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Abstract 

The general aim of this thesis is to explore different spatial scales at which pathogen-mediated 

selection drives the evolution of immune genes across and within populations of Berthelot’s 

pipit (Anthus berthelotii), a historically bottlenecked passerine endemic to the oceanic islands 

of the Canary, Selvagens and Madeira archipelagos. I first investigated the evolution of key 

innate immune genes among the populations that the pipits inhabit. I found that while 

demographic history has played the major role in shaping patterns of among population 

variation at toll-like receptor loci, balancing selection (possibly pathogen-mediated) appears to 

have helped maintain functional variation at some specific loci. Second, I assessed the 

contribution of environmental factors to pathogen distribution and their subsequent effects on 

the major histocompatibility complex (MHC) class I genes of the acquired immune system 

within the population on Tenerife. I found a high prevalence of malaria in this population, the 

presence of which was correlated with climatic and anthropogenic variables: temperature, 

distance to poultry farms and distance to artificial water sources. Within the MHC I found 

evidence of trans-species polymorphism and gene conversion, and signatures of positive 

selection. Using landscape genetic analysis methods I found no evidence for overall within 

population patterns of structure at either neutral markers or the MHC. However, one MHC 

allele was associated to malaria infection risk and its distribution was (more strongly) 

associated with distance to poultry farms. These results suggest that demographic processes 

are the most important evolutionary force shaping variation at functional loci in isolated, 

bottlenecked populations. Nevertheless, selection can also shape patterns of variation at 

immunity loci, both at the coarser and the finer landscape scale, apparently in response to 

pathogens. This study therefore highlights the importance of considering different spatial 

scales when studying the evolutionary processes that shape functional genetic variation within 

populations. 
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1.1 Evolutionary ecology 

Evolutionary ecology deals with the study of how present-day ecological processes are both 

causes and consequences of evolutionary change (Losos 1994; Pianka 2011). Understanding 

the mechanisms that promote evolutionary change in wild populations - one of the central 

issues of evolutionary ecology - helps explain why variation exists in populations and what the 

consequences of such variation are (Schmid-Hempel 2003). Natural selection is one of the 

drivers of evolutionary change (Darwin 1859); it acts on functional genetic variation and leads 

to the adaptation of organisms to their environment (Fisher 1930). However, random fixation 

of selectively neutral variants in some instances is more important in shaping variation than 

selection (Kimura 1968). Evolutionary and ecological processes occur at different spatial scales, 

and so considering the different scales at which such processes vary is important for 

understanding how populations evolve in a spatially explicit manner (Levin 1992). A particular 

focus of evolutionary ecology is therefore to understand natural selection and the adaptive 

evolution of populations at different spatial scales (Chave 2013; Richardson et al. 2014).  

One area of research in which evolutionary ecology approaches are particularly important is 

disease ecology. Disease causing agents, or pathogens, have very close ecological relationships 

with their hosts. They have negative impacts on survival and on reproductive success of their 

hosts and are thus strong selective agents (Haldane 1949). Evolution of both hosts and 

pathogens is dependent on one another, and the outcomes of such relationship depend on 

ecological (i.e. climatic factors, species interactions) and evolutionary processes (i.e. genetic 

variation at genes involved in the host-pathogen interaction, selection, gene flow and 

stochastic processes) (Altizer et al. 2003; Hawley & Altizer 2011). Host-pathogen interactions in 

the landscape are of particular interest since variable features of habitat and environment 

associated with different spatial scales affect patterns of pathogen transmission (Archie et al. 

2009). Studying such interactions at these different spatial scales is crucial in order to 

recognize disease threats to wild populations, and to provide information relevant for species 

conservation (Hawley & Altizer 2011). Although many studies have focused on understanding 

spatial variation of host-pathogen interactions in the landscape, these have mainly been done 

at large spatial scales, across discrete populations (reviewed in Biek & Real 2010). There is a 

clear need for studies that assess how pathogen and host interactions vary at small spatial 

scales. 
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1.2 Genetic diversity 

Genetic diversity provides the raw material for evolution. Genetic differences among 

individuals, populations and species begin with changes in the genetic material of individuals, 

generated by several non-mutually exclusive mechanisms, including mutation, recombination, 

gene duplication and gene conversion. If such changes occur in germ line cells, the genetic 

variant generated can be inherited and passed on to the next generation. Mutations principally 

arise naturally and randomly when errors occur in the process of DNA replication (Loeb et al. 

1974), but also by insertion of mobile genetic elements (Georgiev 1984; Boehne et al. 2008) 

and chromosomal breaks (Malkova & Haber 2012). Recombination involves the exchange of 

genetic material between two homologous sequences, and occurs during meiosis in gamete 

development, when homologous chromosomes are joined (Whitehouse 1970). Gene 

conversion is a form of recombination which involves unidirectional transfer of genetic 

material from a ‘donor’ sequence to a highly homologous sequence (Slightom et al. 1980; Chen 

et al. 2007). Gene conversion is initiated by double strand chromosomal breaks and it occurs 

often between duplicated loci (Chen et al. 2007). Gene duplication (Bridges 1936) can result by 

unequal crossing over, retroposition or chromosomal (or genome) duplication (Zhang 2003).  

The highest levels of genetic diversity are generally found in DNA sequences with little or no 

functional significance; such regions do not contain coding DNA or changes in them do not 

result in functional change of the molecule coded. In genes or coding DNA many of such 

nucleotide changes are found in third codon positions (Kimura 1977). Due to the redundancy 

of the genetic code, roughly 2/3 of random nucleotide substitutions at the third position of the 

codon are synonymous. These changes are thus invisible to selection (Kimura 1968). Such 

genetic diversity is referred to as ‘neutral genetic variation’. Conversely, genetic diversity 

generated in DNA regions that code for functional molecules might result in functional changes 

of the molecule, i.e. a change in the phenotype; thus, the levels of functional genetic diversity 

are lower than those of neutral genetic diversity (Kimura 1991), although there are some 

exceptions as I shall cover below. Studying genetic diversity in wild populations is important 

because it provides information on their ability to evolve and adapt to changing environmental 

conditions. It is therefore imperative to understand how different evolutionary forces act upon 

genetic diversity. 
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Once genetic diversity is generated, three evolutionary forces act to promote evolutionary 

change in a population from one generation to another (Wright 1931). First, random events 

unrelated to the characteristics of the genetic material may result in reduction in genetic 

variation because by chance not all alleles will be passed on to the next generation. These 

random events include accidental death of individuals and random variation in reproductive 

success (not dependent on the genotype/phenotype). This process, known as ‘genetic drift’, 

leads to either loss or fixation of alleles resulting in a reduction of genetic diversity in a 

population (Wright 1948). Second, the movement of individuals between populations with 

different genetic backgrounds, and their subsequent reproduction within those populations, 

results in ‘gene flow’. This process results in an increase of genetic variation in the ‘receptor’ 

population and reduces differences among populations (Slatkin 1987). Finally, if different 

genetic variants encode phenotypic differences which result in the differential reproductive 

success of those individuals that carry them, then the more successful variants will increase in 

frequency in the following generation, while the less successful ones will decrease (Fisher 

1930). This process is known as ‘natural selection’ and results in adaptation of populations to 

their environment (Darwin 1859). When the environmental conditions change, the population 

adapts to the new conditions contingent on the presence of the appropriate genetic variants in 

the population (Fisher 1930). Selection can reduce or increase genetic diversity, depending on 

the mechanism of selection in operation. For example, purifying selection reduces genetic 

diversity by removing genetic variants that are disadvantageous (Loewe 2008). Balancing 

selection, however, may result in the increase of genetic diversity because multiple genetic 

variants are advantageous, therefore they are all favoured by selection and kept in the gene 

pool of the population (Hedrick & Thomson 1983; Hedrick 1998; See section 1.4). 

The environmental conditions to which individuals are exposed determine the mechanisms 

through which selection operates in nature, and constitute the selective pressures that act 

upon genetic variation. These selective pressures might be abiotic or biotic. Abiotic selective 

pressures include climatic conditions (e.g. temperature, rainfall, altitude). Biotic selective 

pressures include intra-specific interactions (i.e. competition for mates and resources); and 

inter-specific interactions (i.e. competition, predation and parasitism). Among the inter-

specific interactions pathogens are potent agents of natural selection (Haldane 1949) that are 

highly relevant to wild populations. 
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1.3 Pathogens as selective agents 

Pathogens use other organisms for their growth and survival and have detrimental effects on 

the intrinsic growth rates of their host at the individual and the population level (Anderson & 

May 1978, 1979). They are a very diverse group of organisms including viruses, bacteria, 

protozoa, fungi, flatworms, nematodes and arthropods that parasitize many species of plants 

and animals (reviewed in Price 1980; Noble et al. 1989). The effects that pathogens have can 

vary depending on the characteristics of the host and the pathogen, but from a spatial 

perspective, pathogens have been shown to influence every aspect of the population biology 

of the host (Tompkins et al. 2002; Lion et al. 2006). The costs of pathogenic infection may be a 

consequence of the effects that pathogens have on the metabolic efficiency of the host, or on 

the allocation of host resources to dealing with the pathogen at a cost to reproduction (Møller 

1997). Pathogens are known to affect various physiological processes such as nutrient 

absorption, efficiency of the circulatory system and locomotion of their hosts (Noble et al. 

1989). Pathogens have also been shown to have considerable impacts on the population 

structure of wild populations and to have a pivotal role in ecosystem functioning (Altizer et al. 

2003; Duncan & Little 2007; Riordan et al. 2007). A wide range of pathogens have been 

detected in wild animals and they have been linked to recent declines of wildlife populations 

(Smith et al. 1998; Riordan et al. 2007; Blaustein et al. 2012). Thus, infectious diseases are 

likely to play a role in future species endangerment (Smith et al. 2006; Smith et al. 2009).  

For all the reasons discussed above, pathogens are rightly regarded as detrimental, but what is 

not always acknowledged is that they are probably one of the strongest drivers of evolution 

(Haldane 1949; Antonovics 1993; Fumagalli et al. 2011). The ecological relationship between a 

pathogen and its host is very close and this is reflected in the evolutionary processes involving 

both host and pathogen. Hosts evolve mechanisms to defend themselves from pathogens, 

while pathogens, in turn, evolve ways to overcome host defences, resulting in a co-

evolutionary arms race (Slade & McCallum 1992; Danilova 2006). This process means that 

changes in gene frequencies as a result of selection in the host population induce changes in 

gene frequencies in the pathogen population (Lively & Dybdahl 2000; Woolhouse et al. 2002; 

Ebert 2008).  
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1.4 The immune response and evolution of host immune genes 

The impacts that pathogens have on the evolution of hosts can be evidenced in the defensive 

strategies that hosts have evolved. Hosts have evolved different behaviours to decrease the 

probability of infection (Minchella 1985; Loehle 1995; Behringer et al. 2006; Parker et al. 

2010). However, infection is not always avoided, and once infection occurs, other mechanisms 

come into play. The metabolic, physiological and molecular mechanisms that the host displays 

in reaction to pathogenic infection are collectively known as the immune response. In 

vertebrates there are two types of immune response: the innate and the acquired immune 

responses (Wakelin 1984; Roitt et al. 2001). The innate immune system is an ancient defence 

mechanism that uses germline encoded receptors for the recognition of pathogens in a non-

specific manner (Wakelin 1984; Medzhitov & Janeway 1997; Wakelin & Apanius 1997). The 

receptors of the innate immune system are called pattern recognition receptors (PRR). 

Because of the non-specific nature of their action, the PRRs recognise conserved microbial 

molecular signatures known as pathogen associated molecular patterns (PAMPs). One type of 

PRR was first described in Drosophila: The protein Toll was found to be associated with 

resistance to infections with fungi and Gram-positive bacteria in this genus, suggesting it had a 

role in immune defence (Ip & Levine 1994; Lemaitre et al. 1996). Since then, molecules with 

very similar characteristics and structure have been identified in vertebrates and are known as 

Toll-like receptors (TLRs) (Medzhitov et al. 1997; Roach et al. 2005).  

Figure 1.1 Schematic representation of the Structure of Toll-like 

receptors. Unmodified figure reproduced from Berg et al. (2012) 
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TLRs are type I transmembrane proteins with an extracellular domain constituted by a 

horseshoe-like structure consisting of Leucine-rich repeats (LRR) that mediate direct protein-

protein interactions (Buchanan & Gay 1996). The cytoplasmic domain of TLRs is homologous to 

that of the interleukin I (IL-I) receptor and is known as the toll/IL-I receptor (TIR; Fig. 1.1; Gay & 

Keith 1991). When the extracellular domain of the TLR molecule binds a PAMP, an intracellular 

signalling pathway is initiated via the TIR that activates transcription factors that induce 

expression of cytokines and activation of macrophages (Belvin & Anderson 1996; Akira 2003). 

PAMP binding by TLRs also stimulate phagocytic cells and the subsequent presentation of 

pathogen peptides to T lymphocytes via the major histocompatibility complex (MHC) (Schnare 

et al. 2001). There are six major TLR families that vary considerably in the length of the LRR 

domain, and in the general class of PAMP they recognize (Roach et al. 2005). For example, 

TLR1LA, TLR1LB and TLR2 bind bacterial lipoproteins (Lien et al. 1999; Takeuchi et al. 2002), 

TLR3 binds viral RNA (Yoneyama & Fujita 2010), TLR21 binds bacterial DNA motifs (Keestra et 

al. 2010) and TLR4 binds bacterial lipopolysacharide (Poltorak et al. 1998). TLRs originated in 

the eumetazoan ancestor more than 600 million years ago (Leulier & Lemaitre 2008) and 

evolved independently by gene duplication before the evolutionary divergence of protostomes 

and deuterostomes (Roach et al. 2005). Although vertebrate TLRs have been regarded as an 

example of evolutionary conservation (Roach et al. 2005), recent studies have shown evidence 

of positive selection in TLRs in a range of organisms including birds (Downing et al. 2010; 

Alcaide & Edwards 2011; Grueber et al. 2014), fish (Chen et al. 2008), and mammals (Nakajima 

et al. 2008; Areal et al. 2011; Tschirren et al. 2011). Most of the sites identified as being under 

positive selection in these studies are located in the TLR extracellular domain which directly 

binds the PAMPS (Mikami et al. 2012). Specific polymorphisms within TLRs have been 

associated with differential pathogen resistance (Schröder & Schumann 2005; Misch & Hawn 

2008; Basu et al. 2010), and TLR genes have been associated with pathogenic diseases through 

assays of differential expression (Farnell et al. 2003; lqbal et al. 2005; Higuchi et al. 2008; 

Karpala et al. 2008). These data thus support the idea that pathogens are selective agents that 

play a role in determining patterns of variation at TLR loci. Evolutionary changes found in TLR 

genes may reflect changes in pathogen genes that code for PAMPs and the extant variation 

found at TLRs might be the consequence of the need to adapt quickly in response to evolving 

pathogens, or novel ones encountered in new environments (Downing et al. 2010). 

Nevertheless, direct evidence of pathogen-mediated selection (PMS) on TLRs in wild systems is 
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yet to be explored, thus, not much is known about the evolutionary mechanisms determining 

variation at these loci. Studies that assess TLR variation across populations with differing 

demographic histories and pathogenic pressures, and that correlate individual TLR variation 

with pathogenic disease are still needed to determine the relative effects of the different 

evolutionary forces on these genes. 

Unlike the innate immune response, the acquired immune system can generate highly specific 

and repeatable responses to particular pathogens. The responses are initiated through the 

binding of pathogen derived peptides (antigens) by a specialized group of host cell molecules, 

encoded by a set of genes known as the major histocompatibility complex (MHC) (Bach 1976; 

York & Rock 1996; Roitt et al. 2001). There are two major classes of MHC genes, class I code for 

molecules that detect intracellular pathogens and present them on the cell surface of all cells 

in the organism. MHC class II genes code for molecules that can only be found in certain types 

of cells and recognize extracellular pathogens (Fig. 1.2; Frank 2002). After an MHC molecule 

binds an antigen and presents it at the cell surface, the T cells can recognize and bind the 

MHC-antigen complexes. If the T cells recognize these complexes as non self, changes in the T 

cells are induced that lead to the production of clones with the same T cell receptor that 

recognizes that particular MHC-antigen complex. The T cells are then “activated” and produce 

chemical substances that result in the destruction of cells that are expressing the specific MHC-

antigen complex. Some of these clones become memory cells, which allow an enhanced 

(acquired) response if re-exposure to the antigen occurs (Wakelin 1984; Wakelin & Apanius 

1997; Roitt et al. 2001).  

The MHC is thought to have evolved less than 500 million years ago and has only been found in 

gnathostomes (jawed vertebrates) (Klein & Sato 1998). There is considerable variation in the 

organization and size of the MHC among vertebrates (Höglund 2009). Among birds, the 

chicken (Gallus gallus) MHC has been particularly extensively studied. In this species, and other 

closely related galliforms  (Shiina et al. 2004; Chaves et al. 2009) the MHC genes are positioned 

very close together and form what has been called a minimal essential MHC (Kaufman et al. 

1999). The MHC of passerines has only been well characterized in one species, the zebra finch, 

where it appears to differ markedly from that of fowl (Balakrishnan et al. 2010). For example, 

there is evidence of gene duplication and conversion (Miller & Lambert 2004), pseudogene 

formation and distribution of genes across multiple chromosomes, unlike observed in the 
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compact MHC of fowl (Kaufman et al. 1999). In general, studies across passerines show that 

they do not have a minimal essential MHC as seen in galliformes (Westerdahl et al. 1999, 2000; 

Balakrishnan et al. 2010).   

MHC genes have been put forward as the  best candidates for the study of adaptive genetic 

diversity because they are extraordinarily variable (Bodmer et al. 1997), and are of obvious 

ecological relevance due to their role in detecting pathogens (Hill 1991; Hedrick 1994; 

Prugnolle et al. 2005; Höglund 2009). Evidence from studies on MHC genes in outbred wild 

populations supports the idea that these genes are highly variable (Mona et al. 2008; Lenz et 

al. 2009a), and that MHC variation in wild populations is normally greater than variation at 

neutral loci (Wittzell et al. 1998; Drake et al. 1999; Westerdahl et al. 1999; Freeman-Gallant et 

al. 2002; Richardson & Westerdahl 2003; Bonneaud et al. 2004). High levels of MHC variation 

have been found even in species shown to have low overall genetic diversity due to 

bottlenecks or founder effects, possibly because selection has maintained high polymorphism 

(Richardson & Westerdahl 2003; Aguilar et al. 2004; Jarvi et al. 2004; Wynne et al. 2007). 

However, if bottlenecks are strong enough, balancing selection is outweighed by other 

evolutionary forces like genetic drift (Bollmer et al. 2007; Babik et al. 2009).  

Figure 1.2 Schematic representation of the Structure of MHC class I and class II 

molecules. Unmodified figure reproduced from Parham (2009). 



Chapter 1: Introduction 
 
 

10 
 

The extraordinarily high variation normally observed at MHC genes suggests there are 

mechanisms that favour genetic diversity at these loci. Various mutational mechanisms may 

occur to give rise to new alleles in the MHC, from point mutations to gene conversion (Ohta 

1995; Edwards & Hedrick 1998; Hedrick 1998). Once generated, other mechanisms act to 

select for high variation. Behavioural mechanisms that contribute towards the maintenance of 

MHC diversity have evolved to maintain high variation. For example, mate choice has been 

shown to favour higher MHC diversity; e.g. choosy females select for specific male haplotypes 

that generate heterozygosity in the progeny (Wedekind 1994; Brown 1998; Reusch et al. 2001; 

Penn 2002; Brouwer et al. 2010). The MHC has also been linked to kin recognition, allowing 

conspecifics to recognise (and avoid mating with) kin, through cues that reveal their MHC 

haplotypes, therefore favouring higher MHC diversity in the progeny (Potts et al. 1994; 

Radwan et al. 2008). These mechanisms contribute to shaping variation at the MHC (Hedrick 

1998) but alone they cannot drive the extraordinary levels of variation seen at the MHC.   

1.5 Pathogen-mediated selection on genes of the MHC 

Pathogen mediated selection (PMS) has been suggested to be the main evolutionary force that 

drives high diversity at MHC loci (Doherty & Zinkernagel 1975). PMS can cause balancing 

selection (Hedrick 1998; Spurgin & Richardson 2010) whereby no specific allele is always the 

fittest over time, thus resulting in a more even frequency distribution of alleles in the 

population than that expected under the neutral model (Hedrick & Thomson 1983). Three 

main, non-mutually exclusive, mechanisms of PMS have been suggested: (i) heterozygote 

advantage (ii) negative frequency dependent selection (or rare allele advantage), and (iii) 

spatially heterogeneous selection (or fluctuating selection) (Potts & Wakeland 1990; Spurgin & 

Richardson 2010). The heterozygote advantage model (Doherty & Zinkernagel 1975) proposes 

that individuals heterozygous at MHC genes will be fitter than homozygotes because they will 

be able to recognize a wider range of pathogens, or better able to recognize a single pathogen. 

Various  studies have shown evidence of heterozygote advantage (Hughes & Nei 1989; Penn et 

al. 2002; Evans & Neff 2009; Worley et al. 2010). Negative frequency dependent selection 

(Takahata & Nei 1990) occurs when a new allele that arises by mutation (or an old allele that 

has reduced its frequency in a population due to an original high susceptibility to infection has 

a selective advantage because the prevalent pathogens have not evolved the ability to infect 

host cells with this allele. Finally, the fluctuating selection hypothesis proposes that spatial and 
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temporal variation in the presence and/or abundance of pathogens due to environmental 

variation may play an important role in maintaining high variation at the MHC genes (Hill 1991; 

Hedrick 2002). Fluctuating selection leads to spatio-temporal differences in the intensity of 

selection at MHC genes, e.g. an individual carrying an MHC allele (or alleles) could be fitter in a 

certain point in time and space, but less fit in another point in time and space. This results in a 

high variation at MHC alleles across subpopulations. A theoretical study has shown that 

temporal variation in pathogen resistance can by itself be a strong mechanism for the 

maintenance of MHC polymorphism (Hedrick 2002). It is difficult to disentangle the effects of 

the three mechanisms of PMS in nature. For example, rare alleles would be overrepresented in 

heterozygous individuals because of their low frequency, and it would be difficult to assess 

whether the individual is resistant for carrying a rare allele or because it is heterozygous. 

Moreover, if not all host populations are sampled across spatial and temporal scales, it is 

difficult to find empirical evidence for fluctuating selection. Detailed molecular analyses to test 

for correlation between pathogens and heterozygosity or specific alleles are required to 

determine which mechanism or combination of mechanisms is operating (Schad et al. 2004; 

Meyer-Lucht & Sommer 2005; Lenz et al. 2009b). In order to explore the mechanisms of PMS 

several studies have investigated the population genetic structure on MHC genes (Landry & 

Bernatchez 2001; Aguilar & Garza 2006; Alcaide et al. 2008; Loiseau et al. 2009; Evans et al. 

2010; Cammen et al. 2011). However these studies have been done at coarse spatial scales 

across very discrete populations. To date, we are lacking studies that explicitly assess the 

population genetic structure on the MHC variation at fine spatial scales, specifically at the 

individual host level. Such studies would give insight into the nature of the selection operating 

at the MHC and the role that environmental heterogeneity can have in this process. 

1.6 The role of the environment in pathogen-host interactions and PMS 

The way that mechanisms of PMS generate balancing selection is highly dependent on the 

specific interactions between hosts and pathogen in the context of the environment 

(Steinhaus 1960). The spatio-temporal distribution of species is influenced by biotic and abiotic 

factors, and this has important evolutionary implications, since evolutionary forces act 

differently in spatially structured populations and over different time frames (Whitlock 2004; 

Freedman et al. 2010). Thus, taking into account the quantitative and qualitative 

characteristics of a landscape in population genetics is important (Holderegger et al. 2006), 
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especially for understanding how selection operates in a spatially explicit manner. The way in 

which the characteristics of the environment play a role in the interaction between hosts and 

pathogens is complex and can occur at different levels. For example, one level at which these 

characteristics have an effect is on the distribution of the species. Only when hosts and 

pathogens coexist spatially and temporally can the interaction occur.  

Once pathogen and host come into contact, the environment has further effects. One host-

pathogen interaction can have different outcomes in different habitat types or different 

environments (Biek & Real 2010), and infectious disease patterns can be affected by 

heterogeneous features of habitat and environment associated with different spatial scales 

(Archie et al. 2009; States et al. 2009). For example, if a habitat is poor in resources for the 

host, then infection could be more likely, perhaps  because less resources are allocated by the 

host to immune defences (Seppälä & Jokela 2010), or because primary defences might fail. In 

line with this, strong differentiation in host resistance that correlates with different habitat 

types has been reported, even when both host and pathogens coexist in these habitats (Laine 

et al. 2011). Crucial to infection and also dependent on the environment characteristics are the 

way pathogens are transmitted from one host to another, and the way hosts disperse in and 

between populations (Biek & Real 2010). Spatial patterns of these processes result in 

heterogeneous disease distribution across different scales (Kleindorfer & Dudaniec 2006; 

Wood et al. 2007).  

Temporal variation is also important in shaping host-pathogen interactions, thus, the effects of 

selection can vary temporally. Key ecological factors influencing the population dynamics of 

hosts and parasites can vary in ecological time scales, or even in smaller time scales (from one 

year to another, or seasonally), generating variation in both host immunocompetence and 

abundance, and pathogen distribution and virulence  (Roulin et al. 2007). Seasonal variation in 

pathogen load can be due to variation in the host immune function and host exposure to 

infective stages of the pathogens; this occurs because the pathogen can be sensitive to 

seasonal variation in a specific climatic variable, for example, humidity or temperature (Wilson 

et al. 2003). Temporal variation in pathogen presence in a host population has been reported 

in several studies (Montgomery & Montgomery 1989; Oesterholt et al. 2006; Xiao et al. 2010). 

In spite of the large amount of studies that show a relationship between environmental 
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variation and disease distribution, to my knowledge no study to date has linked this to immune 

gene variation within a single host population. 

The discipline of landscape genetics, which aims to link landscape ecology with population 

genetics, has been very useful in understanding the interactions that occur between hosts and 

pathogens (Manel et al. 2003; Holderegger et al. 2006; Biek & Real 2010). Landscape genetic 

data collected at fine spatial scales contributes to our understanding of the microevolutionary 

processes that generate local adaptation and thus genetic structure within populations (Manel 

et al. 2003; Richardson et al. 2014). Although some studies have used this approach to link 

genetic data with landscape and environmental variables (reviewed in Manel et al. 2003; Sork 

& Waits 2010), the great majority of these have used neutral genetic markers or, alternatively,  

genome-wide sequence data to identify regions of the genome as candidates of adaptive 

evolution. Correlations between genetic variation at known adaptive loci and fine-scale 

environmental characteristics have been less well studied (Freedman et al. 2010; Sork & Waits 

2010), even though the importance of these types of studies has been highlighted 

(Holderegger et al. 2006; Holderegger & Wagner 2008). The interaction between landscapes 

and microevolutionary processes has recently been included in analyses of host-pathogen 

interactions. In a recent review Biek & Real (2010) listed a number of studies that used the 

landscape genetics approach to analyse interactions between pathogen genetic structure, host 

genetic structure and environmental variables. The authors point out that disease emergence 

and spread can be predicted with host (neutral) genetic structure data, but they overlook the 

fact that structure at adaptive loci (specifically immune gene variation) could be more 

informative in this regard. Variation in host immune genes can influence the way a pathogen is 

transmitted within and among populations, because not all individuals are equally susceptible 

to infection by the pathogen (Wilson et al. 2003). More studies are needed in this area if we 

are to understand how environmental variables and geographic barriers are related to both 

the distribution of pathogens and of immune gene variants in a population of hosts.  

The key to identifying environmental variables that drive the distribution of pathogens, and 

potentially host immune gene variation, lies in studying the pathogens across different spatial 

and temporal scales. Advances in Geographic Information Systems (GIS) have provided a 

powerful toolkit to use in landscape genetics (Kozak et al. 2008). GIS technology has been 

useful to map the distribution of diseases worldwide, mostly in relation to human diseases 
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(Baptista-Rosas et al. 2007; Aikembayev et al. 2010; Xiao et al. 2010). It has also been useful to 

detect disease foci or areas that are suitable for pathogens (Cortinas et al. 2002; Aikembayev 

et al. 2010; Xiao et al. 2010). However, although the means to assess how the environment 

can affect the way PMS acts on immune genes are widely available, no studies have done this 

at the individual host level. Assessment of immune gene variation at the individual host level in 

relation to the pathogens to which they are exposed, and the environmental variables that 

determine those host-pathogen interactions, is still needed. Studies of this nature promise to 

provide important insight into the way PMS acts on immune genes.  

1.7 Berthelot’s pipit populations as a study system 

Oceanic islands provide excellent systems for testing evolutionary biology hypotheses, because 

of a number of key features (Emerson 2002): First, they represent discrete geographical 

entities with known boundaries. Second, species inhabiting islands are generally isolated with 

reduced gene flow among neighbouring islands. Third, their generally small size and lower 

biodiversity makes it easier to account for the species inhabiting it (including pathogens), also 

the ecological relationships among the species are less complex than in continental systems, all 

of which makes analyses more tractable. Fourth, despite their small size, islands can still 

contain a diversity of habitats (especially mountainous ones), making it possible to test effects 

of environmental variation on evolutionary processes. Consequently, populations of species 

that inhabit islands are often the best systems we have in which to explore complex 

evolutionary questions within a natural context (Emerson 2002). 

Berthelot’s pipit (Anthus berthelotii; Fig. 1.3) is a small, insectivorous passerine endemic to the 

north Atlantic archipelagos of Madeira, Selvagens and the Canary Islands where it occurs in 

relatively isolated populations of varying size (Cramp & Perrins 1977; Fig. 1.4). The species is 

split into two subspecies: A. berthelotii berthelotii on Selvagens and the Canary Islands, and A. 

berthelotii madeiriensis on Madeira (Clarke 2006;  but see Illera et al. 2007). The pipit is one of 

the most abundant passerines throughout its range; it occurs in all habitats except for thick 

woodland and humid areas, from sea level to 2500 metres above sea level (Illera 2007). The 

breeding population of Berthelot’s pipit is estimated to range between 20,000 to 100,000 

breeding pairs across its range (Birdlife International 2004). Berthelot’s pipits have a 

generation time of approximately three years; their breeding season spans from February to 
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August, they build the nest on the ground and clutch size ranges from two to four eggs (Garcia-

Del-Rey & Cresswell 2007). 

The tawny pipit (Anthus campestris), the sister species of the Berthelot’s pipit, is widespread 

across Europe, Asia and Northwest Africa. The two species diverged approximately 2.5 million 

years ago (Arctander et al. 1996; Voelker 1999). Berthelot’s pipit is thought to have colonized 

the Macaronesian archipelagos from Africa during the Pleistocene thus causing the 

evolutionary split from the tawny pipit. Previous work on Berthelot’s pipit found that this 

species has very low levels of genetic diversity at mitochondrial DNA, with only one and four 

haplotypes in the Control region and cytochrome b gene, respectively, across all populations 

(Illera et al. 2007). These data suggest a small founding population of pipits in these islands. 

There is also evidence that the Madeira and Selvagens archipelagos were colonised 

independently from the Canary Islands between 1,000 to 26,000 years ago (Spurgin et al. 

2014). Furthermore, population bottlenecks of differing severity, which occurred during the 

colonization of each archipelago, have been dominant in shaping neutral genetic variation 

across the populations (Illera et al. 2007; Spurgin et al. 2014). There is absence of gene flow 

Figure 1.3 A Berthelot’s pipit (Anthus berthelotii) on top of a clap net 
baited with a Tenebrio molitor larva. Photo by Karl P. Phillips. 
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among archipelagos of Berthelot’s pipits, and the populations form three genetic clusters 

which correspond to the three archipelagos (Spurgin et al. 2014). 

 

Figure 1.4 Distribution of Berthelot’s pipit populations in the 

Macaronesian archipelagos in the North Atlantic. For this study 

thirteen populations from twelve islands were sampled. In 

Tenerife two populations were sampled (the coastal population 

and the volcano El Teide). 
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The pathogens that infect Berthelot’s pipits have been studied previously. Illera et al. (2008) 

examined the prevalence of avian pox (Poxvirus avium) and avian malaria (Haemoproteus and 

Plasmodium spp) across the 12 main Berthelot’s pipit populations. Overall, 8% of individuals 

showed evidence of pox lesions and 16% were infected with avian malaria. Marked differences 

in the prevalence of parasites among islands both within and between archipelagos were 

observed. The diversity of pathogens detected was low: only two genetic lineages of avian 

malaria and one lineage of avian pox were found to infect the pipit throughout its range. 

Interestingly, both avian malaria parasites found were Plasmodium lineages that had not been 

previously reported in the Macaronesian avifauna (but that had been observed in the lesser 

kestrel, Falco naumannii). The avian pox lineage found is a host-specific lineage that had 

previously been reported in two of the Canary Islands (Illera et al. 2008). Furthermore, another 

study showed that the spatially varying pathogen pressures that the populations of Berthelot’s 

pipits are subject to are consistent over time and that considerable spatial variation in the 

distribution of avian malaria and avian pox exists within one of the populations, Tenerife 

(Spurgin et al. 2012).  

Population-level variation at the MHC has also been characterised in Berthelot’s pipits by 

genotyping the MHC class I in all the populations (Spurgin et al. 2011). This study reported a 

total of 41 MHC class I exon 3 alleles across the populations, with 9 – 14 alleles per population. 

It inferred that only a limited number of MHC class I alleles persisted when the species 

dispersed across the archipelagos, but that functional MHC variation was quickly restored by 

gene conversion. These results suggest that MHC genes are rapidly evolving across the 

populations of Berthelot’s pipit as a result of gene conversion and positive selection (Spurgin 

et al. 2011).  

The islands Berthelot’s pipits inhabit have differing environmental characteristics and some 

populations, such as that of Tenerife, exist within very environmentally heterogeneous 

territories. Because of their recent colonization, isolation and consequent genetic 

differentiation, these populations provide an ideal study system to test the relative role of 

selection verses other evolutionary forces in shaping variation at functional loci at different 

spatial scales. Furthermore, the existence of a limited diversity of pathogens within and among 

the populations makes the assessment of pathogen-mediated selection on immune genes 

more tractable. The presence of multiple discrete populations enables assessment of patterns 
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of immune gene variation at large scales (across populations) while the large, environmentally 

heterogenous population on Tenerife make this population a suitable study system in which to 

assess patterns of selection at immune genes at fine spatial scales. 

