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Abstract 

Phthalocyanine derivatives have seen many important developments since their 

discovery in 1907 by Braun and Tcherniac.  These interesting materials are one of the 

most significant classes of macroheterocyclic organic materials owing to their 

remarkable electrical and physical properties which can be tuned by suitable 

derivatization of their rigid inner core. A brief summary of the syntheses, properties 

and applications of these complexes is clarified in Chapter 1.  

The work described in this thesis concerns the synthesis of phthalocyanine 

(Pc)/tetrabenzoporphyrin (TBP) hybrids – intermediates between the widely studied 

Pc and TBP parents. Such hybrids have received a very little attention, mainly because 

they have previously proved difficult to synthesise. Among the series of the 

phthalocyanine/tetrabenzoporphyrin hybrids, tetrabenzotriazaporphyrins (TBTAPs) 

are the most widely studied and they are the focus of this thesis. They have a single 

meso-carbon linkage which can offer an additional site for the attachment of various 

functional groups, thus would provide a wide range of functionalized TBTAP 

derivatives.  

The syntheses of the phthalonitriles have been achieved successfully through the 

investigation of different strategies. Phthalonitriles have been constructed by the 

nickel or palladium catalysed Kumada cross-coupling reaction using 1,2-

dichlorobenzene as precursor, followed by electrophilic bromination and Rosenmund 

von Braun cyanation reaction
 
in the last step. An alternative route towards the 

formation of the phthalonitriles was used in order to synthesise alternative target 

phthalonitriles in good yield; the method employed Kumada cross-coupling reaction 

using 4,5-dibromoveratrole as precursor followed by a sequence of synthetic steps and 

finally cyanation reaction following the procedure described by Hanack and 

Drechsler. A series of meso-phenyl substituted tetrabenzotriazaporphyrins (TBTAPs) 

bearing different functional groups has been prepared successfully via the 

investigation of various approaches. The traditional synthetic methods and their new 

modified versions via Grignard reagents have been developed as well as the modern 

technique via aminoisoindoline that was discovered recently by our group. Most 

importantly, synthesis of functionalised TBTAPs has been achieved.  

Expansion of the π-conjugated system of TBTAPs has been attempted as first 

experimental examinations in this field through several chemical and photochemical 

cyclisation methods, but the desired products were not isolated. Finally, 

transformations of the functionalised meso-phenyl TBTAP macrocycles through the 

palladium-catalysed Suzuki and copper-free Sonogashira cross-coupling reactions 

have been accomplished successfully resulting in the formation of a new series of 

materials. The new strategies combine to open up the potential for many new hybrid 

structures. 
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1.1      Introduction to Phthalocyanines  

Phthalocyanines (Pcs, 2) are one of the most important and interesting classes of 

macroheterocyclic organic materials due to their high chemical and thermal stability, 

electronic absorption due to aromaticity, synthetic flexibility and ability to adapt to a 

broad variety of applications. The name Phthalocyanine originates from the Greek 

words for Phthalo (meaning rock oil) and for Cyanine (meaning dark blue). This term 

was first used by R. P. Linstead to describe a set of organic dyes, whose colours range 

from reddish blue to yellowish green.
1-6

 Phthalocyanines 2 and their metal analogues 

metallophthalocyanines (MPcs, 3; Figures 1.1), are planar structures containing a 

central aromatic core of 18- electrons. They are man-made macrocyclic molecules 

which are structurally similar to the naturally occurring prophyrins 1, such as 

haemoglobin, vitamin B12 and chlorophyll. In the Pc system, the four methine groups 

in porphyrin ring are replaced by four imine groups. Pcs consist of four isoindole units 

joined together by four nitrogen atoms known as aza-bridges. In other words, each of 

the pyrrole unit is fused to a benzenoid ring. According to the similarity between these 

two structures, phthalocyanines have also been termed as 

tetrabenzotetraazaporphyrins. The central cavity of phthalocyanine can accommodate 

two hydrogen atoms (i.e. metal-free Pcs) or more interestingly various metal ions (i.e. 

metallated Pcs) due to the complementary size of the Pc core.
7-9

  

 

Figure 1.1: Molecular structures of metal free porphyrin 1, phthalocyanine 2 and 

metallophthalocyanine 3. 

 

1.2      Discovery and History of Phthalocyanines  

Phthalocyanines were firstly observed by Braun and Tcherniac in 1907 as a dark 

insoluble by-product during the industrial preparation of o-cyanobenzamide 5 from 

phthalimide 4 in acetone (Scheme 1.1).
10 

Unfortunately, no further attention was given 
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to that discovery at that time. Later, in 1927, de Diesbach and Von der Weid obtained 

a blue material during the cyanation of o-dibromobenzene 6 with copper (I) cyanide in 

refluxing pyridine (Scheme 1.2).
11

  

 

Scheme 1.1: Attempted preparation of o-cyanobenzamide by Braun and Tcherniac.  

 

Scheme 1.2: Cyanation of o-dibromobenzene by de Diesbach and Von der Weid. 

 

In 1928, another accidental preparation of a blue green product was discovered by 

chemists at the Grangemouth factory of Scottish Dyes Ltd (later known as Imperial 

Chemical Industries; ICI) during the preparation of phthalimide 4 from phthalic 

anhydride 9 and ammonia (Scheme 1.3). The isolated blue green material was 

examined and identified later as iron phthalocyanine 10. The metal ion was obtained 

from the iron vessel used in the synthesis procedure.
12

 

 

Scheme 1.3: Accidental preparation of iron phthalocyanine. 
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In subsequent years, these compounds were studied in depth by Sir Reginald Patrick 

Linstead.
1
 Using a variety of analytical techniques, he was able to clarify the 

molecular structure of phthalocyanine as well as procedures for preparing a wide 

range of metal-free and metallophthalocyanines.
2-5,12 

Later on, the molecular structure 

Linstead proposed was confirmed by Robertson using X-ray crystallography.
13-15 

 

1.3      Applications of Phthalocyanines 

In recent years, phthalocyanines have received an enormous interest. They are mostly 

used as dyes and pigments which can be applied to various substrates (textiles, leather, 

paints, polymers, papers etc.).
8
 Pcs are also found to be useful in a wide variety of 

high-technology industrial applications due to their high degree of aromaticity, 

characteristic intense blue-green colour, high thermal, chemical and photochemical 

stabilities, low solubility in organic and aqueous solutions, excellent fastness to light, 

synthetic flexibility, significant absorption in the visible region and large absorption 

coefficients.
16-20 

These unique properties of phthalocyanines are not easy to obtain in 

other colorants. For example, the naturally occurring dyes chlorophyll and 

haemoglobin are extremely sensitive to light and easy to destroy by heat.
20 

Examples 

of the potential applications for phthalocyanines include homogenous and 

heterogenous catalysts in chemical reactions,
7
 nonlinear optical materials,

21
 Langmuir-

Blodgett (LB) films,
22

 liquid crystals,
23

 low dimensional metals,
24

 electrochromic 

substances,
25

 photoelectrochemical cells,
26

 photosensitizers,
27

 gas sensors,
28

 optical 

data storage (computer recordable DVDs),
29

 electrophotographic applications,
30

 and as 

NIR electrochromic materials.
31

 Pcs derivatives work as photodynamic reagents for 

cancer therapy and other medical applications (e. g. Zn and AlPcs).
32

  

 

1.4     Properties of Phthalocyanines 

Phthalocyanines are planar macrocyclic aromatic compounds possessing conjugated 

18-π electrons which can be delocalized over alternating carbon and nitrogen atoms. 

The π conjugated system is responsible for the intense blue-green colour and the 

unique chemical and physical properties of phthalocyanines.  The chemical and 

physical properties of Pcs can be affected significantly by modifying the structure of 

the molecule, such as changes in solubility, colour, structural shape and liquid 
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crystalline behaviour.
33

 Structural variation of the Pc macrocycles can be achieved by 

either inserting different elemental ions in the central cavity or introducing variety of 

substituents onto the ring system of Pcs.
7,34  

Those impacts are discussed in further 

detail below.
  

 

1.4.1 Effects of the central metal ions 

Phthalocyanine possesses a central cavity which is able to accommodate either two 

hydrogen atoms (i.e. metal-free phthalocyanine H2Pc) or various metal ions (i.e. 

metallophthalocyanine MPc). More than 70 different elements could be hosted into 

the central phthalocyanine cavity by coordination with the isoindolic nitrogens inside 

the phthalocyanice ring. The metal-free macrocycle usually presents as a dianion (Pc
2-

) and acts as a ligand to the metallic cation to introduce metallated phthalocyanines 

which can be further amended by the coordination of axial ligands on the metal 

depending on its oxidation state.
7 

Small alkali metals that have an oxidation state of +1, such as lithium and sodium, 

form 2:1 metal: phthalocyanine complexes. Both metal ions cannot fit in the central 

cavity and prefer to lie above and below the plane of the Pc ring. In this case, the 

planar form is distorted to a concave form, and thus the solubility in polar organic 

solvents is increased. Metallophthalocyanines can often be easily converted to the 

metal-free phthalocyanines by treatment by dilute acid.
35,36

  

Transition metals such as copper, cobalt and iron in +2 oxidation state normally yield 

1:1 stable metal: phthalocyanine complexes. Central metals in this case are 

accommodated in the central cavity of Pcs and form square planar complexes without 

any significant distortion of the Pc macrocycles. However, the large metals such as 

lead cannot be accommodated completely in the central cavity of Pc and hence sit out 

of the plane of the ring and form distorted rings (i.e. non-planar complexes).
35,37

  

Metals that exist in an oxidation state larger than +2 (i.e. 3+, 4+) such as rhodium and 

tin, usually form complexes with axial ligands which also will increase the solubility 

in organic solvents, whereas, trivalent lanthanide ions such as the rare earth are too big 

to accommodate in the central cavity of the Pc macrocycle. They prefer to form 

dimers, wherein the metal ion is located between two distorted phthalocyanine rings 

(i.e. sandwich bis-phthalocyanines).
35,38  
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1.4.2 Effects of the attached substituents   

A large variety of substituents can be presented at the 16 available positions on the 

fused benzene rings of phthalocyanine (Figure 1.2).
13

 The chemical and physical 

properties of the Pcs are greatly influenced by a number of factors which include 

nature of substituents, presence or absence of central metal ion, number and position 

of substituents (either α- non-peripheral substitution or β- peripheral substitution) 

attached to the Pc macrocycle.
8,39,40

 For example, attachment of aliphatic chains with 

reasonable length will improve the solubility of Pcs in common organic solvents, 

whereas sulfonyl-, carboxy- or amino- substituents are effective for solubility in 

aqueous media.
7,46-54

 The most common substituents are alkyl (CxH2x+1), alkoxy 

(OCxH2x+1) and alkoxymethyl (CH2OCxH2x+1) chains. 

 

 

Figure 1.2: Numbering of the atoms on phthalocyanine macrocycle. 

 

Condensation of mono-, di- or tetra-substituted phthalonitriles produces the 

corresponding symmetrical tetra-, octa- or 16-substituted Pcs. Monosubstituted 

phthalonitriles at position 3 or 4 form tetrasubstituted Pcs, typically as a mixture of 

four positional isomers with C4h, D2h, C2v, and Cs symmetries (Figure 1.3),
8,41-43

 

whereas symmetrical 3,6- and 4,5-disubstituted phthalonitriles give octasubstituted 

Pcs as a single isomer (Figure 1.4).
 
Introduction of the substituents at {(2, 3), (9, 10), 

(16, 17) and (23, 24)} positions is termed as a peripheral () substitution while the 

substituents at {(1, 4), (8, 11), (15, 18) and (22, 25)} positions of the benzene rings is 

called a non-peripheral (α) substitution (Figure 1.4).
7  

Non-peripherally octasubstituted Pc is more difficult to synthesise and normally 

produces lower yields due to the steric hindrance between the attached substituents 
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compared with the peripheral one. However, np-Pc is more soluble in common 

organic solvents and gives less aggregation than the p-Pc.
44,45 

  

 

 

Figure 1.3: The structural isomers of tetrasubstituted metal-free phthalocyanines. 

 

 

Figure 1.4: Non-peripheral and peripheral octasubstituted metal-free phthalocyanines. 

 

Condensation of two different types of mono- or di-substituted phthalonitriles will 

produce six different Pcs in the product mixture as illustrated in Figure 1.5 and Figure 

1.6. However, controlling the ratio of the two phthalonitrile precursors will increase 

the yield of the desired unsymmetrical Pc.
7
  



Chapter 1:  Introduction to Phthalocyanines and Tetrabenzo(aza)porphyrin Hybrids 

 

 8 

 

Figure 1.5: Tetra-substituted Pcs.  

 

 

Figure 1.6: Octa-substituted Pcs.  

 

1.5     Absorption Spectra of Phthalocyanines 

Phthalocyanines have characteristic ultraviolet-visible (UV-Vis) spectra with a strong 

absorption band in the red end of the visible region called the Q-band, at 

approximately 670-720 nm, which is responsible for the intense colour of the 

phthalocyanine, and a weaker absorption in the blue region of the UV-Vis spectrum 
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called the B- or the Soret band, at about 320-370 nm.
7 The Q-band as well as the B-

band are assigned to the π → π* electronic transitions from the HOMO (highest 

occupied molecular orbital) to the LUMO (lowest unoccupied molecular orbital) of 

the Pc
 
ring. The origins of these π → π* transitions can be understood by Gouterman’s 

four-orbital linear combination of atomic orbital model (LCAO), presented in Figure 

1.7.
23,55-61

 The Q-band absorption is due to transitions from the HOMO, (a1u symmetry 

(π)), to the LUMO (eg symmetry (π*)) whereas the transition from a2u and b2u to eg 

results in the B-band absorption. It was observed that the Soret band splits into two 

components, B1 and B2, which occur at about the same energy and form the broad 

band seen in the spectra.
7
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.7: Electronic transitions in phthalocyanines.  

 

Figure 1.8 illustrates a typical absorption spectrum of metal-free and metallated 

phthalocyanine. In the case of metal-free phthalocyanine (H2Pc), the Q band splits into 

two peaks due to the presence of the two protons in the cavity which reduce the 
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symmetry to D2h and consequently loss of degeneracy of the LUMO orbital to produce 

Qy and Qx, at lower and higher energy, respectively. The absorption spectrum of 

metallated phthalocyanine (MPc) is visibly different to that of H2Pc. The Q-band 

exhibits as a sharp single peak as a result of the presence of a single ion in the central 

core of the phthalocyanine. In this case, the degeneracy of the LUMO is maintained 

due to their high symmetry (D4h).
7,62,63 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.8: Typical UV-Vis absorption spectra of metallated (solid line) and metal-

free (dashed line) phthalocyanines, showing the Q and B absorption bands. 

 

Further absorption bands (N, L and C) can be observed, between the Q and B at higher 

energy (210 – 280 nm). These bands are typically not used in the analysis of 

phthalocyanines and are not discussed anymore.
56,64-66 

The electronic absorption 

spectra of Pcs can be modified depending on the type, number and position of 

attached substituents, central coordinating atoms in the Pc ring, type of solvent used 

and the aggregation of the molecules.
49,67-73  

The introduction of a metal ion inside the Pc cavity can result in an excitation transfer 

between the metal’s atomic orbitals and the phthalocyanine ligand and consequently 

the Q band undergoes a slight blue shift. The Q band can shift to the red region in the 

case of occupation the metal ion outside the central core of Pc, such as PbPc. Substitution 

on the benzene ring results a shift (bathochromic or hypsochromic shift depending on the 

type of functional group substituted) of the Q-band compared to unsubstituted Pc. Non-

peripheral substitutions demonstrate a larger shift than peripheral substitutions, as shown 

  Metal-free Pc 

Metallated Pc 

 

Wavelength (nm) 

A
b
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a
n

ce
 

B-Band Q-Band 
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in Figure 1.9.
 7,19,67,72,74

 Electron donating substituents at the -position generate a red 

shift of the Q-band due to reduction in the HOMO-LUMO energy gap, whereas 

substituents at the -position shift to a blue region.
72

 In contrast, the effect of electron-

withdrawing groups results an absolutely the opposite effect in regard to the  and 

positions. In addition, the aromatic solvents and extension of the π-system exhibit 

a bathochromic shift of the intense Q absorption band into the near infrared NIR 

region.
73-76

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.9: Absorption spectra of peripheral (β) (dashed line) and non-peripheral (α) 

(solid line) substituted metallated phthalocyanines.  

 

1.6     Solubilisation of Phthalocyanines 

The solubility of unsubstituted phthalocyanines is generally very low in most organic 

solvents due to intramolecular interactions within their π-system.
77,78 

They are also 

hard to dissolve in high-boiling aromatic solvents such as quinoline or α-bromo or α-

chloronaphthalene even at concentrations around 10
-5

 M.
79

 Sulfuric acid at 

concentrations greater than 8 M was found to be the most effective solvent for these 

materials. Furthermore, this solvent acts to protonate the phthalocyanines and thus 

alters their basic properties. As a result of the insolubility, their applications are very 

limited.  

Their solubility can dramatically increase by the introduction of substituents into the 

Pc ring either on the peripheral (β) or non-peripheral (α) positions. Consequently, 

these substituents reduce the intermolecular attractions due to increasing the distance 

A
b
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a
n
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between the stacked molecules.
7,42,78,80-84 

Tetra- and octa-substituted phthalocyanines 

are the most commonly studied.
7,80

 Generally, the solubility of octa-substituted 

phthalocyanines is significantly lower than for the tetra-substituted analogues due to 

the fact that the tetra-substituted phthalocyanines are formed as a mixture of isomers 

and thus give rise to a lower degree of order in the solid state, compared with the octa-

substituted phthalocyanines.
47,48,78,86

 Moreover, the solubility of peripherally tetra or 

octa-substituted phthalocyanines is higher than the non-peripherally substituted 

compounds.
85

  

The insolubility of phthalocyanines has been thoroughly investigated an extensive 

work carried out in order to add substituents to the phthalocyanine macrocycle and 

this has led to enhanced solubility. Improving the solubility of phthalocyanines in 

common organic solvents was not only the reason for these explorations but also to 

improve their potential usefulness in numerous possible applications.
87

 Synthesis of 

functionalised phthalocyanines was achieved using a wide range of substituents such 

as aliphatic chains and higher order aromatics, acids, amines, thiols and halides and 

these are discussed in detail further on the chapter.   

 

1.7     Liquid Crystal Properties of Phthalocyanines 

It is known that matter exists in three common forms; solid, liquid and gas. The atoms 

or molecules in crystals exist in a highly ordered arrangement while no such order 

presents in liquids. The sort of phase that takes place between isotropic liquid and 

crystalline solid and shares some of the their properties is termed as liquid crystalline 

phase, mesophase or mesomorphic phase and the materials are called liquid crystals, 

mesomorphs or mesomorphic substances
 
(Figure 1.10).

88-90 

 

Figure 1.10: Liquid crystal phase. 
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Liquid crystalline phases can be formed via two different ways. For example, they can 

be obtained by heating or cooling the materials and these are called thermotropic 

liquid crystals, whereas the liquid crystals that obtained by dissolving the materials in 

controlled amount of solvents, are named lyotropic liquid crystals. Depending on the 

molecular shapes, the thermotropic liquid crystals are classified as a calamitic (rod-

like) and discotic (disc-like) liquid crystals. Phthalocyanines typically belong to 

thermotropic, discotic liquid crystalline phases.  Liquid-crystalline behaviour of 

phthalocyanines was first reported by Simon and co-workers in 1982.
91

 These 

phthalocyanines possess eight long alkyloxymethyl chains at the peripheral positions 

(Figure 1.11). Later on, Pcs with octaalkyl and octaalkyloxy chains were also found to 

exhibit discotic mesomorphism.
23,92-95 

After several
 
studies, researchers found that the 

peripherally substituted octa- alkoxymethyl, alkoxy and alkyl phthalocyanines led to 

formation of columnar hexagonal mesophases.
23,92,96-100 

Non-peripherally substituted 

phthalocyanines have also been found to exhibit discotic liquid-crystalline 

behaviours.
44,67,101-105 

 

Figure 1.11: First liquid-crystalline phthalocyanine. 

 

1.8 Synthesis of Phthalocyanines and its Phthalonitrile Precursors  

1.8.1 General synthetic methods for the preparation of phthalocyanines     

Various synthetic routes can be used to prepare Pcs and the method chosen is affected 

by several factors. For example, the type of phthalocyanine to be prepared (metal free 

or metallated, symmetrical or unsymmetrical), the nature of the functional groups 

attached (alkyl, alkoxyalkyl), and the kind of the metal ions inserted into the Pc 

macrocycle (metal salts, oxides, halides). Reaction conditions (solvents, temperatures, 
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catalysts and bases) can also influence the synthetic pathways to Pcs. Generally, Pcs 

can be prepared from the cyclotetramerisation of aromatic ortho-dicarboxylic acid 

derivatives, such as phthalonitrile (7), phthalic anhydride (9), phthalimide (4), o-

cyanobenzamide (5), and diiminoisoindoline (38) in presence of metal salts for 

metallated Pcs and in the absence of the metal salts for the free-metal Pcs (Scheme 

1.4).
7,8,78,107-110  

 

Scheme 1.4: Basic synthetic routes for preparing phthalocyanines.  

 

Phthalonitrile 7 (1,2-dicyanobenzene) is the most commonly used precursor for 

preparing substituted phthalocyanines. Generally, this compound readily produces 

pure phthalocyanine complexes in good yields with nearly all the metals of the 

periodic table (except silver and mercury).
79

  Most syntheses involve simply heating 

the phthalonitrile in a high boiling solvent such as quinoline, nitrobenzene, 

chlorobenzene or 1-chloro-naphthalene in the presence of a metal ion or metal 

salt.
80,111

 Organic bases such as 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU)
112

, 1,5-
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diazabicyclo[4.3.0]non-5-ene (DBN)
113

, piperidine or cyclohexylamine
 
can be used 

for the cyclotetramerisation of phthalonitriles in alcoholic solutions (e.g. pentanol, 

octanol), with the metal ion as template for the synthesis of metallophthalocyanines.
78

 

In addition, the refluxing solution of phthalonitrile with lithium, sodium or potassium 

alkoxide in an alcoholic solvent such as pentanol forms an alkali metal Pc.
7
 

Alternatively, the reaction of phthalonitrile with ammonia forms the 

diiminoisoindoline which is then cyclised in the presence of metal salt and 

dimethylaminoethanol (DMAE) as solvent to form the metallophthalocyanine. 

Demetallation of MPcs using dilute aqueous acid forms the metal free phthalocyanine 

which can be turned into MPcs by refluxing in the presence of metal salts.
7,114,115

 This 

alternative pathway is used to avoid the formation of by-products which are 

commonly produced with other strong bases. Recently, substituted Pcs can be 

prepared in a high yield in a very short period of time via microwave irradiation in the 

presence of suitable solvent.
116-120

  

 

1.8.2     Mechanism of phthalocyanine formation 

There are generally different suggested mechanisms for the phthalocyanine formation 

depending on the starting materials and the reaction promoters.
121,122 

However, the 

mechanism is still not fully understood.
123-126 

Scheme 1.5 describes the proposed 

mechanism for the formation of metallophthalocyanine in the presence of an alcohol 

from a phthalonitrile and diiminoisoindoline precursors.
124,127,128 

Alcohol is assumed 

to be firstly deprotonated by some basic promoters such as DBU or DBN leading to 

strong nucleophillic alkoxide species 40. An alkoxide ion attacks the nitrile or imide 

linkage in case of phthalonitrile and diiminoisoindoline, respectively. This obtains the 

monomeric alkoxyiminoisoindolenine intermediates
125

 41 and 42 which are suggested 

to react with further phthalonitrile molecule to form the dimeric intermediates
129

 

43a,b. Subsequently, the dimeric intermediates 43a,b can react with another 

phthalonitrile molecule to produce the trimeric indolenine intermediate 44 which 

reacts with further phthalonitrile molecule to form 46a. An alternative proposed 

mechanism involves the self-condensation of two half phthalocyanine units to form 

the tetrameric intermediate
130

 45a. Cyclisation of intermediates 45 and 46 occur in the 

last step, to give a stable 18-π electron aromatic system. The cyclisation involves the 

nucleophilic attack on the aryl ether by the imide group (45a,46a) followed by the loss 

of an aldehyde and a hydride (45b,46b), leading to the formation of the 
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phthalocyanine molecule 3.
125

 The same mechanism is also proposed for the reactions, 

which involve the use of Li or Na. 

Scheme 1.5: Mechanism of phthalocyanine formation. 

 

1.8.3     Synthesis of phthalonitriles 

Phthalonitriles (1,2-dicyanobenzenes) are commonly favoured as phthalocyanine 

precursors and generally used in the laboratory scale syntheses, since they can be 

easily prepared via various synthetic routes. Phthalonitriles in particular can lead to 

mild, clean reaction process in high yields of pure phthalocyanine complexes, whereas 

the other precursors such as phthalimide and other phthalic acid derivatives lead to 

very unreliable yields. The most useful pathways for the synthesis of phthalonitriles 

have been reviewed
7,111,131 

and are described below. 

 

1.8.3.1     Synthesis of “non-peripherally” substituted phthalonitriles 

3,6-Dialkylsubstituted phthalonitriles 22 are synthesised via one of the three different 

methods shown in the schemes (Schemes 1.7, 1.8 and 1.9). All these routes have been 

developed at UEA by Cook and co-workers.
132

 Direct electrophilic aromatic 

substitution onto 1,4-disubstituted benzene 47 cannot be used in the case of 
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preparation of 3,6-disubstituted phthalonitriles, due to the fact that the bromination of 

1,4-disubstituted benzene derivatives favour the 2,5-positions 48 rather than the 

required 2,3-positions 49 (Scheme 1.6).  

 

Scheme 1.6: Bromination of 1,4-disubstituted benzene 47. 

 

The Diels-Alder [4+2] cycloaddition reaction has been successfully used as a key step 

for the synthesis of 3,6-disubstituted phthalonitriles.
132,133

 Fumaronitrile 53 is the most 

common dienophile used in synthesis of 3,6-dialkylphthalonitrile.  The diene is 2,5-

dialkylthiophene-1,1-dioxide 52 which can be prepared via dialkylation of thiophene 

50 using n-butyllithium and an alkylating agent (e.g. RBr) in one step.
134

 Oxidation of 

the dialkylated thiophene 51 was then achieved in order to obtain the corresponding 

sulphone 52. Cycloaddition using fumaronitrile 53 was followed by in situ extrusion 

of sulfur dioxide and subsequent dehydrogenation to form the desired 3,6-

dialkylphthalonitrile 55 (Scheme 1.7).
132,133,135

  

 

Scheme 1.7: Synthesis of 3,6-dialkyl phthalonitrile 55 via thiophene. 

 

Furan 56 has similarly been used to synthesise 3,6-dialkylphthalonitriles 55 (Scheme 

1.8).
132  

The alkylation in this case was achieved through two steps and thus allows 

introduction of the second alkyl source into the molecule. The dialkylated product 58 

then undergoes Diels-Alder reaction with fumaronitrile 53 giving the intermediate 59 

which then dehydrates with the hindered base lithium bis(trimethylsilyl)amide to yield 

the desired 3,6-dialkylphthalonitriles 60. This synthetic route is mainly used to 

prepare unsymmetrical 3,6-disubstituted phthalonitriles.
132

 Moreover, other functional 

groups such as phenyl, alkenes,  alkoxycarbonyls, bis-ortho esters , alkoxymethyls have been 

introduced onto the benzene ring using this procedure.
136
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Scheme 1.8: Synthesis of unsymmetrical substituted phthalonitrile 60 via furan. 

 

A recent procedure used for the synthesis of 3,6-dialkyl phthalonitrile 55 has been 

developed by Cammidge and Cook.
137 

This route uses a Negishi
138

 cross-coupling 

reaction between 3,6-phthalonitrile-bistriflate 62, which is easily prepared from the 

commercially available 2,3-dicyanohydroquinone 61, and an alkylzinc halide (Scheme 

1.9) to yield the desired 3,6-dialkyl phthalonitrile 55.
138-141

 
 

 

Scheme 1.9: The Negishi cross-coupling route. 

 

1.8.3.2     Synthesis of peripherally substituted phthalonitriles 

A number of different methods are available for the synthesis of 4,5-

dialkylphthalonitriles and have been reported in the literature.
114,137,142-145 

For example, 

phthalic acid derivatives have been used as starting materials to prepare a number of 

4,5-disubstituted phthalonitriles.
114

 Wöhrle’s method involves the conversion of  4,5-

dichlorophthalic acid 63 into the corresponding dichlorophthalic anhydride 64 and the 

formation of dichlorophthalimide 65. Formamide is used as a solvent and a source of 

ammonia during the formation of the phthalimide 65. Addition of ammonia solution 

results in the formation of dichlorophthalamide 66 which is dehydrated using thionyl 

chloride and DMF to yield 4,5-dichorophthalonitrile 67 as shown in Scheme 1.10.
114

 

This compound 67 can react with a number of alcohols or thiols in a nucleophilic 

displacement reaction to give the desired 4,5-disubstituted phthalonitriles 68 and 69. 
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Scheme 1.10: Synthesis of 4,5-disubstituted phthalonitriles via Wöhrle’s method. 

 

A similar method, developed by Leznoff and co-workers in 1996, has also been used 

to prepare 4,5-disubstituted phthalonitriles (Scheme 1.11).
143 

The reaction starts with 

iodination of phthalimide 4 with formation of 70 (a,b,c). Ammonolysis was then 

followed to give 71(a+b) which has been treated with trifluoroacetic anhydride in dry 

dioxane/ pyridine in order to obtain a mixture of diiodophthalonitriles 72(a+b).  4,5-

diiodophthalonitrile 72a has been used as starting material for the preparation of 4,5-

disubstituted phthalonitriles. The introduction of the alkynyl substituents can be 

achieved by the Sonogashira cross-coupling reactions between alkynes 73 and 4,5-

diiodophthalonitrile 72a to give 74. Reduction of this compound 74 leads to formation 

of the target 4,5-dialkylphthalonitriles 75.  

 

Scheme 1.11: Synthesis of 4,5-dialkylphthalonitriles 75 via Leznoff’s route. 
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4,5-Dihalogenated phthalonitriles considered as good substrates for transition metal 

catalysed cross-coupling reactions. 4,5-Disubstituted phthalonitriles have also 

prepared from the halogenated starting materials via palladium catalysed Heck,
143

 

Stille,
146

 and Suzuki
147

 cross-coupling reactions. 

4,5-Alkoxysubstituted phthalonitriles can be prepared by alkylation and Rosenmund-

von Braun reactions.
 95,142,148

 For example, 4,5-dialkoxyphthalonitrile can be prepared 

by simple alkylation of commercially available catechol 76 followed by the 

bromination reaction to form 1,2-dibromo-4,5-dialkoxybenzene 78. Finally, cyanation 

of dibromide 78 can be achieved using CuCN to give the corresponding 4,5-dialkoxy 

phthalonitrile 79 (Scheme 1.12).  

 

Scheme 1.12: Synthesis of 4,5-dialkoxyphthalonitrile 79.  

 

An alternative route to the Rosenmund-von Braun cyanation for the preparation of 

4,5-dialkylphthalonitrile
149

 starts with Kumada-coupling
150

 between 1,2-

dichlorobenzene 80 and the Grignard reagent to give 81, followed by bromination and 

finally cyanation to yield the target 4,5-dialkylphthalonitrile 83 (Scheme 1.13).
149

 

 

 

Scheme 1.13: Synthesis of 4,5-dialkylphthalonitrile 83 via Kumada-coupling. 

