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ABSTRACT

The South Pacific convergence zone (SPCZ) is simulated as too zonal a feature in the current generation of

climate models, including those in phase 5 of the Coupled Model Intercomparison Project (CMIP5). This

zonal bias induces errors in tropical convective heating, with subsequent effects on global circulation. The

SPCZ structure, particularly in the subtropics, is governed by the tropical–extratropical interaction between

transient synoptic systems and the mean background state. In this study, analysis of synoptic variability in the

simulated subtropical SPCZ reveals that the basic mechanism of tropical–extratropical interaction is gen-

erally well simulated, with storms approaching the SPCZ along comparable trajectories to observations.

However, there is a broad spread in mean precipitation and its variability across the CMIP5 ensemble. In-

termodel spread appears to relate to a biased background state in which the synoptic waves propagate. In

particular, the region of mean negative zonal stretching deformation or ‘‘storm graveyard’’ in the upper

troposphere is displaced in CMIP5 models to the northeast of its position in reanalysis data, albeit with

pronounced (’258) intermodel longitudinal spread. Precipitation along the eastern edge of the SPCZ shifts in

accordance with a storm graveyard shift, and in general models with stronger storm graveyards show higher

precipitation variability. Building on prior SPCZ research, it is suggested that SPCZs simulated by CMIP5

models are not simply too zonal; rather, in models the subtropical SPCZ manifests a diagonal tilt similar to

observations while SST biases force an overly zonal tropical SPCZ, resulting in a more discontinuous SPCZ

than observed.

1. Introduction

The South Pacific convergence zone (SPCZ) is the

largest area of climatologically contiguous convective

precipitation spanning beyond the tropics. It consists of

a zonal band of precipitation in the equatorial western

Pacific and a diagonal band of storminess that extends

southeastward into the Southern Hemisphere mid-

latitudes. The convection is distinct from the intertropical

convergence zone (ITCZ) that lies north of the equator

over the Pacific (along 88N; Figs. 1 and 2a,b). The SPCZ is

responsible for a large fraction of the precipitation oc-

curring across the South Pacific, particularly in austral

summer [December–February (DJF)], while intense

convective heating in the SPCZ generates and modifies

Rossby waves, giving the SPCZ a global influence (Brown

et al. 2011; Matthews 2012). From a societal perspective,

the inhabitants of South Pacific island nations are de-

pendent on SPCZ rainfall; deviations from a typical year

can result in substantial drought or flooding throughout

the region (Murphy et al. 2014). Additionally, the SPCZ is

a region of tropical cyclogenesis with large interannual

variability in the locations of cyclogenesis and numbers of
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cyclones (Vincent et al. 2011), as well as extreme sea level

variability (Widlansky et al. 2014). Given the inherent

societal impacts associated with the SPCZ and its vari-

ability, there is strong interest in better understanding

the SPCZ in both present-day climate [e.g., Southwest

Pacific Ocean Circulation and Climate Experiment

(SPICE); seeGanachaud et al. 2007, 2014] and projected

future climate [e.g., the Pacific–Australia Climate

FIG. 1. Climatological DJF precipitation (shading, mmday21) over the Pacific for the CPC

Merged Analysis of Precipitation (CMAP), with the Tropical Rainfall Measuring Mission

(TRMM) 4mmday21 contour (in black) included for reference.

FIG. 2. Climatological DJF precipitation (shading, mm day21) over the Pacific for the (a) TRMM estimated dataset, (b) Climate

Forecast System Reanalysis (CFSR), (c) phase 5 of the Coupled Model Intercomparison Project (CMIP5) coupled model ensemble

mean (MEM), and (d)–(o) individual CMIP5 coupled model means. The thick black line in all panels is the TRMM 4mmday21

contour, for reference.
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Change Science and Adaptation Planning (PACCSAP)

program; see Australian Bureau of Meteorology and

CSIRO 2011a,b].

Simulation of the SPCZ remains problematic in global

climate models (GCMs) (Brown et al. 2013; Widlansky

et al. 2013). Identification and attribution of these biases

in the climatological mean sense in members of phase 3

of theCoupledModel Intercomparison Project (CMIP3;

Meehl et al. 2007) and phase 5 (CMIP5; Taylor et al.

2012) is extensive (e.g., Brown et al. 2011, 2013;Widlansky

et al. 2013).ManyGCMs simulate an SPCZwith anoverly

zonal orientation; applying a linear fit to precipitation

maxima across the South Pacific to two observational

datasets, Brown et al. (2013) noted slopes of 20.25 and

20.28 degrees latitude per degree longitude, whereas

the CMIP5 multimodel mean slope is only 20.09 de-

grees latitude per degree longitude (Fig. 2c). Further-

more, none of the models examined (Figs. 2d–o) has

a slope steeper than the observations. In some cases, this

zonal orientation makes the SPCZ indistinguishable

from a second ITCZ in the Southern Hemisphere (i.e.,

the so-called double ITCZ bias; Zhang 2001; Lin 2007;

de Szoeke andXie 2008; Bellucci et al. 2010; Brown et al.

2011, 2013), although the bias can also be exhibited via

an ITCZ that migrates across the equator (thus ap-

pearing as two ITCZs in an annual or climatological

mean) or anomalous convection confined to the eastern

Pacific. These biases in essence connect an otherwise

separate SPCZ to a spurious ITCZ (de Szoeke and Xie

2008; Bellucci et al. 2010; Brown et al. 2011). Both the

double ITCZ bias and the zonal SPCZ bias are tied to

errors in South Pacific sea surface temperatures (SSTs)

simulated in coupled models; cooler than observed SSTs

along the equator, termed the Pacific ‘‘cold tongue,’’

play a key role in setting up these errors in precipitation

simulation (Ashfaq et al. 2011; Widlansky et al. 2013;

Vannière et al. 2014). Atmospheric models forced with

observed SSTs in lieu of a coupled ocean show signifi-

cant reductions in mean-state biases of precipitation

(Widlansky et al. 2013).

Model errors in the variability of the SPCZ have also

been diagnosed. On interannual time scales, the SPCZ

shifts in accordance with the phase of El Niño–Southern
Oscillation (ENSO) and its accompanying SST pertur-

bations, as precipitation migrates toward the northeast

duringEl Niño and toward the southwest during LaNiña
(e.g., Trenberth 1976; Folland et al. 2002; Vincent et al.

2011). While not all CMIP3 models show skill in simu-

lating a shift in SPCZ position related to the phase of

ENSO, all but one CMIP5model produced a correlation

between SPCZ latitude and Niño-3.4 SST significant at
the 95% level (Brown et al. 2011, 2013). Moving beyond

this simple linear relationship, Cai et al. (2012) identified

episodes in which the SPCZ effectively collapses onto

the equator—so-called zonal SPCZ events—during El

Niños with strong eastern Pacific warming (Borlace et al.
2014). Examining a suite of CMIP3 and CMIP5 models,

Cai et al. (2012) determined that 9 of 17 CMIP3 models

and 12 of 20 CMIP5 models are incapable of capturing

zonal SPCZ events, suggesting common model de-

ficiencies on interannual time scales. On intraseasonal

time scales, the SPCZ interacts with the Madden–Julian

oscillation (MJO) (Matthews et al. 1996; Matthews

2012). While CMIP5 models simulate better MJO vari-

ance peaks than CMIP3 models, MJO propagation re-

mains too slow in most models (Lin et al. 2006; Hung

et al. 2013). It is likely that these biases will affect SPCZ

variability on MJO time scales, although to our knowl-

edge no study has yet explicitly examined MJO–SPCZ

interactions in CMIP5 models.