1.8 Aims of the thesis 

In this thesis, I investigate selection at two sets of immune loci at different spatial scales. In 

chapter 2, I assess genetic variation at a set of innate immunity loci, the toll-like receptors 

(TLR) across the populations of Berthelot’s pipit. I also compare the levels of diversity at TLRs 

in Berthelot’s pipit with those of its sister species the tawny pipit, in order to investigate how 

these loci have evolved after the colonization of the archipelagos. In chapter 3 I investigate the 

distribution of avian malaria within the population of Tenerife, assess malaria risk at small 

spatial scales and determine the role of key anthropogenic and natural factors in predicting 

that risk. In chapter 4, I use 454 next generation sequencing to efficiently genotype major 

histocompatibility complex (MHC) class I variation in a large cohort of individuals from the 

Tenerife population, and use the data to assess signatures of selection at these loci. Finally, in 

chapter 5 I explore whether structure exist at neutral and MHC class I loci in the Tenerife 

population of pipits. I then assess the potential role of environmental factors, including 

malaria, in shaping the distribution of MHC alleles at fine scales within this population. Finally 

in chapter 6 I bring together the findings described in the previous chapters, discuss their 

overall significance and propose some ideas for future research. 
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Chapter 2 

The role of drift and selection in shaping variation at innate 

immune genes in oceanic island populations 

 

 
The tawny pipit, Anthus campestris, Berthelot’s pipit sister species. Photo by Karl Phillips 
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2.1 Abstract 

Understanding the relative role of different evolutionary forces in shaping the level and 

distribution of functional genetic diversity among natural populations is a key issue in 

evolutionary and conservation biology. To do so accurately, genetic data must be analyzed in 

conjunction with an unambiguous understanding of the historical processes that have acted 

upon the populations. Here we assessed variation in the innate immunity toll-like receptor 

(TLR) loci within and among 13 island populations (grouped into three archipelagos) of 

Berthelot’s pipit, Anthus berthelotii, for which population history has previously been 

ascertained. We also compared the variation observed with that found in its widespread sister 

species, the tawny pipit, Anthus campestris. Our results suggest that demographic history has 

played the major role in shaping patterns of TLR variation in Berthelot’s pipit. Within each 

archipelago, diversity at each TLR locus corresponded closely with the severity of the 

bottleneck that occurred during colonization. Despite this, signatures of selection were found; 

at TLR4 one site showed evidence of positive selection and in one population - that with the 

highest levels of pathogen infection - two out of the only four haplotypes identified are new 

functional variants that appear to have arisen in situ. In TLR3 one codon also showed evidence 

of positive selection. Our study indicates that while founder effects have greatly reduced TLR 

variation in populations of Berthelot’s pipit, balancing selection may have helped to maintain 

functional variation at some TLR loci. This study therefore suggests that TLR variation may be 

important within genetically depauperate, bottlenecked populations.   
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2.2 Introduction 

Genetic variation provides the fundamental building blocks for evolution. Consequently, 

understanding the levels and distribution of functional genetic diversity among individuals and 

populations, and what forces drive these patterns, is a central component of evolutionary 

biology. Given that genetic variation is critical to the adaptive potential of populations and 

species, this understanding also has important implications for conservation (Frankham et al. 

1999).  

Population bottlenecks result in losses of functional genetic diversity (Cabe 1998; Gautschi et 

al. 2002; Sutton et al. 2013), and are therefore a key force in shaping the future evolution and 

persistence of populations (Frankham 1996; England et al. 2003). When populations undergo 

bottlenecks genetic drift is usually the dominant force, reducing genetic diversity within 

populations and driving differentiation across them (Hartl & Clark 2007). However, if strong 

natural selection acts on a specific region of the genome it can either counteract, or 

alternatively, reinforce the effects of drift (Aguilar et al. 2004; Miller & Lambert 2004). If 

balancing selection operates, genetic diversity will be maintained within the bottlenecked 

populations, reducing the amount of differentiation one might expect under drift alone 

(Hedrick & Thomson 1983; Hughes & Nei 1988) at least at the specific loci involved. 

Alternatively, under purifying or constant directional selection, genetic diversity will be 

reduced and the effects of drift and the resulting population differentiation will be reinforced 

(Jiggins & Hurst 2003; Winternitz & Wares 2013). 

When investigating genetic variation, loci involved in the immune system are of particular 

interest, not least because of their obvious importance for individual and population survival  

(reviewed in Sommer 2005; Acevedo-Whitehouse & Cunningham 2006), but also because they 

are expected to be under strong and direct selection from pathogens (Trowsdale & Parham 

2004; Ekblom et al. 2010). Over the last few decades, genes of the major histocompatibility 

complex (MHC), which code for receptors central to the acquired immune system, have been 

the focus of studies into functional genetic diversity and pathogen-mediated selection among 

wild populations (reviewed in Piertney & Oliver 2006; Spurgin & Richardson 2010). Only 

recently has attention spread to  investigating other immune genes (Acevedo-Whitehouse & 

Cunningham 2006; Jensen et al. 2008; Grueber et al. 2012; Turner et al. 2012), and, as yet, the 

roles of selection and drift in shaping among-population variation at these genes remains 

poorly understood (but see Bollmer et al. 2011; Tschirren et al. 2012; Grueber et al. 2013). 
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Toll-like receptors (TLRs) are essential components of the innate immune response in all 

vertebrates (Roach et al. 2005). They bind pathogen associated molecular patterns (PAMPs), 

thus triggering an intracellular signaling cascade that results in an inflammatory response and 

activation of macrophages, which attack the infection (Belvin & Anderson 1996; Akira 2003). 

Vertebrate TLRs are divided into six families that vary in the type of PAMPs they recognize 

(Roach et al. 2005). For example, TLR1LA and TLR1LB bind bacterial lipoproteins (Takeuchi et 

al. 2002), TLR3 binds viral RNA (Yoneyama & Fujita 2010), TLR21 binds bacterial DNA motifs 

(Keestra et al. 2010) and TLR4 binds bacterial lipopolysacharide (Poltorak et al. 1998). Recent 

studies have shown evidence of positive selection in TLRs in a range of organisms including 

birds (Downing et al. 2010; Alcaide & Edwards 2011; Grueber et al. 2014), fish (Chen et al. 

2008), and mammals (Nakajima et al. 2008; Areal et al. 2011; Tschirren et al. 2011). Most of 

the sites identified as being under positive selection in these studies are located in the TLR 

extracellular domain which directly binds the PAMPS (reviewed in Mikami et al. 2012), and 

specific polymorphisms within TLRs have been associated with differential disease resistance 

(Schröder & Schumann 2005; Misch & Hawn 2008; Basu et al. 2010). These data thus support 

the idea that pathogen-mediated selection plays a role in determining patterns of variation at 

TLR loci. 

 While the relationship between individual-level TLR variation and an organism’s ability to 

resist infection is becoming clearer, the forces that drive TLR variation at the level of 

populations and species are relatively poorly understood. Studying population-level variation 

at these critical genes, especially in small bottlenecked populations and/or endangered 

species, is important from both an evolutionary and conservation perspective (Grueber et al. 

2012). Although there have been a few studies of TLR variation across species (Nakajima et al. 

2008; Wlasiuk & Nachman 2010; Areal et al. 2011; Mikami et al. 2012) to our knowledge, only 

one study has investigated TLR variation in a bottlenecked wild population (Grueber et al. 

2012), and only one study has looked at how TLR variation is distributed across multiple 

natural  populations of a single species (Tschirren et al. 2012). 

Berthelot’s pipit, Anthus berthelotii, is a small, insectivorous passerine endemic to the North 

Atlantic archipelagos of Madeira, Selvagens and the Canary Islands where it occurs on 

relatively isolated island populations of varying size (Cramp & Perrins 1977, Fig. 2.1). The 

species is thought to have colonized the Macaronesian archipelagos from Africa during the 

Pleistocene before the evolutionary split from its sister species, the tawny pipit, Anthus 
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campestris (Voelker 1999). Previous work on Berthelot’s pipit has provided evidence of how 

population bottlenecks of differing severity, which occurred during the colonization of each 

archipelago, have been dominant in shaping neutral variation across the populations (Illera et 

al. 2007; Spurgin et al. 2014). These studies have shown that the populations of Berthelot’s 

pipit display a high level of genetic structure across, but not within, archipelagos, and that 

genetic variation at microsatellites is highest in the Canary Islands and lowest in Selvagens, 

with intermediate levels of genetic diversity found in Madeira. Another study has shown that 

these populations are exposed to spatially varying pathogen pressures that are consistent over 

time (Spurgin et al. 2012), and that MHC genes are rapidly evolving across the populations as a 

result of gene conversion and positive selection (Spurgin et al. 2011). Thus, this species 

provides an ideal study system in which to investigate the roles of selection versus drift in 

determining patterns of functional genetic diversity in fragmented bottlenecked populations. 

With that as our overall aim, here we characterized variation at five TLR loci in Berthelot’s 

pipit. Specifically we: (i) determined genetic variation at TLR loci in Berthelot’s pipit and 

compared it to that found in other bird species, including its sister species, the tawny pipit, (ii) 

investigated how TLR genetic diversity is distributed within and among the 13 Berthelot’s pipit 

populations and, (iii) assessed the relative roles of selection and drift in shaping the patterns of 

variation we observed in these important immune loci. 

2.3 Methods 

2.3.1 Study populations and sampling 

We screened a minimum of five individuals from all islands sampled as part of earlier studies 

(Illera et al. 2007; Spurgin et al. 2012; Fig. 2.1). A 13th population was sampled from El Teide, a 

volcano situated at the center of Tenerife rising 3,700 m above sea level. The El Teide 

population exists at >2000 m above sea level (a.s.l.) across an alpine plateau (ca. 190 km2), 

separated from the rest of the island population by its altitude and a ring of pine forest that 

extends from approximately 1600-2000 m.a.s.l., which is not suitable habitat for pipits (Illera 

2007). Birds were captured using clap nets baited with Tenebrio molitor larvae. Blood samples 

were collected by brachial venipuncture, diluted in 800 μl absolute ethanol in screw-cap 

microcentrifuge tubes and stored at room temperature. We also obtained blood samples from 

12 tawny pipits (two from Morocco, four from Mauritania and six from the Iberian Peninsula), 

captured using the same methods as for Berthelot’s pipits.  
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2.3.2 Estimation of divergence time between Berthelot’s and tawny pipits 

Previously, the timing of divergence between Berthelot’s and tawny pipits had been estimated 

using DNA from a tawny pipit from Denmark (Voelker 1999). However, a phylogenetic analysis 

suggests that the migratory behaviour of tawny pipits evolved after the split between 

Berthelot’s and tawny pipits (Outlaw & Voelker 2006). Thus Berthelot’s pipits likely evolved 

from an ancestral sedentary population of tawny pipits that existed near to the Canary Islands 

and, therefore, the divergence time might have been overestimated. We therefore re-

estimated divergence time based on mitochondrial gene cytochrome oxidase subunit I (COI) 

sequence data. A 655 bp fragment of the COI gene was amplified in nine tawny pipits (four 

from north Africa, including two confirmed resident birds from Morocco, and five from the 

Figure 2.1 Distribution of Berthelot’s pipit, Anthus berthelotii, across the Islands of 

the Macaronesian archipelagos, and populations of tawny pipits, Anthus campestris, 

used in this study. The identity of populations and the number of individuals sampled 

(in brackets) per population are shown. 
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Iberian Peninsula) and sixteen Berthelot’s pipits (ten from the Canary Islands, three from 

Selvagens and three from Madeira) using primers PasserF1 and PasserR1 (Lohman et al. 2009), 

following thermal conditions described in Lohman et al. (2009). Amplification was carried out 

in 10 µl reactions using a Tetrad thermocycler (MJ Research), including TopTaq polymerase 

master mix (Qiagen), 0.5 µM of each primer and ca. 30 ng of DNA. Amplified fragments were 

visualized in 2% agarose gels stained with ethidium bromide and purified using a mixture of 

recombinant alkaline phosphatase and exonuclease I, incubating at 37°C for 30 mins, followed 

by enzyme inactivation at 95°C for 5 mins. Amplified fragments were sequenced using the 

BigDye terminator kit (Applied Biosystems) using the following thermal profile: 96°C for 2 mins, 

followed by 25 cycles of 96°C for 10 s, 50°C for 5 s and 60°C for 4 mins. Products were 

visualized in an ABI genetic analyzer (Applied Biosystems). Sequences were aligned and edited 

in BioEdit 7.0.9.0 (Hall 1999). For divergence time estimates we included a further five 

sequences of tawny pipit COI published in Genebank (Accession numbers GQ481330-34). The 

software BEAST v 1.8.0 (Drummond & Rambaut 2007) was used to estimate divergence times 

between COI sequences of Berthelot’s and tawny pipits using constant size population priors, 

the Hasegawa-Kishino-Yano (HKY) nucleotide substitution model and a strict clock with a 

divergence rate of 2.1% per million years (Weir & Schluter 2008). The software was run for 10 

million generations with a burn in of 1 million generations. The software Tracer v 1.5 (Rambaut 

& Drummond 2009) was then used to assess convergence of the chains and to obtain the 

mean and 95% intervals of highest posterior density (HPD) estimates of divergence time.  

2.3.3 TLR genotyping 

DNA was extracted using a salt extraction method following Richardson et al. (2001). In both 

Berthelot’s and tawny pipits we amplified TLR1LA, TLR1LB and TLR3 using the primers 

published by Alcaide & Edwards (2011), and TLR4 and TLR21 with the primers published by 

Grueber et al. (2012). These primers amplify large fragments (mean = 862, ranging from 622 to 

1041 bp) of the TLRs extracellular domains, the regions directly involved in pathogen 

recognition. We were unable to successfully amplify a further four TLRs (TLR2A, TLR2B, TLR5 

and TLR15) using either the primers available in Alcaide & Edwards (2011) or Grueber et al. 

(2012). Polymerase chain reactions (PCR) were performed in a Tetrad thermocycler (MJ 

Research) using the following profile: initial denaturing at 94°C for 4 mins, followed by 35 

cycles of denaturing at 94°C for 40 s, annealing at 60°C (TLR1LA, TLR3, TLR4 and TLR21) or 64°C 

(TLR1LB) for 40 s and extension at 72°C for 80 s; a final extension step was performed at 72°C 
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for 10 mins. Reactions were conducted in 10 µl volumes using the TopTaq polymerase master 

mix kit (Qiagen), 0.5 µM of each primer and ca. 30 ng of DNA. Amplified fragments were 

visualized on 2% agarose gels stained with ethidium bromide and purified using a mixture of 

recombinant alkaline phosphatase and exonuclease I, incubating at 37°C for 30 mins, followed 

by enzyme inactivation at 95°C for 5 mins. Amplified fragments were sequenced using the 

BigDye terminator kit (Applied Biosystems) following the same procedure as for COI (section 

2.3.2). Single nucleotide polymorphisms (SNPs) were detected by visually examining 

chromatograms. The International Union of Pure and Applied Chemistry code for degenerate 

nucleotides was used for heterozygous positions. Individual haplotypes were resolved using 

the PHASE algorithm (Stephens et al. 2001) implemented in DnaSP 5.10.01 (Librado & Rozas 

2009). All haplotypes were confirmed by repeat PCR and sequencing from at least two 

samples.  

2.3.4 Analyses 

All analyses were carried out in R version 3.0.2 (R Development Core Team 2011), unless 

stated otherwise. To determine the relationship between alleles from each TLR across 

different bird species, we constructed maximum likelihood trees for each locus using 1,000 

bootstrap replications and the general time reversible substitution model using MEGA 6 

(Tamura et al. 2013). These trees included sequences from the two pipit species obtained in 

this study and three species obtained from GenBank: the house finch, Carpodacus mexicanus, 

lesser kestrel, Falco naumanni (Alcaide & Edwards 2011), and the New Zealand robin, Petroica 

australis rakiura (Grueber et al. 2012). To further visualize relationships between TLR genes in 

Berthelot’s and tawny pipits, we built haplotype networks using HapStar 0.5 (Teacher & 

Griffiths 2011). 

The ratio () of nonsynonymous to synonymous substitutions per site (dN/dS) was calculated in 

MEGA 6 (Tamura et al. 2013) for each locus using the haplotype sequences identified in 

Berthelot’s and tawny pipits. Significance of the relationship between dN and dS (dN<dS, dN>dS) 

was tested with 10,000 bootstrap replications. This method gives an indication of selection 

averaged over all sites in the sequence but requires a strong signal to detect selection (Pond & 

Frost 2005b). In order to explore whether specific codons, rather than the entire sequence, 

were under positive selection, three codon-based methods to calculate  were used: two 

maximum likelihood methods (random effects likelihood (REL, Pond & Frost 2005b), and fast 

unconstrained Bayesian approximation (FUBAR, Murrell et al. 2013)) and the mixed effects 
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model of evolution (MEME, Murrell et al. 2012). Sites with Bayes factor > 50 for REL, posterior 

probabilities > 0.9 for FUBAR, and P values < 0.1 for MEME were considered to support 

positive selection. Only sites identified by at least two of the three different methods were 

considered to be under positive selection. Prior to running analyses, the best fitting nucleotide 

substitution model was determined for each locus using a model selection approach. These 

tests were all run in Datamonkey (http://datamonkey.org, Pond & Frost 2005a) with 

sequences from the two pipit species. Gene conversion and recombination were estimated for 

each locus using methods described by Betrán et al. (1997) and Hudson (2007), respectively, 

implemented in DnaSP 5.10.01 (Librado & Rozas 2009).  

To best visualize genetic diversity among Berthelot’s pipit populations, islands were pooled 

into archipelagos in accordance with findings from previous research (Spurgin et al. 2014). For 

tawny pipits we considered two populations – Africa and the Iberian Peninsula. We calculated 

measures of TLR nucleotide diversity in MEGA 6 (Tamura et al. 2013), and tested for 

differences between the two pipit species, and among the 3 archipelago populations of 

Berthelot’s pipit, using randomization tests (Manly 2007). Tests of Hardy-Weinberg equilibrium 

were carried out using the web version of GENEPOP (http://genepop.curtin.edu.au/, Raymond 

& Rousset 1995). Nucleotide diversity comparisons involving Selvagem Grande were not 

possible because of the low number of haplotypes detected in this population (see results, 

Table 2.1). In addition to nucleotide diversity, for each TLR locus and population we calculated 

expected heterozygosity using Arlequin 3.5 (Excoffier & Lischer 2010). Finally, we calculated 

allelic richness after correcting for differences in sample size between the archipelagos (as a 

result of there being different numbers of populations per archipelago) using the software HP-

RARE 1.0 (Kalinowski 2005).  

We limited analyses of genetic differentiation to the Berthelot’s pipit, due to the low sample 

size available for tawny pipits. To obtain levels of genetic differentiation among the three 

archipelagos we calculated global FST  for each TLR locus using Arlequin 3.5 (Excoffier & Lischer 

2010). Significance of FST values was tested with 10,000 permutations. A previous study of 

Berthelot’s pipits identified a pattern of ‘isolation by colonization’, whereby neutral genetic 

structure among population was largely the product of the relative bottleneck severity of 

populations (Spurgin et al. 2014). Here we assessed whether TLR genetic structure among 

islands was consistent with this pattern. As an index of bottleneck distance, we used a 

modified version of Garza and Williamson’s (2001) M ratio, developed to reflect the relative 
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bottleneck severity of pairs of islands based on microsatellite variation (Spurgin et al. 2014). 

Garza and Williamson’s (2001) M ratio is calculated by dividing the number of microsatellite 

alleles found in a population by the range in size in base pairs. This can be used to detect 

reductions in the effective population size, because when alleles are lost, the number of alleles 

is expected to be reduced more quickly than the size range. The modified M ratio (Spurgin et 

al. 2014) is calculated for pairs of populations as:           –                   . For 

every microsatellite (Spurgin et al. 2014) and TLR locus, we tested whether pairwise FST was 

related to bottleneck distance with a Mantel test, implemented in the R package Ecodist 

(Goslee & Urban 2007). We then compared the distribution of correlation coefficients from the 

Mantel tests for microsatellite and TLR loci using a t-test (Nosil et al. 2008). A strong 

correlation between the pairwise FST values based on TLR variation and bottleneck distance 

would indicate that the distribution of TLR variation among populations follows the same 

pattern of isolation by colonization as the microsatellites. If no correlation is found the 

patterns of genetic structure may be the product of population specific patterns of selection. 

2.4 Results  

2.4.1 Divergence time between Berthelot’s and tawny pipits 

We found nine and two variable sites within the tawny and Berthelot’s pipit COI haplotypes, 

respectively. The mean estimated time to most recent common ancestor of all Berthelot’s and 

tawny pipit haplotypes was 2.34 million years (95% HPD = 1.57-3.13 million years).  

2.4.2 TLR variation within and across species 

TLR1LA, TLR1LB, TLR3, TLR4 and TLR21 were each sequenced in 78-80 Berthelot’s pipits, with 

10-53 individuals per archipelago, and 12 tawny pipits (Table 2.1). A summary of variation 

across the five TLR loci is given in Table 2.2. No SNPs resulted in frame shifts or stop codons. A 

total of 34 alleles were identified in Berthelot’s pipits (Supplementary Table S2.1), with 5-8 

haplotypes per locus, which translated as between three and six different amino acid variants 

at each locus (Table 2.1). In tawny pipits we identified a total of 62 alleles (Supplementary 

Table S2.2), with between 7-18 haplotypes and 5-11 amino acid variants per locus (Table 2.1). 
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Locus Population 

(N) 
# Poly 
sites 

# alleles (SD)1 # amino 
acid 
variants 

allelic 
richness2 

Hd3 Ho4 He5 HWE p-
value6 

TLR1LA A. berthelotii (78) 6 8 22.7 (3.7) 3      

CI (53) 6 7 22.7 (4.5) 3 4.06 0.70 0.58 0.70 0.338 

S (10) 1 2 9.9 (5.0) 1 2.00 0.51 0.20 0.48 0.082 

M (15) 3 4 16.5 (4.4) 2 3.94 0.62 0.40 0.60 0.005 

A. campestris (12) 21 15 38.4 (5.7) 9      

IP (6) 11 8 27.6 (6.8) 6 7.81 0.94 1.00 0.86 1.000 

Af (6) 17 9 44.6 (7.7) 6 7.81 0.94 0.83 0.86 0.428 

TLR1LB A. berthelotii (78) 7 8 21.6 (3.3) 3      

CI (53) 5 6 19.1 (3.4) 3 2.91 0.47 0.56 0.47 0.104 

S (10) 1 2 10.2 (5.1) 2 2.00 0.52 0.10 0.49 0.015 

M (15) 4 5 18.4 (3.9) 2 4.78 0.70 0.60 0.69 0.282 

A. campestris (12) 18 10 44.8 (5.8) 5      

IP (6) 11 6 39.6 (9.6) 3 5.17 0.68 0.83 0.62 1.000 

Af (6) 10 5 45.0 (7.9) 4 4.33 0.58 0.67 0.53 1.000 

TLR3 A. berthelotii (80) 5 6 16.0 (2.6) 3      

CI (53) 4 5 16.0 (2.6) 3 4.31 0.48 0.49 0.47 0.239 

S (12) 1 2 9.6 (4.8) 1 2.00 0.39 0.50 0.37 0.528 

M (15) 2 3 12.8 (4.3) 1 3.00 0.68 0.80 0.66 0.554 

A. campestris (12) 15 12 30.6 (4.0) 8      

IP (6) 9 6 30.7 (6.3) 5 5.17 0.68 0.83 0.62 1.000 

Af (6) 9 8 28.5 (4.6) 5 6.83 0.85 1.00 0.78 1.000 

TLR4 A. berthelotii (78) 5 7 29.5 (4.5) 6      

CI (53) 2 3 25.7 (5.6) 4 3.05 0.62 0.58 0.61 0.528 

S (10) 0 1 0.0 (0.0) 1 1.00 0.00 0.00 0.00 N/A 

M (15) 4 4 30.3 (8.2) 4 4.00 0.76 0.87 0.73 0.369 

A. campestris (12) 22 18 73.1 (7.4) 11      

IP (6) 15 11 71.8 (7.7) 6 9.32 0.98 0.83 0.90 0.071 

Af (6) 16 9 70.6 (12.8) 7 7.82 0.94 0.83 0.87 0.390 

TLR21 A. berthelotii (80) 4 5 28.9 (6.2) 3      

CI (53) 3 4 28.9 (6.2) 2 2.99 0.54 0.55 0.54 0.076 

S (12) 1 2 16.1 (8.0) 1 2.00 0.43 0.42 0.41 1.000 

M (15) 1 2 16.1 (8.0) 1 2.00 0.43 0.33 0.42 0.539 

A. campestris (12) 6 7 32.2 (5.0) 5      

IP (6) 6 7 32.2 (5.0) 5 5.57 0.82 1.00 0.76 1.000 

Af (6) 1 2 16.1 (8.0) 1 2.00 0.36 0.20 0.32 1.000 

 

Table 2.1 Polymorphism at five TLR loci in the three Berthelot’s pipit (A. berthelotii) 

archipelago populations (CI = Canary Islands, M = Madeira, S = Selvagem Grande) and the 

two closest populations of the sister species, the tawny pipit (A. campestris, IP = Iberian 

Peninsula, Af = north Africa). Significant deviations from Hardy-Weinberg equilibrium are 

underlined. 

1 Nucleotide diversity x 104 (Standard deviation) 
2 Corrected for sampling difference 
3 Haplotype diversity 
4 Observed Heterozygosity 
5 Expected heterozygosity 
 6 P-value of the Hardy Weinberg equilibrium exact test with 1 million Markov chain steps. 
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The maximum likelihood phylogenies consistently show that alleles of each TLR locus cluster by 

species, except for the pipit species, which are paraphyletic (Fig. 2.2). Haplotype networks 

(Supplementary Figs. S2.1-S2.5) show that the two pipit species are very closely related at all 

TLRs, and that they share haplotypes at TLR1LA (two shared alleles, Supplementary Fig. S2.1) 

and TLR3 (one shared allele, Supplementary Fig. S2.3). In Berthelot’s pipit most haplotypes are 

separated from one another by a single point mutation. Haplotype networks of TLR1LB, TLR3 

and TLR4 (Supplementary Figs. S2.2-S2.4) show a star-like pattern, where most haplotypes are 

connected to one central haplotype present in all three archipelagos. The networks of TLR1LA, 

      

Locus 
(exon) 

N
1 Fragment 

length (bp) 
SNPs

2
 Amino acid  Syn:nsyn

3 
H

4 
Amino 
acid 
variants

 
 x10

-4
 (SD)

5 

TLR1LA (2) 78 1011 70: C/T Leu 4:2 8 3 22.6 (3.7) 
   284:C/T Arg/Cys     
   322:C/T Tyr     
   657:C/T Phe/Ser     
   871:C/T Leu     
   925:C/T Ala     
TLR1LB (1) 78 977 329:C/T Cys 5:2 8 3 21.6 (3.3) 
   520:C/T Phe/Ser     
   677:A/G Pro     
   734:C/T Leu     
   800:A/G Pro     
   917:A/G Thr     
   946:A/T Leu/Gln     
TLR3 (4) 80 1041 197:C/T Ser/Leu 3:2 6 3 16.0 (2.6)  
   573:C/T Gly     
   696:A/G Val     
   748:C/T Leu     
   814:C/G Asp/His     
TLR4 (3) 78 661 216:A/G Asp/Gly 1:4 7 6 29.6 (4.5) 
   281:A/G Lys/Glu     
   301:C/T Pro     
   303:A/C/T Lys/Thr/Met     
   321:A/G Glu/Arg     
TLR21 (1) 80 622 247:C/T Asp 3:1 5 3 28.9 (6.2) 
   554:C/T Leu     
   579:C/G Gly/Ala     
   607:C/T Phe     
Mean  862 5.4  3.2:2.2 6.8   

 

Table 2.2 Variation at the exons encoding extracellular domains of five toll-like 

receptor genes in Berthelot’s pipit (Anthus berthelotii).  

 

1Number of individuals genotyped  
2Single nucleotide polymorphisms. Number indicates nucleotide position in the sequence. 
3Number of synonymous to number of nonsynonymous mutations 
4Number of haplotypes 
5Nucleotide diversity (Standard deviation) 
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and TLR21 haplotypes show chain-like patterns in Berthelot’s pipits (Supplementary Figs. S2.1 

and S2.5). We found no evidence for gene conversion or recombination among the TLR loci. 

At the haplotype level we found an excess of synonymous over non-synonymous substitutions 

in all TLRs except for TLR4 (Table 2.2), with  values ranging from 0.09 to 0.71 in Berthelot’s 

pipit and from 0.17 to 0.32 when including sequences from tawny pipit (Table 2.3). The codon 

level selection tests (Table 2.4) identified two amino acid sites in TLR4: (i) codon 252 which 

produces three different amino acids in tawny pipits but is monomorphic in Berthelot’s pipits, 

and (ii) codon 332 which codes for three and two different amino acids in Berthelot’s and 

tawny pipits, respectively. At TLR3 another codon (315) which codes for two different amino 

acids in both species showed evidence of positive selection.  

All TLR loci were polymorphic in all populations of both species, except TLR4 in the Selvagem 

Grande Berthelot’s pipit population. None of the loci deviated significantly from Hardy-

Weinberg equilibrium in any populations except for TLR1LA in Madeira and TLR1LB in 

Selvagem Grande (Table 2.1). Pairwise nucleotide diversity was significantly higher in tawny 

compared to Berthelot’s pipits (P < 0.001; Table 2.1), but not significantly different between 

the tawny pipit populations sampled in Africa and Iberia (P = 0.49), or between Madeira and 

the Canary Islands populations of Berthelot’s pipits (P = 0.45). Rarefacted allelic richness was 

highest in tawny pipits (mean ± s.e. = 6.61 ± 0.84 in the Iberian Peninsula, and 5.76 ± 1.14 in 

Africa; Fig. 2.3). Berthelot’s pipits in Selvagem Grande had the lowest mean allelic richness 

(1.80 ± 0.15), followed by Madeira (3.54 ± 0.29), and the Canary Islands (3.48 ± 0.08) (Fig. 2.3). 

Of the Berthelot’s pipit populations, the Canary Islands had the most private alleles across all 

loci (eight), while Madeira had five and Selvagem Grande had none.  

Global population differentiation among archipelagos based on TLRs was significant for all five 

loci. FST values ranged from 0.08 in TLR21 to 0.38 in TLR3 (Table 2.5). Mantel tests showed that 

there was a strong correlation between island pairwise FST and bottleneck distance for TLR1LA 

(r = 0.41, P = 0.037), TLR3 (r = 0.63, P = 0.004) and TLR4 (r = 0.63, P = 0.009), and non-

significant positive relationships for TLR1LB and TLR21 (r = 0.34, P = 0.109; r = 0.38, P = 0.085, 

respectively; Fig. 2.4). The mean (± S.E.) correlation coefficient between island pairwise FST and 

bottleneck distance was 0.48 ± 0.06 and 0.54 ± 0.05, for TLRs and microsatellites respectively. 

These values were not significantly different from one another (Fig. 2.5, t (9.63) = 0.69, P = 

0.504). 
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Figure 2.2 Maximum likelihood phylogenetic trees of haplotypes at five TLR loci in 

five bird species: Came = house finch, Carpodacus mexicanus; Peau = New Zealand 

robin, Petroica australis rakiura; Fana = Lesser kestrel, Falco naumanni; Anbe = 

Berthelot’s pipit, Anthus berthelotii, and Anca = tawny pipit, Anthus campestris. Node 

values represent bootstrap support. Subtrees for each species were collapsed at 

bootstrap values higher than 98%. Height of the collapsed subtree is proportional to 

the number of haplotypes in the subtree. 
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2.5 Discussion 

Here we show that in the populations of Berthelot’s pipits variation at TLRs was probably 

reduced as a consequence of its colonization history in Macaronesia, which perhaps occurred 

before the evolutionary split from its sister species, the tawny pipit. In addition, genetic 

variation at these TLR loci was further reduced by the bottlenecks experienced during the 

Berthelot’s pipit more recent colonization of the Maderian and Selvagens archipelagos from 

the Canaries. Importantly, the population differentiation observed at the TLR loci in Berthelot’s 

pipits mirrored that found previously with microsatellites, which is consistent with the 

demographic history of this species. However, we also found evidence for positive selection 

acting in two of the five TLRs analyzed. 

Locus Codons 

 REL FUBAR MEME 
TLR3 315 315 - 
TLR4 252, 303, 332 252, 332 252 

 

Table 2.4 Codons in TLR3 and TLR4 identified as being under positive 

selection across Berthelot’s and tawny pipits, using three different methods: 

REL, FUBAR and MEME. Codon numbers correspond to the chicken mRNA. 

Codons detected by two or more methods are shown in bold. 

 

Locus  (Aber)  (Aber+Acam) 

TLR1LA 0.15 (0.049) 0.23 (0.004) 
TLR1LB 0.09 (0.024) 0.17 (0.001) 
TLR3 0.20 (0.084) 0.32 (0.022) 
TLR4 0.71 (0.389) 0.24 (0.014) 
TLR21 0.30 (0.169) 0.22 (0.056) 

 

Table 2.3 Mean  (P values for alternative hypothesis of purifying selection, 

dN<d-, in brackets) across identified alleles of the five TLR loci in 1) Berthelot’s 

pipit (Aber) and 2) both Berthelot’s and tawny pipits (Aber+Acam). Significant 

values are in bold and underlined. 
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Our phylogenetic trees – including sequences from Berthelot’s pipit, tawny pipit, house finch, 

New Zealand robin and lesser kestrel – indicate that within each TLR locus, variation groups 

according to the taxonomic relationship between the species – a finding consistent with other 

studies of TLR variation across species (Roach et al. 2005; Nakajima et al. 2008; Alcaide & 

Edwards 2011). We found no evidence of gene conversion and recombination among the TLR 

loci. Thus, contrary to other gene families, such as the MHC, where gene conversion and trans-

species evolution are frequent (Ohta 1995; Klein et al. 1998; Spurgin et al. 2011), vertebrate 

TLRs seem to evolve independently and mainly by point mutation (Roach et al. 2005). 

However, a few studies have reported that gene conversion occurs in some TLR families that 

have recently been duplicated (Kruithof et al. 2007; Cormican et al. 2009; Mikami et al. 2012). 

In our data the sequences from the two pipit species clustered together within the tree and 

share some alleles (two alleles in TLR1LA and one in TLR3). However this is unsurprising when 

we consider the mtDNA divergence between the two species (ca 5%); given the much lower 

Figure 2.3 Distribution of allelic richness of five TLR loci (after accounting for 

differences in sample size) across the three archipelago populations of Berthelot’s 

pipit, Anthus berthelotii (CI – Canary Islands, M – Madeira and SG – Selvagem 

Grande) and of tawny pipits, Anthus campestris, from the Iberian Peninsula (IP), and 

from North Africa (AF). Centre lines show the medians and crosses represent the 

means. Box limits indicate the 25th and 75th percentiles; whiskers extend 1.5 times 

the interquartile range from the 25th and 75th percentiles, outliers are represented 

by open dots. 
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nuclear mutation rate (Brown et al. 1979) and the relative short size of the TLR loci sequenced 

(622-1041 bp), we would expect few substitutions in our TLR loci. Thus, it is likely that 

complete lineage sorting has not yet occurred at these genes.  

The effects of genetic drift on TLR variation can be seen at the species and population level. 

The lower TLR diversity in Berthelot’s compared to tawny pipits is consistent with both a 

founder effect during the initial colonization of the islands, and with consistently lower 

effective population sizes in the restricted island populations. Indeed, levels of TLR variation in 

Berthelot’s pipit (5-8 alleles per locus) are comparable to those reported for the bottlenecked 

New Zealand robin (2-5 alleles per locus) (Grueber et al. 2012), whereas TLR variation in tawny 

pipits (2-18 alleles per locus) is more comparable to that of widespread bird species such as 

lesser kestrel, Falco naumanni (2-15 alleles per locus) and house finch, Carpodacus mexicanus 

(2-20 alleles per locus) (Alcaide & Edwards 2011). The secondary colonization of Madeira and 

Selvagens by Berthelot’s pipits from the Canary Islands also involved bottlenecks (Spurgin et al. 