 

Preparation of 4,5-dialkoxymethylphthalonitrile precursors have also been widely 

studied.
151-154

 Bromination of  o-xylene 84 led to formation of 4,5-dibromo-o-xylene 

85 which is followed by free radical bromination of the side chains using NBS to form 

86. The nucleophilic substitution of the bromide by alkoxy groups for the side chains, 

is then achieved to give 87 which then undergoes the Rosenmund-von Braun reaction 

to form the target 4,5-bis(alkoxymethyl)phthalonitrile 88 (Scheme 1.14).    
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Scheme 1.14: Synthesis of 4,5-bis(alkoxymethyl)phthalonitrile 88.  

 

The Rosenmund-von Braun reaction has been used for preparation a wide range of 

4,5-disubstituted phthalonitrile derivatives, but disadvantages result in the 

development of other synthetic strategies.  An alternative route was developed by 

Hanack et al. in which the triflated catechols were converted into their corresponding 

nitriles.
144 

Cyanation of triflates was achieved using tris(dibenzylideneacetone) 

dipalladium as a source of palladium (0) and DPPF as ligand. The reaction was carried 

out in DMF and zinc cyanide was added portionwise to the reaction mixture over a 

prolonged period (Scheme 1.15). The use of zinc cyanide as source of cyanide 

minimizes the concentration of free cyanide (a poison for the catalyst). No product 

was obtained when the zinc cyanide was added in one portion. These reaction 

conditions have been successfully adapted for the formation of phthalonitriles from 

dihalides with good yields of the products.
144,155,156

 Overall, the palladium-catalysed 

cyanations of aryl triflates or halides are highly valuable strategies for synthesis of 

phthalonitriles. 

 

 R1 R2 R3 

1a, 2a, 3a H CH3 H 

1b, 2b, 3b CH3 H H 

1c, 2c, 3c H CO2Et H 

1d, 2d, 3d (CH2)4CO2Me H H 

1e, 2e, 3e H CH2CH(NHBoc)CO2Me H 

1f, 2f, 3f H C2H4CO2Et C2H4CO2Et 

1g, 2g, 3g H -CH=CH-CH=CH- -CH=CH-CH=CH- 

Scheme 1.15: Synthetic route using the Hanack reaction. 
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We have thus addressed most of the potential approaches of the preparation of 

peripherally and non-peripherally substituted phthalonitrile precursors which can 

result in formation of the corresponding phthalocyanines which are discussed in next 

section.  

 

1.8.4     Synthesis of phthalocyanines 

1.8.4.1   Synthesis of unsubstituted metal-free phthalocyanines (PcH2) 

Metal-free phthalocyanine is obtained by cyclotetramerisation of phthalonitrile. A 

typical synthetic method involves the treatment of phthalonitrile 7 with ammonia and 

sodium metal in methanol under the mild conditions  to form 1,3-diiminoisoindoline 

38 which is then condensed in a reducing solvent such as dimethylaminoethanol 

(DMAE), to form PcH2 2. Non-nucleophilic hindered bases such as 1,8-

diazabicyclo[4.3.0] non-5-ene (DBN) and 1,8-diazabicyclo [5.4.0] undec-7-ene 

(DBU) can also be used for the preparation of metal-free Pcs from phthalonitriles in 

either a melt or in pentanol solution. Alternatively, PcH2 can also be prepared by 

refluxing phthalonitrile and lithium metal in pentanol to form PcLi2 58, which is then 

treated with dilute acid, to produce PcH2 2 (Scheme 1.16).
114 

 

 

Scheme 1.16: Synthesis of unsubstituted demetallated phthalocyanine. 
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1.8.4.2   Synthesis of unsubstituted metallated phthalocyanines (MPc) 

Unsubstituted metallated phthalocyanines can be prepared from the 

cyclotetramerisation of phthalonitrile or diiminoisoindoline in the presence of the 

metal salts (MXn) (Scheme 1.17).
7
  

 

 

Scheme 1.17: Synthesis of unsubstituted metallated phthalocyanine. 

 

Alternatively, MPcs can also be prepared by treating phthalonitrile with lithium metal 

to form Li2Pc which can be undergone the metal-ion-exchange reaction to form MPcs 

(Scheme 1.19).
7
  

 

 

Scheme 1.19: Formation of MPcs using metal-ion-exchange reaction. 

 

It also could be prepared by the reaction of PcH2 with a suitable metal salt (MX2, 

MX3, MX4) in a high boiling point solvent such as quinoline or 1-chloronaphthalene 

to ensure complete metallation (Scheme 1.18).
7
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Scheme 1.18: Synthesis of MPcs. 

 

 Many ions (e.g. Fe
2+

, Si
4+

, Mg
2+

, Al
3+

) can be accommodated into the phthalocyanine 

core, however, the most common metals inserted in Pc core are of a +2 oxidation 

state. PcM complexes with central metals in a +3 or +4 oxidation state are able to link 

one or two axial ligands. These complexes exhibit improved solubility in common 

organic solvents and reduce the intermolecular interaction.
7
 

 

1.8.4.3   Synthesis of substituted phthalocyanines 

The solubility of unsubstituted MPc and H2Pc is low in common organic solvents. 

Enhancement of solubility in common organic solvents can be achieved by 

introducing substituents onto the four benzo rings of the Pc core at the peripheral sites 

(2,9,16,23 or 2,3,9,10,16,17,23,24) or non-peripheral positions (1,8,15,22 or 

1,4,8,11,15,18,22,25) (Figure1.12).
7 

 

Figure 1.12: The structures of peripheral 2,9,16,23-tetra-substituted Pc 15; 

2,3,9,10,16,17,23,24-octa-substituted Pc 20 and non-peripheral 1,8,15,22-tetra-

substituted Pc 11; 1,4,8,11,15,18,22,25-octa-substituted Pc 19. 
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Substituents on the four benzo rings can be divided into two different classes; 

symmetrical and unsymmetrical substituted Pcs (Figure 1.13). These are discussed in 

sections 1.8.4.3.2 and 1.8.4.3.3 in more details. 

 

Figure 1.13: Examples of the structures of symmetrical 92 and unsymmetrical 93 

substituted Pcs.  

 

1.8.4.3.1   Direct incorporation of substituents on the preformed unsubstituted 

phthalocyanines 

Substituted Pcs can be prepared by the direct electrophilic aromatic substitutions of 

the preformed Pcs, such as the preparations of halogenated and sulfonated Pc 

derivatives. These procedures usually give a mixture of substituted Pcs which are 

really difficult to separate. These mixtures are commonly used as colour pigments in 

the dye industry. Examples of these reactions are shown in Scheme 1.19.
7,108

  

 

 

 

Scheme 1.19: Examples of the electrophilic aromatic substitutions of the Pcs. 
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1.8.4.3.2    Synthesis of symmetrical substituted phthalocyanines 

1.8.4.3.2.1    Tetra-substituted Pcs 

Due to the failure of chemists to produce a single pure substituted Pc using the direct 

electrophilic substitutions, they started to discover other synthetic strategies to obtain 

pure substituted Pcs. They widely studied tetra-tertiary-butyl Pc, which is a good 

example to prepare the symmetrical tetra-substituted Pcs because their high solubility 

in common organic solvents due to the four bulky substituents in benzo rings. In 1971, 

tetra-tertiary-butyl Pc was first prepared by Mikhalenko et al.
157

 as shown in Scheme 

1.20 (route 1). The synthesis of this Pc started from 4-t-butylphthalic anhydride 96, 

and after three steps gave the tetra (t-butyl) Pc 100. It also was prepared by Kovshev 

et al.
158 

in 1976 starting from bromination of t-butylbenzene 101 to give 102 which 

was treated with CuCN in DMF to form 99. Cyclotetramerisation of 99 gave the target 

Pc 100 (Scheme 1.20, route 2). Alternatively, tetra-t-butylphthalocyanines can also be 

achieved in one step via cyclotetramerisation of 4-t-butylphthalic anhydride 96 with 

metal salts and urea (Metz et al., 1984)
159

 (Scheme 1.20, route 3).
7
 

 

Scheme 1.20: Synthesis of tetra-tertiary-butyl Pc. 

 

Typically, a mixture of four isomers is generated in this reaction which are extremely 

difficult to separate. In 1996, Hanack’s group
41 

demonstrated that the separation of 

these isomers can be accomplished using a high performance liquid chromatography 

(HPLC).
7 
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1.8.4.3.2.2    Octa-substituted Pcs 

Octa-substituted Pcs are typically prepared from 4,5-disubstituted phthalonitriles 83 or 

3,6-disubstituted phthalonitriles 55 precursors. Once reasonable amounts of 

phthalonitrile precursors had been formed, which have been described in section 1.8.3, 

the peripherally 20 and non-peripherally 19 substituted phthalocyanine derivatives can 

be produced (Scheme 1.21).
7,160 

 

Scheme 1.21: Typical synthesis of symmetrical octa-substituted MPcs 

 

1.8.4.3.3    Synthesis of unsymmetrical substituted phthalocyanines 

Unsymmetrical substituted Pcs can be typically prepared by the cross-condensation of 

two different phthalonitriles or diiminoisoindolines using an appropriate ratio.
148 

Typically, condensation of two differently precursors forms six different Pcs in the 

product mixture and this leads to difficulties in the separation and purification. A 

mixture of compounds that have a combination of very different functional groups can 

improve the separation. Increasing the yield of a particular unsymmetrical Pc can be 

achieved by controlling the ratio of the two phthalonitrile precursors. The synthetic 

pathways that are used to form unsymmetrical tetra-substituted and octa-substituted 

Pcs are shown in Scheme 1.22 and Scheme 1.23, respectively.
7 
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Scheme 1.22: Synthesis of tetra-substituted Pcs from the cross-condensation of two 

different mono-substituted phthalonitriles. 

 

 

Scheme 1.23: Synthesis of octa-substituted Pcs from the cross-condensation of two 

different di-substituted phthalonitriles. 

 

A new synthetic route for the preparation of unsymmetrical substituted Pcs was 

reported by Kobayashi
161 

and co-workers in 1990. They found that the 

subphthalocyanine undergoes ring expansion reaction when treated with 1,3-

diiminoisoindolines or their analogues, producing the metal-free or metallated 
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unsymmetrical substituted Pcs. Examples of this new route are illustrated below 

(Scheme 1.24).
161

 

 

Scheme 1.24: Subphthalocyanine ring expansion method for the preparation of the 

unsymmetrical substituted Pcs. 

 

1.8.4.3.4    Synthesis of benzannulated phthalocyanines: expansion of the π-

system  

Benzannulated phthalocyanines are analogs of phthalocyanines which possess an 

additional four benzo groups fused to the peripheral benzo groups of the Pc 

macrocycles, such as 2,3-naphthalocyanine (Nc) 111, 112 (Figure 1.14).
16,162-166

 

 

Figure 1.14: Examples of benzannulated phthalocyanines. 

 

Synthetic approaches to phthalocyanines with an extended system of π-electron 

conjugation are carried out under similar conditions to those of general 

phthalocyanine synthesis. An example of this strategy is illustrated in Scheme 1.25. 

The preparation involves the bromination of substituted 3,4-dimethylbenzene 113 to 

form 1,2-bis(dibromomethy1)benzene 114 which then treaded with fumaronitrile 53 
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and sodium iodide undergoing an elimination-Diels-Alder reaction to give the 

substituted 2,3-dicyanonaphthalene precursor 115. The cyclotetramerisation of this 

precursor 115 results in the formation of the target 2,3-naphthalocyanine 116.
165,166  

The unique physical and chemical properties of these complexes are generally because 

of their extended π-electron conjugated systems. For instance, their Q-bands in the 

electronic absorption spectra are shifted to red region (bathochromic shift) by 

approximately 90 and 170 nm, depending on central metal atom, as compared to the 

corresponding phthalocyanines.
75,167  

 

 

Scheme 1.25: Preparation of tetra-substituted naphthalocyanine. 

 

Extension of the molecular π-system can also be achieved via replacement of the 

benzene rings of phthalocyanines by triphenylene and perylene units. The resulting 

materials (triphenylenophthalocyanines 117 and perylenophthalocyanines 118; Figure 

1.15) exhibit a bathochromic shift to the long wavelength in the UV-Vis spectrum 

owing to improved π-conjugated system in the molecules in comparison with the 

phthalocyanines 119 synthesised  by Simon et al.
169

 and phthalocyanine 3 itself.  

These molecules show discotic liquid crystalline behaviors due to their large and flat 

aromatic cores. The first heavily substituted triphenylenophthalocyanines were 

reported at UEA by Cammidge et al. in 2002,
 

whereas the first 

perylenophthalocyanines were synthesised in 2006 by the same group.
76,168,170
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Figure 1.15: π-Extended Pcs prepared by Cammidge and Pcs synthesised by Simon. 

 

Preparation of these materials from their phthalonitrile precursors was achieved using 

procedures showed below. Once the phthalonitrile precursors were prepared 

successfully, the corresponding benzannulated phthalocyanines can be accomplished 

by heating dinitriles with metal salts and bases in refluxing alcohol. An example of the 

preparation of triphenylenophthalocyanine is illustrated in Scheme 1.26.
76

  

 

Scheme 1.26: Synthesis of triphenylenophthalocyanine. 

 

 

 

 

 

 

 



Chapter 1:  Introduction to Phthalocyanines and Tetrabenzo(aza)porphyrin Hybrids 

 

 32 

1.9 Introduction to Tetrabenzo(aza)porphyrin Hybrids 

Porphyrin – phthalocyanine hybrids known as Tetrabenzo(aza)porphyrins are a set of 

compounds that are structurally related to the phthalocyanine 2 and porphyrin 1 

macrocycles. They are rarely studied compared to the corresponding phthalocyanines 

which are well studied and known for over 70 metals and metalloids. Phthalocyanine 

can undergo two different classes of structural amendments.  Modifications of the 18 

π-electrons central core themselves by replacement of one, two or three of the four 

aza-nitrogen bridges by methine (CH) bridges leads to the formation of different types 

of hybrid macrocycles: tetrabenzotriazaporphyrin (TBTAP), cis- and trans- 

tetrabenzodiazaporphyrin (TBDAP), tetrabenzomonoazaporphyrin (TBMAP) and 

tetrabenzoporphyrin (TBP), which are shown in Figure 1.16. Further modifications 

can be obtained when the additional heterocyclic rings are fused to the benzene rings 

of the phthalocyanine macrocycles resulting in formation of novel phthalocyanine 

analogues which were explained above in section 1.8.4.3.4.
16

  

 

 

 

Figure 1.16: Phthalocyanine/ porphyrin analogues. 

 

The nomenclature that is used to describe the tetrabenzo(aza)porphyrin macrocycles 

refers to the phthalocyanine and porphine numbering systems.
172

 The numbering of 

the atoms on a tetrabenzo(aza)porphyrin is illustrated in Figure 1.17. Therefore, the 

substituents on the benzenoid rings of the tetrabenzo(aza)porphyrin system were 
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numbered similarly to those of the phthalocyanine system 3, whereas the locations of 

the imino nitrogen atoms were termed based on those of fused tetrapyrroles.  The 

letters b, g, 1 and q refer to the positions of the fused benzene rings on the pyrrole in 

the porphyrin ring, lettering beginning with "a" for the side (1,2), "b" for (2,3) and 

lettering every side around the periphery of the porphyrin inner ring. The first letter of 

the alphabet was given to the side where the fusion happens.
171,172

 

Similar to the phthalocyanines, tetrabenzo(aza)porphyrin  hybrids possess sixteen 

possible sites of substituents on the macrocycle. Accommodation of substituents on 

the benzene rings at 2, 3, 9, 10, 16, 17, 23, 24 positions,  are termed as the peripheral 

(p) sites, whereas those at positions 1, 4, 8, 11, 15, 18, 22, 25, called the non-

peripheral (np) sites (Figure 1.17).  

 

Figure 1.17: Combined nomenclature system for the peripheral and non-peripheral 

metallated tetrabenzo(aza)porphyrin macrocycles. 

 

 

1.10 Discovery and Synthesis of Tetrabenzo(aza)porphyrins 

These hybrid structures were discovered accidentally in 1934 when Lowe and 

Linstead studied the possibility of synthesis of N-alkylphthalocyanines from the 

reaction between methylmagnesium iodide and phthalonitrile. In their early 
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experiments, the resulting materials consisted of a phthalocyanine and a poor yield of 

side-product. A similar reaction was examined, using benzylmagnesium chloride and 

phthalonitrile, and yielded a phthalocyanine only. According to those results, they 

concluded that alkylphthalocyanines could not be prepared using that route. They 

were not be able either to further investigate the side-product that formed by the 

reaction between methylmagnesium iodide and phthalonitrile due to the poor 

yield.
5,173

 In 1936, Fischer et al. reported the preparation of the first macrocyclic 

molecules that were structurally related to phthalocyanines, these molecules consisting 

of four pyrrole rings linked together by methine groups and nitrogen atoms.
174,175 

Soon 

afterwards, in 1937, Helberger
176

 announced the synthesis of similar macrocyclic 

molecules containing a benzene ring fused to each of the four pyrrole rings. He was 

able to prepare the copper derivatives of tetrabenzomonoazaporphyrin TBMAP and 

tetrabenzodiazaporphyrin TBDAP in 10 and 20% yields, respectively.  CuTBMAP 

was obtained by heating an o-halogenoacetophenone with cuprous cyanide, whereas 

the CuTBDAP prepared by reacting phthalonitrile with cuprous cyanide and in this 

case, the o-cyanoacetophenone 126 was proposed as a key intermediate.
176

 Later, 

Helberger and von Rebay declared similar results using of this preformed 

intermediate.
177  

Linstead et al. reported that the preparation of these pigments could 

also be achieved using malonate derivative 127 which is considered as another useful 

intermediate in this synthesis (Scheme 1.27).
178 

 

Scheme 1.27: Synthesis of MTBMAP via o-cyanoacetophenone and malonate 

derivative intermediates. 

 

A year later, a better yield of the copper derivative was obtained by Dent.
179

 The 

reaction was achieved by condensation of an equimolar amount of phthalonitrile 7 and 

either 3-methylenephthalimidine 129 or its carboxylic derivative phthalimidine acetic 

acid 130 at 250 °C, in the presence of a copper salt. It readily gave a 30% yield of a 

new pigment greener than, but otherwise similar in properties to, the corresponding 
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CuPc. This pigment was identified as CuTBTAP 131 (Scheme 1.28). Dent was unable 

to prepare the other hybrid molecules with more than one methine group (e.g. 

CuTBDAPs or CuTBMAP) under the same reaction conditions.  

 

Scheme 1.28: Synthesis of CuTBTAP by condensation of phthalonitrile and either 

methylenephthalimidine 129 or phthalimidine acetic acid 130. 

 

Moreover, the reaction stoichiometry was examined for example; using 3 moles of 

phthalonitrile with 1 mole of phthalimidine acetic acid and 1 mole of cuprous chloride 

gave a reasonably good yield (70-80%) of the CuTBTAP with a small impurity of 

copper phthalocyanine, whereas no green pigment was obtained when using a 1:3 

ratio of phthalonitrile to phthalimidine acetic acid. In addition, varying precursors 

were investigated such as using 4-chlorophthalonitrile as precursor and condensed 

with phthalimidine acetic acid in the presence of cuprous chloride under the same 

previous conditions formed a Cl3-CuTBTAP which containing three phthalonitrile 

units and one methylenephthalimidine unit (Scheme 1.29).
179

  

 

Scheme 1.29: Synthesis of Cl3-CuTBTAP using 4-chlorophthalonitrile as precursor. 

 

In view of these developments, Linstead and co-workers re-examined the reaction 

between phthalonitrile and organometallic reagents in the hope of obtaining and fully 

characterising the previously formed green side-product. The synthesis of this 

unknown green product was found to be somewhat complicated; however, a 

successful synthetic method was generated after several experimental attempts.
2-5,173

 

The synthetic technique was found to consist of two main steps. The first step was the 
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initial reaction between phthalonitrile and either methyllithium or methylmagnesium 

iodide as an organometallic source in a low-boiling ethereal solvent at room 

temperature that leads to formation of a coloured intermediate. It was observed at this 

step that if the reaction was followed by an acid work-up the product could be 

decomposed and it was difficult to isolate any pigment. The following step was the 

removal of the solvent and heating the mixture at a high temperature in a high-boiling 

solvent, such as quinoline, α-naphthyl methyl ether or cyclohexanol that gives rise to a 

green product known as MgTBTAP. Quenching the resulting materials by means of 

an acid following the final step led to remove the magnesium from the central cavity 

of TBTAP and thus allowed other elemental ions, such as lithium, nickel, copper, iron, 

or zinc to be accommodated. A metal-free TBTAP was isolated in a 40% yield as a 

green crystalline form (Scheme 1.30). The identity of the product as metal-free 

TBTAP has been confirmed by spectral analysis, quantitative oxidations and X-ray 

diffraction.
173

 

 

Scheme 1.30: Synthetic route for preparing metal-free TBTAP. 

 

According to the demonstration introduced by Gilman et al. which explained the 

reactivities of organolithium and organomagnesium compounds toward the certain 

aromatic nitriles.
180

 They found that certain aromatic nitriles are more readily attacked 

by methyllithium than by methylmagnesium iodide. Linstead was also able to prepare 

15% yield of the TBTAP derivative from the reaction between the phthalonitrile and 

an equimolar amount of methyllithium using the two-steps procedure described above. 

Formation of lower nitrogen-containing compounds (i.e. tetrabenzodiazaporphyrin 

TBDAP) can be obtained, when methyllithium was used instead of methylmagnesium 

iodide, along with TBTAP and an amount of phthalocyanine. However, using n-

butyllithium in an attempt to introduce a propyl group at the meso-position resulted in 

formation of a mixture of TBTAP and Pc (Scheme 1.31).
 
Unfortunately, pure TBTAP 

could not be isolated from the phthalocyanine side-product.
181 

This agreed with the 
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earlier results achieved from the use of other bulky Grignard reagents. In other words, 

the tendency of organometallic compounds to obtain pigments containing methine 

(CH) bridges is greatest when methyl organometallic derivatives are used.
173

 

However, due to these unsuccessful attempts, the introduction of substituents at the 

meso-position was not examined until much later.  

 

Scheme 1.31: Linstead's attempt to introduce a propyl group at the meso-position of 

TBTAP. 

 

Furthermore, Linstead found that when treating the phthalonitrile with a slight excess 

of methylmagnesium iodide, the yield of phthalocyanine decreased while the yield of 

TBTAP increased. The same results were achieved when the methyllithium employed 

in place of MeMgI. When using a large excess of MeMgI, pigments containing more 

methine (CH) bridges were obtained (i.e. TBDAP).
173 

Tetrabenzmonoazaporphin 

(TBMAP) can also be conveniently obtained in 17% yield, when excess of 

methylmagnesium iodide (2.5 moles) reacted with phthalonitrile at high 

temperature.
178 

The investigation of these hybrid materials and their properties was extremely 

challenging due to the low yield and poor solubility in common organic solvents. In 

order to study the properties of these hybrids, Luk’yanets and co-workers have 

investigated the preparation of these materials in order to obtain them in reasonable 

yield and high solubility in a wide range of organic solvents.
182 

A tert-butyl group was 

introduced on the periphery of the hybrid macrocycle using a t-Bu-substituted dimeric 

isoindolic unit, which is the product from the condensation of potassium 4-t-

butylphthalimide with malonic acid. The reaction of isolated intermediate 136 with 

phthalonitrile 99 in the presence of zinc acetate in bromonaphthalene as solvent at 280 

°C gave rise to a mixture of the tert-butyl-substituted mono-, di-, and triaza analogues 

of zinc tetrabenzoporphyrin (Scheme 1.32).
182
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Scheme 1.32: Synthesis of zinc tetrabenzo(aza)porphyrin analogues by Luk’yanets. 

 

For several decades, the tetrabenzo(aza)porphyrin analogues were prepared using the 

general cyclisation approaches with only minor modification. For example, Hoffman 

and co-workers subsequently reported the synthesis of NiTBTAP and CuTBTAP by 

means of Linstead’s strategies.
183

 Magnesium and cadmium derivatives were also 

generated from a mixture of phthalimidine acetic acid with either phthalonitrile or o-

dicyanobenzamide.
184,185

 More recently, Antunes and Nyokong have also used 

Linstead’s procedures to prepare the metal-free tetrabenzotriazaporphyrin and then 

converted to the corresponding dihydroxyphosphorus derivative.
186 

 

Deeper investigations of the synthesis of tetrabenzo(aza)porphyrins started to appear 

in the 1980’s. A number of mixed cyclisations using substituted precursors were 

reported to give a variety of substituted hybrid derivatives.
185,187-189 

Unsuccessful 

attempts to prepare these hybrid derivatives by combination of substituents in the 

meso-position led to a low interest in investigating these hybrids by several research 

groups at that time. However, a few years after the original reports,
 
Leznoff and 

McKeown reinvestigated and described the preparation of a variety of meso-

substituted TBTAPs from sterically hindered phthalonitriles with different Grignard 

reagents (Scheme 1.33).
190 

The resulting materials consisted of a mixture of TBTAP, 

phthalocyanine and sometimes traces of TBDAP (cis- and trans- isomers). 

Introduction of long alkyl chains or bulky Grignard reagents led to improved 

possibility for separating this mixture and hence a pure meso-substituted TBTAP was 

isolated by means of chromatographic methods. It was observed that the synthesis of 

peripherally substituted TBTAPs using this route should give materials possessing 

high solubility and less aggregation similarly to the well-documented neo-

pentoxyphthalocyanine
47

 and tetra-tert-butylphthalocyanine
157

. This clarified the 

initial problem that Linstead
173

 and co-workers were faced when they tried to separate 
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the meso-substituted TBTAP from the phthalocyanine derivative, but it was 

impossible at that time due to the high aggregation.
190  

 

 

 

Scheme 1.33: Preparation of TBTAPs reported by Leznoff and McKeown. 

 

The introduction of an aromatic substituent at the meso-position was successfully 

accomplished in both unsubstituted and t-butyl-substituted tetrabenzotriazaporphryrins 

using the commercially available benzylmagnesium chloride with 4-tert-

butylphthalonitrile or phthalonitrile.
190 

Leznoff and McKeown have also successfully 

prepared meso-substituted tetranaphthotriazaporphyrin derivative using a tert-

butylnaphthalonitrile with a Grignard reagent (Scheme 1.34).
190

 

 
 

Scheme 1.34: Preparation of TNTAP reported by Leznoff and McKeown. 

 

Recently, Ivanova and co-workers have prepared t-butyl-substituted 

tetrabenzotriazaporphryrins by treating t-butylphthalonitrile with methylmagnesium 

iodide.
191

 The resulting materials (MgTBTAP and MgPc) were separated by means of 
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chromatography before elimination of the metal by the reaction with trifluoroacetic 

acid to yield a free-metal TBTAP (Scheme 1.35).
191 

 

 

Scheme 1.35: Preparation of TBTAP reported by Ivanova. 

 

Tse and co-workers have also used Linstead’s method to prepare a wide range of 

metal-free and metallated TBTAPs substituted at the meso-position.
192 

The reaction 

involves the treatment of phthalonitriles with a variety of alkylmagnesium halides of 

different lengths of alkyl chains and led to the formation of magnesium TBTAP 

derivatives with MgPc as a side-product (Scheme 1.36). They can be separated by 

chromatography using coordinating solvents such as pyridine and THF. Demetallation 

of MgTBTAP results in the formation of metal-free TBTAPs which are treated with 

anhydrous zinc acetate in order to form ZnTBTAP derivatives.
192  

 

 

Scheme 1.36: Preparation of meso-substituted TBTAP derivatives. 

 

More recently, Galanin and co-workers described the preparation of a series of 

magnesium and zinc complexes of meso-substituted tetrabenzo(aza)porphyrins. The 

reactions involve the refluxing of 1,3-diiminoisoindolines or its derivatives with 

variety of carboxylic acids at 280-300 °C with ZnO or MgO as template agent to give 

a mixture of magnesium or zinc complexes.
193-201 

 In these investigation, they 
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observed that the resulting materials formed based on the ratios of the reactants used 

in these reactions where an excess of the carboxylic acids result in the formation of 

complexes with more methine bridges, whereas the more nitrogen bridges can be 

formed when decreasing the ratio of carboxylic acids to diiminoisoindolines.
193

 

Galanin’s route is generally faster than the other previous methods where a mixture of 

hybrid complexes including TBTAP, TBDAP and TBMAP are formed in an hour or 

sometimes less than one hour.
 193-201 

  An example of this synthetic route is shown in 

Scheme 1.37.  

 

Scheme 1.37: Meso-substituted tetrabenzo(aza)porphyrin analogues reported by 

Galanin. 

 

A selective method for the preparation of meso-trans-(alkoxy)2TBP, meso-trans-

(alkyl)2TBP and meso-trans-(aryl)2(alkoxy)2TBP complexes was also described by 

Galanin and co-workers.
196,199,202,203

 Heating the dimeric intermediate 150 with acids 

in the presence of zinc oxide at 300 °C for 30 minutes gave zinc complexes of meso-

trans-(alkoxy)2TBP 151.
199,202

 Similarly, the zinc complexes of meso-trans-

(aryl)2(alkoxy)2 tetrabenzoporphyrins can be prepared.
196,203 

An example of meso-

trans-substituted TBP obtained by this route is shown in Scheme 1.38.  
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Scheme 1.38: Selective method for the preparation of meso-trans-substituted TBP. 

 

Borisov et al. followed the synthetic strategies described by Galanin to prepare 

ZnTBTAP-Ph3 and cis-ZnTBDAP-Ph2 which then undergoes demetallation to afford 

the metal-free complexes. Inserting platinum(II) and palladium(II) metals into the 

central cavity of the macrocycles results in formation of the Pd and Pt cis-TBDAP-Ph2 

153 and TBMAP-Ph3 155 complexes (Scheme 1.39) which are suitable for application 

in optical oxygen-sensing materials.
204

 

 

 

Scheme 1.39: Inserting Pt and Pd into the central cavity of meso-substituted TBDAP 

and TBMAP.  

 

A series of single meso-substituted tetrabenzotriazaporphyrins, obtained as 

magnesium derivatives, was reported by Tomilova et al. in 2011.
205

 They investigated 

two different methods to prepare these complexes. The first approach involved simply 
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heating phthalonitriles with arylacetonitriles, which possess substituents on the 

benzene ring, in the presence of magnesium powder and led to 9% yields of 

aryltetrabenzotriazaporphyrin complexes. TBTAP complexes can also be prepared by 

microwave irradiation of the starting materials. This procedure gives a higher yield in 

short period of time unlike the fusion technique (Scheme 1.40).
205

  

A new synthetic route for the synthesis of zinc TBTAP complexes has been achieved 

by heating a mixture of phthalonitrile and quaternary salts of triphenylphosphonium 

gradually from 200 to 300 °C in the presence of zinc powder as a template agent.
  
The 

resulting materials were filtered to remove the zinc phthalocyanine from the reaction 

mixture. Purification of the product by column chromatography gave the desired zinc 

TBTAP complex in a reasonable yield (Scheme 1.41).
206

 

 

Scheme 1.40: Tomilova’s synthetic routes. 

 

Scheme 1.41: Synthesis of zinc TBTAP complexes. 

