al. (201M) as we leave the bound-
ary layer, the normal and azimuthal displacements must d&igg linearly inz, while the axial dis-
placement must become independer.ofhe relationship between these quantities must also e suc
that the shear and azimuthal stretching (both assumed tedlaible in the original model) become
negligible as we leave the boundary layer.

These matching requirements suggest that all three daplawcts (normal, azimuthal, and axial)
should scale witlza/¢, and that the axial length scale of the boundary layer shioellcbmparable with
theO(a) tube diameter. Using these scalings, we can recompilelbhestan Whittakeet al. (201() that
show the dominant contributions to the three stress-balagaations from different physical effeéts.

1some signs in (3.2) differ from those in Flugge (1972). Tikigue to our opposing sign conventions iy andM?B | and
later because of a sign error on tfi€,3 + K ) term in Fliigge’s expression ool

2The tables are omitted here for the sake of brevity. Theldat@rely serve to confirm that the choice of scalings wiltlleaa
sensible physical balance, and show which terms we expéet poesent. The derivations below§id.4 include all the necessary
calculations to obtain the leading-order governing eguati
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In Whittakeret al. (201M), we had that the physical effects that were present in theing-order
balances were the transmural pressure, azimuthal berahdgthe combined effects of the pre-stress
and axial curvature. With the shorter axial length we coasitere, we find that the scale estimates for
the ‘pre-stress and axial curvature’ terms are larger, gwirthe axial derivatives they contain. These
terms are now asymptotically larger than the transmurasune, and so the latter will have negligible
effect in the boundary layer. The other terms which may begrein the leading-order balance come
from stretching effects. Unlike in the bulk interior regjomhere the solution was constrained to have
limited stretching and shearing, these effects will nowibgaifcant.

3.4 Dimensionless displacements and stresses

Motivated by the scalings above, we write the displacemefrtise wall from the undeformed configu-
ration as

_ ¢ga[/ 1 X

= — _— f 7 . 1

2 (g [eron s nirat] +¢re) (316)

in terms of dimensionless functio&, n, {), which we expect to b&(1) in the boundary layer.
Whittakeret al. (201() used a different scaling for the displacements, appropfa the bulk of

the tube. They also needed to include two differently schledtions for the axial displacements. We

denote their displacement functions @, 1, {, {») and find that

E=(tE, n=tf, {=0+08%. (3.17)

In Appendix A we use the representation (3.16) to derive esgions fom®?, b??, B andk
in terms of(&,n, ). Inserting these expressions into the constitutive lawk3(3-(3.14), we can derive
leading-order expressions for the stress and moment &rfeoe <« 1, d < 1 and? > 1. We find that
the in-plane stress tenshif'? is given asymptotically by

K/o o0 eK (N S
af _ > ~ —— (| 2 =
NP = 2 ( 0 (2F >+a262€ < g 5 >+O(£K/€) (3.18)
where 5 19 5
N—12( 2522 (y %
N_lz( h +hdr(h)+vdz)’ (3.19)
is the leading-order azimuthal hoop stress,
= 12(1-v) (on 9L
S= —on (EJFE) ) (3.20)

is the leading-order in-plane shear stress, and

- 4 BE 140 /n

is the leading order axial stress.
We also find that the leading order bending stress scales as

aB_of EK
M _o(aﬁ), (3.22)
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which is sufficiently small so as not contribute to the leadarder equilibrium equations. We therefore
do not consideM?? any further here.

In addition to the expressions fdi%# andM?# in order to consider the governing equations (3.9)—
(3.11) we need to be able to interpret the curvature telpgpand the covariant derivativés, .

From Appendix A, we have that the curvature tenisg has the following representation:

B/1 0 e ( O(1) O(1)

The components represented by ) scales do not contribute to our model at leading order, and
hence their precise forms are not required.

Finally, we need to be able to write the covariant derivativig in terms of partial derivatives. As
in Whittakeret al. (201(b), we have

7} 190 10
and the only place we need to worry about the correction tésmden they are applied to the large
axial pre-stress itN?2. The relevant expression is

ANOB

DN =
¢ oxa

+ AN 4 ENYY, (3.25)

WhereFBO;/ is the Christoffel symbol. We show in Appendix A that the camnpnts we need are

Lom

€ 0%
il § 2
a dz '’ 2

rh= L N
21 27 al 922

(3.26)

4. The shear-relaxation boundary layer

We now construct the leading-order equations governinglisiglacements within the boundary layer
nearz= 0, whene < 1,0 < 1, and/ > 1. We also derive the appropriate boundary conditions for a
pinned boundary &= 0, and the matching conditions for matching with an intesimlution in the bulk

of the tube.

4.1 Leading-order equilibrium equations

We take the equilibrium equations (3.9)—(3.11), and stuistin the representations (3.18) and (3.23)
for N9B andb, g, note the scaling estimate (3.22) df B, and use the expressions (3.24)—(3.26) for the
covariant derivatives. We then look for the leading ordertdbutions in each of the three directions.

In the normal direction, the dominant balance in (3.9) cdsgsthe interaction between the azimuthal
hoopN stress and the base state curvaBireogether with the interaction between the axial pre-stres
F and the axial curvaturd®Z /dz2. (These forces are greater than the applied transmurayeesso
the latter does not contribute at leading order.) At leadirder, we obtain

~ = 92 72
By, FrPox _

Nllb117L N22b22 =0 = 52 h 92 (4.2)
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In the azimuthal direction, the dominant balance in (3.X@pprises derivatives of the azimuthal
hoop stresdN and in-plane shear streSstogether with the interaction between the axial pre-stres
and the in-plane curvatu@?n /97°. At leading order, we obtain

Nt oNZL o, 108 hoS ,.0%n
—— + o NP = — o+ 55 +PF—— =0. 4.2
o T o TIENT=0 5ot "o2az oz =0 (42)

In the axial direction, the dominant balance in (3.11) cosgw derivatives of the shear str&and
the axial stresg, together with interactions of various curvatures withdkel pre-stress. At leading
order, we obtain

0N12 0N22
+ o + NP2 4 2MEN?2 = 0

oxt ox?
108 105 ,-0( & 10 2 9%¢ _
oo+ 55 o+ Faz< B 4+ (h)>+2£F =0 (43

4.2 Governing equations for the displacements

Apart from the Poisson ratioy, the only other parameter combination present in the leadmer
equations (4.1)—(4.3) i82(2F . We therefore introduce a new parameter

52(%F d2F

T 12(1-v?)  24maK(1-v?)’ (44)

An additional factor of 121 — v?) has been included, because this will simplify the analykib@limit
Z — 0 (which turns out to be the important regime to considelel

Physically,.# represents the ratio of the stresses that arise from thetamion, to those that arise
from in-plane stretching and shearing, both evaluated efetigth scala of the tube diameter. The for-
mer can be estimated as the size of the pre-stress timesciwedsgpatial derivative of the deformations,
giving F/(2ma)(ga/f)(1/a) = eF /(2ma?(). The latter can be estimated as the extensional stiffness
times the deformation gradient times the base-state ammesagivingD(g/¢)(1/a) = 12eK /(ad??).