 Population pairs FST 

TLR1LA S-M 0.08  
S-CI 0.15** 
M-CI 0.06* 
All populations 0.10*** 

TLR1LB S-M 0.04 
S-CI 0.06 
M-CI 0.21*** 
All populations 0.14*** 

TLR3 S-M 0.21** 
S-CI 0.52*** 
M-CI 0.28*** 
All populations 0.38*** 

TLR4 S-M 0.17** 
S-CI 0.25*** 
M-CI 0.08** 
All populations 0.15*** 

TLR21 S-M 0.26** 

S-CI 0.02 

M-CI 0.09* 

All populations 0.08** 

 

Table 2.5 Analyses of genetic differentiation expressed by FST at five TLR loci between 

three archipelago populations of Berthelot’s pipits, Anthus berthelotii. CI = Canary 

Islands, M = Madeira, S = Selvagem Grande. Significance of FST values is denoted by an 

asterisk: * = P < 0.05, ** = P < 0.01, *** = P < 0.001. 
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2014). The extremely low TLR variation on Selvagens is consistent with this, although we did 

not find such reduced variation in Madeira (see below). Indeed the differentiation at TLR loci 

among Berthelot’s pipit populations are consistent with the pattern of colonization, 

bottlenecks and subsequent isolation inferred from microsatellite data for this species (Illera et 

al. 2007; Spurgin et al. 2014). Most strikingly, we found strong correlations between TLR 

differentiation and a pairwise bottleneck index which did not differ from those found for 

microsatellites. These results indicate that the TLR variation observed across populations has 

largely been shaped by the same pattern of isolation by colonization as inferred from 

microsatellites (Spurgin et al. 2014). Overall, our results concur with other studies that have 

identified demographic processes as being the predominant force shaping functional genetic 

variation at immune genes in and among small or bottlenecked populations (Bollmer et al. 

2011; Girard & Angers 2011; Oliver & Piertney 2012; Sutton et al. 2013). Such findings 

contrast, however, with a recent study comparing patterns of variation at TLR2 haplotypes 

across populations of bank voles, where isolation by distance at TLR2 was not explained by 

demographic patterns but possibly by parasite-mediated selection (Tschirren et al. 2012).  

The question then is whether selection has had any influence on the levels and distribution of 

genetic variation at the TLRs in Berthelot’s pipits. At the whole haplotype level, tests of 

selection based on relative levels of synonymous and non-synonymous variation () across the 

Berthelot’s and tawny pipits provided no evidence for positive selection operating on the 

extracellular region of each of the five TLRs. Indeed, values of  were negative, suggesting that 

purifying selection has been operating across most of this region of the TLR molecules, purging 

non-synonymous substitutions that might affect their capacity to bind the highly conserved 

PAMPs (Medzhitov & Janeway 1997). However, codon-based selection tests may be more 

appropriate if changes in a few key amino acids dictate which type of PAMP is bound by a 

specific type of TLR molecule. In line with this logic a number of studies have found specific 

amino acids under selection in TLRs (Alcaide & Edwards 2011; Areal et al. 2011; Fornůsková et 

al. 2013; Grueber et al. 2014), including our study which finds evidence that two sites in TLR4 

and one at TLR3 are under positive selection in pipits. 
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Figure 2.4 Pairwise FST for each of five TLR loci in relation to pairwise bottleneck 

distance between the 13 populations of Berthelot’s pipits, Anthus berthelotii. A-D: 

scatter plot of pairwise FST in relation to pairwise bottleneck distance; F: Lines fit to 

the Mantel correlation coefficient between pairwise FST and pairwise bottleneck 

distance of the five TLRs shown in A-E. 
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The Madeira population was exceptional in that it had a number of private alleles at TLR loci 

(one in TLR1LA and two in TLR1LB and TLR4 each), whereas no private alleles were detected in 

the Madeiran populations at microsatellites or mitochondrial DNA variation (Illera 2007; 

Spurgin et al. 2014). One possibility is that these unique alleles are rare in the Canary Islands 

and were therefore not detected in our sample from that population. However, given the large 

sample size used for the Canary Islands (n = 53), and the fact that frequency of these alleles is 

high in Madeira, this explanation seems unlikely. Another possibility is that these alleles were 

present in the founding population of Madeira and were subsequently lost in the Canary 

Islands. Given the severity of the bottleneck after colonization of Madeira (Spurgin et al. 2014), 

this explanation also seems unlikely. This raises the possibility that these unique alleles have 

evolved in situ in Madeira. The haplotype networks appear to support this argument, at least 

for TLR1LB and TLR4 where the private alleles detected are only one or two base pairs 

different (and unconnected to any other non-private alleles) from a core central haplotype 

(Supplementary Figs. S2.2, S2.4) (Posada & Crandall 2001). Indeed, for TLR4 both unique alleles 

are one non-synonymous base pair change different from the same central haplotype 

Figure 2.5 Distribution of Mantel correlation coefficients between pairwise FSTs - for 

21 microsatellite loci (msat) and five TLRs - and pairwise bottleneck distance 

between the 13 populations of Berthelot’s pipits, Anthus berthelotii. Centre lines 

show the medians. Box limits indicate the 25th and 75th percentiles; whiskers extend 

1.5 times the interquartile range from the 25th and 75th percentiles. 
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(Supplementary Fig. S2.4). Furthermore, the four Madeiran TLR4 alleles all translate to 

different amino acid sequences and exist at relatively high and balanced frequency 

(Supplementary Table S2.1), perhaps suggesting that new functional variants are being 

maintained in the population by selection. Based on this evidence, we suggest that the current 

distribution of functional polymorphisms at some of the TLR loci might be indicative of recent 

or contemporary selection. The same has been found in other studies where patterns of allele 

distribution among populations have provided evidence for balancing selection operating at 

functional loci (Cutrera et al. 2010), including TLRs (Ferrer-Admetlla et al. 2008). TLR screening 

of more individuals in these populations would be needed to confirm this. 

Our evidence for selection at TLR4 concurs with the results of several multi-species studies 

which have found evidence of positive selection on this particular locus, both at the haplotype 

and codon level, (Nakajima et al. 2008; Wlasiuk & Nachman 2010; Alcaide & Edwards 2011; 

Areal et al. 2011; Fornůsková et al. 2013; Grueber et al. 2014). Polymorphisms in TLR4 have 

been linked to susceptibility and resistance to disease (reviewed in Noreen et al. 2012), and to 

juvenile survival (Grueber et al. 2013). The occurrence and distribution of the four functional 

variants of this locus that we detected in the Madeiran archipelago may, therefore, be the 

result of intense pathogen-mediated balancing selection within this archipelago. Interestingly, 

this locus is associated with malaria resistance in humans (Ferwerda et al. 2007), and a 

previous study that screened for pathogens in the Berthelot’s pipits found that the Madeiran 

archipelago has a very high prevalence of two genera of malaria (Plasmodium and 

Leucocytozoon) as well as avian pox (Spurgin et al. 2012). Individual based infection and fitness 

investigations are now needed to test the possibility of associations between the TLR4 

polymorphisms and specific pathogens within the Madeiran archipelago. 

The results of our study on TLR variation offer some interesting comparisons with the patterns 

of variation previously described for MHC genes in Berthelot’s pipits (Spurgin et al. 2011). In 

that study new functional variants appear to have been rapidly generated after the 

bottlenecks as a result of gene conversion and selection (Spurgin et al. 2011). Likewise, our 

study indicates that, at least in Madeira, new variation at TLR loci may have been recruited and 

maintained by selection post colonization. However, there was no evidence of gene conversion 

in Berthelot’s pipit TLRs, where point mutations appear to have generated all the variation. 

Consequently, the populations have not been able to regenerate TLR variation anywhere near 
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the rate that was inferred for MHC genes. Both TLR and MHC genes have evolved by gene 

duplication (Klein & Sato 1998; Roach et al. 2005), but contrary to the MHC, TLRs appear to 

have evolved independently since these duplications and are not found in gene complexes 

(Roach et al. 2005). The nucleotide sequence of TLR genes has diverged (68% sequence 

similarity between the same regions in different loci) to the extent where gene conversion 

among the duplicated loci is no longer possible. The consequences of this lower variation at 

TLRs in bottlenecked populations is an interesting area yet to be explored (but see Grueber et 

al 2013). 

Overall, our results clearly indicate that demographic history has been the main force behind 

the evolution of TLRs in the island population of Berthelot’s pipit. The multiple bottlenecks this 

species experienced as it colonized the islands have largely determined the variation within 

and among populations, while balancing selection appears to have had relatively little effect in 

preserving variation during these events. There is, however, some evidence that selection has 

been acting, at least at two of these loci, and the possibility that new functional variants may 

have been generated and selected for since the bottlenecks. Studies of associations between 

specific pathogens and TLR polymorphisms, and how these affect individual fitness and innate 

immunity, are now needed in this and other natural systems to better understand the role of 

pathogen-mediated selection in shaping functional genetic differences across populations. 
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Supplementary Table S2.1 Haplotypes identified at the five TLR loci in Berthelot’s pipit, 

Anthus berthelotii populations. CI = Canary Islands (Number of alleles analysed (N) = 

106), M = Madeira (N = 30), S = Selvagem Grande (N = 20 for TLR1LA, TLR1LB and TLR4, 

N = 24 for TLR3 and TLR21). 

 

A. berthelotii 
allele 

Sequence 
Amino acid 
variant 

N
1 

Freq.
2 Freq. 

in CI  
Freq. 
in M 

Freq. 
in S 

Genebank 
Accession # 

TLR1LA_1 CCCTCC TLR1LA-1 53 0.340 0.26 0.57 0.40 KJ414322 
TLR1LA_2 TCCTCC TLR1LA-1 54 0.346 0.33 0.23 0.60 KJ414323 
TLR1LA_3 CCCCCC TLR1LA-2 40 0.256 0.35 0.10 0.00 KJ414324 
TLR1LA_4 CTCTCC TLR1LA-3 2 0.013 0.02 0.00 0.00 KJ414325 
TLR1LA_5 CCTCCC TLR1LA-2 1 0.006 0.01 0.00 0.00 KJ414326 
TLR1LA_6 TCCTCT TLR1LA-1 3 0.019 0.00 0.10 0.00 KJ414327 
TLR1LA_7 TCCCCC TLR1LA-2 2 0.013 0.02 0.00 0.00 KJ414328 
TLR1LA_8 TCCTTT TLR1LA-1 1 0.006 0.01 0.00 0.00 KJ414329 
TLR1LB_1 CTGCGGT TLR1LB-1 89 0.571 0.67 0.30 0.45 KJ414330 
TLR1LB_2 CCGCGGT TLR1LB-2 54 0.346 0.28 0.43 0.55 KJ414331 
TLR1LB_3 CCGCAGT TLR1LB-2 3 0.019 0.01 0.07 0.00 KJ414332 
TLR1LB_4 TCGCGGT TLR1LB-2 2 0.013 0.02 0.00 0.00 KJ414333 
TLR1LB_5 CCACGGT TLR1LB-2 4 0.026 0.00 0.13 0.00 KJ414334 
TLR1LB_6 CCGCGAT TLR1LB-2 1 0.006 0.01 0.00 0.00 KJ414335 
TLR1LB_7 CCATGGT TLR1LB-2 2 0.013 0.00 0.07 0.00 KJ414336 
TLR1LB_8 CCGCGAA TLR1LB-3 1 0.006 0.01 0.00 0.00 KJ414337 
TLR3_1 CCACG TLR3-1 31 0.194 0.01 0.40 0.75 KJ414338 
TLR3_2 CTACG TLR3-1 90 0.563 0.71 0.30 0.25 KJ414339 
TLR3_3 TTACG TLR3-2 6 0.038 0.06 0.00 0.00 KJ414340 
TLR3_4 CTATG TLR3-1 13 0.081 0.12 0.00 0.00 KJ414341 
TLR3_5 CTACC TLR3-3 9 0.056 0.08 0.00 0.00 KJ414342 
TLR3_6 CTGCG TLR3-1 11 0.069 0.02 0.30 0.00 KJ414343 
TLR4_1 AGCCA TLR4-1 86 0.538 0.53 0.33 0.00 KJ414344 
TLR4_2 AGTAA TLR4-2 39 0.244 0.29 0.27 0.00 KJ414345 
TLR4_3 AGTCA TLR4-1 16 0.100 0.15 0.00 0.00 KJ414346 
TLR4_4 GGCCA TLR4-3 5 0.031 0.00 0.17 0.00 KJ414347 
TLR4_5 AACCA TLR4-4 7 0.044 0.00 0.23 0.00 KJ414348 
TLR4_6 AGCCG TLR4-5 2 0.013 0.02 0.00 0.00 KJ414349 
TLR4_7 AGTTA TLR4-6 1 0.006 0.01 0.00 0.00 KJ414350 
TLR21_1 CCGC TLR21-1 82 0.513 0.53 0.30 0.71 KJ414351 
TLR21_2 CCGT TLR21-1 73 0.456 0.42 0.70 0.29 KJ414352 
TLR21_3 TCGT TLR21-1 1 0.006 0.01 0.00 0.00 KJ414353 
TLR21_4 CCCC TLR21-2 3 0.019 0.03 0.00 0.00 KJ414354 
TLR21_5 CTGT TLR21-3 1 0.006 0.01 0.00 0.00 KJ414355 
Total  34 18 

  
28 18 9  

 

1Number of individuals with the allele across all populations 
2Overall frequency in the pooled populations 
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A. campestris 
allele 

Sequence Amino acid 
variant 

N
1 

Freq
2 

Freq. 
in IP 

Freq. 
in Af 

Genebank 
Accession # 

TLR1LA_1 GAAGTAGTCCGCTCCCGACCC TLR1LA_1 1 0.04 0.00 0.08 KJ414356 
TLR1LA_3 GAAGTAGTCCGCCCCCGACCC TLR1LA_2 6 0.25 0.25 0.25 KJ414357 
TLR1LA_9 GAAGTAGACCGCCCCCGACCC TLR1LA_3 1 0.04 0.08 0.00 KJ414358 
TLR1LA_10 GAAGTAGTCCGCCTCCGACCC TLR1LA_4 1 0.04 0.08 0.00 KJ414359 
TLR1LA_11 GACGTAGTCCGCCCCCGACCC TLR1LA_5 2 0.08 0.17 0.00 KJ414360 
TLR1LA_12 GCAGTAGTCCGCCCCCGACCC TLR1LA_2 3 0.08 0.17 0.08 KJ414361 
TLR1LA_13 GAAGTAGTCCGCCCCCGCCCC TLR1LA_6 1 0.04 0.08 0.00 KJ414362 
TLR1LA_14 GAAGTAGTCCGTCCCCGACCC TLR1LA_2 1 0.04 0.08 0.00 KJ414363 
TLR1LA_15 GAAGTAGTATGCCCCCTCCTC TLR1LA_7 1 0.04 0.08 0.00 KJ414364 
TLR1LA_16 GACGTAGTCCGCCCCCGATCC TLR1LA_5 1 0.04 0.00 0.08 KJ414365 
TLR1LA_17 GCAATAGTCTGCCCCCGCCCC TLR1LA_6 1 0.04 0.00 0.08 KJ414366 
TLR1LA_18 GAAGCTGTACATCCCCGCCCC TLR1LA_8 1 0.04 0.00 0.08 KJ414367 
TLR1LA_19 AAAGTAGTCCGCCCCCGACCC TLR1LA_2 2 0.08 0.00 0.17 KJ414368 
TLR1LA_20 GCAGTAATCCGCCCCTGCCCC TLR1LA_6 1 0.04 0.00 0.08 KJ414369 
TLR1LA_21 GAAGTAGTATGCCCCCTCCCT TLR1LA_9 1 0.04 0.00 0.08 KJ414370 
TLR1LB_9 GCGCAAGTGCCCTCGGAC TLR1LB_1 15 0.63 0.58 0.67 KJ414371 
TLR1LB_10 CTGCAAGTGCCCTTGGAC TLR1LB_2 1 0.04 0.08 0.00 KJ414372 
TLR1LB_11 GCGTAAGTGCCCTCGGCC TLR1LB_3 1 0.04 0.08 0.00 KJ414373 
TLR1LB_12 GCGCAAGTACCCTCGGAC TLR1LB_1 1 0.04 0.08 0.00 KJ414374 
TLR1LB_13 GCGCAAGTGCCCCCGGAC TLR1LB_1 1 0.04 0.08 0.00 KJ414375 
TLR1LB_14 GCGCGAGTGTCTTCGGCT TLR1LB_3 1 0.04 0.08 0.00 KJ414376 
TLR1LB_15 GCACAAGTGTCCTCGGAC TLR1LB_4 1 0.04 0.00 0.08 KJ414377 
TLR1LB_16 GCGCACGTGCCCTCAGCC TLR1LB_3 1 0.04 0.00 0.08 KJ414378 
TLR1LB_17 GCGCAAGTGTTTTCGGCC TLR1LB_3 1 0.04 0.00 0.08 KJ414379 
TLR1LB_18 GCGCAAAAGCCCTCGTCC TLR1LB_5 1 0.04 0.00 0.08 KJ414380 
TLR3_2 AGTTAGCGGCGCGCC TLR3_1 12 0.50 0.58 0.42 KJ414381 
TLR3_7 GGTTATCAGCGCGCC TLR3_2 1 0.04 0.08 0.00 KJ414382 
TLR3_8 GGTTAGCGGCGCGTC TLR3_3 1 0.04 0.08 0.00 KJ414383 
TLR3_9 AGTTCGCGGCGCGCC TLR3_1 1 0.04 0.08 0.00 KJ414384 
TLR3_10 AGTTAGCGACGCGCC TLR3_4 1 0.04 0.08 0.00 KJ414385 
TLR3_11 AGCTAGCGGCACACC TLR3_5 2 0.08 0.08 0.08 KJ414386 
TLR3_12 AATTAGCGGCGCGCC TLR3_6 1 0.04 0.00 0.08 KJ414387 
TLR3_13 AGTTAGCGGCGTGCC TLR3_1 1 0.04 0.00 0.08 KJ414388 
TLR3_14 AGTAAGCGGCGCGCT TLR3_1 1 0.04 0.00 0.08 KJ414389 
TLR3_15 AGTAAGTGGCGCGCT TLR3_7 1 0.04 0.00 0.08 KJ414390 
TLR3_16 AGTTAGCGGCGCACC TLR3_5 1 0.04 0.00 0.08 KJ414391 
TLR3_17 AGTTAGTGGAGCGCC TLR3_8 1 0.04 0.00 0.08 KJ414392 

 1Number of individuals with the allele across all populations 
2Overall frequency in the pooled populations 

 

Supplementary Table S2.2 Haplotypes identified at the five TLR loci in tawny pipit, A. 

campestris, populations. IP = Iberian Peninsula (N = 6), Af = north Africa (N = 6). Only 

variable sites are shown in the sequence. 
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A. campestris 
allele 

Sequence Amino acid 
variant 

N
1 

Freq.
2 

Freq. 
in IP 

Freq. 
in Af 

Genebank 
Accession # 

TLR4_8 CGAGGACTCCCCCAGGGGACTC TLR4_1 4 0.17 0.08 0.25 KJ414393 
TLR4_9 TAACGGCCTCCCCAAGGGACTC TLR4_2 1 0.04 0.08 0.00 KJ414394 
TLR4_10 CGAGGACTCCTCCAGGGAACTC TLR4_3 1 0.04 0.08 0.00 KJ414395 
TLR4_11 GGACGACCCCCCCAGGGAGCTC TLR4_4 1 0.04 0.08 0.00 KJ414396 
TLR4_12 CAACGACTCCCCCAGGGGACTC TLR4_5 1 0.04 0.08 0.00 KJ414397 
TLR4_13 GAACGACCCCCCCAGGGGACTC TLR4_5 1 0.04 0.08 0.00 KJ414398 
TLR4_14 TGACGAGTCCCGCAGGGGACTC TLR4_6 2 0.08 0.17 0.00 KJ414399 
TLR4_15 CAACGACCCCCCCAGGGGACGC TLR4_5 2 0.08 0.08 0.08 KJ414400 
TLR4_16 CGACGACTCCCCCAGGGAGCTT TLR4_4 1 0.04 0.08 0.00 KJ414401 
TLR4_17 GGACGACCCCCGCAGGGGACTC TLR4_5 1 0.04 0.08 0.00 KJ414402 
TLR4_18 TGACGACTCCCGCAGGGGAATC TLR4_4 1 0.04 0.08 0.00 KJ414403 
TLR4_19 CAACGACTCCCGCAGGGGACTC TLR4_5 2 0.08 0.00 0.17 KJ414404 
TLR4_20 CGAGGACCCTCCCAGAGAGCTC TLR4_7 1 0.04 0.00 0.08 KJ414405 
TLR4_21 CGACGACTCCCCCGGGGGACTC TLR4_8 1 0.04 0.00 0.08 KJ414406 
TLR4_22 TAGCGAGTCCCGCAGGGGACTC TLR4_9 1 0.04 0.00 0.08 KJ414407 
TLR4_23 CAACAACTCCCCCAGGAGACTC TLR4_10 1 0.04 0.00 0.08 KJ414408 
TLR4_24 CGACGACTCCCCCAGGGGACTC TLR4_5 1 0.04 0.00 0.08 KJ414409 
TLR4_25 CGAGGACTCCCCGAGGGAACTC TLR4_11 1 0.04 0.00 0.08 KJ414410 
TLR21_6 CCCCTG TLR21_1 1 0.04 0.07 0.00 KJ414411 
TLR21_7 CCTCCG TLR21_1 7 0.29 0.36 0.20 KJ414412 
TLR21_8 CCCCCG TLR21_1 12 0.50 0.33 0.80 KJ414413 
TLR21_9 CCCTCG TLR21_2 1 0.04 0.07 0.00 KJ414414 
TLR21_10 CTCCTG TLR21_3 1 0.04 0.07 0.00 KJ414415 
TLR21_11 CCCCTA TLR21_4 1 0.04 0.07 0.00 KJ414416 
TLR21_12 GCCCCG TLR21_5 1 0.04 0.07 0.00 KJ414417 
Total 62 38   38 33  

 1Number of individuals with the allele across all populations 
2Overall frequency in the pooled populations 

 

Supplementary Table S2.2 (cont.)  
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Supplementary Figures S2.1 – S2.5 Network of TLR haplotypes found in populations 

of Berthelot’s pipits (Yellow: Madeira, Blue: Canary Islands, Green: Selvagens) and in 

tawny pipits (white circles). Each circle represents one haplotype. Connections 

between circles denote the number of nucleotide substitutions needed to change 

from one haplotype to another. Nonsynonymous substitutions are marked in red. 

Haplotype number is denoted beside each circle and size of the circle is proportional 

to the abundance of the haplotype only in Berthelot’s pipits.  

 

Supplementary Figure S2.1 Haplotype network of TLR1LA 
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Supplementary Figure S2.2 Haplotype network of TLR1LB 



Chapter 2: Variation at innate immunity genes 
 
 

60 
 

 

 

 

 

Supplementary Figure S2.3 Haplotype network of TLR3 
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Supplementary Figure S2.4 Haplotype network of TLR4 
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Supplementary Figure S2.5 Haplotype network of TLR21 
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Chapter 3 

Predictors of malaria infection in a wild bird population: 

Landscape level analyses reveal climatic and anthropogenic 

factors.  

A published version of this chapter can be found in Journal of Animal Ecology, 83: 1091-1102 

 

 

 Hen and I catching pipits, photo by Karl Phillips 
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3.1 Abstract 

How the environment influences the transmission and prevalence of disease in a population of 

hosts is a key aspect of disease ecology. The role that environmental factors play in host-

pathogen systems has been well studied at large scales, i.e. differences in pathogen pressures 

among separate populations of hosts, or across land masses. However, despite considerable 

understanding of how environmental conditions vary at fine spatial scales, the effect of these 

parameters on host-pathogen dynamics at such scales has been largely overlooked. Here we 

used a combination of molecular screening and GIS-based analysis to investigate how 

environmental factors determine the distribution of malaria across the landscape in a 

population of Berthelot’s pipit (Anthus berthelotii, Bolle 1862) on the island of Tenerife (Canary 

Islands, Spain) using spatially explicit models that account for spatial autocorrelation. 

Minimum temperature of the coldest month was found to be the most important predictor of 

malaria infection at the landscape scale across this population. Additionally, anthropogenic 

factors such as distance to artificial water reservoirs and distance to poultry farms were 

important predictors of malaria. A model including these factors, and the interaction between 

distance to artificial water reservoirs and minimum temperature, best explained the 

distribution of malaria infection in this system. These results suggest that levels of malaria 

infection in this endemic species may be artificially elevated by the impact of humans. Studies 

such as the one described here improve our understanding of how environmental factors, and 

their heterogeneity, affect the distribution of pathogens within wild populations. The results 

demonstrate the importance of measuring fine scale variation - and not just regional effects - 

in order to understand how environmental variation can influence wildlife diseases. Such 

understanding is important for predicting the future spread and impact of disease and may 

help inform disease management programmes as well as the conservation of specific host 

species.  



Chapter 3: Predictors of malaria infection in a wild bird population 
 
 

65 
 

3.2 Introduction 

Understanding how ecological variables influence the prevalence and transmission of disease 

in a population is a key issue in ecology (Hudson 2002). This is especially important at a time 

when climate and anthropogenic habitat changes are dramatically affecting the distribution of 

pathogens and their hosts (Garamszegi 2011), and the number of emerging infectious diseases 

of wildlife is increasing (Daszak 2000). Establishing how biotic and abiotic factors influence the 

distribution of disease is important if we are to predict the spatial patterns of future disease 

threats and effectively manage their impact on biodiversity. Some recent studies have 

assessed how environmental variables affect pathogen distribution across landscapes in wild 

populations (Wood et al. 2007) and identified relationships have been used to predict where 

pathogens are likely to survive and/or disease outbreaks to arise (Murray et al. 2011). 

However, such studies have normally been done at coarse scales (but see Eisen & Wright 2001 

and Wood et al. 2007 for exceptions),  thus the effects of fine scale environment variation on 

the distribution of pathogens has been largely overlooked. Studies at finer spatial scales are 

now required to provide insight into why pathogens typically have patchy distributions within 

a landscape.  

Haemosporidian parasites, such as species of the genera Plasmodium, Haemoproteous and 

Leucocytozoon (hereafter termed malaria for simplicity), are intracellular protozoan blood 

parasites transmitted by blood sucking invertebrates that occur in every continent apart from 

Antarctica (Valkiünas 2005). In humans, malaria is a major public health problem with more 

than 200 million cases and more than one million deaths each year (Chuang & Richie 2012). 

Malaria also infects other vertebrates including reptiles, turtles, birds and other mammals, 

reducing their survival and fitness (Martinsen et al. 2008). 

The vector-transmitted nature of malaria and the need for specific conditions to complete 

parasite development means that transmission, and therefore patterns of infection, are highly 

dependent on environmental factors (Guthmann et al. 2002). A number of key abiotic 

variables can affect the distribution of malaria. Temperature has considerable effects (Sehgal 

et al. 2011) because sub-optimal temperatures are associated with slower parasite 

development (Valkiünas 2005; LaPointe et al. 2010) and reductions in vector density (Gilioli & 

Mariani 2011). Elevation influences malaria through its negative correlation with temperature 

(Balls et al. 2004; LaPointe et al. 2010; Lapointe et al. 2012). Water availability is important 
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because of the role it plays in vector larval development (Gilioli & Mariani 2011) and rainfall 

has been shown to be correlated with malaria prevalence (Galardo et al. 2009), as has distance 

to bodies of water independent of rainfall (Wood et al. 2007). In areas where precipitation is 

low, topography may also play an important role in water accumulation and therefore vector 

abundance (Balls et al. 2004). Topography might also affect vector dispersal and therefore host 

detection by vectors. Biotic variables, including host life-history traits and demographic factors, 

may also affect the distribution and transmission of malaria. Malaria prevalence has been 

shown to be positively associated with host density (Ortego & Cordero 2010), but negatively 

correlated with non-host species density because of the dilution effect these have on the 

transmission of the disease (Nah et al. 2010).  

Anthropogenic activities such as animal husbandry and urbanisation can also affect the 

prevalence of malaria (Patz et al. 2000). One such factor that has been little explored is the 

influence of livestock on the transmission of malaria. If livestock serve as a reservoir of malaria, 

their presence might increase prevalence within taxonomically similar local fauna - though this 

will depend on the host-specificity of the malaria strains involved (Beadell et al. 2009). On the 

other hand, livestock could dilute malaria transmission by providing non-host blood meals to 

vectors (Nah et al. 2010). At another level, livestock farms could increase prevalence by 

altering the local environment, for example by providing water reservoirs suitable for vector 

development or by facilitating transmission through aggregations of wild animals attracted to 

the farms. Urbanisation may also have an impact on malaria prevalence, contingent on the 

degree of urban adaptation of host species (Bradley & Altizer 2007), and on the extent to 

which such areas provide suitable habitats for vector development (Guthmann et al. 2002).  

Assessing and comparing the roles of the environmental variables potentially influencing 

malaria prevalence is challenging, and their importance may vary between different vector 

species, strains of malaria, and hosts species. Avian malaria occurs in most bird species 

(Valkiünas 2005) and can have a heterogeneous spatial distribution even within a single host 

population (Eisen & Wright 2001; Wood et al. 2007; Lachish et al. 2011). Infection can have 

negative effects on individual fitness (Marzal et al. 2005; Knowles et al. 2010), and is thought 

to have contributed to the decline and extinction of several bird species (Van Riper et al. 

1986). Finally, because of their relatively high density, distribution throughout the landscape 

(often occurring in both pristine and anthropogenic habitats) and the ease with which they can 
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be sampled, avian species provide excellent models in which to investigate the causes and 

consequences of malaria transmission in natural systems (Ricklefs et al. 2004). 

Berthelot’s pipit (Anthus berthelotii) is a sedentary passerine endemic to the Macaronesian 

archipelagos. On Tenerife (Canary Islands, Spain, Fig. 3.1) the pipit is numerous and 

widespread, inhabiting open, semi-arid habitats from sea level up to mountainous habitats at 

elevations of 3700 m. Importantly it is host to significant levels of a restricted number of avian 

malaria strains (Illera et al. 2008; Spurgin et al. 2012) - thus making analyses tractable. This 

population, therefore, provides an excellent study system with which to assess how ecological 

and landscape factors influence malaria prevalence in a wild population.  

The aim of the present study was to use a combination of molecular disease screening of 

individuals and fine scale GIS analysis of the habitats in which they were sampled to: (i) 

determine how the environment modulates the prevalence of malaria, and (ii) assess the 

relative importance of anthropogenic, natural, biotic and abiotic environmental factors on the 

presence of malaria in pipits across the landscape. 

3.3. Methods 

3.3.1. Sampling 

To obtain a representative sample of the pipit across its entire range and all environmental 

gradients on Tenerife, a 1 km2 grid was laid over a map of the island obtained from Google 

Earth in ArcGIS version 10 (Esri 2011, Redlands, CA, www.esri.com). Most accessible square 

kilometres that contained habitat suitable for pipits were visited and whether or not pipits 

were present was recorded; where present, an attempt was made to catch at least one pipit 

per km2 using clap nets baited with Tenebrio molitor larvae. Each captured bird was ringed and 

blood samples were taken by brachial venipuncture and stored in 100% ethanol in screw cap 

micro-centrifuge tubes at room temperature. We made every effort to ensure our sampling 

represented as wide an area of the island as possible and that the spatial coverage was not 

temporally confounded, hence avoiding potential spatial bias in our detection of malaria due 

to the epidemiology of the disease. The effect of sampling day on the presence of malaria was 

tested prior to subsequent analyses, and no significant effect was found.  
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Figure 3.1 Location of Tenerife in the Atlantic Ocean, and Tenerife map insets. The top inset 

shows the major zonation of habitats categorized by topography and rainfall regime: dark 

grey = dry areas, generally found from sea level up to 1200 metres above sea level (masl); 

medium grey = forests at elevations ranging from 1200 to 2400 masl; light grey = wetter areas 

ranging from sea level to 1200 masl; and white = Teide, a high elevation habitat mainly 

composed of open areas and some scattered shrubs, from 2400 to 3700 masl. Note that this 

classification is only for illustrative purposes and a higher resolution subdivision of this habitat 

classification was used in the analyses (see methods). The lower inset shows the locations 

where pipits were caught, red dots indicate pipits infected with Plasmodium LK6, and green 

dots show healthy individuals. Crosses indicate locations of poultry farms and grey circles 

represent the artificial water bodies accounted for in this study.  
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3.3.2. Molecular procedures 

Genomic DNA was extracted from blood using a salt extraction method (Richardson et al. 

2001). The sex of each bird was determined by polymerase chain reaction (PCR) as described in 

Griffiths et al. (1998). Only DNA samples that successfully amplified the sex specific markers 

were used in the malaria screening. Avian malaria was screened using the nested PCR method 

described by Waldenström et al. (2004). All samples were screened at least twice and only 

samples that amplified twice and were verified as malaria through sequencing were taken to 

be infections. PCR products were sequenced using BigDye terminator reaction kit (Perkin Elmer 

Inc. Waltham, MA, USA) and products were run on an automated sequencer (ABI PRISM 3700, 

Applied Biosystems, Carlsbad, USA). Sequences were visually checked and aligned using 

BIOEDIT version 7.0.9 (Hall 1999) to sequences from the National centre for Biotechnology 

Information (NCBI) GenBank database and the MalAvi database for avian malaria (Bensch et al. 

2009).  

3.3.3. Environmental variables 

Environmental variables were selected on the basis of their hypothesised importance (gleaned 

from the literature) in explaining malaria prevalence and, based on the most likely associated 

mechanism (Table 3.1), assigned to one of four different categories as follows: (1) Natural 

abiotic: minimum temperature of the coldest month (MINTEMP), precipitation 

(PRECIPITATION), aspect (ASPECT), slope (SLOPE) and altitude (ALTITUDE), (2) Natural biotic: 

vegetation type (VEGTYPE) and pipit density (DENSITY), (3) Anthropogenic abiotic: distance to 

nearest artificial water reservoir (DISTWATER), distance to urban site (DIST_URB) and distance 

to nearest livestock farm (DISTFARM), and (4) Anthropogenic biotic: distance to nearest 

poultry farm (DISTPOUL). Prior to selecting MINTEMP preliminary analyses were performed 

with different temperature metrics by exploring their effects using single-predictor models and 

in full multi-predictor models (see ‘statistical analyses’ section below) in order to select the 

one that is most predictive. DISTWATER was investigated as a potential predictor of malaria 

because in Tenerife rainfall is very scarce and natural permanent bodies of water are almost 

non-existent. Artificial water reservoirs are, therefore an important source of water for the 

island population, and are abundant and widespread across the island. In total, we accounted 

for 14184 artificial water reservoirs with areas ranging from 0.8 to 130084 m2 (mean=338.7 

m2). DISTFARM was calculated as an alternative predictor to DISTPOUL in order to separate the 

effects of farms into the abiotic effects derived from the farming infrastructure (such as 
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presence of standing water and warm environments that promote vector development and 

survival) from the biotic effects of poultry as potential reservoirs for avian malaria. 