Ultimately, convection and precipitation are con-

trolled by synoptic variability and tropical–extratropical

interaction in the diagonal part of the SPCZ (Streten

1973; Vincent 1994; Kiladis and Weickmann 1997).

Synoptic-scale waves travel along the subtropical jet

over the southern Indian Ocean and south of Australia.

Through Rossby wave dynamics, refraction occurs,

redirecting the synoptic waves equatorward into the

westerly duct in the upper troposphere over the equa-

torial Pacific. Precipitating deep convection is then

triggered in the destabilized rising air ahead of the cy-

clonic vorticity anomalies in these wave trains, consis-

tent with quasigeostrophic dynamics. The changes in

SPCZ precipitation associated with theMJO and ENSO

are largely due to changes in the frequency and propa-

gation paths of these synoptic waves (Matthews 2012)

that are embedded in the slowly varying basic state of

the specific MJO or ENSO event.

Errors in SPCZ simulation in GCMs on synoptic time

scales are, to this point, comparatively unknown. Niznik

and Lintner (2013) showed that synoptic time scale

changes to low-level inflow east of the SPCZ in coupled

GCMs are associated with spatial shifts in precipitation

consistent with observations, albeit with considerable

intermodel spread in the spatial distributions of these

shifts. These results implicate potential connections be-

tween low-level inflow variability and the frequency with

which synoptic disturbances interact with the SPCZ.

Further motivation in understanding model biases on

synoptic time scales comes from recent theoretical ad-

vances linking the orientation of the SPCZ to the

slowing of eastward-propagating synoptic disturbances

(Widlansky et al. 2011) within the aptly named ‘‘storm

graveyard’’ (Trenberth 1976). The storm graveyard is

a region where upper-level negative zonal stretching

deformation (ZSD; ›U/›x) is negative; thus the group
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speed of disturbances decreases. Here, wave energy

density increases (Widlansky et al. 2011), which in the

presence of sufficiently warm SSTs (Matthews 2012; van

der Wiel et al. 2015) and conditional instability in the

vicinity of the SPCZ triggers deep convection.Matthews

(2012) and van der Wiel et al. (2015) further expand

upon this idea, positing that the climatological SPCZ is

the sum of ‘‘pulses’’ of energy in the region associated

with synoptic disturbances.

These recent advances in SPCZ theory suggest that

the synoptic time scales may be particularly important,

yet there has been no comprehensive assessment of the

fidelity with which individual GCMs capture the in-

teractions mentioned above. Here, we apply several

metrics to quantify the extent to which CMIP5 models

simulate key interactions on synoptic time scales, par-

ticularly between synoptic disturbances and the SPCZ.

Section 2 outlines the data and analysis methodology

used in this paper. Section 3 provides an overview of

climatological precipitation biases in the models ana-

lyzed and examines model variability on synoptic time

scales. Section 4 outlines model biases in the intensity

and position of the storm graveyard. Section 5 shows the

results of composite analyses constructed to examine

SPCZ–storm interactions. Finally, conclusions and re-

maining questions are given in section 6.

2. Data and methodology

Twelve CMIP5 models were examined in this work

(Table 1); all had output from the following four

variables available at daily resolution in both the

CMIP5 ‘‘historical’’ and ‘‘AMIP’’ (Atmospheric Model

Intercomparison Project) experiments: zonal wind, me-

ridional wind, specific humidity, and precipitation. With

the exception of CCSM4, the models also had top-of-

atmosphere (TOA) outgoing longwave radiation (OLR)

output available at the same temporal resolution in both

experiments. The two experiments differ principally in

ocean and sea ice; the historical experiment (1850–2005) is

a full ocean–atmosphere coupled integration (Taylor et al.

2012), whereas the AMIP experiment (1979–2008) is an

atmosphere-only configuration forced by observed SST

and sea ice. For clarity, the CMIP5 model output from the

historical and AMIP experiments will be referred to as

coming from coupled models and atmosphere-only, re-

spectively. Both model sets include observed anthropo-

genic and natural radiative forcing in their respective time

spans.

All available output was regridded to a common

2.58 3 2.58 latitude/longitude grid via area averaging.

For those analyses requiring annual data, all available

days in each experiment, 46 years for coupled (1960–

2005) and 30 years for atmosphere-only (1979–2008),

were used to ensure a representative distribution of

variability in each model and experiment is captured.

(For completeness, we also repeated select analyses

using a shorter time period for coupledmodels matching

the atmosphere-only time period length, although the

results were qualitatively similar and are not shown

here.) For those analyses requiring DJF data, all days in

those months were included with the exception of days

from the first January, first February, and last December

of the time span since these are not part of a fully con-

tiguous DJF; thus, DJF analyses contain one less ‘‘year’’

(45 for coupled, 29 for atmosphere-only).

TABLE 1. CMIP5models used in this paper. The latitude and longitude columns (Lat. and Lon.at., respectively) list the resolution of the

model output available from PCMDI’s CMIP5 database. Further information can be found online at http://cmip-pcmdi.llnl.gov/cmip5/

docs/CMIP5_modeling_groups.pdf.

Modeling group CMIP5 model name Lat. (8) Lon. (8)

National Center for Atmospheric Research (NCAR) CCSM4 (r6) 0.94 1.25

Centro Euro-Mediterraneo per I Cambiamenti Climatici (CMCC) CMCC-CM 0.75 0.75

Centre National de Recherches Meteorologiques / Centre Europeen

de Recherche et Formation Avancees en Calcul Scientifique

CNRM-CM5 1.41 1.41

Commonwealth Scientific and Industrial Research Organization in

collaboration withQueenslandClimateChange Centre of Excellence

CSIRO-Mk3.6.0 1.88 1.88

NOAA Geophysical Fluid Dynamics Laboratory GFDL-CM3 2.00 2.50

Met Office Hadley Centre HadGEM2-CC* 1.25 1.88

Institute for Numerical Mathematics INM-CM4 1.50 2.00

Institute Pierre-Simon Laplace (IPSL) IPSL-CM5A-MR 1.26 2.50

Max Planck Institute for Meteorology MPI-ESM-LR 1.88 1.88

MPI-ESM-MR 1.88 1.88

Meteorological Research Institute MRI-CGCM3 1.13 1.13

Norwegian Climate Centre NorESM1-M 1.88 2.50

* HadGEM2-CC is called HadGEM2-A in the AMIP output. For consistency, we will refer to the model as HadGEM2-CC for both the

historical and AMIP experiments.
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As a basis for comparison in the relatively data-sparse