We now substitute the expressions (3.19)—(3.21) for thessesN, Sand s into the leading-order
equilibrium equations (4.1)—(4.3). We obtain

_ 2
B(—|3_§+%i(ﬂ)+vd—i) +9(1—v2)d d —0, (4.5)

h ' har\h d 02
%(-§%+%%(%>+v%)+(1;")%(%+%)+9‘(1—v2)‘§—£20, (4.6)
S sln (G ) 5 (Bh R ()

+F (LD {0_ (—B_%—l—%%(%)) +2g] —0. (47

4.3 Boundary and matching conditions

At z= 0, we have the tube end with its pinned conditions (3.4), tisigecify no displacements. We
therefore must have
§=n==0 on z=0 (4.8)
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As z — oo the solution must match on to an interior solution that §agsthe tube law developed
in Whittakeret al. (201(). In particular, this means that the in-plane sh&and the azimuthal hoop
stressN must become negligible on the scales introduced here. Biagiihe normal and azimuthal
force-balance equations (4.1) and (4.2), we see that thiem

2 2
‘;—ziao and Z—ZZ%O as z— . (4.9)

The axial stretchin@ { /dz must also become negligible as we leave the boundary lageause the
axial length scale in the boundary layer is much shorter thamxial length scale in the interior. There-
fore we require

%%0 as z— oo. (4.10)

Hence{ (7,2z) must tend to a function af only. We definef (1) to be this function. Then, using the fact
thatN,S— 0, (3.19) and (3.20) imply that we must have

10 /f(1) 10 /g(1)
ENZB:?T< h )JrBdr( h > (4.11)
n~—zf(t)+9(1), (4.12)
 ~ f(1), (4.13)

asz— o, for some functiond (1) andg(7). The functionsf andg are arbitrary, in the sense that ahy
andgin (4.11)—(4.13) give an appropriate behaviouéim and{ ast — o, which can be matched to
an interior solution.

The matching condition itself then requires that the disphaentst, n and{ match, which will
yield conditions on the interior solution involvini7) andg(t). The full interior system in Whittaker
et al. (201M) is the PDE (2.1) for the single variabfig which is second-order in We therefore need
to matchr) and its axial derivative. Using (3.17) and (4.12), we obth&conditions

- 1 on e .
U—ZQ(T) and 55 = f'(t) at Z=0. (4.14)

The equations used to reCO\ZeandZ from 1j in the interior yield solutions that are already consistent
with the asymptotic forms (4.11) and (4.13). Therefore nditamhal matching conditions are required
for & and(.

4.4 Combined Boundary-layer and interior problem

The boundary-layer system (4.5)—(4.7) fam, { and the interior system (2.1) far are to be solved
subject to the boundary conditions (4.8)zat 0, the required asymptotic behaviours (4.11)—(4.13) as
z— oo, and the matching conditions (4.14). A second boundary laspelld appear at the other end of
the tube, which would be matched in a corresponding mantiervérified in Appendix B that we have
the correct number of boundary and matching constraintth®anumber of degrees of freedom in the
combined system.
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5. Methods of Solution

The full boundary-layer—interior system cannot be solvediyically, so we would need to resort to
a numerical solution. As a linear elliptic system of PDEs tstiould not present too much difficulty.
However, in Whittakeet al. (201), the interior PDE (2.1) was reduced to an ODE (2.2) by assgmi
the dominance of a single azimuthal mode. It would be corrdrifi boundary-layer system here could
be solved separately from the interior PDE, and then the dayrlayer solution used to determine
effective boundary conditions on the interior that can blied to the ODE system.

5.1 Limit of a circular cross section

At this point, it is informative to consider the limit as thiigtical cross-section becomes circular, i.e.
0o — . In this limit, we haveh(t) — 1 andB(1) — —1, which simplifies the equations (4.5)—(4.7)
somewhat. Itis then possible to obtain an analytic solutidhe boundary-layer system using a Fourier
expansionirr.

The details are presented in Appendix C. FomttieFourier mode, the asymptotic behaviour (4.11)—
(4.13) hasg(t) = z;f'(1) for some eigenvalug;,. The functionsf(t) andg(t) are simply Fourier
modes, and analytic expressions for thare obtained as part of the solution. We find tjadecreases
as the mode numberincreases. The boundary condition on the interior systeanatises through the

matching can then be expressed in terms of the known eigetidas f (7) and eigenvalues,.

5.2 Numerical eigenvalue problem

Based on the outcome for the case of a circular cross seat@propose looking for solutions to the
boundary-layer system in whig{t) = z" f'(7) in (4.11)—(4.13) for some constazit This leads to the
following eigenvalue problem for the boundary-layer syst€4.5)—(4.7) are to be solved f@r,n,Z,
subject to:

E=n={=0 at z=0, (5.1)
and
a (f
£~ gt () =2
n~—f(10)(z-2z), (5.3)
{ ~ fn(1), (5.4)

asz— o, wherez, is an eigenvalue anéh (1) its corresponding eigenfunction, both to be found as
part of the solution. By analogy with the circular case, weauldexpect to find a set of eigenfunctions
corresponding to different azimuthal modes, with the eigéresz;, decreasing as the azimuthal mode
number increases.
Once the eigenvalue problem has been solved, the boundadjtioms on the interior solution

would then be L o . "

s / ’7 / ~

n=3 nZlGnﬁfn(r) and 55 = nZlGn fo(t) at Z=0, (5.5)
for some set of amplitudés,. By writing 1] as a sum over the eigenfunction derivativgs: ¥ ,bn(2) f;(1),
we can eliminate th&, from (5.5) to obtain a Robin boundary condition on the armglét of each com-
ponent:

bn(0)+%b’n(0) ~0. (5.6)
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Since/ > 1, we can see from (5.6) that unlegss large for soma, the applied boundary conditions
on the interior solution will be little different from spéging 7 = 0. As the lower modes are likely to
be excited more by the interior solution, azjds likely to decrease asincreases, we will neezj to be
large to obtain any significant deviation from the originak 0 Dirichlet condition.

In the circular case, we see in Appendix C that. .% /2 for both.Z < 1 and.Z > 1. We shall
therefore concentrate on th€ < 1 regime. We expect this to be the only regime in whighwill be
large, and hence the only regime in which the boundary laylehave a significant effect on the interior
solution.

It turns out that we can make significant analytic progreshin# < 1 asymptotic regime, the
details of which are provided below f6. Since this work provides the boundary conditions we need
in the only regime of interest, there is little to be gaineanfrsolving the full numerical eigenvalue
problem (4.5)—(4.7) and (5.1)—(5.4) posed here. We thezefi not attempt this computation.