3.3.4. GIS analyses 

All environmental variable calculations and resampling were carried out in ArcGIS version 10 

and R (R Development Core Team 2011). The environmental variables MINTEMP, ALTITUDE, 

SLOPE, ASPECT, PRECIPITATION, VEGTYPE and DENSITY, were calculated within 50 m, 100 m 

and 200 m radii buffers around each point where a bird had been caught in order to carry out 

a sensitivity analysis into the scale-dependence of their effects (see below). In each case an 

area-weighted mean was calculated within each buffer. Climatic variables (MINTEMP and 

PRECIPITATION) were obtained from the WorldClim database (Hijmans et al. 2005) at a 

resolution of 30 arc seconds (1 km). Topographic variables (ALTITUDE, SLOPE, ASPECT) at a 

resolution of 90 m were calculated from digital elevation models obtained from the Shuttle 

Radar Topography Mission Digital Elevation Database version 4.1 (Consortium for Spatial 

Information, www.cgiar-csi.org). Vegetation data were obtained from GRAFCAN (Cartográfica 

de Canarias S.A., www.grafcan.com (Del-Arco et al. 2006) and were used to calculate 

proportional areas of each of five categories of VEGTYPE (forest, grass, shrub, rock associated 

and urban associated vegetation) within each buffer and each bird was assigned the majority 

vegetation type within the surrounding buffer.  

Distance variables (DISTWATER, DIST_URB, DISTFARM, and DISTPOUL) were calculated by 

overlaying the layer for pipit location points over polygon layers for: artificial water reservoirs, 

urban areas, and the position, species and census of livestock farms from the government of 

Tenerife (http://www.tenerife.es/planes/). For each variable the ‘proximity’ tool of the 

analysis extension of ArcGIS 10 was used to calculate the distance to the nearest relevant 

feature for the variable concerned. Right-skew in all our distance variables was successfully 

removed using a log10-transformation. 

An index of pipit density (DENSITY) was calculated as the number of pipits per square 

Kilometre, based on our geo-referenced records of pipit presence, using the ‘density’ tool of 

the spatial analyst extension in ArcGIS 10, with a neighbourhood size of 2500 m radius around 

the centre of each square Kilometre sampling cell.  This index was used to reflect the size of 

the subpopulation of pipits found in the same area as the sampled pipit and thus to provide a 

measure of the local conspecific host population.  

http://www.tenerife.es/planes/
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Predictor Abbreviation Units (range)/possible values Mechanisms relevant to malaria infection 

Altitude ALTITUDE Meters (0-2338) Parasite rate of development and vector abundance are 
lower at higher elevations. 

Precipitation PRECIPITATION Millimeters (254-567) Water availability is important for vector development at 
larval stage. 

Minimum temperature of the coldest month MINTEMP Degrees Celsius (1-14.6) Parasite rate of development and vector abundance are 
higher at warmer temperatures. 

Aspect ASPECT N, NW, W, SW, S, SE, E, NE  Orientation of a surface influences temperature and 
persistence of temporal puddles that might form after 
rainfall. It may also affect vector dispersion. 

Slope SLOPE Degrees (0.2-35) Drainage is greater on steep terrain, which could affect 
the availability of water and vector dispersion. 

Distance to nearest artificial water reservoir DISTWATER Meters (0-5209) Natural water bodies are very scarce on Tenerife, with 
artificial water pools providing the main source of still 
water for vector development. 

Distance to nearest poultry farm DISTPOUL Meters (27-20853) Avian malaria can infect poultry. The LK6 strain prevalent 
in pipits is a generalist strain that could potentially infect 
poultry. 

Distance to nearest livestock farm DISTFARM Meters (82-10767) Livestock farms facilitate atypical aggregations of host 
birds and can also provide habitats for vectors. 

Distance to urbanized sites DIST_URB Meters (0-2326) Urbanized sites might provide small artificial habitats (still 
water, drains etc) for vector larvae development. 

Pipit density DENSITY Individuals per km
2
 (0.05-1) Host density affects the transmission dynamics of 

infectious diseases. 
Vegetation type VEGTYPE Forest, rock-associated, urban-

associated, grass, shrub 
Different types of vegetation vary in their provision of 
suitable habitat for both host and vector.   

 

Table 3.1 The variables explored in relation to malaria infection in Berthelot’s pipits on Tenerife, with a summary of biological mechanisms that 

explain their potential relevance.  Note that the distance variables were log transformed prior to fitting models. 
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3.3.5. Statistical analyses 

The relative importance of natural abiotic, natural biotic, anthropogenic abiotic, and 

anthropogenic biotic predictors in influencing prevalence of malaria was assessed using both 

non-spatial binomial generalized linear models (GLM), and spatial autologistic models 

(Augustin et al. 1996). We implemented a model selection approach (Burnham & Anderson 

2001) to compare the relative fit of competing models, or sets of models, using Akaike’s 

information criterion (AIC) as the measure of model fit. Model selection is a valuable 

alternative to traditional null hypothesis testing, is considered more robust than stepwise 

approaches (Johnson & Omland 2004; Whittingham et al. 2006; Burnham et al. 2011; 

Dochtermann & Jenkins 2011), and has increasingly been used in the last few years, especially 

in disease ecology (Moore & Borer 2012; Manzoli et al. 2013). The a priori selection of 

predictors based on the known ecology of the organisms that are the focus of this study 

ensure that only a biologically meaningful subset of all the possible predictors (just nine) that 

could have been tested is used. As such, the testing of all combinations of these nine 

predictors follows the same rationale as used by Whittingham et al. (2006) (see for example 

Stokke et al. 2008; Dochtermann & Jenkins 2011). We performed three sets of modelling 

procedures, nested within each of our two modelling methods (non-spatial binomial GLMs and 

spatial autologistic models), one for each buffer radius (50 m, 100 m, and 200 m), hence 

performing a sensitivity analysis of potential scale-dependent effects of buffer radius on our 

results. For each of our three model sets, distance based environmental variables (DISTWATER, 

DIST_URB, DISTFARM, and DISTPOUL) remained invariant. The results obtained at these three 

sampling scales were very similar (Supplementary Table S3.1), therefore we chose to report 

only the results using the 100-m radius buffer, since this best approximates the territory size of 

Berthelot’s pipit (Juan Carlos Illera Pers Comm.). 

In each of our three model sets, nested within our two modelling methods, the same series of 

modelling steps were repeated. First we compared AICs for single-predictor models. Prior to 

running multi-predictor models, co-linearity between each pair of predictor variables was 

evaluated using pairwise bivariate correlations in PASW Statistics version 18 (SPSS Inc. 2009, 

Chicago, IL, USA www.spss.com). ALTITUDE was highly correlated with PRECIPITATION 

(Pearson’s r = 0.75, p < 0.001) and with MINTEMP (Pearson’s r = -0.98, p < 0.001). 

PRECIPITATION was also correlated with MINTEMP (Pearson’s r = -0.80, p < 0.001). Since these 

three predictors fall into the same natural abiotic category, PRECIPITATION and ALTITUDE 



Chapter 3: Predictors of malaria infection in a wild bird population 
 
 

73 
 

were removed on the basis that MINTEMP had the lowest AIC of the three among single-

predictor models (Table 3.2). In line with our rationale for a priori selection of predictors, 

biologically meaningful 2-way interactions of these predictors were also explored for their 

effects on malaria distribution. The interaction terms we considered are listed in 

supplementary Table S3.2. First we ran models of the biologically meaningful two-way 

interactions with their main effects and compared the AIC of each with the corresponding 

model containing only the two main effects. Only the interactions that reduced the AIC by 2 

units were included in the final model selection approach as extra predictors. These 

interactions were: MINTEMP*DISTWATER, MINTEMP*DISTFARM, MINTEMP*DISTPOUL, 

DISTWATER*DIST_URB, DISTPOUL*DISTFARM and DISTPOUL*DIST_URB (Table S3.2). We ran 

all possible combinations of the nine predictors and six interaction terms, recorded the AIC, 

AIC (the difference between the best model’s AIC and that of the model in question), Akaike 

weights (a measure of the relative explanatory value of the model, compared to all possible 

ones). We considered models with AIC ≤ 2 as having sufficient support (Burnham & Anderson 

2001). To estimate the relative importance of predictors we performed model averaging on 

the models with AIC ≤ 2. All modelling calculations were performed using the package 

MuMIn in R (Barton 2013). 

Spatial autocorrelation in model residuals is common in biological processes that are 

geographically structured and may bias model parameter estimates if it is not accounted for 

because it violates the assumption of independently and identically distributed errors 

(Dormann et al. 2007). For our binomial generalized linear models (GLM), we checked for 

spatial autocorrelation in the model residuals by calculating Moran’s I coefficients at 1000 m 

distance classes and generating a correlogram using the package ncf in R (Bjornstad 2012). 

Autologistic regression modelling (Augustin et al. 1996) was implemented to account for the 

observed spatial autocorrelation by including an autocovariate to assume spatial 

autocorrelation up to a maximum of 1000 m. This autocovariate was calculated following 

Dormann et al. (2007) using the R package spdep (Bivand 2012). Residual spatial 

autocorrelation was found to be absent from these autologistic models. The R package fmsb 

(Nakazawa 2012) was used to calculate the Nagelkerke R2. 
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3.4. Results 

3.4.1. Pathogen screening 

In total 388 Berthelot’s pipits were sampled between January and April 2011 (Fig. 3.1). Malaria 

was detected in 156 out of 388 individuals (40.2%). Of these 156 individuals, 14 (9%) were 

infected with Leucocytozoon, while Plasmodium was detected in 148 (95%), with six birds 

(3.8%) infected with both genera. None of the birds was infected with the genus 

Haemaproteus. Three strains of Plasmodium were detected; LK6 and LK5 -first described in the 

Lesser kestrel (Falco naumanii) (Ortego et al. 2007) - were detected in 139 and seven 

individuals, respectively, while KYS9 - first isolated from Culex pipiens mosquitoes (Inci et al. 

2012)- was found in two individuals. Two strains of Leucocytozoon were detected; REB11 

(previously found in several passerine species in Nigeria, Hellgren et al. 2007) in 12 individuals 

and ANBE1 (previously detected in Berthelot's pipits, Spurgin et al. 2012) in two. The two 

genera of malaria detected (Plasmodium and Leucocytozoon) are transmitted by different 

types of vectors with different ecological requirements (See for example van Rooyen et al. 

2013). Furthermore, the vectors for Plasmodium LK5 and LK6 are unknown; therefore, we ran 

preliminary analyses and found that models which included all strains had a lower fit than 

models that included only Plasmodium LK6. For these reasons, only birds infected with the 

most common strain, Plasmodium LK6, which accounted for 139 out of 156 (89.1%) of all 

infections, were included as infected in the analyses.  

3.4.2. Models and spatial analyses 

Single-predictor GLMs showed that minimum temperature of the coldest month (MINTEMP) 

best predicted malaria infection in pipits, followed by distance to nearest poultry farm 

(DISTPOUL). The GLMs with 2-way interactions and their main effects showed that the 

interaction of MINTEMP and DISTPOUL best explained malaria infection in this population, 

closely followed by the interaction of MINTEMP and distance to nearest water reservoir 

(DISTWATER) (Table 3.2). For autologistic models the relative importance of single predictors 

remained unchanged after accounting for spatial autocorrelation. However, for autologistic 

models fitting 2-way interactions, the interaction of MINTEMP and DISTWATER was best fit, 

followed by the model with the interaction of MINTEMP and DISTPOUL (Table 3.2). Since the 

autologistic models consistently resulted in a better fit (lower AIC) than the GLMs, the 

following sections refer only to the results of the spatial autologistic models. 
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 Nonspatial Spatial 

Predictor coefficient R2 p-value AIC Rank coefficient R2 p-value AIC Rank 

MINTEMP 0.201 0.078 <0.001 487.6 1 0.167 0.129 0.001 473.9 1 

DISTPOUL -1.111 0.065 <0.001 491.4 2 -0.920 0.122 0.001 476.1 2 

ALTITUDE -0.001 0.057 0.001 493.8 3 -0.001 0.118 0.005 477.3 3 

PRECIPITATION -0.006 0.052 <0.001 495.2 4 -0.004 0.109 0.006 480.1 4 

DISTWATER -0.475 0.024 0.010 503.3 5 -0.444 0.101 0.021 482.5 5 

DISTFARM -0.664 0.020 0.020 504.7 7 -0.605 0.097 0.043 483.7 6 

DENSITY 1.150 0.020 0.018 504.6 6 0.688 0.089 0.179 486.1 7 

VEGTYPE 15 0.022 1.000 509.8 10 15 0.106 1.000 486.9 8 

DIST_URB -0.195 0.003 0.362 509.4 9 -0.211 0.086 0.346 487.1 9 

SLOPE -0.034 0.006 0.194 508.5 8 -0.019 0.085 0.480 487.4 10 

ASPECT -0.034 0.072 0.930 503.3 5 0.169 0.126 0.673 488.8 11 

2-way interaction           

MINTEMP*DISTWATER 0.590 0.138 0.001 473.2 2 0.550 0.183 0.003 460.6 1 

MINTEMP*DISTPOUL 0.476 0.138 0.010 472.9 1 0.445 0.176 0.012 462.9 2 

MINTEMP*DISTFARM 0.504 0.108 0.028 482.5 4 0.593 0.165 0.018 466.7 3 

DISTPOUL*DISTFARM -2.188 0.110 0.004 481.9 3 -1.854 0.152 0.015 470.7 4 

DISTPOUL*DIST_URB -1.412 0.088 0.011 488.5 5 -1.261 0.139 0.030 474.8 5 

DISTWATER*DIST_URB -1.046 0.053 0.008 498.1 6 -0.858 0.118 0.038 481.4 6 

 

Table 3.2 Summary of generalized linear (non-spatial) and autologistic (spatial) models predicting presence of Plasmodium 

LK6 infection in Berthelot’s pipits on Tenerife, fitting single environmental predictor variables on their own or biologically 

meaningful 2-way interactions and their main effects (where fitting the interaction lowers AIC by ≥2 compared with the 

model fitting only main effects). AIC, p-value, Nagelkerke R2 and rank order of predictors based on AIC are shown. 
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In the multiple-predictor spatial models, the best fit model contained DISTWATER, DISTPOUL, 

MINTEMP and the interaction of MINTEMP and DISTWATER. Main effects of DISTPOUL and 

DISTWATER were negatively associated with malaria presence while the main effect of 

MINTEMP and the interaction of MINTEMP and DISTWATER had a positive effect (Fig. 3.2). 

AIC was ≤ 2 in 12 other models, all of which contained MINTEMP, DISTWATER, DISTPOUL and 

the interaction of DISTWATER and MINTEMP (Table 3.3). Model averaging of the top 13 

models showed that DISTPOUL, DISTWATER, MINTEMP and the interaction of DISTWATER and 

MINTEMP all had a relative importance of 1, while the other predictors and interaction terms 

had a relative importance lower than 0.37 (Table 3.3). 

We investigated the relative importance of each predictor individually within the complete 

candidate set, by calculating the Akaike weight (wi) of all possible models where the predictor 

is present. Models containing MINTEMP had a wi of 0.332, while models containing 

DISTWATER had a wi of 0.214 and models with DISTPOUL had a wi of 0.223. Models for the 

remaining predictors had a wi lower than 0.076 (Table 3.4). 

The results of all possible autologistic models representing different categories of 

environmental variables (biotic, abiotic, anthropogenic and natural) are summarized in table 

3.5. The best fit model (lowest AIC) was the abiotic model containing the interaction of 

DISTWATER and MINTEMP. 
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Figure 3.2 Plots of predicted probabilities derived from the logistic regression 

models of minimum temperature of the coldest month, distance to nearest artificial 

water reservoir and distance to nearest poultry farm with Plasmodium LK6 infection 

status as the response variable. Histograms show frequency of healthy (lower end) 

and infected (upper end) individuals at each 100 m distance class. 
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Model  
rank 

(Intercept) DISTPOUL DISTWATER MINTEMP DIST_URB DISTFARM DENSITY SLOPE 
DIST_URB*    
DISTPOUL 

DISTFARM* 
DISTPOUL 

DISTFARM* 
MINTEMP 

DISTPOUL* 
MINTEMP 

DISTWATER* 
MINTEMP 

R2 AIC AIC 

1 17.486 ** -0.694 * -7.245 ** -1.269 **        0.575 ** 0.202 456.60 0.00 

2 17.637 ** -0.719 * -7.530 ** -1.315 **   0.356        0.592 ** 0.207 456.96 0.36 

3 27.409 ** -3.883  -6.905 ** -2.055 *       0.254  0.547 ** 0.206 457.17 0.57 

4 27.220 ** -3.811 -7.177 ** -2.074 *   0.349       0.247  0.563 ** 0.211 457.59 0.99 

5 16.826 ** -0.779 ** -7.177 ** -1.268 ** 0.354      0.567 ** 0.204 457.84 1.24 

6 30.786 * -0.817 ** -6.214 * -2.330 * -5.270     0.433  0.490 * 0.210 457.93 1.33 

7 17.808 ** -0.706 * -7.372 ** -1.318 **  0.401      0.590 ** 0.203 458.13 1.53 

8 14.317 * 0.290  -7.534 ** -1.319 **   2.250    -0.571    0.594 ** 0.209 458.17 1.57 

9 17.884 ** -0.669 * -7.304 ** -1.295 **   -0.018     0.579 ** 0.203 458.19 1.59 

10 18.017 ** -0.732 * -7.693 ** -1.373 **   0.372  0.462      0.610 ** 0.208 458.34 1.74 

11 28.880 ** -4.233  -7.048 ** -2.200 *  0.502     0.280  0.563 ** 0.208 458.45 1.85 

12 9.549 1.251  -6.928 ** -1.218 ** 2.861    -0.767   0.550 ** 0.208 458.47 1.87 

13 17.147 ** -0.777 * -7.450 ** -1.309 **   0.318  0.253       0.585 ** 0.208 458.59 1.99 

Averaged 20.32 * -1.341  -7.197 ** -1.565 *   0.673  -0.719                 0.452  -0.016  -0.57  -0.767  0.433  0.257  0.569 **    

Relative  
importance 

1 1 1   0.37 0.25                     0.18 0.06 0.06 0.05 0.07 0.24 1    

 

Table 3.3 Coefficients of predictors with significant p values designated by asterisks (* <0.05, ** <0.01) included in the multi-predictor autologistic 

regression models with AIC ≤ 2 when compared to the best fit model. Model Nagelkerke R2 values, averaged coefficients for each variable and their 

relative importance are shown. 
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3.5. Discussion 

By measuring variables at a fine landscape scale in an avian malaria-host system, we found 

evidence that specific environmental factors influenced the distribution of malaria in a wild 

population. The minimum temperature of the coldest month (MINTEMP) was the most 

important predictor of the prevalence of Plasmodium LK6 in pipits in Tenerife (birds in 

locations with a higher minimum temperature were more likely to be infected). Anthropogenic 

factors, such as distance to artificial bodies of water (DISTWATER) and distance to poultry 

farms (DISTPOUL) were also shown to be important predictors, both being negatively 

correlated with presence of malaria. Finally, there was a strong positive effect of the 

interaction between temperature and distance to artificial water reservoirs on the distribution 

of malaria in this study system. The model selection approach that confronted models in 

different categories also suggests that abiotic factors are more important than biotic factors in 

determining the spatial distribution of malaria in this system. 

Natural abiotic factors have been shown to play a major role in the prevalence and 

transmission of malaria (Van Riper et al. 1986; LaPointe et al. 2010; Sehgal et al. 2011). 

MINTEMP was the best single predictor of Plasmodium LK6 infection in our system, which is 

Predictor wi Rank 

MINTEMP 0.332 1 

DISTPOUL 0.223 2 

DISTWATER 0.214 3 

DISTFARM 0.076 4 

DIST_URB 0.044 5 

DENSITY 0.038 6 

SLOPE 0.034 7 

VEGTYPE 0.022 8 

ASPECT 0.001 9 

 

Table 3.4 Summed Akaike weights (wi) of autologistic models that contain 

each predictor. 
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Model Rank  (Intercept) DISTPOUL DISTWATER MINTEMP DISTFARM 
DISTFARM* 
DISTPOUL 

DISTWATER
* MINTEMP 

R2 AIC AIC 

Abiotic 1 14.558 **  -7.020 ** -1.207 **      0.550 ** 0.18 460.6 0 

Anthropogenic 2 -14.570 * 4.118 *    6.220 *         -1.854 *  0.15 470.7 10.1 

Natural 3 -2.932 **   0.167 **   0.13 473.9 13.3 

Biotic 4 2.198 * -0.920 **     0.12 476.1 15.5 

 

Table 3.5 Summary of separate best-fit multi-predictor autologistic models for the effect of each of four environmental variable categories 

(biotic, abiotic, natural, and anthropogenic) on the presence of Plasmodium LK6 in Berthelot’s pipits. We compared all possible models 

containing variables for each category in turn. Coefficients of predictors with significant p values designated by asterisks (* <0.05, ** <0.01), 

as well as the AIC and Nagelkerke R2 of the best fit model for each category are shown.  
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consistent with previous studies showing that temperature is positively correlated with the 

sporogonic development rate of Plasmodium parasites (LaPointe et al. 2010) and with vector 

abundance (Van Riper et al. 1986). This result is also in accordance with earlier work on pipits 

in Tenerife indicating a very low prevalence of malaria at high altitudes (> 1600 m, Spurgin et 

al. 2012) with lower minimum temperatures.  

Other abiotic natural variables that have been identified as predictors of malaria are the 

topographic variables of aspect and slope, which affect the presence and persistence of 

temporary wet habitats that are essential for vector productivity in areas where permanent 

natural bodies of water are scarce (Balls et al. 2004; Githeko et al. 2006; Cohen et al. 2008), 

and might also affect vector dispersal. However, in the present study we found no indication 

that either slope or aspect was important for malaria prevalence. This could be due to the 

volcanic nature of soils in Tenerife (Fernandez-Caldas et al. 1982), which are highly permeable 

and unlikely to hold water long enough to form temporary puddles of water that would allow 

for larval development.  Furthermore, topography might not be a major factor for the dispersal 

of the malaria vectors in our study system. 

Malaria prevalence has also been shown to be correlated with precipitation levels (Galardo et 

al. 2009; Bomblies 2012), but this is not the case in our study. In Tenerife rainfall is scarce and 

many artificial water pools have been created for agricultural and other purposes. That 

DISTWATER is a predictor of malaria infection, suggests that these reservoirs provide suitable 

habitats for vector larvae development thus facilitating malaria transmission. Previous studies 

have shown artificial water reservoirs, irrigation canals, and dams are important for the 

production of malaria vectors (Fillinger et al. 2004) and that water bodies are closely 

associated with malaria in natural systems (Wood et al. 2007; Lachish et al. 2011). 

Interestingly, we have also found a positive effect of the interaction between DISTWATER and 

MINTEMP, suggesting that the positive effect of MINTEMP on malaria infection probability is 

greater when distance from artificial sources of water is increased. Thus the positive effect of 

higher minimum temperatures on infection is overwhelmed by the greater influence of 

DISTWATER as the latter approaches zero.  We can only speculate why this may be the case. 

One possible explanation is that perhaps in warmer areas the vectors of malaria may be better 

able to survive, disperse and infect birds at a greater distance from the water source they
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originate from. Unfortunately, without knowledge of the vectors involved in this system we 

cannot confirm this assertion. 

Various biotic factors may also influence the prevalence of malaria. Vegetation type can have 

effects on both host and vector (RubioPalis & Zimmerman 1997) but was not found to be an 

important predictor of malaria infection in our analyses. Berthelot’s pipits inhabit open areas 

and are not found in closed canopy forests, such as the laurisilva present in the wetter 

northern parts of the island. Hence, the low apparent importance of habitat may be a result of 

focusing on a specific host species, rather than a pattern general to avian malaria. 

Nevertheless, it is also possible that the vectors of malaria in Tenerife are relatively 

unconstrained by the vegetation cover and might be equally abundant across areas with 

different vegetation types. The identification of the vectors of malaria and comprehensive 

study on their ecology would be needed in order to elucidate this. 

Host density is also expected to affect malaria prevalence because it modifies vector-host 

contact rates. However, while some studies support this prediction (Ortego & Cordero 2010), 

others, including the present study, fail to find a correlation (Bonneaud et al. 2009). It may be 

that our estimate of pipit density, based on the presence/absence of pipits in a square 

kilometre grid is not sufficiently accurate. It is possible that pipit density is more highly 

localized than thought. Furthermore, although adult pipits tend to hold the same breeding 

territories from year to year (Illera & Diaz 2008), it is unknown whether the spatial structure of 

pipit density is constant year-round. Patterns of movement and juvenile dispersal, which are 

not taken into consideration by the present study, could also have important implications for 

the transmission of infectious diseases such as malaria (Altizer et al. 2000). Direct measures of 

host density may provide a better estimate of the effects that pipit density has on malaria 

prevalence; however, such measures would be extremely difficult and time consuming to 

calculate, requiring counts of abundance within each km2 across the year.  

The local density of all vertebrate hosts could potentially have an effect on malaria prevalence. 

Within host communities, some species act as key hosts harbouring parasitic fauna, thus 

altering prevalence in other host species (Hellgren et al. 2011). The malaria strain detected in 

the pipits, Plasmodium LK6, has also been reported in blackbirds and canaries (Phillips 2009), 

species that co-occur with pipits in many areas of Tenerife. Unfortunately, we have no data on 

densities of these two species in order to investigate whether they have an effect on pipit 
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malaria prevalence. A comprehensive study of the prevalence of avian malaria in the bird 

community on Tenerife would be needed to understand the role other bird species might play 

in the prevalence of malaria.  

Human activities have been shown to affect vector-borne diseases including malaria 

(Serandour et al. 2007). Factors such as deforestation, animal husbandry, construction and 

artificial water management modify the ecological balance within which vectors and their 

parasites develop and transmit disease (Patz et al. 2000). Livestock farms have been shown to 

influence the transmission of infectious diseases by facilitating atypical aggregations of wild 

birds including infected individuals both of the focal, and other species (Carrete et al. 2009). 

Conversely, such farms have also been shown to dilute the effect of malaria transmission by 

reducing biting rates on susceptible hosts (Liu et al. 2011). In the present study, distance from 

the nearest poultry farm at which a pipit was caught had a significant negative effect on the 

probability of malaria infection (Fig. 3.1 shows the locations of poultry farms used in the 

analyses and Plasmodium LK6-infected pipits). That there was no effect of distance to nearest 

non-poultry livestock farm, suggests that characteristics of poultry farms that differ from those 

of other livestock farms might be correlated with the transmission of malaria. However, it is 

difficult to disentangle whether the correlation between distance to nearest poultry farm and 

malaria is caused by factors - other than the livestock - that are unique to poultry farms (i.e. 

poultry feed attracting higher densities of birds or poultry attracting ornithophilic vectors) or 

whether the poultry are themselves reservoirs of the disease. The specific LK6 lineage has not 

been reported in poultry (though screening for such lineages in poultry has rarely been 

undertaken), but this strain has been detected in other passerine and non-passerine species 

(Bensch et al. 2009; Phillips 2009), suggesting it is generalist. Moreover, even if the same strain 

of malaria was detected in the poultry we still wouldn’t be able to determine the cause and 

effect, i.e does the higher prevalence of the disease around poultry farms lead to infection in 

the fowl, or vice versa. Unfortunately, despite numerous requests, we were unable to obtain 

permission to sample the fowl within poultry farms.  

Other anthropogenic activities, such as urbanisation, can be important predictors of vector-

borne diseases (Bradley & Altizer 2007) including malaria (Guthmann et al. 2002). For example, 

mosquito species can quickly adapt to urban environments (Antonio-Nkondjio et al. 2011; 

Kamdem et al. 2012) and urbanisation has been shown to increase human malaria prevalence 
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(Alemu et al. 2011). In our analyses, distance to the nearest constructed site was not a good 

predictor of malaria. It may well be that the broad classification of ‘urbanisation’ used in this 

study lacks the resolution to identify the particular characteristics of urbanisation that 

influence malaria prevalence. Given that urban expansion is happening around the world, 

further work to understand its impact on wildlife disease prevalence is warranted.  

While our models have identified key environmental variables associated with malaria 

infection, considerable variation (ca. 80%) remains unexplained. This confirms the view that 

wildlife diseases, such as malaria, are complex and that many different factors, including ones 

not closely linked to environmental gradients, can influence their spatial distribution within a 

host population (Hawley & Altizer 2011). It is especially important to note that host related 

factors, such as individual immunity (and immune variation in the population), host movement 

patterns and stochastic processes that might influence the epidemiology of malaria were not 

accounted for in this study. Furthermore, as the specific vectors that transmit avian malaria in 

Tenerife have not yet been described, we were unable to incorporate an understanding of the 

ecology of these vectors into our analysis.  

One disadvantage of our study is the small sample size in some areas of the island. With larger 

sample spread across all ecological gradients it is possible that effects of other predictors could 

have been detected but this does not undermine the importance of the key predictors found.  

Assessing the role of the environment in the transmission of pathogens in the wild is crucial to 

our understanding of disease dynamics and of the causes and consequences of host-pathogen 

coevolution. The evidence from our study supports previous work which suggests that the 

prevalence of malaria can vary over small spatial scales (Lachish et al. 2011). As with other 

studies we found that temperature was an important predictor of presence of malaria. We 

also found that anthropogenic environmental variables, namely proximity to artificial water 

reservoirs and poultry farms, were also important predictors of malaria in pipits across 

Tenerife. This may, at least in part, reflect the scale at which the study was performed – when 

measured across greater scales the influence of locally important predictors of disease may be 

swamped by regional differences.  Given the probable future increase in human population in 

Tenerife, it is likely that the number of artificial water pools will rise and the intensification of 

farming will occur, thus increasing the prevalence of avian malaria in the population of 

Berthelot’s pipits. 
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This study demonstrates the importance of measuring local fine scale variation, and not just 

regional effects, in order to understand how environmental variation can influence wildlife 

diseases.   
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  50m radius 200m radius 

Model Predictors AIC pval R2 Predictors AIC pval R2 
Altitude ALT 477.3 0.005 0.118 ALT 477.3 0.005 0.118 
Precipitation PRECIP 482.1 0.001 0.102 PRECIP 482.6 0.023 0.101 
Mintemp MINTEMP 473.8 0.001 0.129 MINTEMP 474.0 0.001 0.129 
Aspect ASPECT 481.1 0.010 0.106 ASPECT 480.6 0.008 0.107 
Slope SLOPE 487.4 0.447 0.085 SLOPE 487.2 0.387 0.085 
Water DISTWATER 482.5 0.002 0.139 DISTWATER 482.5 0.002 0.139 
Poultry DISTPOUL 476.1 0.001 0.123 DISTPOUL 476.1 0.001 0.123 
Farm DISTFARM 483.7 0.008 0.118 DISTFARM 483.7 0.008 0.118 
Density DENSITY 486.2 0.181 0.089 DENSITY 487.0 0.320 0.087 
Vegetation VEGTYPE 486.0 0.982 0.109 VEGTYPE 491.9 0.989 0.097 
Construction DIST_URB 482.9 0.063 0.100 DIST_URB 482.9 0.063 0.099 

 

Supplementary Table S3.1 Summary of single-predictor autologistic models for the 50 m and 

200 m radii for the sensitivity analyses. 
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Predictor 1 Predictor 2 
AIC only main 
effects 

AIC  
interaction 

MINTEMP DISTWATER 474.5 460.6 

MINTEMP DISTFARM 475.2 466.7 

MINTEMP DIST_URB 475.9 474.6 

MINTEMP DISTPOUL 468.8 462.9 

MINTEMP SLOPE 475.8 476.2 

DISTWATER DIST_URB 484.5 481.4 

DISTWATER DISTPOUL 476.0 475.6 

DISTWATER DISTFARM 483.1 483.1 

DISTWATER DENSITY 484.1 483.0 

DISTPOUL DISTFARM 477.6 470.7 

DISTPOUL DIST_URB 478.0 474.8 

DISTPOUL DENSITY 476.9 478.8 

ASPECT SLOPE 490.8 501.9 

DISTFARM DENSITY 485.0 486.3 

DENSITY VEGTYPE 486.6 491.4 

 

Supplementary Table S3.2 Biologically meaningful 2-way interactions explored for 

their possible role on the presence of Plasmodium LK6 in Berthelot’s pipits. AIC values 

of autologistic models with the interaction and with only the two main effects are 

shown. The interactions that reduced the AIC by 2 units are shown in bold and were 

included in the final model selection approach as extra predictors.   
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Chapter 4 

454 screening of individual MHC variation in an endemic island 

passerine 

 

 
One of the Berthelot’s pipits caught in El Teide ready to fly, photo by Karl Phillips 
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4.1 Abstract 

Genes of the major histocompatibility complex (MHC) code for receptors that are central to 

the adaptive immune response of vertebrates. These genes are therefore an important genetic 

marker in studies of adaptive genetic variation in the wild. Correct assessment of individual 

MHC genetic diversity is essential for understanding the evolutionary processes that shape 

MHC variation. Next generation sequencing (NGS) has increasingly been used in the last 

decade to genotype the MHC. However, NGS methods are highly prone to sequencing errors, 

and although several methodologies have been proposed to deal with this, until recently there 

have been no standard guidelines for the validation of putative MHC alleles. In this study we 

used the 454 NGS platform to screen MHC class I exon 3 variation in a population of the island 

endemic Berthelot’s pipit (Anthus berthelotii). We were able to accurately identify the 

presence of MHC alleles and thus characterise MHC genotypes across 309 individuals with high 

levels of repeatability. We were also able to determine alleles that had low amplification 

efficiencies, whose identification within individuals may thus be less reliable. At the population 

level, we found lower levels of MHC diversity in Berthelot’s pipit than in its widespread 

continental sister species the tawny pipit (Anthus Campestris), and observed trans-species 

polymorphism. Using the sequence data we identified signatures of gene conversion (including 

four gene conversion events), and evidence of maintenance of functionally divergent alleles in 

Berthelot’s pipit. We also detected positive selection at 10 codons. The present study 

therefore shows that we have an efficient method for screening individual MHC variation 

across large datasets in Berthelot’s pipit, and provides data that can be used in future studies 

investigating spatio-temporal patterns and scales of selection on the MHC.  
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4.2 Introduction 

The vertebrate major histocompatibility complex (MHC) is a family of duplicated genes that 

code for molecules that detect pathogens and initiate the adaptive immune response (Wakelin 

1996; Wakelin & Apanius 1997). There are two main classes of MHC genes: class I codes for 

molecules that detect intracellular pathogens and present them on the cell surface, whereas 

class II codes for molecules that recognize extracellular pathogens (Frank 2002). In class I MHC, 

exon 3 encodes most of the peptide binding region (PBR, Bjorkman et al. 1987). The spatial 

configuration of folds and pockets in the PBR allow each MHC molecule to bind a specific range 

of peptides (Chelvanayagam 1996). Therefore, amino acid polymorphisms in the PBR should 

reflect the number of peptides that can be recognized by a cell, and the number and type of 

pathogens an individual can defend itself against (Potts & Wakeland 1990). However, not all 

the different variants within MHC genes will generate molecules that bind different sets of 

pathogens. It has been suggested that MHC variants may be defined into functionally distinct 

‘supertypes’,  grouping  variants which encode for different sequences of amino acids which, 

never-the-less, have similar chemical and physical properties and thus similar binding 

specificities (Sidney et al. 1995). 