South Pacific, the National Centers for Environmental

Prediction (NCEP) Climate Forecast SystemReanalysis

(CFSR; Saha et al. 2010) is used in all analyses during the

32-yr period spanning 1979–2010 (variables examined in

the CMIP5 models are also available for CFSR during

this period). Niznik and Lintner (2013) showed that

CFSR captures the climatological position of the SPCZ

well (cf. Fig. 2). Precipitation estimates from the Trop-

ical Rainfall Measuring Mission (TRMM) 3B42 dataset

(Kummerow et al. 2000) are used to develop estimated

precipitation intensity histograms, with the caveat that

the record used is comparatively short (December 1998–

February 2013). Additionally, data from the Climate Pre-

diction Center (CPC) Merged Analysis of Precipitation

(CMAP; Xie and Arkin 1997) spanning December

1979–February 2011 is used to supplement TRMM esti-

mates for climatological precipitation values in the sub-

tropical (208–358S, 1358–1658W)portion of the SPCZ.We

note that precipitation (and specific humidity) values

across the South Pacific remain somewhat uncertain;

while these products (TRMM, CMAP, CFSR) do have

some notable disagreement (e.g., 1mmday21 difference

in precipitation in the subtropical SPCZ between TRMM

and CFSR; see Table 2), both the range of values among

these data sources and also their qualitative aspects are

still useful for comparison to model output.

As a measure of the spread of convective activity,

precipitation standard deviations are calculated both for

the entire record as well as on synoptic time scales,

defined here as 14 days or less. To isolate synoptic pre-

cipitation variability, a fast Fourier transform (FFT) was

calculated and a time series was then reconstructed from

only those signals with periods of 14 days or fewer; the

synoptic precipitation variability corresponds to the

standard deviation of this time series. Additionally,

principal uncertainty patterns (PUPs) are generated

by performing empirical orthogonal function analysis

replacing the time dimension with N model realizations

of a given field (see Anderson et al. 2015); in this way,

key intermodel differences between simulated variables

can be isolated and quantified. Here, PUPs are calcu-

lated for both total and synoptic precipitation variability

to aid in grouping models based on precipitation vari-

ability magnitude. Precipitation histograms at the daily

time scale inDJF are generated in the subtropical region

of the SPCZ as well as for TRMMandmodel output. All

precipitation counts from grid cells within an individual

region are used to construct the histograms with bin

spacings of 2.5mmday21 (with three exceptions: the

first bin of each histogram spans 0–0.5mmday21, thus

grouping zero and trace precipitation together, the sec-

ond bin spans 0.5–2.5mmday21, and the final bin cap-

tures all events greater than 100mmday21). This

methodology was repeated using only those grid cells in

each region that have climatological precipitation values

greater than 4mmday21, although the results are robust

to this change. Biases with respect to TRMM for each

model are obtained for the daily time scale by calculat-

ing the difference between each model’s counts and the

TRMM counts and then normalizing by the TRMM

counts in each bin (e.g., 0.3 represents 30% higher counts

on average in a particular model, while 20.3 represents

30% lower counts).

The time scale dependence of the SPCZ variability is

diagnosed from power spectra calculations. Daily values

of TOA OLR from interpolated observed values in the

period 1979–2012 (see Liebmann and Smith 1996),

CFSR, and model output in a 58 3 58 subset (258–308S,
147.58–152.58W) of the subtropical SPCZ were ana-

lyzed, following the precedent of spectral analyses per-

formed byWidlansky et al. (2011) andMatthews (2012).

While the observational dataset should not be used for

direct quantitative comparison with the model output

because observations cannot truly capture total TOA

OLR, the means and variances of both products are

qualitatively similar (G. Kiladis 2014, personal com-

munication). For each data source, the time series of

OLR at each grid cell in the subtropical SPCZ was con-

verted to anomalous OLR by subtracting the day-specific

climatological OLR value obtained by combining the

mean OLR and the first three harmonics of the un-

smoothed annual cycle in observations (i.e., anomalies on

TABLE 2. DJF climatological precipitation (mmday21) over the

subtropical SPCZ region (208–358S, 1358–1658W). Models with

mean precipitation greater than 1 standard deviation from the

median of models are shown in bold.

Dataset

TRMM 4.11 — —

CMAP 5.00 — —

CFSR 5.27 — —

Coupled

models

Atmosphere-only

models

Difference

CCSM4 3.74 3.43 20.31

CMCC-CM 3.28 4.72 1.44

CNRM-CM5 3.79 4.37 0.58

CSIRO-Mk3.6.0 3.68 3.98 0.30

GFDL-CM3 3.90 3.99 0.09

HadGEM2-CC 4.47 4.90 0.43

INM-CM4 4.30 5.21 0.91

IPSL-CM5A-MR 3.85 4.21 0.36

MPI-ESM-LR 3.98 3.97 20.01

MPI-ESM-MR 3.93 4.03 0.10

MRI-CGCM3 2.55 5.98 3.43

NorESM1-M 3.45 3.96 0.45

Median of models 3.82 4.12 0.30

St. dev. of models 0.50 0.70 0.20
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1 January 1980 were calculated by subtracting an ide-

alized climatological value ofOLR specific to that day of

year from the raw value). OLR values were then aver-

aged spatially, resulting in one time series for the sub-

tropical SPCZ, and a power spectrumwas then calculated

(frequency range 1/n through 0.5 with interval spacing

1/n, where n is the total number of days in the time series).

The power spectra was smoothed by a 181-point running

mean (representing approximately 2% of all points for

the coupled model data and 3% of all points for CFSR

and atmosphere-onlymodels) to remove noise due to a high

density of frequencies on short time scales; e.g., 33% of the

calculated points are between a period of 2 and 3 days. In

addition, a theoretical background red-noise spectrumwas

calculated by assuming that the time series reflects a first-

order Markov process and using the lag-1 autocorrelation

coefficient, with 95% confidence intervals obtained

from a chi-squared test assuming 362 (2 3 181) degrees

of freedom. The procedure for precipitation power

spectra calculations is identical. To normalize the spec-

tra for comparison, all power spectra are multiplied by

the number of years in the source time series and then

divided by the smallest number of years in any given

comparison (32 for coupled model TOA OLR, 30 years

for atmosphere-only TOA OLR, and 15 years for cou-

pled and atmosphere-only precipitation).

For the storm graveyard calculations, the zonal de-

rivative of zonal wind (›U/›x), that is, the zonal stretching

deformation ZSD, was calculated via a simple centered

difference scheme for CFSR andmodel output. Although

Widlansky et al. (2011) analyzed data at the 200-hPa level,

the 250-hPa level is chosen here to match the standard

archived CMIP5 model output. Comparison of the storm

graveyard shape and intensity at these two levels in the

CFSR (e.g., Saha et al. 2010) shows minimal difference.

For intermodel comparison, as well as comparison with

CFSR, the magnitude and location of the minimum in

ZSD in both the reanalysis as well as the CMIP5models is

calculated in the region 408–158S, 1808–1108W, chosen

primarily to capture the storm graveyard while excluding

an area of strong negative ZSD located in the eastern

equatorial Pacific.