 

In 2005, accidental preparation of a dark green product was discovered by Cammidge, 

Cook and co-workers at UEA during the preparation of non-peripherally substituted 

octaalkyl-phthalocyanine using 3,6- dialkylphthalonitrile as precursor in the presence 

of an excess of freshly cut lithium metal and pentanol as solvent. The 
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cyclotetramerisation of this precursor results in the formation of substituted octaalkyl-

phthalocyanine along with a by-product later identified as substituted octaalkyl- 

tetrabenzotriazaporphyrin (np-alkyl)8TBTAP (Scheme 1.42).
207 

The synthesis of a 

peripherally substituted tetrabenzotriazaporphyrin using 4-t-butylphthalonitrile or 4,5-

dihexylphthalonitrile as precursors proved to give unsuccessful results under the same 

conditions. Moreover, they investigated the source of the meso-carbon using 
13

C 

labelling experiments. The final result of these experiments indicated that the solvent 

used in the reaction is responsible for the introduction of methine group at meso-

position.
 207  

 

Scheme 1.42: Accidental preparation of non-peripherally substituted octaalkyl- 

tetrabenzotriazaporphyrin. 

 

Leznoff’s procedure was also used by Cammidge-Cook groups to introduce bulky 

substituents at the meso-position of TBTAP macrocycles. Cyclisation of 3,6-

dihexylphthalonitrile with Grignard reagent (decylmagnesium bromide) using 

Leznoff’s conditions formed only non-peripherally octahexyl-H2TBTAP (Scheme 

1.43).
207 

To understand this reaction, Cammidge and co-workers studied the factors 

that control the efficiency of the formation of the non-peripherally substituted 

octaalkyl tetrabenzotriazaporphyrins.
208  

 

 

Scheme 1.43: Preparation of metal-free np-octahexylTBTAP unsubstituted at the 

meso-position. 
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Novel derivatives of the metal-free as well as magnesium and copper derivatives of 

tetrabenzo(aza)porphyrin hybrids were successfully prepared using the controlled 

synthetic strategies which were described by Cammidge and Cook et al.in 2011.
208

 

Their  controlled method modified Linstead’s procedure and can be summarized in 

two main steps.  Treatment of a solution of 3,6-dialkylphthalonitriles in ether or THF 

with different amounts of the Grignard reagent followed by exchange the solvent to 

quinoline and heating the mixture at high temperature in order to obtain the 

tetrabenzo(aza)porphyrin magnesium derivatives. The obtained analogues can 

undergo a demetallation reaction to give metal-free derivatives followed by the 

insertion of copper in the central cavity of macrocyclic complexes (Scheme 

1.44).
173,208

 Consequently, they studied these hybrids using a series of stoichiometric 

ratios in order to clarify the effects of changing the ratios of starting materials on the 

formation of resulting green materials. These investigations are outlined in Table1.1. 

Starting with 1:4 equivalents of MeMgBr to phthalonitrile, the reaction failed to 

obtain any hybrid molecule, whereas changing the equivalents of starting materials 

(MeMgBr: phthalonitrile) to a 1:1 ratio gave a mixture of green coloured products 

(later identified as TBTAP and TBDAP). Significant amounts of TBTAP, TBDAP 

and TBMAP were observed when the equivalents of starting materials (MeMgBr: 

phthalonitrile) increased to a 2:1 ratio with traces of Pc and TBP. Changing the ratios 

(1:1, 2:1, 3:1, 4:1, 5:1) of starting materials (MeMgBr:phthalonitrile) were also 

examined and proved to give a full range of tetrabenzo(aza)porphyrin derivatives (i.e. 

TBTAB, cis- and trans-TBDAP, TBMAP, TBP, Pc). As a result of these 

investigations, increasing the number of equivalents of MeMgBr further led to reduce 

the formation of phthalocyanine-like hybrids, whereas the formation of 

benzoporphyrin-like macrocyclic products was increased. Generally, this controlled 

procedure provides a particularly convenient synthesis of these hybrid molecules.
208

  

 

Scheme 1.44: Preparation of metal-free and metallated np-octahexyl hybrids. 
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 R8-H2TBTAP 

 

 

R8-cis-  and trans- 

H2TBDAP* 

 

R8-H2TBMAP 

 

 

R8-H2TBP 

 

 

R8-H2Pc 

 

 

4 1 - - - - - 

1 1 24% 14% trace - trace 

1 2 27% 9% 3% trace trace 

1 3 18% 8% 4% 1% - 

1 4 trace trace trace 12% - 

1 5 - - - 1% - 

* A mixture of cis and trans isomers was observed. 

Table 1.1: Yields obtained by the reaction between 3,6-dihexylphthalonitrile and 

varying equivalents of MeMgBr followed by the demetallation reaction. 

 

The reactions between 4,5-dialkylphthalonitrile and 2 equivalents of Grignard reagent 

MeMgBr were also investigated by Cammidge-Cook groups. The results of these 

investigations are mostly in line with the outcomes of Leznoff and McKeown when 

employing 4-t-butylphthalonitrile as a precursor. In other words, the resulting product 

mixtures contained only TBTAP and Pc (Scheme 1.45). It was also observed that the 

introduction of phenyl group or a long chain alkyl group at the meso-position of the 

TBTAP can be achieved when the 4,5-dialkylphthalonitrile 83 was treated with a 

benzyl or long chain alkyl Grignard reagent, whereas using the 3,6-

dialkylphthalonitrile 55 can only form the TBTAP unsubstituted at the meso-position 

TBTAP-CH.
190,208

   

 

Scheme 1.45: Preparation of metal-free and metallated peripherally octaalkylTBTAP 

and Pc. 
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Recently, Pushkarev et al. reported the preparation of the first lutetium bis-

(tetrabenzotriazaporphyrin) sandwich complex (homoleptic (Ph-TBTAP)2Lu) and 

heteroleptic (tetrabenzotriazaporphyrinato) (phthalocyaninato) lutetium derivative 

((Ph-TBTAP)LuPc).
209

 Demetallation of preformed zinc meso-phenyl TBTAP results 

in formation of a free-metal molecule which undergo complexation with lutetium(III) 

acetylacetonate to give a homoleptic complex. Direct interaction of free metal meso-

phenyl TBTAP with preformed lutetium mono phthalocyanine leads to formation of a 

heteroleptic dyad (Scheme 1.46).
209,210

  

 

 

Scheme 1.46: First sandwich-type TBTAP complexes.  

 

In recent years, a considerable attention has been focused on the preparation of 

TBTAPs using more precise methods. Cammidge’s group invented a modern 

approach for the preparation of substituted meso-phenyl TBTAP as a single product of 

hybrid macrocycles.
211

 This method proved to give a significant yield of TBTAP and 

avoided the formation of further hybrid complexes. The synthetic strategy involves the 

preparation of the aminoisoindoline or its derivatives by applying the procedure 

demonstrated by Hellal et al.
212

 Treatment of a tetrahydrofuran solution of 4-

bromobenzonitrile 167 with a solution of lithium bis(trimethylsilyl)amide (LiHMDS) 

in THF followed by quenching with isopropanol/HCl led to formation of 2-

bromobenzimidamide hydrochloride 168 in good yield.
213 

 The resulting material 

underwent  a copper-free Sonogashira coupling and cyclisation under microwave 

irradiation to afford the target molecule 170 (Scheme 1.47).
212  
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Scheme 1.47: Synthesis of aminoisoindoline derivatives. 

 

Once a reasonable amount of aminoisoindoline precursors has been prepared, the 

functionalized meso-phenyl TBTAP can be obtained in good yield.
211

 The first 

attempts to synthesise this molecule began with heating a solution of 

diiminoisoindoline 38 and aminoisoindoline 170 in high boiling organic solvents 

(starting with quinoline, DMEA, DMF, and finally diglyme) in the presence of 

magnesium bromide as a template agent (Scheme 1.48). The reaction mixture was 

found to contain the desired meso-phenyl TBTAP along with Pc and further unknown 

material which was identified later as a self-condensation product of aminoisoindoline 

172. Due to unsatisfactory outcomes and side-product formation, the reaction was 

studied carefully in order to obtain the target compound in a good yield and 

decreasing the formation of Pcs and other side-products. Modification of this reaction 

started with using phthalonitrile instead of the more reactive diiminoisoindoline 38 

(which can be the reason for the formation of unwanted Pc). Further modifications 

included using the additional amounts of phthalonitrile 7, controlling the addition of 

aminoisoindoline 170 to the reaction mixture and adding DABCO to the reaction 

mixture (which can help to release the unreacted aminoisoindoline 170 from its 

complex with the MgTBTAP molecule and then complete the consumption of the 

phthalonitrile 7). All these modifications enhanced the synthesis of these hybrid 

macrocycles and hence improved the yields of the meso-phenyl TBTAP 171 

formation (Scheme 1.49).
211 

 

Scheme 1.48: Formation of TBTAP along with Pc and dimeric side product 172. 
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Scheme 1.49: Synthesis of functionalized meso-phenyl TBTAP via intermediate 170. 

 

1.11 Mechanism of Tetrabenzo(aza)porphyrins Formation 

The proposed mechanism of preparation of these hybrid complexes was described by 

Linstead and co-workers. In particular, understanding of the mechanism for the 

formation of metal-free tetrabenzotriazaporphyrin was provided by the study of the 

effect of an excess amount of methylmagnesium iodide or methyllithium (2 

equivalents) on phthalonitrile. Heating the starting materials together at 200 °C in the 

presence of cyclohexanol as a solvent resulted in formation of a free base, 3-amino-

1,1-dimethylisoindole 176, after it went through a series of intermediates as illustrated 

in Scheme 1.50.
173 

 

Scheme 1.50: Isolated intermediates in TBTAP formation. 

 

Indeed, when the tetrabenzotriazaporphyrin was prepared from equimolecular 

quantities of phthalonitrile and methyl magnesium iodide or methyllithium, an excess 

of the nitrile was observed at the end of the first condensation which could be 

responsible for the formation of nitrogen bridges in the triaza-complexes. However, 

intermediates 174 and 175 could be responsible for the introduction of the methine 

group at the meso-position. Intermediate 174 can react with a further molecule of 

phthalonitrile 7 to produce a dimeric compound 177 which after further addition of 

two phthalonitrile 7 molecules gives a tetrameric complex 178. Cyclisation of this 

tetrameric intermediate (tetra-isoindolic molecule) affords the 

tetrabenzotriazaporphyrin molecule 134. The final step involves the elimination of 

either lithium amide or methylamine (dependent on the organometallic used in the 
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reaction) which can only occur in the second step of the reaction when the high 

boiling point solvent was applied (Scheme 1.51). The general mechanism for the 

hybrid macrocycle formation remains unclear due to the lack of adequate studies 

covering this area since the investigations described by Linstead and co-workers.
173

   

 

Scheme 1.51: Proposed mechanism of TBTAP formation. 

 

1.12 Properties and Applications of Tetrabenzo(aza)porphyrins 

Tetrabenzo(aza)porphyrins are remarkable macrocyclic molecules because of their 

unique physical and chemical properties which are similar to those in the parent 

phthalocyanine structures.  Tetrabenzo(aza)porphyrin derivatives have been 

successfully applied in many fields of science and technology. They are demonstrated 

to be useful photosensitisers in photo-oxidation,
214

 as gas sensors
215-219 

and as 

fluorescent dyes.
220-222

    

 

1.12.1    Optical Properties 

One of the most obvious differences between the tetrabenzo(aza)porphyrins and its 

parent phthalocyanines is in the observed colour. The tetrabenzo(aza)porphyrins have 

a bright green colour whereas the Pcs have an intense blue-green colour. The 

absorption spectra of tetrabenzo(aza)porphyrins are comparable to those of 

phthalocyanines with absorption in the Q- and B-band regions (figure 1.18).  The 

origins of the Q- and B-bands can be understood by Gouterman’s four-orbital model.
58

 

This model clarifies the electronic transitions of tetrapyrrole macrocycles. The Q- and 
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B-band absorptions are assigned to the π → π* electronic transitions from the HOMO 

(highest occupied molecular orbital (a2u)), the second highest energy occupied orbital, 

(a1u), to the LUMO (lowest unoccupied molecular orbital (eg)) which is not the case 

for phthalocyanines where the HOMO (a1u) is higher energy than the (a2u) (figure 

1.19). Thus the absorptions from these transitions in porphyrins show a hypsochromic 

shift relative to the absorptions resulting from the corresponding Pcs. The 

tetrabenzo(aza)porphyrin molecular structure can be distorted due to losing the 

symmetry since one of the nitrogen atom is replaced by a carbon atom and this can 

lead to interesting spectral changes in Pc/TBP hybrids compared to Pcs.
223

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.18: The origin of the UV-Vis spectra of phthalocyanine, porphyrin and 

TBTAP. 
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Figure 1.19: UV-Vis spectra of MgPc and its analogue MgTBTAP. 

 

It was observed by Linstead et al. that along the series of Pc, TBTAP, TBDAP’s, 

TBMAP, TBP the Q-band is shifted to shorter wavelengths and the B-band increases 

in intensity.
178

 The explanation of the spectral features of tetrabenzo(aza)porphyrins 

employing the LCAO-MO method was reported by Solov’ev and co-workers.
224 

The 

exceedingly comprehensive examinations were made by Kobayashi and Konami 

employing the Pariser-Parr-Pople (PPP) approximation to calculate the energy levels 

of molecular orbitals (MO) of the tetrabenzo(aza)porphyrins.
73

 Calculations predict 

that the Q-band exhibits a shift to the blue region along the hybrid series Pc, TBTAP, 

TBMAP, TBP with the exception of the TBDAP isomers which are different from 

each other. These predictions were coordinated with Linstead’s investigations.
73,178

  

Further MO calculations have been achieved by Kobayashi and co-workers using the 

ZINDO (Zerner's Intermediate Neglect of Differential Overlap) program which give 

additional analytical information and thus can offer an advanced understanding of the 

electronic absorption spectra of tetrabenzo(aza)porphyrins.
225

  

A large selection of UV-Vis spectroscopy data of metal-free and metallated 

substituted or unsubstituted tetrabenzo(aza)porphyrins in different kinds of solvents 

was described in detail in a review published in 2003.
226  

Consequently, when the aza 

bridges replaced by methine groups, the Q-band corresponding to the lowest energy π-

π* absorption exhibits a hypsochromic shift towards a shorter wavelength and lower 

intensity as well as increasing the intensity of the B-band in the case of metallated 
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tetrabenzo(aza)porphyrins with the exception of the trans-TBDAP compounds. 

However, the Q-band in the metal-free tetrabenzo(aza)porphyrins shows a split into 

two peaks. It was observed that the Q-bands also exhibit a shift to the red region 

(bathochromic shift) with an increase in the ratio between the Q- and B-band 

intensities in tetrabenzo(aza)porphyrins which contain an the extension of the 

molecule’s π-system (e.g TNTAP, Figure 1.20).
225 

 

 

Figure 1.20: Tetranaphthotriazaporphyrin TNTAP. 

 

The UV-Vis absorption spectra of non-peripherally substituted magnesium (n-C8H17)8 

hybrid derivatives (Figure 1.21) reported by Cammidge, Cook and co-workers is 

illustrated in Figure 1.22. The Q-band shows the following series of shifts: (MgPc) 

max 700 nm, (MgTBTAP) 694 nm, (cis-MgTBDAP) 662 nm, (MgTBMAP) 659 nm, 

(MgTBP) 641 nm. Depending on the central metal atoms attached, the Q-bands can 

undergo a red or blue shift, such as inserting the copper metal in the central cavity of 

tetrabenzo(aza)porphyrin derivatives led to a hypsochromic shift whereas a red shift 

occurred when the lead metal was attached to the central core.
208

 More detailed 

information for the UV-Vis spectroscopy data of tetrabenzo(aza)porphyrins are 

presented in The Porphyrin Handbook.
223

  

 

Figure 1.21: Non-peripherally substituted magnesium hybrid derivatives. 
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Figure 1.22: UV-Vis spectra of non-peripherally substituted magnesium 

tetrabenzo(aza)porphyrin derivatives in THF. 

 

1.12.2    Mesophase behaviour 

Tetrabenzo(aza)porphyrin derivatives were expected to exhibit mesophase behaviour 

due to the similarity of these novel compounds with the corresponding 

phthalocyanine. McKeown and Leznoff in 1992 reported the thermotropic 

mesomorphism of TBTAP derivatives (Figure 1.23).
227

  

 

Figure 1.23: Tetrabenzotriazaporphyrin TBTAP. 
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Meso-substituted neopentoxy-tetrabenzotriazaporphyrin exhibits liquid crystalline 

behaviour at 130 °C. Transformation of the phase from solid to mesophase happened 

in broad temperature ranges (100-125 °C). It was observed that peripherally tetra-

substituted TBTAP obtained by Leznoff et al. was a mixture of isomers due to the 

absence of a sharp transition from the solid phase to the mesophase. Stability of this 

TBTAP towards the thermal decomposition was high which made this molecule able 

to be heated in a naked flame without any changes in the colour or stability of the 

compound. Cooling TBTAP to room temperature results in formation of the solid 

sample in mainly homeotropic texture with the presence of focal-conic fan texture 

areas when viewed under a polarising optical microscopy (POM). The compounds 

were investigated by a combination of differential scanning calorimetry (DSC) and X-

ray diffraction analysis and those analytical methods indicate that the mesophase of 

the TBTAP had a lamellar structure similar to the molecular arrangement found in the 

Smectic A phase of nematic (rod-like) compounds.
105 

McKeown continued the 

examination of the thermotropic mesophase behaviour of this TBTAP. It was 

observed from optical, DSC and X-ray studies that the mesophase formed did not have 

the lamellar structure as initially believed, but was a disordered hexagonal columnar 

structure.
228 

A new series of columnar liquid crystals was investigated by Cammidge 

and Cook et al. in 2011. They studied the mesophase behaviour of np-octahexyl 

substituted TBTAP, TBDAP, TBMAP and TBP compounds using POM and DSC.
208 

The thermotropic mesophase behaviours of the Pc/TBP analogues are similarly to 

those observed in parent phthalocyanine which was found to display a columnar 

hexagonal mesophase (Colh), and in some cases a columnar rectangular phase (Colr) 

(Figure 1.24).
101,105, 208,223,228  

                                 

                  Columnar hexagonal (Colh)                              Columnar rectangular (Colr) 

 

 

 

 

 

Figure 1.24: Most common mesophases observed in phthalocyanine derivatives. 
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1.12.3    Langmuir-Blodgett Films 

The Langmuir-Blodgett
229

 technique offers the possibility of constructing thin films of 

organic molecules, such as porphyrins
230

, phthalocyanines
231-233

 and their hybrid 

macrocycles by transferring molecular monolayers at an air-water interface onto a 

substrate, one monolayer at a time.
233 

The optical and electrochemical properties of 

Pcs and porphyrins make them particularly valuable when assembled into well-

organised LB films, for applications in areas such as molecular electronics
234

, optical 

devices
235

 and chemical gas sensors.
236

 The similarity between the 

tetrabenzo(aza)porphyrin hybrids and their parent phthalocyanine molecules make 

them suitable materials for the LB technique. However, there are limited studies 

investigating the impact of applying tetrabenzo(aza)porphyrin derivatives in the LB 

film. In 1994, Leznoff and co-workers studied a LB film of TBTAP 182 with stearic 

acid.
237

 In their examinations, they found that the TBTAP 182 molecules change their 

orientation from a fundamentally vertical arrangement on the water surface, when 

assembled as a monolayer, to an approximately horizontal orientation on the water 

when long chain hydrocarbon species such as stearic acid was added. The reason 

behind this change in orientation when the more stearic acid is added is probably 

because of the reduction of the interactions among the tert-butyl groups of the TBTAP 

and the interaction of stearic acid with the long chain of the TBTAP, thus the TBTAP 

molecules tend to lie horizontally on the water surface. Switching from vertical to 

horizontal orientations leads to a wide range of optical and chemical properties. 

Comparable studies on (t-Bu)4-CuTBTAP molecules were achieved by Valkova and 

co-workers.
238-240

 Cammidge and Cook et al. reported the synthesis of lead 

tetrabenzo(aza)porphyrin hybrids which are considered as suitable materials used for 

the preparation of spin coated films.
208,223,241 

 

 

Figure 1.25: Tetrabenzotriazaporphyrin TBTAP reported by Leznoff. 
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1.13 Aims of the Present Project 

1.13.1    Synthesis of metallated substituted and unsubstituted TBTAP 

derivatives 

Despite their properties and potential use in a wide range of applications, like parent 

porphyrin and phthalocyanine, tetrabenzo(aza)porphyrin hybrids did not receive much 

attention since their discovery by Linstead and co-workers.
173

 However, the synthesis 

of these analogues has advanced significantly over recent years through contributions 

from the UEA group and others. These synthetic advances allow much more 

tetrabenzo(aza)porphyrin derivatives to be made. The present research is, in particular, 

aimed to investigate the synthesis and characterisation of novel 

tetrabenzotriazaporphyrins TBTAPs designed for use in a wide range of applications 

such as Langmuir-Blodgett (LB) films, liquid crystals,
 
photoelectrochemical cells, 

photosensitizers, and optical data storage (DVDs). Moreover, this research has been 

focused on the improvement of the reaction conditions. The peripherally octa-

substituted tetrabenzotriazaporphyrins and their magnesium derivatives (Figure 1.26) 

have been prepared following the conventional procedure provided by Linstead and 

co-workers
173

 who described the synthesis of TBTAP derivatives via two main steps 

and this method is described in more details in the experimental section.     

 

Figure 1.26: Peripherally octa-substituted tetrabenzotriazaporphyrin magnesium 

derivatives. 

 

The present project also aimed to synthesise the first series of functionalised meso-

phenyl TBTAPs (Figure 1.27) by reaction between phthalonitrile and the isomeric 
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series of 2-, 3- and 4-bromobenzylmagnesium bromides which can be key precursors 

in synthesis of a new sequence of TBTAP derivatives bearing a variety of active 

groups. This may lead to the discovery of a wide range of desirable properties 

TBTAPs in fields in which the porphyrins and phthalocyanines have already found 

applications.  

 

 

Figure 1.27: Unsubstituted tetrabenzotriazaporphyrin magnesium derivatives. 

 

Furthermore, a new straightforward and controlled technique for preparing 

unsubstituted tetrabenzotriazaporphyrins magnesium derivatives was performed 

following a new controllable technique. This method was recently discovered by UEA 

group providing the TBTAP derivatives in a much better yield compared with 

TBTAPs prepared by previous route as well as avoiding the formation of other 

hybrids and by-products.
 211

 The target functionalised meso-phenyl 

tetrabenzotriazaporphyrins magnesium derivatives are illustrated in Figure 1.28. 

 

Figure 1.28: Meso-substituted tetrabenzotriazaporphyrins derivatives. 

 

1.13.2    Synthetic transformations of functionalized meso-phenyl TBTAPs 

The aim of this research work was also to provide a new series of the synthetic 

transformations of functionalized meso-phenyl TBTAP derivatives with different 

chemical and physical properties which could find application in new devices. The 
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formation of a new carbon-carbon bond can be performed via several synthetic routes. 

In our proposal, we have been employed the Suzuki and Sonogashira cross-coupling 

reactions with some modifications of the original reaction conditions (Figure 1.29).   

 

Figure 1.29: Transformations of functionalized meso-phenyl TBTAP derivatives. 

 

1.13.3    Intramolecular coupling of TBTAP: expansion of the π-system  

Extension of the planar phthalocyanine core has been reported in the literature e.g. 

naphthalocyanines
162,163 

 phenanthrene
242

 or anthracene
164

 based phthalocyanines. It 

was observed that the extension of the molecule’s π-system of phthalocyanines leads 

to a longer wavelength electronic absorption (red shifted spectra). Extended π-electron 

conjugation in porphyrins is also reported in the literature.
243-249  

This expansion can 

be achieved by either increasing the number of rings or intramolecular oxidative 

coupling. The resulting chromophores show strong absorptions in the red region 

compared to those of normal 18 π porphyrins. Because of the similarity between Pcs, 

porphyrins and TBTAPs, it is possible that tetrabenzotriazaporphyrins could also 

undergo an extension of the π-conjugated system and give rise to interesting materials. 

Thus, in these systems the optical absorption maxima (Q-band) will shift 

bathochromically relative to its non-extended TBTAPs. Therefore, the aim of the 

research was to study the preparation of a new class of π-conjugated 

tetrabenzotriazaporphyrins (Figure 1.30).  

 

Figure 1.30: Extension of the π-conjugated tetrabenzotriazaporphyrins. 
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Synthesis and Functionalization of 

Tetrabenzotriazaporphyrin derivatives   
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2.1 Introduction  

Despite various optical, electronic and chemical properties,
1
 capacity to be soluble in 

common organic solvents, ability to be synthesised, potential use in Langmuir-

Blodgett films,
2
 and ability for functionalisations and modifications, 

tetrabenzo(aza)porphyrin hybrids have not received a great attention since their 

discovery by Linstead and co-workers
3
 compared to the parent phthalocyanines which 

have been studied widely during the past few years. 

Tetrabenzotriazaporphyrin derivatives (TBTAPs), in particular, are the most studied 

hybrid molecules in the last few years. TBTAPs are a system which represents the 

most limited structural modification to the parent phthalocyanine within a sequence of 

the hybrid molecules. They have a single meso-carbon linkage which can offer an 

additional site for the attachment of various functional groups, thus would provide a 

wide range of functionalised TBTAP derivatives. TBTAP molecules are also 

considered as good materials for applications in optical devices, molecular electronic 

applications and chemical gas sensors.
4-6

   

In this chapter, we describe the synthesis of a set of TBTAP complexes, with their 

precursors, using different synthetic strategies and modifications of these routes to 

make those methods suitable for the preparation of our target molecules.   

 

2.2 Synthesis of Peripherally Octa-alkyl Substituted Tetrabenzotriaza 

porphyrin Magnesium and its Precursor  

Preparation of magnesium peripherally octa-substituted tetrabenzotriazaporphyrin 

derivatives were achieved through the formation of phthalonitrile units which can be 

obtained via several synthetic methods. The targeted molecules are illustrated in 

Figure 2.1 below.  

 

Figure 2.1: Target tetrabenzotriazaporphyrins and required precursor.  
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Before we describe the synthetic design of our target phthalonitrile 218 we discuss the 

potential methods which could be used to synthesise such phthalonitriles in next 

section.  

 

2.2.1  Possible synthetic pathways for preparing 4,5-dialkylsubstituted 

phthalonitriles  

There are several synthetic routes reported in the literature and can be used to prepare 

the 4,5-dialkylsubstituted phthalonitriles. Most reactions have previously been 

attempted in our laboratory and all have limitations. Some of these methods proved to 

give unsatisfactory outcomes (poor yield, facing purification problems, recovering the 

starting materials or obtaining several products alongside the desired product). 

However, we are discussed the some of the available protocols for the preparation of 

targeted phthalonitrile below. 

 

2.2.1.1  Synthesis of 4,5-dialkylphthalonitriles via Diels-Alder reaction 

The Diels-Alder [4+2] cycloaddition is a well-known method for preparing 4,5-

disubstituted phthalonitriles (Scheme 2.1).
 
The general sequence of this method 

involves a double deprotonation of 2,3-dimethyl-1,3-butadiene 200 using Lochmann's 

base system (n-BuLi/potassium tert-butoxide in n-pentane), followed by the alkylation 

with n-bromopentane to give 2,3- disubstituted-1,3-butadiene 201.
8 

Product 201 can 

be prepared using an alternative route which begins with treatment of 2,3-

bis(trimethylstannyl)-1,3-butadiene with two equivalents of methyllithium followed 

by quenching with an electrophile. However, this approach was not preferred because 

several steps are required to prepare the starting material (2,3-bis(trimethylstannyl)-

1,3-butadiene) from 2,3-dichloro-1,3-butadiene which is not commercially available.
9
  

The next step involves the synthesis of dimethyl 4,5-dialkylphthalate 202 which was 

achieved following the procedure reported by Farooq,
10

 and developed later by 

Cammidge, Cook and co-workers.
11 

Cycloaddition [4+2] reaction between compound 

201 and dimethylacetylenedicarboxylate (DMAD) in the presence of DDQ as 

oxidizing agent gave dimethyl 4,5-dialkylphthalate 202.
 
Demethylation of 202 using 

an aqueous solution of sodium hydroxide gave 4,5-dialkylphthalic acid 203. The latter 

was treated with acetic anhydride to give 4,5-dialkylphthalic anhydride 204 which, 

after heating with formamide, produced 4,5-dialkylphthalimide 205.
12

 Heating 

phthalimide under reflux with an aqueous solution of ammonia gave the diamide 206 
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which finally underwent a dehydration reaction using thionyl chloride to afford the 

desired 4,5-dialkylphthalonitrile 207. Scheme 2.1 shows the synthetic route towards 

the formation of 4,5-dialkylsubstituted phthalonitriles.  

 

  Scheme 2.1: Synthesis of phthalonitrile 207 via Diels-Alder cycloaddition. 

 

2.2.1.2  Synthesis of 4,5-dialkylphthalonitriles via cross-coupling reaction 

In the literature, novel metal catalysed cross-coupling reactions can be employed to 

prepare alkylated phthalonitriles, such as Suzuki-Miyaura,
21

 Negishi,
20

 Sonogashira
26

 

and Kumada
31

 cross-coupling reactions. These are considered as extremely powerful 

and widely used strategies for generating C–C, and C–heteroatom bonds.
12-24

 4,5-

Dihalogenated phthalonitrile 67, 1,2-dichlorobenzene 80 and the 4,5-dibromoveratrole 

196 (Figure 2.2) are the most dominant substrates for transition metal catalysed cross-

coupling reactions methods leading to the formation of alkylated phthalonitriles. Some 

of known cross-coupling reactions are discussed below. 

 

Figure 2.2: Possible substrates used for the synthesis of 4,5-dialkylsubstituted 

phthalonitriles. 

 

2.2.1.2.1 Cross-coupling reaction using 4,5-dihalogenated phthalonitrile as 

precursors  

a) Synthesis of 4,5-dialkylphthalonitriles via Suzuki-Miyaura cross-coupling 
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Suzuki-Miyaura cross-coupling reaction
21

 is one of the most reliable and convenient 

reactions for carbon-carbon bond formation. This type of coupling uses organoboron 

reagents as one coupling partner and organic halides or related electrophiles as the 

other. Several advantages, such as high efficiency of the reaction, high stability of the 

organoboron compounds towards air, moisture and thermal treatment, high functional 

group compatibility, and yielding non-toxic side-products, make Suzuki-Miyaura 

cross-coupling reaction one of the most broadly used of all the available cross-

coupling reactions. The general method for Suzuki cross-coupling involving treatment 

of aryl chlorides with arylboronic acids in the presence of a Pd[(dppf)2Cl2)] catalyst 

system, with CsF as the base (Scheme 2.2). A vast number of coupled macrocycles 

have been prepared using this approach. 

 

Scheme 2.2: Synthesis of 4,5-dialkylphthalonitrile 83 via Suzuki-Miyaura coupling.  

 

b) Synthesis of 4,5-dialkylphthalonitriles via Negishi cross-coupling 

Negishi nickel or palladium-catalysed cross-coupling reactions of aryl halides/triflates 

with organozinc reagents represents a powerful and straightforward method for 

forming carbon-carbon bonds. 4,5-Dialkylphthalonitrile can be prepared in a single 

step through Negishi coupling using 4,5-dichlorophthalonitrile
12

 as precursor.
13,20

  

 

Scheme 2.3: Synthesis of 4,5-dialkylphthalonitrile 83 via Negishi coupling. 
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4,5-Dichlorophthalonitrile underwent the Negishi-coupling
20 

with previously prepared 

or commercially obtained alkylzinc iodide reagent to form the 4,5-

dialkylphthalonitrile (Scheme 2.3). The purification of this compound proved to be 

very difficult due to the similar mobilities of 4,5-dialkylphthalonitrile and 4-alkyl-5-

chlorophthalonitrile which can be obtained in the reaction mixture in some cases.  