The interacting effects of various evolutionary processes results in MHC loci displaying the 

highest levels of genetic variation found in vertebrates (Bodmer et al. 1997; Torimiro et al. 

2006; Mona et al. 2008), with some loci, like the human HLA-B, having more than 2,000 alleles 

(Robinson et al. 2013). Variants at the MHC are created by point mutation and gene 

conversion (Ohta 1995; Edwards & Hedrick 1998; Spurgin et al. 2011). Considering the MHC’s 

direct role in initiating immune reactions to pathogens it is not surprising that the high levels 

of variation, at the individual and population level, are thought to be predominantly 

maintained by pathogen-mediated balancing selection (PMS; reviewed in Spurgin & 

Richardson 2010), although sexual selection (reviewed in Edwards & Hedrick 1998) and other 

mechanisms may also play a role (van Oosterhout 2009). Thus MHC diversity can be extremely 

important at both the individual and population level. 

The characterization of functional MHC alleles and correct assignment of individual genotypes 

are imperative for understanding patterns of adaptive variation in and among wild 

populations, for studying host-pathogen co-evolution (Klein et al. 1994; Sommer 2005), and 

potentially, for informing conservation where maximising such variation may be key to 

population persistence (Ujvari & Belov 2011). However, the presence of multiple gene copies 
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and the sequence similarity among them (Kelley et al. 2005; Cheng et al. 2012) prevents the 

design of locus-specific primers, leading to co-amplification of alleles from multiple loci. 

Traditionally, MHC genotyping has been done by cloning and subsequent sequencing (e.g. Jarvi 

et al. 2004; Alcaide et al. 2008) – a process that is time consuming, especially when applied to 

ecological-scale datasets. Other methods rely on conformational shifts between different 

alleles of the MHC which can be separated by gel electrophoresis (Mwenda et al. 1997; 

Baquero et al. 2006; Worley et al. 2008), but these methods are still time consuming, and, 

unless they include the direct cloning/sequencing of identified variants, they cannot provide 

direct sequence information (Promerová et al. 2012).  

With the introduction of next generation sequencing (NGS) technologies, such as the Roche 

454 pyrosequencing platform (Margulies et al. 2005), it is now possible to obtain sequences 

from individual DNA strands, allowing rapid and efficient parallel sequencing of co-amplified 

alleles. Another advantage of using NGS is the potential for obtaining sequences from a large 

number of identified individuals in a single run by using ‘barcoded’ primers. This allows for the 

subsequent assignment of sequences to individuals during the sequence processing step. Since 

its introduction in 2005, 454 has been widely used to sequence the MHC in a variety of 

organisms (e.g. Kloch et al. 2010; Sepil et al. 2012; Dunn et al. 2013). However, NGS techniques 

are not error free – for example, 454 sequencing is prone to errors, such as insertions, 

deletions and chimeras generated during the two required amplification steps (Meyerhans et 

al. 1990; Bradley & Hillis 1997), and during the pyrosequencing reaction and base calling (Huse 

et al. 2007; Beuf et al. 2012). Consequently, for accurate MHC genotyping it is crucial to 

distinguish artefacts from real alleles (Galan et al. 2010; Sommer et al. 2013). Different 

methods have been proposed to detect sequencing artefacts (Babik et al. 2009; Galan et al. 

2010; Promerová et al. 2012; reviewed in Lighten et al. 2014a), and these methods generally 

rely on thresholds of number of reads that a genuine allele is expected to be represented by. 

However, a problem that these approaches do not address is that alleles differ in their 

amplification efficiency, meaning that some alleles will be systematically missed from 

individuals where they are present (Sommer et al. 2013). This ‘allelic dropout’ can inflate 

homozygosities and deflate individual MHC diversity if it is not accounted for (Sommer et al. 

2013). 

Berthelot’s pipit (Anthus berthelotii) is a sedentary passerine endemic to 12 islands across the 

Canary, Madieran and Salvagens archipelagos in the Macaronesian region (Cramp & Perrins 
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1977, Fig. 4.1). Previous work has shown that the population bottlenecks that occurred during 

the colonization of each archipelago (Illera et al. 2007; Spurgin et al. 2014) substantially 

reduced MHC variation in this species (Spurgin et al. 2011). However MHC variation has, at 

least partially, been regenerated largely by gene conversion (Spurgin et al. 2011). Interestingly, 

the pipit populations are exposed to consistent but spatially varying pathogen pressures both 

within (Gonzalez-Quevedo et al. 2014) and among populations (Spurgin et al. 2012). Thus 

these populations provide an excellent system in which to test different evolutionary 

hypothesis on the role of pathogen-mediated selection in shaping the patterns of MHC 

variation at various spatio-temporal scales. Population-level variation at the MHC of 

Berthelot’s pipit has been assessed (Spurgin et al. 2011), but individual level screening within 

populations is needed if we are to investigate the factors that drive MHC variation at different 

scales. With that as our overall aim, here we test the utility of the methods outlined by 

Sommer et al. (2013) to individually sequence MHC class I exon 3 variation in 310 Berthelot’s 

pipits from Tenerife and from 10 tawny pipits (A. campestris), a geographically widespread 

species that is the closest relative of Berthelot’s pipit (Voelker 1999). Using the data generated 

we then compare the levels of MHC variation found in the two species, and test for signatures 

of selection.  

4.3 Methods 

4.3.1 Study species and sampling 

We sampled Berthelot’s pipits on Tenerife, in the Canary Islands, from January to April 2011. 

To obtain a representative sample across the pipits range on Tenerife, a 1 km2 grid was laid 

over a map of the island obtained from Google Earth in ArcGIS version 10 (Esri 2011, Redlands, 

CA, www.esri.com). Most accessible square kilometres that contained habitat suitable for 

pipits were visited and, where present, an attempt was made to catch at least one pipit per 

km2 using clap nets baited with Tenebrio molitor larvae. Each captured bird was fitted with a 

unique metal ring from the Spanish Environment Ministry and a ca. 25 µl blood sample was 

taken by brachial venipuncture and stored in absolute ethanol in a 2 ml screw cap micro-

centrifuge tube at room temperature. The final sample of 388 birds included 30 birds caught 

on the mountain of El Teide on Tenerife (2,500 m above sea level),  a separate population 

which is isolated from the lowlands by dense pine and laurel forest which the pipit does not 

inhabit (Illera 2007). Ten tawny pipits (two from Morocco, three from Mauritania and five from 

the Iberian Peninsula (provided by J.C. Illera) were also screened.  
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4.3.2 MHC genotyping 

DNA was extracted from blood using a salt method (Richardson et al. 2001). Pooling large 

numbers of individuals in a single run can result in highly uneven representation of individuals 

(S. Paterson Pers. Comm.), thus samples were pooled in eight pools of 80 samples each. In 

total, 310 Berthelot’s pipits (including 26 individuals from El Teide) out of the 388 originally 

sampled, and 10 tawny pipits were genotyped at the MHC. We screened each of the 320 

samples twice, and each replicate of a given sample was amplified using different 

combinations of barcoded primers (thus screening a total of 640 amplicons). For the library 

preparation we used forward and reverse fusion primers consisting of the 454 adaptor 

(forward adaptor, 5’-CGTATCGCCTCCCTCGCGCCA-3’ and reverse adaptor, 5’-

Figure 4.1 Distribution of Berthelot’s pipits (Anthus berthelotii) in the 

Macaronesian archipelagos of Madeira, Selvagens and the Canary Islands (Inset), 

and detail of the nine populations from the Canary Islands. 
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CTATGCGCCTTGCCAGCCCGC-3’), followed by a key sequence (TCAG), a 10-bp multiplex 

identifier (MID), and the MHC class I exon 3 specific primers (DG2, 5’-

TTGCGCTCYAGCTCYTTCTGCT-3’ and GENDG, 5’-TCCCCACAGGTCTCCACAC-3’; Spurgin et al 

(2011), Fig. 4.2). The primers used differed only in the MID sequence. MID sequences were 

obtained from the 10-base extended MID set from Roche Diagnostics (454 Life Sciences Corp. 

2009). We chose nine MIDs with at least three base pair differences between them (MID 

numbers 1, 2, 3, 4, 5, 7, 8, 10 and 11). By using these MIDs in the forward and reverse primers 

we had 81 possible combinations with which to barcode individuals within the pools of 80 

samples. We pooled samples so that the two replicates of a sample were present in different 

pools and had a different forward and reverse fusion primer combination. Two strategies were 

implemented in order to reduce the formation of chimeras during the PCR (Lenz & Becker 

2008; Holcomb et al. 2014). First, each of the 640 amplicons screened was generated by two 

independent PCRs that were then pooled in equimolar amounts. Independent amplification 

reactions have been proposed to eliminate PCR bias and random artefacts, because they 

would only occur in one of the replicate reactions (Kanagawa 2003). The second approach was 

the reduction of the number of cycles to the minimum number that provided a clear, well 

defined amplicon when visualised in an agarose gel (27 cycles). This was done because in the 

later stages of PCR dNTP and primer concentrations are reduced, therefore the incomplete 

amplicons work as ‘primers’ by hybridising to the wrong templates due to sequence homology. 

PCRs were performed in 25 µl volumes containing 0.5 µM of each fusion primer, 12.5 µl of 2X 

Roche FastStart master mix and ca. 60 ng of DNA. Thermocycling consisted of an initial 

denaturation at 96°C for 4 mins, followed by 27 cycles of 94°C for 30 s, 61°C for 30 s, and 72°C 

for 60 s, with a final extension of 72°C for 10 mins. PCR products were run on 1.5% agarose 

gels, and amplicons were cut from the gels using a sterile scalpel and purified using a gel 

purification kit (Qiagen). Purified products were quantified using the PicoGreen dsDNA assay 

kit (Life technologies) and pooled in order to get 1.25 ng per sample for each pool of 80 

samples. Emulsion PCR and 454 sequencing were conducted at the Centre for Genomic 

Research at the University of Liverpool. Sequencing was run on a PicoTitre plate (each pool in 

one eighth of the plate) on a GS FLX Titanium system. 

4.3.3 Bioinformatics 

High-quality sequences (Phred quality score > 20 at more than 95% bases) with complete 

forward and reverse MID and primer sequences were assigned to amplicons based on MID 
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combinations. We then followed the workflow outlined by Sommer et al. (2013) to assign 

reads to putative MHC alleles and to identify artefacts based on the assumptions that: 1) 

artefacts are less frequent than their source allele, and 2) artefacts should have a lower intra-

amplicon frequency than any true allele. The workflow consists of three main steps that 

classify variants into ‘putative alleles’, ‘putative artefacts’, and ‘unclassified variants’. In the 

first step, applied to each amplicon independently, reads were assigned to groups of identical 

sequences, hereafter referred to as ‘clusters’. The most frequent cluster within each amplicon 

was classified as a putative allele. Sequences represented by only one read were discarded as 

sequencing artefacts. Clusters were then classified as ‘chimera’, ‘1-2 bp difference’ or ‘>2 bp 

difference’ by comparing their sequences to more frequent clusters within the amplicon (full 

details in Sommer et al. 2013). Chimeras were identified using a Python script that checked, 

within each amplicon, whether a given sequence could, at any point along its length, be 

formed by joining together the forward section of a more frequent sequence with the reverse 

section of another more frequent sequence (further details in Appendix 4.1).  

 

Reverse primers: 

F1=DG2-MID1: 5’- CGTATCGCCTCCCTCGCGCCATCAGACGAGTGCGTTTGCGCTCYAGCTCYTTCTGCT -3’ 

F2=DG2-MID2: 5’- CGTATCGCCTCCCTCGCGCCATCAGACGCTCGACATTGCGCTCYAGCTCYTTCTGCT -3’ 

F3=DG2-MID3: 5’- CGTATCGCCTCCCTCGCGCCATCAGAGACGCACTCTTGCGCTCYAGCTCYTTCTGCT -3’ 

F4=DG2-MID4: 5’- CGTATCGCCTCCCTCGCGCCATCAGAGCACTGTAGTTGCGCTCYAGCTCYTTCTGCT-3’ 

F5=DG2-MID5: 5’- CGTATCGCCTCCCTCGCGCCATCAGATCAGACACGTTGCGCTCYAGCTCYTTCTGCT -3’ 

F6=DG2-MID7: 5’- CGTATCGCCTCCCTCGCGCCATCAGCGTGTCTCTATTGCGCTCYAGCTCYTTCTGCT -3’ 

F7=DG2-MID8: 5’- CGTATCGCCTCCCTCGCGCCATCAGCTCGCGTGTCTTGCGCTCYAGCTCYTTCTGCT -3’ 

F8=DG2-MID10: 5’- CGTATCGCCTCCCTCGCGCCATCAGTCTCTATGCGTTGCGCTCYAGCTCYTTCTGCT -3’ 

F9=DG2-MID11: 5’- CGTATCGCCTCCCTCGCGCCATCAGTGATACGTCTTTGCGCTCYAGCTCYTTCTGCT -3’ 

 

Reverse primers: 

R1=GENDG-MID1: 5’- CTATGCGCCTTGCCAGCCCGCTCAGACGAGTGCGTTCCCCACAGGTCTCCACAC -3’ 

R2=GENDG-MID2: 5’- CTATGCGCCTTGCCAGCCCGCTCAGACGCTCGACATCCCCACAGGTCTCCACAC-3’ 

R3=GENDG-MID3: 5’- CTATGCGCCTTGCCAGCCCGCTCAGAGACGCACTCTCCCCACAGGTCTCCACAC -3’ 

R4=GENDG-MID4: 5’- CTATGCGCCTTGCCAGCCCGCTCAGAGCACTGTAGTCCCCACAGGTCTCCACAC -3’ 

R5=GENDG-MID5: 5’- CTATGCGCCTTGCCAGCCCGCTCAGATCAGACACGTCCCCACAGGTCTCCACAC -3’ 

R6=GENDG-MID7: 5’- CTATGCGCCTTGCCAGCCCGCTCAGCGTGTCTCTATCCCCACAGGTCTCCACAC -3’ 

R7=GENDG-MID8: 5’- CTATGCGCCTTGCCAGCCCGCTCAGCTCGCGTGTCTCCCCACAGGTCTCCACAC -3’ 

R8=GENDG-MID10: 5’- CTATGCGCCTTGCCAGCCCGCTCAGTCTCTATGCGTCCCCACAGGTCTCCACAC -3’ 

R9=GENDG-MID11: 5’- CTATGCGCCTTGCCAGCCCGCTCAGTGATACGTCTTCCCCACAGGTCTCCACAC -3’ 

 

 
Figure 4.2 Fusion primers used for preparation of MHC class I exon 3 amplicons. Nine 

forward and nine reverse primers were used in combination to identify each of 80 

amplicons.   
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The second step of the pipeline compares both replicates of a given individual. Clusters listed 

as ‘chimera’ or ‘1-2 bp difference’ in step one were classified as putative artefacts if they were 

absent from the replicate amplicon. Clusters were also classified as putative artefacts if they 

had been identified as chimeras in both replicates. Clusters classified as ‘>2 bp difference’ 

were only classified as putative artefacts if, across the whole data set, they were unique to a 

single amplicon. All other clusters were retained for further checking in step three. 

In step three, clusters retained on the ‘1-2 bp difference’ list from step two (i.e. those that 

were observed in both replicate amplicons) were classified as putative alleles if they had a 

higher intra-amplicon frequency than any entry in the putative artefact list, and as unclassified 

variants if this criterion was not met. The same process was used on clusters in the ‘>2 bp 

difference’ list when the sequence was also present in the sample’s replicate. Other clusters in 

the ‘>2bp difference’ list were labelled as unclassified variants if present as a putative allele in 

another individual, but as putative artefacts if not. Chimeras retained from step two were 

classified as putative alleles if the same sequence was present as a putative allele in another 

individual; otherwise, retained chimeras were labelled as unclassified variants.  

After completing the pipeline, we further checked the lists of putative alleles, putative 

artefacts and unclassified variants for Berthelot’s and tawny pipits separately. For Berthelot’s 

pipits we discarded sequences classified as putative alleles that occurred in only one individual, 

but pulled out clusters from the unclassified variants list that matched sequences in the list of 

putative alleles. We assessed the frequency of each unclassified variant in the amplified 

samples (the number of individuals they occurred in out of the total of 310), and further 

inspected for the presence of any MHC alleles that had been described in the previous, 

population-level characterisation of MHC variation in Berthelot’s pipits (Spurgin et al. 2011). 

We also inspected the sequences in the putative artefacts list by pulling out sequences that 

matched a putative allele already identified in another individual, and that were also present in 

both amplicons of a bird with an intra-amplicon frequency higher than the least frequent entry 

to the list of putative alleles. 

For tawny pipits we proceeded differently due to the small sample size. If a variant was 

classified as a putative allele in both replicates of only one sample it was kept on the putative 

allele list. If the variant was classified as an allele in only one amplicon but was found in other 

amplicons as an unclassified variant, it was also treated as a putative allele. Finally, for 
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unclassified variants, we pulled out, and classified as alleles, sequences that were present in 

both replicates of at least two birds. For both species, repeatability of genotyping was 

calculated as the percentage of shared alleles between the two replicate amplicons of each 

individual. 

4.3.4 Allele amplification efficiency 

We followed Sommer et al’s (2013) rationale, which assumes that the amplification efficiency 

of an allele is independent of the genotype and similar among PCR products with the same 

conditions, to estimate the relative amplification efficiency of each allele. We used scripts 

provided in Sommer et al. (2013) to perform this calculation in R (R Development Core Team 

2011). We standardised allele amplification efficiencies relative to ANBE11 and ANCA17 for 

Berthelot’s and tawny pipits, respectively. The choice of standardising alleles is arbitrary, as 

our use of degenerate primers means we cannot know which allele is the ‘best’ amplifier in our 

data set. We also calculated a variant of Galan’s T1 (Galan et al. 2010), which uses the lowest 

amplification efficiency to estimate the minimum number of reads per amplicon necessary to 

reach a coverage of 99.9% for a genotype with a given number of alleles (in our case, 12 – the 

maximum number of alleles observed in an individual) and with a minimum number of 2 reads 

per allele. This calculation was done using the R function ‘T1.min.efficiency.replicated’ 

provided in Sommer et al. (2013). Any sample that had a number of reads lower than the T1 

threshold was discarded and not used in downstream analyses.  

4.3.5 MHC sequence analyses 

Using the software DnaSP 5.10.01 (Librado & Rozas 2009), we calculated the number of 

nucleotide differences and nucleotide diversity among sequences for the set of alleles 

identified in each species. In order to investigate the mutation to recombination ratio among 

MHC alleles we calculated the recombination (Rm) and mutation (ɵ) parameters (Hudson & 

Kaplan 1985) and obtained the 95% confidence interval using a coalescent approach with 

10,000 replications. To compare allele diversity between the two species we calculated 

pairwise nucleotide distance using the Nei-Gojobori/Jukes-Cantor method (Nei & Gojobori 

1986) in MEGA 6 (Tamura et al. 2011), and assessed differences using a Mann-Whitney U test. 

To explore phylogenetic relationships among Berthelot’s and tawny pipit MHC class I alleles we 

built a neighbour net with Jukes-Cantor distance between all pairs of alleles using the software 

SplitsTree 4.13.1 (Huson & Bryant 2006). We explored the presence of gene conversion tracts 
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in the MHC class I alleles identified using the following methods: 3Seq (Boni et al. 2007), 

GENECONV (Padidam et al. 1999), MaxChi (Smith 1992), Chimaera (Posada & Crandall 2001) 

and SiScan (Gibbs et al. 2000), all implemented in the software RDP4 (Martin et al. 2010). The 

highest acceptable P-value was set to 0.05, and 100 permutations were performed for all 

methods. Tracts identified by at least two methods were considered true recombination 

events. 

The number of putative functionally different MHC class I alleles was estimated based on the 

amino acid sequences. The codons involved in the peptide binding region (PBR) of the MHC 

class I of Berthelot’s pipits have been identified previously (Spurgin et al. 2011) based on the 

sites known to code for the PBR in humans (Brown et al. 1993). Using the Berthelot’s pipit 

sequences, the rate of non-synonymous (dN) and synonymous (dS) substitutions per site was 

calculated in MEGA 6 (Tamura et al. 2011) using the Nei-Gojobori/Jukes-Cantor method (Nei & 

Gojobori 1986) for: 1) the full exon sequence, 2) the non-peptide binding region (non-PBR), 

and 3) the peptide binding region (PBR). Differences between dN and dS were assessed with 

Mann-Whitney U tests. We did not perform these analyses on tawny pipits because the small 

sample size for this species means that we have likely underestimated the number of alleles.  

In order to identify codon-specific signatures of  positive selection at the  MHC class I across 

the pipit species, four codon-based methods to detect selection based on the dN and dS were 

implemented in the webserver Datamonkey (http://datamonkey.org, Pond & Frost 2005a). 

The fixed effects likelihood (FEL), random effects likelihood (REL) (Pond & Frost 2005b), and 

fast unconstrained Bayesian approximation (FUBAR) (Murrell et al. 2013) were used to detect 

codons under pervasive selection. In addition, the mixed effects model of evolution (MEME) 

(Murrell et al. 2012) was used to detect codons under episodic diversifying selection. Sites with 

Bayes factor > 50 for REL, posterior probabilities > 0.9 for FUBAR and P-values < 0.1 for FEL and 

MEME were considered to have enough support for positive selection. Only sites that were 

detected to be under positive selection by at least two different methods were considered to 

be candidates of evolution under positive selection. Prior to running analyses, the best fitting 

nucleotide substitution model was determined using a model selection approach. All 

sequences identified from both Berthelot’s and tawny pipits were used in this analysis.  

We explored whether MHC alleles found in Berthelot’s pipits could be clustered into 

‘supertypes’ (Doytchinova & Flower 2005) according to the antigen-binding characteristics of 
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either the amino acids in the PBR (fifteen amino acids), or the amino acids that were detected 

as positively selected sites (PSS) by our analysis. Five descriptors were obtained for each amino 

acid (Sandberg et al. 1998): z1 (hydrophobicity), z2 (steric bulk), z3 (polarity), z4 and z5 

(electronic effects). Amino acid descriptors were arranged in a matrix where each row 

represented one unique PBR or PSS sequence and the columns represented the five 

descriptors for each amino acid in the region being analyzed. We performed a k-means 

clustering algorithm to identify the most likely number of clusters of alleles based on the 

amino acid descriptors using the function ‘find.clusters’ in the ‘adegenet’ package (Jombart 

2008; Jombart et al. 2010) in R. The algorithm was run four times for different numbers of 

clusters from one to the total number of unique sequences, and for each run a mean Bayesian 

information criterion (BIC) was obtained. The most likely number of clusters in the data is the 

one with the lowest BIC. After identifying the optimal number of clusters, a discriminant 

analysis of principal components (DAPC) is used to identify the alleles in each cluster (Jombart 

et al. 2010). 

4.4 Results 

4.4.1 MHC allele identification 

We obtained a total of 1,019,897 high quality sequences ranging from 53 to 4,308 reads per 

amplicon (mean ± SD = 1436 ± 652). Of these, 919,046 reads had complete forward and 

reverse MIDs and correct primer sequences, leaving 45 - 4,049 reads per amplicon (1427 ± 

647) and 744 - 6,263 reads per individual (2855 ± 954).  

At the end of the bioinformatics processing, 41 clusters were classified as putative alleles, of 

which 31 were assigned to Berthelot’s pipits and 10 to tawny pipits. The list of unclassified 

variants contained the greatest number of entries, followed by putative artefacts and putative 

alleles (Table 4.1). We discarded 11 of the 31 putative alleles detected in Berthelot’s pipits 

because they were classified as alleles in only one individual. Since these variants were not 

confirmed across individuals, we believe these must be either artefacts or very low frequency 

alleles. We determined that the more conservative approach would be to discard them, as 

even if they were true alleles, at such low frequencies (ca. 0.3%) they would have little 

consequence in downstream analyses. We identified 588 sequences as unclassified variants, of 

which 134 were present in more than two samples. Among these sequences we found two 

that occurred in both amplicons of more than 80% of birds and were considerably more 
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frequent in the 310 Berthelot’s pipit samples than all the other unclassified variants (Fig. 4.3), 

but had a very small number of reads in most amplicons (mean ± S.E.: ANBE3 = 24.5 ± 0.8; 

ANBE31 = 18.0 ± 0.6). These two variants – ANBE3 and ANBE31 – also matched sequences 

identified by Spurgin et al.’s (2011) previous population level study on MHC in Berthelot’s 

pipit. We treated ANBE3 and ANBE31 as ‘low efficiency alleles’ (see amplification efficiency 

results below) but because we could not be certain of their absence/presence in all individuals 

we recommend they are excluded from future individual based MHC disease association 

studies in Berthelot’s pipit. However, we retained these alleles when assessing sequence-level 

selection, as their amplification efficiency should not bias such analyses. 

After processing the unclassified variants we were left with 22 alleles identified for the 

Tenerife population of Berthelot’s pipits. Of these, seven (named ANBE43-ANBE49) had not 

been previously identified in this species, and have been deposited in GenBank (Accession 

numbers KM593305 – KM593311). We also detected seven alleles (ANBE1, ANBE6, ANBE7, 

ANBE9, ANBE13, ANBE31 and ANBE38) that Spurgin et al. (2011) found in other populations of 

 Step 1 Step 2 Step 3 

 Variant class   chimera 1-2 bp 
diff 

>2 bp diff chimera 1-2 bp 
diff 

>2 bp diff 

chimera 2,023         

1-2 bp difference 24,631         

>2 bp difference 14,583         

Putative artefact 17,408 1,903 21,960 3,863   5,800 

Putative allele 640      29  51 611 

Unclassified        91  2,620 4,309 

 

Table 4.1 Number of clusters classified as chimera, 1-2 bp difference, >2 bp difference, 

putative artefact, putative allele and unclassified variant in each of the three 

bioinformatics steps to classify reads from Berthelot’s pipits MHC class I exon 3 

sequences. In step 1, variants are classified as putative alleles if they are the most 

common sequence in an amplicon, and as artefacts if they are singletons. The 

remaining clusters are classified as chimeras, 1-2 bp difference or >2 bp difference 

compared to the most similar cluster. Variants in each of these three classes are 

subject to steps 2 and 3 and further classified as putative artefact, putative allele or 

unclassified variant. Note that alleles can be identified in different bioinformatic steps 

in each individual. 
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Berthelot’s pipits but not in Tenerife. Among these, ANBE31 had previously been found only 

on Lanzarote (another Canary Island), and ANBE38 had only been found on Selvagem Grande 

(one of the islands of the Selvagens archipelago). We failed to find five alleles that had been 

previously reported from an earlier, smaller sample of birds (30 individuals sampled in 2006) 

from each of the Tenerife and Teide populations (Spurgin et al. 2011): ANBE12 had been 

detected on El Teide, and Fuerteventura (one of the Canary Islands); ANBE24 had been 

detected previously in the low lands of Tenerife and in other islands of the Canary archipelago; 

ANBE19 and ANBE39 had been detected in the low lands of Tenerife and on El Teide, and 

ANBE41 was restricted to the population of El Teide.  

Intra-amplicon frequencies (proportion of reads within an amplicon) of the 22 alleles identified 

in Berthelot’s pipits varied from a low of 0.013 for ANBE31 (S.E. = 0.0003) to a high of 0.192 for 

ANBE10 (S.E. = 0.003, Fig. 4.4a). Population allele frequencies ranged from 0.99 for ANBE7 to 

0.01 for ANBE28 (Fig. 4.5). The number of alleles per individual ranged from 4 to 12, with a 

mode and median of 8 alleles (Fig. 4.6), suggesting the potential presence of six loci. 

After processing unclassified variants for the tawny pipit we were left with 28 clusters, of 

which 11 were classified as putative alleles and 17 as unclassified variants. One allele, ANBE9, 

was shared between Berthelot’s and tawny pipits. The other 27 alleles, unique to the tawny 

pipit, were named ANCA1 to ANCA27 and their sequences have been deposited in GenBank 

(Accession numbers KM593312 – KM593338). Intra-amplicon frequencies for these 28 alleles 

ranged from a low of 0.015 (S.E. = 0.003) for ANCA20 to a high of 0.142 (S.E. = 0.039) for 

ANCA1 (Fig. 4.4b). The number of alleles per individual in tawny pipits ranged from 6 to 11 

(mean = 7.4, median = 7, Fig. 4.6), which also suggests the presence of six loci.  

The repeatability (i.e. the mean percentage of alleles shared between the two replicates of the 

same sample) of our genotyping was 96.1%. (S.E. = 5.45). The lowest repeatability (44.4%) was 

obtained for a sample with an amplicon with only 45 reads. Fourteen samples had 

repeatabilities lower than 80% and 240 samples had a repeatability of 100%. 
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Figure 4.3 Frequencies of unclassified variants identified after the bioinformatics 

processing of MHC class I exon 3 sequences obtained from 310 Berthelot’s pipits 

(Anthus berthelotii) and 10 tawny pipits (A. campestris). For simplicity only the 

unclassified variants found in four or more samples are shown. The two most 

common unclassified variants matched two alleles previously described in Berthelot’s 

pipits (Spurgin et al. 2011), ANBE3 and ANBE31, detected in both replicates of 260 

and 253 Berthelot’s pipit samples, respectively.  
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Figure 4.4 Mean intra-amplicon frequencies for each of the MHC class I exon 3 alleles 

identified in a) Berthelot’s pipits (Anthus berthelotii)) and b) tawny pipits (A. 

campestris). Error bars are standard errors. 
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4.4.2 Allele amplification efficiencies 

In Berthelot’s pipits, the lowest amplification efficiency was obtained for allele ANBE31 (0.2, 

i.e. five times lower than the reference ANBE11). The highest amplification efficiency obtained 

was for ANBE10 (3.0) (Fig. 4.7a). The modified Galan’s T1 threshold showed that 139 reads 

(range 132-144) were needed to reach coverage of 99.9% of a genotype with twelve alleles. 

Given this value, we excluded the one sample (identified above) that had only 45 reads in one 

of its replicates from all downstream analyses. In tawny pipits the lowest amplification 

efficiency obtained was for ANCA20 (0.33) and the highest amplification efficiency for ANCA1 

(3.9) (Fig. 4.7b). The modified Galan’s T1 threshold for the lowest amplification efficiency in 

tawny pipit alleles was 291. All tawny pipit amplicons had more than 291 reads. 

Fig. 4.5 Frequency of Berthelot’s pipit (Anthus berthelotii) MHC class I exon 3 alleles 

identified in 310 individuals in the population of Tenerife.  

 



Chapter 4: Characterisation of MHC variation 
 
 

108 
 

 

  

Figure 4.6 Number of Berthelot’s pipit, Anthus berthelotii (upper panel) or tawny 

pipit, A. campestris (lower panel) MHC class I exon 3 alleles (at the nucleotide level) 

per individual in the sampled population. 
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Figure 4.7 Standardised amplification efficiency of MHC class I exon 3 alleles identified 

in a) 310 Berthelot’s pipits from Tenerife, and b) 10 tawny pipits. The horizontal line 

represents the amplification efficiency of 1.0, obtained for the reference allele 

ANBE11 (Berthelot’s pipits) or ANCA17 (tawny pipits).  

 

a 

b 



Chapter 4: Characterisation of MHC variation 
 
 

110 
 

4.4.3 MHC sequence analyses 

Descriptors of sequence variation within MHC class I exon 3 in Berthelot’s and tawny pipits are 

summarised in Table 4.2. Seven alleles (ANBE3, ANBE31, ANCA11, ANCA12, ANCA13, ANCA17 

and ANCA25) had an insertion of three nucleotides, resulting in a protein with one amino acid 

insertion but no disruption of the reading frame. Pairwise nucleotide distance of MHC alleles 

was significantly higher in tawny pipit than in Berthelot’s pipit (P < 0.001, Table 4.2). 

 

The neighbour net of Berthelot’s and tawny pipits MHC class I exon 3 alleles revealed a total of 

17 lineages (Fig. 4.8). The lineage partitions were chosen based on the previous phylogeny 

described for Berthelot’s pipit MHC class I alleles (Spurgin et al. 2011). Berthelot’s pipit alleles 

were included in eleven lineages, while tawny pipit alleles were grouped in 13 lineages, of 

which seven were shared with Berthelot’s pipit and six were unique to tawny pipits (Fig. 4.8). 

The presence of boxes in the net means that there can be several paths between any two 

alleles, typical of sequence datasets with gene conversion and recombination events (Bryant & 

Moulton 2004). Four gene conversion events in MHC class I alleles of Berthelot’s and tawny 

pipits were identified by at least two methods (Table 4.3). 

Descriptor Berthelot’s pipit Tawny pipit 

Number of alleles 20 28 
Number of variable sites 84 103 
Number of mutations 105 136 

 ± SE1 0.11 ± 0.01 0.14 ± 0.01 

k ± SE2 27.09 ± 0.86 32.84 ± 0.81 
Rm (95 % CI)3 32.5 (25.0 – 40.0) 66.7 (52.0 – 83.1) 
Ɵ (95 % CI)4 23.0 (19.2 – 27) 32.9 (27.2 – 38.5) 

 1Nuclotide diversity ± standard deviation 

2
Average number of nucleotide differences ± standard deviation 

3
Recombination rate (lower and upper 95% confidence limits) 

4
Mutation rate (lower and upper 95% confidence limits) 

 

Table 4.2 Summary of nucleotide sequence variation of MHC class I exon 3 

sequences described in this study in Berthelot’s pipits, Anthus berthelotii, and tawny 

pipits, A. campestris. 
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The 22 Berthelot’s pipit MHC class I alleles translated as 20 different amino acid sequences, 

containing 42 variable amino acid sites and 63 amino acid changes (14 positions had more than 

two amino acids) (Fig. 4.9). Considering only the 15 PBR sites, 15 unique PBR sequences were 

detected, encoded by 12 variable amino acids (80%, Fig. 4.10), while the 65 non-PBR sites 

harboured 30 variable amino acids (46%). The 28 MHC class I alleles found in tawny pipits 

translated as 24 unique amino acid sequences containing 47 variable amino acid sites, with 86 

amino acid changes (18 positions had more than two amino acids) (Fig. 4.9). Considering only 

the PBR sites, there were 20 unique PBR sequences, with 12 variable amino acids (80%), while 

the 65 non-PBR sites had 36 variable amino acids (55%).  

Over the full exon 3 sequence of Berthelot’s pipit MHC class I, the rate of synonymous 

substitutions (dS) was significantly higher than the rate of non-synonymous substitutions (dN) 

(P < 0.001, Fig. 4.11), and the ratio of dN/dS for the full exon was 0.75. In both the PBR and non-

PBR regions, dN was not significantly different from dS (P = 0.45 and 0.52, respectively). For the 

PBR dN/dS = 1.07 and for the non-PBR dN/dS = 0.97. However, both dS and dN were significantly 

higher at the PBR compared to the non-PBR (P < 0.001, Fig. 4.11). When performing selection 

tests with sequences identified in both pipit species, ten codons were identified as having 

evidence of positive selection. Four of these (5, 19, 61 and 62) match the PBR (Fig. 4.9).