To diagnose the synoptic characteristics of the SPCZ

variability, composite analyses were performed based

on an index created by averaging daily 250-hPa vorticity

anomalies frommonthlymeans over the region centered

on CFSR’s climatological ZSD minimum (308–27.58S,
1408–127.58W). All days with a vorticity index less than

1.5 standard deviations below the mean (i.e., strongly

negative) cyclonic vorticity that are also the minima in

centered five-day periods are included in the composite.

Additionally, a lead–lag analysis is performed by con-

sidering composites for the 6-day period before and

after the composite days. Note that separate composit-

ing indices were created for the CFSR dataset and for

each of the model datasets. To check the robustness of

the methodology, an alternative index was created by

averaging the vorticity anomaly over a similarly sized

region centered on the climatological ZSDminimum for

each model rather than using the same CFSR-defined

region for each model; the results were qualitatively

similar.

The mean speed and linear trajectory of each storm

contributing to the composites were also calculated,

using a simple vorticity backtracking algorithm. For

each event in the composite analysis, the algorithm

searches a circle with a radius of 5 grid cells and centered

on the day 0 vorticity anomaly (i.e., between due west

and due south of the anomaly) for a negative vorticity

anomaly on the previous day (day2 1). If an anomaly is

found, the same process is repeated, but moving the

starting location to the anomaly at day 21 in order to

find the anomaly on day 22. If no negative anomaly is

found on day 21 or day 22, that particular anomaly is

excluded from the trajectory plots. Additionally, all

vorticity anomalies that do not propagate toward the

SPCZ between due east and due north from day 22

through day 0 are excluded from the analysis. The cho-

sen range of approach trajectories is consistent with

current SPCZ–storm interaction theory; upper-level

vorticity anomalies approach the SPCZ along the

Southern Hemisphere subtropical jet and are steered

equatorward near the storm graveyard (Widlansky et al.

2011; Matthews 2012). The excluded approach angles

could be associated with equatorial waves (especially

those propagating toward the west) or the algorithm

erroneously associating unrelated convection with the

day 0 event. Using this algorithm, a mean speed and

trajectory is calculated as the trajectory from the mean

position of anomalies on day22 to the mean position of

all anomalies on day 0.

3. Synoptic-scale variability biases

a. Model precipitation biases

Before presenting the synoptic analysis, we first sum-

marize the climatological model biases across the South

Pacific. Precipitation climatologies across the South Pa-

cific in both coupled and atmosphere-only models are

depicted in Figs. 2 and 3, respectively, for the 12 models

examined in this work in addition to TRMM, CFSR, and

the model ensemble mean (MEM); for comparison, the

CMAP precipitation climatology is shown in Fig. 1.

Coupled model biases in the region include a poleward

displacement of and enhanced convection in theNorthern

Hemisphere ITCZ, unrealistically intense precipitation
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along 108S in the eastern Pacific, and a dry bias in the

western equatorial Pacific (150–180 8E) associated with

the cold tongue bias. Stronger than observed pre-

cipitation in the southeastern Pacific, as shown in the

MEM, stems from a combination of models simulating

an SPCZ that extends farther east as well as the gener-

ation of a spurious Southern Hemisphere ITCZ (de

Szoeke and Xie 2008; Bellucci et al. 2010; Brown et al.

2011). Individual models do not necessarily exhibit both

of these biases; for example, CMCC-CM shows a bias

solely due to the eastward-extended SPCZ, IPSL-

CM5A-MR shows a bias solely due to the Southern

Hemisphere ITCZ, and MRI-CGCM3 shows evidence

of both. Additionally, the dry bias in the western equa-

torial Pacific manifests considerable spread. Whereas

CSIRO-Mk3.6.0 and MPI-ESM-LR/MR both have

a strong dry bias, CNRM-CM5 has notable precipitation

on the equator in the region 1508E–1808. Averaging

precipitation over the subtropical SPCZ (Table 2) re-

veals that despite an approximate 1mmday21 differ-

ence between TRMM and both of CFSR and CMAP,

many individual coupled models, in addition to the

MEM, simulate lower values than both estimates and

reanalysis.

In the climatological sense, forcing a model with re-

alistic SSTs in the region alleviates most precipitation

biases (see the atmosphere-only models in Fig. 3 and

mean precipitation values in Table 2), as suggested in

previous studies (e.g., Widlansky et al. 2013). However,

there remains a tendency for models to simulate an

SPCZ farther northeast than observed. As a first step in

determining how well the models simulate synoptic-

scale variability, and how errors in synoptic-scale sim-

ulation may impact biases in the SPCZ, we show the

standard deviation of precipitation across the South

Pacific in atmosphere-only models both for all time

scales (Fig. 4) and for synoptic time scales only (14-day

high-pass filtered; Fig. 5). It is immediately apparent that

the models differ considerably in the magnitude of

variability within the 4mmday21 contour of the SPCZ.

Additionally, those models that tend to simulate smaller

precipitation standard deviations overall also show

substantially less precipitation variability on the north-

ern margin of the SPCZ compared to the southern edge.

FIG. 3. As Fig. 2, but for the (c) model ensemble mean and (d)–(o) individual means of the atmosphere-only models.
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These magnitudes are consistent with those obtained

using the coupled models (not shown); regardless of

where the SPCZ is located in coupled models, pre-

cipitation variability is enhanced relative to surrounding

regions but with sizeable spread across the ensemble.

However, fewer coupled models show a low bias on the

northern edge of the SPCZ.

For a more rigorous confirmation of the relative im-

portance of the precipitation variability differences

among atmosphere-only models, we perform a PUP

based on empirical orthogonal function (EOF) analysis

of the standard deviations of precipitation across those

models. This shows a very strong signal in the SPCZ and

not elsewhere; the leading PUP, which explains greater

than 60% of the variance using both the full precipitation

signal as well as the synoptic-only precipitation signal,

exhibits its strongest spatial loading in the SPCZ. Table 3

summarizes the quantitative grouping ofmodels based on

the ratio of precipitation standard deviation within the

subtropical SPCZ in each model compared to TRMM, as

well as the sign of the principal component of the first

PUP using both the full precipitation signal and the

synoptic-only precipitation signal. Those models that

both exceed 0.8 for a standard deviation ratio and have

a negative loading for the first PUP (consistent with

higher precipitation standard deviations) using both

signals are consideredhigh-variability group (HVG)models.

Those that meet none of the aforementioned criteria are

considered low-variability group (LVG) models. The re-

maining models are considered intermediate-variability

group (IVG) models.