 

c) Synthesis of 4,5-dialkylphthalonitriles via Sonogashira cross-coupling 

Another synthetic route for the preparation of 4,5-dialkylphthalonitriles was reported 

by Leznoff and co-workers by means of a Sonogashira cross-coupling reaction.
13,26

 An 

excess of the terminal alkyne reacts with 4,5-diiodophthalonitrile in triethylamine 

(TEA) at 110 °C using Pd(PPh3)2Cl2  and CuI as catalysts to give the 4,5-

dialkynylphthalonitriles.
26,27  

Hydrogenation of 4,5-dialkynylphthalonitrile 210 can 

offer a better alternative way for the preparation of 211 in contrast with other 

multistep preparations of 4,5-dialkylphthalonitrile which require low-yield reactions 

using copper cyanide (Scheme 2.4).
28-30

   

 

Scheme 2.4: Synthesis of 4,5-dialkylphthalonitrile via Sonogashira coupling. 

 

2.2.1.2.2 Cross-coupling reaction using 1,2-dichlorobenzene as precursor 

a) Synthesis of 4,5-dialkylphthalonitriles via Kumada cross-coupling 

Kumada cross-coupling
31

 can also be used to prepare 4,5-dialkylphthalonitrile 

following the procedure used by Hanack
29 

where the dichlorobenzene was treated with 

a freshly prepared alkylmagnesium bromide and Ni catalyst to give dialkylbenzene 

which underwent bromination and then cyanation to form the targeted phthalonitrile 

(Scheme 2.5).
32  

This route has proved to be difficult to apply, but still can be utilised 

in some cases. Several dialkylsubstituted phthalonitriles were prepared from their 

precursors (brominated dialkylbenzene) through Kumada cross-coupling reactions.  
  

 

Scheme 2.5: Synthesis of 4,5-dialkylphthalonitrile via Kumada coupling. 
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2.2.1.2.3 Cross-coupling reaction using 4,5-dibromoveratrole as precursor  

a) Synthesis of 4,5-dialkylphthalonitriles via Negishi cross-coupling 

4,5-Dialkylphthalonitriles can be synthesised following the Negishi cross-coupling 

reaction
20

 utilising 4,5-dibromoveratrole as precursor.
20 

Treatment of 4,5-

dibromoveratrole and alkylzinc iodide reagent with palladium or nickel catalyst leads 

to the formation of 4,5-dialkylveratrole. Several synthetic steps were applied in order 

to obtain the target phthalonitrile as shown in Scheme 2.6. 

 

Scheme 2.6: Negishi cross-coupling of 4,5-dibromoveratrole.  

 

b) Synthesis of 4,5-dialkylphthalonitriles via Suzuki-Miyaura cross-coupling 

Suzuki cross-coupling reaction
21

 conditions are used to convert 196 into the 

corresponding dialkylated phthalonitrile 197 in the presence of palladium catalyst and 

cesium fluoride as a base (Scheme 2.7). This reaction was followed by several steps as 

illustrated in Scheme 2.6 above to form the target phthalonitrile 83.  

 

Scheme 2.7: Suzuki-Miyaura cross-coupling of 4,5-dibromoveratrole.  

 

c) Synthesis of 4,5-dialkylphthalonitriles via Sonogashira cross-coupling 

Sonogashira cross-coupling
26

 reaction can also be used as an alternative method for 

the preparation of 4,5-dialkylphthalonitriles. Treatment of 4,5-dibromoveratrole with 

alkyne in the presence of Pd catalyst and  copper (I) iodide in TEA can obtain the 

desired 214 which can undergo a hydrogenation reaction to obtain 4,5-dialkylveratrole 

(Scheme 2.8). The use of a number of synthetic steps as depicted in Scheme 2.6 leads 

to the formation of required 4,5-dialkylphthalonitrile.   
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Scheme 2.8: Sonogashira cross-coupling of 4,5-dibromoveratrole.  

 

d) Synthesis of 4,5-dialkylphthalonitriles via Kumada cross-coupling 

Synthesis of 4,5-dialkylphthalonitriles can also be achieved from its precursors (4,5-

dibromoveratroles) via Kumada cross-coupling reactions
31

 (Scheme 2.9), followed by 

several synthetic steps and finally cyanation to afford the desired phthalonitriles 

(Scheme 2.6). Kumada cross-coupling reactions offer a successful and straightforward 

way for preparing several examples of dialkylated veratroles in reasonable yields.  

 

Scheme 2.9: Kumada cross-coupling of 4,5-dibromoveratrole. 

 

After this review of the possible ways for synthesising phthalonitriles, we discuss the 

chosen methods for preparing our target phthalonitriles in the following sections.     

 

2.2.2 Synthetic design of targeted phthalonitrile 218 

The first challenge was the synthesis of 4,5-bis(2-ethylhexyl)phthalonitrile 218. These 

precursors were chosen because the branched (chiral) chains, introduced using 

racemic 2-ethylhexyl bromide, confer excellent solubility on phthalocyanine 

macrocycles
61

 and this behaviour was also observed in TBTAPs. Several potential 

synthetic routes could be used to prepare phthalonitrile 218. Two of these designed 

strategies have been chosen to synthesise the required phthalonitrile 218 as depicted in 

Schemes 2.10 and 2.11, respectively. Preliminary investigation was carried out and 

gave promising results but conditions were thoroughly studied during the course of 

this work. This set of reactions and modifications to the scheme below are discussed 

in the next section. 
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Scheme 2.10: First synthetic route towards phthalonitrile 218 using 1,2-

dichlorobenzene as precursor. 

 

 

Scheme 2.11: An alternative synthetic route towards phthalonitrile 218 using 4,5-

dibromoveratrole as precursor.  

 

2.2.3  Synthesis of 4,5-bis(2-ethylhexyl)phthalonitrile via Kumada cross-

coupling reaction using 1,2-dichlorobenzene as precursor 

The initial attempt to synthesise the target phthalonitrile 218 was through Kumada 

cross-coupling
31

 reaction using 1,2-dichlorobenzene as precursor, followed by 

electrophilic bromination and Rosenmund von Braun cyanation reaction
17

 in the last 

step (Scheme 2.10). Following the procedure described by Hanack for preparing 

analogous compounds,
29

 1,2-dichlorobenzene 80 was stirred with a nickel catalyst 
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([1,2-bis(diphenylphosphino)ethane]dichloronickel(II)). A freshly prepared solution of 

(2-ethylhexyl)magnesium bromide 215 in diethyl ether was added dropwise to the 

previous mixture at room temperature and left under reflux overnight. A series of 

colour changes during the addition of Grignard reagent at room temperature was 

detected. After work-up of the reaction, 1,2-bis(2-ethylhexyl)benzene 216 was 

isolated as a liquid in 90% yield. Characterisation by 
1
H NMR spectroscopy 

confirmed the identity of the product obtained. There was a singlet at 7.10 ppm in the 

aromatic region of the spectrum integrating for four protons. A multiplet at 2.54 ppm 

integrated for four protons was assigned to the benzylic protons. The rest of the 

aliphatic protons also appeared in the 
1
H NMR spectrum as expected.   

The next step in the preparation of phthalonitrile 218 was the bromination of 216. A 

similar reaction was also employed by Hanack
29 

and required keeping the bromination 

reaction at 0 °C for a period of 44 hours which was not convenient for us as we had no 

means of keeping the temperature at 0 °C for that length of time. In our case, the 

bromination was achieved using the method described by Ashton and co-workers.
33

 

Iodine and iron powder was added to a solution of 1,2-bis(2-ethylhexyl)benzene 216 

in DCM which was then treated with a bromine at 0 °C over two hours. The mixture 

was then left to stir overnight. The reaction was worked-up and washed several times 

with an aqueous solution of sodium metabisulfite and sodium bicarbonate. The 

product was isolated by column chromatography using PE as eluent giving the desired 

product as a liquid in 83% yield. Analysis by 
1
H NMR spectroscopy indicated the 

presence of the required product 217. In some cases, the reaction gave a mono-

brominated compound which was separated from the desired di-brominated product 

during the column chromatography.  

The final step involved the cyanation of 1,2-dibromo-4,5-bis(2-ethylhexyl)benzene 

217 to form the target 4,5-bis(2-ethylhexyl)phthalonitrile 218. The reaction followed 

the extremely common procedure for preparing phthalonitriles known as the 

Rosenmund von Braun cyanation reaction.
17 

At the first attempt, a mixture of di-

brominated compound 217 and copper cyanide in dry DMF was heated under reflux 

overnight resulting in the formation of a trace amount of the desired product with a 

side-product identified as the corresponding copper phthalocyanine. Formation of the 

copper phthalocyanine was only observed when the reaction was left at a high 

temperature for a long time in the presence of copper ions. Indeed, these conditions 

were considered as traditional reaction conditions for preparing metallated 
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phthalocyanine. Due to this problematic synthesis, in the following attempt, care was 

taken not to heat the reaction for any longer time than necessary as well as avoiding 

heating at high temperature, as the unwanted copper phthalocyanine could probably 

form under such conditions. In this case the reaction was allowed to reflux at 150 °C 

under an argon atmosphere for 16 h. After cooling, the reaction crude was stirred with 

an aqueous solution of ammonia for 24 h in order to remove the excess of copper 

cyanide. Purification using column chromatography was accomplished in order to 

obtain a pure product 218 as a bright yellow oil in 7% yield. Analysis by 
1
H NMR 

spectroscopy was used to characterise compound 218. The 
1
H NMR spectrum showed 

a singlet at 7.49 ppm assigned to the two aromatic protons and a multiplet at 2.57 ppm 

integrating for four protons represented the four benzylic protons. The rest of the 

aliphatic protons were also presented in the 
1
H NMR spectrum. Product 218 was also 

analysed by 
13

C NMR spectroscopy which indicated twelve signals corresponding to 

the twelve different carbon environments of compound 218.  

Synthesis of phthalonitrile 218 using the technique described above in Scheme 2.10 

gave unsatisfactory results due to the problematic synthesis in bromination and 

cyanation steps.  In the bromination step, the formation of mono-brominated product 

led to difficulties to isolate the required product from the side-products even after 

several attempts to separate them. In addition, in the cyanation step, the purification of 

the product was more difficult to achieve due to the formation of copper 

phthalocyanine in some cases. Indeed, if phthalonitrile 218 was successfully prepared 

without any side-product, it was still difficult to remove the excess of copper cyanide 

and we needed to wash the compound several times by an aqueous solution of 

ammonia. It also was observed that the cyanation reaction gave a really low yield. As 

a result of all problematic synthesis and purification, an alternative synthetic route has 

been employed in order to synthesise the target phthalonitrile 218 in a better yield. 

Detailed descriptions of this alternative method will be discussed below in next 

section.    

 

2.2.4  Synthesis of 4,5-bis(2-ethylhexyl)phthalonitrile via Kumada cross-

coupling reaction using 4,5-dibromoveratrole as precursor 

An alternative route was attempted through Kumada cross-coupling reaction,
31

 

followed by a sequence of synthetic steps and finally cyanation reaction in order to 

synthesise the target 4,5-bis(2-ethylhexyl) phthalonitrile 218 (Scheme 2.11). This 



Chapter 2:  Synthesis and Functionalization of Tetrabenzotriazaporphyrin derivatives   

 

 84 

route begins with bromination of the commercially available veratrole 195 to give di-

brominated veratrole in a yield of 100%.
94

 Analysis by 
1
H NMR spectroscopy proved 

the presence of all the expected signals. The aromatic proton peaks were observed at 

7.06 ppm as a singlet integrating for two protons. The chemical shift of the aromatic 

peak was found further downfield than that of compound 195. This was due to the de-

shielding effects of the bromine atoms. The CH3 protons next to the oxygen atoms 

were present at 3.85 ppm.   

The next step was the Kumada cross-coupling reaction
31

 which has been subjected to 

several amendments by our group. 4,5-Dibromoveratrole was stirred with  

tris(dibenzylideneacetone)dipalladium at room temperature under an inert atmosphere. 

A freshly prepared solution of (2-ethylhexyl) magnesium bromide was added 

dropwise at room temperature and then the mixture heated to reflux overnight. The 

reaction mixture was worked-up and purified by column chromatography over silica 

gel (hexane/EtOAc, 5:1) to give 1,2-bis(2-ethylhexyl)-4,5-dimethoxybenzene 219 as 

an oil in 71% yield. 
1
H NMR spectroscopy was used to characterise this compound 

and to confirm its identity. A singlet at 6.61 ppm assigned to the two aromatic protons 

and a multiplet at 2.41 ppm integrating for four protons represented the four benzylic 

protons. The CH3 protons next to the oxygen atoms were observed at 3.85 ppm and all 

the rest of the aliphatic protons were present in the 
1
H NMR spectrum as expected.  

The next step in the preparation of phthalonitrile 218, involving the demethylation of 

219, used the procedure described by Piatelli et al.
54

 Conversion of methoxy groups to 

hydroxyl groups was achieved using a 1:1 mixture of hydrobromic acid and glacial 

acetic acid. The mixture was left to reflux overnight. Initial analysis of this mixture by 

TLC indicated the formation of a trace of desired product but unfortunately, the 

starting material was still present in the reaction mixture. However, when the reaction 

was left to reflux for a long period of time (72 h), the product 220 was formed in a 

high yield 99% and no starting material was recovered at the end of the reaction. 

Characterisation by 
1
H NMR spectroscopy confirmed the identity of the product 

obtained.  

Aryl triflates can be conveniently prepared from phenol derivatives in reasonable 

yields. In this reaction, the phenol was treated with trifluoromethanesulfonic 

anhydride (triflic anhydride) in the presence of a base such as pyridine, lutidine or 

triethylamine at low temperature.
34 

Investigation of this reaction by our group led to 

the conclusion that the yield of the reaction was very low when the reaction was 
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carried out in the presence of pyridine as base, whereas employing lutidine instead of 

pyridine gave satisfactory results.
25

 In our case, compound 220 and lutidine were 

dissolved in dry DCM and then cooled down to -78 °C. Initial addition of the triflic 

anhydride was performed and the mixture left to warm to room temperature overnight. 

This led to formation of triflated product in a quite low yield. However, improved 

yield was obtained when the addition of the triflic anhydride was done over an hour 

under an inert atmosphere and then left to warm to room temperature and stirred 

overnight. The resulting reaction mixture was worked-up and purification by column 

chromatography afforded the product in 66% yield. Lutidine has been considered as 

useful material in this reaction in two ways, as a co-solvent to dissolve the starting 

material 220 and to neutralise the triflic acid which can be formed in the reaction 

mixture. It also prevented any further attack on compound 221 due to its lower 

nucleophilicity compared with pyridine which can be subjected to a nucleophilic 

substitution.
34,35

 Analysis of compound 221 by 
1
H NMR spectroscopy displayed a 

single peak at 7.17 ppm, corresponding to the two aromatic protons and a multiplet at 

2.53 ppm integrating for four protons represented the four benzylic protons. All 

aliphatic protons were shown in the 
1
H NMR spectrum as expected.  

The next step involved the conversion of the ditriflate 221 into required phthalonitrile 

218 (Scheme 2.11) which proved to be more challenging than expected. Several 

reaction methods was reported in the literature.
37-39

 Nevertheless, the initial synthesis 

of phthalonitrile 218 followed the procedure descried by Kobuta and Rice.
40

 In this 

reaction, Pd(PPh3)4 was employed as catalyst and zinc cyanide as cyanide source in 

the presence of dry DMF at 120 C. Unfortunately, the reaction failed to form the 

required phthalonitrile under such conditions and no starting material was recovered.  

An alternative method was employed, involving the cyanation of 4,5-bis(2-

ethylhexyl)-1,2-phenylene bis(trifluoromethanesulfonate) to give 4,5-bis(2-

ethylhexyl)phthalonitrile 218 using the procedure described by Hanack and Drechsler. 

This also proved to be more challenging than expected.
19

 In their investigations, the 

triflated catechols were converted into their corresponding nitriles using 

tris(dibenzylideneacetone) dipalladium as source of palladium (0) and DPPF as ligand 

in the presence of anhydrous DMF as solvent. Zinc cyanide was added portionwise to 

the reaction mixture over a prolonged period of time (2 h). DPPF was used in this 

reaction to stabilise the intermediate cationic species and also to protect the palladium 

from forming the tetracyano palladium complex with excess cyanide. The reason 
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behind adding the Zn(CN)2 portionwise over a period of time was to keep the 

concentration of free cyanide to a minimum.
19

 It was observed that when the nickel 

catalyst was used in this reaction, no useful results were obtained.
41

  

Several attempts were made by our group in order to find the appropriate reaction 

conditions. For example, changing the number of portions (5, 16, 17, 18, 21), using 

dry and wet DMF, applying different temperatures (40, 50, 60, 63, 65, 70 °C) and 

changing the reaction time (5, 6, 22, 24 h). After all these attempts to optimise the 

reaction and improve the yield, our group found that the best result was obtained when 

the Zn(CN)2 was added in 16 portions and the reaction heated at 63 °C for 22 h after 

the addition of Zn(CN)2. This reaction is an exothermic reaction and leads to a rise in 

the temperature inside the flask. Due to this behaviour, this reaction should be 

monitored carefully. It also was observed that when the oil bath is employed as 

heating source, the results were quite good as well as the ability of controlling the 

reaction temperature became accessible whereas using the DrySyn® heating plates led 

to a failure of stabilisation of the reaction temperature and the formation of 

decomposed materials.
25

 

After all these modifications by our group we were able to use this procedure 

confidently to target molecule 218 in reasonable yield. Several attempts have been 

made in order to optimise the reaction towards synthesis our target phthalonitrile 

(Table 2.1). The initial attempts followed the modified Hanack’s procedure.
25 

Zinc 

cyanide was added portionwise (16 portions) over 2 h at 62 °C to a mixture of aryl 

triflate (large scale) and palladium catalyst in dry DMF. No product was obtained and 

only starting materials recovered. However, using a small scale (0.50g) of aryl triflate 

gave a good yield (59%). It was observed that the yield obtained was influenced by 

the quantities of starting materials used in the reaction. A small portion of aryl triflate 

(0.50-2.00 g) therefore was used in order to synthesise the desired phthalonitrile. 

Improvement in phthalonitrile yield has been detected when the reaction temperature 

rose up to 90 °C with a decrease in the number of zinc cyanide portions added. Best 

result was obtained as illustrated in line 5 (Table 2.1). In addition, efficient results 

were obtained when the DMF was divided into two parts, one used to dissolve the 

catalyst and ligand, while the other to dissolve the starting material completely in the 

solvent. The usage of wet DMF did not improve the result further.
42

  

After the formation of the product was successfully completed, the work-up and 

purification afforded the clean product as a yellow liquid. For the purification, the 
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crude was washed several times by hexane and filtered through a filtration paper to 

remove the brown sticky materials which included the rest of catalyst and ligand used 

in the reaction. The rest of clear yellow solution was evaporated to remove the solvent 

and then applied to a silica gel column using hexane:ethyl acetate (30:1) to remove 

any impurities from the product. The product obtained from this reaction was analysed 

by 
1
H NMR spectroscopy to confirm its identity. A singlet at 7.52 ppm represented the 

two aromatic protons and a multiplet at 2.59 ppm integrated for four protons indicated 

to the four benzylic protons. All the aliphatic protons appeared in the 
1
H NMR 

spectrum as expected. 
13

C NMR spectroscopy displayed twelve different carbon 

environments which confirmed the success of the formation of product 218.  

 
SM (221) 

quantity (g) 

Zn(CN)2 Solvent Temp (C) Time after addition Results 

8.00 g 16 portions   dry DMF  60-64 24 h SM 

1.00 g  16 portions dry DMF 60-64 24 h SM 

0.50 g 16 portions dry DMF 60-62 24 h 59 % product 

0.50 g 2 portions dry DMF 85-87 24 h 72 % product 

1.00 g 2 portions dry DMF 70-75 24 h 82 % product 

2.00 g 1 portion dry DMF 88-90 24 h 74 % product 

 

Table 2.1: Summary of attempted conditions for cyanation of 221. 

 

Synthesis of phthalonitriles 218 proved to be challenging, it also does have some 

drawbacks which severely hindered this investigation. Their syntheses were 

unpredictable and purifications tedious to achieve. Because of these observations, we 

decided to investigate the synthesis of another phthalonitrile, 222, which proved to be 

easy to synthesise, has high symmetry yet is heavily branched, conferring solubility 

and preventing aggregation.  
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2.3 Synthesis of Alternative Peripherally Substituted Tetrabenzotriaza 

porphyrins and its Precursors  

Synthesis of an alternative tetrabenzotriazaporphyrin was investigated through the 

formation of phthalonitrile 222. The target molecules (TBTAPs and its precursor) are 

represented in Figure 2.4 below. 

 

  Figure 2.4: Tetrabenzotriazaporphyrin target molecules and required precursor. 

 

2.3.1 Synthetic design of the required phthalonitrile 222 

The second challenge targeted the synthesis of alicyclic alkyl substituted phthalonitrile 

222.
43

 The synthetic route followed the methods shown in Scheme 2.12.  

 

Scheme 2.12: Synthetic routes towards 4,5-disubstituted phthalonitrile 222. 
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2.3.2  Synthesis of 6,7-dicyano-1,1,4,4-tetramethyltetralin 

This route started with the conversion of diol 223 into dichloride 224.
44-46 

A solution 

of concentrated hydrochloric acid saturated with hydrogen chloride gas was added to 

diol 223 cooled in an ice bath then left to stir at room temperature overnight.
 
The 

crude was then washed several times with water and extracted with DCM. 

Concentration of the resulting material gave the product in 74% yield. 

Characterisation by 
1
H NMR spectroscopy confirmed the identity of the product 

obtained. 

Second step was achieved using Bruson’s procedure via Friedel-Crafts reaction.
46

 The 

reaction was involved the condensation of 2,5-dichloro-2,5-dimethylhexane with 

benzene in the presence of anhydrous aluminium chloride, and gave a liquid mono- 

and a crystalline di-cycloalkylation product, 225 and 227, respectively (Figure 2.5).
46 

It was observed that when the reaction was carried out at room temperature, the yield 

was a little low, therefore we decided to increase the reaction temperature to 50° C 

and we noticed that the yield improved significantly and the formation of by-product 

decreased. After cooling, the resulting material was worked-up using DCM and then 

washed by methanol to remove the side-product 227 which was easy to crystallise as 

white crystals from MeOH, leaving behind the desired compound 225 dissolved in the 

solvent. The product was washed several times by MeOH to ensure that all the side-

products were removed from the target molecule. Product 225 was obtained as a 

colourless liquid in 94% yield. Analysis of the crude by TLC showed two spots 

corresponding to compounds 225 and 227. After purification, TLC of product 225 

showed only one spot and subsequently analysed by 
1
H NMR spectroscopy, showing 

all the signals corresponding to the desired compound 225.  

 

Figure 2.5: Possible products from the condensation of 2,5-dichloro-2,5-

dimethylhexane with benzene. 
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The next step involved the bromination of 1,1,4,4-tetramethyl-1,2,3,4-

tetrahydronaphthalene 225 using Ashton’s procedure.
33 

 A mixture of compound 225 

with iodine and iron powder was dissolved in DCM and then treated with  a bromine 

at 0 °C over 30 min. The mixture was then left to stir at room temperature overnight. 

After working-up and washing several times by an aqueous solution of sodium 

metabisulfite and sodium bicarbonate to remove the excess bromine, the product was 

purified using column chromatography with PE:DCM (3:2) as eluent yielding the 

desired product in 86% yield. The mono-brominated side product can be separated 

easily from product 226 by column chromatography. Product 226 was characterised 

by 
1
H NMR spectroscopy which displayed all the signals corresponding to the desired 

compound 226. At 7.50 ppm, two aromatic protons were represented by a singlet. It 

was found that the signals of two aromatic protons were further downfield as a result 

of the de-shielding effects of the bromine atoms. The rest of the aliphatic protons were 

presented in the 
1
H NMR spectrum as expected.  

Introduction of dinitrile groups in last step was achieved following the Rosenmund 

von Braun cyanation reaction.
17 

A solution of di-brominated compound 226 in dry 

DMF was heated under reflux with copper cyanide. After 3 hours, the reaction was 

checked by TLC in order to see if the reaction was complete. Unfortunately, the TLC 

showed two spots; one was the starting material and the other was the product. The 

reaction mixture was therefore left to reflux overnight in order to push the reaction 

towards the formation of the desired product. Analysis of the crude mixture by TLC 

showed the product along with a blue spot identified as the corresponding copper 

phthalocyanine. The formation of unwanted phthalocyanine could be due to the 

prolonged refluxing in presence of obtained phthalonitrile and copper metal (these 

considered as the appropriate conditions for synthesis of CuPc). However, CuPc can 

be separated from the product by column chromatography. In the next attempt, the 

reaction was allowed to reflux at 150 °C under an argon atmosphere for 16 h to avoid 

the formation of unwanted blue materials. After cooling, the mixture was stirred with 

an aqueous solution of ammonia at room temperature for 24 h under a stream of air in 

order to remove excess copper cyanides. Purification by column chromatography 

using PE:DCM (3:2) gave the desired product as a yellow solid in 27% yield. 
1
H 

NMR spectroscopy showed the aromatic proton signal at 7.71 ppm as a singlet 

integrating for two protons. The CH2 proton signals were found at 1.72 ppm as a 

singlet integrating for four protons. Moreover, the CH3 aliphatic proton signals were 
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obtained at 1.30 ppm as a singlet integrating for twelve protons. Synthesis of TBTAP 

using 6,7-dicyano-1,1,4,4-tetramethyltetralin as precursor is discussed in the next 

section.  

 

 

2.4  General Synthesis of Peripherally Substituted Tetrabenzotriaza 

porphyrins  

Synthesis of metal-free and metallated tetrabenzo(aza)porphyrin derivatives can be 

achieved following Linstead’s procedure
3 

which was modified and developed later by 

Cammidge, Cook and co-workers.
4 

 They established a controlled manner for 

accessing the full range of hybrid molecules (TBTAP, TBDAP, TBMAP and TBP) 

from reactions of 3,6-dialkylphthalonitrile with Grignard reagent MeMgBr. In 

addition, their results included a clarification of difference in the chemistry and 

reactivity of 3,6- and 4,5-dialkylphthalonitriles towards Grignard reagents. This 

synthetic route consisted of two main steps; the treatment of a solution of 3,6-

dialkylphthalonitriles in ether or THF with different amounts of the Grignard reagent 

followed by exchange the solvent to quinoline and heating under reflux in order to 

obtain the target tetrabenzo(aza)porphyrin magnesium derivatives. Metal-free 

tetrabenzo(aza)porphyrins can be achieved by treating the metallated products with 

acids to obtain metal-free derivatives. The latter can be reacted with any metals like 

copper or zinc in order to insert those metals inside the central core of hybrid 

molecules which thus can offer new green materials possessing various chemical and 

physical properties (Scheme 2.13).
3,4

 This reaction underwent a series of colour 

changes during the reaction progress. In first step, the colour was changed from a 

colourless solution to a deep blue/mauve mixture and this could be due to the 

formation of an oligomer intermediate. When the THF was removed under a stream of 

argon and the dry quinoline added, the reaction mixture changed to an intense 

red/mauve colour. A clear green colour was obtained after heating the mixture for 2-3 

hours.
25
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Scheme 2.13: Synthetic route for preparing metallated and metal-free 

tetrabenzo(aza)porphyrin derivatives. 

 

A series of stoichiometric ratios have been investigated deeply by our group in order 

to understand the effects of altering the ratios of reactants on the formation of 

products. 3,6-Dialkylphthalonitrile was used as a main precursor in this investigation 

which was treated with different amounts of MeMgBr. A full range of 

tetrabenzo(aza)porphyrin derivatives have been distinguished including TBTAB, cis-

TBDAP (methine groups adjacent) and trans-TBDAP (methine groups apart), 

TBMAP, TBP and Pc depending on the amounts of MeMgBr used in the reaction. 

Best results for preparing TBTAP, TBDAP and TBMAP have been obtained when 2:1 

equivalents of MeMgBr to phthalonitrile were employed. However, when 4,5-

dialkylphthalonitrile was reacted with 2 equivalents of Grignard reagent MeMgBr, 

only TBTAP and Pc can be detected (Scheme 2.13).
3-6

 These results were consistent 

with Leznoff and McKeown
7
 outcomes where they attempted to prepare meso-

substituted TBTAPs using 4-substituted phthalonitriles and various Grignard reagents. 

The reaction mixture in their investigations contained TBTAPs with phthalocyanine 

and trace amounts of the TBDAPs, however, no TBMAPs and TBPs were obtained.
7
 

More information about this investigation is discussed in chapter one.  

In addition, it has been observed that when a large quantity of Grignard reagent was 

used in the reaction, the formation of the more porphyrin-like materials were 

identified whereas using a small quantity of MeMgBr led to the formation of less 
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porphyrin-like materials. It was also noticed that the formation of 

tetrabenzo(aza)porphyrin derivatives can be affected by the quinoline used in the 

reaction whether it was added freshly after distillation or after a period of time. Best 

results have been obtained when both solvents (THF and quinoline) added to the 

reaction are freshly after distillations and de-gassed. This technique helped to avoid 

the oxygen which can negatively impact on the reaction yields. Moreover, heating 

using an oil bath was preferred rather than the ordinary DrySyn® heating plates 

because it reduces the fluctuation of temperature during the reaction. Both solvents 

(THF and quinoline) played as key roles in this reaction, where several experimental 

attempts were conducted to ascertain the significance of their presence in the reaction. 

These experiments resulted in the importance of the presence of THF in the first step 

for the formation and stability of the oligomer intermediate and the necessity of 

quinoline (high boiling point solvent) in the final step to close the ring. It was detected 

that the best results were obtained when removing THF firstly with leaving a small 

amount of this solvent in the reaction mixture and finally adding the quinoline to the 

mixture and heating the reaction at high temperature (approx. 220 °C).
25  

In the light of previous results we decided to use 4,5-dialkylphthalonitrile  as 

precursor and investigate its chemistry and reactivity towards various Grignard 

reagents. Novel tetrabenzotriazaporphyrin derivatives and their precursors have been 

synthesised through traditional synthetic procedures
3,4

 and their modified version
47

 as 

well as a new route discovered by our group
48

 that could find application in organic 

electronic devices on the basis of their interesting properties.
 

 

2.4.1  Synthesis of [2,3,9,10,15,16,23,24-octakis(2-ethylhexyl)-27-phenyl-

tetrabenzo[b,g,l,q] [5,10,15]triazaporphinato] magnesium  

The conditions used for the cyclisation of phthalonitrile to produce the peripherally 

substituted TBTAP were based on the methodology investigated by Leznoff and 

McKeown
7
 (their procedure is similar to that discovered by Linstead

3
 but they use 

exclusively Grignard reagents for the prompting the cyclisation and quinoline as the 

cyclisation reaction medium) and modified later by Cammidge, Cook and co-

workers.
4
 Cammidge’s investigations proved that when 2:1 equivalents of Grignard 

reagents to phthalonitriles were utilised in the reaction, a reasonable amount of 

TBTAP was obtained compared with other hybrid complexes.
4,25

 A number of 

experimental attempts were performed following the established procedure
4 

 in order 
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to synthesise meso-phenyl TBTAP, but ended with no results in some cases. There is 

no doubt that the introduction of an aromatic substituent at the meso-position of 

TBTAP macrocycles is much more complicated than preparing TBTAPs bearing only 

a methine group at the meso-site, especially if the aromatic substituent possesses a 

variety of functional groups. Indeed, it was a challenge to find the best reaction 

conditions for preparing the targeted macrocycles. Diverse conditions were applied in 

order to obtain the required TBTAPs. Table 2.2 shows the summary of the attempted 

conditions and their outcomes.   