Recombinant 
allele 

Major parent Minor parent Positions of 
breakpoints 

Methods (P value) 

ANBE4 ANCA18 ANCA5 35 – 179  
MaxChi (0.014) 
3Seq (0.039) 

ANCA16 ANCA13 ANBE6 48 – 216  
SiScan (0.037) 
3Seq (0.001) 

ANCA17 ANCA15 ANBE44 170 – 238  
Chimaera (0.005) 
3Seq (0.003) 

ANCA12 ANCA18 ANCA5 12 – 197  
MaxChi (0.014) 
3Seq (0.039) 

 

Table 4.3 Tracts of gene conversion identified by at least two recombination-detection 

methods in MHC class I alleles of Berthelot’s pipits (Anthus berthelotii, ANBE) and 

tawny pipits (A. campestris, ANCA). Position corresponds to nucleotides that limit the 

gene conversion tract. 
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Figure 4.8 Neighbour net of 49 Berthelot’s pipit (Anthus berthelotii, ANBE) and 27 

tawny pipit (A. campestris, ANCA) MHC class I exon 3 alleles using Jukes-Cantor 

distance, including alleles previously identified in Berthelot’s pipits (Spurgin et al. 

2011). ANBE alleles that we found in the present study are underlined. Alleles and 

lineages found in Berthelot’s pipits are shown in black font and alleles and lineages 

unique to tawny pipits are shown in red. Labels L1-L17 correspond to lineages. 

Length along lines is proportional to genetic distance between any two alleles. 
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Figure 4.9 Amino acid alignment of the 20 Berthelot’s pipit (Anthus berthelotii) and 23 

tawny pipit (A. campestris) functional MHC class I exon 3 alleles identified in this study. 

Dots in the alignment denote consensus amino acids with ANBE1. The amino acids 

comprising the peptide binding region are shown with asterisks. Amino acids under 

positive selection using Berthelot’s and tawny pipit alleles are indicated with a plus 

sign. 
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Figure 4.10 Alignment of amino acids of peptide binding region (PBR) 

sequences of a) Berthelot’s pipit (Anthus berthelotii) or b) tawny pipit (Anthus 

campestris) MHC class I exon 3 alleles. Squares enclose similar PBR sequences. 

Consensus with first sequence is denoted by dots. Order of amino acids 

corresponds to the position of PBR amino acids in the full exon, as shown in 

figure 4.9.  
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The number of supertypes of Berthelot’s pipit MHC class I alleles that could be identified with 

the k-means clustering algorithm was 20, and therefore equal to the number of unique amino 

acid sequences identified. This was also the case if only alleles that differed at sites within the 

PBR (15 PBR unique sequences) and the PSS (11 PSS unique sequences) were included, 

suggesting that each allele has different antigen binding properties. For this reason, we didn’t 

perform the discriminant analysis of principal components (DAPC) to identify the alleles in 

each cluster (Jombart et al. 2010). 

4.5 Discussion 

We used 454 pyrosequencing to screen MHC class I exon 3 variation in individual Berthelot’s 

pipits from across the population of Tenerife and, for comparison, in its sister species the 

tawny pipit. The variant/artefact identification procedure including replication of all samples 

allowed the successful genotyping of 309/310 Berthelot’s pipits, with high genotype 

repeatability (96%). Validation procedures identified two alleles with low amplification 

efficiencies. The resulting sequence data were used to characterise MHC variation across these 

Figure 4.11 Rates of non-synonymous (dN) and synonymous (dS) substitutions in the full 

exon, peptide binding (PBR) and non-PBR regions MHC class I exon 3 alleles of 

Berthelot’s pipits in the population of Tenerife. Error bars represent 95 % confidence 

intervals. 
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two closely related species. We found significantly higher MHC sequence variation in the 

outbred tawny pipit than in the previously bottlenecked Berthelot’s pipit and found evidence 

for maintenance of divergent MHC supertypes in Berthelot’s pipit. We also found evidence for 

gene conversion, an increased recombination to mutation ratio, and positive selection at 

specific codons within the exon 3 sequence. 

454 pyrosequencing is a valuable tool for parallel sequencing of multilocus genes, such as 

those of the MHC, in a large number of samples. However, this method is prone to errors 

generated from two PCR amplifications and the pyrosequencing reaction (Meyerhans et al. 

1990; Huse et al. 2007). In our study, artefacts and unclassified variants clearly outnumbered 

putative alleles. This concurs with other studies that used 454 for genotyping the MHC, which 

also assigned more reads to artefacts than to putative alleles (Zagalska-Neubauer et al. 2010; 

Sepil et al. 2012; Sommer et al. 2013).  

For accurate reconstruction of individual MHC genotypes and testing of evolutionary 

hypotheses, it is essential to be able to reliably detect the majority of alleles that exist in a 

population, even if some of them do not amplify well in the study species. That MHC alleles 

differ in amplification efficiency has been known for some time (Babik 2010; Kiemnec-Tyburczy 

et al. 2010; Zagalska-Neubauer et al. 2010), but only recently has a methodology been 

proposed to calculate amplification efficiencies for each allele (Sommer et al. 2013). Of the 22 

MHC alleles we identified in Berthelot’s pipit, two had low amplification efficiencies that put 

them at high risk of allelic dropout. These two alleles never amplified well enough to make the 

initial list of putative alleles, and were only identified by post-processing examination of the 

list of unclassified variants. Sommer et al. (2013) report 3/64 of the alleles they identified as 

having low amplification efficiency. This, together with our results, supports their hypothesis 

that low amplification is common but that it only affects a few alleles. However, it is important 

to note that some alleles might not amplify at all for a given set of primers, and that some 

instances of allelic dropout will thus not be accounted for. It is crucial that studies on the MHC 

acknowledge the variable amplification efficiency of alleles (regardless of the sequencing 

method used), and that they use the minimum amplification efficiency to obtain a minimum 

number of reads required per amplicon for reliable genotyping. When assessing MHC-disease 

associations, we advocate excluding samples that do not pass the minimum-read criterion, as 

well as excluding alleles with low amplification efficiency. Failure to do so incurs a high risk of 
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incomplete data, i.e. missing the presence of these specific alleles within individuals, leading to 

inaccurate conclusions. We suggest that the calculation of amplification efficiencies be 

implemented and reported in all future MHC studies.  

Initial cloning of MHC class I exon 3 from six Berthelot’s pipits (five from Tenerife, one from 

Madeira) suggested the presence of a minimum of four loci (Spurgin et al. 2011). Our results 

suggest that there are at least six MHC class I loci in Berthelot’s pipits. When cloning is used to 

characterize the MHC amplified in a few individuals from a few populations the number of 

alleles is likely to be underestimated, and even more so if there are alleles with low 

amplification efficiency.  

Our results differ to some degree from the earlier study that sequenced the MHC in the 

populations of Berthelot’s pipit (Spurgin et al. 2011). We found seven alleles that had not been 

described for Tenerife, but had been found in other islands. The smaller sample size of the 

earlier study (only 30 individuals from each of two populations) might have been the reason 

why four of these were not detected (ANBE6, ANBE9, ANBE13 and ANBE38), because in the 

present study these were found at frequencies lower than 0.1. However, the other three 

alleles (ANBE1, ANBE7 and ANBE31) were found at frequencies of 0.4, 0.9 and 0.8, respectively 

in the present study, suggesting they are common in Tenerife. We also detected seven alleles 

that hadn’t been described in any of the populations from the earlier study (ANBE43-ANBE49), 

and thus may be unique to the population of Tenerife. The frequencies of five of these alleles 

was lower than 0.1, thus not previously finding them was probably due to the small sample 

size of that earlier study. However, the other two alleles, ANBE43 and ANBE47, were found at 

frequencies of 0.4 and 0.3, respectively, and it is unclear why these were not detected in the 

earlier study. We also failed to find five alleles that had been previously reported in Tenerife 

(Spurgin et al. 2011): ANBE12 and ANBE39 from El Teide, ANBE41 and ANBE24 from the 

lowlands and ANBE19 from both El Teide and lowlands. In that earlier study these alleles were 

not identified as putative ancestral alleles, but rather as recombinant alleles that were derived 

through gene conversion. These five recombinant alleles did not co-occur with their ancestral 

alleles on Tenerife, thus rejecting the possibility that they could have been PCR artefacts 

derived from the putative ancestral alleles (Spurgin et al. 2011). That we failed to detect alleles 

ANBE19, ANBE24 and ANBE41 could be due to the possibility that they are rare in lowland 

Tenerife. However, this is unlikely given that they were earlier detected in a much smaller 
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sample (30 individuals), and given our sampling scheme that facilitated capture of variation 

throughout the population. However, in this study we could have reasonably missed ANBE12 

and ANBE39 in the 26 birds we sampled from El Teide if they are rare in this population. Since 

the earlier study did not assess individual-level variation, it is not possible to know the 

frequency of these alleles in the earlier sample.  

We cannot discard the possibility that the differences between the two studies lie in their 

methodological differences. The earlier study assessed MHC class I variation at the population 

level using population-specific tags, rather than individual-specific tags. Another difference is 

that here we sequenced only from the forward end of the amplicon, while the earlier study 

sequenced amplicons from both ends with subsequent assembly of sequences by read overlap. 

This is because, at the time of the earlier study, the average 454 read length was shorter than 

the total length of the amplicon. However, both studies used the same template-specific 

primer sequences and the same PCR conditions. The earlier study also used a different 

bioinformatics strategy for validating alleles. It is difficult to determine in which of the two 

studies errors were generated, given that both used different methodologies. It is also possible 

that the differences may be real and due to differences in the subset of individuals sampled in 

each case. For example, allele frequencies might have changed from 2006, when the samples 

of the earlier study (Spurgin et al. 2011) were collected, to 2011. Given that Berthelot’s pipit 

generation time is ca. three years (Garcia-Del-Rey & Cresswell 2007), approximately two 

generations have passed between the two samplings. In support of this hypothesis, rapid 

changes in MHC allele frequencies (between successive cohorts) have been reported in 

another passerine (Westerdahl et al. 2004). This pattern might result from fluctuating 

pathogen-mediated selection on these alleles. However, we cannot assess this with our data 

and further investigation involving sampling across different years is needed in order to 

confirm this.   

It might be necessary to employ our individual-level MHC genotyping to screen the same 

samples that were used in the earlier study in order to clarify this. It is also important to note 

that other NGS technologies might provide better alternatives for accurately sequencing the 

MHC. For example, Illumina has proven to be highly repeatable and accurate for genotyping 

duplicated loci (Lighten et al. 2014b), and might therefore be the platform of choice in future 

studies that require sequencing of the MHC. However, there may equally be problems with 
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other NGS methods, and only future comparative studies between methods will resolve such 

issues. 

Maintaining and restoring MHC diversity is especially important in isolated, bottlenecked 

populations where low genetic diversity might have implications for disease resistance and 

population survival (Bollmer et al. 2011; Yasukochi et al. 2012; Niskanen et al. 2014). Isolated 

species with populations that have undergone bottlenecks generally show lower MHC genetic 

diversity than outbred species (reviewed in Radwan et al. 2010). In the present study 22 alleles 

were detected in the 309 individuals sampled in the Berthelot’s pipits population on Tenerife, 

compared to the 28 alleles detected in just 10 tawny pipits. This suggests that the Berthelots’ 

pipit population on Tenerife has much lower levels of genetic variation at these MHC loci than 

its continental sister species. This is confirmed by the fact that levels of nucleotide variation 

were lower in Berthelot’s pipit alleles than in tawny pipit alleles (nucleotide diversity = 0.11 ± 

0.01 and 0.14 ± 0.01, respectively). However If we consider the whole range of Berthelot’s 

pipits, a total of 49 MHC class I alleles have been identified across the 13 populations, 

indicating that MHC variation can be regenerated in a bottlenecked population, in this case by 

gene conversion (see below). The same pattern of higher genetic diversity in tawny pipit 

compared to Berthelot’s pipit has been described for the Toll-like receptor loci (TLR) of the 

innate immune system (Chapter 2).  

Interestingly, we found that each Berthelot’s pipit MHC class I allele represented one 

supertype, suggesting that each allele has unique binding properties. In isolated island 

populations, such as the Berthelot’s pipit, alleles may be lost during bottleneck events, but the 

maintenance of supertypes through these events may occur if alleles of different supertypes 

segregate at different loci and thus, PMS results in the maintenance of these functionally 

divergent alleles at different loci (van Oosterhout 2013). Our finding concurs with previous 

evidence for the maintenance of divergent supertypes in other systems (Huchard et al. 2008; 

Ellison et al. 2012). This process has important evolutionary implications in bottlenecked 

populations, allowing the maintenance of divergent MHC alleles that can potentially detect a 

broad range of pathogens.  

Our neighbour net of the phylogenetic relationships among Berthelot’s and tawny pipit MHC 

class I alleles revealed that these species share allele lineages and do not separate according to 

species. Seven out of the 17 MHC lineages found were shared between Berthelot’s and tawny 
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pipits and one allele (ANBE9) was found to be exactly the same across the 240 base pairs we 

screened in both species. Given the low sample size for the tawny pipit it is possible that we 

missed amplifying some lineages and thus our estimate of lineage sharing must be treated as 

approximate. Furthermore, when colonizing the Canary Islands, some MHC lineages might 

have been absent from the founding population, hence explaining why some lineages found in 

tawny pipits are not represented in Berthelot’s pipits. Despite these possibilities we still found 

considerable lineage sharing between these two species. Tawny and Berthelot’s pipits 

diverged only ca. 2.5 m.y. ago (Chapter 2; Voelker 1999); the lineage sharing could therefore 

be attributed to incomplete lineage sorting (Klein et al. 1993; Klein et al. 1998). Another 

possibility is that trans-species persistence of MHC lineages has been promoted by balancing 

selection, whereby allele lineages that confer selective advantage persist over evolutionary 

time with little change (Klein et al. 1993). Such trans-species persistence has been reported in 

many MHC studies (e.g. Graser et al. 1996; Kikkawa et al. 2009; Jaratlerdsiri et al. 2014). 

Interestingly, we have previously found that the two pipit species also share a small number of 

alleles at Toll-like receptors (three out of 94 alleles across five loci, Chapter 2). That we see 

similar patterns in the two immune gene families may suggest a greater role for incomplete 

lineage sorting than balancing selection in the two species sharing alleles, but testing this 

hypothesis would require both a larger sample of tawny pipits and assessment of other loci.  

Pathogen-mediated balancing selection on the PBR is thought to be the main force maintaining 

variation at MHC (Westerdahl et al. 2005; Evans & Neff 2009; Spurgin & Richardson 2010). In 

Berthelot’s pipits MHC class I alleles we found no evidence of an elevated dN/dS in the PBR 

compared to the non-PBR which is the classic indication of selection at MHC (Hughes & Nei 

1988; Bernatchez & Landry 2003). However, we found that both dN and dS were higher at the 

PBR than at the non PBR (Fig. 4.11), which is to be expected when gene conversion is the main 

source of variation (Ohta 1995). Gene conversion results in the transfer of sections of DNA 

containing synonymous and non-synonymous changes between alleles within or across loci. 

When this process involves sites in the PBR, the new molecular conformation of amino acids 

encoded for may be advantageous if it creates a new allele that allows the better binding of 

peptides from pathogens (Ohta 1995). On the other hand, if such events occur within the non-

PBR they are likely to be selected against, because this region is functionally constrained due 

to its role in molecule integrity (Klein et al. 1993). Several previous studies have argued that 

gene conversion is one of the main mutational forces generating MHC allelic variation in 
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vertebrates (reviewed in Hogstrand & Bohme 1999; Ohta 1999), a hypothesis that has been 

directly supported by earlier data from Berthelot’s pipit (Spurgin et al. 2011). In line with this 

earlier study, we also detected four gene conversion events and an elevated recombination to 

mutation ratio across the MHC alleles of both pipit species (1.4 for Berthelot’s pipit and 2.0 for 

tawny pipit alleles). Within the exon amplified we found evidence of historical balancing 

selection at ten specific amino acid sites, of which four corresponded to the estimated PBR. 

Three of these sites have previously been identified to be under positive selection in other bird 

species (Sutton et al. 2013), which suggests that these sites are important determinants of the 

binding properties of the PBR in avian species.  

Overall, our results suggest that Berthelot’s pipit population on Tenerife has reduced allelic 

diversity at the MHC compared to its closest sister species. Nevertheless, the allele lineages 

that persisted, or were generated after the colonization of Tenerife, display divergent antigen 

binding properties. These divergent alleles might be sufficient to successfully initiate an 

adequate immune response to the local pathogens that threaten this population. This 

mechanism can have significant implications for the survival and establishment of populations 

that colonize new areas possibly containing novel diseases. Berthelot’s pipits in Tenerife have a 

high incidence of malaria (Gonzalez-Quevedo et al. 2014) and the MHC is likely to play a role in 

the epidemiology of this disease in the population given that it has previously been linked to 

malaria resistance (Hill et al. 1991; Westerdahl et al. 2005; Bonneaud et al. 2006; Westerdahl 

et al. 2013). This screening methodology and the data outlined in the present study can now 

be used to assess the association of MHC alleles and disease susceptibility/resistance, and to 

investigate what causes temporal changes in MHC allele frequency within populations to 

further understand how pathogen mediated selection might shape the variation of the MHC at 

the population level. 
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Appendix 4.1 Description of workflow used to identify chimeras within amplicons. 

To test whether a given sequence Z could be a chimera of sequences X and Y, we listed the 

base pair positions at which Z differed from each of the putative parent sequences. If the first 

difference from one parent occurred after the last difference from the other (or vice versa), 

sequence Z was listed as a chimera. This is because such a pattern means that sequence Z is 

identical to one parent sequence before a given point and identical to the other parent 

sequence after that point.  

In accordance with the rationale of Sommer et al’s (2013) workflow, we only tested whether a 

given sequence could be a chimera of two more frequent sequences within the amplicon of 

interest. For computational efficiency, we restricted the list of putative parent sequences for 

chimeras to the top twenty most frequent sequences in an amplicon. 
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Chapter 5 

Landscape scale assessment of genetic structure within a wild 

population reveals the role of an anthropogenic factor in 

shaping immune gene variation 
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5.1 Abstract 

Understanding the spatial scale at which selection acts upon adaptive genetic variation in 

natural populations is fundamental to our understanding of evolutionary ecology and has 

important ramifications for conservation. The environmental factors to which individuals of a 

population are exposed can vary at fine spatial scales, potentially generating localised patterns 

of adaptation. Here, we compared patterns of neutral and major histocompatibility complex 

(MHC) variation within an island population of Berthelot’s pipit (Anthus berthelotii) to assess 

whether landscape-level differences in pathogen-mediated selection generate fine-scale 

spatial structuring in these adaptive immune genes. Specifically, we tested for spatial 

associations between the distribution of avian malaria, or the factors previously shown to 

influence that distribution, and MHC variation within resident individuals. Although we found 

no overall genetic structure across the population for either neutral or MHC loci, we did find 

localised associations with MHC variation. One MHC class I allele (ANBE48) was directly 

associated with malaria infection risk, while the presence of the ANBE48 and ANBE38 alleles 

within individuals correlated (positively and negatively respectively) with distance to  the 

nearest poultry farm, a factor previously shown to be an important determinant of malaria 

infection in this pipit population. This study highlights the importance of considering small 

spatial scales when studying the patterns and processes involved in the evolution of variation 

within adaptive loci such as the MHC. 
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5.2 Introduction 

Understanding the spatial scale at which selection acts upon adaptive genetic variation in 

natural populations provides information on the degree of local adaptation of populations, and 

thus, potentially, on the beginnings of speciation (Chave 2013). Furthermore, assessment of 

the spatial scale of evolutionary processes provides information on epidemiology of wildlife 

diseases, mechanisms of fluctuating selection, and patterns of dispersal (DeAngelis & Mooij 

2005), and should provide background information for delineating conservation strategies. 

When different groups of individuals evolve in different environments, each becomes adapted 

to the local conditions. There is a large amount of empirical evidence for such local adaptation 

(e.g. Gomez-Mestre & Tejedo 2003; Laugen et al. 2003; Kawecki & Ebert 2004; Vincent et al. 

2013), but studies have generally been carried out at coarse scales, with well delineated 

populations, where differences in environment are conspicuous and limited gene flow does 

not counteract the effects of selection (Lenormand 2002). However, the environment and its 

associated selection pressures vary at fine spatial scales (Hargeby et al. 2004; Wood et al. 

2007; Soto-Centeno et al. 2013). Selection and adaptation at such fine scales has been 

increasingly studied in recent years (reviewed in Richardson et al. 2014), and there is growing 

evidence that fine-scale evolutionary divergence is more common than previously thought 

(Svensson & Sinervo 2004; Ray & King 2006; Mila et al. 2010; Richardson & Urban 2013).  

How loci that play a role in individual disease resistance/resilience vary across space and in 

relation to environmental factors is of particular interest when studying local adaptation 

(Kawecki & Ebert 2004). Pathogens can be strong selective agents in wild host populations 

(Haldane 1949; Fumagalli et al. 2011), and their distribution is highly dependent on 

environmental factors (Ostfeld et al. 2005). For example, both climatic (Harvell et al. 2002; 

LaPointe et al. 2010; Becker et al. 2012) and anthropogenic factors (Patz et al. 2000; Bradley & 

Altizer 2007; Beadell et al. 2009) have been shown to be important determinants of the 

distribution of pathogenic disease. Furthermore, adaptation of host immune genes to local 

parasite assemblages appears to be widespread (Evans et al. 2010; Tonteri et al. 2010; 

Eizaguirre et al. 2012; Lenz et al. 2013). Assessment of the scale of selection pressures exerted 

by pathogens on immune genes is important for understanding the patterns of disease 

epidemiology and transmission in the landscape. 
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The genes of the major histocompatibility complex (MHC),  with their extraordinary levels of 

variation and their key role in the vertebrate acquired immune response, have become a 

classic model for investigating spatio-temporal patterns of selection (reviewed in Hughes & 

Yeager 1998; Bernatchez & Landry 2003; Spurgin & Richardson 2010). These loci produce cell 

surface receptors that bind specific peptides derived from intracellular pathogens (antigens) 

via the peptide binding region (PBR, Wakelin 1996; Wakelin & Apanius 1997; Roitt et al. 2001). 

High genetic variation at the MHC is thought to be driven largely by pathogen-mediated 

selection (PMS), through three main, non-mutually exclusive, mechanisms (reviewed in 

Spurgin & Richardson 2010): (i) heterozygote advantage (Doherty & Zinkernagel 1975), (ii) rare 

allele advantage (Takahata & Nei 1990), and (iii) fluctuating selection (Hill 1991). Sexual 

selection (reviewed in Edwards & Hedrick 1998; Richardson et al. 2005) and other mechanisms 

may also play a role (van Oosterhout 2009). In an effort to understand the relative role of 

these different selection mechanisms on the MHC, many studies have investigated among-

population structure of MHC genes (reviewed in Bernatchez & Landry 2003; Babik et al. 2008; 

Biedrzycka & Radwan 2008). Nevertheless, despite it being clear that the distribution of 

pathogens within an environment can vary greatly at small spatial scales (Eisen & Wright 2001; 

Wood et al. 2007), studies which assess the causes and consequences of selection on the MHC 

at fine spatial scales, within a single population, are lacking. Such studies may provide 

considerable understanding into how different mechanisms and selective factors act within a 

population to maintain overall levels of variation, insight which can be obscured if we only 

focus on coarser patterns of variation. 

Fine-scale genetic structure can result from two processes: differential selection pressures 

(extrinsic factors) that result from fine-scale environmental variation, and endogenous biotic 

processes (intrinsic factors) particular to the studied species (Legendre & Legendre 2012). 

These endogenous processes include dispersal patterns (in relation to landscape features), kin 

structure, mating system and genetic drift (Legendre & Legendre 2012; Wagner & Fortin 2013; 

Richardson et al. 2014). Differentiating between these external and intrinsic processes is vital 

in order to draw conclusions about the causes and consequences of fine-scale genetic 

structure and spatial autocorrelation. Several approaches have been proposed to do this 

(Wagner & Fortin 2005; Dray et al. 2006; Jombart et al. 2009). One approach, that uses 

principal components of neighbour matrices (PCNM) to reveal patterns of genetic structure 

that are not accounted for by environmental gradients (Borcard & Legendre 2002) has been 
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used successfully in several recent studies (Manel et al. 2010; Garroway et al. 2013; Pavlova et 

al. 2013). PCNM analysis allows the modelling of spatial patterns, incorporating variation 

dependent on geographic position (see Dray et al. 2006; Legendre & Legendre 2012 for 

details). Including these derived PCNMs in subsequent models investigating genetic structure 

accounts for spatial autocorrelation-related processes. 

In the present study, we used the PCNM approach to investigate if and why fine-scale genetic 

structure at neutral markers and MHC class I loci exists within the population of Berthelot’s 

pipit (Anthus berthelotii) on Tenerife, in the Canary Islands. This population is isolated from 

other conspecific populations, and within Tenerife birds are widespread and abundant across 

the landscape. Importantly, it exhibits a high and spatially varying prevalence of avian malaria 

(Spurgin et al. 2012; Gonzalez-Quevedo et al. 2014) which has already been shown to be 

associated with fine-scale variation in key environmental factors (Gonzalez-Quevedo et al. 

2014). Although Berthelot’s pipit is territorial and sedentary (JC Illera, Pers. Comm.), the 

population on Tenerife is likely to be interconnected because much of the habitat they use is 

continuous. However, no studies have investigated how much dispersal and gene flow occurs 

and whether all the Berthelot’s pipits inhabiting Tenerife are part of a large panmictic 

population. Pipits found on the top of the mountain of El Teide (above 2000 m asl) may be 

isolated from the rest of the island by the band of pine forest extending from 1600 to 2000 m 

asl, which the pipit does not inhabit (Garcia-Del-Rey & Cresswell 2007). This Berthelot’s pipit 

population provides an excellent study system in which to test hypotheses related to the 

spatial scale of PMS effects on MHC variation. Specifically, we sought to i) assess neutral 

genetic structure in the population, ii) estimate the fine-scale genetic structure of the MHC, 

and iii) test for associations between the spatial distribution of MHC alleles and both malaria 

infection risk and other spatially variable environmental factors.  

5.3 Methods 

5.3.1 Study species and sampling 

Berthelot’s pipit (Anthus berthelotii) is a sedentary passerine endemic to the Macaronesian 

archipelagos (Fig. 4.1). To obtain a representative sample of the pipit across its entire range 

and all environmental gradients on Tenerife, a 1 km2 grid was laid over a map of the island 

obtained from Google Earth in ArcGIS version 10 (Esri 2011, Redlands, CA, www.esri.com). The 

majority of accessible square kilometres that contained habitat suitable for pipits were visited 
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and, where pipits were present, an attempt was made to catch at least one per km2 using clap 

nets baited with Tenebrio molitor larvae. The GPS coordinates of all visited sites were 

recorded. Each captured bird was ringed and a blood sample was taken by brachial 

venipuncture and stored in absolute ethanol in screw-cap micro-centrifuge tubes at room 

temperature. DNA was extracted using a salt extraction method following Richardson et al. 

(2001). 

5.3.2 Genotyping 

A total of 388 pipits were genotyped at 21 microsatellite markers (Martínez et al. 1999; 

Dawson et al. 2010b; Dawson et al. 2012; Dawson et al. 2013; Table 5.1). PCRs were set up in 

four multiplexes, determined by primer compatibility using Multiplex Manager (Holleley & 

Geerts 2009). Multiplex reactions and details of microsatellite markers are summarized in 

Table 5.1. PCRs were performed in a DNA Engine Tetrad2 thermal cycler (MJ Research) in 2 µl 

reactions following Kenta et al. (2008): approximately 25 ng of DNA were added to each 

reaction tube and the liquid evaporated; 1 µl of QIAGEN Multiplex Mastermix (Qiagen) and 1 µl 

of primer mix (see table 5.1 for primer concentrations) were then added to the dried DNA, 

with the mixture overlaid by a drop of mineral oil to avoid evaporation during thermal cycling. 

The thermal profile was as follows: initial activation of 15 mins at 95°C , followed by 40 cycles 

of 30 seconds at 94°C, 90 seconds at 56°C, and 60 seconds at 60°C, with a final extension of 30 

mins at 60°C. PCR reactions were diluted 1:30 with water and 1 µl of the dilution was added to 

9 µl of a solution containing Hi-Di Formamide (Life technologies) and ROX 500 (GeneScan) size 

standard prepared following manufacturer’s instructions. PCR products were ran on an 

ABI3730XL (Life technologies) and allele sizes visualized with the software GENEMAPPER 4.0 

(Applied Biosystems).  

Pipits were genotyped at the MHC class I by sequencing the exon 3, which codes for the 

peptide binding region (PBR), using 454 sequencing. Due to cost restrictions, we were only 

able to run one 454 plate. In order to avoid sacrificing coverage per sample (considering that 

one 454 run yields ca. 1 million reads), samples were pooled in eight pools of 80 samples each. 

Therefore, 310 pipits out of the 388 were genotyped at the MHC. Ten individuals of the sister 

species of Berthelot’s pipit, the tawny pipit (Anthus camprestris) were included in this 454 run 

for assessment of MHC trans-species evolution (Chapter 4). For detailed methods of the 454 

amplification procedure and the bioinformatics analyses performed for the MHC genotyping 
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see chapter 4. One sample had very poor coverage in the MHC screening and was discarded; 

therefore analyses are based on a sample of 309 pipits. As is the case for most avian species 

(Miller & Lambert 2004; Balakrishnan et al. 2010; Wutzler et al. 2012), because there are 

linked duplicated loci within the class I MHC, alleles cannot be assigned to specific loci for the 

pipit (however for simplicity, all variants identified are termed ‘alleles’ hereafter). Therefore, 

we characterise all the class I alleles an individual carries irrespective of locus, and use the total 

number as a measure that reflects individual heterozygosity across the MHC loci (hereafter 

termed ‘MHC diversity’).  

5.3.3 Genetic variation and overall population structure 

The software Micro-checker 2.2.3 (Van Oosterhout et al. 2004) was used to check for 

microsatellite null alleles and scoring errors due to stuttering and allele drop out. An exact test 

Marker Dye Min 
size 

Max 
size 

Multiplex 
reaction 

Final 
concentration 
in primer mix 

Reference 

TG01-024 6-FAM 401 403 1 0.2 µM Dawson et al. (2010) 
TG01-147 HEX 258 260 3 0.1 µM Dawson et al. (2010) 
TG02-088 6-FAM 260 262 1 0.2 µM Dawson et al. (2010) 
TG03-002 6-FAM 125 135 1 0.2 µM Dawson et al. (2010) 
TG03-098 HEX 233 235 4 0.4 µM Dawson et al. (2010) 
TG04-004 HEX 165 169 1 0.2 µM Dawson et al. (2010) 
TG05-053 6-FAM 198 202 1 1.0 µM Dawson et al. (2010) 
TG06-009 6-FAM 119 123 3 0.1 µM Dawson et al. (2010) 
TG09-014 6-FAM 285 293 1 0.2 µM Dawson et al. (2010) 
TG13-009 HEX 194 196 2 0.2 µM Dawson et al. (2010) 
CAM-2 6-FAM 351 375 3 0.6 µM Dawson et al. (2013) 
CAM-4 6-FAM 275 289 2 0.2 µM Dawson et al. (2013) 
CAM-8 6-FAM 220 222 4 0.4 µM Dawson et al. (2013) 
CAM-13 HEX 209 211 3 0.2 µM Dawson et al. (2013) 
CAM-18 HEX 342 348 2 0.2 µM Dawson et al. (2013) 
CAM-23 6-FAM 124 148 2 0.2 µM Dawson et al. (2013) 
PDO46 DY-549 158 186 2 0.2 µM Dawson et al. (2012) 
PDO47 6-FAM 163 199 3 0.2 µM Dawson et al. (2012) 
PDOµ5 DY-549 230 244 2 0.2 µM Dawson et al. (2012) 
PPi2 HEX 238 258 2 0.2 µM Martínez et al. (1999) 
PCA7 HEX 112 116 3 0.1 µM Dawson et al. (2010) 

 

Table 5.1 Summary of the 21 markers used for assessing neutral genetic variation in 388 

Berthelot’s pipits (Anthus berthelotii) from Tenerife. 
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of Hardy-Weinberg equilibrium was performed for each microsatellite locus using the web 

version of Genepop 4.0.10 (Raymond & Rousset 1995; Rousset 2008). Allele frequencies, 

observed heterozygosity and expected heterozygosity for each microsatellite locus were 

calculated using the software CERVUS 3.0.3 (Marshall et al. 1998). We estimated individual 

diversity at microsatellites by calculating homozygosity by loci (HL), a microsatellite 

heterozygosity-derived measure that weighs the contribution of each locus to the 

homozygosity value depending on its allelic variability, using the Excel macro Cernicalin 

(Aparicio et al. 2006).   

We divided Tenerife into four populations, chosen according to climatic and topographic 

differences across the island: the south with dry conditions, the north with wet conditions, the 

west with narrower coastlines and high cliffs, and El Teide with high altitude conditions. We 

assessed overall (coarse-scale) patterns of genetic structure within the population of pipits on 

Tenerife. First, an analysis of molecular variance (AMOVA) and microsatellite and MHC FST 

calculation (Weir & Cockerham 1984) was performed in Arlequin 3.1 (Excoffier & Lischer 2010) 

based on the four pre-defined populations. Significance of FST was evaluated using 50,000 

permutations. Second, the programme Structure 2.3.3 (Pritchard et al. 2000; Falush et al. 

2003) was used to infer the number of genetic groups (K) with individual genotype-based 

clustering methods using microsatellite data. We used the admixture model and correlated 

allele frequencies with 100,000 Markov chain steps and a burn-in of 10,000 steps, and 

performed four independent runs for each value of K from 1 to 4. Structure harvester (Earl & 

vonHoldt 2012) was used to visualize the results. Third, we tested whether pairwise genetic 

distance, based on microsatellites or MHC, correlates with pairwise geographic distance. 

Microsatellite genetic distance was obtained by calculating pairwise relatedness using the 

Queller-Goodnight moment estimator (Queller & Goodnight 1989) implemented in the 

software COANCESTRY (Wang 2011). For the MHC we calculated a pairwise nucleotide distance 

matrix for all pairs of MHC alleles by calculating p-distance in MEGA 6.0 (Tamura et al. 2013). 

MHC genetic distance between individuals was calculated as the mean p-distance between all 

alleles present in the individuals in each dyad. A Mantel test was then performed using the R 

package Ecodist (Goslee & Urban 2007) with 1,000 permutations and 500 bootstrap iterations 

to assess correlation of pairwise geographic distance with pairwise microsatellite or MHC 

genetic distance.  
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5.3.4 Landscape genetics analyses 

All landscape analyses were performed in R 3.1.0 (R Development Core Team 2011) unless 

stated otherwise. The methods outlined above assess genetic structure at large scales. In order 

to assess how MHC and microsatellite allele distribution varied across the landscape at a fine 

scale we performed a spatial principal components analysis (sPCA, Jombart et al. 2008) 

implemented in the R package ‘adegenet’ (Jombart 2008). The sPCA assesses spatial patterns 

of genetic variability by finding synthetic components (eigenvectors) that maximize the 

product of the variance in the data and Moran’s I (Jombart et al. 2008), the latter being a 

measure of the spatial dependency (or autocorrelation) associated with that gradient of 

variation. Each eigenvector captures either positive or negative autocorrelation, and is hence 

referred to as either ‘global’ or ‘local’, respectively (Jombart et al. 2008). Local structures 

(negative autocorrelation) result from greater genetic differences among neighbours, 

reflecting repulsion processes such as dispersal for inbreeding avoidance. Global structures 

(positive autocorrelation) arise where there are discrete clusters of genetic similarity or spatial 

gradients reflecting either isolation by distance and/or isolation by adaptation. For the sPCA 

we defined neighbouring sites by building a connection network using the minimum distance 

that would keep all points (individual birds) in the network connected. We mapped the scores 

at each sampling point for the most important eigenvectors as a means of visualising the 

spatial genetic structures. 