The relevance of this precipitation variability to pre-

cipitation on daily time scales is shown in the pre-

cipitation histograms for TRMM, coupled models, and

atmosphere-only models (Fig. 6). Those models in the

HVG (mean error 20.16) tend to simulate histograms

comparable to TRMM. Conversely, LVG histograms

tend to disagree more with respect to TRMM (mean

error 2 0.43), especially INM-CM4 and NorESM1-M,

which very noticeably diverge from the other model

FIG. 4. Climatological DJF precipitation standard deviation (shading, mmday21) over the Pacific for the (a) TRMM estimated dataset,

(b) CFSR, (c) CMIP5 atmosphere-only model ensemble mean (MEM), and (d)–(o) individual CMIP5 atmosphere-only model means.

The thick black line in all panels is the TRMM 4mmday21 climatological precipitation contour, for reference.
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histograms beyond 35–40mmday21 regardless of cou-

pling. A majority of the models simulate too much light

precipitation at the expense of both heavy precipitation

and dry days, which is a well-known bias in climate

models, although somewhat alleviated in CMIP5 com-

pared to CMIP3 (DeAngelis et al. 2013; Sillmann et al.

2013). Among coupled models, CMCC-CM and MRI-

CGCM3 actually show positive errors; however, both

CMCC-CM and MRI-CGCM3 simulate too low a cli-

matological precipitation value (see Table 2) in the sub-

tropical SPCZ (more than one standard deviation below

the model mean). We further note that both models are

capturing light precipitation accurately, underestimating

precipitation in the range of 15–50mmday21, and over-

estimating precipitation heavier than 50mmday21. CNRM-

CM5 perhaps best illustrates the point that even with

reasonable precipitation climatology and variability, a

model may still display some subtle biases on the synoptic

time scale; in addition to underestimating dry days and

overestimating light precipitation, it underestimates pre-

cipitation in the range 15–50mmday21 but performs well

toward the tail of the distribution (high precipitation).

In the case of atmosphere-onlymodels, four out of five

HVGmodels now have large positive errors (mean error

0.63), with most of the error evident at precipitation

values greater than 50mmday21. The most extreme

case of this is MRI-CGCM3 (error 1.53), the only model

capable of simulating mean subtropical SPCZ pre-

cipitation greater than CFSR. Conversely, the LVG

models show little alleviation of error (mean error 0.44)

despite improved climatological representation of the

SPCZ.Thus, it is not immediately obvious that atmosphere-

only models are simulating more realistic histograms

than coupled models—only five models show a decrease

in error, and arguably only GFDL-CM3 shows notable

improvement of those five. However, many models do

show an increase in precipitation values between 15 and

50mmday21, consistent with an increase in storms en-

tering the subtropical SPCZ. This could be due to an

alleviation of the storm graveyard position bias in cou-

pled models, discussed further in section 4.

We note that the class of convective parameterization

scheme (e.g., closure on moisture convergence or buoy-

ancy) has been shown to have an impact on the simulation

FIG. 5. As in Fig. 4, but for standard deviation of 14-day high-pass filtered precipitation.
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of tropical variability in climate models (e.g., the MJO;

Slingo et al. 1996; Lin et al. 2006). However, no such

dependence was found here for the SPCZ.

b. Power spectra analyses

An alternative way to establish how well models are

simulating variability on synoptic time scales is through

the use of power spectra analysis. A power spectra

analysis of TOA OLR is calculated for both coupled

(Fig. 7a) and atmosphere-only (Fig. 7b) models in the

subtropical SPCZ. Consistent with observations and

CFSR, the variability in both sets of models is significant

between one and two weeks, with many models showing

at least one distinct spectral peak in that range. In the

case of the atmosphere-only models, many have too

strong a magnitude for synoptic variability compared to

CFSR, perhaps at the expense of power at other time

scales (such as the MJO; see Hung et al. 2013). CNRM-

CM5 and GFDL-CM3 show less variability than the

other models at synoptic time scales in the atmosphere-

only experiment, with the former being notable since it

is the only CMIP5 model capable of simulating an

eastward-propagating MJO and displaying realistic

MJO variability on the 30–70-day time scale (Hung et al.

2013). There is no obvious relationship between the

TOA OLR power spectra magnitudes and the previous

model groupings.

Figures 7c and 7d show the results of a similar spectral

analysis but using precipitation instead of TOA OLR.

We note, however, that the correlation between the

TRMM and CFSR power spectra is less than the cor-

relation between the NOAA OLR product and CFSR

OLR, although this departure could be partly due to the

difference in time series length between TRMM and

CFSR. Again consistent with precipitation estimates

and CFSR, the variability is significant between one and

two weeks with at least one distinct peak. Although

CFSR has a higher climatological precipitation value

in the subtropical SPCZ than TRMM, CFSR pre-

cipitation variability has lower magnitude than TRMM.

Despite the differences between precipitation estimates

and reanalysis and consistent with the precipitation

standard deviation results in section 3a, many coupled

and atmosphere-only models are underestimating pre-

cipitation variability, particularly at time scales longer

than 1 week. HVG models perform notably better than

IVG and LVG models at matching TRMM variability

magnitudes, although beyond two weeks all models are

underestimating precipitation variability. Among the

more interesting results here is INM-CM4,which performs

poorly on time scales less than 7 days but then performs

better than many LVG models on longer periods.

In summary, the results of spectral analysis are mixed;

the variability of TOAOLR in these models, and hence

clouds, is too high on synoptic time scales whereas the

synoptic variability of precipitation is too low.

4. Storm graveyard statistics

Both the coupled model and atmosphere-only model

precipitation histograms and TOA OLR/precipitation

power spectra suggest a potential deficit of storm in-

teractions in the subtropical SPCZ. Low precipitation

variability on synoptic time scales could be explained in

TABLE 3. Grouping of models based on two criteria for proper simulation of precipitation variability using both the full precipitation

record as well as a reconstructed synoptic precipitation signal. (a) The ratio of model precipitation standard deviation (s) to TRMM

precipitation standard deviation in the subtropical SPCZ (208–358S, 1358–1658W). Ratios that exceed the threshold value of 0.8 are shown

in bold. (b) The principal component of the first principal uncertainty pattern (PUP) for model precipitation standard deviation. Negative

PUP values are shown in bold. (c) Models that meet all criteria (s ratios. 0.8 and PC, 0) belong to the high-variability group (HVG);

models that meet none belong to the low-variability group (LVG); the remaining models belong to the intermediate-variability group

(IVG). Meeting any individual criterion for inclusion in the HVG group is denoted by boldface.

(a) (b) (c)

Dataset s ratio s ratio (synoptic) PUP 1 PC PUP 1 PC (synoptic) HVG IVG LVG

CFSR 1.023 0.9824 — —

CCSM4 0.706 0.674 0.326 0.078 X

CMCC-CM 1.164 1.161 21.343 21.275 X

CNRM-CM5 1.182 1.177 20.746 21.056 X

CSIRO-Mk3.6.0 0.658 0.618 1.066 1.013 X

GFDL-CM3 0.854 0.840 0.753 0.644 X

HadGEM2-CC 1.045 1.027 20.350 20.171 X

INM-CM4 0.754 0.659 1.410 1.558 X

IPSL-CM5A-MR 0.777 0.762 1.145 1.058 X

MPI-ESM-LR 0.843 0.794 20.629 20.319 X

MPI-ESM-MR 0.868 0.818 20.792 20.441 X

MRI-CGCM3 1.340 1.334 21.651 21.838 X

NorESM1-M 0.618 0.562 0.810 0.749 X
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part by a decreased frequency of synoptic disturbances

propagating into the subtropical SPCZ, or by differing

characteristics of these disturbances (e.g., lower rain-

fall rates). Previous work (Widlansky et al. 2011;

Matthews 2012) outlined the importance of the storm

graveyard region in explaining both the diagonal tilt

and variability of rainfall in the SPCZ; thus, we explore

how the storm graveyard is simulated in CMIP5

models, as errors could have not only a profound im-

pact on both the synoptic variability of the region but

also previously highlighted climatological biases (see

Fig. 2).

