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Abstract

Zilber constructed a class of exponential fields ECFSK,CCP whose models

have exponential-algebraic properties similar to the classical complex field

with exponentiation Cexp. In this thesis we study this class and the more

general classes ECFSK, also defined by Zilber, and ECF, studied by Zilber

and Kirby. We investigate stable-like behaviour modulo arithmetic in these

classes by developing a unique independence relation for each class, and in

ECF we use this relation to examine types.

We provide an exposition of exponential fields that is more model theo-

retic and type-oriented than preceding work. We then investigate the types

in ECF that are orthogonal to the kernel. New ideas presented include a

characterisation of these types, and the definition of a grounding set; these

results allow us find sufficient conditions to prove that a type over a set

uniquely extends to a type over the smallest strong ELA-subfield contain-

ing that set.

For each class we define a ternary relation on subsets, and prove that

these relations are independence relations, with properties akin to non-

forking independence in first order theories. Applying work of Kangas,

Hyttinen and Kesälä, we prove that in ECFSK our independence notion is

the unique independence relation for this class, and that our independence

notion in ECFSK,CCP is exactly the canonical independence relation for this

class derived from the pregeometry. Assuming the conjecture known as CIT,

we use our independence relation in ECF to prove that types orthogonal

to the kernel are exactly the generically stable types.
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Meeri Kesälä, Charlotte Kestner, David Marker, Daniel Palacin, Anand

Pillay, Amador Martin-Pizzarro, Frank Wagner, and Tim Zander. Thanks

to my parents and siblings for their years of support, and to Scott Brown,

Harry, Chrissy and others with whom I’ve worked on non-mathematical

projects. Special thanks to Amy.



2

Chapter 1

Introduction

Consider the complex field with exponentiation Cexp = (C,+, ·, exp, 0, 1).

It is known that the integers are definable in this structure by

Z = {x ∈ C : ∀y ( exp(y) = 1 → exp(xy) = 1 ) }.

Therefore Cexp is undecidable, and unstable. Wilkie proved that Rexp =

(R; +, ·, exp, 0, 1) is model complete [24, Second Main Theorem], but this is

not the case for Cexp [20, Proposition 1.1]. There are still many intriguing

open questions about Cexp:

• Are the real numbers definable in this structure?

• (Zilber) Is Cexp quasi-minimal, that is, are all of its definable subsets

either countable or cocountable?

• (Mycielski) What are the non-trivial automorphisms other than com-

plex conjugation?
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We also would like to know if there are any strange exponential-algebraic

relations between elements of Cexp, a question that can be more clearly

described by a conjecture from transcendental number theory:

Schanuel’s Conjecture: Let a1, ..., an ∈ C be Q-linearly independent.

Then

td(a1, ..., an, exp(a1), ..., exp(an)) ≥ n

If this conjecture were true, it would minimize the exponential-algebraic

relations between elements of Cexp. For instance it would imply that the fol-

lowing transcendental numbers are all algebraically independent over Q [22,

p.326].

π, e, eπ, πe, ππ, 2π, 2i, 2
√

2, ei, log 2, log 3, log log 2, (log 2)log 3, ee, ee
e

, ee
ee

...

Macintyre gave a description of an abstract algebraic exponential field

in [18], defining an E-field to be a field F with a defined homomorphism

E : (F,+) → (F ∗, ·). For all E-fields that we consider, F will be an alge-

braically closed field of characteristic zero and E will be surjective; we call

such an E-field an ELA-field. The class of all ELA-fields is still too gen-

eral for us to characterise, so we shall work with more specific subclasses

of E-fields. Macintyre also described a notion of E-algebraicity in terms

of a non-singular set of solutions of polynomials in x̄, E(x̄) [18, Definition

5, Section 2.5]. From this notion we obtain a closure operator given by

eclF (B) = {ā ∈ F : ā is E-algebraic over B} for any subset B ⊆ F , and an
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associated dimension function, exponential transcendence degree, given by

etd(ā/B) = min{|b̄| : b̄ ⊆ ā and (eclF (b̄B) = eclF (āB)}.

We can in fact come to this dimension function another way. For an E-field

F , consider the following Hrushovski predimension function for each finite

ā ⊆ F

δ(ā) = td(ā, eā)− ldimQ(ā)

This predimension gives rise to a dimension function given by d(ā) =

min{δ(āb̄) : b̄ ∈ F} and a closure operator clF (ā) = {b̄ ∈ F : d(b̄ā) = d(ā)}.

Kirby proved that eclF agrees with clF and is always a pregeometry for

every ELA-field F satisfying δ(ā) ≥ 0 for all ā ∈ F [12, Theorem 1.1], and

furthermore by [12, Theorem 1.3] it follows that

etdF (ā) = min{δ(āb̄) : b̄ ∈ F}.

Note that in Cexp the statement δ(ā) ≥ 0 is equivalent to Schanuel’s con-

jecture.

As a new method of studying exponential fields, in [26] Zilber con-

structed an Lω1,ω(Q)-sentence Φ, where Q is the quantifier saying ‘there

exists uncountably many’, that axiomatises all of the properties that we

know of Cexp, as well as all those properties we desire it to have. Models

of Φ are structures of the form (K; +, ·, E, 0, 1), where (K; +, ·, 0, 1) is an

algebraically closed field of characteristic zero, E : (K,+) → (K∗, ·) is a

surjective homomorphism, ker(E) = τZ for some transcendental element

τ ∈ K, and Schanuel’s conjecture in K holds. Φ also demands that these
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models are sufficiently existentially closed and have a countable closure

property; that is, any system of exponential-algebraic equations that could

have a solution in an extension of K already has a solution in K, and in fact

K contains countably many such solutions. Assuming the other axioms, the

countable closure property is equivalent to stating that ecl(ā) is countable

for all finite tuples ā ∈ K. Zilber proved that the class K of models of Φ,

the class of pseudo-exponential fields, contains a unique model of cardinality

κ for each uncountable cardinal κ. These models are quasi-minimal, and

the model of cardinality κ has 2κ automorphisms.

It is then natural to question whether or not the unique model of K

of cardinality 2ℵ0 is isomorphic to Cexp. However for this we would need

to prove Schanuel’s conjecture and more, so it is considered out of reach.

Instead it is prudent to investigate properties of models in K and generali-

sations of K, which we call exponential fields.

A significant issue with Cexp is its combination of geometric and arith-

metic structure. One reduct of Cexp is the algebraically closed field (C; +, ·),

which has a stable theory and is a well-behaved, strongly minimal, geomet-

ric structure. However, we also have definable arithmetic structure in the

form of (Z; +, ·), giving rise to Gödel’s phenomena, in particular wild defin-

able sets. We therefore have the following question in mind: do exponential

fields exhibit any stable-like behaviour modulo arithmetic? One definition

of stability is that non-forking extensions of types should give rise to an in-

dependence relation with reasonable properties. So in particular we ask, do

exponential fields allow for a useful notion of independence modulo arith-

metic? If so, what does this relation tell us about their structure, and the
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structure of their types?

The main body of work in this thesis concerns defining and investigating

independence relations that act over arithmetic in several different classes

of exponential fields, with the intention of observing stable-like behaviour.

We are especially interested in the class ECF, which was proved in [16]

to be ‘superstable over the kernel’, and in fact an elementary class modulo

a certain number theoretic conjecture known as CIT (the conjecture of

intersections of tori with varieties). We would therefore like to know what

other stable-like behaviour is exhibited in ECF. We use independence to

study the types in ECF and investigate the meaning of the model theoretic

property of generic stability in this setting.

The structure of the thesis is as follows. In Chapter 2 we define four

classes of exponential fields, ExpF,ECF,ECFSK and ECFSK,CCP. Zil-

ber’s class K is exactly ECFSK,CCP, and ECFSK is the more general class

containing models that may have uncountably many solutions of the form

(ā, eā) for all algebraic varieties with sensible properties, as studied in [14].

ECF is even more general, and requires only that (Z; +, ·) is a model of

the theory of (Z; +, ·), rather than isomorphic to it. For each of the classes

ECF, ECFSK, and ECFSK,CCP, we specify an appropriate embedding

such that they are abstract elementary classes, admitting monster models.