5.3.5 Environmental variables 

In a previous study of the spatial distribution of avian malaria in Berthelot’s pipits in Tenerife, 

one strain of malaria, Plasmodium LK6, was found to infect 36% of the pipit population 

(Gonzalez-Quevedo et al. 2014). Infection was best predicted by minimum temperature of the 

coldest month, distance to artificial water sources and distance to poultry farms, in decreasing 

order of importance (Gonzalez-Quevedo et al. 2014). Based on this model, we calculated the 

predicted probability of an individual being infected with malaria based on the location 

inhabited (hereafter referred to as ‘malaria risk’) for each bird. We also directly assessed the 

separate effects of the following environmental variables on the MHC: minimum temperature 

of the coldest month, slope, density of pipits, distance to artificial water sources, distance to 

poultry farms, distance to other livestock farms, and distance to urbanized sites. These 

variables were chosen on the basis of known effects on disease distribution (Harvell et al. 
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2002; Bradley & Altizer 2007; LaPointe et al. 2010; Gonzalez-Quevedo et al. 2014) and their 

potential effects on fine-scale structure at the MHC.  

All environmental variable calculations and resampling were carried out in ArcGIS 10 and R (R 

Development Core Team 2011). Minimum temperature of the coldest month was obtained 

from the WorldClim database (Hijmans et al. 2005) at a resolution of 30 arc seconds (1 km). 

Slope at a resolution of 90 m was calculated from digital elevation models obtained from the 

Shuttle Radar Topography Mission Digital Elevation Database 4.1 (Consortium for Spatial 

Information, www.cgiar-csi.org). Each of these variables was measured within 100 m radius of 

each sampled bird. For details on methodology see Gonzalez-Quevedo et al (2014). Distance 

variables were calculated by overlaying the layer for pipit location points over polygon layers 

for artificial water reservoirs, urban areas, and the position, species and census of livestock 

farms from the government of Tenerife (http://www.tenerife.es/planes/). For each variable 

the ‘proximity’ tool of the analysis extension of ArcGIS 10 was used to calculate the distance to 

the nearest relevant feature for the variable concerned. Right-skew in all our distance variables 

was successfully removed using a log10-transformation. An index of pipit density was calculated 

as the number of pipits per square Kilometre, based on our geo-referenced records of pipit 

presence from the visited sites, using the ‘density’ tool of the spatial analyst extension in 

ArcGIS 10, with a neighbourhood size of 2500 m radius around the centre of each square 

Kilometre sampling cell.  This index was used to reflect the size of the subpopulation of pipits 

found in the same area as the sampled pipit and thus to provide a measure of the local 

conspecific host population.  

5.3.6 Models of malaria risk 

We assessed whether individual malaria risk and malaria infection status was associated with 

genetic diversity at microsatellites or the MHC using a general linear models (LM) for malaria 

risk, or generalised linear model (GLM) for malaria infection. Malaria risk was logit-

transformed prior to fitting LMs. We investigated whether there was an association between 

individual microsatellite diversity with malaria risk with an LM of malaria risk as the response 

variable and HL as explanatory variable. We then tested the association between malaria risk 

and MHC class I diversity by running an LM of malaria risk as the response variable and MHC 

diversity as an explanatory variable. We also assessed which MHC class I alleles best explained 

malaria risk using a multi-predictor model of malaria risk as response variable and including all 

http://www.tenerife.es/planes/
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MHC alleles as explanatory variables. We checked for spatial autocorrelation in model 

residuals by building correlograms with a 1,000 m distance increment and resampling 1,000 

times at each distance class, implemented in the R package ncf (Bjornstad 2012). Where 

residual spatial autocorrelation was present, we tried accounting for it by using simultaneous 

autoregressive (SAR) models (Kissling & Carl 2008) implemented in the R package spdep 

(Bivand 2012), specifying an appropriate neighbourhood size within which autocorrelation is 

accounted for. 

5.3.7 Models of MHC variation in the landscape 

We used environmental and spatial predictors, respectively, to assess the extent to which 

extrinsic and intrinsic factors explain MHC variation, both in terms of diversity and specific 

alleles. We selected our spatial predictors from a set of principal components of neighbour 

matrices (PCNMs, Dray et al. 2006), computed in the R package PCNM (Borcard et al. 2011; 

Legendre et al. 2013) as follows: First, we computed a pairwise geographic distance matrix 

between all individuals sampled. Second, we chose a threshold (t) value of 5 km to construct a 

truncated distance matrix; if pairwise distance between two samples was higher than this 

threshold the value in the truncated distance matrix was assigned the value 4t (20 km), and if 

the pairwise distance was lower than the threshold, the values remained invariant. Third, we 

performed a principal coordinates analysis (PCoA) of the truncated distance matrix to obtain 

PCNM base functions associated with the spatial distribution of sampling sites (in our case, 

individual birds). Selection of the subset of PCNMs used in models (above) was based on a 

redundancy analysis (RDA) using individual MHC genotypes as multivariate response and the 

PCNMs selected from the previous step as predictors. A forward selection procedure was used 

to select PCNMs that were significantly correlated with the distribution of MHC alleles across 

samples (pipits). To minimise type I error rates, forward selection employed a double stopping 

criterion described in Blanchet et al. (2008) to test for significance of PCNMs: if a PCNM 

increased the  above 0.05 or raised the adjusted R2 above that of the global model (with all 

PCNMs included) it was not retained. The PCNMs identified by the RDA forward selection as 

being significantly correlated with the MHC allele distribution were included as additional 

predictors in the general linear models (LM) of MHC diversity as response variable, and in 

generalized linear models (GLMs) of each MHC allele as response variable. PCNMs have been 

used as predictor variables in environmental models to account for variation in a response 

variable that would otherwise be retained as spatially autocorrelated residual variation 
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(Borcard & Legendre 2002; Borcard et al. 2011). Here we use PCNMs to characterise the spatial 

variation in our genetic data that is not explained by the environmental gradients we measure, 

and is therefore attributable to isolation by distance/adaptation. In doing so, we 

simultaneously deal with the statistical issue of spatial autocorrelation in model residuals 

biasing environmental parameter estimates and erroneously inflating their levels of certainty 

(Legendre 1993). Nevertheless, we checked the success of the models that included PCNMs in 

removing spatial autocorrelation in model residuals using correlograms as detailed in the 

previous section. Spatial autocorrelation in residuals of these models was not significant, thus 

showing that any spatial autocorrelation in models residuals was successfully accounted for.  

We explored the associations between MHC diversity and the environmental variables using 

multi-predictor models of MHC diversity as the response variable including the previously 

selected PCNMs as additional predictors to the full model of MHC diversity with all 

environmental variables as predictors. In order to test whether separate environmental 

variables were associated with specific MHC class I alleles we performed allele-by-allele multi-

predictor generalized linear models of each MHC allele as response variable fitting all possible 

combinations of environmental variables and previously selected PCNMs as predictors. For this 

purpose we used a model selection approach (Burnham & Anderson 2001) and compared the 

relative fit of models using the Akaike information criterion (AIC). We ranked all resulting 

models for each MHC allele according to their AIC and considered models with AIC (the 

difference between the best model’s AIC and that of the model in question) ≤ 2 as having 

sufficient support (Burnham & Anderson 2001). To estimate the relative importance of 

predictors we performed model averaging on the models with AIC ≤ 2. All model selection 

calculations were performed using the R package MuMIn (Barton 2013). Model selection is a 

valuable alternative to traditional null hypothesis testing (Johnson & Omland 2004; 

Whittingham et al. 2006; Burnham et al. 2011; Dochtermann & Jenkins 2011), and is being 

used increasingly in studies of disease ecology (Moore & Borer 2012; Manzoli et al. 2013). On 

all occasions when multi-predictor models were built we checked our final models by 

comparing them with a series of single-predictor models to ensure consistency of results.  
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5.4 Results 

5.4.1 Neutral and MHC genetic diversity 

A total of 21 microsatellite markers were screened in 388 individuals. Two microsatellite 

markers showed evidence of homozygote excess and presence of null alleles and were 

therefore excluded from further analyses. The other 19 microsatellites did not deviate from 

Hardy-Weinberg equilibrium (Table 5.2). The number of alleles per locus ranged from 2 to 17 

and observed heterozygosity ranged from 0.023 to 0.894 (Table 5.2). The MHC genotyping 

results are described in detail in chapter 4. A total of 22 MHC class I alleles were identified in 

the population of pipits on Tenerife. Two of these alleles, which had frequencies of 0.84 and 

0.82, were found to have very low amplification efficiencies and are therefore likely to suffer 

from allelic dropout. This could therefore mean that they are present in most, if not all of the 

individuals but missed by the screening process in some cases. To avoid this uncertainty 

Locus k HObs HExp 

TG01-024 5 0.064 0.099 
TG01-147 2 0.466 0.479 
TG02-088 2 0.023 0.023 
TG03-002 8 0.335 0.373 
TG03-098 3 0.341 0.629 
TG04-004 5 0.382 0.387 
TG06-009 3 0.373 0.385 
TG09-014 8 0.561 0.782 
TG13-009 4 0.057 0.061 
CAM4 4 0.687 0.704 
CAM8 2 0.452 0.484 
CAM13 3 0.244 0.264 
CAM18 4 0.611 0.655 
CAM23 13 0.760 0.784 
PDO46 6 0.366 0.353 
PDO47 17 0.860 0.894 
PDOµ5 10 0.576 0.583 
PPi2 13 0.811 0.852 
PCA7 2 0.163 0.163 

 

Table 5.2 Summary of 19 microsatellite marker diversity in Berthelot’s pipits (Anthus 

berthelotii) of Tenerife. k - number of alleles, HObs - Observed heterozygosity, HExp - 

Expected heterozygosity. Markers TG05-053 and CAM2 showed evidence of null alleles 

and were therefore excluded from analyses. 
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confounding the spatial analysis these two alleles were excluded from the analysis. After 

removing these two alleles, pipits in Tenerife each had between three and ten MHC class I 

alleles (Fig. 5.1). Allele ANBE7 was also excluded from the spatial analysis because it was fixed 

in the population.  

5.4.2 Overall population genetic structure 

Microsatellite FST revealed very low levels of differentiation among pipits inhabiting the four 

pre-defined zones of Tenerife (FST = 0.008, P = 0.003). For the MHC the levels of differentiation 

were even lower, and non-significant (FST = 0.001, P = 0.770). The STRUCTURE analysis 

indicated that K =1 was the most likely number of genetic clusters, i.e. all individuals had 

approximately the same probability of belonging to any of the simulated populations. Pairwise 

genetic distance based on microsatellites or the MHC was not significantly associated with 

geographic distance (microsatellites: r = -0.015, P = 0.339; MHC: r = 0.038, P = 0.104). 

Therefore both analyses based on neutral and MHC genetic variation indicate that the pipits 

on Tenerife exist as one single population with little or no genetic structure. 

Figure 5.1 Number of MHC class I alleles identified in individual Berthelot’s pipits 

(Anthus berthelotii) across Tenerife. Each dot represents an individual. 
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5.4.3 Landscape genetics analyses 

The sPCA of microsatellite genotypes showed that there was no evidence of global structure (P 

= 0.437). While the test for local structure was not formally significant (P = 0.055), the plot of 

the eigenvector with the largest negative eigenvalue suggested short-scale spatial structure 

indicative of some dissimilarity among neighbours (Fig. 5.2). The sPCA of MHC class I 

genotypes also did not reveal significant patterns of global (P = 0.587) or local (P = 0.732) 

structure. Furthermore, when visually scrutinised, none of the global (positive eigenvalues) or 

local axis (negative eigenvalues) revealed any obvious spatial structuring in the distribution of 

MHC alleles. So, overall there was no evidence for the apparent presence of spatial genetic 

clusters and no evidence for a genetic cline across the landscape.   

 

Figure 5.2 Scores from the largest local eigenvector (Axis 129, P = 0.055) of spatial 

principal component analysis of microsatellite allele frequencies of Berthelot’s pipits 

(Anthus berthelotii) in Tenerife. Each sampled location has a score that ranges from 

-1 (white squares) to 0.5 (black squares). Significance of local eigenvectors reveals 

negative spatial autocorrelation, hence differentiation between neighbouring sites. 
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 Response Predictor   Coefficient      R
2
 

a     
 LK6_Prob Nalleles -0.009   0.001 
b     
 LK6_Prob ANBE1    0.023   0.001 
 LK6_Prob ANBE2   0.037 -0.002 
 LK6_Prob ANBE4  -0.039   0.006 
 LK6_Prob ANBE6 -0.024 -0.002 
 LK6_Prob ANBE7 -0.188   <0.001 
 LK6_Prob ANBE8   0.016 -0.002 
 LK6_Prob ANBE9 -0.012 -0.003 
 LK6_Prob ANBE10   0.030 -0.001 
 LK6_Prob ANBE11   0.038   0.003 
 LK6_Prob ANBE13 -0.012 -0.003 
 LK6_Prob ANBE16 -0.032   <0.001 
 LK6_Prob ANBE28   0.117   0.001 
 LK6_Prob ANBE38   0.019 -0.002 
 LK6_Prob ANBE43 -0.005 -0.003 
 LK6_Prob ANBE44 -0.034   0.002 
 LK6_Prob ANBE45   0.044   <0.001 
 LK6_Prob ANBE46 -0.066   0.006 
 LK6_Prob ANBE47 -0.028   0.002 
 LK6_Prob ANBE48 -0.113*   0.010 
 LK6_Prob ANBE49 -0.004 -0.003 
c     
 

LK6_Prob 

ANBE10   0.022 

0.015 

 ANBE2   0.037 
 ANBE8   <0.001 
 ANBE4  -0.030 
 ANBE43 -0.003 
 ANBE1    0.014 
 ANBE45   0.046 
 ANBE7 -0.358 
 ANBE13 -0.016 
 ANBE9 -0.010 
 ANBE16 -0.033 
 ANBE47 -0.029 
 ANBE11   0.041 
 ANBE28   0.088 
 ANBE6 -0.011 
 ANBE48 -0.142* 
 ANBE49 -0.010 
 ANBE38   0.003 
 ANBE44 -0.035 
 ANBE46 -0.075 

 

Table 5.3 Summary of general linear models predicting malaria risk (LK6_Prob) in 

Berthelot’s pipits (Anthus berthelotii) in Tenerife fitting (a) number of MHC alleles, (b) 

each MHC allele in single predictor models, and (c) all MHC alleles in a multi predictor 

model. Significance of predictors is designated with an asterisk (P <0.05). 
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5.4.4 Models of malaria risk 

Malaria risk was not associated with either microsatellite diversity (P = 0.327, R2 = 0.001), nor 

with MHC class I diversity (P = 0.277, R2 = 0.001, Table 5.3a). However, when testing the 

association between all MHC class I alleles and malaria risk in a multi-predictor model, the 

presence of the ANBE48 allele did significantly correlate with malaria risk, although the 

explanatory power was low (P = 0.019; R2 of multi-predictor model with all alleles as predictors 

= 0.015, R2 of single-predictor model with ANBE48 as predictor = 0.010; Table 5.3b and c). 

None of the alleles or MHC diversity had a significant relationship with malaria infection status. 

Explanatory power of these models was less than 0.009. 

5.4.5 Models of MHC variation in the landscape  

The PCoA performed on spatial coordinates of samples identified 176 PCNMs of which 89 had 

significant Moran’s I values, the first six being positive Moran’s I values, while the remaining 83 

were negative Moran’s I values. The overall redundancy analysis (RDA) indicated that there 

 Response Predictor coefficient R2 

 

Nalleles 

Poultry         -0.513* 

0.034 

 Water   0.924 

 Temperature   0.191 

 Slope         0.054** 

 Farm   0.251 

 Pipit density -0.114 

 Urbanization   0.030 

 PCNM3 -1.91× 10
-5 

 PCNM4   2.61× 10
-5

 

 PCNM9 -3.67 × 10
-5

 

 PCNM13 -4.98 × 10
-5

 

 PCNM23   2.41 × 10
-5

 

 PCNM24   2.66 × 10
-5

 

 PCNM87 -1.74 × 10
-5

 

 

Table 5.4 Summary of general linear models predicting MHC diversity (Nalleles) per 

individual in Berthelot’s pipits (Anthus berthelotii) in Tenerife fitting (a) environmental 

variables and PCNMs as single predictors, (b) all environmental variables in a multi 

predictor model and (c) all environmental variables and PCNMs in a multi predictor 

model.  Significance of predictors is designated by asterisks (* <0.05, ** <0.01, 

***<0.001). 
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was a weak association between these PCNMs and the MHC allele distribution (adjusted R2 = 

0.022, P = 0.030). The forward selection retained seven PCNMs: numbers 3, 4, 9, 13, 23, 24 and 

87 (adjusted R2 = 0.028, P = 0.005), which modelled spatial variation at different scales 

(Supplementary Fig. S5.1). PCNMs 3 and 4 are positive and reflect relatively large-scale spatial 

structures, while the other five PCNMs are negative and reflect intermediate- to fine-scale 

spatial structures.  

In the multi-predictor model of MHC diversity as the response variable, ‘slope’ and ‘distance to 

poultry farm’ were the only significant environmental predictors (P = 0.002 and 0.014, 

respectively; R2 of full model = 0.064, Table 5.4). In combination, the PCNMs accounted for an 

additional 3% of variance in the response and residual spatial autocorrelation was successfully 

removed. Nevertheless, overall explanatory power remained low and none of the PCNMs were 

associated with MHC diversity. 

Model selection and model averaging results of the multi-predictor GLMs investigating the 

presence/absence of MHC alleles (response variables) in relation to environmental variables 

and significant PCNMs as predictors showed different patterns for different alleles. The highest 

reduction in AIC compared to the null model was obtained for the model predicting ANBE48 

(AIC = 18.5, Table 5.5). Model averaging shows that distance to poultry farms has a relative 

importance of 1 in explaining ANBE48 distribution, while the other environmental variables 

had a relative importance of 0.1. The best model for ANBE48 showed the highest explanatory 

power among all alleles (R2 = 0.310) and included a positive association with distance to 

poultry farms and PCNMs 3 and 23 (Table 5.5, Fig. 5.3). The next highest explanatory power (R2 

= 0.210) was obtained for the best model of ANBE38 which (interestingly) included a negative 

association with distance to poultry farms, as well as a positive correlation with slope, and 

PCNMs 3 and 4 (Table 5.5, Fig. 5.3). The explanatory power of the multi-predictor models for 

the other alleles was relatively low (R2 ≤ 0.17, Supplementary Table S5.1), indicating that 

association of environmental and spatial predictors on other alleles are lower than those 

identified for ANBE38 and ANBE48.  

Single-predictor models broadly supported the results of multi-predictor models in this study, 

confirming, for example, the relative importance of poultry farms in explaining ANBE48 and 

ANBE38 distribution (R2 = 0.154 and 0.051, respectively), and the relatively low explanatory 
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power of many of the individual predictor-response relationships investigated (Supplementary 

Table S5.2). 

 

5.5 Discussion 

In this study we assessed fine-scale structure at neutral markers and at MHC loci in relation to 

environmental factors within a population of Berthelot’s pipit. We found no evidence of 

consistent population-wide genetic structure at either the neutral or functional markers. 

Nevertheless, we did find a weak association between malaria risk and one specific MHC allele 

(ANBE48). Furthermore when taking into account spatial processes independent of 

  ANBE38   ANBE48 

Poultry -2.03** (1.00)   5.27** (1.00) 
Water   0.98 (0.75) -0.24 (0.08) 
Slope   0.12* (1.00)   0.02 (0.07) 
Temperature -0.01 (0.04) -0.06 (0.09) 
Farm   1.30 (0.38)   0.52(0.09) 
Urbanization -0.72 (0.31)   0.50 (0.09) 
Pipit density -0.04 (0.04)   1.02 (0.08) 
PCNM3 -8.63 × 10

-5
 (0.20)   4.20 × 10

-4
* (1.00) 

PCNM4   2.61 × 10
-4

** (1.00)   3.36 × 10
-5

* (0.04) 

PCNM9   2.83 × 10
-5

 (0.04)   1.79 × 10
-4 

(0.12) 

PCNM13   3.34 × 10
-4

* (1.00) -9.87 × 10
-6

 (0.04) 

PCNM23 -1.82 × 10
-4

 (0.20) -1.78 × 10
-4

* (1.00) 

PCNM24 -7.86 × 10
-5

 (0.05)   2.05 × 10
-4

 (0.10) 

PCNM87 -7.33 × 10
-6

 (0.04)   5.53 × 10
-4

 (0.44) 

   
AIC Null

1 
  139.30   90.30 

AIC best
2 

  125.36   71.78 

 AIC
   13.94   18.52 

R
2
 best

3 
  0.21   0.31 

 1AIC of the model with only the intercept 
2AIC of the model with the lowest AIC compared to all other possible models 
3Explanatory power of the model with the lowest AIC 

 

Table 5.5 Summary of model selection performed on multi-predictor generalized linear 

models (with AIC ≤ 2 when compared to the best fit model) of Berthelot’s pipits 

(Anthus berthelotii) MHC class I alleles ANBE38 and ANBE48 in Tenerife as response 

variables. Significant coefficients are underlined, level of significance is designated by 

asterisks (* <0.05, ** <0.01, ***<0.001), and relative importance in explaining variation 

in the presence of each allele after model averaging is shown in brackets. 
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environmental gradients, we found stronger, opposing, associations between two MHC alleles 

(ANBE48 and ANBE38) and an anthropogenic environmental variable (distance to poultry 

farms) already known to be important in disease transmission in the pipit.  

The STRUCTURE and FST analyses based on neutral markers and four pre-defined populations 

revealed that there was no evidence of separate populations: Berthelot’s pipits in Tenerife are 

part of one panmictic population. The Mantel test which found no correlation between MHC 

genetic distance and geographic distance identified the same pattern of panmixia for these 

adaptive loci. These results were further confirmed by the spatial PCA analyses, which 

indicated that there is no overall pattern of spatial genetic structure at either type of marker. 

This study therefore indicates that neither climatic differences nor apparent barriers to 

dispersal across Tenerife impede gene flow between different areas of the island. The opposite 

has been found in other systems where intra-population spatial clines and global (positively 

Figure 5.3 Distribution of Log (Distance to nearest poultry farms) across individual 

Berthelot’s pipits carrying (1) or not carrying (0) alleles ANBE38 and ANBE48. Centre 

lines show the medians. Box limits indicate the 25th and 75th percentiles and outliers 

are represented by open dots. 
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spatially autocorrelated) structures in allele frequencies of adaptive loci have been described 

at relatively small spatial scales (Garroway et al. 2013; reviewed in Richardson et al. 2014).  

The lack of local or global structure at the MHC was further confirmed by the PCNM analyses. 

The significant PCNMs retained after the RDA performed on the MHC genotypes modelled 

spatial variation at different scales: two of them were positive and reflected relatively large-

scale spatial structures, while the other five PCNMs were negative and reflected intermediate- 

to fine-scale spatial structures. This suggests that spatial variation at the MHC decomposes 

into a complex set of spatial structures, suggesting different scales of influence on different 

alleles or groups of alleles. This can be expected if a few specific alleles are under selective 

pressure, while others are evolving under neutrality, which might occur if only some MHC 

alleles confer resistance or susceptibility to the particular pathogens to which Berthelot’s pipits 

are currently exposed in Tenerife. This pattern of structure at specific MHC alleles is swamped 

when performing analyses with individual genotypes, and single allele effects cannot be 

revealed. Therefore, analyses performed on individual alleles are needed in any fine-scale 

genetic structure analysis. 

Individual MHC alleles produce molecules which are able to bind subsets of specific pathogen 

derived peptides and thus trigger the appropriate immune responses to those pathogens 

(Wakelin 1996). Thus MHC characteristics can be linked with pathogens in two ways. First, 

specific MHC alleles can confer resistance or susceptibility to a specific pathogen, and under 

this scenario we would expect a correlation between allele presence/absence and disease (e.g. 

Meyer-Lucht & Sommer 2005; Bonneaud et al. 2006; Schad et al. 2012; Zhang & He 2013). 

Second, individuals with greater allelic diversity may be better at responding to both individual 

pathogens and to the diversity of pathogens in the environment; if this is the case we expect 

MHC diversity to be negatively associated with disease (Westerdahl et al. 2005; e.g.Kloch et al. 

2010;  but see Radwan et al. 2012). In the present study we found no association of malaria 

risk with MHC diversity of an individual. On the other hand, we did find that allele ANBE48 was 

significantly associated with a reduced malaria risk, although this relationship was too weak (R2 

= 0.010 for the single predictor model, Table 5.3b) to be able to draw definitive conclusions. 

However, while our explanatory power was relatively low in the present study, our results do 

concur with other studies that have found MHC alleles that confer resistance/susceptibility to 
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disease (Collins et al. 1977; Croisetiere et al. 2008; Xu et al. 2010; Biedrzycka et al. 2011; Kloch 

et al. 2013), including malaria (Hill et al. 1991; Bonneaud et al. 2006; Westerdahl et al. 2013).  

The effect of different climatic variables on spatial distribution of immune genes has been 

previously documented (Tonteri et al. 2010), and spatially variable selection on specific MHC 

alleles has been reported at large scales (Landry & Bernatchez 2001; Ekblom et al. 2007). 

Interestingly, in Berthelot’s pipits we found that distribution of allele ANBE48 was positively 

associated with distance to poultry farms, a variable previously found to have a negative 

association with malaria infection in pipits in Tenerife (Gonzalez-Quevedo et al. 2014). In short, 

the closer an individual pipit was to a poultry farm, where malaria transmission has been 

shown to be higher, the less likely it was to be carrying the ANBE48 allele (Fig. 5.3). Distance to 

a poultry farm explained 15% of the variation in the distribution of ANBE48, and was the most 

important variable in the best model for this allele. Another allele, ANBE38, was negatively 

associated with distance to poultry farms (Fig. 5.3), although the amount of variation in 

ANBE38 explained by this variable was not as large (R2 = 0.051) as for ANBE48. That we found 

no effect of microsatellite or MHC diversity suggests that this result is not explained by 

genome-wide diversity but is directly associated with the alleles identified. It is important to 

note that PCNM23 had a strong association with ANBE48 (R2 = 0.105, P < 0.01), but this PCNM 

does not explain the distribution of any other MHC alleles (Table S5.2). This therefore indicates 

that spatial variation in ANBE48 is not attributable to isolation by distance, as otherwise other 

alleles would show very similar spatial associations. An alternative explanation is that a spatial 

gradient in a currently unmeasured environmental factor may be exerting a selective pressure 

on this allele.  

Given that, 1) ANBE48 only explained 1% variation in an index of malaria risk, 2) ANBE38 was 

not significantly associated with malaria risk, and, 3) both ANBE48 and ANBE38 were much 

more significantly associated with distance to poultry farms, we hypothesize that these alleles 

are linked with the incidence of diseases other than malaria. The relationship that poultry 

farms have with the transmission of other avian diseases that may interact with the MHC, and 

possibly affect the survival of pipits, has yet to be explored. However, we do know that other 

pathogens exist within this population (Spurgin et al. 2012), such as avian pox and avian 

malaria of the genus Leucozytozoon. Therefore, assessment of the interaction of these 

pathogens with the MHC and of their association with poultry farms might give some insight 
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into the mechanisms behind the association we found of ANBE48 and ANBE38 with distance to 

poultry farms. 

Previous work has provided considerable evidence that selection has shaped MHC class I 

variation in Berthelot’s pipit (Spurgin et al. 2011; Chapter 4). In particular, selection appears to 

be focused on the key peptide binding region (PBR; Chapter 4), which comprises 15 amino 

acids within the exon 3 (Brown et al. 1993). Among the alleles found in the Berthelot’s pipits in 

Tenerife, allele ANBE48 has a unique PBR, different from that of allele ANBE38 at nine amino 

acids, suggesting these two alleles have very different binding properties (see chapter 4) and 

supporting our finding of opposing effects associated with these alleles. In line with this 

reasoning, the most logical explanation we can put forward for the results that we find is that 

the ANBE48 allele makes an individual susceptible to a pathogen that exists (or is at higher 

levels) around poultry farms, while ANBE38 is a non-susceptible alternative allele. Whatever 

the specific pathogen, we hypothesise that birds that live close to poultry farms have a higher 

risk of contracting a pathogenic disease and die if they carry ANBE48. Another possible 

explanation is that birds living close to poultry farms which carry ANBE48 have a higher 

probability of being sick, and are not active, and that, these birds are thus not caught using our 

method.  

Understanding the mechanisms that drive fine-scale genetic structure at adaptive loci is vital in 

evolutionary research (Richardson et al. 2014). To our knowledge, this is the first study to 

show an effect of an environmental variable on MHC variation at the intra-population level. 

The fact that this environmental variable (the presence of poultry farms) has an anthropogenic 

source has considerable implications for understanding evolution in the context of global 

change and human impact on disease transmission in wild populations. Moreover, this study 

highlights the importance of considering fine spatial scales when assessing patterns of 

selection at adaptive loci. Key patterns and associations may be overlooked when we lump 

together within-population variation to assess differences at greater scales, potentially 

undermining our understanding of the factors and mechanisms that drive the evolution of the 

loci and species in question. Furthermore, understanding the scales, speed and causes of local 

adaptation within a species can have important implications for conservation, particularly 

when populations are challenged by new factors induced by environmental changes, either 

because of restorative translocations or because of habitat disturbance. 
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Supplementary Table S5.1 Summary of model selection performed on multi-predictor generalized linear models (with AIC ≤ 2 when compared to the best fit 

model) of MHC class I alleles of Berthelot’s pipits (Anthus berthelotii) in Tenerife as response variables. Only alleles with the best model R2 ≤ 0.17 are shown. 

Models for ANBE38 and ANBE48 can be found in Table 5.2. Significant coefficients are underlined, level of significance is designated by asterisks (* <0.05, ** 

<0.01, ***<0.001), and relative importance in explaining variation in the presence of each allele after model averaging is shown in brackets. 

  ANBE1  ANBE2  ANBE4 ANBE6   ANBE8  ANBE9   ANBE10   ANBE11 

Poultry -0.79* (1.00) -0.11 (0.03) -0.27 (0.08)   0.24 (0.04) -1.08* (1.00) -0.11 (0.02) -1.44* (0.94) -0.67 (0.70) 

Water   0.12 (0.07)   0.01 (0.03)   0.51 (0.91)   0.33 (0.06) -0.73* (1.00)   0.27 (0.14) -0.47 (0.20)   0.44 (0.48) 

Slope   0.07* (1.00) -0.03 (0.07) -0.06 (0.91)   0.06 (0.56)   0.10* (1.00)   0.047 (0.26)   0.05 (0.18) -0.05 (0.38) 

Temperature   0.01 (0.06)   0.05 (0.04) -0.06 (0.22) -0.09 (0.48) -0.01 (0.06) -0.03 (0.08)   0.03 (0.05) -0.05 (0.09) 

Farm -0.09 (0.07) -0.23 (0.03) -0.45 (0.14) -0.05 (0.05)   1.21* (1.00)   0.19 (0.07)   0.94 (0.46)   0.45 (0.05) 

Urbanization   0.01 (0.06)   0.58 (0.19)   0.50 (0.63) -0.32 (0.10)   0.32 (0.09) -0.04 (0.02)   0.48 (0.19)   0.16 (0.02) 

Pipit density -0.44 (0.16) -0.19 (0.03)   0.08 (0.03)   0.41 (0.03)   0.35 (0.07)   0.32 (0.06)   0.03 (0.03)   0.57 (0.04) 

PCNM3   2.32 × 10-6 (0.06)   3.66 × 10-5 (0.03)   1.59 × 10-5 (0.04)   4.09 × 10-5 (0.09) -4.97 × 10-6 (0.06)   7.38 × 10-5 (0.44) -1.17 × 10-5 (0.03)   1.95 × 10-5 (0.02) 

PCNM4   8.81 × 10-5* (1.00) -3.42  × 10-5 (0.03)   9.69 × 10-5 *(1.00) -7.67 × 10-5 (0.25)   3.32 × 10-5 (0.08) -5.87 × 10-5 (0.20)   1.16 × 10-4 (0.91) -5.15 × 10-5 (0.19) 

PCNM9   2.34 × 10-5 (0.07)   5.65  × 10-5 (0.03)   2.67 × 10-5 (0.08) -4.01 × 10-5 (0.05)   9.75 × 10-5 (0.82) -1.19 × 10-5 (0.02) -7.98 × 10-5 (0.19)   6.57 × 10-5 (0.29) 

PCNM13 -1.59 × 10-5 (0.07) -1.65 × 10-5 (0.03) -1.88 × 10-4** (1.00) -6.99 × 10-5 (0.12)   1.30 × 10-5 (0.06) -3.04 × 10-5 (0.06)   1.03 × 10-4 (0.19)   2.72 × 10-5 (0.02) 

PCNM23 -2.37 × 10-5 (0.07)   1.99 × 10-4 (0.69) -2.02 × 10-5 (0.03)   1.51 × 10-4 (0.57) -3.96 × 10-5 (0.07) -3.81 × 10-6 (0.02)   1.69 × 10-5 (0.03) -8.31 × 10-5 (0.08) 

PCNM24   8.52 × 10-5 (0.20)   1.93 × 10-4 (0.22) -1.58 × 10-4 (1.00) -2.08 × 10-4 (0.84)   1.77 × 10-4 (0.85) -1.56 × 10-4 (0.53) -1.49 × 10-4 (0.18) -1.22 × 10-4 (0.45) 

PCNM87 -5.24 × 10-4** (1.00)   4.71 × 10-4 (0.25) -1.88 × 10-4 (0.15)   1.05 × 10-5 (0.01) -1.66 × 10-4 (0.08) -6.98 × 10-4** (1.00) -4.14 × 10-5 (0.02)   1.83 × 10-4 (0.14) 

         
AIC Null1   419.80   97.00   346.70   180.50   255.00   189.50   185.20   272.20 

AIC best2   401.98   96.77   329.15   178.54   247.35   184.45   182.21   272.00 

 AIC   17.82   0.23   17.55   1.96   7.65   5.05   2.99   0.20 

R2 best3   0.11   0.03   0.13   0.06   0.11   0.06   0.05   0.02 

 1AIC of the model with only the intercept 
2AIC of the model with the lowest AIC compared to all other possible models 
3Explanatory power of the model with the lowest AIC 
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Supplementary Table S5.1 (Cont.)  