FIG. 6. Normalized, logarithmic DJF precipitation histograms in the region 208–358S, 1658–1358Wfrom (a) coupled and (b) atmosphere-

only models as well as their differences. The first bin measures 0–0.5mmday21 counts, followed by 0.5–2.5mmday21, with each sub-

sequent bin having size 2.5mmday21 (e.g., 2.5–5.0mmday21). The final bin measures precipitation values exceeding 100mmday21.

(a) TRMM (green boxes) and coupled models (lines); error (see section 2 for details) shown in the legend for each model. (b) TRMM

(green boxes) and atmosphere-only models (lines); error from TRMM shown in the legend for each model. (c) Difference between

atmosphere-only and coupled model histograms for each model (lines); difference and increase/decrease in error, respectively, between

atmosphere-only and coupled histograms shown in the legend for each model.
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Figure 8 shows the zonal stretching deformation (i.e.,

›U250/›x) metric previously used to demarcate the

boundaries of the stormgraveyard, althoughwe simplify by

showing the zonal mean across 358–208S. The region in

which ZSD is negative in the central Pacific denotes the

storm graveyard. Clearly, coupled models show a wide

range (;1808 6 308) of western boundaries, whereas

atmosphere-only models have a much more condensed

range (;1808 6 108). The eastern boundaries show less

improvementmoving from coupled to atmosphere-only; in

fact, the MEM shows a consistent eastward bias in the

eastern edge of the graveyard consistent with models

simulating increased precipitation farther east than clima-

tologically observed. Looking strictly at theMEM for both

cases, it is apparent that the coupled model storm grave-

yards are weaker in magnitude by nearly half and have

minimum ZSD values farther east (1258W) than observed

(1358W). The atmosphere-only graveyards show a notably

reduced bias both in terms of magnitude and position of

minimum ZSD, which can also be seen in the difference

plots between the two experiments. These improvements

are perhaps unsurprising considering that regions of neg-

ative ZSD are closely tied to atmospheric circulation,

which will be more similar to observations when models

are forcedwith climatological SSTs instead of allowing SST

errors to perturb the atmospheric circulation.

A two-dimensional view of storm graveyard biases is

presented for coupled models in Fig. 9. In the model

ensemble mean, it is again evident that there is an east-

ward displacement in the graveyard, although a slight

northward bias is also apparent. Despite a slight east-

ward bias in the MEM, there is a large spread in the

longitude of theZSDminimumamongmodels. This is also

evident in the larger graveyard structure; IPSL-CM5A-

MR has perhaps the largest westward bias, whereas MRI-

CGCM3 has a very pronounced eastward bias. The spread

in magnitude of ZSD minima is also noteworthy. How-

ever, this does not obviously correlate well with the pre-

viously established model variability groupings. Although

other than CNRM-CM5 the HVG models simulate

graveyard with reasonably strong magnitudes compared

to the IVG and LVG models, IPSL-CM5A-MR (an

LVGmodel) simulates a graveyard qualitatively similar to

climatology.

Figure 10 is similar to Fig. 9, but showing atmosphere-

only model results in lieu of coupled models. Much of

the model biases in terms of both magnitude and posi-

tion are alleviated, although the longitudinal spread in

ZSDminima is of comparable magnitude.While it is not

obvious if there are any positional differences between

HVG and LVG model storm graveyards, there does

appear to be a tendency for HVG models to simulate

FIG. 7. Normalized power spectra in (top) coupled and (bottom) atmosphere-onlymodels. (left) ForOLR spectra,models are compared

to CFSR and a NOAA OLR observational dataset. (right) For precipitation spectra, models are compared to CFSR and TRMM pre-

cipitation estimates. Solid (dashed) line indicates variability above (below) the significance threshold (explained in section 2).
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graveyards with stronger magnitudes of ZSD than the

LVG models. In particular, MRI-CGCM3 and CMCC-

CM,models that both show close-to-observed precipitation

variability, have particularly strong ZSD minima—more

than 30% stronger in magnitude. The correlation be-

tween subtropical SPCZ synoptic precipitation standard

deviation and the magnitude of storm graveyard ZSD

minimum in the atmosphere-onlymodels is significant at

the 5% level based on a two-tailed t test with 10 degrees

of freedom. This suggests that there is a possibility for

increased storm interaction in models with stronger

graveyards, which would in turn lead to higher pre-

cipitation variability.

5. Composite analysis of synoptic disturbances
interacting with the SPCZ

Because of the variety of storm graveyard solutions

among coupled and atmosphere-only models, we explore

differencesbetween themodels andobservational/reanalysis

FIG. 8. Meridional average (208–358S) of zonal stretching deformation (ZSD) in CFSR and models across the South Pacific (1208E–
608W), for (a) coupled and (b) atmosphere-only models, and (c) the difference between atmosphere-only and coupled models. MEM

denotes the model ensemble mean in each panel.
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products in the propagation of vorticity anomalies as

they enter the SPCZ using composite analysis. Figure 11

shows the results of the composite of vorticity anomalies

at 250hPa (see section 2 for further information) using

CFSR as well as the MEM results for both coupled and

atmosphere-only models. CFSR shows a propagation of

the vorticity anomalies toward the northeast, from ap-

proximately 358S, 1408W on day 22 to 308S, 1358W on

day 0. The atmosphere-only and coupled models show

similar motion. During the same period, the pre-

cipitation anomalies in the eastern SPCZ in all data

sources are located along a distinct axis oriented from

northwest to southeast, with wet anomalies northeast of

the axis and dry anomalies southeast. There is also a wet

precipitation anomaly southwest of the dry anomaly in

some cases, confirming the path of the wave train as

northeastward or east-northeastward. During day 1 and

day 2, both the vorticity and precipitation anomalies

decay.While the vorticity anomalies drift toward the east,

the precipitation anomalies drift toward the northwest,

with faster motion in CFSR compared to the MEMs. In

analysis of individual models (not shown), only a small

subset of the coupled (CSIRO-Mk3.6.0, GFDL-CM3,

and MPI-ESM-LR/MR) and atmosphere-only (CMCC-

CM, MPI-ESM-MR, and NorESM1-M) models show

precipitation anomalies that drift toward the northwest

with similar speed to CFSR; the others tend to show

relatively stationary anomalies as seen in the MEMs.