6. Asymptotic solution for .7 < 1

The limiting form of the boundary layer a& — 0 is quite subtle. As we shall see below, the bound-
ary layer splits into two distinct sub-layers. The differstressegN,S 5} have different magnitudes
from each other in each layer, and from themselves betweetaffers. This means that while the
displacement$&,n,{} may beO(1) everywhere, certain combinations of them are smaller inayne
other layer. This results in some leading-order cancehatbetween certain terms in the equations. To
avoid a leading-order degeneracy, it is necessary to aafterfirst-order corrections to some of these
cancellations.

The easiest way to do this is to re-cast the problem in ternmewf variables which do not suffer
from leading-order cancellations. The natural choice iage the physical stress variabl@%,é,f}.
The change of variables is carried out in Appendix D, wheeanw governing equations (A.44)—(A.46)
are obtained.

The deformations considered in Whittaledral. (201() were ri-periodic inT and had a definite
parity: & and{ being even functions of, while 7 was odd. We therefore restrict attention here to
solutions with the same symmetries; namely solutions{ﬂ;rf, é} that arer-periodic int, with N and
5 even andSodd.

It is convenient to use (A.46) to eliminaffrom (A.44) and (A.45). Doing so, the boundary-layer
system (4.5)—(4.7) is transformed to a pair of coupled egnaforN and>:

BN —vZNer + F 50+ 7 (14+2F (14 V) (1 - 2v) )Ny,

+Z(2(14+V) - Vv+2Z(1+V)(2-v))5,=0, (6.1)
~(A4+vI)WNer + FEr + F(1—-2v) (1427 (1+ V)N,
+ (1427 (1+v))(1+ F(2-V))Ez=0. (6.2)

As in Appendix D, we use a subscripto represent the usual partial derivative with respec tmt a
subscriptr to represent the operator
1 0

h(r) ot
The boundary conditions for (6.1) and (6.2) come from (A.&&) (A.49) and are

(6.3)

N-vE=0 on z=0, N, 5-0 as z— . (6.4)
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Once a solution folN and % has been found, the shear stréssan be recovered using (A.46) and the
condition thatS must be odd irr. Then the original displacement variablgs n, {} can be calculated
using (A.37)—(A.39).

Examining the system (6.1)—(6.4), it can be seen that thi¢ lilh— O is singular in two different
ways. Naively setting# = 0in (6.1) and (6.2), the equations reduce to

N=0, 5,=0. (6.5)

These equations are lower orderznand also their solution is incapable of satisfying the lutamg
conditions (6.4) ag — . We therefore expect to find an inner boundary layer meaf, and an outer
layer asz — oo. In the inner boundary layer, a shorter axial length scatsval some of the derivatives

in (6.1) to contribute, thus returning the system to beingtto-order inz. In the outer boundary layer, a
longer axial length scale means tta will be small enough to be balanced by some of the other terms
in (6.2), thus allowing decaying modesas> o.

6.1 The inner boundary layer

The following re-scalings are found to give a consistentdpson of an inner boundary layer, with a
shorter axial length scale:

z=FY?3, (6.6)
N = #Y2N = 712 (N<°>+y|<|<1>+...), (6.7)
S=gls = g2 (i“’) + 7504 ) , (6.8)
§=S§= (é<°>+£?§1)+...) . (6.9)

The magnitudes ofl and > must be the same to allow the boundary condition (6.4) to hisfigal at
z=0. (TheO(.#/?) scale for these is satposterioriso that the asymptotic forms (6.47)—(6.49) for the
displacements have the appropriate magnitude to matcte toulk interior solution.) The axial length
scale is then chosen so that #&/ 97 terms re-enter in (6.1). Finally, the magnitudeXif set by a
scaling analysis of (A.46).

We substitute the scaled variables (6.6)—(6.9) into theeguug equations (6.1)—(6.2) and take the
limit # — 0. The leading-order equations that result are

~BRNO 4R + (24 v)2Q =0, (6.10)
519 — o, (6.11)
and the equation (A.46) to recov@becomes

§0- 50 (6.12)

Solving (6.10)—(6.12) and applying the boundary condifi®d) atz= 0, we obtain
NO = n_(1)e BOEZ L n, (1)erBOI2, (6.13)
50 = é [nf(r) + n+(T)} —5(1)2, (6.14)
S0 —g(1), (6.15)

wheren.. ands are arbitrary functions of.
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6.2 The outer boundary layer

The following re-scalings are found to give a consistentdpson of an outer boundary layer, with a
longer axial length scale:

2= 1?2, (6.16)
N:#ﬁﬂmzywﬁm@+yﬂm+”), (6.17)
S=gYs = g2 i(°>+ﬁi<1)+...) , (6.18)
§:9§:9(§®+ﬁ§m+m). (6.19)

The axial length scale is chosen to allow the largeserms to re-enter in (6.2). The magnitude3of
must beO(.#1/2) to allow matching with a non-trivial inner layer. The maguie ofN is then reduced
to allow the3;; term to balance thél term in (6.1). Finally, the magnitude &is set by a scaling
analysis of (A.46).

We substitute the scaled variables (6.16)—(6.19) into theaning equations (6.1)—(6.2) and take
the limit .# — 0. The leading-order equations that result are

BNO 359 ¢ (6.20)
N+ 57+ 5 =0, (6.21)

and the equation (A.46) to recov@becomes
(0 £(0
S (6.22)
On eliminatingN between (6.20) and (6.21), we obtain
~ O ~
%X:g(ﬂm)zo, (6.23)

where.Z is the operator

< =arnhat

1014 (1 014 > (6.24)

It can be shown tha¥ is self-adjoint with respect to the inner prody€tg) = fg" f ghdr. We find that
% has a countably infinite set of everperiodic eigenfunctions,(7) with distinct positive eigenvalues
u2. Without loss of generality, we take=0 tp < p1 < Uz < Hs.... The eigenfunctions are orthogonal
with respect to the inner product, and we see Ygét) is constant.

In the limit g — o (which corresponds to a circular cross-section; see ApgeZdve haveZY =
Y™ —Y" and it is easy to show that

Yo(T) =cog2nT),  pn=2n(4n°+1)Y2. (6.25)

For finite gp, the modes and eigenvalues can only be found numericatiys Bhowing the lowest-order
modes forgp = 0.6, and then = 1 modes for a range @fy, can be found in figure 4. The corresponding
eigenvaluegi, are shown in figure 5.
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(b)

Now

FIG. 4. Numerically computed eigenfunctiolg(t) of the operatorZ, as defined in (6.24)aj The first few modes foop = 0.6.
(b) Then =1 mode for a range of different ellipticitiesp. In both parts, we have used the arbitrary normalisatigf) = 1. The

corresponding eigenvalues are shown in figure 5.