 

Scheme 2.14: Preparation of meso-phenyl TBTAP 183. 

 
Solvent 

I 

Status Temp. 

°C 

Time Solvent II Status Temp. 

°C 

Time Results 

THF  freshly 

distilled 

rt 30 

min 

quinoline  freshly 

distilled 

200 3 h nr 

THF  freshly 

distilled 

80  30 

min 

quinoline  freshly 

distilled 

200  2 h 

3 h 

6 h 

24h 

nr  

nr  

nr 

28% 

TBTAP, Pc 

THF freshly 

distilled 

80  30 

min 

quinoline freshly 

distilled 

200  ≥ 48 

h  

TBDAP, Pc  

trace 

TBTAP 

THF freshly 

distilled 

80  30 

min 

quinoline distilled (3 

days, kept with 

molecular 

sieves under Ar) 

200  24 h 19% 

TBTAP, Pc 

   

Ether 

freshly 

distilled 

rt 30 

min 

quinoline freshly 

distilled 

200  24 h nr 

THF freshly 

distilled 

80  30 

min 

diglyme freshly 

distilled 

200  24 h nr 

Table 2.2: Summary of attempted conditions for preparing TBTAPs. 
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From all these attempted experiments we gained an understanding of which conditions 

are favoured to produce TBTAP 183. The conclusions we reached are; the THF 

should be distilled freshly before use in the reaction and the mixture must be heated 

gradually (i.e. rt →80 °C) in order to form the required oligomer intermediate.  No 

product was obtained when the THF was stirred with phthalonitrile and Grignard 

reagent at room temperature. Moreover, using ether instead of THF gave no TBTAP 

product. In the second step, the quinoline must also be distilled freshly in order to 

obtain good results. However, when the quinoline is used after 3 days from the 

distillation process and kept dry using molecular sieves under Ar, the product was 

obtained but in a lower yield than the one produced when fresh quinoline was used. 

Exchanging the quinoline by diglyme gave no positive result even after prolonged 

refluxing. The reaction time played a key role in this reaction as well, where we 

noticed that when the reaction in the second step was refluxed for 2 h, no product was 

obtained. Thus the reaction was left to reflux for more time and closely checked for 

the changes in the mixture colour. After 24 h stirring in refluxing quinoline, we 

noticed the formation of green materials containing a combination of TBTAP, Pc and 

sometimes a trace amount of TBDAP.  

Overall, preparation of TBTAP 183 was achieved taking into account all above-

mentioned modifications (Scheme 2.14). The reaction begins with treatment of a 

solution of phthalonitrile 218 in freshly distilled THF with two equivalents of 

benzylmagnesium chloride 228.  The reaction temperature should be raised from rt to 

80 °C gradually and the mixture was kept heating for approximately 30 min. After the 

removal of THF and cooling for 20 min, distilled quinoline was added in a single 

portion. The mixture was then left to heat at 200 °C for 24 h. During this period of 

time, the reaction mixture underwent a series of colour changes (honey→dark 

brown→olive→green). The reaction mixture was cooled to rt and passed through a 

silica gel plug, initially eluting with MeOH in order to remove the remaining 

quinoline and other polar side-products, then the residue was flushed out with THF 

and a dark green fraction was collected. After the removal of solvent under reduced 

pressure, the resulting green materials were analysed by MALDI-TOF mass 

spectrometry which showed a cluster of peaks around (m/z 1509) corresponding to the 

required compound 183 and the other around (m/z 1435) assigning to the side-product 

which was identified as magnesium peripherally substituted phthalocyanine 

(Figure2.6).  
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Figure 2.6: MALDI-TOF- MS of crude reaction mixture of TBTAP 183. 

 

The presence of eight alkyl chains was expected to improve solubility of TBTAPs in 

common solvents and was expected to be advantageous for purification purposes and 

characterisation by NMR spectroscopy. However, peripherally octa-substituted 

tetrabenzotriazaporphyrins showed increased aggregation which made the purification 

and characterisation of TBTAPs difficult compared with non-peripherally substitueted 

TBTAPs. In addition, 
1
H NMR spectra can be complicated and broadened as a result 

of the formation of diastereomeric mixtures.  

Chromatography was then performed to separate product 183 from the by-product 

using a mixture of PE:dry THF (15:1). Two fractions were isolated, a green fraction 

(MgTBTAP) and a blue fraction (MgPc). The green material was purified by further 

column chromatography using DCM:PE (1:15) followed by recrystallisation of the 

product using PE:dry THF (10:1) to afford a pure product in 28% yield. Several 

attempts have been employed to find the most appropriate eluent for the separation of 

the resulting green materials and also for the recrystallisation of the product.  

Characterisation of TBTAP 183 was attempted by normal methods. Thus the 

compound gave exact molecular ion peak in the MALDI-TOF mass spectrum. TBTAP 

183 also provided split Q-bands at 685 nm and 659 nm in the UV-Vis spectrum. A 

number of common NMR solvents such as chloroform-d, tetrachloroethane-d2 and 

benzene-d6 were used but gave complicated spectra, presumably due to aggregation. A 

successful NMR spectrum was obtained when deuteriated THF was used as NMR 

solvent. 
1
H NMR spectroscopy indicated eight aromatic protons located on the non-

peripheral positions of the tetrabenzotriazaporphyrin macrocycle in the 6.90-9.40 ppm 

range. The aromatic protons arising from the phenyl group at meso-position were 

found around 7.90-8.20 ppm range.  
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Figure 2.7: The 
1
H NMR spectrum of TBTAP showing the aromatic protons. 

 

2.4.2  Synthesis of [2,3,9,10,15,16,23,24-octakis(2-ethylhexyl)-27-(2-bromo 

phenyl)-tetrabenzo [b,g,l,q][5,10,15]triazaporphinato] magnesium 

Synthesis of TBTAP 184 was achieved in a same manner as TBTAP 183 (Scheme 

2.15). The Hanack transition metal-catalysed cyanation of aryl triflates was again used 

as the key step to generate the corresponding phthalonitrile 218 (Scheme 2.11). The 

synthesis of tetrabenzotriazaporphyrin 184 started with the cyclisation of the 

phthalonitrile with Grignard reagent taking into account all modifications mentioned 

earlier in preparation of TBTAP 183. Two steps were employed in order to obtain the 

target TBTAP. In the first step, phthalonitrile 218 was dissolved in distilled THF and 

then followed by the addition of two equivalents of 2-bromobenzylmagnesium 

bromide 230.  The reaction mixture was allowed to heat at 80 °C for 30 min in order 

to generate the oligomer intermediate followed by exchange the solvent to quinoline 

and heating at 200 °C for 24 h to obtain sufficient amounts of the product for 

purification and characterisation. Purification of 184 by column chromatographies 

followed the same purifications described above for TBTAP 183. The desired 

tetrabenzotriazaporphyrin magnesium was obtained in 16% yield.
47

  

 

Scheme 2.15: Preparation of TBTAP 184. 
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Characterisation of the TBTAP 184 was not straightforward, as encountered in the 

case of 183.  A correct molecular ion peak in the MALDI-TOF mass spectrum was 

obtained and the UV-Vis spectrum gave two Q-bands at 684 nm and 662 nm, 

respectively. The 
1
H NMR spectrum showed the same problems as the TBTAP 183. 

However, a clear 
1
H NMR spectrum was obtained after several attempts (Figure 2.8). 

The aromatic protons corresponding to eight protons on the non-peripheral sites of the 

tetrabenzotriazaporphyrin molecule presented at 6.99, 9.25, 9.32 ppm. A set of peaks 

in 7.90-8.30 ppm range were observed. These were assigned as the aromatic protons 

of phenyl group at meso-position. 
1
H NMR spectrum of TBTAP 184 gave broad 

signals which could be caused by some degree of aggregation of the products in THF. 

1
H NMR spectroscopy is particularly informative, displaying distinct signals for the 

protons labelled in green colour (at 6.99 ppm) that lie in the shielding ring current of 

the meso-phenyl substituent. 

 

Figure 2.8: The 
1
H NMR spectrum of TBTAP 184. 

 

2.4.3  Synthesis of [2,3,9,10,15,16,23,24-tetrakis(1,1,4,4-tetramethyl-6,7-

tetralino)-27-phenyl-tetrabenzo[b,g,l,q][5,10,15]triazaporphinato] magnesium 

Synthesis of TBTAP 185 was achieved under the same conditions described 

previously in section 2.4.1. The synthetic procedure for preparation TBTAP 185 

started by reaction of phthalonitrile 222 with two equivalents of benzylmagnesium 

chloride 228 in freshly distilled THF followed by exchange of the solvent to quinoline 

and heating the mixture at 200 °C for 24 h. This led to generation of the target 

tetrabenzotriazaporphyrin magnesium 185 (Scheme 2.16). TBTAP 185 showed the 
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same difficulties faced during the purification and characterisation as the case in 

TBTAPs 183 and 184. The highest yield obtained (8%) was consistent with the 

relatively low yields that were obtained from all other tetrabenzotriazaporphyrin 

macrocycles even after several careful attempts to synthesise the product.
 47

  

 

Scheme 2.16: Synthetic route towards TBTAP 185. 

 

The green product isolated from the reaction mixture exhibits a clear 
1
H NMR 

spectrum after several attempts as illustrated in figure 2.9. The highly de-shielded 

signals at 9.53, 9.50, 9.48 ppm are present in the spectrum as well as a shielded signal 

at 7.24 ppm. Those signals arise from the eight aromatic protons presented on the non-

peripheral locations of the tetrabenzotriazaporphyrin. Signals between 8.20-7.90 ppm 

originate from the five aromatic protons of the phenyl group located in meso-position. 

Furthermore, the Q-band absorptions at 662 nm and 687 nm were observed in its UV-

Vis spectrum.  The expected molecular ion (m/z 1052) was observed in the MALDI-

TOF mass spectrum. All analytical data were consistent with the structure of the 

product.  

 

 

Figure 2.9: The 
1
H NMR spectrum of TBTAP 185. 
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2.4.4  Synthesis of [2,3,9,10,15,16,23,24-tetrakis(1,1,4,4-tetramethyl-6,7-

tetralino)-27-(2-bromophenyl)-tetrabenzo[b,g,l,q][5,10,15]triazaporphinato] 

magnesium 

The synthesis of tetrabenzotriazaporphyrin 186 from phthalonitrile 222 followed the 

same route as for previously prepared TBTAPs (Scheme 2.17). The first step involved 

the reaction between phthalonitrile and two equivalents of 2-bromobenzylmagnesium 

bromide 230 in distilled THF at 80 °C and led to the formation of a coloured 

intermediate. The following step included the removal of the THF and heating the 

mixture at 200 °C for 24 h in dry quinoline and gave rise to forming a green material 

identified as TBTAP 186. Purification and characterisation of TBTAP 186 was also 

difficult to achieve. The yields were very low with the best achievable one being 

12%.
47

  

 

Scheme 2.17: Preparation of TBTAP 186. 

 

This reaction between phthalonitrile 222 and 2-bromobenzyl magnesium bromide 

received specific attention due to the formation of a remarkable side-product in 8% 

yield. 
1
H NMR and X-Ray diffraction analysis proved the identification of the product 

as a phthalimidine 232 (Figure 2.10). Phthalimidine 232 is a direct analogue of Dent’s 

original precursor used to synthesise TBTAP derivatives which is discussed in detail 

in chapter one. However, in our case its origin is likely to be through hydrolysis of the 

initial addition product formed between phthalonitrile 222 and 2-bromobenzyl 

magnesium bromide 230.
47 

The discovery of this new material led us to consider 

preparing TBTAPs using alternative methodology. 
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Figure 2.10: Phthalimidine isolated from the reaction between phthalonitrile and the 

Grignard reagent (with the structure obtained by X-Ray crystallography analysis). 

 

The required TBTAP 186 gave the required peak in the MALDI spectrum at (m/z 

1132) and provided a UV-Vis spectrum similar to TBTAP 185 with absorption at 

665nm and 689 nm. 
1
H NMR spectroscopy had to be performed in deuteriated 

tetrahydrofuran-d8 as the compound did not give a good spectrum in common NMR 

solvents. The spectrum showed that the compound was pure and gave all signals 

corresponding to the aromatic protons introduced on the non-peripheral sites of the 

tetrabenzotriazaporphyrin 186. Aromatic protons that belong to the phenyl group 

attached at meso-position of TBTAP 186 also appeared in the spectrum in the range of 

7.90 to 8.40 ppm (Figure 2.11).  

 

 

 

Figure 2.11: The 
1
H NMR spectrum of TBTAP 186. 
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2.5  A Modern Synthetic Route towards the Formation of Unsubstituted 

Magnesium Tetrabenzotriazaporphyrins  

Different synthetic routes towards the formation of substituted meso-phenyl 

tetrabenzotriazaporphyrin have previously been attempted in our laboratory. However, 

the most reliably successful method for preparing TBTAPs as a single product of 

hybrid macrocycles was discovered by our group recently.
48

 The investigated strategy 

started with the preparation of the aminoisoindoline or its derivatives by employing 

the procedure established by Hellal et al.
49

 A solution of 4-bromobenzonitrile 167 in 

THF was treated with a solution of lithium bis(trimethylsilyl)amide (LiHMDS) in 

THF which then hydrolysed using a mixture of isopropanol/HCl in order to obtain the 

HCl salt of the bromoamidine 168 in good yield.
50  

The intermediate 168 was then 

treated with 4-methoxyphenylacetylene using palladium catalysis under microwave 

irradiation resulting in the formation of the required compound 170 in reasonable 

yield. This reaction involved a copper-free Sonogashira cross-coupling (also known as 

Sonogashira
26

-Heck
57

-Cassar
56

 coupling) and cycloisomerization technique as 

depicted in Scheme 2.18.
49  

 

 

Scheme 2.18: Synthesis of aminoisoindoline 170. 

 

After a successful preparation of aminoisoindoline was achieved, our attention was 

directed into the available macrocyclization partners that can be used in this reaction. 

In the preliminary attempt the commercially available diiminoisoindoline 38 was 

selected as complementary macrocyclization partner. The reactions between 38 and 

aminoisoindoline 170 at high temperature in the presence of magnesium salt as a 

template (Scheme 2.19), were achieved in high boiling organic solvents (beginning 

with quinoline, DMEA, DMF, and ending with diglyme). Although the formation of 

the required product has been successfully performed, the results were not generally 

satisfactory due to the low yield obtained as well as the formation of unwanted side-

products. It was easy to identify one of the side-products as a magnesium 

phthalocyanine (MgPc) as this product can form smoothly if appropriate conditions 
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are available (a high temperature, the presence of a template agent such as magnesium 

bromide and a high-boiling organic solvent as diglyme). A further coloured side-

product has been isolated from the reaction mixture which was identified later as a 

self-condensation product of aminoisoindoline 170. It also was noticed that when the 

dimeric intermediate 172 was re-subjected to the reaction conditions in the presence of 

excess amount of diiminoisoindoline, no TBTAP molecule was formed.
48

  

 

 

Scheme 2.19: Formation of MgTBTAP along with Pc and dimeric intermediate 172. 

 

An additional modification was accomplished in order to improve the formed yield 

and obtain a more reliable and versatile route for preparing of meso-substituted 

TBTAPs. This modification included employing phthalonitrile 7 instead of the more 

reactive diiminoisoindoline 38 in order to decrease the formation of unwanted MgPc. 

Practically, a solution of phthalonitrile in dry diglyme was heated under reflux at 220 

°C for 5 min followed by slow addition of a mixture of aminoisoindoline 170 and 

phthalonitrile 7 over 1 h. After a period of time (approximately 30 min), an additional 

amount of phthalonitrile 7 was added alongside DABCO (Scheme 2.20). The latter 

was added to the reaction mixture in order to release the unreacted aminoisoindoline 

170 from its complex with the MgTBTAP product which then completed consuming 

the phthalonitrile 7 in order to obtain the required MgTBTAP in an improved yield.
48

   

 

Scheme 2.20: A modern synthetic route towards meso-substituted TBTAP.
48

  



Chapter 2:  Synthesis and Functionalization of Tetrabenzotriazaporphyrin derivatives   

 

 104 

2.5.1  Synthesis of unsubstituted meso-(3-methoxyphenyl)TBTAP Mg and 

meso-(3,5-dimethoxyphenyl)TBTAP Mg via aminoisoindoline intermediates    

Several meso-substituted TBTAP derivatives can be prepared following the procedure 

described above. This approach started with the synthesis of intermediate 168 from 

the commercially available 4-bromobenzonitrile 167.  A solution of nitrile 167 in THF 

was treated with a solution of lithium bis(trimethylsilyl)amide (LiHMDS) in THF 

followed by quenching with isopropanolic HCl to form amidine 168 in excellent yield 

(80%) (Scheme 2.21).
50  

 

Scheme 2.21: Conversion of nitrile 167 to amidine 168. 

 

Once the synthesis of the amidine 168 was achieved successfully, we decided to 

embark on the preparation of a series of aminoisoindoline derivatives. Following the 

procedure reported by Hellal et al., a solution of substituted arylacetylenes and DBU 

in dry DMF was added to a mixture of amidines 168, BINAP and PdCl2(MeCN)2.
49 

The mixture was then irradiated in a microwave reactor at 120 °C for 1 h. After work-

up and purification, the required products 234 and 236 were isolated in moderate 

yields of 41% and 25%, respectively (Scheme 2.22). Both products afforded 

satisfactory characterisation data by usual methods.
47

 Generally, this tandem reaction 

involving a copper-free Sonogashira cross-coupling and cycloisomerization offers an 

efficient and stereoselective access to a vast number of the Z-isomers of 

aminoisoindoline derivatives.
49,62 

 

Scheme 2.22: Preparing substituted aminoisoindoline derivatives. 
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However, synthesis of brominated aminoisoindoline derivatives (Scheme 2.23) was 

much more complicated. The products obtained could not be isolated during the 

chromatographic separation due to the formation of several side products which were 

impossible to separate. Using different solvent systems did not improve the 

separation. Consequently, synthesis of meso-(bromophenyl)TBTAP could not be 

obtained through aminoisoindoline derivatives. This result was not surprising because 

we recognised that the presence of the extra bromoaryl unit could lead to many 

unwanted reactions. 

 

 

Scheme 2.23: Synthetic route towards brominated aminoisoindoline derivatives. 

 

 

Since a successful synthesis of aminoisoindoline derivatives has been achieved in a 

reasonable yield, the focus of the research moved onto the preparation of the target 

meso-substituted TBTAP derivatives. The cyclisation of phthalonitrile 7 and 

aminoisoindoline derivatives around a metal template (magnesium) was carried out 

following the process described by Cammidge and coworkers.
47,48

 A suspension of 

phthalonitrile and MgBr2 in dry diglyme was heated at 220 °C for 10 min under an 

argon atmosphere, in a preheated mantle. A further amount of phthalonitrile was 

added to a solution of aminoisoindoline in diglyme and sonicated for 5 min. The latter 

mixture was added slowly to the warm mixture during a period of time (approx. 1h) 

using a syringe pump. After finishing the addition, the reaction was left to reflux for 

30 min. The final addition contained a solution of DABCO and an additional amount 

of phthalonitrile in diglyme over 1 h and then the reaction mixture was left to heat at 

220 °C for 30 min (Scheme 2.24). When the reaction was left for more than 4 h, a 

drastic decrease in the overall yield of the TBTAP products can be observed.  
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Scheme 2.24: Preparation of meso-phenyl TBTAP derivatives. 

 

Purification was carried out using a mixture of DCM:Et3N:THF (10:1:4) as eluent 

leading to the isolation of  a green material and a trace of blue product. The green 

fraction was purified further by column chromatography using PE:THF:MeOH 

(10:3:1) as eluent on a silica-gel column. Alternatively, size-exclusion 

chromatography over Bio-beads SX-3 using THF eluent could also be employed to 

give analytically pure material. Analysis of the blue fraction by UV-Vis spectroscopy 

and MALDI-TOF MS (Figure 2.12)  proved the identification of the product as 

MgPcs, whereas the green product proved to be the required meso-phenyl 

MgTBTAPs.  Both products 191 and 192 were isolated successfully in 20% and 8% 

yields, respectively.   
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Figure 2.12: MALDI-TOF MS spectra of crude mixture (on the top) and the isolated 

(3-methoxyphenyl)TBTAP and magnesium phthalocyanine (on the bottom). 

 

Several attempts were made to recrystallise the compound from different organic 

solvents. The best results were obtained when the products recystallised from 

acetone/EtOH (1:1) resulting in the formation of green crystals with purple reflex. 

Both crystalline materials were submitted for X-Ray crystallographic analysis. 

However, meso-(3-methoxyphenyl)TBTAP 191 failed to provide a suitable crystal for 

X-Ray diffraction analysis, whereas meso-(3,5-dimethoxyphenyl)TBTAP 192 gave a 

single crystal suitable for X-Ray diffraction analysis and its structure was 

unambiguously confirmed as shown in figure 2.13. It crystallises with a bound 

molecule of water and an acetone solvent molecule. 
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Figure 2.13: X-Ray structure for meso-(3,5-dimethoxyphenyl)TBTAP 192. 

 

Both products 191 and 192 were analysed by UV-Vis spectroscopy that showed the 

distinctive split Q-bands at 647 and 670 nm. The 
13

C NMR spectra as well as the 

correct molecular ion peak in the MALDI-TOF mass spectra were achieved 

successfully. 
1
H NMR spectra perfectly corresponded to the expected spectra for both 

products 191 and 192. The 
1
H NMR spectrum of meso-(3-methoxyphenyl)TBTAP 

191 depicted in figure 2.14.  

 

 

Figure 2.14: 
1
H NMR spectrum of meso-(3-methoxyphenyl)TBTAP 191.  

 

 

 

OCH3 
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2.5.2  Conversion of the methoxy groups of TBTAP derivatives into phenolic 

groups 

With a successful formation of the meso-aryl TBTAP derivatives we were ready to 

embark on the successive conversion of the methoxy groups into phenolic groups 

(Scheme 2.25). Hydroxyl groups are very reactive to many reagents and can be used 

to synthesise new attractive hybrid materials.  

 

Scheme 2.25: Demethylation of 191. 

 

Several reactions are available for such a hydrolysis. A number of methods have been 

reported for the cleavage of highly stable aryl methyl ethers employing strong acids or 

bases such as aluminum chloride,
51

 cerium chloride,
52

 and alkaline thiolate.
53

  Another 

reaction follows the procedure described by Piatelli et al.
54

 in which the methoxy 

substrate is stirred in a refluxing mixture of hydrobromic acid and glacial acetic acid. 

All these conditions were considered too harsh to be applied in this case due to the 

presence of metal ion in central core which can be easily exchanged to another metal 

ion or even removed from the central core. To avoid this issue we decided to use 

magnesium iodide as demethylating agent following the known procedure.
55

 A 

successful conversion of meso-(4-methoxyphenyl)TBTAP into meso-(4-

hydroxyphenyl)TBTAP has been achieved.
48

 A solution of magnesium meso-(4-

methoxyphenyl)TBTAP and MgI2 in toluene was stirred at 170 °C for 19 h. However, 

the attempted demethylation of meso-(3-methoxyphenyl)TBTAP under the same 

reaction conditions led to unsatisfactory results even after leaving the reaction under 

reflux for more than 3 days. The starting material was always observed by TLC 

alongside the required product and the reaction could not be completed under these 

conditions. Moreover, we noticed in some cases, the product was decomposed during 

the work-up and no sign of any product has been observed when analysed by MALDI-

TOF mass spectrometry (Table 2.3). Due to this issue we decided to proceed with 

using a common demethylation technique. This procedure included the conversion of 
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aryl methyl ether to the corresponding phenol using boron tribromide as 

demethylating agents.
55

 Several conditions were attempted and the best results are 

illustrated as entry 14  (Table 2.3), confirmed by MALDI-TOF mass spectrometry of 

some experimental attempts as depicted in Figure 2.15. High temperature and acidic 

conditions should be avoided as acidic conditions are ideal for the formation of metal-

free TBTAP by demetallation reaction of the corresponding magnesium TBTAP. The 

possible presence of HBr in reaction mixture during the removal of the solvent or 

transferring the sample might be the reason behind the formation of metal-free 

TBTAP in some experiments. BBr3 is highly moisture sensitive and decomposes in air 

with evolution of HBr. 

 

Entry Agent SM Solvent Temp 

(°C) 

Tim

e  

Results 

1 MgI2 (5 eq.) 191  Tol 170 24 h SM + trace prod. 

2 

3 

4 

excess 

excess 

excess 

   48 h 

72 h 

6day

s 

SM + trace prod. 

SM + trace prod. 

prod. decomposed after workup 

+trace SM 

5 MgI2 (5 eq.) 191 no solvent 80  3 h SM  

6 

 

MgI2 (5 eq.) 191 dry (3:1) 

THF:ether 

80 24 h 

 

SM  

 

7 excess    48 h SM + trace prod. 

8 MgI2 (5 eq.) 191 dryDME 150 24 h SM + trace prod. 

9 BBr3 (1 eq.) 191 dry DCM rt 2 h SM + trace prod. + (3-OH) 

PhTBTAP H2 

10 added once    3 h prod. + (3-OH) PhTBTAP H2 

11 

 

BBr3 (2 eq.) added 

once 

191 dry DCM 0 → rt  

0 → rt 

4 h 

24 h 

SM + prod. 

SM + prod. 

12 excess   0 → rt 24 h SM + prod.  

13 BBr3 (5 eq.) slow 

addition 

191 dry DCM 0 → rt 24 h prod. (39%) 

 

14 BBr3 (20 eq.) slow 

addition  

191 dry DCM 0 → rt 2 h prod. (50%) 

 

15 BBr3 (20 eq.) slow 

addition 

192 dry DCM 0 → rt 2 h several products + prod. (hard 

to isolate) 

 

Table 2.3: Attempted conditions for synthesis of 241 and 242. 
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Figure 2.15: MALDI-TOF MS spectra of some attempted synthesis of 241. 

 

A solution of BBr3 (1 M in DCM) was added slowly over 1 h to a solution of TBTAP 

191 in cooled DCM. After finishing the addition, the reaction mixture was left to 

warm to room temperature and stirred for further 1 h. The reaction was repeated more 

carefully several times in order to obtain sufficient amounts of the product for 

purification and characterisation. After work-up and purification, the highest yield 

obtained for the formation of meso-(3-hydroxyphenyl)TBTAP 241 was 50%.  

The product was analysed by UV-Vis spectroscopy, MALDI-TOF spectrometry, 
1
H 

NMR (shown in figure 2.16) and 
13

C NMR spectroscopy. Using meso-(3-

hydroxyphenyl)TBTAP as precursor to form new materials proved to be challenging 

and required more investigations which are very complicated due to the difficulties 

faced in the synthesis and purification of starting materials as well as low yields 

obtained, consequently, we decided to focus on preparation of other functionalised 

complexes which would be more reliable to use in various organic syntheses. 
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Figure 2.16: 
1
H NMR for meso-(3-hydroxyphenyl)TBTAP 241.  

 

Preparation of (3,5-dihydroxyphenyl)TBTAP 242 was attempted by demethylation of 

the corresponding (3,5-dimethoxyphenyl)TBTAP 192 with boron tribromide in dry 

dichloromethane (Figure 2.17).
55

 However, the reaction failed to give the desired 

product as a main product under the same optimised conditions previously used to 

prepare compound 241. Several products were obtained which were impossible to 

separate even after a number of chromatographic attempts. Figure 2.18 shows the 

MALDI-TOF MS spectrum of the crude mixture from the demethylation reaction of 

192. Due to difficult separation and lack of a sufficient amount of the starting 

material, the synthesis of meso-(3,5-dihydroxyphenyl)TBTAP has not been 

investigated further.    

 

Figure 2.17: Products obtained in demethylation reaction of 192. 

 

 

OH 
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Figure 2.18: MALDI-TOF MS spectrum of crude mixture. 

 

2.6  Direct Synthesis of Unsubstituted meso-(bromophenyl) Magnesium 

Tetrabenzotriazaporphyrins via Grignard reagents   

Formation of the tetrabenzotriazaporphyrin derivatives proved to be typically difficult. 

Moreover, the synthesis of aminoisoindoline derivatives failed to give the brominated 

products which could be used to prepare functionalised meso-phenyl TBTAPs. The 

latter materials can be key precursors in synthesis of a number of new TBTAPs 

derivatives bearing a variety of reactive functional groups ready for further 

elaboration. We therefore decided to reinvestigate the procedure originally reported by 

Linstead et al.
3
 to synthesise unsubstituted meso-phenyl TBTAP via the reaction 

between phthalonitrile and Grignard reagents (Scheme 2.26), but in this case we 

simplified the reaction using the unsubstituted phthalonitriles as precursors. The 

reaction was attempted more carefully several times in order to optimise the reaction 

towards the formation of functionalised meso-aryl TBTAPs. A summary of the 

conditions attempted and conclusions drawn are shown in Table 2.4 below. 

 

Scheme 2.26: Formation of TBTAP 187
96

 via Grignard reagents.  
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Solvent I Reactants Temp. 

°C 

Time Solvent II Reactants Temp. 

°C 

Time  Results 

distilled 

THF 

 

1eq.7 + 

2eq. 228 

(added 

once) 

80  30 

min 

dry 

diglyme 

- 200 3 h 

 

only Pc  

 

 

- - - - dry 

diglyme 

1eq. 7 + 1eq. 

228 (added 

once) 

220 3 h 

 

(5%) TBTAP 

+ Pc 

-  - - - dry  

diglyme  

1eq. 7 + 1eq. 

230 (added 

once) 

220  3 h 

 

trace TBTAP + 

Pc 

- - - - dry 

diglyme 

2eq. 7 + 1eq. 

230 

PhCH2MgCl 

(added once) 

220  3 h 

 

trace TBTAP + 

Pc 

- - - - dry 

diglyme 

3eq. 7 + 1eq. 

230 (added 

once) 

220  3 h 

 

(18%) TBTAP 

+ Pc 

- - - - dry 

diglyme 

3eq. 7 + 1eq. 

230 (added 

slowly over 1 

h) 

220  3 h 

 

(56%)TBTAP 

+ trace Pc 

Table 2.4: Some attempted conditions for preparing 187 and 188. 

 

Initial experimental attempts followed modified versions of the procedure reported by 

Linstead and co-workers,
3
 involving the treatment of a solution of phthalonitrile 7 (1 

equiv.) in THF with benzylmagnesium chloride 228 (2 equiv.) and leaving the mixture 

to heat (80 °C) for 30 min. After removal of THF and adding distilled diglyme 

(instead of quinoline) the reaction mixture was left under reflux (200 °C) for 3 h. 