    ANBE13   ANBE16 ANBE28  ANBE43 ANBE44 ANBE45   ANBE46   ANBE47 ANBE49 

Poultry   1.57 (0.72) -0.07 (0.02) -0.72 (0.04) -0.30 (0.16)   0.58 (0.47)   0.56 (0.12)   0.61 (0.17) -0.11 (0.03) -0.04 (0.03) 

Water -0.04 (0.04) -0.53 (0.50) -0.25 (0.03) -0.37 (0.57) -0.10 (0.02)   0.96* (0.82)   0.35 (0.10)   0.36 (0.26) 0.18 (0.07) 

Slope   0.04 (0.05)   0.08* (1.00) -0.25 (0.25)   0.02 (0.1) -0.05 (0.31) -0.04 (0.04)   3.33 X 10-4 (0.01)   0.03 (0.15) 0.03 (0.04) 

Temperature -0.06 (0.09) -0.11 (0.72)   0.04 (0.03)   0.01 (0.03) -0.05 (0.16)             0.07 (0.08) -0.06 (0.10) -0.08 (0.77) 0.08 (0.14) 

Farm   0.63 (0.10)   0.57 (0.13) -1.16 (0.11)   0.02 (0.02)   0.34 (0.08) -0.40 (0.04)   0.76 (0.31) -0.35 (0.10) 0.95 (0.69) 

Urbanization -0.45 (0.06) -0.49 (0.30) -0.84 (0.11)   0.48 (0.68) -0.19 (0.03) -1.25* (1.00)   0.44 (0.14) -0.09 (0.03) 0.51 (0.14) 

Pipit density -0.15 (0.04) -0.77 (0.06)   0.34 (0.03) -0.18 (0.03) -0.83 (0.19)   2.85* (1.00) -1.32 (0.29) -0.80 (0.27) 0.24 (0.03) 

PCNM3 -7.43 × 10-5 
(0.06) 

  7.31 × 10-6 (0.02)   3.21 × 10-5 (0.03) -1.22 × 10-4*** 
(1.00) 

-3.16 × 10-5 (0.08) -8.01 × 10-6 (0.04)   5.06 × 10-5 (0.12)   9.92 × 10-7 (0.03) -5.57 X 10-5 (0.12) 

PCNM4 -2.45 × 10-4** 
(1.00) 

  4.82 × 10-5 (0.14) -1.69 × 10-4 (0.14) -3.19 × 10-5 (0.15) -3.50 × 10-5 (0.05) -8.00 × 10-5 (0.16)   5.12 × 10-5 (0.08)   3.54 × 10-5 (0.15) -5.28 X 10-5 (0.08) 

PCNM9 -1.88 × 10-4 
(0.94) 

-6.00 × 10-5 (0.11)   3.32 × 10-5 (0.03) -2.86 × 10-5 (0.06) -1.26 × 10-4* (1.00)   1.99 × 10-4* (1.00) -3.49 × 10-5 (0.03) -1.65 × 10-4** (1.00) -2.47 X 10-5 (0.03) 

PCNM13 -1.82 × 10-4  
(0.31) 

-6.15 × 10-5 (0.03)   4.52 × 10-5 (0.03)   3.37 × 10-5 (0.06) -9.01 × 10-5 (0.33)   4.64 × 10-5 (0.04) -1.18 × 10-4 (0.39) -2.09 × 10-5 (0.03) 1.76 X 10-5 (0.03) 

PCNM23   1.77 × 10-5  
(0.04) 

  2.34 × 10-4** (1.00) -5.14 × 10-6 (0.03) -1.12 × 10-4 (0.79)   1.80 × 10-4* (1.00) -2.03 × 10-4 (0.61)   4.87 × 10-6 (0.01)   4.52 × 10-5 (0.04) 6.37 X 10-6 (0.03) 

PCNM24   1.02 × 10-5 
(0.04) 

  1.83 × 10-4 (0.77)   4.90 × 10-4 (0.28)   9.58 × 10-5 (0.47) -5.74 × 10-6 (0.02)   8.70 × 10-5 (0.04) -2.08 × 10-4 (0.75)   2.30 × 10-4** (1.00) 1.97 X 10-5 (0.03) 

PCNM87 -2.86 × 10-4  
(0.10) 

  1.65 × 10-4 (0.05)   4.91 × 10-4 (0.11)   4.32 × 10-4** 
(1.00) 

-6.54 × 10-5 (0.02) -4.06 × 10-4 (0.21)   2.30 × 10-5 (0.01)   2.68 × 10-4 (0.81) 2.54 X 10-4 (0.17) 

          

AIC Null1   122.00   228.40   35.78   407.80   268.90   139.30   155.50   363.60 165.70 

AIC best2   110.75   219.08   35.78   390.10   261.57   129.87   154.74   347.84 165.16 

 AIC   11.25   9.32   0.00   17.70   7.33   9.43   0.76   15.76 0.54 

R2 best3   0.17 0.12   0.00   0.12   0.07   0.17   0.05   0.11 0.02 

 

1
AIC of the model with only the intercept 

2
AIC of the model with the lowest AIC compared to all other possible models 

3
Explanatory power of the model with the lowest AIC 
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Supplementary Table S5.2 Summary of generalized linear models predicting presence of MHC 

class I aleles in Berthelot’s pipits (Anthus berthelotii) in Tenerife, fitting single environmental 

predictor variables. AIC and Nagelkerke R2 are shown. AIC values that result in a AIC  2 

compared to the null model are underlined. Significance of predictors is denoted by an 

asterisk: * = P < 0.05, ** = P < 0.01, *** = P < 0.001. 
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    ANBE1   ANBE2   ANBE4    ANBE6 ANBE8   ANBE9     ANBE10  ANBE11 ANBE13 ANBE16 

Null AIC   419.80   97.00 346.70 180.50 255.00 189.50 185.20 272.20 122.00 228.40 
Poultry Coefficient - 0.434 - 0.314 0.463 0.447  - 0.807* 0.033   - 0.922   - 0.474 0.437 0.379 

R2   0.012   0.002 0.010 0.007 0.026 3.79 × 10-5 0.027 0.010 0.005 0.005 
AIC   419.10   98.80 346.30 181.60 252.50 191.80 183.40 272.40 123.50 229.50 

Water Coefficient - 0.071 0.036 0.544* 0.318  - 0.419 0.379   - 0.430 0.256 0.218 - 0.054 
R2   0.001 6.10 × 10-5 0.030 0.006 0.014 0.009 0.012 0.005 0.002 2.00 X 10-4 
AIC   421.60 99.00 342.50 181.50 254.60 190.50 185.60 273.30 123.80 230.40 

Slope Coefficient   0.058* - 0.030 - 0.029 0.071 0.056 0.049 0.022 -0.051 0.030 0.077* 
R2   0.021 0.003 0.005 0.025 0.011 0.011 0.002 0.009 0.003 0.031 
AIC   416.90 98.70 347.70 179.00 255.10 190.30 187.00 272.50 123.70 225.30 

Temperature Coefficient   0.018 0.040 - 0.087 - 0.068  - 0.007 - 0.045 0.028   - 0.024 0.021 - 0.074 
R2   1.00 X 10-3 0.002 0.020 0.012 1.00 X 10-4 0.005 0.002 0.001 0.001 0.016 
AIC   421.50 98.80 345.00 180.80 256.90 191.10 186.90 274.00 123.90 227.80 

Farm Coefficient - 0.544 - 0.263 0.214 0.186 0.152 0.372 0.087 0.146 0.562 0.212 
R2   0.015 0.001 2.00 X 10-3 0.001 0.001 0.004 2.00 X 10-4 0.001 0.008 0.001 
AIC   418.30 98.90 348.30 182.30 256.80 191.30 187.20 274.10 123.30 230.20 

Urbanization Coefficient - 0.128 0.530 0.532* - 0.078 0.091 0.185 0.244 0.130 - 0.180 - 0.236 
R2   0.001 0.010 0.002 3.00 X 10-4 5.00 X 10-4 0.001 0.003 0.001 0.001 0.003 
AIC   421.50 98.20 344.70 182.40 256.90 191.60 186.80 274.10 123.90 230.00 

Pipit density Coefficient - 0.397 - 0.100 - 0.796 - 0.449 0.547 0.166 0.030 0.156 1.194 - 1.105 
R2   0.003 6.90 × 10-5 0.010 0.002 0.003 2.00 X 10-4 8.37  X 10-6 3.00 X 10-4 0.01 0.012 
AIC   421.20 99.00 346.90 182.20 256.40 191.80 187.20 274.20 123.00 228.40 

PCNM3 Coefficient   1.03 × 10-5 3.56 × 10-5 2.24 × 10-5 3.21 × 10-5 2.15 X 10-6 7.09 × 10-5 5.05 X 10-6 2.46 × 10-5 -2.36 × 10-5 - 2.65 X 10-6 
R2   5.00 X 10-4 0.002 0.002 0.003 1.40× 10-5 0.014 6.40 × 10-5 0.002 0.001 2.02 × 10-5 
AIC   421.70 98.80 348.30 182.10 256.90 189.90 187.20 273.90 123.90 230.40 

PCNM4 Coefficient   6.08 X 10-5 - 3.52 × 10-5 8.75 × 10-5* - 5.23 × 10-5  - 1.22 × 10-5 - 5.95 × 10-5 5.95 × 10-5   - 5.54 × 10-5 -2.57 X 10-4** 5.88 × 10-5 
R2   0.015 0.002 0.020 0.006 4.00 X 10-4 0.008 0.008 0.009 0.107 0.009 
AIC   418.30 98.80 343.40 181.60 256.90 190.70 186.10 272.70 113.20 229.00 

PCNM9 Coefficient   2.76 × 10-5 0.04 2.15 × 10-5 - 1.74 × 10-5 9.49 × 10-5 - 1.20 × 10-5   - 6.69 × 10-5 6.01 × 10-5 -2.12 X 10-4* - 5.50 X 10-6 
R2   0.002 0.002 0.001 4.57 X 10-4 0.017 2.23 X 10-4 0.007 0.007 0.055 5.19 × 10-5 
AIC   421.30 98.78 348.50 182.40 254.00 191.80 186.30 273.01 118.50 230.40 

PCNM13 Coefficient   1.02 × 10-5 5.21 × 10-5 - 1.71 X 10-4** - 6.79 × 10-5 7.22  × 10-5 - 1.17 × 10-5 1.46 X 10-4* 3.69 × 10-5 -1.34 X 10-4 - 1.05 X 10-4 
R2   0.002 0.002 0.040 0.006 0.008  1.00 X 10-4 0.029 0.002 0.019 0.016 
AIC   421.70 98.80 339.60 181.70 255.60 191.80 183.20 273.90 122.00 227.90 

PCNM23 Coefficient -1.71 × 10-5 1.93 X 10-4 2.50 X 10-6 1.49 X 10-4  - 7.83 × 10-5 - 3.63 X 10-6 1.71 X 10-6   - 6.09 × 10-5 5.09 × 10-5 2.36 X 10-4** 
R2   3.45 X 10-4 0.027 6.30 X 10-6 0.017 0.005 8.70 X 10-6 1.90 X 10-6 0.003 0.001 0.048 
AIC   421.70 96.77 348.70 180.10 256.10 191.80 187.20 273.70 123.90 222.50 

PCNM24 Coefficient   6.88 × 10-5 1.80 X 10-4 - 1.29 X 10-4 - 2.00  X 10-4 1.29 X 10-4 - 1.42 X 10-4   - 8.39 × 10-5   - 8.58 × 10-5 6.39 X 10-6 1.14 X 10-4 
R2   0.005 0.010 0.010 0.025 0.012 0.012 0.004 0.006 1.89 × 10-5 0.008 
AIC   420.70 97.70 345.80 179.10 254.80 190.10 186.60 273.20 124.00 229.10 

PCNM87 Coefficient - 5.00  X 10-4** 4.20 X 10-4 1.71 X 10-4 - 3.60 X 10-6  - 1.43 X 10-4 - 6.95 X 10-4**   - 2.66 × 10-5 1.80 × 10-5 -3.04 X 10-4 1.58 X 10-4 
R2   0.04 0.010 0.005 1.45 X 10-6 0.003 0.051 8.13 × 10-5 0.005 0.008 0.003 
AIC   411.40 97.80 347.70 182.50 256.40 184.50 187.20 273.30 123.20 229.90 
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     ANBE28   ANBE38 ANBE43 ANBE44 ANBE45   ANBE46 ANBE47 ANBE48 ANBE49 

Null AIC 35.80 139.30 407.80 268.90 139.30 155.50 363.60 90.30 165.70 
Poultry Coefficient - 0.719 - 1.221* -0.213 0.737* 0.339 0.749 -0.059 2.954** 0.332 

R2 0.010 0.051 0.003 0.022 0.003 0.016 2.00 × 10-4 0.154 0.003 
AIC 37.40 135.70 409.20 266.90 140.90 155.50 365.50 80.20 167.30 

Water Coefficient - 0.250 0.138 -0.246 0.069  - 0.046 0.403 0.324 0.339 0.331 
R2 0.002 0.001 0.007 4.00 × 10-4 1.00 × 10-4 0.009 0.011 0.005 0.007 
AIC 37.70 141.20 408.20 270.80 141.30 156.30 363.30 91.90 166.90 

Slope Coefficient - 0.240 0.067 0.008 -0.035  - 0.023 0.008 0.007 0.051 0.016 
R2 0.047 0.019 5.00 × 10-4 0.005 0.001 2.00 × 10-4 3.00 × 10-4 0.009 0.001 
AIC 36.30 139.10 409.70 270.00 141.10 157.40 365.50 91.60 167.60 

Temperature Coefficient 0.036 - 0.004 4.10 × 10-4   - 0.033 0.106 - 0.061 -0.049  - 0.100 - 0.002 
R2 0.001 2.38 × 10-5 6.03 × 10-7 0.003 0.012 0.009 0.009 0.021 8.74 × 10-6 
AIC 37.70 141.30 409.80 270.30 139.90 156.40 363.70 90.20 167.70 

Farm Coefficient - 1.042 - 0.316 -0.072 0.255  - 0.777 0.737 -0.027 1.413 0.843 
R2 0.016 0.002 3.00 × 10-4 0.002 0.014 0.014 3.51 × 10-5 0.045 0.020 
AIC 37.30 141.00 409.70 270.50 139.70 155.70 365.60 88.80 165.20 

Urbanization Coefficient - 0.758 - 0.829 0.243   - 0.045  - 1.174** 0.515 0.08 0.855 0.582 
R2 0.015 0.028 0.005 1.00 × 10-4 0.058 0.01 4.00 × 10-4 0.022 0.013 
AIC 37.30 138.10 408.70 270.90 134.80 156.20 365.50 90.60 166.00 

Pipit density Coefficient 0.341 - 0.106 -0.012   - 0.656 2.154 - 1.555 -0.443  - 0.716 - 0.317 
R2 5.00 × 10-4 8.88 × 10-5 2.27 × 10-6 0.005 0.035 0.019 0.003 0.003 0.001 
AIC 37.80 141.30 409.80 270.00 137.31 155.10 365.00 92.00 167.60 

PCNM3 Coefficient 3.21 × 10-5 - 3.73 × 10-5 -1.22 × 10-4***   - 3.02 × 10-5 1.57 × 10-5 3.790 -8.16 × 10-6 1.00 × 10-4 - 4.60 × 10-5 
R2 0.001 0.003 0.058 0.003 5.00 × 10-4 0.003 2.00 × 10-4 0.020 0.005 
AIC 37.70 140.90 396.40 270.40 141.20 157.05 365.50 90.70 167.10 

PCNM4 Coefficient - 1.70 × 10-4 1.18 × 10-4 -3.75 × 10-5   - 9.93 × 10-6  - 7.49 × 10-5 4.33 × 10-5 4.19 × 10-5 7.03 × 10-5 - 5.24 × 10-5 
R2 0.032 0.029 0.006 3.00 × 10-4 0.011 0.004 0.006 0.008 0.006 
AIC 36.70 138.00 408.50 270.80 140.10 157.00 364.20 91.60 167.00 

PCNM9 Coefficient 3.32 × 10-5 4.99 × 10-5 -2.87 × 10-5   - 1.11 × 10-4* 1.94 × 10-4* - 2.02 × 10-5 -1.28 × 10-4** 8.66 × 10-5 - 9.00 × 10-6 
R2 0.001 0.003 0.002 0.023 0.044 6.00 × 10-4 0.039 0.008 1.16 × 10-4 
AIC 37.70 140.90 409.30 266.60 136.40 157.40 357.10 91.70 167.70 

PCNM13 Coefficient 4.52 × 10-5 2.00 × 10-4* 3.06 × 10-5   - 1.05 × 10-4 1.18 × 10-5 - 1.03 × 10-4 2.21 × 10-8  - 2.68 × 10-4** 3.64 × 10-5 
R2 0.001 0.044 0.002 0.017 1.00 × 10-4 0.012 9.04 × 10-10 0.080 0.001 
AIC 37.70 136.30 409.40 267.80 141.30 156.00 365.60 85.70 167.60 

PCNM23 Coefficient - 5.13 × 10-6 - 1.04 × 10-5 -1.12 × 10-4 2.00 × 10-4*  - 1.50 × 10-4 - 1.12 × 10-7 4.95 × 10-5  - 3.20 × 10-4** 6.42 × 10-6 
R2 8.97 × 10-6 6.10 × 10-5 0.013 0.035 0.015 7.37 × 10-9 0.002 0.105 2.53 × 10-5 
AIC 37.80 141.30 406.80 264.50 139.60 157.50 365.04 84.10 167.70 

PCNM24 Coefficient 5.00 × 10-4 - 9.60 × 10-5 8.77 × 10-5   - 2.24 × 10-5 7.68 × 10-5 - 1.97 × 10-4 2.02 × 10-4**  - 9.80 × 10-6 1.05 × 10-5 
R2 0.059 0.005 0.008 4.00 × 10-4 0.003 0.022 0.034 3.96 × 10-5 5.98 × 10-5 
AIC 35.90 140.70 408.00 270.80 140.90 154.80 358.10 92.30 167.70 

PCNM87 Coefficient 4.70 × 10-4 - 2.21 × 10-5 3.92 × 10-4*   - 7.15 × 10-5  - 2.60 × 10-4 2.77 × 10-5 2.70 × 10-4 4.49 × 10-4 2.60 × 10-4 
R2 0.015 4.77 × 10-5 0.030 0.001 0.006 8.02 × 10-5 0.013 0.018 0.008 
AIC 37.30 141.30 403.00 270.80 140.60 157.50 362.70 90.80 166.80 

 

Supplementary Table S5.2 (Cont.) 

1
6

2 



Chapter 5: Fine-scale genetic structure at the MHC  
 
 

163 
 

 

 

 

Supplementary Figure S5.1 Scores at each sampled location from the seven PCNMs 

significantly associated with the spatial distribution of MHC class I alleles in Berthelot’s 

pipits (Anthus berthelotii) in Tenerife, as determined by forward selection within a 

redundancy analysis (RDA). PCNMs are eigenvectors computed from the spatial 

coordinate positions of samples (see methods) and are used to characterise the spatial 

variation in allele frequencies (genetic structure). PCNMs 3 and 4 have positive 

eigenvalues, hence indicating positively autocorrelated (global) spatial structures. 

PCNMs 9, 13, 23, 24 and 87 have negative eigenvalues indicating negatively 

autocorrelated (local) spatial structures. Selection of negative PCNMs may indicate 

neighbour dissimilarities resulting from e.g. repulsion processes such as dispersal for 

inbreeding avoidance, hence may show shorter-distance spatial structuring than 

positive PCNMs (as indicated here). Each sampled location has a score that ranges from 

lowest values in white to highest values in black. 
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6.1 General discussion 

In this thesis I have emphasised the importance of exploring evolutionary processes in a 

spatially explicit manner. This is because evolutionary change depends not only on the genetic 

variation available in a population, but also on the environmental characteristics to which 

individuals carrying such genetic variation are exposed, and how these differ across time and 

space. I explored how different sets of genes relevant to the immune system evolve in 

response to demographic and selective factors at different spatial scales in populations of 

Berthelot’s pipit. In this final chapter, I discuss my findings collectively and propose ideas for 

future research. 

6.1.1 Comparative evolution of MHC and TLRs 

Elucidating the roles of demographic and selective factors in shaping genetic variation is of 

utmost importance for understanding how genetic variation evolves in populations (Lande 

1976). It is especially important to understand how these evolutionary processes shape 

variation at functional loci, particularly in bottlenecked populations, where genetic diversity is 

reduced. Functional loci directly involved in individual survival, such as those of the immune 

system, play an important role in wild populations (Anderson & May 1979). In populations that 

have colonised new habitats variation at these loci may play a key role because it is likely that 

individuals will encounter pathogens to which they haven’t been previously exposed. In such 

circumstances, having variation that can initiate an appropriate immune response to these 

novel pathogens is essential for survival and, consequently, the successful establishment of the 

newly founded population (O'Brien & Evermann 1988). However, the evolution of different loci 

depends on their specific structure and function, and genes involved in different aspects of the 

immune response might evolve differently. In this thesis I examined variation at two sets of 

loci, the Toll-Like Receptors (TLRs) involved in the innate immune response (Chapter 2) and the 

Major Histocompatibility Complex (MHC) involved in the acquired immune response (Chapters 

4 and 5) in Berthelot’s pipit, a recently bottlenecked coloniser of new populations across the 

north Atlantic archipelagos of Canary Islands, Selvagens and Madeira. The results of this study 

indicate various similarities and differences in the way that these two sets of genes I 

investigated have evolved in Berthelot’s pipit. 

The first difference I detected was in how genetic variation is generated at these two loci. In 

Chapter 2 I found that genetic variation at TLRs was generated mainly by point mutation with 
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no evidence of gene conversion. In contrast, in Chapter 4, I found that variants within the MHC 

are mainly generated by gene conversion, resulting in a higher recombination rate compared 

to the mutation rate. MHC loci have evolved by gene duplication, therefore, an individual 

possesses more than one MHC locus and alleles have highly similar sequences (Bach 1976). 

This facilitates the occurrence of gene conversion events (Ohta 1995). Although TLRs also 

evolved by gene duplication (Roach et al. 2005), they have diverged greatly to the extent of 

being found in separate chromosomes, and sequence similarity is not as high as between 

alleles at different MHC loci (Chapter 2). However, a few studies have reported that gene 

conversion occurs in some TLR families that have recently been duplicated (Kruithof et al. 

2007; Cormican et al. 2009; Mikami et al. 2012). Except for TLR1LA and TLR1LB, the TLRs that I 

screened are members of different families and this might be the reason why I didn’t find 

evidence of gene conversion. Why the structure of these gene families is so different, and 

whether this is a cause or consequence of gene conversion, is not known, but the 

consequences are that gene conversion events are less common between TLR loci than 

between MHC loci. It might be that gene conversion events are more functionally constraining 

at TLRs than at the MHC; thus even if gene conversion events are equally common in the two 

gene families, probably the ones that occur at TLRs are more often selected against than the 

ones occurring at the MHC. My results concur with studies that have reported gene conversion 

as an important source of variation at the MHC (Hogstrand & Bohme 1999; Miller & Lambert 

2004a; Spurgin et al. 2011), and point mutation as the main source of genetic variation at TLRs 

(Roach et al. 2005; Barreiro et al. 2009; Alcaide & Edwards 2011). Importantly, gene 

conversion results in the copying across of portions of DNA from one variant to another, while 

point mutation results in a change of only one nucleotide. Thus, a change is more likely to be 

functionally significant if it occurs by gene conversion. In accordance with this, In Chapter 2 I 

found that in populations of Berthelot’s pipits, the TLR with most polymorphic sites had seven 

variable sites out of 997 bp (TLR1LB), while at the MHC there were 84 variable sites out of 240 

bp (Spurgin et al. 2011; Chapter 4). Furthermore, nucleotide diversity between MHC alleles 

(0.11 ± 0.01, Chapter 4) was two orders of magnitude greater than nucleotide diversity at TLRs 

(0.29 × 10-2 for the most variable TLR4, Chapter 2). 

Once generated, genetic variation at immune loci is subject to evolutionary forces. When first 

dispersing across its entire range, Berthelot’s pipit populations went through bottlenecks. Also, 

across the island populations of Berthelot’s pipits, especially across archipelagos, there is very 
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little gene flow (Illera et al. 2007; Spurgin et al. 2014). Therefore, the main evolutionary forces 

promoting evolutionary change in these populations are genetic drift and selection. Genetic 

drift has previously been shown to be a strong evolutionary force shaping patterns of variation 

at immune loci in small populations (Cramer et al. 1988; Eimes et al. 2011; Ejsmond & Radwan 

2011), and can outweigh the effects of selection (Biedrzycka & Radwan 2008; Bouzat 2010; 

Grueber et al. 2013). By investigating variation at neutral microsatellite markers, I was able to 

determine the effects of past demographic changes across both large (Spurgin et al. 2014; 

Chapter 2) and fine scales (Chapter 5). This then allowed me to assess the role of demographic 

processes in shaping variation at the functional TLRs and MHC loci, respectively. In Chapter 2 I 

found that TLR variation among populations has been shaped mainly by the bottlenecks 

involved in the colonisation of the Selvagens and Madeira archipelagos by pipits from the 

Canary Islands. TLR variation appeared to be much reduced as a result of the bottlenecks. 

Furthermore, genetic variation at these loci has remained low after the colonisation events, 

thus the main evolutionary force shaping such variation has been genetic drift. I was able to 

contrast this pattern with a previous study that assessed population-level variation at the MHC 

in Berthelot’s pipit (Spurgin et al. 2011). This study found, as I did for TLRs, that MHC variation 

had been reduced during the bottlenecks but, unlike TLRs, the generation, and subsequent 

selection, of new variants by gene conversion has restored genetic variation at the MHC 

relatively quickly in an evolutionary time scale. This reflects once more the differences 

between the two gene families in how they respond to evolutionary forces. My findings concur 

with other studies that have shown a reduction in adaptive genetic variation in bottlenecked 

populations (Hedrick & Parker 1998; Grueber et al. 2012; Sutton et al. 2013) and strong effects 

of genetic drift in shaping variation post-bottlenecks (Miller & Lambert 2004b; Miller et al. 

2010; Sutton et al. 2011; Grueber et al. 2013; but see Oliver & Piertney 2012).  

Selection is also an important evolutionary force acting on immune gene variation in natural 

populations. If a newly generated variant does not result in a functional change in the 

molecule - i.e. a synonymous change that doesn’t change the amino acid, or if a change does 

alter the amino acid composition but the resultant molecule has the same binding properties 

as the original molecule - then it is selectively neutral (but see Shields et al. 1988; Bhardwaj 

2014 for evidence of selection on synonymous substitutions). On the other hand, if the genetic 

variant results in the molecule having a novel and advantageous function - i.e. binding a novel 

pathogen derived antigen - then it is selected for, and its frequency will increase in the 
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population (Fisher 1930; Hedrick & Thomson 1983). The mechanism of selection also depends 

on the function of the molecule. TLRs recognize and bind conserved molecules of pathogens, 

known as pathogen associated molecular patterns (PAMPs), such as lipopolysacharides, DNA 

and RNA fragments, and lipids (Poltorak et al. 1998; Lien et al. 1999; Takeuchi et al. 2002; 

Keestra et al. 2010). Molecules of the MHC, on the other hand, bind peptides that are 

generally variable among pathogen species/strains (Roudier et al. 1991). Thus, TLRs are more 

constrained in their function than the MHC molecules. In line with this difference in functional 

constrain between the two gene families I found more evidence of codons under selection at 

the MHC than at TLRs: in Chapter 2 I found evidence of positive selection at three codons at 

two TLR loci out of a total of 1,437 codons across the five loci, while in Chapter 4 I detected ten 

codons out of 80 with evidence of positive selection in the exon 3 of the MHC class I. My 

findings concur with other studies that have identified evidence of selection at specific codons 

both at TLRs (Alcaide & Edwards 2011; Areal et al. 2011; Fornůsková et al. 2013; Grueber et al. 

2014) and at the MHC (Aguilar & Garza 2007; Fraser et al. 2011; Sutton et al. 2013; Scherman 

et al. 2014).   

Obviously pathogens are the main underlying selective pressure acting on immune genes 

(reviewed in Spurgin & Richardson 2010). However, TLRs and MHC loci are probably associated 

with different sets of pathogens. This and the fact that different species or populations may be 

challenged by different sets of pathogens means that in Berthelot’s pipit pathogen-mediated 

selection might not be of the same strength at the different gene families, or at different loci 

within these families, and this may differ between populations. Furthermore, selection at the 

MHC has been linked to other, non-pathogen related mechanisms, i.e. kin recognition and 

mate choice  (Wedekind 1994; Brown 1998; Reusch et al. 2001; Penn 2002; Brouwer et al. 

2010). Thus, selective pressures might be stronger at the MHC than at TLRs. Nevertheless, it is 

unknown whether TLRs may play a role in mechanisms other than the direct immune 

response. TLRs haven’t been as extensively studied as the MHC, but with more studies on TLR 

molecular function and on TLR variation in wild populations, the role of selective pressures 

other than pathogens in shaping variation at these loci may be uncovered. 

6.1.2 The importance of considering spatial scale in evolutionary processes 

The observed effects of pathogens on immune gene evolution may vary depending on the 

spatial scale at which they are measured. Across populations, pathogen pressures might vary 
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because of differences in biogeographic and environmental features (reviewed in Ostfeld et al. 

2005). For example, the  islands/locations that support populations of Berthelot’s pipits have 

different environmental characteristics, and differences have been previously found in the 

prevalence of pathogens such as avian malaria and pox among these populations (Spurgin et 

al. 2012). Such variation in pathogen-related selective pressures among populations might 

result in spatially varying selection at immune loci. Although no associations of disease with 

TLRs were assessed in the present study, in Chapter 2 I reported evidence of four non-

synonymous alleles of TLR4 being maintained at a high frequency in Madeira – the archipelago 

with highest levels of both pox and malaria infection – and found only one TLR4 allele in 

Selvagens – the population with lowest levels of infection. This might be the result of high 

levels of pathogen-mediated selection acting specifically on this locus in Madeira, although 

more information linking specific pathogens with TLR4 are needed to clarify this. Within host 

populations the distribution of pathogens has been shown to vary because of fine scale 

environmental variation (Eisen & Wright 2001; Wood et al. 2007; Lachish et al. 2011). In line 

with this previous evidence, in Chapter 3 I found that within a single population of Berthelot’s 

pipit, the distribution of avian malaria was highly dependent on environmental features that 

vary at small spatial scales. Factors important for malaria infection in this population were 

temperature of the coldest month, distance to artificial water sources and distance to poultry 

farms. Such fine-scale variation in pathogen distribution might be reflected in the spatial 

patterns of immune gene variation at the same scale. In fact, in Chapter 5 I report a significant 

and opposing relationship between two MHC class I alleles and distance to poultry farms. Since 

the association of these alleles directly with malaria was much weaker (only weakly significant 

for one and non significant for the other) it is likely that other pathogens linked to poultry 

farms might be associated with these alleles. In order to compare the microevolutionary 

processes at both sets of immune genes, an intra-population screening of TLRs would have to 

be done, as was done in Chapter 5 for the MHC.  

Throughout this thesis I emphasise the importance of considering spatial scale when assessing 

evolutionary processes. Studies that address evolution have generally done so at large scales, 

because patterns are easier to infer when there are conspicuous differences among the 

populations being considered (Eizaguirre & Lenz 2010; Fraser et al. 2011; Savolainen et al. 

2013). Uncovering the role of spatial scale in driving evolution across a wide range of scales is 

important (Richardson et al. 2014). There has been increasing interest in studying evolutionary 



Chapter 6: General discussion 
 
 

173 
 

patterns at microgeographic scales in the last few years (Kavanagh et al. 2010; Willi & 

Hoffmann 2012; Richardson & Urban 2013), and such studies suggest that microgeographic 

adaptation is a widespread phenomenon. In the case of pathogen distribution, for example, 

when looking at finer scales I was able to detect the effect of environmental variables that 

would not have been picked up if only large scales had been considered (Chapter 3). 

Furthermore, fine scale patterns in genetic diversity have been recently described (Garroway 

et al. 2013; Richardson & Urban 2013). The patterns I described in Chapter 5, where I detected 

an association of two MHC alleles with an environmental variable measured at a fine scale, 

would not have been possible if I had focused on genetic variation at a large scale. This thesis 

therefore can serve as an example of the importance for studies on spatially explicit 

evolutionary processes to assess adaptive divergence at a different set of scales, varying from 

across populations to within populations. 

6.1.3 Directions for future research 

The research presented in this thesis provides some insight into the different spatial scales at 

which pathogens exert selective pressures on immune genes. However, additional research is 

needed in order to fully understand the evolutionary processes that operate at these loci. 

Screening more individuals at TLRs from each population is needed in order to confirm that the 

unique variants found in Madeira (Chapter 2) are not present in the Canary Islands, the source 

population. Furthermore, assessment of fine spatial scale variation at TLRs within Tenerife 

would be a valuable contribution to this study because it would allow comparison with the 

fine-scale patterns identified at the MHC in Chapter 5. Associations of individual TLR genotypes 

with specific pathogens have not been done in wild populations. I consider that such studies 

are greatly needed to contribute to the growing understanding of TLR evolution.  

Further description of selective pressures on immune loci in Berthelot’s pipit populations 

would also help understand the patterns described in this thesis both at TLRs and at the MHC. 

Screening of other pathogens like bacteria, viruses and intestinal parasites, and assessment of 

associations between infection and immune loci would provide further understanding on 

pathogen-mediated selection. Additionally, individual-level MHC screening in all Berthelot’s 

pipit populations would contribute largely to the evidence of associations between poultry 

farms and two MHC alleles that I found in Chapter 5, and would probably help detect other 

patterns of MHC-pathogen associations, making use of the difference in pathogen fauna that 
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have been reported across populations (Spurgin et al. 2012). Doing this would also help to 

understand why the results I reported in Chapter 4 differ from the population-level screening 

of the MHC done previously. We were unable to do this for the present thesis due to time and 

cost restrictions. 

Temporal patterns in ecological processes have long been interesting to evolutionary 

ecologists (Levin 1992), and temporal fluctuations of pathogenic pressures have previously 

been described (Montgomery & Montgomery 1989; Oesterholt et al. 2006; Cosgrove et al. 

2008; Lachish et al. 2011). In Berthelot’s pipit populations pathogen richness and prevalence 

have been consistent over a period of three years (Spurgin et al. 2012). It is likely however that 

such pathogens fluctuate at longer time scales, as new pathogens arrive on the islands or as 

climatic fluctuations that occur at longer time scales affect abundance of local pathogens. 

Therefore, assessment of pathogen pressures across populations across multiple years, at 

longer time scales, would greatly help in understanding how selective pressures fluctuate over 

time. Equally important would be to assess genetic diversity at both TLR and MHC across 

populations across time. Accomplishing this would require investment of a large amount of 

time and human and economic resources, but in the long run, this would give important 

insight into the evolutionary processes involving pathogen and immune gene evolution.  

In conclusion, the populations of Berthelot’s pipit provide an incredibly useful study system in 

which to test different macro and micro-evolutionary processes because of its presence in 

several isolated and recently bottlenecked populations. This thesis provided an interesting 

example of how spatial scales can be incorporated into evolutionary studies to address 

questions about these micro and macro-evolutionary processes whilst providing novel 

information about multiple gene families within natural populations.  
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