100

80

60

Hn
40

20

0o

Fic. 5. Numerically computed eigenvalugs of the operator.? (as defined in (6.24)) as functions of ellipticityy. The
corresponding eigenfunctions are shown in figure 4. TheathBhes give the asymptotic solutions (6.25) &> 1 (the limit

of a circular cross-section).
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Using separation of variables, the general solution to3)6f@r >0 with the required symmetries
can be written in terms of,(7) andun as

© = Ao+ Boz+  Ya(T) (A4 Bre 7)., (6.26)
=1

where theA, andB,, are arbitrary constants.
Using (6.20) and (6.22) we then find

© 19 (14Y, .
= 2 @hor (h 6r) (A€ + Bne™ ) (6.27)
S< =Cop—Bor
gy ro(1olonm PE—
PATCYE (BZh gthar ) (Aaef —Bre ), (6.28)

whereCy is another arbitrary constant.
To ensure tha8? is odd and periodic irr, we must takeBo = Co = 0. Applying the boundary
condition (6.4) ag — «, we must have (9) — 0 asz— o. This impliesA, = 0 for all n.

6.3 Matching the inner and outer solutions a£zO(1)

MatchingN ~ .ZN atz=0(1), we must havél®) — 0 asz— co. Hence from (6.13) we neetd () =0.
Matchings ~ 3 atz= O(1), we must have (9 (2 1) — 3(9(0,1) asZ— ». Hence from (6.14) and
(6.26) we need; (1) =0, and also

n_(t)=v i BnYn(T). (6.29)
=1

Matching.Z ~1/28~ Z1/2Satz= O(1), we must hav&® — 0 asz— 0. Hence from (6.15) we need
s(t) =0.
Therefore the expressions for the variables in the innenbary layer become

NO =y z BnYa(1)e B2, (6.30)
Z BnYn(T (6.31)
§9 —o, (6.32)
while in the outer boundary layer, we have

v 1 2B, d [10Y, 5
NO == § 1 ) g Hn? 6.33
& 2 hat\nat ) ° (6:33)
SO =3 BaYa(1) e H?. (6.34)

n=1

v e n 0 J oYn —HUnZ
v g maldaGi) wl e
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6.4 The Q.%) corrections toS in the inner layer

SinceS? =0, it turns out that the leading-order displacemnih the inner layer requires knowledge
of the O(.%) correctionSY). The solution for this function is most simply found as folta
First we take thed(.7/2) components of (A.45) with the inner-layer scalings (6.6)9) to obtain

N O)+§1)+2(1+ V)%O) =0. (6.36)

The two leading-order function$©® andS© are known from (6.30) and (6.32). We can then integrate
with respect t,"to obtain

e Bn 0 (T iz
“V2har (|B<r>| e ™ ) e, (6.37)

for some functiorC(7). We findC(1) by matching with the outer solution @s- «. Examining the
scalings, we see we must ha®® ~ S9, and hence

Zﬁr;sﬂ = 'z'ToSw (6.38)
From (6.35), this sets
o - 5 o (e (5 9e) ). (6:39)
and hence
gl)nml%%{‘%rengFi [le_%(%%) Yn”. (6.40)

6.5 Displacementrecovery

The displacementsf, n, ¢} can be recovered from the stress variaf§léss, S} using the expressions
(A.37)—(A.39). We find that in the inner boundary layer wedaw leading order it#,

5‘1/2 hv

£ = v z BaYa(T) (1 82) | (6.41)
TR R
= Dot 2B [—ﬁ (1-9) ] a (6.43)

The scalings foN, £ andSin the outer boundary layer, mean that the contribution&,tg and
{ from there are asymptotically larger than those from theiifboundary layer, by a factor of at least
Z~1. Therefore in the outer boundary layer, there is no contiobtto &, n andZ from the inner layer
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at leader order. From the integrals (A.37)—(A.39) over jbstouter-layer stresses we obtain

= i o (1) [ (o) 7] (640
”ﬁégéiig?“”h%@eWﬂﬂ’ (6.45)
7= 1 i Z:L G ( e’“”i) . (6.46)
As Z — oo, the asymptotic forms of (6.44)—(6.46) are
w -1/2
s () [ 1 | (o40
{ ~ nzl R (6.49)

where we have returned to the original axial variabte .Z /27 to aid comparison with the earlier
work on matching to the interior solution. We observe thatol&ain the expected behaviours (4.11)—
(4.13): ¢ tends to a function of, while £ andn tend to a function oft plus z times a function of

7. Moreover, each mode is consistent with ther co asymptotic forms (5.2)—(5.4) of the eigenvalue
problem specified i1§5.2, if we take

e9771/2
fa(T) =Ya(1), Z= (6.50)
Hn
Using the expressions (6.25) for the limit of a circular srggction, we obtain
yfl/Z
fa(T) ~ cog2nt), ~———— as 0gg— x. 6.51
n( ) E( ) Z: 2n\/4nz—-i-l 0 ( )

These expressions agree with the< 1 limit of the solution (A.28) for a circular cross-sectiayuhd
in Appendix C.

6.6 Boundary-layer structure

We observe that the inner layer is entirely passive at lepalider in the limit# — 0. It does notimpose
any azimuthal structure on the solution or contribute tol¢agling-order displacements as» «. The
inner layer simply allows the decay of the azimuthal hoopssﬂN from its O(.%%/2) value atz= 0 to
the O(.%%/?) value needed in the outer layer, while leavib@nd S approximately constant in The
dominant physical effects in the inner layer are the norroetds that arise from the azimuthal hoop
stress and axial tension interacting with the tube cureatur

The outer layer allows for the decay of the axial strEsand shear stre<§ along with the growth
of the axial displacemerd for matching with the interior solution as— co. It is the outer layer that
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determines the azimuthal modég1). The dominant physical effects in the outer layer are fofices
the axial stress and shear stress, together with the cuevetiects that were also present in the inner
layer.