Unfortunately, the reaction failed to produce the required TBTAP and gave only the 

magnesium Pc as main product. We therefore decided to improve the procedure 

further by ignoring the first step and using the diglyme as a sole solvent in a single 

step. The temperature was also increased to 220 °C using a mantle as a source of 

heating.  A series of stoichiometric ratios were undertaken starting with 1:1 

equivalents (2-BrPh-CH2-MgBr/phthalonitrile) and increased to a 1:3 (2-BrPh-CH2-

MgBr/ phthalonitrile). Moreover, in some experiential attempts, the Grignard reagent 

was added at once whereas in other trials it was added dropwise during 1 h. It has 
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been found that the best results were obtained when the ratio of 1:3 (2-BrPh-CH2-

MgBr/phthalonitrile) was used with a slow addition of 2-substituted Grignard reagent 

to a warm solution of phthalonitrile in diglyme. We also noticed that the formation of 

dimeric macrocycles or other side-products was avoided under these reaction 

conditions. The highest yield obtained was 56%, corresponding to meso-(2-

bromophenyl) TBTAP as illustrated in the last line of table 2.3. These examinations 

made on the unsubstituted TBTAP provided a useful and straightforward technique 

for accessing further functionalised meso- phenyl TBTAPs.    

A series of functionalised meso-phenyl TBTAPs were prepared by the reaction 

between phthalonitrile 7 and the isomeric series of 2-, 3- and 4-

bromobenzylmagnesium bromides. The latter was prepared using a typical Grignard 

reagent synthetic procedure.
63

 A solution of the isomeric series of 2-, 3- and 4-

bromobenzylmagnesium bromides was added dropwise to a warm solution of 

phthalonitrile 7 in diglyme over 1 h. The mixture was left to heat at 220 °C for further 

2 h (Scheme 2.27). After purification by column chromatography, the products were 

isolated in a satisfactory yield.
47

 

 

Scheme 2.27: Synthetic method towards functionalised meso-phenyl TBTAPs.  

 

Recrystallisation of the products from acetone/ethanol gave green crystals suitable for 

X-Ray diffraction analysis. However, a successful X-Ray crystal structure was 

obtained only for meso-2-bromophenyl MgTBTAP isomer 188 (Figure 2.19). The 

molecule crystallises with a bound molecule of ethanol (disordered). The isomeric 

products afforded the expected 
1
H NMR spectra, 

13
C NMR, MALDI-TOF mass 

spectra, UV-Vis spectra and high-resolution mass spectra. 
1
H NMR spectrum of 

product 188 is illustrated in Figure 2.20.  
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Figure 2.19: X-Ray structure for 188. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.20: 
1
H NMR spectrum of 188. 

 

2.7  Transformations of Functionalised meso-phenyl Magnesium 

Tetrabenzotriazaporphyrins  

The investigations and developments of palladium-catalysed cross-coupling reactions 

of small organic molecules have received a great deal of attention in the literature, 

whereas the cross-coupling reactions of large conjugated complexes such as TBTAPs 

have been studied rarely or even non-existent.  We decided therefore to synthesise a 

new series of coupled complexes through the palladium-catalysed cross-coupling 

reactions. Several transition metal catalysed cross-coupling reactions such as 

Kumada,
31

 Negishi,
20

 Heck,
13

 Stille,
14

 Suzuki
21

 and copper-free Sonogashira cross-

couplings can be used to form new carbon-carbon and carbon-heteroatom bonds 

(Scheme 28).
26,56,57
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Scheme 2.28: Potential methods towards C−C bond formation via cross-coupling 

reactions.  

 

After the successful preparation of the isomeric meso-(2-, 3-, 4-bromo)phenyl TBTAP 

complexes, it became possible to functionalise these macrocycles via cross-coupling 

reactions to obtain a new series of materials that enable exploitation of their other 

properties and expand the scope of their applications into novel fields of 

photophysical, optoelectronic and semi-conducting properties. 

Among the most commonly cross-couplings employed in organic synthesis, Suzuki 

and copper-free Sonogashira cross-couplings have been chosen for our purpose in 

order to synthesise new carbon–carbon bonds. The first cross-coupling reaction used 

was the Suzuki coupling using a palladium catalyst that led to the formation of the 

required product in a single step after several attempts. In this reaction, we used a 

bromo-aryl-TBTAP as the first coupling partner and a number of organoboronic acid 

reagents as the other. The coupling was attempted initially employing the normal 

Suzuki conditions but surprisingly, no product was obtained even after prolonged 

refluxing. Several more careful attempts and a number of various conditions gave no 

product and most of the starting material was recovered. It seems that the reactions 

proceed to obtain the deboronation product instead of the required coupling products 

(Scheme 2.29). In addition, dehalogenation of aryl halides also be occurred after 

prolonged refluxing, resulting in formation of unwanted dehalogenated product as a 

main product, the reason for this can be attributed to the steric hindrance which 

prevents the formation of any coupled product especially in meso-(o-bromoaryl) 

TBTAP (Scheme 2.30). The use of meso-(p-bromoaryl) TBTAP did however not 

show any advancement on the reaction outcome. Attempted conditions and results are 
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summarized in Table 2.5. In some reactions, the formation of the required products 

was observed alongside the starting material and meso-phenyl TBTAP, however, 

those products were not isolated during the purification process and only starting 

material and debrominated TBTAP were isolated.  

 

 

Scheme 2.29: Recovered starting material.  

 

 

 

Scheme 2.30: Formation of unwanted debrominated product 187.  
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Boronic 

acid  

SM Catalyst Base Solvent Temp. 

(°C) 

Time  Results 

  

meso-(o-

bromo aryl) 

TBTAP 

 

PdCl2(dppf) 

 

 

 

CsF 

 

 

 

dry 

DME 

100-121  

 

 

4 h 

 

 

 

(BrPh)TBTAP 

(SM) 

 

 

excess  excess excess   24 h Ph-TBTAP 

 

meso-(o-

bromo aryl) 

TBTAP 

PdCl2(dppf) 

 

CsF 

 

dry 

DME 

100-121  24 h SM + Ph-TBTAP 

 

meso-(o-

bromo aryl) 

TBTAP 

PdCl2(dppf) 

 

CsF 

 

dry 

DME 

100-121 48 h SM + Ph-TBTAP 

 

meso-(o-

bromo aryl) 

TBTAP 

 

PdCl2(dppf) 

 

CsF 

 

dry 

DME 

100-121 24 h 

48 h 

3dys 

7days 

SM 

SM 

SM 

SM 

 

meso-(p-

bromo aryl) 

TBTAP 

PdCl2(dppf) 

 

 

 

CsF 

 

 

dry 

DME 

 

100-105 14 h 

 

 

SM + Ph-TBTAP 

 

 

excess 

excess 

- 

excess 

 - 

- 

- 

excess 

excess 

excess 

- 

excess 

  4 h 

24 h 

3days 

4 h 

SM + Ph-TBTAP 

SM + Ph-TBTAP 

SM + Ph-TBTAP 

Ph-TBTAP 

 

meso-(p-

bromo aryl) 

TBTAP 

PdCl2(dppf) 

 

CsF 

 

dry 

DME 

 

100-105 24 h 

 

SM + Ph-TBTAP 

 

 

Table 2.5: Attempted conditions for Suzuki cross-coupling reaction. 

 

As a result of all these disappointments, we decided to investigate another synthetic 

procedure towards the formation of coupled product through using a boronic ester as a 

second coupling partner instead of the boronic acid. The Suzuki cross-coupling 

reaction employed used a palladium catalyst and DBU as a base in presence of dry 

DMF. A microwave reactor was used as a source of heating which also proved to be 

useful in speeding up the reaction and giving efficient results. Moreover, employing 

PdCl2(dppf) catalyst and DBU as base was found to be appropriate for microwave-

assisted Suzuki cross-coupling reactions.
59 

The advantage of employing the boronic 
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ester is in the low amount of water (and proton sources) associated with ester 

compared with the boronic acid. In this experimental attempt, we avoided any source 

of protons which can impact adversely on the formation of desired compound. 

Synthesis of boronic ester 252 followed the procedure reported by Sigman and co-

workers that involved the reaction between phenyl boronic acid 249 and ethylene 

glycol 251 in the presence of magnesium sulphate and dry DCM as solvent (Scheme 

2.31).
58 

The boronic ester was kept dry under Ar and use directly in next step. Finally, 

the Suzuki coupling reaction was achieved taking into account all the necessary 

precautions to avoid moisture. A mixture of meso-(2-, 3-, and 4-bromoaryl) TBTAPs 

and PdCl2(dppf) catalyst was placed in a microwave vial which was then evacuated 

and backfilled with argon (3 times). A solution of DBU and phenyl boronic esters 252 

in dry DMF was added to the previous mixtures and left to stir at room temperature 

for 5 min under Ar (Scheme 2.31). The reaction mixtures were irradiated in a 

microwave reactor at 120 °C for 1 h. After cooling to room temperature, DCM was 

added and the mixtures sonicated for 5 min. The crude mixtures were purified by 

column chromatography to give the desired products. Recrystallisation from 

acetone/EtOH (1:1) gave the products as crystalline materials albeit in low yields. 

 

 

Scheme 2.31: Synthesis of meso-(2-, 3-, 4-biphenyl) TBTAPs.  
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Isolation of the isomeric series meso-(2-, 3-, 4-biphenyl) TBTAP derivatives 194-196 

was accomplished successfully as well as their characterisation using several 

spectroscopic methods (
1
H NMR, UV-Vis and MALDI-TOF spectrometry). All 

analytical data were consistent with the structure of the products. The 
1
H NMR 

spectrum of meso-(2-biphenyl) TBTAP 194 is shown in Figure 2.21.    

 

  

 

 

 

 

 

 

 

 

 

 

Figure 2.21: 
1
H NMR spectrum of 194. 

 

Another transformation of functionalised meso-phenyl tetrabenzotriazaporphyrin 

complexes has been achieved via copper-free Sonogashira cross-coupling 

reaction.
26,49,56,57

 In a typical Sonogashira cross-coupling reaction,
26

 aryl halides are 

treated with terminal acetylenes, catalysed by a palladium catalyst in the presence of a 

copper metal as co-catalyst and a base to produce diaryl-subsitituted acetylenes. Using 

copper ions in this reaction can cause a problem in the formation of desired products 

due to the formation of the unwanted copper TBTAP as contaminant or dominant 

product, making purification and characterisation by NMR spectroscopy difficult. 

Therefore, we decided to employ a copper-free Sonogashira cross-coupling reaction 

using a palladium catalyst, BINAP as ligand and DBU as a base in presence of dry 

DMF (Scheme 2.32).
49,60

 The combination of PdCl2(MeCN)2 and BINAP has proved 

to be reactive enough for the copper-free cross-coupling of meso-(bromoaryl) TBTAP 

derivatives. A microwave reactor was used as a source of heating instead of the 

normal heating to accelerate heating rates of the reaction and obtain the product in 

reasonable yields. The Sonogashira reaction involves the treatment of a mixture of 
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meso-(bromophenyl)TBTAPs, BINAP and PdCl2(MeCN)2 with a solution of 

phenylacetylenes 253 and DBU in dry DMF.  The reaction mixture was irradiated in a 

microwave reactor at 120 °C for 1 h. Purification of the resulting materials by column 

chromatography gave the desired products.  

 

Scheme 2.32: Synthesis of meso-(2-, 3-, 4-biphenyl) TBTAPs.  

 

A successful single crystal of product 197 has been obtained after recrystallisation 

from acetone and ethanol. Figure 2.22 shows the X-Ray structure of meso-((2-

phenylethynyl)phenyl)TBTAP 197 (it crystallises with a bound molecule of ethanol). 

Characterisation of the products by 
1
H NMR, UV-Vis and MALDI-TOF 

spectrometries was consistent with the structure of the products. The 
1
H NMR 

spectrum of product 197 is presented in Figure 2.23. 

 

 
Figure 2.22: X-Ray structure of 197. 
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Figure 2.23: 
1
H NMR spectrum of product 197. 

 

2.8  Expansion of the π-Conjugated System of Tetrabenzotriaza 

porphyrin Macrocycles 

The strategy of π-extension has received a great deal of attention in the fields of 

porphyrin and phthalocyanine chemistry. Expansion of the π-system of porphyrin, and 

related macrocycles such as phthalocyanine and porphyrazine, offers attractive 

synthetic materials due to their unique combination of photophysical and 

optoelectronic properties.
64-68

 Indeed, π-extension of porphyrin or phthalocyanine 

chromophores usually gives rise to a significant bathochromic shift in absorption 

spectra that make them attractive in various areas,
69,70 

such as dye-sensititized solar 

cells (DSSCs)
71

, photodynamic therapy (PDT)
72

 and organic light-emitting diodes 

(OLEDs).
73

 

Tetrabenzotriazaporphyrin macrocycles, which are structurally related to the 

porphyrin and phthalocyanine, are also expected to exhibit a red-shift in their UV-Vis 

spectra and thus can offer the new attractive materials. These π-extended complexes 

can introduce more remarkable photophysical properties relative to those of regular 

TBTAPs. To date, the investigation in this new field has not received attention, and 

there are no reports in the literature covering this area. This is easily explained by the 

lack of convenient methods previously available for synthesis of appropriate 

precursors. We demonstrate in this work the first attempted examinations towards 

synthesis of π-extended tetrabenzotriazaporphyrin macrocycles. A number of 
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chemical and photochemical cyclisation methods have been used in order to attempt 

synthesis of these extended complexes.  

 

2.8.1  Intramolecular annulation of TBTAP via photochemical cyclisation  

 

Scheme 2.33: Photochemical cyclisation of TBTAP.  

 

Several examples for the formation of carbon-carbon bonds via oxidative 

photocyclisations have been reported and reviewed in the literature.
74-77

 In the light of 

these convenient and efficient routes, we decided to attempt the synthesis of our target 

molecule through the oxidative photocyclisation reaction. This reaction involved the 

irradiation of a dilute benzene solution (degassed) of meso-phenyl TBTAP containing 

an equimolar amount of iodine (Scheme 2.33). The mixture was checked with regular 

TLC analysis (Table 2.5) but unfortunately, there was no evidence that the reaction 

was successful and the starting material remained evident on the TLC plate. After 22 

h, the reaction was resulted in decomposed starting material. No improvement has 

been obtained when the reaction was applied using meso-bomophenyl TBTAP as 

precursor. The failure of this reaction towards the formation of required molecule 193 

focussed our attention on alternative strategies (chemical cyclisation methods) which 

will be discussed in next section.  

 

Reaction Time  1 h 2 h 4 h 5 h 11 h 16 h 22 h 

Results SM SM SM SM SM SM nr (decomposed) 

 

Table 2.5: Increasing the reaction times and their corresponding results. 

 

2.8.2  Intramolecular annulation of TBTAP via chemical cyclisation 

2.8.2.1  Formation of C-C bond via intramolecular Scholl reaction 
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Scheme 2.34: Attempted synthesis of cyclised product 193 via Scholl cyclisation. 

 

Iron (III) chloride (which is commercially available and inexpensive) can be used in 

oxidative carbon-carbon couplings of arenes and associated unsaturated compounds. 

Several examples have been reported in the literature for the synthesis of cyclised 

molecules using FeCl3 as oxidising agent.
78-82

 

The cyclisation of meso-phenyl TBTAP was investigated initially through reaction 

with iron chloride (Scheme 2.34). Various conditions were employed in order to 

obtain the fused product 193 (Table 2. 6). Nevertheless, the reaction failed to produce 

the cyclised molecules 193 in all cases, even after the addition of nitromethane to 

improve the solubility of the reagent. In one experiment, aluminium(III) chloride was 

used as alternative oxidising agent but the reaction gave no useful result. Further 

methods towards the formation of the fused product will be described in next section.  

SM Agent Solvent Temp. (°C) Time Results 

TBTAP 183 FeCl3 dry DCM rt 2 h nr 

TBTAP 183 FeCl3 Tol 110 24 h nr 

TBTAP 191 FeCl3/CH3NO2 dry DCM 0 30 min SM 

    1 h SM 

    24 h SM 

    48 h nr 

TBTAP 191 FeCl3/CH3NO2 dry DCM rt 5 min SM 

    30 min SM 

    2 h SM 

    24 h nr 

TBTAP 187 FeCl3/CH3NO2 dry DCM rt 3 h SM 

    6 h SM 

    24 h SM 

 excess   48 h nr 

TBTAP 191 AlCl3/DDQ dry DCM:THF 0 2 h SM 

    24 h SM 

    ≥ 72 h nr 

 

Table 2.6: Conditions used for attempted synthesis of fused product 193.  
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2.8.2.2  Formation of C-C bond via intramolecular Heck-type cyclisation 

 

 

Scheme 2.35: Attempted synthesis of π-extended TBTAPs via Heck-type cyclisation. 

 

With the successful synthesis of the TBTAPs we were now ready to investigate the 

synthesis of the π-extended TBTAP. This synthesis was attempted through the 

intramolecular palladium-catalysed oxidative cyclisation methods which also known 

as Heck cyclisation.
83,84

 Several conditions have been reported in the literature for the 

intramolecular Heck cyclisation of small molecules.
85-93

 In general, Heck-type 

coupling reactions require an aryl halide with an alkene and a stoichiometric amount 

of base and palladium catalyst.  

This reactions involve a C-H activation (occurs on adjacent aromatic rings tethered 

together with a sequence of carbon atom linkers) or elimination of C-X and therefore 

C-C bond formation. The cyclisation to afford the six-membered ring product was 

attempted using various TBTAP derivatives (Scheme 3.35). Consequently, several 

experiments were conducted employing different catalysts, bases and ligands. 

Unfortunately, no cyclized product was observed under these conditions. Table 2.7 

displays the summary of the attempted conditions and their results. The use of 

directing functional groups (i.e. methoxy group) attached in m-position of meso-

phenyl ring did not help to obtain the required product.  
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Entry SM Catalyst Ligand Base Solvent Temp. 

(°C) 

Time Results 

1 TBTAP 

184 

Pd(OH)2 in C - KOAc dry 

DMF 

145 24 h SM 

2  excess  excess   48 h SM 

3  excess  excess   ≥ 72 h nr 

4 TBTAP 

184 

Pd(OAc)2 PhDave-Phos* K2CO3 dry 

DMA 

135 24 h nr 

5 TBTAP 

184 

Pd(OAc)2 PhDave-Phos* K2CO3 dry 

DMF 

154 ≥ 72 h SM 

6 TBTAP 

184 

Pd(OAc)2/LiCl n-Bu4NBr K2CO3 dry 

DMF 

110 18 h SM 

7       72 h nr 

8 TBTAP 

185 

Pd(OAc)2 PPh3 Cs2CO3 dry 

DMF 

80-85 48 h nr 

9 TBTAP 

191 

Pd(OAc)2 PCy3 K2CO3 dry 

DMF 

100-120 3 h SM 

10       16 h nr 

11 TBTAP 

188 

PdCl2(PPh3)2 - DBU dry 

DMF 

150-153 48 h nr 

12 TBTAP 

188 

PdCl2(MeCN)2 BINAP DBU dry 

DMF 

120 in 

MW 

5 min SM 

13       30min SM 

14       1 h trace of prod. 

15       ≥ 2 h decomposed 

 

* 2-(diphenylphosphino)-2'-(N, N-dimethylamino)biphenyl 

Table 2.7: Attempted conditions for intramolecular Heck cyclisation. 

 

After several experimental attempts we found the most appropriate conditions for the 

formation of cyclised product as illustrated in table 2.6; entry 14. The reaction was 

carried out using PdCl2(MeCN)2 catalyst, BINAP as ligand and DBU as a base that 

were placed in a microwave vial. A solution of starting materials in anhydrous DMF 

was added to the previous mixture which then evacuated and backfilled with argon 

several times. The reaction mixture was irradiated in a microwave reactor at 120 °C 

for 5 min and then 30 min. Unfortunately, only the starting material was recovered 

and when the reaction was left under irradiation for 1 h, a trace amount of the product 

was possibly obtained (based on MALDI-MS analysis). Leaving the reaction for more 

than 1 h (i.e. ≥ 2 h) resulted in decomposed starting material. Performing the reaction 

for second time again hinted at formation of a trace amount of the required product. 

Unfortunately, the formation of required product 193 was not improved further under 
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these conditions. Analysis of the crude reaction mixtures by MALDI-TOF mass 

spectrometry shows a cluster of expected peaks around (m/z 609.72) that 

corresponding to the required compound 193 (Figure 2.24). Purification of 193 by 

column chromatography was repeated more carefully several times in order to isolate 

the desired product, but unfortunately its isolation could not be achieved.  

 

 

  

 

Figure 2.24: MALDI-TOF MS spectrum of crude mixture. 
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2.9 Conclusion 

The syntheses of the phthalonitriles have been achieved successfully through the 

investigation of different strategies. Phthalonitriles have been constructed by the 

nickel or palladium catalysed Kumada cross-coupling reaction using 1,2-

dichlorobenzene as precursor, followed by electrophilic bromination and Rosenmund 

von Braun cyanation reaction
 
in the last step. An alternative route towards the 

formation of the phthalonitriles was used in order to synthesise alternative target 

phthalonitriles in good yield; the method employed Kumada cross-coupling reaction 

using 4,5-dibromoveratrole as precursor followed by a sequence of synthetic steps and 

finally cyanation reaction following the procedure described by Hanack and 

Drechsler.  

 

A series of meso-phenyl substituted tetrabenzotriazaporphyrins (TBTAPs) bearing 

different functional groups has been prepared successfully via the investigation of 

various approaches. The traditional synthetic methods and their new modified 

versions via Grignard reagents have been developed as well as the modern technique 

via aminoisoindoline that was discovered recently by our group. Most importantly, 

synthesis of functionalised TBTAPs has been achieved.  

 

Expansion of the π-conjugated system of TBTAPs has been attempted as first 

experimental examinations in this field through several chemical and photochemical 

cyclisation methods, but the desired products were not isolated. Finally, 

transformations of the functionalised meso-phenyl TBTAP macrocycles through the 

palladium-catalysed Suzuki and copper-free Sonogashira cross-coupling reactions 

have been accomplished successfully resulting in the formation of a new series of 

materials. The new strategies combine to open up the potential for many new hybrid 

structures. 
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3.1 General Methods 

Reagents and solvents were obtained from commercial sources and used without 

further purification unless otherwise stated. Phthalonitrile was recrystallised from hot 

xylene. THF, diethyl ether and DMA were freshly distilled from sodium and 

benzophenone. Dichloromethane and quinoline were distilled from calcium hydride 

and barium oxide, respectively. Reactions and distillation were carried out under an 

inert atmosphere (argon or nitrogen gas). Argon was used in particularly air-sensitive 

reactions. Temperature of -78 °C was accomplished by use of a mixture of acetone 

and dry ice. Brine is a saturated aqueous solution of sodium chloride. Organic layers 

were dried using anhydrous magnesium sulphate. Evaporation of solvent was 

performed using a Buchi rotary evaporator at reduced pressure. All glassware was 

dried before use. 

 

1
H NMR spectra were recorded either at 400 MHz on an Ultrashield Plus

TM
 400 

spectrometer or 500 MHz on a Bruker Ascend
TM

 500 spectrometer in 5 mm diameter 

tubes. Signals are quoted in ppm as  downfield from tetramethylsilane (= 0.00) and 

coupling constants J given in Hertz. Spectra of TBTAPs are of recrystallised samples 

from EtOH/acetone or MeOH/THF and display coordinated solvents in agreement 

with X-ray crystal structures.
 13

C-NMR spectra were recorded at 100.5 MHz or 125.7 

MHz on the same spectrometers. NMR spectra were performed in solution using 

deuterated chloroform or tetrahydrofuran at room temperature unless otherwise stated.   

 

Ultraviolet-Visible absorption spectra were recorded on an Hitachi U-3000 recording 

spectrophotometer in solvent as stated. MALDI-TOF mass spectra were carried out 

using a Shimadzu Biotech Axima instrument with a TA1586Ade plate. High 

resolution mass spectra (HRMS) were obtained via the ESPRC UK National Mass 

Spectrometry Service Centre at Swansea. X-Ray crystallography data was obtained 

through the UK National Crystallography Service at Southampton.   

 

Thin layer chromatography (TLC) was performed using aluminum sheets coated with 

Alugram
®
 Sil G/UV254 (Macherey-Nagel), and the compounds were visualised by 

viewing under short-wavelength UV-light at 254 nm or 366 nm and by charring with 

0.1% ninhydrin in EtOH when required. Column chromatography was carried out 
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using silica gel Davisil
®

 LC60A 40-63 micron (Grace GmbH & Co) under regular 

conditions (at ambient temperature and atmospheric pressure or occasionally at 

moderate pressure). Solvent ratios are given as v : v. Melting points were taken on a 

Reichart Thermovar microscope with a thermopar based temperature control. 

 

3.2 Synthesis of Substituted Phthalonitrile (218)  

3.2.1 Through Kumada cross-coupling reaction using 1,2-dichlorobenzene as 

precursor 

3.2.1.1     (2-Ethylhexyl) magnesium bromide (215)
1
 

 

 

According to the general method for preparing Grignard reagents, magnesium 

turnings (6.50 g, 0.27 mol) were covered by distilled Et2O (20 mL) under an inert 

atmosphere and left to stir for 10 min. A single crystal of iodine was added alongside 

2-ethylhexyl bromide (36.28 mL, 0.2 mol) in Et2O (25 mL) in a dropwise manner via 

an addition funnel. After the addition was completed, the reaction mixture was 

allowed to reflux for 2 h. The Grignard reagent was used immediately for the next step 

after cooling.  

 

3.2.1.2     1,2-Bis(2-ethylhexyl)benzene (216)
2
 

 

Following the procedure described by Hanack,
2,3

 1,2-dichlorobenzene (5.0 g, 0.034 

mol) was stirred together with [1,2-bis(diphenylphosphino)ethane]dichloronickel(II) 

(0.90 g, 1.70 mmol) for 10 min under an inert atmosphere. (2-Ethylhexyl) magnesium 

bromide 215 was added to the mixture at room temperature via syringe. Then, the 

reaction mixture was heated to reflux and stirred overnight. After cooling the reaction 

mixture to 0 °C, 1 M HCl was added dropwise. The organic layer was washed with 

water, brine, extracted with petroleum ether (3150 mL) and dried over MgSO4. The 

solvent was removed in vacuo to leave a honey oil which was purified by column 
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chromatography (eluting with petroleum ether) to give the pure title compound (9.21 

g, 90%) as a colourless oil. 
1
H NMR (500 MHz, CDCl3, 298 K) δ (ppm) = 7.10 (s, 

4H), 2.58 – 2.50 (m, 4H), 1.60 – 1.52 (m, 2H), 1.33 – 1.28 (m, 16H), 0.90 – 0.87 (m, 

12H). 

 

3.2.1.3     1,2-dibromo-4,5-Bis(2-ethylhexyl)benzene (217)
 2,4

 

 

Bromination was achieved using the method described by Ashton and co-workers.
2 

1,2-Bis(2-ethylhexyl)benzene (8.04 g, 26.6 mmol) was dissolved in DCM (40 mL). 

Iron powder (0.18 g, 3.19 mmol) and iodine (0.068 g, 0.27 mmol) were added to the 

mixture and cooled to 0 °C. Bromine (2.74 mL, 53.1 mmol) was added dropwise via 

an addition funnel to the stirring mixture over 2 h. After complete addition, the 

reaction mixture was allowed to warm up to room temperature and stirred for 24 h. 

The resulting orange mixture was washed in portions with an aqueous solution of 

sodium metabisulfite and sodium bicarbonate to remove the excess bromine. Water 

and brine were added and the mixture extracted with DCM (3150 mL). The organic 

extracts were dried over MgSO4, filtered and the solvent removed under reduced 

pressure to give honey oil. The product was purified by column chromatography over 

silica gel using PE (100%) as eluent to give the title compound as a colourless oil 

(10.17 g, 83%). 
1
H NMR (400 MHz, CDCl3, 298 K) δ (ppm) = 7.19 (s, 2H), 2.58 – 

2.50 (m, 4H), 1.61 – 1.53 (m, 2H), 1.35 – 1.26 (m, 16H), 0.92 – 0.81 (m, 12H). 

 

3.2.1.4     4,5-Bis(2-ethylhexyl) phthalonitrile (218)
6
             

 

Following the procedure described by Rosenmund von Braun,
 
 a mixture of 1,2-

dibromo-4,5-bis(2-ethylhexyl)benzene 217 (5.85 g, 12.7 mmol) and CuCN (5.69 g, 

63.53 mmol) was refluxed in dry DMF (100 mL) at 150 °C under an argon 
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atmosphere for 16 h. The reaction mixture was cooled to room temperature and 

poured into an aqueous solution of ammonia (200 mL), and left to stir at room 

temperature for 24 h under a stream of air.  The resulting material was extracted with 

hexane (3 x 100 mL), washed with H2O (3 x 100 mL), saturated solution of NaHCO3, 

dried over MgSO4 and filtered. The filtrate was removed under reduced pressure to 

give the crude product. The crude material was purified by column chromatography 

(silica: PE/DCM, 3:2) to yield the product as a bright yellow oil (30.0 mg, 2%). 
1
H 

NMR (500 MHz, CDCl3) δ (ppm) = 7.52 (s, 2H), 2.67 – 2.51 (m, 4H), 1.60 – 1.47 (m, 

2H), 1.32 – 1.17 (m, 16H), 0.90 – 0.83 (m, 12H).
13

C NMR (125.7 MHz, CDCl3-d, 298 

K): δ (ppm) = 147.26, 135.03, 115.99, 112.64, 40.58, 37.26, 32.48, 28.89, 25.66, 

23.06, 14.15, 10.88.
 

 

3.2.2 Through Kumada cross-coupling reaction using 4,5-dibromoveratrole as 

precursor 

3.2.2.1     4,5-Dibromoveratrole (196)
5
               

 

 
 

 

Following the procedure reported in the literature,
 5,7

 a solution of veratrole (40.0 g, 

0.29 mol) in DCM (400 mL) was cooled to 0 °C. Bromine (32.8 mL, 0.64 mol) was 

added dropwise via an addition funnel to the stirring mixture over 2 h. After complete 

addition, the reaction mixture was allowed to warm to room temperature and left to 

stir for a further 1 h. The resulting material was washed with an aqueous solution of 

sodium metabisulfite to remove the excess bromine. Water and brine were added and 

the mixture extracted with DCM (3150 mL). The combined organic extracts were 

dried over MgSO4, filtered and the solvent removed under reduced pressure to give a 

white powder. The crude solid was recrystallised from isopropanol to give large, clear, 

needle-type crystals (85.89 g, 100%). 
1
H NMR (500 MHz, CDCl3-d, 298 K) δ (ppm) 

= 7.06 (s, 2H), 3.85 (s, 6H). 
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3.2.2.2     (2-ethylhexyl) magnesium bromide (215)
1
 

 

 

 

 

Following the same procedure described above in section 3.2.1.1, magnesium turnings 

(3.26 g, 0.14 mol) were stirred in distilled Et2O (20 mL) under an inert atmosphere for 

10 min. A single crystal of iodine was added together with 2-ethylhexyl bromide 

(18.32 mL, 0.1 mol) in Et2O (25 mL) in a dropwise manner via addition funnel. After 

the addition was completed, the reaction mixture was allowed to reflux for 2 h. The 

Grignard reagent was used immediately for the next step after cooling.  

 

3.2.2.3     4,5-bis(2-ethylhexyl)veratrole (219)
5
 

 

 

 

According to the established procedure,
5,8

 4,5-dibromoveratrole 196 (5.0 g, 0.02 mol) 

was stirred together with [1,1'- bis(diphenylphosphino)ferrocene]palladium(II) 

dichloride (0.69 g, 0.85 mol) under an inert atmosphere. (2-Ethylhexyl) magnesium 

bromide 215 was added at room temperature via syringe and left to stir for 30 min. 