Propagation biases could be due in part to the influence of

equatorial Rossby waves in the region, which are not well

simulated in all models (G. Kiladis 2014, personal com-

munication); thus, the composite analysis may not be

FIG. 9. Coupledmodel negative zonal stretching deformation at 250 hPa (blue shading, s21) as compared to CFSR negative ZSD (black

contours) at the same level in the storm graveyard region, as well as the coupledmodel ensemblemean (MEM). The locations of theCFSR

(black dot) and individual model or MEM (purple dot) ZSD minimum are shown for reference. The relative strength of the minimum

value of ZSD in each model compared to CFSR is shown in parentheses after each model name.
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solely picking up interactions between the SPCZ and

midlatitude synoptic disturbances. Other than simulating

precipitation anomalies without the observed north-

westward drift following a storm interaction event, these

composite results do not suggest that either MEM is

substantially biased in interactions between synoptic

disturbances and the SPCZ.

To elucidate whether individual models exhibit

a zonal bias to the trajectories of vorticity anomalies

approaching the SPCZ, a vorticity backtracking algo-

rithm is used to recover the linear trajectory and speed

of individual interactions in reanalysis data compared to

coupled and atmosphere-only model output (Figs. 12

and 13, respectively). There is no notable bias in mod-

eled storm trajectory in terms of MEM results, with

atmosphere-only and coupled models simulating tracks

consistent with CFSR. However, a spread in approach

angle of approximately 6108 among individual coupled

and atmosphere-only models does exist. There is a cor-

relation between ZSD minimum values and storm ap-

proach angle in the atmosphere-only model results

(significant at the 5% level), but the correlation sign is

inconsistent with the expectation that a stronger grave-

yard would result in weaker eastward advection and

increased equatorward diversion toward the westerly

wind duct. Additionally, there is no such significant

correlation in the coupled models. Thus, we conclude

that these variations in storm trajectory are not physi-

cally meaningful. On the other hand, consistent with

a weaker graveyard in models, both the coupled and

atmosphere-only MEM speed of the storms is 0.8 and

0.6m s21 faster than CFSR, respectively. However,

storm speeds calculated for individual models do not

show any strong correlation with the ZSD minimum

values (neither is significant at the 10% level). No other

significant correlations arose with storm trajectory and

FIG. 10. As in Fig. 9, but using data from the atmosphere-onlymodels and theirMEM. The locations of the individualmodel orMEMZSD

minima are now denoted by a green dot.
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speed among individual coupled and atmosphere-only

models. Thus, if the correlation between mean synoptic

precipitation variability and storm graveyard ZSD min-

ima has a physical basis, it is unlikely related to obvious

differences in SPCZ–storm interaction among models.

Because of the difference in precipitation anomaly

propagation, it is worth examining the development of

specific humidity anomalies at lower levels and mid-

levels throughout the storm interactions. Like Fig. 11,

Fig. 14 shows the results of the static composite analysis,

but vorticity has been replaced with lower-level (850hPa)

and midlevel (500hPa) specific humidity. In the CFSR

results, there is a tendency for the midlevel positive

moisture anomalies to appear more prominently leading

up to day 0; conversely, the dry anomalies behind the

storm are evident at both levels. Also worth noting are

the precipitation anomalies in the storm track southwest

of the SPCZ, as they are associated primarily with a low-

level moisture anomaly. Because the SPCZ environ-

ment is already favorable for convection (e.g., warm

SSTs, conditional instability), the lower level is already

close to saturation; thus, the main impact that the in-

teracting storm has is encouraging deeper convection,

resulting in the midlevel moisture anomaly observed.

There is no evidence of a temporal offset between pre-

cipitation and moisture leading up to the storm in-

teraction, although there does appear to be a tendency for

the moisture anomaly to drift farther north than the

precipitation anomaly during days 1 and 2.

In terms of the models, both the coupled and

atmosphere-only models manifest a midlevel moisture

anomaly in the SPCZ, an equivalent barotropic dry

anomaly southwest, and a low-level moisture anomaly

associated with a separate storm farther southwest. To

better understand if individual models are showing

a similar drift in specific humidity, a representative

subset of atmosphere-only models is shown in Fig. 15.

There appear to be four distinct moisture–precipitation

relationships in the models. The most similar model to

CFSR in terms of the magnitude and propagation of the

primary moisture anomaly within the SPCZ is CCSM4,

although it does not show a particularly strong second-

arymoisture anomaly farther southwest. MPI-ESM-MR

also performs well, although it shows a more barotropic

moisture anomaly in the SPCZ, less obvious propaga-

tion signatures, and a strong barotropic moist anomaly

FIG. 11. Composite analysis using 250-hPa vorticity in the region 27.58–308S, 1408–127.58W: (left) CFSR, (middle) atmosphere-only

MEM, and (right) coupledMEM. Each row denotes the days before or after the low vorticity event (i.e.,22 is 2 days before, etc.). Shown

in each panel are precipitation anomalies (shading, mmday21), negative vorticity anomalies (red contours, starting at 0 s21; each sub-

sequent contour is213 1025 s21), and the data source’s climatological 4mmday21 precipitation (black contour). For CFSR, anomalies

are only shown if they are greater than 99% of randomly generated composite differences. For the coupled and atmosphere-only MEMs,

anomalies are shown if 8 or more of the models agree on both the sign and significance (same as for CFSR) of the anomaly at any given

location.
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farther southwest. In the case of MRI-CGCM3, results

compare with MPI-ESM-MR, although the midlevel

moisture anomaly in the SPCZ is more stationary. Fi-

nally, INM-CM4 lacks a particularly strong moisture

anomaly associated with its precipitation enhancement

in the SPCZ and manifests much stronger dry and wet

barotropic anomalies toward the southwest. Thus, the

lack of motion to both the precipitation and moisture

anomalies as seen in the MEM for coupled and

atmosphere-only models during and after storm in-

teractions is representative of many, though not all, of

the individual model results.

6. Summary and conclusions

We have evaluated the ability of current-generation

coupled climate and atmosphere-only models to simu-

late synoptic time scale variability in the SPCZ. The

standard deviation of precipitation across the South

Pacific varies substantially between models, particularly

within the 4mmday21 contour of the climatological

SPCZ. Extreme examples among atmosphere-only

models include INM-CM4, which shows weak variabil-

ity (4–6mmday21), and MRI-CGCM3, which shows

very strong variability (12–16mmday21). Observed

values from TRMM and reanalysis values from CFSR

are near the model upper extreme (10–14mmday21).

The ratio of each model’s precipitation standard de-

viation to TRMM does not change noticeably when

limiting standard deviation to the synoptic time scale

(defined here as less than 14 days).