We define and describe the notions of hull and ELA-subfield in exponen-

tial fields from [15, Section 3,7], and with these we prove several useful

statements about types in ECF. Types in exponential fields have been

investigated before in [14] and implicitly throughout [15]; in this chapter

we give an explicit characterisation of Galois types over strong ELA-closed
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subfields and show that these correspond exactly with the syntactic types

over strong ELA-closed subfields. These types can be thought of as ‘orthog-

onal to the kernel’, in that they do not require new kernel elements in order

to be realised. These types are our main objects of study, as if a model

realising the type preserves the kernel of the base, the model must also pre-

serve arithmetic of the base, and thus realising this type need not give rise

to any additional arithmetic issues. We define the grounding set of a type

orthogonal to the kernel, which is a finite set that fully characterises the

type, comparable to the notion of a base in a first order theory. Using this

definition we prove that, assuming CIT, any orthogonal type over a ground-

ing set B uniquely extends to the Galois type over the strong ELA-subfield

generated by B.

We begin Chapter 3 by providing an overview of the literature on in-

dependence and pre-independence relations in first order theories and ab-

stract elementary classes. We then define and describe a new ternary rela-

tion on ExpF and prove that it is a pre-independence relation; we develop

this relation to construct ternary relations specific to each of the classes

ECF,ECFSK and ECFSK,CCP, and prove that each relation is indeed an

independence relation for its class. Using work by Hyttinen, Kesälä and

Kangas we prove that our independence relation for ECFSK is the unique

independence relation for that class (satisfying bounded free extensions of

weak types). We also prove that for ECFSK,CCP our independence relation

is exactly the canonical pregeometric independence notion, and by work of

Hyttinen and Kangas prove that additionally it is equivalent to non-splitting

of weak types in this class.
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In Chapter 4 we use our independence relation for ECF to prove that,

assuming CIT, the global types orthogonal to the kernel are exactly the

generically stable types, yielding the informal corollary that this indepen-

dence relation is a useful notion of independence for ECF. We conclude

with a brief discussion of potential future directions of research, suggesting

other model-theoretic properties that could be investigated in ECF using

exponential-algebraic techniques.

Throughout this thesis we write A,B,C, ... to denote sets, ā, b̄, ... to

denote tuples, and we write AB for A∪B and āb̄ for ā_b̄. We abuse notation

and write ā ∈ A to mean ā ∈ A|ā|, and we also write ā to mean the tuple

(a1, a2, ..., an) as well as the set {a1, a2, ..., an}; therefore if b̄ = (b1, ..., bm) is

any tuple and A is any set, Ab̄ denotes A∪{b1, ..., bm}. We write ea to mean

exp(a) even when exp is not the standard analytic exponential function.

We also allow the exponential of tuples by setting eā = (ea1 , ..., ean), and we

allow the exponential of a subset by defining eA = {ea : a ∈ A}.

We recall that for a Q-vector space V with subsets A,B,C ⊆ V we say

that A is Q-linearly independent from B over C, written A |̂ Q-lin

C
B, if for

all ā ∈ A we have ldimQ(ā/C) = ldimQ(ā/BC). We recall also that for an

algebraically closed field K with subsets A,B,C ⊆ K we write A |̂ ACF0

C
B

and say A is field-theoretically algebraically independent from B over C if

td(ā/C) = td(ā/BC) for every ā ∈ A. Here td(X/Y ) denotes the tran-

scendence degree of Q(XY ) over Q(Y ). For ā ∈ K and B ⊆ K we define

Loc(ā/B) the locus of ā over B to be the intersection of all algebraic varieties

defined over B containing ā.
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Chapter 2

Exponential fields and types in

ECF

In this chapter we define axiomatically four classes of exponential fields,

namely ExpF, ECF, ECFSK, and ECFSK,CCP. The purpose of this

chapter is to obtain tools that may be used in Chapter 3 to prove facts

about independence relations in exponential fields, and to study types in

ECF. We show that with certain associated embeddings, ECF, ECFSK

and ECFSK,CCP are abstract elementary classes admitting monster models.

We focus on investigating types in ECF, in particular types orthogonal to

the kernel, which may be realised without extending the kernel. We show

that in ECF, Galois types and syntactic types that are orthogonal to the

kernel are equivalent over semi-strong ELA-subfields. Following this we in-

troduce the notion of a grounding set, which can fully characterise a type

orthogonal to the kernel defined over a semi-strong ELA-subfield, in par-

ticular, over a model. We show that assuming the Diophantine conjecture
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known as CIT, a type over a grounding set uniquely extends to a type over

the smallest strong ELA-subfield containing the grounding set. Finally we

comment on how a grounding set corresponds with the notion of a base in

a first order theory.

2.1 Classes of exponential fields

In [26] Zilber constructed a class ECFSK,CCP of pseudo-exponential fields

which have all the properties we desire of Cexp. He showed that this class

is axiomatisable in Lω1,ω(Q), where Q is a quantifier meaning ‘there exist

uncountably many’, and further that it is κ-categorical for all uncount-

able κ. These models are quasiminimal, meaning that all definable sets are

countable or cocountable, and the model of cardinality κ has an automor-

phism group of cardinality 2κ. Zilber conjectured that the unique model of

cardinality continuum is isomorphic to Cexp.

We now work towards defining ECFSK,CCP as described above, and also

the more general classes ECF and ECFSK as investigated in [16] and [14]

respectively. Appendix A provides a summary of the properties of these

classes for the reader’s reference.

We will consider structures of the form (M; +, ·, exp) where one or more

of the following axioms hold.

(I) (M; +, ·) is an algebraically closed field of characteristic 0, and exp :

(M,+)→ (M∗, ·) is a surjective homomorphism.

We shall call a structure M satisfying axiom (I) an ELA-field, where the
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‘E’ and the ‘L’ mean that every element in M has an exponential and a

logarithm in M, and the ‘A’ means that M is algebraically closed. In

general, the exponential fields we shall study have stronger properties. For

instance, we wish to have an axiom expressing that the kernel is an infinite

cyclic group generated by a transcendental element; this axiom will include

the statement that Z = Z, where

Z = {x : ∀y(exp(y) = 1→ exp(xy) = 1)}

is the multiplicative stabiliser of the kernel. This property is observable in

Cexp, and is characterised by the following axiom.

(II) There is an element τ ∈ M such that ker(M) = τZ and τ is tran-

scendental.

If M is an ELA-field such that axiom (II) also holds, we say that M has

standard kernel, that is Z(M) = Z. As seen in [14, Section 2.1], axiom

(II) can be split into two parts, saying respectively that (a) the kernel is a

cyclic Z-module and every element in the kernel is transcendental over Z,

and (b) Z = Z. Note that part (a) is first order expressible, while part (b)

is given by an Lω1,ω-sentence omitting the partial type of a non-standard

integer. If we weaken the statement of part (b), we can allow for a wider

range of exponential fields with non-standard kernels. We consider then the

following first order axioms as a weakening of axiom (II).

(IIa) There is an element τ ∈ M such that ker(M) = τZ and τ is tran-

scendental over Z.

(IIb) (Z; +, ·) |= Th(Z; +, ·).
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We also wish our structures to satisfy Schanuel’s Conjecture over the kernel,

which is expressed by the below axiom.

(III) Schanuel Condition (SC) If ā ∈Mn is Q-linearly independent over

ker(M), then td(ā, eā/ ker(M)) ≥ n.

Here we say ā ∈ Mn is Q-linearly independent over a subset A ⊆M if for

any non-zero tuple λ̄ ∈ Qn we have
∑n

i=1 λiai /∈ spanQ(A).

The following class of exponential fields is the most general that we shall

study.

Definition 2.1.1. Define ExpF to be the class of all models of axioms (I),

(IIa), (IIb), and (III).

Further axioms require more terminology. We want axioms demanding

that our models have a certain amount of saturation. Intuitively, axiom

(IV) will say that any system of exponential algebraic equations that could

have a solution in an exponential field extension ofM already has a solution

in M, and axiom (V) will say that M contains only countably many such

solutions. In order to describe these axioms precisely we need to define a

particular matrix action on an element in Gn, where G = Ga(M)×Gm(M),

the product of a copy of the additive and multiplicative groups of the field

M. Suppose (x̄, ȳ) ∈ Gn and let M be a k × n integer matrix. We define

the action M · (x̄, ȳ) = (ū, v̄) where ui =
∑n

j=1 mijxj and vi =
∏n

j=1 y
mij
j for

i = 1, ..., k. For V an algebraic variety in Gn we define

M · V = {M · (x̄, ȳ) | (x̄, ȳ) ∈ V }
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Definition 2.1.2. [15, Definition 5.1] Let V ⊆ Gn be an algebraic variety.

We say V is rotund if for any k × n integer matrix M with rk M = k, we

have dim(M · V ) ≥ k. We say V is free if there do not exist m1, ...,mn ∈ Z

not all zero and b ∈ M such that V ⊆ {(x̄, ȳ) :
∑
mixi = b} or V ⊆

{(x̄, ȳ) :
∏
ymii = b}.