Some aspects of this structure can be seen in figure A.8 in#ip€ which deals with the case
of a circular cross section. The graphs in the figure show tagnitudes of then = 1 modes of the
displacements and stresses as functions of the axial crdedi

7. Boundary conditionsfor theinterior solution
7.1 Matching ton in the bulk interior

Substituting (6.50) in to (5.5), we obtain the boundary étors on the interior solution fon (1,2) as
72 M 2 ,
— 5= fnZlGnYn(r) at Z=0, (7.1)

We can eliminate the constar@®s using the orthogonality of thé,(7). We define
10 1 90190
“HE( ———1>Yn (7.2)
so thath £Y, = dW,/dT1. Then, using integration by parts, we have

2n 2n
/ Y (T)Win(T)dT = — Yn%dr
0 0 ot

21
0
21T
for some set of normalisation constabig

We now multiply each of (7.1) bWmn(T) and integrate between 0 andr ® extract the individual
modes. Eliminatingsy, between each pair of equations gives us

/2n <fl+;%>wm(r)dro at Z=0 foreachm. (7.4)
0 UmFL/20 07
The corresponding boundary condition for a boundary lagarzi= 1 would be
/er <ﬁ;%>wm(r)dro at Z=1 for eachm. (7.5)
0 UmF Y20 07

7.2 Boundary conditions for the tube law

The boundary conditions (7.4) and (7.5) derived above wbaldpplied taj(1,Z) when the PDE (2.1)
is solved for the deformations in the bulk interior of the@éutHowever, we recall fror§2 that rather
than solving the PDE for (1, 2), Whittakeret al. (201() found an approximate solution by assuming
that the deformations are dominated by a fundamental ahmhuotode. Writingr) ~ b(Z) sin(21), the
tube law (2.2) was obtained: ,

ngz—;; —koar = —P(2), (7.6)
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wherea () [ b(2) is the dimensionless change in cross-sectional area aiitiesft is the dimensionless
transmural pressure, and tkeare numerically determined constants that depend on tipi@tly of
the undeformed tube. Since the azimuthal dependence okfloendation is now fixed, we are unable
to apply more than one of the conditions (7.4) and (7.5) &b ead!.

We now assume that the fundamental modéXinin the interior is sufficiently close tg/ (1) for the
boundary conditions (7.4) and (7.5) to be dominated bynthe 1 equation. (The agreement is perfect
in the limit 0 — o« and, as can be seen in figurk, 4he mode shape of (1) is still fairly sinusoidal
even for much smaller.) Under this assumption, the boundary conditions to beiegpb o (2) when

F < lare

. oa . L.oa
z*az+a_0 at 7=0, z"a2

wherez* = (up.7%20)71,

—a=0 at Z=1. (7.7)

8. Comparison with numerical simulations

We now construct solutions far(2) to the tube-law model (2.2) for the case of a tube subject to a
uniform transmural pressure, both with with the origindlétend boundary conditions (2.3) and with the
modified conditions (7.7) resulting from the boundary-lagealysis. These results are then compared
with numerical simulations of the same tube in which theithhoff—Love shell equations are solved
using a finite-element scheme.

8.1 Numerical simulations

Numerical simulations were performed using the Oomph-iilidielement framework (Heil & Hazel,
2007). In each simulation, the dimensionless Kirchhoffed.shell equations were solved to find the
deformation of an initially elliptical pre-stressed tub&hngiven tube-end boundary conditions under a
prescribed transmural pressure. Full details of the methade found in in Whittakest al. (201M).

In all the simulations, we considered a tube with initialpgitity oo = 0.6 and Poisson ratio =
0.49, subject to a dimensionless axial tendios 1, and uniform transmural pressie= —1. We used
a range of different values of the dimensionless wall thggded and tube lengtld, resulting in different
tension parameter¥. For each set of parameters, we performed a simulation with ef the three
different tube-end boundary conditions: sliding, pinnad alamped (as described{g).

8.2 Analytical solutions to the tube-law models
With P = —1, the solution to the tube law (7.6) subject to the origir@itdary conditions tar = 0 at
Z2=0,1is
. 1 coshh (z— 1)
— ="\ 2/ A
a(Z) kO ( Cosr(/\ /2) ? (8 )

whereA = (koF /ko) /2.
The solution of (7.6) subject to the new conditions (7.7)i&g by

. 1 cost (z— 1)
aD=-i; <1 Cost{A/2) —ZA siznh(/\/2)> : (8.2)

Observe that a8~ 0, this solution returns to the original solution (8.1).
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The relative area changeis proportional tofOZ"E dr. So in the interiorg is proportional to ampli-
tude of the fundamental azimuthal moderpto good approximation. In the boundary layemswill
be proportional to the-dependence in the amplitude of the fundamental modé far(6.44) to good
approximation. In the inner boundary layer, the smabéZz1/?) scale foré in (6.41) means that the
area changes here are negligible compared with those irutiee layer and interior.

We can therefore obtain an approximate expresaigtt) for a(2) in the boundary layer using the
axial dependence of the= 1 mode in (6.44). The constant is most easily determined kghiray to
(8.2) forz* <« Z<« 1. Nearz= 0 we have

. 1 —Asinh(A/2) . . /%
(2 =1 (cosr(/\/z) “FA sinr‘(A/2)> (z-z[1-e ). ®3)

NearZ= 1, the boundary-layer solution will ba, (1 — Z) by symmetry.

We can now construct a composite solutimg{z) valid over the whole length of the tube. This is
obtained by summing the two expressions éoand ay,, and then subtracting off the common linear
parts in the two matching regions (see, for example, Hin®B11chapter 5). Thus

ac(2) = a () + ap(2) + ap(1—2)

Akgtsinh(A /2) L. L
(cosi{x\/Z)i*/\ sinh()\/2)> (z-7+0-2-7),

_ 1 <1_ cosh (Z— 3) — A sinh(A /2) (e /% + e<1z)/i*))
ko coshA /2) — zA sinh(A /2)

However, we note that this solution does not precisely fyatiee a = 0 boundary conditions at
Z=0,1 because of the tails from the boundary layers at the oppesils. Whez*"« 1 the errors will
be exponentially small, but they could be significant/iz1> O(1). (Though in the latter case, it is not
really appropriate to use the boundary layer expansion.)

To account for the error in the boundary conditions (and mita#y expand the range of validity of
the solution) we can construct al-hoccorrection by altering the coefficients of the four exporednt
functions (€44, €%%) in a in order that it satisfiesr; = 0 anda/, = 0 atZ= 0,1. The resulting

function is 127
>~ ~ . cosn(z—
() = 1. coshA (z2— 1) — Z*A sinh(A /2) )
¢ cosHA /2) — z*A sinh(A /2) coth(1/27)

(8.4)

(8.5)

Whenz* « 1 this reduces to the original expression (8.4), as wouldkpeated.

For gy = 0.6, the numerical parameters needed for the theoreticatigotuareky = 11.075,k, =
1.7044 (from Whittakeret al., 201() and p; = 5.5294 (from§6.2 above). Combined with = 0.49
andF = 1.0, we then have

22 1/2 -1/2
12(1—v2) koF TG
= 0.10975%¢?, = 2.549, = 054616102, (8.6)

The fact thaf) is independent od and/ means that the original tube-law solution (8.1) will be itleal
in all cases.
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FIG. 6. Comparison of 3D shell-theory with results from the sHager model. Points show numerical shell-theory resiais
a buckled tube with clamped (squares), pinned (circles) slidihg (triangles) boundary conditions. Lines show thigioal

tube-law solution (8.1) (dashed), the composite solut&B)(from the shear-layer model (continuous), and theiorteolution

(8.2) from the shear-layer model (dotted). All calculagidraveF = 1.0 andv = 0.49.
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8.3 Comparison

Graphs comparing some typical numerical simulations alwitly the original tube-law solution (8.1)
and the composite solution (8.5) from the shear-layer madelshown in figure 6. As can be seen,
the original tube law solution (8.1) is a good fit to the nuroakiresults with the sliding boundary
conditions, but not to those with the other two conditionke humerical solutions with clamped and
pinned boundary conditions are almost indistinguishalilae new composite solutions (8.5) using
the boundary-layer model fit these solutions reasonabll; aetl appear to be capturing the essential
physics.