The mixture was then allowed to reflux overnight. The reaction was poured into 

ice/water, filtered and extracted with Et2O (3150 mL). The organics were washed 

with 1.00 M HCl, water, brine, dried (MgSO4), filtered and the solvent removed under 

reduced pressure. The crude brown oil was purified by column chromatography over 

silica gel (hexane/EtOAc , 5:1) to give the title compound as a light honey oil (10.30 g, 

71 %). 
1
H NMR (500 MHz, CDCl3-d, 298 K) δ (ppm) = 6.61 (s, 2H), 3.85 (s, 6H), 

2.52 – 2.38 (m, 4H), 1.55 – 1.48 (m, 2H), 1.38 – 1.17 (m, 16H), 0.94 – 0.81 (m, 12H). 

 

 

 



Chapter 3:  Experimental 

 

 141 

3.2.2.4     4,5-bis(2-ethylhexyl)-1,2-dihydroxybenzene (220)
5
 

 

According to the procedure described in the literature,
5,9,10

 a mixture of 48% 

hydrobromic acid and glacial acetic acid (200.0 mL, 1:1) was added to 4,5-bis(2-

ethylhexyl)-1,2-dimethoxybenzene (9.87 g, 0.03 mol) and stirred to obtain an 

emulsion. The light orange emulsion was heated under reflux for 72 h under normal 

atmosphere. After cooling the mixture to room temperature, the crude was washed 

with water (3x100 mL), brine and extracted with DCM. The organic material was 

dried over MgSO4 and the solvent removed under reduced pressure to give the product 

as a reddish oil (9.0 g, 99 %). 
1
H NMR (400 MHz, CDCl3, 298 K) δ (ppm) =  6.61 (s, 

2H), 5.19 (br s, 2H), 2.48 – 2.29 (m, 4H), 1.52 – 1.41 (m, 2H), 1.34 – 1.12 (m, 16H), 

0.91 – 0.87 (m, 12H). 

 

3.2.2.5     4,5-Bis(2-ethylhexyl)-1,2-bis(trifluoromethanesulfonyloxy)benzene 

(221)
5
 

 

Following the procedure described in the literature,
5,11

 a solution of 4,5-bis(2-

ethylhexyl)-1,2-dihydroxybenzene (7.85 g, 0.024 mol) and lutidine (8.15 mL, 7.54 g, 

0.07 mol) in distilled DCM was cooled to -78 °C. Trifluoromethanesulfonic anhydride 

(19.74 mL, 33.10 g, 0.12 mol) was added dropwise via syringe under an inert 

atmosphere. The mixture was left to warm to room temperature and stirred overnight. 

The organic mixture was washed with water (3x100 mL), brine, extracted with DCM, 

dried over MgSO4 and filtered. The solvent was removed under reduced pressure and 

chromatographed through a short silica gel column. The column was eluted using 

petroleum ether and DCM (3:2) and a single fluorescent band was collected. The title 

compound was isolated as a yellow oil (9.26 g, 66 %). 
1
H NMR (400 MHz, CDCl3-d, 

298 K) δ (ppm) = 7.17 (s, 2H), 2.61 – 2.45 (m, 4H), 1.60 – 1.47 (m, 2H), 1.40 – 1.12 

(m, 16H), 0.92 – 0.81 (m, 12H).  
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3.2.2.6     4,5-Bis(2-ethylhexyl)phthalonitrile (218)
5
 

 

According to the procedure described by Hanack and Drechsler.
5,12 

A solution of 4,5-

bis(2-ethylhexyl)-1,2-bis(trifluoromethanesulfonyloxy)benzene 221 (1.0 g, 1.67 

mmol) in anhydrous DMF (2.50 mL) was added to a solution of 

tris(dibenzylideneacetone)dipalladium (61.17 mg, 0.067 mmol, 4.0 mol%) and 1,1`- 

bis(diphenylphosphino)ferrocene (148.13 mg, 0.27 mmol, 16.0 mol%) in anhydrous 

DMF (2.50 mL) under argon atmosphere via syringe at room temperature. The 

reaction mixture was allowed to heat gradually until the temperature stabilised at 73 

°C. Once the required temperature was obtained, zinc cyanide (235.31 mg, 2.0 mmol, 

1.2 equiv) was added in two equal portions over a period of two hours whilst 

maintaining the temperature at 70-75 °C. When the addition was completed the 

reaction mixture was left stirring and heating at 70-75 °C for a further 24 h. The 

resulting crude product mixture was washed several times with hexane and the excess 

cyanide and spent catalyst filtered off. The rest of clear yellow solution was washed 

with brine, water and extracted with hexane. The organic material was dried over 

MgSO4, filtered and the solvent evaporated under reduced pressure to give an orange 

oil. The oil was purified by column chromatography over silica gel (hexane/EtOAc, 

30:1) to give the product as a bright yellow oil (484.8 mg, 82 %). 
1
H NMR (500 MHz, 

CDCl3, 298 K) δ (ppm) = 7.52 (s, 2H), 2.66 – 2.52 (m, 4H), 1.61 – 1.50 (m, 2H), 1.37 

– 1.13 (m, 16H), 0.96 – 0.79 (m, 12H).
13

C NMR (125.7 MHz, CDCl3-d, 298 K): δ 

(ppm) = 147.26, 135.03, 115.99, 112.64, 40.58, 37.26, 32.48, 28.89, 25.66, 23.06, 

14.15, 10.88. 

 

3.3 Synthesis of Substituted Tetrabenzotriazaporphyrins (183 and 184) 

3.3.1     General synthetic procedure for the synthesis of substituted meso-aryl 

TBTAPs via the Grignard reagent route using quinoline as solvent 

According to procedures modified by Cammidge, Cook and co-workers,
5,13

 

substituted phthalonitrile was dissolved in dry THF and stirred at room temperature, 

under an argon atmosphere. A solution of arylmagnesium halide was added dropwise 

via a syringe and the mixture was heated under reflux for 30 min. The reaction 
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underwent a colour change from a yellow solution, to a dark brown colour. A stream 

of argon was passed through the reaction flask for 20 min to remove the THF. After 

removal of the solvent, distilled/degassed quinoline was added to the hot vessel via 

syringe, and the reaction mixture was heated at 200 °C for 24 h under argon. During 

this time the colour of the reaction mixture changed gradually from dark brown to 

green. Then, the majority of the quinoline was removed under a stream of argon. The 

crude product was cooled to room temperature and MeOH was added to the mixture. 

After sonication, the resulting suspension was purified by filtration through silica gel. 

MeOH was initially used to remove the remaining quinoline and other polar by-

products, then the product was flushed out with THF and a dark green fraction was 

collected. The solvent was removed under reduced pressure and the resulting green 

material further purified by column chromatography eluting with PE/THF (15:1) to 

obtain a green (TBTAP) and then a blue fraction (Pc). Finally, the green material was 

subjected to a second chromatographic separation using DCM/PE (1:15). 

 

3.3.1.1     [2,3,9,10,15,16,23,24-Octakis(2-ethylhexyl)-27-phenyl-tetrabenzo[b,g,l,q] 

[5,10,15]triazaporphinato] magnesium (II) (183)
13

 

 

Synthesised using the general procedure
 
described above from 4,5-bis(2-ethylhexyl) 

phthalonitrile (200.0 mg, 0.567 mmol, 1 equiv) and  benzylmagnesium chloride (1.14 

mL, 1.0 M in Et2O, 1.13 mmol, 2 equiv) in dry THF (3.0 mL) first then in 

distilled/degassed quinoline (3.0 mL). The final material was recrystallised from 

PE:dry THF (10:1) yielding the title compound as a green solid (60.0 mg, 28%); mp 

>300 °C; UV-Vis (THF) λmax/nm (ε) 685 (4.32×10
3
), 659 (3.38×10

3
), 606 (7.91×10

2
), 

433 (1.58×10
2
), 383 (2.45×10

3
). 

1
H NMR (500 MHz, THF-d8, 298 K) δ (ppm) =  9.30 

(s, 2H), 9.25 (s, 4H), 8.19 – 8.12 (m, 2H), 8.04 (t, J = 7.6 Hz, 1H), 7.95 (t, J = 7.6 Hz, 

2H), 6.95 (s, 2H), 3.25 – 3.24 (m, 16H), 2.12 (m, 8H), 1.72 – 1.59 (m, 64H), 1.03 – 

0.87 (m, 48H). MS (MALDI-TOF) m/z 1509 [M]
+
 (100%). 
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3.3.1.2     [2,3,9,10,15,16,23,24-Octakis(2-ethylhexyl)-27-(2-bromophenyl)-tetra 

benzo[b,g,l,q][5,10,15]triazaporphinato] magnesium (II) (184) 

 

Synthesised uses the general procedure described above from 4,5-bis(2-ethylhexyl) 

phthalonitrile (200.0 mg, 0.567 mmol, 1 equiv) and  2-bromobenzylmagnesium 

bromide (4.54 mL, 0.25 M in Et2O, 1.13 mmol, 2 equiv) in dry THF (3.0 mL) first 

then in distilled/degassed quinoline (3.0 mL). The final material was recrystallised 

from acetone/EtOH (1:1) yielding the title compound as a green solid (35.0 mg, 16%); 

mp >300 °C; UV-Vis (THF) λmax/nm (ε) 685 (3.57×10
3
), 662 (2.62×10

3
), 606 

(7.14×10
2
), 450 (4.76×10

2
), 390 (1.67×10

3
). 

1
H NMR (500 MHz, THF-d8, 298 K) δ 

(ppm) = 9.32 (s, 2H), 9.25 (s, 4H), 8.28 (d, J = 8.0 Hz, 1H), 8.16 (br s, 1H), 7.99 – 

7.92 (m, 2H), 6.99 (s, 2H), 3.25 – 3.24 (m, 16H), 2.12 (m, 8H), 1.72 – 1.59 (m, 64H), 

1.03 – 0.87 (m, 48H). MS (MALDI-TOF) m/z 1589 [M]
+
 (100%) (isotopic pattern 

matches theoretical prediction). 
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3.4 Synthesis of Substituted Phthalonitrile (222)  

3.4.1 2,5-Dichloro-2,5-dimethylhexane (224)
 14

 

 

Following a known procedure reported in literature,14-16 a solution of 2,5-

dimethylhexane-2,5-diol (5.0 g, 34.24 mmol) in concentrated hydrochloric acid (50 

ml) was stirred at 0 °C for 30 min. The mixture was left to warm to room temperature 

and completed stirring overnight. The light pink solid was filtered off and washed 

thoroughly with water. The solid was then dissolved in DCM, washed again by water 

and extracted with DCM (3x50 mL). The organic extracts were dried (MgSO4) and the 

solvent removed under reduced pressure to afford the product as a white solid which 

was recrystallised in methanol to give compound 224 as white crystals (4.66 g, 74%). 

1
H NMR (500 MHz, CDCl3-d, 298 K) δ (ppm) = 1.95 (s, 4H), 1.60 (s, 12H). 

 

3.4.2 1,1,4,4-Tetramethyl-1,2,3,4-tetrahydronaphthalene (225)
16

 

 

Following Bruson’s procedure via Friedel-Crafts reaction,
16,17 

a solution of 2,5-

dichloro-2,5-dimethylhexane 224 (1.0 g, 5.46 mmol) in benzene (50 mL, 0.56 mol) 

was stirred for 10 min at 50 °C. Anhydrous aluminum trichloride (0.29 g, 2.18 mmol) 

was added in small portions over 30 min. The thick suspension was then stirred at 50 

°C for 24 h. The resulting material was cooled to room temperature, poured into dilute 

hydrochloric acid and extracted with DCM (3x50 mL). The organics were washed 

with water, diluted sodium carbonate solution, dried (Na2SO4), filtered and the solvent 

removed under reduced pressure. The resulting material was washed several times by 

methanol to remove the side-products. The solvent was removed under reduced 

pressure to give the product as a colourless liquid (0.96 g, 94%). 
1
H NMR (400 MHz, 

CDCl3-d, 298 K) δ (ppm) = 7.31 (dd, J = 5.9, 3.5 Hz, 2H), 7.13 (dd, J = 6.0, 3.4 Hz, 

2H), 1.70 (s, 4H), 1.29 (s, 12H). 
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3.4.3 6,7-dibromo-1,1,4,4-tetramethyl-1,2,3,4-tetrahydronaphthalene  (226)
 2
 

 

Bromination of 225 was achieved using the method described by Ashton and co-

workers.2,4 
1,1,4,4-Tetramethyl-1,2,3,4-tetrahydronaphthalene 225 (0.96 g, 5.11 mmol) 

was dissolved in DCM (15 mL). Iron powder (34.0 mg, 0.61 mmol) and iodine (12.95 

mg, 0.051 mmol) were added to the mixture and cooled to 0 °C. Bromine (0.53 mL, 

10.19 mmol) was added dropwise via syringe to the stirring mixture over 30 min. 

After complete addition, the reaction mixture was allowed to warm up to room 

temperature and stirred for 24 h. The resulting mixture was washed with an aqueous 

solution of sodium metabisulfite and sodium bicarbonate to remove the excess 

bromine. Water and brine were added and the mixture extracted with DCM (350 

mL). The organic extracts were dried over MgSO4, filtered and the solvent removed 

under reduced pressure to give brownish solid. The product was purified by column 

chromatography over silica gel using PE/DCM (3:2) as eluents to give the title 

compound as a yellow solid (1.52 g, 86%). 
1
H NMR (500 MHz, CDCl3, 298 K) δ 

(ppm) = 7.50 (s, 2H), 1.65 (s, 4H), 1.25 (s, 12H). 

 

3.4.4 6,7-Dicyano-1,1,4,4-tetramethyl-1,2,3,4-tetrahydronaphthalene  (222)
 6 

  

 

Following the procedure described by Rosenmund von Braun,
6,17 

a mixture of 6,7-

dibromo-1,1,4,4-tetramethyl-1,2,3,4-tetrahydronaphthalene  226 (1.52 g, 4.39 mmol) 

and CuCN (1.97 g, 21.99 mmol) was refluxed in dry DMF (15 mL) under an argon 

atmosphere for 16 h. The reaction mixture was cooled to room temperature and 

poured into an aqueous solution of ammonia (50 mL), and left to stir at room 

temperature for 24 h under a stream of air.  The resulting material was extracted with 

Et2O (3 x 50 mL), washed with H2O (3 x 50 mL) and saturated solution of NaHCO3, 

dried over MgSO4 and filtered. The filtrate was evaporated under reduced pressure to 

give the crude product. The crude material was purified by column chromatography 



Chapter 3:  Experimental 

 

 147 

(silica: PE/ Et2O, 7:1) to yield the product as a yellow solid (0.28 mg, 27%). 
1
H NMR 

(400 MHz, CDCl3-d, 298 K) δ (ppm) = 7.71 (s, 2H), 1.72 (s, 4H), 1.30 (s, 12H). 

 

3.5 Synthesis of Substituted Tetrabenzotriazaporphyrins (185 and 186) 

3.5.1 [2,3,9,10,15,16,23,24-tetrakis(1,1,4,4-tetramethyl-6,7-tetralino)-27-phenyl-

tetrabenzo[b,g,l,q][5,10,15]triazaporphinato] magnesium (II) (185) 

 

Following the general method previously described in section 3.3.1, the 6,7-dicyano-

1,1,4,4-tetramethyl-1,2,3,4-tetrahydronaphthalene 222 (200.0 mg, 0.840 mmol, 1 

equiv) and benzylmagnesium chloride (1.68 mL, 1.68 mmol, 2 equiv, 1.0 M in Et2O) 

were used to obtain the target compound. The final material was recrystallised from 

THF/EtOH (1:1) provided the title compound as a green solid (18.0 mg, 8%); mp 

>300 °C; UV-Vis (THF) λmax/nm (ε) 688 (1.38×10
3
), 662 (7.94×10

2
), 605 (2.65×10

2
), 

451 (2.12×10
2
), 383 (5.82×10

2
). 

1
H NMR (500 MHz, THF-d8, 298 K) δ (ppm) = 9.53 

(s, 2H), 9.50 (s, 2H), 9.48 (s, 2H), 8.19 (d, J = 8.1 Hz, 2H), 8.07 (t, J = 7.5 Hz, 1H), 

8.01 (t, J = 7.2 Hz, 2H), 7.24 (s, 2H), 2.29 (s, 16H), 1.35 (s, 48H). MS (MALDI-TOF) 

m/z 1052 [M]
+
 (100%) (isotopic pattern matches theoretical prediction). 
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3.5.2  [2,3,9,10,15,16,23,24-tetrakis(1,1,4,4-tetramethyl-6,7-tetralino)-27-(2-

bromophenyl)-tetrabenzo[b,g,l,q][5,10,15]triazaporphinato] magnesium (II) (186) 

 

 

 

Prepared following the general procedure described in section 3.3.1 using 6,7-

dicyano-1,1,4,4-tetramethyl-1,2,3,4-tetrahydronaphthalene 222 (200.0 mg, 0.840 

mmol, 1 equiv) and 2-bromobenzylmagnesium bromide (6.72 mL, 1.68 mmol, 2 

equiv, 0.25 M in Et2O). The final material was recrystallised from THF/EtOH (1:1) 

gave the title compound as a green solid (28.0 mg, 12%); mp >300 °C; UV-Vis 

(acetone) λmax/nm (ε) 689 (3.29×10
4
), 665 (2.34×10

4
), 607 (4.75×10

3
), 431 

(4.75×10
3
), 383 (1.22×10

4
). 

1
H NMR (500 MHz, THF-d8, 298 K) δ (ppm) = 9.53 (s, 

2H), 9.49 (s, 2H), 9.48 (s, 2H),  8.37 (dd, J = 7.9, 1.4 Hz, 1H), 8.13 (dd, J = 7.0, 2.0 

Hz, 1H), 7.98 – 7.93 (m, 2H), 7.31 (s, 2H), 2.09 (s, 16H), 1.80 (s, 48H). MS (MALDI-

TOF) m/z 1132 [M]
+
 (100%) (isotopic pattern matches theoretical prediction). 
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3.5.3   (Z)-3-(2-Bromobenzylidene)-5,5,8,8-tetramethyl-2,3,5,6,7,8-hexahydro-

1H-benzo[f]isoindol-1-one (232) 

 

 

The previous reaction was gave a side-product (in one experimental reaction) which 

recrystallised from THF/MeOH (1:4) to give (Z)-3-(2-bromobenzylidene)-5,5,8,8-

tetramethyl-2,3,5,6,7,8-hexahydro-1H-benzo[f]isoindol-1-one as pale yellow crystals 

(28.0 mg, 8%); mp =  191 °C; UV-Vis (DCM) λmax/nm (ε) 418 (1.23×10
2
), 336 

(2.46×10
3
), 301 (1.97×10

3
). 

1
H NMR (400 MHz, THF-d8, 298 K) δ (ppm) = 7.90 (s, 

1H), 7.77 (s, 1H), 7.64 (dd, J = 8.0, 1.3 Hz, 2H), 7.39 (td, J = 7.4, 1.0 Hz, 1H), 7.15 

(td, J = 7.6, 1.6 Hz, 1H), 6.58 (s, 1H), 1.73 (br s, 4H), 1.39 (s, 6H), 1.35 (s, 6H).
 13

C 

NMR (125.7 MHz, CDCl3-d, 298 K) δ (ppm) = 169.15, 150.83, 148.00, 135.50, 

134.99, 134.78, 133.65, 129.74, 129.10, 128.08, 126.68, 124.53, 122.10, 118.35, 

103.83, 35.44, 35.23, 34.96, 34.82, 32.19, 30.50, 29.86. MS (MALDI-TOF) m/z 410 

[M]
+
 (100%). 

 

 

3.6 Synthesis of Aminoisoindolines 

3.6.1 Synthesis of 2-bromobenzimidamide hydrochloride (168)
18

 

 

Following the method reported in literature,
18 

a solution of 2-bromobenzonitrile (3.7 g, 

20.33 mmol) in dry THF (3.0 mL) was added to a solution of 1 M LiN(SiMe3)2 in 

anhydrous THF (22.0 mL) and the reaction mixture was stirred at room temperature  

for 4 h. A 5 N HCl in isopropanol (15 mL) was added to the cooled mixture. The 

crude reaction mixture was left to stir at room temperature overnight. The precipitated 

product was filtered, washed with diethyl ether and finally recrystallised from Et2O 

and MeOH to yield 168 (2.77 g, 69%) as colourless crystals. 
1
H NMR (500 MHz, 

CDCl3-d, 298 K) δ (ppm) = 7.86 – 7.76 (m, 1H), 7.66 – 7.49 (m, 3H).  
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3.6.2 General synthetic procedure for the synthesis of aminoisoindolines  

Following the reported procedure
19

 a mixture of amidine, BINAP (0.055 equiv) and 

PdCl2(MeCN)2 (0.05 equiv) was sealed in a microwave vessel with a magnetic bar and 

then purged and refilled with N2 three times. Then, a solution of substituted 

arylacetylene (1.2 equiv) and DBU (2.5 equiv) in dry DMF (12 ml) was added. The 

mixture was stirred under N2 for 5 min to give a clear yellow solution with a white 

solid. Finally, the mixture was irradiated in a microwave reactor at 120 °C for 1 h. 

After cooling, 50 mL of EtOAc was added and the mixture washed with a saturated 

solution of NaHCO3 (75 ml) three times. The organic layer was dried (MgSO4), 

filtered and concentrated. The residue was finally purified by column chromatography 

using EtOAc → EtOAc /EtOH/H2O (90:5:3) → EtOAc /EtOH/H2O (45:5:3). 

  

3.6.2.1  (Z)-1-(3-methoxybenzylidene)-1H-isoindol-3-amine (234) 

 

 

 

Following the general procedure described above, a solution of 3-ethynylanisole (0.67 

g, 5.09 mmol) and DBU (1.62 g, 10.64 mmol) in dry DMF (12 ml) was added to a 

mixture of amidine 168 (1.00 g, 4.25 mmol) , BINAP (0.13 g, 0.21 mmol) and 

PdCl2(MeCN)2 (0.06 g, 0.21 mmol). The reaction mixture was irradiated in a 

microwave reactor at 120 °C for 1 h. After purification, the yellow solid was 

recrystallised from a DCM/Petroleum ether (1:1) to yield the title compound as yellow 

needles (440.0 mg, 41%); mp = 183 – 184 °C; UV-Vis (DCM) λmax/nm (ε) 367 

(2.93×10
3
), 292 (9.01×10

2
). 

1
H NMR (500 MHz, CDCl3-d, 298 K) δ (ppm) = 7.83 (br 

s, 1H), 7.79 (d, J = 7.6 Hz, 1H), 7.60 (d, J = 7.6 Hz, 1H), 7.50 – 7.44 (m, 2H), 7.39 (t, 

J = 7.4 Hz, 1H), 7.30 (t, J = 7.9 Hz, 1H), 6.82 (dd, J = 8.2, 2.4 Hz, 1H), 6.73 (s, 1H), 

5.74 – 5.35 (br s, 2H, NH2), 3.88 (s, 3H).
 13

C NMR (125.7 MHz, CDCl3-d, 298 K) δ 

(ppm) = 165.04, 159.85, 159.84, 159.80, 138.10, 131.11, 129.47, 129.36, 127.40, 

126.85, 123.40, 119.97, 119.02, 115.58, 113.64, 55.45. MS (MALDI-TOF) m/z 251 

[M]
+
 (100%). HRMS (ESI) (C16H14N2O) [M+H]

+
: calcd: 251.1179; found: 251. 1180. 

 



Chapter 3:  Experimental 

 

 151 

3.6.2.2  (Z)-1-(3,5-dimethoxybenzylidene)-1H-isoindol-3-amine (236) 

 

Following the general procedure described above, a solution of 1-ethynyl-3,5-

dimethoxybenzene (0.83 g, 5.12 mmol) and DBU (1.62 g, 10.63 mmol) in dry DMF 

(12 ml) was added to a mixture of amidine 168 (1.00 g, 4.25 mmol) , BINAP (0.13 g, 

0.21 mmol) and PdCl2(MeCN)2 (0.06 g, 0.21 mmol). The reaction mixture was 

irradiated in a microwave reactor at 120 °C for 1 h. After purification, the yellow solid 

was recrystallised from a DCM/Petroleum ether (1:1) to yield the title compound as 

yellow needles (300.0 mg, 25%); mp = 167 – 168 °C; UV-Vis (DCM) λmax/nm (ε) 367 

(1.18×10
3
), 290 (3.36×10

2
). 

1
H NMR (500 MHz, CDCl3-d, 298 K) δ (ppm) = 77.79 (d, 

J = 7.5 Hz, 1H), 7.51 – 7.47 (m, 2H), 7.40 (t, J = 7.4 Hz, 1H), 7.30 (d, J = 2.0 Hz, 

2H), 6.70 (s, 1H), 6.42 (t, J = 2.3 Hz, 1H), 3.87 (s, 6H).
 13

C NMR (125.7 MHz, 

CDCl3-d, 298 K) δ (ppm) = 164.76, 160.91, 159.76, 154.32, 153.83, 152.80, 138.20, 

131.11, 129.80, 128.82, 127.64, 127.30, 120.05, 119.39, 108.49, 100.66, 55.61. MS 

(MALDI-TOF) m/z 281 [M]
+
 (100%). HRMS (ESI) (C17H16N2O2) [M+H]

+
: calcd: 

281.1285; found: 281.1287. 

 

3.7 Synthesis of Unsubstituted Tetrabenzotriazaporphyrins  

3.7.1 General synthetic procedure for the preparation of substituted meso-aryl 

TBTAPs via aminoisoindoline intermediate (191 and 192)     

The reaction was carried out following the process described by Cammidge and 

coworkers.
20,21

 A suspension of phthalonitrile (3 equiv) and MgBr2 (1.5 equiv) in dry 

diglyme (0.5 ml) was heated at 220 °C for 10 min under an argon atmosphere, in a 

preheated mantle. A solution of aminoisoindoline (1 equiv) and phthalonitrile (1 

equiv) in dry diglyme (1 ml) was added dropwise over 1 h using a syringe pump. 

After finishing the first addition, the reaction mixture was left to reflux at 220 °C for 

30 min. Finally, a solution of phthalonitrile (1 equiv) and DABCO (1.5 equiv) in dry 

diglyme (0.5 ml) was added dropwise over 1 h. The reaction mixture was then 

refluxed at 220 °C under argon for further 30 min. A stream of argon was passed 

through the reaction vessel in order to remove the solvent. The reaction mixture was 
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cooled to room temperature and a mixture of DCM/MeOH (50 ml, 1:1) was added and 

the mixture sonicated. After the removal of solvent under reduced pressure, the 

resulting material was purified by two consecutive flash chromatographies. Firstly, the 

crude was loaded on silica-gel column and eluted with DCM/Et3N/THF (10:1:4) in 

order to remove the yellow-brown impurities and obtain a green fraction. Finally, the 

green fraction was then subjected to a second column chromatography using 

PE/THF/MeOH (10:3:1) as elute to obtain the pure green product. Alternatively, 

analytically pure material could be obtained by size-exclusion chromatography over 

Bio-beads SX-3 using THF eluent. 

 

3.7.1.1  [20-(3-Methoxyphenyl)-tetrabenzo[b,g,q,l]-5,10,15-triazaporphyrinato] 

magnesium (II) (191) 

 

Synthesised following the general procedure described above, a solution of 

phthalonitrile (154.0 mg, 1.20 mmol) and MgBr2 (110.0 mg, 0.60 mmol) in dry 

diglyme (0.5 ml) was heated at 220 °C for 10 min under argon. A solution of 

aminoisoindoline 234 (100.0 mg, 0.40 mmol) and phthalonitrile (51.0 mg, 0.40 mmol) 

in dry diglyme (1.0 ml) was added dropwise over 1 h using a syringe pump. After 

finishing the first addition, the reaction mixture was left to reflux at 220 °C for 30 

min. Finally, a solution of phthalonitrile (51.0 mg, 0.40 mmol) and DABCO (67.0 mg, 

0.60 mmol) in dry diglyme (0.5 ml) was added dropwise over 1 h. The reaction 

mixture was then refluxed at 220 °C under argon for further 30 min. The final material 

was recrystallised from acetone/EtOH (1:1) gave the title compound as green crystals 

with purple reflex (50.0 mg, 20%); mp > 300 °C; UV-Vis (THF) λmax/nm (ε) 670 

(7.35×10
3
), 647 (4.41×10

3
), 592 (1.03×10

2
), 442 (1.03×10

2
), 397 (2.50×10

2
). 

1
H NMR 

(500 MHz, THF-d8, 298 K): δ (ppm) = 9.59 (d, J = 7.5 Hz, 2H), 9.53 – 9.50 (m, 4H), 

8.23 – 8.15 (m, 4H), 7.92 (t, J = 7.1 Hz, 2H), 7.88 – 7.84 (m, 1H), 7.77 – 7.68 (m, 

2H), 7.63 – 7.59 (m, 3H), 7.25 (d, J = 8.0 Hz, 2H), 3.98 (s, 3H).
 13

C NMR (125.7 

MHz, THF-d8, 298 K): δ (ppm) =  169.56, 161.75, 156.84, 153.81, 152.87, 145.09, 

143.05, 141.13, 141.00, 140.90, 140.20, 134.79, 134.51, 133.67, 132.79, 130.86, 
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130.09, 129.80, 128.24, 127.39, 126.63, 125.81, 125.69, 123.86, 123.76, 123.64, 

123.58, 122.46, 118.90, 115.86, 108.56, 98.90, 56.04. MS (MALDI-TOF) m/z 642 

[M]
+
 (100%). HRMS (ESI) (C40H23MgN7O) [M+H]

+
: calcd: 642.1887; found: 

642.1885. 

 

3.7.1.2  [20-(3-Hydroxyphenyl)-tetrabenzo[b,g,q,l]-5,10,15-triazaporphyrinato] 

magnesium (II) (241) 

 

 

Synthesised following the general procedure,
22

 a solution of TBTAP 191 (40 mg, 

0.062 mmol) in distilled DCM (5 mL) was stirred at 0 °C for  5 min under an argon 

atmosphere. A solution of BBr3 (1.25 mL, 1.25 mmol, 20 equiv, 1 M in DCM) was 

added dropwise over 1 h using a syringe pump. After finishing the addition, the 

reaction mixture was left to warm to room temperature and stirred for further 1 h. 

MeOH (5 ml) was added and the mixture sonicated for 5 min. The solvents were 

removed under reduced pressure and the crude was purified by column 

chromatography using DCM/Et3N/THF (20:1:3) as eluent. The final material was 

recrystallised from acetone and EtOH gave the title compound as green crystals with 

purple reflex (19.40 mg, 50%); mp > 300 °C; UV-Vis (THF) λmax/nm (ε) 670 

(4.14×10
3
), 646 (2.26×10

3
), 592 (5.65×10

2
), 444 (1.88×10

2
), 428 (3.77×10

2
), 383 

(1.32×10
3
). 