(IV) Strong Exponential Closure (SEC) If A ⊂ M is any finite set,

and V ⊂ Gn is an irreducible, free, and rotund algebraic variety

defined over A, then there exist ā ∈Mn such that (ā, exp(ā)) ∈ V is

generic over A, that is td(ā, exp(ā)/A) = dimV .

(V) Countable Closure Property (CCP) If A ⊂M is a finite subset

and V ⊂ Gn is an irreducible, free, rotund variety defined over A

with dimV = n, then

{ā ∈Mn : (ā, exp(ā)) ∈ V is generic in V over A}

is countable.

Definition 2.1.3. • Define ECF to be the class containing all models

of axioms (I), (IIa), (IIb), (III) and (IV). We call ECF the class of

exponentially closed fields.

• Define ECFSK to be the class containing all models of axioms (I),

(II), (III) and (IV). We call ECFSK the class of exponentially closed

fields with standard kernel.

• Define ECFSK,CCP to be the subclass of ECFSK containing all models

of axioms (I), (II), (III), (IV), and (V). We call ECFSK,CCP the class
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of exponentially closed fields with standard kernel and the countable

closure property.

Lemma 2.1.4. ECFSK,CCP ⊆ ECFSK ⊆ ECF ⊆ ExpF.

Proof. The inclusions ECFSK,CCP ⊆ ECFSK and ECF ⊆ ExpF are clear.

For ECFSK ⊆ ECF, we observe that axioms (I), (III) and (IV) are common

to both classes, and satisfaction of axioms (IIa) and (IIb) follows from axiom

(II) as Z = Z.

By [26, Lemma 5.12] Cexp satisfies axiom (V). However it is not known

that Cexp is in ECFSK,CCP or even ExpF, as axioms (III) and (IV) are

unproven for Cexp. In the next section we show that these classes with

certain associated embeddings are abstract elementary classes.

2.2 Abstract elementary classes

A class of structures C is called an elementary class if there is a first order

theory T such that the models of T are exactly those structures contained

in C. Such a class has good model theoretic properties. Our classes ECFSK

and ECFSK,CCP are not elementary classes, and whether or not ECF is

elementary is dependent on the aforementioned conjecture known as CIT.

However, we have the following generalisation of elementary classes due to

Shelah.

Definition 2.2.1. [8, Definition 2.1] Let L be a countable language, C a

class of L-structures and let ≤C be a partial order on C. Then (C,≤C) is
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an abstract elementary class (or AEC for short) if the following properties

hold.

(1) Both C and ≤C are closed under isomorphisms.

(2) For all M,N ∈ C, if M≤C N then M is a substructure of N .

(3) Let M1,M2, and M3 be L-structures in C with M1 ⊆M2. If M1 ≤C

M3 and M2 ≤CM3, then M1 ≤CM2.

(4) Suppose that (Mi : i < ω) is a ≤C-chain of L-structures in C, and let

M∗ =
⋃
i<ωMi. ThenM∗ ∈ C and for each i < ω we haveMi ≤CM∗.

Furthermore if N ∈ C such that for each i < ω we haveMi ≤C N , then

M∗ ≤C N .

(5) Downward Löwenheim-Skolem (DLS) There is a cardinal LS(C) ≥ ℵ0

such that for every M ∈ C and subset A ⊆ M, there exists a model

A∗ ∈ C such that A ⊆ A∗ ≤CM and |A∗| = |A|+ LS(C).

Note that an elementary class C of models of a first order theory T is an

abstract elementary class, with ≤C being elementary embedding.

Definition 2.2.2. [8, Definition 2.3] Let (C,≤C) be an AEC and let

M,N ∈ C. We say a map f :M→N is a C-embedding if f(M) ≤C N .

Definition 2.2.3. [6, Definitions 2.2-2.5] We say that an AEC (C,≤C) is

finitary if the following hold.

1. LS(C) = ℵ0.

2. (ALM) C has arbitrarily large models.
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3. Amalgamation Property (AP) If M0,M1,M2 ∈ C with M0 ≤C M1,

M0 ≤M2, and M0 =M1 ∩M2, then there exists N ∈ C such that

M1 ≤ N and a C-embedding f :M2 → N such that f(M0) =M0.

4. Joint Embedding Property (JEP) For every M1,M2 ∈ C there exists

N ∈ C such thatM1 ≤C N and there exists a C-embedding f :M2 →

N .

5. Finite Character Let M,N ∈ C with M ⊆ N , and suppose that for

each finite ā ∈ M we have tpgM(ā) = tpgN (ā), where tpgM(ā) refers to

the Galois type. Then M≤C N .

If an AEC C has AP, JEP and ALM, then C has a monster model M

into which all models in C embed. When working in a monster model M,

every set we consider is a subset of M, and every tuple we consider is a tuple

in M. We shall show that the classes ECF,ECFSK and ECFSK,CCP with

distinguished embeddings all have these properties, and so we may fix a

monster model M for each class, which is saturated and of large cardinality.

For our purposes we could just work in a model that is ‘saturated over the

kernel’, that is, saturated with respect to extensions that do not extend the

kernel (a precise description of this is Definition 2.5.4). This in particular

in ECF would allow us to avoid the cardinality of the kernel equalling the

cardinality of the model. However this distinction is generally not necessary

to our study.

We now work towards proving these results about our classes of expo-

nential fields. We define a predimension function, and use this function to

define strong and semi-strong embeddings. We use these definitions to show

that with certain distinguished embeddings, ECF and ECFSK are finitary
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AECs, and ECFSK,CCP is a non-finitary AEC. As previously mentioned,

see Appendix A for a summary of the properties of these classes.

Definition 2.2.4. LetM be a model in ExpF, and let A ⊆M be a subset.

We define 〈A〉M to be the Q-linear vector subspace of M generated by A,

that is 〈A〉M = spanQ(A). We also define the kernel of A as ker(A) =

〈A〉 ∩ ker(M).

The subscript in 〈A〉M means that the vector space spanQ(A) is being

considered as a subspace of M, but for any vector space N containing A

we have 〈A〉M = 〈A〉N , so we may omit the subscript when the context is

clear.

Definition 2.2.5. [16, Definition 3.8] [15, Section 2.1] Let M be a model

in ExpF and suppose A and B are subsets of M. We define the relative

predimension function

∆M(A/B) = td(A, exp(A)/B, exp(B), ker(M))− ldimQ(A/B, ker(M))

We also define ∆M(A) = ∆M(A/∅).

Note that axiom (III) states that ∆M(x̄) ≥ 0 for all x̄ ∈M.

Lemma 2.2.6. [16, Lemma 3.9] Let M be a model in ExpF.

(a) Submodularity: Let M be a model in ExpF and let A, B and C be

Q-vector subspaces of M. Then

∆M(A ∪B/C) + ∆M(A ∩B/C) ≤ ∆M(A/C) + ∆M(B/C)
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(b) Let ā and b̄ be tuples from M, and let C be a subset of M. Then

(i) Additivity: ∆M(āb̄/C) = ∆M(ā/b̄C) + ∆M(b̄/C).

(ii) There exists a finite tuple c̄ from C such that ∆M(ā/C) =

∆M(ā/c̄).

(c) Suppose A ⊆ M is a subset and N is in ExpF such that M ⊆ N

and M |̂ ACF0

ker(M)
ker(N ). Then for any b̄ ∈ M we have ∆N (b̄/A) =

∆M(b̄/A).

Definition 2.2.7. Let M be a model in ExpF and let A ⊆ B be subsets

of M.

1. We say A is semi-strong in B and write A ≺p B iff

A, exp(A) |̂ ACF0

ker(A)
ker(B) and for every b̄ ∈ B we have ∆M(b̄/A) ≥ 0.

2. We say A is strong in B and write A/B if A ≺p B and ker(A) = ker(B).

Remark 2.2.8. Let M be a model in ExpF. Suppose A ⊆ M such that

A contains ker(M) and for all x̄ ∈ M we have ∆M(x̄/A) ≥ 0. Then

ker(M) = ker(A) and so A /M.

The above definition of semi-strong is from [16, Definition 3.10]. The

definition of strong embedding appears to differ from the definition given

by [16, Definition 3.7], which states that A is strong in B if for every

b̄ ∈ B we have δ(b̄/A) = td(b̄, eb̄/AeA) − ldimQ(b̄/A) ≥ 0. Noting that

∆M(b̄) = δ(b̄/ ker(M)), we see that any semi-strong kernel-preserving ex-

tension satisfies this definition of strong.