The least good fit is seen in figureah(which has the shortegtand the largest#, both of which
would be expected to decrease the accuracy of the asymgodditions. It also has the largest off-gat ~
to the point where the boundary layers induced at each ergedfibe significantly overlap one another.
Given these factors, and the various approximations matteeitube-law and boundary-layer models,
the agreement with the numerical simulations in this caséliseasonable.

9. Summary and Conclusions

In this paper, we have formulated a boundary-layer deserifor the deformation of an initially ellip-
tical elastic-walled tube near an end that is subject togudrimoundary conditions. The boundary-layer
includes in-plane shear effects that are negligible in miterior bulk solution. The boundary-layer sys-
tem (4.5)—(4.7) for for the displacemeidts], { must be solved subject to the boundary conditions (4.8)
at the pinned boundary, along with the far-field matchingdittons (4.11)—(4.13) and (4.14).

The original PDE system (2.1) in the interior is only secamder inz, which allowed only one
condition to be satisfied at the boundary. The boundaryreystem (4.5)—(4.7) is 6th-order in the axial
coordinatez, which allows the full set of three pinned conditions (4 @)k satisfied. The additional
terms present in the boundary-layer equations corresmofmldes arising from in-plane shearing.

We have shown how the boundary-layer system can be forndudet@n eigenvalue problem inde-
pendently of the interior solution. The effective boundeoyditions on the interior solution then take
the form of a set of Robin conditions (5.6) on the eigenmoaemanents ofj. It is seen that the bound-
ary layer only has a significant affect on the boundary comaitthat the interior solution sees when the
dimensionless parametér (as defined in (4.4)) is much less than one. Physically, thisesponds to
axial-tension—curvature effects being weak compared iniplane stretching on the scale of the tube
diameter.

A matched asymptotic expansion of the boundary-layer mwidfor .# < 1 reveals a double-layer
structure: an inner layer with thickne€%.71/2) and an outer layer with thickne€(.# ~/?). The
leading-order solutions are expressed in terms of the &igetions of a one-dimensional linear operator
(6.24), which are determined numerically. The boundangdd®mns on the interior solution, can then be
expressed as a set of integral constraints (7.4).

The tube law (2.2) used previously in place of the full PDEeysin the interior assumes that the
deformations are dominated by a fundamental azimuthal mBgeept when the tube is circular, this
mode is not identical to the fundamental eigenmode in thebary layer. Nevertheless it is similar, and
we obtain the approximate boundary conditions (7.7) onnterior tube-law solution by just matching
it to the fundamental boundary-layer eigenmode. Compasitgions including the boundary layer can
also be formed. Analytical results using this approximastaning are shown to compare well with full
numerical simulations. As shown in figure 6, the new compasitutions fit the numerical data much
better that the previous tube-law solutions wh&n« 1.

The agreement between the composite solution and the neahegsults improves noticeably as
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the tube lengtl is increased. The poorer agreement at smdllisr probably due to a combination
of not being as well inside thé < 1 asymptotic regime and also the interactions between tbe tw
boundary layers from the two ends of the tube. (It can be skxamly in figure & that the boundary-
layer corrections have not quite decayedzby 0.5 in the middle of the tube.)

Two other features of the solution are worth drawing attento. First, the nature of the boundary
layer we have described is somewhat unusual. It arises catise of a direct local effect at each point
on the tube wall, but because of non-local geometrical caimtaround its whole circumference. It
is the effect of the shear constraint in the bulk interiomigantegrated around the circumference, that
creates the need for the boundary layer.

Secondly, the boundary-layer model derived here only attsdor the shear forces, to allow pinned
boundary conditions to be satisfied. It does not includeldéaading forces, and hence it is still not
possible to satisfy the full clamped boundary conditionshat tube ends. However, examining the
displacements (6.44)—(6.46) in the outer boundary layersee that the leading-order terms have the
following behaviour as we head towards the inner layer:

E~?, n~?, I~% as Z-0. (9.1)

Therefore the inner limit of the outer boundary-layer soluialready satisfies the ‘clamped’ conditions
(6 =n=¢=0¢&/0z=0) at leading order. Therefore any bending boundary laydkédy to be
weaker than might be assumed on simple scaling grounds.nTdyjswvell help explain why the numer-
ical simulations show negligible difference between thieitsans with pinned and clamped boundary
conditions.

Finally, we note that this work was carried out for a tube vdthinitially elliptical cross-section,
to aid comparison with previous studies. The shape of thiaimross-section enters via the base-state
azimuthal curvatur® in the operatorZ as defined in (6.24), and hence has an effect of the azimuthal
deformation mode¥,(7) in the boundary layers. Physically the initial cross-smttshape matters
because of the forces that arise from the product of the s@se-curvatur® and the azimuthal hoop
stress perturbatioN.

The limiting case of a circular cross-section is approacsrdothly, and there are no singular
changes to the boundary layers in this limit. (This is in casitto the case of oscillations in elastic
walled tubes, where the deformation—area relationshiglfoost circular initial cross-sections is sig-
nificantly different, and would have a profound effect on dy@amics.) It would be relatively straight-
forward to repeat the calculations here to derive the boynrldger modesry(7) for any other initial
cross-sectional shape.
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A. Curvature, strain and covariant derivatives

In this appendix, we evaluate the components of the metgnie, g, the curvature tensdu, g, the in-
plane strairy, g, and the bending straky,g in terms of the deformation functiods n and{ introduced
in (3.16). We also evaluate the covariant derivatiigsin terms of the partial derivative®/dt and
d0/0z.