The tendency for low precipitation variability in the

SPCZ is consistent with CMIP5 model biases in pre-

cipitation shown previously (Sillmann et al. 2013); that

is, the coupled models tend to overestimate moderate

precipitation at the expense of both light and heavy

FIG. 12. Linear trajectories of storms entering the SPCZ included in the composites shown in Fig. 10 for (a) CFSR, (b) the coupled

model ensemble mean, and (c)–(n) individual coupled models. Listed after the data source name are the number of storms plotted (in

parentheses) as well as the angle and speed of the red trajectory, which connects the mean starting and ending position for each data

source. For angles, 08 is toward due north, 908 is toward due east, etc.
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precipitation, which is evident in the precipitation histo-

grams.However, the overestimate inmoderate precipitation

is only partially eliminated in the atmosphere-only

models, suggesting that biases in simulated SST in the

South Pacific are not the sole reason for this type of

error. Model precipitation power spectra are consistent

with the histogram results, although OLR appears to

vary too strongly. These results point toward problems

in model cloud and precipitation parameterizations that

still need to be addressed.

Prior work highlighted the importance of storm in-

teractions in generating SPCZ convection (Widlansky

et al. 2011; Matthews 2012); thus, it is plausible that in-

termodel differences in the frequency and characteris-

tics of storm interactions in the subtropical SPCZ may

account for differences in model precipitation variabil-

ity. As a first attempt at examining these differences, we

performed an analysis of the storm graveyard in both

coupled and atmosphere-only models. Whereas con-

siderable spread is evident across both the coupled and

atmosphere-only models in terms of the magnitude and

position of the storm graveyard, the latter show more

consistency in the location of the western boundary of

the feature. Whereas the coupled MEM graveyard is

both weaker and further northeast than observed, both

of these biases are alleviated in the atmosphere-only

MEM. A significant correlation between graveyard in-

tensity and precipitation variability is identified in the

atmosphere-only models, consistent with the expecta-

tion that increased storm interactions lead to simulation

of greater precipitation variability.

The static composite analysis based on upper-level

vorticity within the storm graveyard region suggests no

obvious bias in the storm trajectories as they approach

the SPCZ. However, the models do not show as strong

a propagation of precipitation anomalies toward the

northwest into the tropical SPCZ following the in-

teraction. To probe the storm interactions further,

a vorticity backtracking algorithm was employed. Re-

sults of the backtracking indicate no notable bias in the

simulated storm trajectories but a positive propagation

speed bias stronger in the coupled models. Although

FIG. 13. As in Fig. 12, but for atmosphere-only models.
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these results are consistent with expectations consider-

ing a weaker simulated storm graveyard, the correlation

between graveyard intensity and either the approach

angle or propagation speed in the individual models is

not strong. Finally, lower-level and midlevel moisture

anomalies during the period of the static composite

analysis were considered, as they may reveal more in-

formation about the differences in behavior between

observed and modeled precipitation anomaly drift.

Reanalysis moisture anomalies within the SPCZ are

stronger at the midlevels, consistent with storm in-

teractions triggering deeper convection; in themodels, this

is generally true, but there is a greater tendency for lower-

level anomalies as well. As with the precipitation anoma-

lies, these moisture anomalies tend to be more stationary

in the models than in CFSR. There is broad agreement on

a barotropic dry anomaly southwest of the SPCZ during

the interaction, consistent with the observed wave train

pattern, and more limited agreement on a low-level sec-

ondary anomaly farther west. The results show no evi-

dence of a temporal lag between moisture increases and

precipitation onset on the daily time scale.

Overall, we conclude that current-generation coupled

and atmosphere-only models show significant biases in

precipitation variability on synoptic time scales, although

it remains unclear how strong a role differences in storm

interactions play in generating these biases. Because

results of the composite analysis were relatively con-

sistent (i.e., it was not a question of whether storms in-

teracted in an individual model, but how), it is plausible

that differences in model parameterizations (specifi-

cally convective parameterizations) may explain the

differences in precipitation variability, as suggested in

section 3. It is also worth noting that recent work by Li

et al. (2014) suggests that the exclusion of the radiative

effects of snow within clouds in CMIP3 and CMIP5

models leads to a positive zonal wind bias in the vicinity

of the storm graveyard; this model error is consistent

with the northeastward bias in the position of the ZSD

minimum of the coupled MEM as well as the positive

rainfall bias on the northern side of the storm graveyard

and warrants more study of the dynamic and thermody-

namic properties of the subtropical SPCZ. As a starting

point, a process-based examination of the differences in

both dynamic and thermodynamic characteristics of the

synoptic disturbances among models, and how they com-

pare to reanalysis products, is planned; previous process-

based diagnostics have proven to be critically important

(e.g., Widlansky et al. 2011; Matthews 2012; van der Wiel

et al. 2015).

FIG. 14. As in Fig. 11, but replacing vorticity anomalies with moisture anomalies at two levels. Positive moisture anomalies are con-

toured at 850 hPa (light green) and 500 hPa (dark green) every 0.25 g kg21; similarly, negative moisture anomalies are contoured at

850 hPa (light brown) and 500 hPa (dark brown) every 0.25 g kg21. The same significance criteria are used for moisture that were used for

precipitation and vorticity in Fig. 11.
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Given the significance of the SPCZ as a locus of

extratropical–tropical interaction, we suggest field cam-

paigns that could improve understanding of the dynamic

and thermodynamic environment in which these in-

teractions take place. A characterization of the vertical

structure of circulation and moisture over the course of

interaction events would be especially useful. Further-

more, campaigns could include an assessment of trace

constituents such as CO2 or anthropogenic constituents,

since the SPCZ appears to provide a preferential path-

way along which transport to high latitudes occurs. For

future model improvements, we provide the following

checklist of parameters that must be well simulated in in

a model to improve the representation of the SPCZ:

1) correct SST gradients across the South Pacific, 2) an

accumulation zone for synoptic waves, and 3) an eastern

boundary betweenmoist convection and dry subsidence.

Modeling studies that allow for careful perturbation of

any combination of these parameters would be useful to

elucidate SPCZ sensitivity.

Considering that themodels simulate storm interactions

with some consistency leads us to posit the following re-

garding SPCZ simulation in CMIP5: the simulated posi-

tion of the subtropical portion of the SPCZ is less biased

than the equatorial and tropical portions, which are

strongly tied to the influence of erroneous SSTs in the

equatorial region. Careful examination of the axis of

maximum precipitation throughout the SPCZ in TRMM

suggests an increased tilt of the subtropical SPCZ relative

to the tropical SPCZ, consistent with the recent statistical

work of Haffke and Magnusdottir (2013). In some

coupled models (e.g., HadGEM2-CC) the change in tilt

between the western and eastern SPCZ is drastic, but

this bias is largely because the western, more tropical

portion of the SPCZ is overly zonal. As a result, it is

perhaps necessary to treat the equatorial/tropical SPCZ

and subtropical SPCZ as separate features when un-

dertaking multimodel analyses of SPCZ bias.

Another direction for future work is the effect that

a well-simulated MJO has on the synoptic variability of

the SPCZ. However, given that the MJO is simulated

with varying success in current-generation models, it

may not yet be feasible to examine this linkage. Future

studies of the simulated SPCZ should nonetheless con-

sider the MJO and associated biases in synoptic pre-

cipitation variability, although such interactions are

likely focused in the tropics with only remote impacts on

precipitation in the diagonal region.
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