Conversely, suppose that we have modelsM and N of ExpF such that

M ≺p N with ker(M) 6= ker(N ), so there exists λ ∈ Z(N ) \ Z(M).
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Then λr ∈ Z(N ) for all r ∈ N, so for τ a generator of ker(N ) we have

τλr ∈ ker(N ) for all r ∈ N. If ldimQ(1, λ, ..., λr) < r + 1, then λ is alge-

braic, so td(τ, τλ, ..., τλr) = 1. By axiom (III) we have δ(τλ0, ..., τλr) ≥ 0,

and so ldimQ(τ, τλ, ..., τλr) = 1, so λ ∈ Q, which is impossible for

λ ∈ Z(B) \ Z(A). Therefore ldimQ(1, λ, ..., λr) = r + 1 for all r ∈ N,

but then td(τ, τλ, ..., τλr) = r + 1 which fails unless r = 1. Therefore for

models of ExpF these definitions of strong are equivalent.

Lemma 2.2.9. [16, Lemma 3.11][15, Lemma 2.3] Let M be a model in

ExpF and suppose A,B,C are subsets of M.

(a) ker(M) /M.

(b) A ≺p A.

(c) If A ≺p B and B ≺p C then A ≺p C.

(d) A ≺p B if and only if for every finite tuple b̄ ∈ B we have A ≺p Ab̄.

(e) If A ⊆ B, B ≺p C and A ≺p C then A ≺p B.

(f) Let γ be a limit ordinal, and suppose A1 ⊆ A2 ⊆ · · · is an γ-chain of

subsets of M such that Aα ≺pM for each α < γ. Then
⋃
α<γ Aα ≺pM

and Aβ ≺p
⋃
α<γ Aα for all β < γ.

(g) The above properties (b)-(f) are also true of /.

We shall use the following characterisation of exponential transcendence

degree that was described in the introduction.
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Fact 2.2.10. [16, Fact 3.16] LetM∈ ExpF, A a semi-strong subset ofM

and let b̄ be a finite tuple from M. Then

etd(b̄/A) = min{∆M(b̄c̄/A) : c̄ ∈M}

Corollary 2.2.11. Let M ∈ ECF, let A ≺p M be a semi-strong subset,

and let b̄ ∈ M be a finite tuple. Then etd(b̄/A) = ∆(b̄/A) if and only if

∆(x̄/Ab̄) ≥ 0 for all x̄ ∈M.

In particular if A /M is strong, then etd(b̄/A) = ∆(b̄/A) if and only if

Ab̄ /M.

Proof. If x̄ ∈ M then ∆(x̄/Ab̄) = ∆(x̄b̄/A) − ∆(b̄/A) by additivity. By

Fact 2.2.10 we have ∆(x̄b̄/A) ≥ etd(b̄/A). If etd(b̄/A) = ∆(b̄/A) then

∆(x̄/Ab̄) ≥ etd(b̄/A)− etd(b̄/A) = 0.

Conversely, if for all x̄ ∈ M we have ∆(x̄/Ab̄) ≥ 0, by additivity again

∆(x̄b̄/A) ≥ ∆(b̄/A) for all x̄ ∈M. Then by Fact 2.2.10 we have etd(b̄/A) =

∆(b̄/A) as desired.

Definition 2.2.12. Let M,N ∈ ExpF such that M ⊆ N . We define

M≤ N to mean that M≺p N and Z(M)4Z(N ).

The below proposition uses similar ideas to [16, Proposition 3.13] to

obtain a downward Lowenheim-Skolem result, with an additional kernel-

preservation property.

Proposition 2.2.13. Let M be a model in ECF and let A ≺p M be any

semi-strong subset. Then there exists a model A∗ ≤ M in ECF such that
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A ⊆ A∗, |A∗| = |A|+ ℵ0.

Furthermore, we can take Z(A∗) to be the smallest elementary submodel

of Z(M) containing τ−1 ker(A).

Proof. Let γ = |A| + ℵ0. Since Th(Z; +, ·) has definable Skolem func-

tions, there exists a smallest elementary submodel Z of Z(M) containing

τ−1 ker(A). Let A0 ⊆ M be the Q-vector space generated by AZ. Then

A0 ≺pM, Z(A0) = Z, and since |Z| ≤ γ we have |A0| = γ. Now enumerate

(A0 ∪ exp(A0))alg as (aα)α<γ where (−)alg denotes field-theoretic algebraic

closure. Also enumerate all free irreducible rotund varieties (Vα)α<γ defined

over A0 ∪ exp(A0).

We define a chain of vector spaces (Aα)α<γ as follows. We have al-

ready defined A0, so suppose we have Aα up to some α < γ. Choose

b from Aα, or from M if no such b ∈ Aα exists, such that eb = aα

and b |̂ ACF0

Aα exp(Aα)
ker(M). Choose also (c̄, ec̄) ∈ Vα(M) generic over

Aαaαb ∪ exp(Aαaαb) ker(M), so in particular (c̄, ec̄) is generic in Vα over

A0 ∪ exp(A0). Define Aα+1 = 〈Aαaαbc̄〉. For each limit ordinal β < γ we

define Aβ =
⋃
α<β Aα. We now show that Aα ≺pM for each α < γ.

We proceed by induction; we have A0 ≺pM, so suppose that Aα ≺pM for

some α < γ. Consider ∆(aα, b/Aα) = td(aα, b, e
aα , eb/Aα exp(Aα) ker(M))−

ldimQ(aα, b/Aα ker(M)). Since aα is algebraic over A0 ∪ exp(A0) we have

td(aα, b, e
aα , eb/Aα exp(Aα) ker(M)) = td(b, eaα/Aα exp(Aα) ker(M)) ≤ 2,

so ∆(aα, b/Aα) ≤ 2− ldimQ(aα, b/Aα ker(M)).

• If aα, b /∈ Aα, then ∆(aα, b/Aα) ≤ 2− 2 = 0.

• If aα, b ∈ Aα then td(b, eaα/Aα exp(Aα) ker(M)) = 0 and
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ldimQ(aα, b/Aα ker(M)) = 0 so we have ∆(aα, b/Aα) = 0.

• If exactly one of aα and b is in Aα, then

td(b, eaα/Aα exp(Aα) ker(M)) ≤ 1 and ldimQ(b, aα/Aα) = 1, so

∆(aα, b/Aα) ≤ 0.

Therefore we can be sure that ∆(aα, b/Aα) ≤ 0. Since Aα ≺pM, it follows

that ∆(aα, b/Aα) = 0.

Now consider ∆(c̄/Aα, aα, b) = td(c̄, ec̄/Aα, aα, b, exp(Aα, aα, b)) −

ldimQ(c̄/Aα, aα, b). Since (c̄, ec̄) is generic for Vα over Aαaαb, exp(Aα, aα, b)

and Vα is free, we have ldimQ(c̄/Aα, aα, b) = ldimQ(c̄/A0) = |c̄|. Then

∆(c̄/Aα, aα, b) = td(c̄, ec̄/Aα, aα, b, exp(Aα, aα, b))− ldimQ(c̄/Aα, aα, b)

= dimVα − |c̄| = 0

By additivity of the predimension we have

∆(aα, b, c̄/Aα) = ∆(c̄/Aα, aα, b) + ∆(aα, b/Aα)

= 0 + 0 = 0

Now for any d̄ ∈M, by additivity again we have

∆(d̄/Aα+1) = ∆(d̄/Aαaα, b, c̄)

= ∆(d̄aα, b, c̄/Aα)−∆(aα, b, c̄/Aα)

= ∆(d̄aα, b, c̄/Aα)− 0

= ∆(d̄aα, b, c̄/Aα) ≥ 0
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since Aα ≺pM.

We now need to prove that Aα+1 |̂ ACF0

ker(Aα+1)
ker(M). Since

b |̂ ACF0

Aα
ker(M) and (c̄, ec̄) is generic in Vα over Aαaαb exp(Aαaαb), we

have ker(Aα+1) = ker(Aαaαbc̄) = ker(Aα). Note that in particular,

ker(Aα) = ker(A0) for all α < γ. Now by the definitions of aα and b,

and by the definition and additivity of transcendence degree, we have

td(Aα+1 exp(Aα+1)/ ker(Aα)) = td(Aαbc̄ exp(Aαc̄)/ ker(Aα))

= td(Aα exp(Aα)/ ker(Aα)) + td(b, c̄, ec̄/Aα exp(Aα))

By additivity again we have

td(b, c̄, ec̄/Aα exp(Aα)) = td(c̄, ec̄/Aαb exp(Aαb)) + td(b/Aα exp(Aα)).