We first define the set of orthogonal unit vectétsz, i} in the azimuthal, axial, and normal direc-
tions with respect to the undeformed surface, z) of the tube in (3.2):

—coshagg sint 0 c coshgp cost
t=— sinhop cost , 2= 0 |, A=——| sinhgpsint |, (A1)
h(1) 0 1 h(7) 0

wherec is the normalisation constant defined in (3.3) &) is the scale factor defined in (3.5). We
also define the dimensionless azimuthal curvature in thefonched state by

af d_fi
oxt

- 5
tiic sinh 20q (A2)

B n-— = T

Sl
Y

We now compute the basis vectasin the deformed configuration from the displacemerin
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(3.16):
_or . € — d /nN\\; — 0 [(EN\\.] € ]aC, 2
alm”e—hKfB*E(ﬁ))” n +E<E>)n]+e_h{ﬂz}+o(£)’ (A-3)
_or 3 }dEA }dr)A ol ., 2
a Wz+€[h—dzn+h—zt+—az}+O(s), (A.4)
axad o ef( = 0 (E\\;, 9¢, 2
= Taixas ehK” +dr<h)>t+dzz}+o(£)' (A-3)

The components of the metric tenspyg are then found to be

B B 2 = 0 /n
a11:a1-a1f1+€h _EB+0T(h)]+..., (A.6)
o _£]on  9¢
app=an=a; a2€h|:az+a_[:|+..., (A.7)
_ B 2 [aC
o = aQy a2_1+7_5]+..., (AS)
and those of the curvature tendxpys are
N Jay . B_ &
B Jda, . &
biz= b =8 2= =0 ), (A.10)
dazi & 025

boy = as- (All)

e " ahoZ
By settinge = 0 in (A.6)—(A.11), we obtain expressions for the tensamyg and 50,3 that describe the
undeformed state.

We now use the definitions (3.12) gfg andk,p to obtain the leading-order expressions

& - 0d /n

Vi1 = 7h (—EB—F a1 (F)) ) (A.12)

. le (fon  0d¢
Yiz=Yo1= >7h (E + E) ) (A.13)

€dl
Yo2 = 792’ (A.14)
and .

K11, K12, K21, K22 = O(a) : (A.15)

Finally, we need to evaluate the covariant derivative ohade. The expression for the inner covari-
ant derivative of a second-rank tensor is given in (3.25k Thristoffel symbol is defined by

Ja
ruﬁv =a"%a, - 0X“’1 ) (A.16)
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which is symmetric inu andv. In the undeformed state, it is easy to see that all the coemisrof

I'“[f, are zero. HencEfv = O(¢g). Since we negledd(&?) quantities, the only components Iqﬁ, that

we need are those that will be multiplied by @e®) quantity. The only such quantity present in a
covariant derivative is the pre-stressNA2. Examining (3.25), we see that the components needed are
I}, [ andr,2. These are evaluated, ®&¢), as follows:

Ja; Jag

1 1 1 2
r21:r12:aaaa-ﬁial'ﬁ+o(£)
17} 10
=3 (% a- al) +0(e?) = 5% +0(£?), (A.17)
da, . da £ 92
1_ qal, 92 o O 2:__0 2
h=a"aq: 55 =t 37 +0(e?) = =5 +0(¢?), (A.18)
da, . da €02
I—ZI az - —_ = - — 2 - ——=5 2 Al
n=a"8q 55 =2 -5 +0(e%) = — = +0(¢%), (A.19)

where we have made use of the definition (3.12hef and the expressions (A.3) and (A.4) frand
a.

B. Verifying the number of boundary conditions

In this appendix we argue that we do indeed have the correnbauof boundary constraints for the
number of degrees of freedom in the combined boundary-ayerior system that is describedga.4
and in the eigenvalue problem described%m2.

B.1 Boundary-layer—interior system 64.4

Considering just one end of the tube, we have six degreegeflfrm from the sixth-order boundary-
layer system (4.5)—(4.7), two degrees of freedom from thenawn matching function$(t) andg(7),
and one degree of freedom from half of the second-orderiantgystem (2.1). (By symmetry, the other
other degree of freedom in the interior system must be seidgonditions at the other end of tube.)
This makes a total of nine degrees of freedom.

We then have three boundary conditions (4.8) on the bourAdagr solution az = 0, and two
conditions (4.14) on the interior solution a&="0. We therefore require that the remaining conditions
(4.11)—(4.13) impose precisely four constraints on thenlawy layer ag — co.

By comparison with circular limit described in Appendix @,addition to the linear behaviour in
(4.11)—(4.13), we would expect two modes that grow expdakiyin zand two modes that decayiro
make up the six independent solutions of (4.5)—(4.7). Tmalitimns (4.11)—(4.13) define the two linear
modes, and also set the coefficients of the two growing madesrb. Thus they do indeed impose four
constraints on the system.

B.2 Boundary-layer eigenvalue problem .2

As above, there are six degrees of freedom from the solutmtie boundary-layer system (4.5)—(4.7).
In the asymptotic conditions (5.2)—(5.4) there is one umkmfunction and one unknown eigenvalue.
This gives a total of eight degrees of freedom.

The boundary conditions (4.8) at= 0 impose three constraints. By the same argument as given in
Appendix B.1 above, the asymptotic conditions (4.11)-3pithpose four constraints. The final degree
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of freedom is in the undetermined normalisation; the pnobielinear and all the boundary conditions
are homogeneous. Therefore we have the correct number nflaouconditions for the problem.

C. Limit of acircular cross-section (gp — o)

In this appendix, we consider the boundary-layer systeB)-{44.13) in the limit in which the elliptical
cross-section of the undeformed tube becomes circularetjbations can be solved using Fourier series
in the azimuthal coordinate, and explicit matching codisi obtained to apply to the interior solution.

C.1 Fourier representation

In the limit gg — o, the undeformed cross-section of the tube becomes ciraudwe have
c~2e6%, h(r)—1, B—-1. (A.20)

The boundary-layer system (4.5)—(4.7), (4.8), (4.113%then looses any explicit dependenceron
Since the equations are linear, we expect to find solutioaisithve sinusoidal behaviour m Taking
into account the required-periodicity and parity, we seek a solution of the form

&= ian(z) cog2nt), n= i)bn(z) sin(2nt), (= icn(z) cog2nT). (A.21)

C.2 Equations and boundary conditions

On the substitution of (A.21) into the governing equatioAs)—(4.7), the different Fourier modes
decouple. For each moaewe obtain

F(1-v?al —vg,—an—2nb, =0, (A.22)

(2 +2(1-v?)b} —n(1+v)c,— 2na, — 4n’b, =0, (A.23)
(1+27 (21— v+ (v+F(1—Vv?))a),

+n((1+Vv) +27(1-v3)b, - 2n%(1—v)c, =0, (A.24)

where primes denote derivatives with respec térom (4.8), the boundary conditionszt 0 are
an=0, b,=0, c,=0 at z=0, (A.25)
while (4.11)—(4.13) give the far-field conditions
an~ —4n°Fy(z— 7)), by~2nF(z—Z), ch~F, as z— o, (A.26)
whereF, andz, are arbitrary constants. It turns out that feare determined solely by the matching

with the interior solution, while the;, are determined solely by the solution of the boundary-layer
system?®

3In general, one might expect boy andz; to be involved in the matching condition and influenced byittterior solution.
However, since this system is line&r, simply determines the amplitude of the mode, independetiteo¥alue ofz;. Hence each
z, is fixed by the boundary-layer system, and is not affectechbyntatching to the interior solution.
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C.3 Boundary-layer solution

For eacm, we have set of three coupled linear ODEs with constant aiefifis. Overall each system is
sixth order inz, with one free paramete},. (We regard thé, as external parameters, imposed by the
matching.) We therefore need seven boundary conditions.