1
H NMR (500 MHz, THF-d8, 298 K): δ (ppm) = 9.59 (d, J = 7.5 Hz, 2H), 

9.53 – 9.50 (m, 4H), 8.82 (br s, 1H, OH), 8.21 – 8.15 (m, 4H), 7.92 (t, J = 7.0 Hz, 

2H), 7.79 – 7.74 (m, 1H), 7.66 – 7.61 (m, 3H), 7.54 (s, 1H), 7.46 (ddd, J = 8.4, 2.4, 

0.9 Hz, 1H), 7.36 (d, J = 8.0 Hz, 2H).
 13

C NMR (125.7 MHz, THF-d8, 298 K): δ 

(ppm) =  117.56, 114.60, 114.56, 114.52, 110.65, 102.69, 100.94, 98.95, 98.85, 98.72, 

97.98, 94.30, 88.57, 87.84, 87.54, 86.00, 85.14, 84.76, 83.87, 81.96, 81.64, 81.41, 

81.29, 78.53, 74.85. MS (MALDI-TOF) m/z 628 [M]
+
 (100%). HRMS (ESI) 

(C39H21MgN7O) [M+H]
+
: calcd: 627.1653; found: 627.1654. 
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3.7.1.3   [20-(3,5-Dimethoxyphenyl)-tetrabenzo[b,g,q,l]-5,10,15-

triazaporphyrinato] magnesium (II) (192) 

 

Synthesised following the general procedure described above, a solution of 

phthalonitrile (210.0 mg, 1.64 mmol) and MgBr2 (148.0 mg, 0.80 mmol) in dry 

diglyme (0.5 ml) was heated at 220 °C for 10 min under argon. A solution of 

aminoisoindoline 236 (150.0 mg, 0.54 mmol) and phthalonitrile (69.0 mg, 0.54 mmol) 

in dry diglyme (1.0 ml) was added dropwise over 1 h using a syringe pump. After 

finishing the first addition, the reaction mixture was left to reflux at 220 °C for 30 

min. Finally, a solution of phthalonitrile (69.0 mg, 0.54 mmol) and DABCO (90.10 

mg, 0.80 mmol) in dry diglyme (0.5 ml) was added dropwise over 1 h. The reaction 

mixture was then refluxed at 220 °C under argon for further 30 min. The final material 

was recrystallised from acetone/EtOH (1:1) gave the title compound as green crystals 

with purple reflex (30.0 mg, 8%); mp > 300 °C; UV-Vis (THF) λmax/nm (ε) 670 

(6.45×10
3
), 647 (4.23×10

3
), 594 (1.21×10

3
), 443 (1.41×10

3
), 395 (2.82×10

3
). 

1
H NMR 

(500 MHz, THF-d8, 298 K): δ (ppm) = 9.59 (d, J = 7.5 Hz, 2H), 9.53 – 9.50 (m, 4H), 

8.20 – 8.15 (m, 4H), 7.93 (t, J = 7.6 Hz, 2H), 7.65 (t, J = 8.0 Hz, 2H), 7.45 (d, J = 8.0 

Hz, 2H), 7.34 (d, J = 2.3 Hz, 2H), 7.18 (t, J = 2.3 Hz, 1H), 3.95 (s, 6H).
 13

C NMR 

(125.7 MHz, THF-d8, 298 K): δ (ppm) = 162.77, 156.73, 153.72, 152.83, 145.37, 

142.92, 142.14, 141.16, 140.93, 140.21, 130.07, 129.78, 128.35, 127.41, 126.68, 

125.97, 123.85, 123.65, 123.54, 111.75, 102.25, 56.14. MS (MALDI-TOF) m/z 672 

[M]
+
 (100%). HRMS (ESI) (C41H25MgN7O2) [M+H]

+
: calcd: 671.1915; found: 

671.1923.   

 

3.7.2 General synthetic procedure for the preparation of substituted meso-aryl 

TBTAPs via the Grignard reagent route using diglyme as solvent (187-190)
21 

  

A suspension of phthalonitrile in dry diglyme was refluxed at 220 °C for 10 min under 

an argon atmosphere, in a preheated mantle. A solution of bromobenzylmagnesium 

bromide was added dropwise via a syringe over 1 h. The reaction mixture was heated 

at 220 °C under argon for 2 h. A stream of argon was passed through the reaction 
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vessel in order to remove the solvent. After the reaction mixture cooled to room 

temperature, a mixture of DCM/MeOH (50 ml, 1:1) was added to the reaction mixture 

which was dissolved using an ultrasonic bath. After the removal of solvent under 

reduced pressure, the crude material was loaded on a silica-gel column and eluted with 

DCM/Et3N/THF (10:1:4) in order to initially remove the yellow-brown impurities and 

the isolate green/blue fractions, which subjected to a second column chromatographic 

separation using PE:THF/MeOH (10:3:1) as elute to obtain the pure green product.  

  

3.7.2.1  [27-phenyl-tetrabenzo[b,g,q,l][5,10,15]triazaporphyrinato] magnesium 

(II) (187)
23 

 

Prepared following the general procedure described above, a suspension of 

phthalonitrile (254.0 mg, 1.98 mmol, 3 equiv) in dry diglyme (1.0 ml) and a solution 

of benzylmagnesium chloride (0.663 mL, 0.663 mmol, 1 equiv, 1.0 M in Et2O) were 

heated at 220 °C under argon for 3 h. After purification, the resulting green material 

was recrystallised from acetone/EtOH (1:1) gave the title compound as green crystals 

with a purple reflex (20 mg, 5%); mp > 300 °C; UV-Vis (THF) λmax/nm (ε) 670 

(1.58×10
2
), 647 (1.01×10

2
), 593 (2.39×10

1
), 443 (2.57×10

1
), 397 (6.06×10

1
). 

1
H NMR 

(500 MHz, THF-d8, 298 K): δ (ppm) = 9.59 (d, J = 7.5 Hz, 2H), 9.55 – 9.48 (m, 4H), 

8.21 – 8.14 (m, 6H), 8.06 (t, J = 7.7 Hz, 1H), 7.96 (t, J = 7.6 Hz, 2H), 7.91 (t, J = 7.2 

Hz, 2H), 7.56 (t, J = 8.0 Hz, 2H), 7.10 (d, J = 8.1 Hz, 2H).
 
MS (MALDI-TOF) m/z 

612 [M]
+
 (100%).  

 

3.7.2.2  [20-(2-Bromophenyl)-tetrabenzo[b,g,q,l][5,10,15]triazaporphyrinato] 

magnesium (II) (188) 
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Prepared follows the general procedure, a suspension of phthalonitrile (280.0 mg, 2.19 

mmol, 3 equiv) in dry diglyme (1.0 ml) and a solution of 2-bromobenzylmagnesium 

bromide (2.92 mL, 0.729 mmol, 1 equiv, 0.25 M in Et2O) were heated at 220 °C under 

argon for 3 h. After purification, the resulting green material was recrystallised from 

acetone/EtOH (1:1) gave the title compound as green crystals with a purple reflex 

(280 mg, 56%); mp > 300 °C; UV-Vis (THF) λmax/nm (ε) 671 (2.12×10
3
), 650 

(1.11×10
3
), 594 (2.33×10

2
), 443 (1.55×10

2
), 396 (5.96×10

3
). 

1
H NMR (500 MHz, 

THF-d8, 298 K): δ (ppm) = 9.61 (d, J = 7.5 Hz, 2H), 9.53 – 9.48 (m, 4H), 8.31 (d, J = 

8.3 Hz, 1H), 8.18 – 8.16(m, 5H), 7.98 (t, J = 7.9 Hz, 1H), 7.92 (t, J = 7.2 Hz, 3H), 

7.60 (t, J = 7.5 Hz, 2H), 7.14 (d, J = 8.0 Hz, 2H).
 13

C NMR (125.7 MHz, THF-d8, 298 

K): δ (ppm) = 177.06, 156.67, 153.74, 152.68, 144.36, 142.51, 141.26, 141.03, 

140.79, 140.31, 135.27, 134.70, 132.18, 130.15, 129.87, 129.64, 128.59, 127.60, 

125.14, 124.71, 123.93, 123.83, 123.74, 108.57, 108.28, 107.83, 102.09, 98.92. MS 

(MALDI-TOF) m/z 692 [M]
+
 (100%). HRMS (ESI) (C39H20BrMgN7) [M+H]

+
: calcd: 

689.0808; found: 689.0807.   

 

3.7.2.3  [20-(3-Bromophenyl)-tetrabenzo[b,g,q,l][5,10,15]triazaporphyrinato] 

magnesium (II) (189) 

 

Phthalonitrile (280.0 mg, 2.19 mmol, 3 equiv) was dissolved in dry diglyme (1.0 ml) 

and a solution of 3-bromobenzylmagnesium bromide (2.92 mL, 0.729 mmol, 1 equiv, 

0.25 M in Et2O) was added dropwise to the previous solution. The mixture was heated 

at 220 °C under argon for 3 h. The crude was purified by column chromatography as 

described in general procedure. Recrystallisation from acetone/EtOH (1:1) yielded the 

title compound as green crystals with purple reflex (120 mg, 24%); mp > 300 °C; UV-

Vis (THF) λmax/nm (ε) 671 (3.29×10
3
), 648 (1.91×10

3
), 593 (4.15×10

2
), 442 

(2.90×10
2
), 396 (1.09×10

3
). 

1
H NMR (500 MHz, THF-d8, 298 K): δ (ppm) = 9.61 (d, 

J = 7.6 Hz, 2H), 9.53 – 9.47 (m, 4H), 8.37 (s, 1H), 8.25 (d, J = 8.3 Hz, 1H), 8.19 – 

8.15 (m, 5H), 7.94 – 7.87 (m, 3H), 7.62 (t, J = 7.5 Hz, 2H), 7.15 (d, J = 8.0 Hz, 2H).
 

13
C NMR (125.7 MHz, THF-d8, 298 K): δ (ppm) = 176.28, 166.35, 160.34, 157.98, 
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155.83, 154.80, 153.38, 152.27, 151.68, 150.48, 147.92, 146.41, 146.35, 145.95, 

144.27, 143.15, 141.08, 140.88, 140.63, 140.14, 139.55, 139.40, 138.13, 133.19, 

133.07, 130.15, 129.84, 128.32, 127.38, 125.16, 123.83, 123.80, 123.59. MS 

(MALDI-TOF) m/z 692 [M]
+
 (100%). HRMS (ESI) (C39H20BrMgN7) [M+H]

+
: calcd: 

689.0817; found: 689.0808.   

 

3.7.2.4  4-bromobenzylmagnesium bromide solution (247)
24

 

 

Prepared using a typical Grignard reagent synthetic procedure,
1,24

 a suspension of 

magnesium turnings (0.56 gm, 23.25 mmol) in Et2O (7.0 mL) was stirred for 10 min 

under an inert atmosphere. A single crystal of iodine was added to the preivous 

mixture. A solution of 4-bromobenzyl bromide (5.82 gm, 23.26 mol) in Et2O (5.0 mL) 

was added dropwise via addition funnel. After the addition of 4-bromobenzyl bromide 

was completed, the mixture was heated under reflux for 2 h. The Grignard reagent was 

cooled and used immediately for the preparation of TBTAP in next step. 

 

3.7.2.5  [20-(4-Bromophenyl)-tetrabenzo[b,g,q,l][5,10,15]triazaporphyrinato] 

magnesium (II) (190) 

 

A mixture of phthalonitrile (4.41 gm, 34.45 mmol, 1.35 equiv) in dry diglyme (6.0 ml) 

and a 4-bromobenzylmagnesium bromide (11.98 mL, 25.52 mmol, 1 equiv, 2.13 M in 

Et2O) was heated at 220 °C under argon for 3 h, as described previously in general 

method. Recrystallisation from acetone/EtOH (1:1) yielded the title compound as 

green crystals with purple reflex (400.0 mg, 2%); mp > 300 °C; UV-Vis (THF) 

λmax/nm (ε) 671 (1.75×10
3
), 648 (1.00×10

3
), 594 (2.50×10

2
), 443 (2.14×10

2
), 394 

(6.79×10
2
). 

1
H NMR (500 MHz, THF-d8, 298 K): δ (ppm) =  9.60 (d, J = 7.5 Hz, 2H), 

9.52 – 9.48 (m, 4H), 8.19 – 8.13 (m, 6H), 8.10 (d, J = 7.8 Hz, 2H), 7.91 (t, J = 7.2 Hz, 

2H), 7.63 (t, J = 7.5 Hz, 2H), 7.17 (d, J = 8.1 Hz, 2H).
 13

C NMR (125.7 MHz, THF-d8, 

298 K): δ (ppm) = 157.87, 154.69, 153.61, 143.25, 143.17, 141.06, 140.86, 140.68, 
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140.13, 135.23, 133.26, 130.13, 129.81, 128.28, 127.36, 125.22, 124.15, 123.82, 

123.76, 123.57, 121.81, 108.56. MS (MALDI-TOF) m/z 692 [M]
+
 (100%). HRMS 

(ESI) (C39H20BrMgN7) [M+H]
+
: calcd: 690.0888; found: 690.0887.   

 

 

3.8 Transformations of Functionalised meso-phenyl Tetrabenzotriaza 

porphyrins  

3.8.1  General synthetic procedure for the synthesis of meso-biphenyl 

tetrabenzotriazaporphyrins via palladium-catalysed Suzuki cross-coupling 

reactions (194-196)  

A mixture of bromophenyl TBTAP (1.0 equiv), PdCl2(dppf) (0.1 equiv) was sealed in 

a microwave vessel with a magnetic bar and then evacuated and backfilled with argon 

three times. A solution of 2-phenyl-[1,3,2]-dioxaborolane (10.0 equiv) and DBU (2.5 

equiv) in dry DMF (1.0 mL) was added and stirred under argon for 5 min. The 

mixture was then irradiated in a microwave reactor at 120 °C for 1 h. After cooling to 

room temperature, 10 mL of DCM was added and the mixture sonicated for 5 min. 

After the removal of the solvent under reduced pressure, the resulting material was 

purified by column chromatography over silica gel to give the desired product. 

 

3.8.1.1  2-Phenyl-[1,3,2]-dioxaborolane (252)
 25

 

 

Prepared following the procedure reported by Sigman and co-workers,
25 

a solution of 

phenyl boronic acid (2.00 g, 16.4 mmol, 1.00 equiv), ethylene glycol (1.12 g, 18.0 

mmol, 1.10 equiv) and magnesium sulfate (1.97 g, 16.4 mmol, 1.00 equiv) in dry 

DCM (20.0 mL) was stirred at room temperature overnight under an inert atmosphere. 

The reaction mixture was filtered, washed with dichloromethane, and concentrated 

under reduced pressure to yield a colorless oil (2.33 g, 96%). 
1
H NMR (500 MHz, 

CDCl3, 298 K): δ (ppm) = 7.86 – 7.79 (m, 2H), 7.52 – 7.45 (m, 1H), 7.43 – 7.35 (m, 

2H), 4.38 (s, 4H). 
13

C NMR (125.7 MHz, CDCl3, 298 K) δ (ppm) = 134.85, 131.51, 

127.87, 66.06. 
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3.8.1.2  [20-{2-(1,1’-biphenyl)}-tetrabenzo[b,g,q,l][5,10,15]triaza porphyrinato] 

magnesium (194) 

 

 
 

Prepared following the procedure described above, a mixture of 2-bromophenyl 

MgTBTAP 188 (30.0 mg, 0.043 mmol, 1.00 equiv) and PdCl2(dppf) (4.0 mg, 4.90 

µmol, 0.1 equiv) was sealed in a microwave vessel. A solution of 2-phenyl-[1,3,2]-

dioxaborolane (64.0 mg, 0.43 mmol, 10.0 equiv) and DBU (16.50 mg, 0.11 mmol, 2.5 

equiv) in dry DMF (1.0 mL) was added, stirred and then irradiated in a microwave 

reactor at 120 °C for 1 h. Purification by chromatography on silica gel using DCM → 

DCM/Et3N (20:1) → DCM/Et3N/THF (10:1:2) → DCM/THF (1:1) gave the oily green 

material. The green material was subjected to a size-exclusion chromatography over 

Bio-beads SX-3 using THF eluent to obtain a pure material. Recrystallisation from 

acetone/EtOH (1:1) yielded the title compound as green crystals with a purple reflex 

(2.70 mg, 9%); mp > 300 °C; UV-Vis (THF) λmax/nm (ε) 672 (1.48×10
4
), 649 

(8.59×10
3
), 593 (1.72×10

3
), 446 (1.37×10

3
), 397 (4.47×10

3
). 

1
H NMR (500 MHz, 

THF-d8, 298 K): δ (ppm) =  9.58 (d, J = 7.5 Hz, 2H), 9.51 – 9.45 (m, 4H), 8.19 – 8.13 

(m, 4H), 8.12 (d, J = 9.1 Hz, 1H), 8.01 (d, J = 7.3 Hz, 1H), 7.97 – 7.91 (m, 3H), 7.89 

(t, J = 7.5 Hz, 1H), 7.68 (t, J = 8.0 Hz, 2H), 7.35 (d, J = 8.0 Hz, 2H), 7.12 (dd, J = 6.7, 

3.1 Hz, 2H), 6.42 – 6.37 (m, 3H).
 13

C NMR (125.7 MHz, THF-d8, 298 K): δ (ppm) = 

156.59, 153.49, 152.38, 145.16, 143.30, 142.75, 142.15, 141.19, 141.17, 140.94, 

140.23, 134.10, 132.25, 130.43, 130.06, 129.75, 129.61, 129.18, 128.41, 127.87, 

127.43, 127.09, 125.83, 125.46, 123.86, 123.74, 123.58. MS (MALDI-TOF) m/z 688 

[M]
+
 (100%) (isotopic pattern matches theoretical prediction). 



Chapter 3:  Experimental 

 

 160 

 

 

3.8.1.3  [20-{3-(1,1’-biphenyl)}-tetrabenzo[b,g,q,l][5,10,15]triaza porphyrinato] 

magnesium (195) 

 

 
 

 

Prepared following the procedure described above, a mixture of 3-bromophenyl 

TBTAP 189 (38.0 mg, 0.055 mmol, 1.00 equiv) and PdCl2(dppf) (5.0 mg, 6.13 µmol, 

0.1 equiv) was sealed in a microwave vessel. A solution of 2-phenyl-[1,3,2]-

dioxaborolane (81.4 mg, 0.55 mmol, 10.0 equiv) and DBU (21.0 mg, 0.14 mmol, 2.5 

equiv) in dry DMF (1.0 mL) was added, stirred and then irradiated in a microwave 

reactor at 120 °C for 1 h. Purification by chromatography on silica gel using DCM → 

DCM/Et3N (20:1) → DCM/Et3N/THF (10:1:2) → DCM/THF (1:1) gave the oily green 

material. The green material was subjected to a size-exclusion chromatography over 

Bio-beads SX-3 using THF eluent to obtain a pure material. Recrystallisation from 

acetone/EtOH (1:1) obtained the title compound as green crystals with a purple reflex 

(2.10 mg, 6%); mp > 300 °C; UV-Vis (THF) λmax/nm (ε) 670 (4.13×10
3
), 647 

(2.48×10
3
), 593 (8.26×10

2
), 444 (4.13×10

2
), 396 (1.24×10

3
). 

1
H NMR (500 MHz, 

THF-d8, 298 K): δ (ppm) =  9.60 (d, J = 7.5 Hz, 2H), 9.53 – 9.50 (m, 4H), 8.50 (s, 

1H), 8.36 (d, J = 7.9 Hz, 1H), 8.22 – 8.16 (m, 4H), 8.13 (d, J = 7.6 Hz, 1H), 8.05 (t, J 

= 7.5 Hz, 1H), 7.90 (dd, J = 14.7, 7.6 Hz, 4H), 7.58 (t, J = 7.5 Hz, 2H), 7.43 (t, J = 7.8 

Hz, 2H), 7.33 (t, J = 7.4 Hz, 1H), 7.27 (d, J = 8.1 Hz, 2H).
 13

C NMR (125.7 MHz, 
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THF-d8, 298 K): δ (ppm) = 156.59, 153.49, 152.38, 145.16, 143.30, 142.75, 142.15, 

141.19, 141.17, 140.94, 140.23, 134.10, 132.25, 130.43, 130.06, 129.75, 129.61, 

129.18, 128.41, 127.87, 127.43, 127.09, 125.83, 125.46, 123.86, 123.74, 123.58. MS 

(MALDI-TOF) m/z 688 [M]
+
 (100%) (isotopic pattern matches theoretical prediction). 

 

 

 

3.8.1.3  [20-{4-(1,1’-biphenyl)}-tetrabenzo[b,g,q,l][5,10,15]triaza porphyrinato] 

magnesium (196) 

 

 
 

 

Prepared following the procedure described above, a mixture of 4-bromophenyl 

TBTAP 190 (21.8 mg, 0.032 mmol, 1.00 equiv) and PdCl2(dppf) (3.0 mg, 3.68 µmol, 

0.1 equiv) was sealed in a microwave vessel. A solution of 2-phenyl-[1,3,2]-

dioxaborolane (46.0 mg, 0.31 mmol, 10.0 equiv) and DBU (12.01 mg, 0.079 mmol, 

2.5 equiv) in dry DMF (1.0 mL) was added, stirred and then irradiated in a microwave 

reactor at 120 °C for 1 h. Purification by chromatography on silica gel using DCM → 

DCM/Et3N (20:1) → DCM/Et3N/THF (10:1:2) → DCM/THF (1:1) gave the oily green 

material. The green material was subjected to a size-exclusion chromatography over 

Bio-beads SX-3 using THF eluent to obtain a pure material. Recrystallisation from 

acetone/EtOH (1:1) gave the title compound as green crystals with a purple reflex 

(1.10 mg, 5%); mp > 300 °C; UV-Vis (THF) λmax/nm (ε) 670 (2.27×10
4
), 647 

(1.24×10
4
), 592 (4.12×10

3
), 446 (2.06×10

3
), 396 (6.19×10

3
). 

1
H NMR (500 MHz, 
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THF-d8, 298 K): δ (ppm) =  9.60 (d, J = 8.3 Hz, 2H), 9.53 – 9.50 (m, 4H), 8.32 (d, J = 

6.7 Hz, 2H), 8.25 (d, J = 7.9 Hz, 2H), 8.21 – 8.13 (m, 6H), 7.91 (t, J = 7.3 Hz, 2H), 

7.66 (t, J = 7.8 Hz, 2H), 7.59 (t, J = 7.4 Hz, 2H), 7.52 (t, J = 6.9 Hz, 1H), 7.29 (d, J = 

8.1 Hz, 2H).
 13

C NMR (125.7 MHz, THF-d8, 298 K): δ (ppm) = 156.59, 153.49, 

152.38, 145.16, 143.30, 142.75, 142.15, 141.19, 141.17, 140.94, 140.23, 134.10, 

132.25, 130.43, 130.06, 129.75, 129.61, 129.18, 128.41, 127.87, 127.43, 127.09, 

125.83, 125.46, 123.86, 123.74, 123.58. MS (MALDI-TOF) m/z 688 [M]
+
 (100%) 

(isotopic pattern matches theoretical prediction). 

 

 

 

 

3.8.2  General synthetic procedure for the synthesis of meso-phenylethynyl-

phenyl tetrabenzotriazaporphyrins via palladium-catalysed copper-free 

Sonogashira cross-coupling reactions (197-199)  

A mixture of bromophenyl TBTAP (1.0 eq), BINAP (0.06 equiv) and PdCl2(MeCN)2 

(0.07 equiv) was sealed in a microwave vessel with a magnetic bar and then evacuated 

and backfilled with argon thrice. A solution of phenylacetylene (1.6 equiv) and DBU 

(2.5 equiv) in dry DMF (1.0 mL) was added and stirred under argon for 5 min. The 

mixture was then irradiated in a microwave reactor at 120 °C for 1 h. After cooling to 

room temperature, 10 mL of DCM was added and the mixture sonicated. After the 

removal of the solvent under reduced pressure, the resulting material was purified by 

column chromatography over silica gel to give the desired product. 
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3.8.2.1  [20-{2-(phenylethynyl-phenyl)}-tetrabenzo[b,g,q,l][5,10,15]triaza 

porphyrinato] magnesium (197) 

 

Prepared following the procedure described above, a mixture of 2-bromophenyl 

TBTAP 188 (40.0 mg, 0.058 mmol, 1.00 equiv), BINAP (2.16 mg, 3.47 µmol, 0.06 

equiv) and PdCl2(MeCN)2 (1.05 mg, 4.05 µmol, 0.07 equiv) was sealed in a 

microwave vessel. A solution of phenylacetylene (9.46 mg, 0.093 mmol, 1.6 equiv) 

and DBU (22.0 mg, 0.145 mmol, 2.5 equiv) in dry DMF (1.0 mL) was added, stirred 

and then irradiated in a microwave reactor at 120 °C for 1 h. Purification by 

chromatography on silica gel using DCM → DCM/Et3N (20:1) → DCM/Et3N/THF 

(10:1:2) → DCM/THF (1:1) gave the oily green material which recrystallised from 

acetone/EtOH (1:1) yielded the title compound as green crystals with a purple reflex 

(30 mg, 73%); mp > 300 °C; UV-Vis (THF) λmax/nm (ε) 670 (2.28×10
4
), 648 

(1.35×10
4
), 592 (2.61×10

3
), 444 (1.66×10

3
), 395 (7.13×10

3
). 

1
H NMR (500 MHz, 

THF-d8, 298 K): δ (ppm) =  9.61 (d, J = 7.5 Hz, 2H), 9.52 – 9.50 (m, 4H), 8.24 (d, J = 

8.0 Hz, 1H), 8.20 – 8.14 (m, 4H), 8.10 (t, J = 7.9 Hz, 1H), 8.03 (d, J = 7.2 Hz, 1H), 

7.96 – 7.88 (m, 3H), 7.63 (t, J = 7.5 Hz, 2H), 7.25 (d, J = 8.0 Hz, 2H), 6.67 (d, J = 7.1 

Hz, 1H), 6.57 (t, J = 7.1 Hz, 2H), 6.25 (d, J = 6.6 Hz, 2H).
 13

C NMR (125.7 MHz, 

THF-d8, 298 K): δ (ppm) = 145.86, 145.74, 143.23, 143.20, 143.05, 142.75, 141.33, 

141.20, 141.08, 141.01, 140.96, 140.27, 139.45, 134.45, 134.43, 134.13, 133.52, 

131.73, 130.41, 130.21, 130.04, 129.76, 128.61, 128.52, 128.45, 127.48, 125.22, 

125.14, 124.01, 123.87, 123.83, 123.68, 123.66, 123.66. MS (MALDI-TOF) m/z 712 

[M]
+
 (100%) (isotopic pattern matches theoretical prediction). 
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3.8.2.2  [20-{3-(phenylethynyl-phenyl)}-tetrabenzo[b,g,q,l][5,10,15]triaza 

porphyrinato] magnesium (198) 

 
 

Prepared following the procedure described above, a mixture of 3-bromophenyl 

TBTAP 189 (80.0 mg, 0.12 mmol, 1.00 equiv), BINAP (4.33 mg, 6.95 µmol, 0.06 

equiv) and PdCl2(MeCN)2 (2.10 mg, 8.10 µmol, 0.07 equiv) was sealed in a 

microwave vessel. A solution of phenylacetylene (18.92 mg, 0.185 mmol, 1.6 equiv) 

and DBU (44.10 mg, 0.289 mmol, 2.5 equiv) in dry DMF (1.0 mL) was added, stirred 

and then irradiated in a microwave reactor at 120 °C for 1 h. Purification by 

chromatography on silica gel using DCM → DCM/Et3N (20:1) → DCM/Et3N/THF 

(10:1:2) → DCM/THF (1:1) obtained the oily green material which recrystallised from 

acetone/EtOH (1:1) gave the title compound as green crystals with a purple reflex 

(11.6 mg, 25%); mp > 300 °C; UV-Vis (THF) λmax/nm (ε) 670 (1.62×10
4
), 647 

(8.84×10
3
), 593 (1.83×10

3
), 443 (9.15×10

2
), 393 (4.88×10

3
). 

1
H NMR (500 MHz, 

THF-d8, 298 K): δ (ppm) =  9.61 (d, J = 7.5 Hz, 2H), 9.52 – 9.50 (m, 4H), 8.37 (s, 

1H), 8.24 (d, J = 8.0 Hz, 1H), 8.22 – 8.15 (m, 5H), 8.01 (t, J = 7.7 Hz, 1H), 7.93 (t, J 

= 7.1 Hz, 2H), 7.63 (t, J = 7.0 Hz, 2H), 7.54 (dd, J = 7.2, 2.3 Hz, 2H), 7.36 – 7.29 (m, 

3H), 7.21 (d, J = 8.0 Hz, 2H).
 13

C NMR (125.7 MHz, THF-d8, 298 K): δ (ppm) = 

148.51, 147.76, 147.29, 146.20, 144.85, 144.42, 143.19, 141.77, 141.58, 141.30, 
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141.19, 140.97, 140.96, 140.94, 140.44, 140.23, 139.67, 137.98, 137.95, 137.22, 

133.30, 133.06, 132.55, 130.22, 130.15, 130.07, 129.85, 129.48, 129.43, 129.40, 

128.36, 128.26, 127.93, 127.43, 126.90, 125.70, 125.53, 125.42, 124.24, 123.91, 

123.76, 123.67, 123.65. MS (MALDI-TOF) m/z 712 [M]
+
 (100%) (isotopic pattern 

matches theoretical prediction). 

 

 

3.8.2.3  [20-{4-(phenylethynyl-phenyl)}-tetrabenzo[b,g,q,l][5,10,15]triaza 

porphyrinato] magnesium (199) 

 

 
 

 

Prepared following the procedure described above, a mixture of 4-bromophenyl 

TBTAP 190 (45.50 mg, 0.066 mmol, 1.00 equiv), BINAP (2.46 mg, 3.95 µmol, 0.06 

equiv) and PdCl2(MeCN)2 (1.19 mg, 4.61 µmol, 0.07 equiv) was sealed in a 

microwave vessel. A solution of phenylacetylene (10.75 mg, 0.105 mmol, 1.6 equiv) 

and DBU (25.04 mg, 0.165 mmol, 2.5 equiv) in dry DMF (1.0 mL) was added, stirred 

and then irradiated in a microwave reactor at 120 °C for 1 h. Purification by 

chromatography on silica gel using DCM → DCM/Et3N (20:1) → DCM/Et3N/THF 

(10:1:2) → DCM/THF (1:1) gave the oily green material which recrystallised from 

acetone/EtOH (1:1) obtained the title compound as green crystals with a purple reflex 

(18.9 mg, 23%); mp > 300 °C; UV-Vis (THF) λmax/nm (ε) 669 (3.42×10
3
), 646 

(1.71×10
3
), 592 (2.14×10

2
), 444 (1.06×10

2
), 394 (8.33×10

2
). 

1
H NMR (500 MHz, 

THF-d8, 298 K): δ (ppm) =  9.61 (d, J = 7.5 Hz, 2H), 9.52 – 9.50 (m, 4H), 8.23 – 8.17 
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(m, 6H), 8.15 (d, J = 8.2 Hz, 2H), 7.93 (t, J = 7.2 Hz, 2H), 7.75 (dd, J = 8.0, 1.4 Hz, 

2H), 7.65 (t, J = 7.5 Hz, 2H), 7.52 – 7.44 (m, 3H), 7.24 (d, J = 8.1 Hz, 2H).
 13

C NMR 

(125.7 MHz, THF-d8, 298 K): δ (ppm) = 148.51, 147.76, 147.29, 146.20, 144.85, 

144.42, 143.19, 141.77, 141.58, 141.30, 141.19, 140.97, 140.96, 140.94, 140.44, 

140.23, 139.67, 137.98, 137.95, 137.22, 133.30, 133.06, 132.55, 130.22, 130.15, 

130.07, 129.85, 129.48, 129.43, 129.40, 128.36, 128.26, 127.93, 127.43, 126.90, 

125.70, 125.53, 125.42, 124.24, 123.91, 123.76, 123.67, 123.65. MS (MALDI-TOF) 

m/z 712 [M]
+
 (100%) (isotopic pattern matches theoretical prediction).  
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