Since b |̂ ACF0

Aα exp(Aα)
ker(M) we have td(b/Aα exp(Aα)) =

td(b/Aα exp(Aα) ker(M)). By definition of c̄ we have

td(c̄, ec̄/Aα exp(Aα)b) = td(c̄, ec̄/Aα exp(Aα)b ker(M)), and so apply-

ing additivity in the other direction we obtain

td(b, c̄, ec̄/Aα exp(Aα)) = td(b, c̄, ec̄/Aα exp(Aα) ker(M)).

Since Aα ≺p M we have td(Aα exp(Aα)/ ker(M)) =

td(Aα exp(Aα)/ ker(Aα)), and so by substituting into the above ex-

pression for td(Aα+1 exp(Aα+1/ ker(Aα)) and additivity of transcendence
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degree we have

td(Aα+1 exp(Aα+1)/ ker(Aα)) = td(Aα exp(Aα)/ ker(M))

+ td(b, c̄, ec̄/Aα exp(Aα) ker(M))

= td(Aαbc̄ exp(Aαc̄)/ ker(M))

= td(Aα+1 exp(Aα+1)/ ker(M))

and so Aα+1 exp(Aα+1) |̂ ACF0

ker(Aα+1)
ker(M). Therefore Aα+1 ≺pM.

By Lemma 2.2.9(f) we have Aβ =
⋃
α<β Aα ≺pM for all limit ordinals

β < γ, and also Aγ =
⋃
α<γ Aα ≺p M. Write Aγ as A

(1)
0 , and repeat the

above argument replacing A0 with A
(1)
0 to obtain A

(1)
γ =: A

(2)
0 . Repeating

this process ω times, we obtain a chain of vector spaces (A
(n)
γ )n<ω all semi-

strong inM, so in particular by Lemma 2.2.9(f) we have
⋃
n<ω A

(n)
γ =: A∗ ≺p

M. Since ker(Aα) = ker(A0) for all α < γ we have ker(A∗) = ker(A0), and

since there is a definable bijection between the multiplicative stabilizer and

the kernel we have Z(A∗) = Z(A0) = Z. By construction, A∗ is an ELA-

subfield ofM satisfying axioms (I), (IIa),(IIb),(III),(IV) and so A∗ ∈ ECF.

Since A∗ ≺p M and Z(A∗) = Z4Z(M) we have A∗ ≤ M. Certainly

A ⊆ A∗, and |A∗| = ω · γ = γ as required.

We also have the amalgamation property for each of our classes. To

prove this we shall use the following definition.

Definition 2.2.14. [16, Definition 3.2] Let Ẑ = limn←Z/nZ denote the

profinite completion of the integers. Let M be a model in ExpF, and

suppose that (A; +, 0) is a Q-vector subspace of M. Say that A has very

full kernel iff (Ẑ; +, 0) is contained in A as a pure subgroup; that is for each
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a ∈ Ẑ, if there exists b ∈ F such that nb = a for some n ∈ N, then there

exists b′ ∈ Ẑ such that nb′ = a.

Proposition 2.2.15. (ExpF,≤) has the amalgamation property.

Proof. Let A,B,C ∈ ExpF with A ≤ B and A ≤ C. Then Z(A)4Z(B)

and Z(A)4Z(C), and since the elementary class of models of Th(Z; +, ·)

has the amalgamation property, we can find Z |= Th(Z; +, ·) such that we

have elementary embeddings Z(B) ↪→ Z and Z(C) ↪→ Z satisfying the

following commutative diagram of elementary embeddings:

Z(A) ⊂4- Z(B)

Z(C)

4

?

∩

⊂4- Z

4

?

∩

Furthermore we may extend Z if necessary to an ℵ0-saturated model of

Th(Z; +, ·) so that 〈BZ〉, 〈AZ〉 and 〈CZ〉 have very full kernel. By [16,

Corollary 3.6] we can take Z such that B, exp(B) |̂
ker(B)

ker(BZ), and

since the extension of vector spaces B ⊆ 〈BZ〉 increases only the kernel, by

the definition of ∆ we have B ≺p 〈BZ〉. Since 〈BZ〉 has very full kernel,

by [16, Proposition 3.13 (1)] there exists a well-defined free strong extension

of 〈BZ〉 to a model B′ ∈ ExpF such that ker(B′) = τZ, and in particular

B ≺p B′. Similarly we can define semi-strong model extensions A ≺p A′ and

C ≺p C ′ such that ker(A′) = ker(B′) = ker(C ′) = τZ. So we may assume

that A,B and C are ELA-fields with very full kernel such that A / B and

A / C.

Consider A / B. We construct a chain of submodels (Bα)α<γ of B such
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that

A = B0 / B1 / B2 / · · · / Bα / · · · / Bγ = B

and for each α < γ we have Bα+1 finitely generated over Bα, that is, Bα+1

is the ELA-subfield generated by Bα and a finite tuple.

Let B0 = A. Suppose we have A / · · · / Bα / B for an ordinal α < γ.

Let b̄α be a tuple from B that is Q-linearly independent over Bα such that

Bαb̄α / B. Note that if b̄α does not exist, then Bα = B. Define Bα+1 to

be the ELA-subfield of B generated by Bαb̄α. Applying [16, Proposition

3.13 (2)] we have Bα / Bα+1 / B. Defining Vα = Loc(b̄αe
b̄α/Bα), by [16,

Proposition 3.13 (2)] we can write Bα+1 as Bα|Vα, the free extension of Bα

by a generic of Vα. For limit ordinals δ < γ, by Lemma 2.2.9(f)(g) we can

define Bδ =
⋃
α<γ Bα. We therefore have a chain of strong ELA-subfields of

B given by (Bα)α<γ. Set D0 = C, and for each α < γ define Dα+1 = Dα|Vα.

Then by [16, Lemma 3.18] we have a chain of embeddings fα : Bα ↪→ Dα

over A such that fα(Bα) / Dα for each α < γ, and noting that fα extends

fβ for all β < α we can define fγ =
⋃
α<γ fα for all limit ordinals δ < γ.

Therefore we obtain an embedding fγ : B ↪→ Dγ, where Dγ ∈ ExpF.

Setting f = fγ and D = Dγ we have the following commutative diagram

A ⊂ /- f(B)

C

4

?

∩

⊂ /- D

4

?

∩

as required.

Lemma 2.2.16. (ECF,≤) has the amalgamation property.

Proof. By Proposition 2.2.15, for A,B,C ∈ ECF with A ≤ B and A ≤ C
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we have D ∈ ExpF such that B ≤ D and C ≤ D commute over A.

Letting γ = |D|+ℵ0, we may enumerate all irreducible, free, rotund varieties

over D by (Vα)α<γ. We construct a chain (Dα)α<γ of ELA-fields in the

following way. Setting D0 = D, by [16, Proposition 3.13(2)] for each α <

|D| we can define an ELA-field extension Dα+1 = Dα|Vα of Dα, and for

limit ordinals δ < γ we set Dδ =
⋃
β<δDβ. By [16, Proposition 3.13(2)]

again, for each α < γ we have Dα / Dα+1 and by Lemma 2.2.9(f)(g) we

have Dα / Dδ for each limit ordinal δ < γ. Then defining D(1) = Dγ we

have D / D(1). Repeating the above procedure with D(1) instead of D we

obtain D
(1)
γ =: D(2), and repeating this ω many times we obtain a chain

of ELA-fields (D(n))n<ω such that D / D(n) / D(n+1) for each n < ω. Then

D′ =
⋃
n<ωD

(n) is strongly exponentially closed and hence is a model in

ECF, and by Lemma 2.2.9(f)(g) we have D / D′. Therefore the following

diagram of embeddings commutes,

A ⊂ ≤- B

C

≤

?

∩

⊂ ≤- D′

≤

?

∩

and so ECF has the amalgamation property.

Proposition 2.2.17. (ECFSK, /) has the amalgamation property.

Proof. Let A,B,C ∈ ECFSK such that A / B and A / C. Let K0 de-

note the free field amalgam in ACF0 of B and C, and define a func-

tion E : spanQ(BC) → K×0 by E(b + c) = expB(b) expC(c), where expB

and expC denote the exponential functions in B and C respectively. Then

(K0; +, ·, 0, 1, E) is a partial E-field in the sense of [15, Definition 2.1], so

by [15, Construction 2.13] and [15, Lemma 2.14] there is an ELA-field K
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freely generated by K0 such that B /K and C /K by construction; in fact

by [15, Theorem 2.18] if B,C are countable, there is a unique such K.