We find that the system (A.22)—(A.24) has four linearly ineleglent exponential solutions, two of
which grow agz — o and two of which decay. There is also a general linéar BZ) component, making
up the remaining two solutions. The boundary conditionf\atz = 0 impose three constraints. The
conditions (A.26) ag — o require the coefficients of the two growing exponentialsezéro, and also
set the two coefficients of the linear component; makinga wftfour constraints.

These conditions thus give the required seven constraimisie can write down an explicit analytic
solution foran(z), bn(2), cn(z). Each of the functions takes the form

A+Bz+Ce ¥1*+ De *2%, (A.27)

However, the coefficient§A,B,C,D} and the decay ratesci, K2} are complicated functions oF, v
andn, so in the interests of brevity we omit the full expressioassh

From these solutions we can obtain an expression for thetaff$or each Fourier mode. The offset
also depends o andv. Some representative values are plotted in figure A.7.%aeg& 1 we find the
asymptotic behaviour

Z: ~knZ Y2, (A.28)
where
V5 V17 V37 ¢6_5

independent of. For.Z > 1, we havez; ~ C,(v).Z %2, with the same power of?, but the coeffi-
cients are now complicated functionswfPlots ofz; as a funct|on of# are show in figure A.7.

Given the Fourier coefficients of the displaceme(dtsn, ) we can use (3.19)—(3.21) to compute
the corresponding coefficients for the stres(m,ss Z) Writing

N = i}an ycog2nt), S= iBH(Z) sin2nt), 5= i}yn(z) cog2nt), (A.30)
we find that
an(z) = 12(an+ 2nby+ vey), (A.31)
Bn(2) = 6(1—v) (b — 2ncy), (A.32)
¥n(2) = 12(c, + van +2nvhby). (A.33)

Plots of the displacement and stress amplitudes fonthel mode at a relatively small value oF are
shown in figure A.8. We observe the linear behaviour of thpldisements and the decay of the stresses
asz — . We also note the appearance of two distinct length scales kor both the displacements
and the stresses, there appears to be an inner layer ocgupyiz < 0.3 and an outer layer occupying
z2> 0.3. (These layers, which appear for genergivhen.# < 1, are discussed in more detail§6.6.)
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FiG. A.7. The offsetz; as a function of the scaled axial tensigh for the case of a circular cross-section with= 0.49. The
dotted lines to the left show the asymptotic behavizgiur k,.# ~1/2 for .# < 1, with thek, given by (A.29).

C.4 Matching condition imposed on the interior solution

The boundary conditions imposed on the interior solutianthat az™ 0, ) matches the asymptotic
form of n asz— . Expressing (A.26), in terms of the behaviour (4.12)—(%.4@ find

)= Fncog2nt), 9(1) = -2 nkzysin(2n). (A.34)
n=1 n=1
The matching conditions (4.14) then yield
. 2 2 . on - . S
n=-— z nRZsin(2nt) and —- =2 z nksin(2nt) at Z=0, (A.35)
¢ n=1 07 n=1

for some set of constanE. Alternatively, we can use the orthogonality of the Founerdes to elim-
inate theF, from (A.35). Doing so, we obtain a set of homogeneous integmastraints, indexed by
n:

./o <j‘?z’ +n> sin2nt)dt=0 at Z=0. (A.36)

D. Reformulation in termsof stressvariables

Motivated by the underlying physics, we consider a changeadfbles from the displacement-based
(&,n, Z) to use variables corresponding to the three in-plane steesponents in the shell: the azimuthal
stressN, the axial stres§, and shear stres These stress variables are given in term&€of), {) by
(3.19)-(3.21).

By manipulating (3.19)—(3.21) and using the boundary ciionk (4.8) atz= 0, we derive in turn
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(@)
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FiG. A.8. Analytical solutions for thes = 1 mode with.# = 0.01 andv = 0.49 in the limit of a circular cross-sectiona)(The

Fourier coefficientsy, by, c; in the expansions (A.21) for the displacemeftg, {. The inset shows the behaviour neat 0 in

more detail. The dashed lines show the asymptotic behawszir> 0. Note that the linear asymptotes fr andb; both meet
the zaxis at the same poimt= z*. (b) The Fourier coefficientst1, B1, y1 in the expansions (A.30) for the stres$esS, 5.
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the following expressions for the displacement functionterms of the stresses:

Z(1,2) = 12(171_\/2) /OZ(S(r,z) ~vli(r,2)) oz, (A.37)
oo [ (A S550)
cra B (I L2 (1))
Using (A.37)~(A.39), we then obtain

12% - % (A.40)
1252 () =g har (1) =

12§§_z22 (%) - 7:_222 <l\i—:22) i (1~—2v)h da;éz
SEAER) e
12<§h‘z+%%(%)>ﬂl‘_7“f. (A.43)

These expressions can be used to elimidatg and{ from the governing equations (4.1)—(4.3). We
thus obtain the new governing equations

B_ZN + 9(7N22+ vizz‘i’ 2(1+ v)érzf ZTT + VNTT) - O7 (A.44)
NT+:§Z+&‘(2(1+ V)ézfiTvaNT) —0, (A.45)
§r+iz+y((1_2v)ﬂz+ 2- v)iz) —0, (A.46)

where a subscript represents the partial derivative with respecttbut a subscript represents the
operator
19
h(t)ot”
The system (A.44)—(A.46) is 4th orderazrand 4th order irr. The two orders iz lost from the original
system (4.5)—(4.7) are accounted for in the two integras dppear in the recovery equations (A.37)—
(A.39). o 3
The boundary conditions d§, > andS come from the conditions (4.8) and (4.11)—(4.13)om,
and{. We must still have periodicity im. At z=0, (A.37) and (A.38) give = n = 0 automatically.
Equation (A.39) then implies

(A.47)

N-vi=0 on z=0. (A.48)
Asz— o, (4.11)—(4.13) imply that the stresses must decay, so

N,5S50 as z— . (A.49)
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These conditions equate to only two constraints, sindé & — 0 then (A.46) and periodicity imply
thatS— 0 also.

Inserting (A.37) and (A.38) into (4.13) and then (4.12) wéaddtwo integral equations to determine
the matching function$ andg:

f(1) = 12(171_‘/2) ./(;mf(z, 7)—vN(z 1)dz, (A.50)
o(1) = 12(171\/2”—(1 (/Ooo/zmi(z’,r) —vN(z’,r)dz’dz)
1 o
+m/0 h(1)S(z, 1) dz. (A.51)