Let γ = ℵ0 + |K|. Enumerate all irreducible free rotund varieties defined

over K by (Vα)α<γ. We define a chain of ELA-fields (Kα)α<γ in the following

way. Set K = K0 and for each α < γ let Kα+1 be an ELA-field freely

generated over Kα by a tuple ā, eā generic in Vα over Kα, constructed as

in [15, Construction 2.13]. For limit ordinals δ < γ define Kδ =
⋃
α<δKα.

By [15, Lemma 2.14] we have K / Kα / Kα+1 for every α < γ and by

Lemma 2.2.9(f)(g) for each limit ordinal δ < γ we have Kα / Kδ for every

α < δ. Defining K(1) =
⋃
α<γKα, by Lemma 2.2.9(f)(g) we have K /K(1).

Repeating the above procedure with K(1) rather than K we obtain

K(2) =
⋃
α<γK

(1)
α such that K / K(1) / K(2), and repeating this ω many

times we obtain a chain of ELA-fields (K(n))n<ω such that K /K(n) /K(n+1)

for each n < ω. Then D =
⋃
n<ωK

(n) is strongly exponentially algebraically

closed and hence is a model of ECF. By Lemma 2.2.9(f)(g) we have K /D

so B / D and C / D. Also ker(D) = ker(B) = τZ, so D ∈ ECFSK as

required.

Definition 2.2.18. Let M,N ∈ ECFSK,CCP such that M ⊆ N . We say

M⊆ N is a closed embedding, written M⊆cl N , if eclN (M) =M.

Since ECFSK,CCP is a quasiminimal excellent class, the amalgamation

property for (ECFSK,CCP,⊆cl) follows from [13, Theorem 3.3].

Proposition 2.2.19. (ECF,≤), (ECFSK, /) and (ECFSK,CCP,⊆cl) are

abstract elementary classes. Each class has ALM, AP and JEP, and there-

fore each class admits its own monster model.
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Furthermore (ECFSK, /) and (ECF,≤) are finitary, (ECFSK,CCP,⊆cl)

is non-finitary.

Proof. We first demonstrate that (ECF,≤) is an AEC by proving each item

of Definition 2.2.1.

(1) Suppose that M1,M2,N1,N2 ∈ ECF and M1 ≤ M2 such that we

have isomorphisms fi : Mi → Ni for i = 1, 2 with f1 ⊆ f2. Transcen-

dence degree and linear dimension are invariant under isomorphisms,

so for each b̄ ∈ N2 we have ∆N2(b̄/N1) = ∆M2(f−1(b̄)/M1) ≥ 0 since

M1 ≺p M2. We also have M1 |̂ ACF0

ker(M1)
ker(M2), so applying the iso-

morphism f2 we obtain N1 |̂ ACF0

ker(N1)
ker(N2), and so N1 ≺p N2. Since Z

is a ∅-definable set, it too is preserved by f2, and so Z(N1)4Z(N2).

(2) Immediate from the definition of semi-strong.

(3) By part (e) of Lemma 2.2.9.

(4) By parts (f) and (g) of Lemma 2.2.9.

(5) (DLS) By Proposition 2.2.13.

Hence (ECF,≤) is an abstract elementary class. By Lemma 2.2.16 we have

AP for ECF, by [16, Theorem 1.1] we have arbitrarily large models in ECF,

and JEP follows from AP due the existence of prime models [14, Theorem

4]. We therefore have ALM, JEP and AP, so we may fix a monster model

M in ECF.

Suppose we have M ⊆ N in ECF such that tpgM(ā) = tpgN (ā) for

all ā ∈ M. Equivalence of Galois types implies equivalence of syntactic
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types, therefore for any L-formula φ(x̄) and ā ∈ M we have M |= φ(ā) iff

N |= φ(ā), namely M4N . If M 6≤ N then Z(M) 64Z(N ) or M 6≺p N ,

which in either case will be witnessed by an L-sentence with parameters

from M, implying that M 64N . Therefore we have finite character, and so

(ECF,≤) is a finitary AEC.

The proof that (ECFSK, /) is an AEC is the same as the above, where

we replace ≺p with / and invoke part (g) of Lemma 2.2.9, and for the proof of

DLS we may take Z = Z(M) = Z as |Z| = ℵ0. We have AP for (ECFSK, /)

by Proposition 2.2.17, and ALM and JEP for (ECFSK, /) follow by the same

argument as for (ECF,≤). ECFSK is an Lω1,ω-class, so by [14, Theorem

3] strong embeddings are exactly the elementary embeddings in ECFSK, so

by the same reasoning as for ECF above, (ECFSK, /) is a finitary AEC.

ECFSK,CCP is an uncountably categorical quasiminimal excellent class,

so by [13, Theorem 4.2] it is an abstract elementary class, and by cate-

goricity it has arbitrarily large models. For the Lowenheim-Skolem number

of ECFSK,CCP we observe that eclM(A)4M and by the countable closure

property axiom (V) we have |eclM(A)| = |A|+ℵ0, so LS(ECFSK,CCP) = ℵ0.

In Section 2.8 of [14] it is shown that ECFSK,CCP is not Lω1,ω-definable,

and so by [17, Theorem 5.2] it is a non-finitary AEC.

2.3 The hull in exponential fields

In this section we prove that for each modelM∈ ExpF and subset A ⊆M

there exists a unique smallest Q-linear vector space containing A that is

strong in M, called the hull of A, and furthermore that in extensions of
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M this vector space will only extend by the span of the new kernel. Later

in this chapter we will use these ideas to determine a correlation between

Galois types and syntactic types. The hull will also be needed in the next

chapter in order to define our independence relations.

Lemma 2.3.1. Let M be a model of ExpF, and let C ⊆M be any subset.

Then there exists a unique smallest Q-vector subspace dCeM, the hull of C

in M, such that C ∪ ker(M) ⊆ dCeM and dCeM /M.

Proof. Suppose that C is finite. Then there exists a Q-vector subspace A of

M with minimal linear dimension over ker(M) such that C ∪ ker(M) ⊆ A

and ∆M(A/C) = d is minimal. Suppose that B ⊆ M is another Q-vector

subspace with ∆M(B/C) = d and C ∪ ker(M) ⊆ B. By submodularity we

have

∆M(AB/C) + ∆M(A ∩B/C) ≤ ∆M(A/C) + ∆M(B/C) = 2d

and since ∆M(A/C) is minimal, we have ∆M(A ∩ B/C) = d. However,

A has minimal linear dimension over ker(M), so A ∩ B = A; that is, A is

unique.

Suppose on the other hand C is infinite. Then there exists dC0eM /M

for each finite subset C0 ⊆ C. Let C̃ =
⋃
C0⊆finCdC0eM, and observe that

C ∪ker(M) ⊆ C̃. By Lemma 2.2.9 (g) we have C̃ /M and so dCe = C̃.

Definition 2.3.2. Let M be a model in ExpF. If A and B are subsets of

M, we say that a set B′ ∈M is a basis for the hull of B over A in M if B′

is Q-linearly independent over A ∪ ker(M) and 〈B′A ker(M)〉M = dBeM.

If A is empty, we say B′ is a basis for the hull of B (over the kernel).
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Lemma 2.3.3. Let M and N be in ExpF with M ≺p N and let A ⊆ M.

Then dAeN is the Q-linear vector space generated by dAeM and ker(N ).

Proof. We observe that dAeN contains ker(N ) ∪ dAeM, so we need only

prove that the Q-vector space generated by dAeM ∪ ker(N ) is strong in N ,

namely for all ȳ ∈ N we have ∆N (ȳ/dAeM) ≥ 0. We can find z̄ ∈ M and

w̄ ∈ N \M such that ldimQ(w̄/M) = |w̄| and 〈ȳ〉 = 〈z̄w̄〉. By additivity,

∆N (ȳ/dAeM) = ∆N (z̄/dAeM) + ∆N (w̄/z̄dAeM).

We have M ≺p N and so M |̂ ACF0

ker(M)
ker(N ), therefore by Lemma 2.2.6(c)

we have ∆N (z̄/dAeM) = ∆M(z̄/dAeM), which is greater than or equal to

0 since dAeM ≺p M. By the definition of w̄ we have ldimQ(w̄/z̄dAeM) =

ldimQ(w̄/M). Since M≺p N we have

∆N (w̄/z̄dAeM) = td(w̄ew̄/z̄dAeM ker(N ) exp(z̄dAeM))− ldimQ(w̄/z̄dAeM ker(N ))

= td(w̄ew̄/z̄dAeM ker(N ) exp(z̄dAeM))− ldimQ(w̄/M ker(N ))

≥ td(w̄ew̄/M ker(N ))− ldimQ(w̄/M ker(N )) = ∆N (w̄/M)

≥ 0

and so ∆N (ȳ/dAeM) ≥ 0 as required.

Immediately from the above lemma we have dAeM = dAeN for any

M,N in ExpF such that M /N . In particular for all extensions M⊆ N

in ECFSK we have dAeM = dAeN . We may omit the subscript in d−eM

when the context is clear.
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2.4 ELA-subfields and ELA-closure

In this section we define the ELA-closure of a subset of a model of ExpF,

and show that the ELA-closure of any semi-strong set B ⊆M is a union of

definable sets in M with parameters in B. This will lead to a proof at the

end of this chapter that a type over a set uniquely extends to a type over

an ELA-field, which will ultimately be used to obtain a stationarity result.

Definition 2.4.1. Let A ⊆ M be a subset. We define 〈A〉ELA
M , the ELA-

closure of A in M, as

〈A〉ELA
M =

⋂
{F ⊆M : A ∪ ker(M) ⊆ F and F is an ELA-subfield}.

We also write dAeELA
M for 〈dAeM〉ELA

M , the ELA-closure of the hull of A in

M.

〈A〉ELA is an ELA-subfield due to its containment of the kernel; the

intersection of two ELA-subfields is not necessarily an ELA-subfield, as it

is possible for two ELA-subfields to have differing logarithms. To see this,

consider the following example. LetM∈ ECF be a model with ker(M) 6=

τZ. We will determine two ELA-subfields of M whose intersection does

not contain any logarithm of 2. Let a, b ∈ M be distinct elements such

that ea = eb = 2 (so a − b ∈ ker(M)) and choose b so that a − b = τz

for some z ∈ Z \ Z. The standard prime model B0 of ECFSK embeds into

M, and by a method similar to the proof of Proposition 2.2.13, one may

construct an ECF-embedding θ1 : B0 ↪→ M such that a ∈ θ1(B0). Then

the logarithms of 2 in θ1(B0) are a + τZ. One may also construct another

embedding θ2 : B0 ↪→M such that b ∈ θ2(B0). However a−b /∈ τZ, so a, b /∈
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θ1(B0)∩θ2(B0). More generally for any subset A ⊆M we have no logarithm

of 2 contained in
⋂
{F ⊆M : F is an ELA-subfield containing A}. On the

other hand 〈A〉ELA
M might not be the smallest ELA-subfield ofM containing

A; one can construct, as in the proof of LS(ECF) = ℵ0, an ELA-subfield

(in fact a model of ECF) of cardinality |A| + ℵ0. However, demanding

containment of the kernel ensures that 〈A〉ELA will be an ELA-subfield.

Proposition 2.4.2. [16, Proposition 3.13] Suppose that M and N are

in ECF, and that A is a vector subspace of both M and N with very full

kernel such that A /M and A /N . Then 〈A〉ELAM ∼=A 〈A〉ELAN .

LetM, A andN be as in the above proposition and suppose thatM/N .

We observe that dAeELA
M / N by transitivity of strong embeddings and so

dAeELA
M = dAeELA

N . Therefore we may drop the subscript when considering

d−eELA in models of ECF that are strongly embedded.

Lemma 2.4.3. Let M be a model in ExpF and suppose that ā and b̄ are

finite tuples in M such that āb̄ ≺pM. Then ādb̄eELAM /M.

Proof. Since ker(M) ⊆ db̄eELA
M , it suffices to show that 〈ādb̄eELA〉 ≺p

M. Note that dādb̄ee = dāb̄e = 〈āb̄ ker(M)〉 since āb̄ ≺p M, so

ādb̄e ≺p M. Enumerate ādb̄eELA as ādb̄e _ (bn)n<ω such that for

n < ω we have at least one of bn, e
bn field-theoretically algebraic over

{ā, db̄e, b0, ..., bn−1, e
ā, edb̄e, eb0 , ..., ebn−1}. Set B0 = 〈ādb̄e〉, and for each

n < ω set Bn+1 = 〈Bn, bn〉. Note that B0 ≺pM by hypothesis, and suppose

that Bn ≺pM for some n < ω. If bn ∈ Bn then Bn+1 = Bn so Bn+1 ≺pM.

Otherwise we have ldimQ(bn/Bn) = 1 and td(bn, e
bn/Bn, e

Bn) ≤ 1, so

∆(bn/Bn) ≤ 0. However Bn ≺p M so ∆(bn/Bn) = 0. Therefore for any
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x̄ ∈ M we have ∆(x̄/Bn+1) = ∆(x̄bn/Bn) − ∆(bn/Bn) = ∆(x̄/Bn) ≥ 0

since Bn ≺pM. Applying Lemma 2.2.9(f), we have ādb̄eELA semi-strong in

M.

Before we investigate types over strong ELA-subfields, we shall show

that for any subset B ⊆M, dBeELA
M is a union of B-definable sets.

Lemma 2.4.4. Let M ∈ ECF, B ⊆ M and suppose a ∈ 〈B〉ELAM . Then

there is a formula φa(w) with parameters from B such that M |= φa(a) and

φa(M) ⊆ 〈B〉ELAM .

Proof. By induction on the construction of 〈B〉ELAM from B. For the base

case, if a ∈ B then we define φa(w) to be w = a. Suppose b ∈ 〈B〉ELAM

and we have such a formula φb(w). If a = eb then we can take φa(w) to

be the formula ∃y[w = ey ∧ φb(y)]. If ea = b then we can take φa(w) to

be ∃y[y = ew ∧ φb(y)]. Suppose b̄ ∈ 〈B〉ELAM is a finite tuple such that for

each bi ∈ b̄ we have such a formula φbi(yi). Then if a is field-theoretically

algebraic over b̄ for some minimal polynomial f(x, ȳ) ∈ Z[x, ȳ] then we can

take φa(w) to be ∃ȳ [f(x, ȳ) = 0 ∧
∧
i φbi(yi)].

Lemma 2.4.5. Let b̄ be a finite tuple from M∈ ECF and let b̄′ ∈M be a

basis for the hull of b̄ over the kernel. Then there is a formula ψ(w̄) defined

over b̄ such that M |= ψ(b̄′) and any realisation of ψ in M is a basis for

the hull of b̄ over the kernel.

Proof. Let b̄′ ∈ Mr be a basis for the hull of b̄ over the kernel in M. By

definition of b̄′ there is a unique d̄ contained in the Q-linear span of the

kernel and a unique matrix N ∈ Matr×n(Q) such that b̄ = Nb̄′ + d̄. Let

U = Loc(b̄′, eb̄
′
/b̄, eb̄, ker(M)) = Loc(b̄′, eb̄

′
/b̄, eb̄, k̄) for some k̄ ∈ ker(M).
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Let φ(x̄1, ȳ1, x̄2, ȳ2, z̄) be the L-formula such that φ(x̄, ȳ, b̄, eb̄, k̄) defines U ,

and let U(z̄) = {(x̄, ȳ) : M |= φ(x̄, ȳ, b̄, eb̄, z̄)}. Define ψ(w̄) to be the

formula defined over b̄ given by

(∃z̄ ∈ ker)
{

[(w̄, ew̄) ∈ U(z̄)] ∧ b̄ = Nw̄ + d̄ ∧ (∀q̄ ∈ Qr+1)(∀u ∈ ker)[
r∑
i=1

qiwi = qr+1u→ ∀v̄

(
(v̄, ev̄) ∈ U(z̄)→

r∑
i=1

qivi = qr+1u

)]}

where Q = {x : (∃y, z ∈ ker)[xz = y]} denotes the (non-standard) rationals

inM as ratios of kernel elements. For given k̄ ∈ ker, the second line states

that w̄ satisfies only those Q-linear dependencies over the kernel that hold

on pr(U(k̄)), the projection to the first r coordinates of U(k). We now prove

that if M |= ψ(c̄′) then c̄′ is a basis for db̄eM.

First note that for a given k̄ ∈ ker we have td(c̄′, ec̄
′
/ ker(M)) ≤

dimU(k̄) = r + etd(b̄). By the second line of ψ it follows that c̄′ satisfies

only those Q-linear dependences over the kernel satisfied by all w̄ such that

(w̄, ew̄) ∈ U(k̄). But b̄′ was chosen Q-linearly independent over ker(M) and

so there are no such linear dependences, and thus ldimQ(c̄′/ ker) = r. Then

∆M(c̄′) = td(c̄′ec̄
′
/ ker)− ldimQ(c̄′/ ker) ≤ etd(b̄). Since b̄ = Nc̄′ + d̄ where

d̄ ∈ ker(M) we have etd(b̄) = etd(c̄′), then by Fact 2.2.10 ∆M(c̄′) = etd(c̄′),

so c̄′ ≺pM.

Therefore the Q-linear span of c̄′ over the kernel is strong, and contains

b̄ since b̄ = Nc̄′ + d̄. Then 〈c̄′ ker(M)〉 ∩ 〈b̄′ ker(M)〉 is strong, but both c̄′

and b̄′ are of minimal length, so ∆M(c̄′) = ∆M(b̄′). By Lemma 2.3.1 the

hull is unique, so 〈c̄′ ker(M)〉 = db̄eM. Since c̄′ is of minimal length it is a

basis for the hull of b̄.
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Proposition 2.4.6. Let M ∈ ECF and B ⊆ M a subset. Then for any

a ∈ dBeELAM there exists a B-definable subset Xa ⊆ dBeELAM containing a.

Therefore, dBeELAM is a union of definable sets with parameters from B.

Proof. Let a ∈ dBeELA. By finite character of d−eELA, a ∈ dB0eELA for

some finite subset B0 ∈ B, so without loss of generality we assume that B

is finite. Let b̄′ be a basis for the hull of B in M. By Lemma 2.4.4 there

is a formula φ(w, ū) and parameters d̄ ∈ dBe such that M |= φ(a, d̄) and

for any x ∈ M such that M |= φ(x, d̄) we have x ∈ dBeELA. Then there

exists N ∈ Matr×n(Q) and c̄ ∈ ker(M) such that d̄ = Nb̄′ + c̄. Then by

Lemma 2.4.5 there is a formula ψ(v̄) defined over B, realised by b̄′, and such

that any realisation of ψ is a basis for the hull of B over the kernel. We

define

Ψ(w) = ∃ū∃v̄∃z̄ [φ(w, ū) ∧ ψ(v̄) ∧ ū = Nv̄ + z̄ ∧ z̄ ∈ ker]

By construction we have M |= Ψ(a). Suppose x ∈ M such that M |=

Ψ(x) where ū, v̄ and z̄ are witnessed by d̄0, b̄0 and c̄0 respectively. Then by

Lemma 2.4.5 b̄0 is a basis for the hull of B over the kernel, then d̄0 = Nb̄0+c̄0

where c̄0 ∈ ker so by the definition of the hull we have d̄0 ∈ dBe, and so by

Lemma 2.4.4 we have x ∈ dBeELA as required.

2.5 Types orthogonal to the kernel in ECF

In [15, Section 3] Kirby investigates types over ELA-fields in ECFSK by

defining an ELA-field extension F ⊆ F |V , where F |V is the freely generated
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ELA-subfield extending an ELA-subfield F by a generic tuple (ā, eā) over F

of V ⊆ Gn, an irreducible, free, rotund and Kummer-generic variety. In fact

by [15, Theorem 3.11] all finitely generated kernel-preserving extensions of

ELA-fields are of this form for some free and Kummer-generic variety V ,

and the extension F ⊆ F |V is strong if and only if V is also rotund [15,

Proposition 5.2]. In the remainder of this chapter, we shall describe the

types in ECF in a more explicit manner. In particular, since we intend to

study stable-like behaviour modulo complications arising from the kernel,

we focus on types over semi-strong ELA-subfields that are ‘orthogonal to

the kernel’, that is, realised in a model M whose kernel does not extend

from the kernel of the semi-strong ELA-field in the base. We construct tools

that will ultimately allow us to define an independence notion that can be

used to describe these types. In particular we introduce the notion of a type

being grounded, and we show that this notion captures all the information

needed to describe a type orthogonal to the kernel.

We fix a monster model M of ECF, and define the two kinds of type

that we shall investigate.

Definition 2.5.1. Let ā, b̄ ∈M and let C be a subset of M.

• [19, Definition 4.1.1] The (syntactic) type of ā over C, written tp(ā/C),

is the set of all formulas φ(x̄, c̄) such that M |= φ(ā, c̄) and c̄ ∈ C. That

is, ā and b̄ have the same syntactic type over C, written tp(ā/C) =

tp(b̄/C), if for each L-formula φ(x̄, ȳ) and every finite tuple c̄ ∈ C we

have M |= φ(ā, c̄) if and only if M |= φ(b̄, c̄).

• [6, Definition 2.1] The Galois type of ā over C, written tpg(ā/C), is

the automorphism orbit of ā over C in M. That is, ā and b̄ have the
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same Galois type over C, written tpg(ā/C) = tpg(b̄/C), if there exists

an automorphism σ ∈ Aut(M) fixing C pointwise such that σ(ā) = b̄.

When working in a saturated model we associate the set of L-formulas

tp(ā/C) with its set of realisations. If two tuples have the same Galois type,

it is immediate that they have the same syntactic type, as automorphisms

preserve formulas. In Proposition 2.5.10 we provide sufficient conditions for

the converse to also hold.

Definition 2.5.2. Let F be a semi-strong ELA-subfield of M and let p be

a complete type over F realised by ā ∈ Mn. We say that p is orthogonal

to the kernel if there exists a model M ∈ ECF with ā ∈ Mr such that

ker(M) = ker(F ). We say that M witnesses the orthogonality of p.

Note that if p is a type over a semi-strong ELA-subfield F ⊆ M such

that p is orthogonal to the kernel witnessed by M ∈ ECF, one could then

view p as a type over a strong ELA-subfield F ⊆M.

Example 2.5.3. We give some examples and non-examples of types that

are orthogonal to the kernel in ECF. We explain the orthogonality or non-

orthogonality to the kernel for each example, saving explicit proofs until

Example 2.6.3, by which point we will have developed more machinery. In

each case we consider a type over a semi-strong ELA-subfield F ⊆M.

1. The type generated by x /∈ F and x = ex is orthogonal to the kernel.

A realisation of this type is exponentially algebraic over F , but does

not require a new kernel element to be realised.

2. For given λ ∈ F , the type generated by x /∈ F and λ = ex is not
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orthogonal to the kernel. Realising this type requires the existence of

a new logarithm, which necessitates a new kernel element.

3. Let λ ∈ F× and a, b, c ∈ M \ F such that Fabc ≺p M, a2 = ea + λ,

eb = a and c + ec = b. Then the types tp(a/F ), tp(c/F ), tp(a, c/F )

and tp(a, b, c/F ) are all orthogonal to the kernel; for instance in a

model realising the type tp(a, b, c/F ), the existence of b requires a

new logarithm, but only of a new element a, so the existence of b

does not extend the kernel. However if F ′ is a semi-strong ELA-

subfield containing Fa such that ker(F ′) = ker(F ), then tp(c/F ′)

is not orthogonal to the kernel, since the existence of c implies the

existence of c+ ec = b, which is a new logarithm of an element in F ′,

namely a. This example demonstrates an interesting subtlety, that a

type non-orthogonal to the kernel needn’t always be realised by a new

kernel element; instead, a model realising such a type could implicitly

demand the existence of a new kernel element in that model.

Before we can characterise types that are orthogonal to the kernel, we

first describe a stronger version of strong exponential closedness, saturation

over the kernel.

Definition 2.5.4. [16, Definition 4.2] Let F be an ELA-field. We say F

is saturated over the kernel iff etd(F ) = |F | and whenever V ⊆ Ga(F )n ×

Gm(F )n is a rotund, free sub-variety of dimension n defined over F and A

is a subset of F of cardinality strictly less than |F |, there exists x̄ ∈ F such

that (x̄, ex̄) ∈ V is generic in V over A.

Proposition 2.5.5. [16, Proposition 4.3] Let M∈ ECF and suppose M

has very full kernel. Then there exists N ∈ ECF such that |M| = |N |, M



2.5 Types orthogonal to the kernel in ECF 41

is strong in N , and N is saturated over the kernel.

Theorem 2.5.6. [16, Theorem 4.4] Suppose M1,M2 ∈ ECF are models

with the same cardinality, greater than 2ℵ0, such that each Mi is saturated

over the kernel. Suppose we have an isomorphism θZ : Z(M1) → Z(M2)

and a bijection θB : B1 → B2 between exponential transcendence bases of

M1 and M2 respectively. Suppose further that A1 ≺p M1 and A2 ≺p M2

are semi-strong Q-vector subspaces of M1 and M2 respectively such that

|A1| = |A2| < |M1| and θ0 : F1 → F2 is a field isomorphism compatible with

θZ and θB, where Fi is the field of fractions of Ai ∪ expMi
(Ai). Then there

is an isomorphism θ :M1 →M2 extending θZ ∪ θB ∪ θ0.

For each r ∈ Z we write r · (x̄, ȳ) for (rI) · (x̄, ȳ) where I is the identity

matrix.

Definition 2.5.7. [2, Section 1] Let K be an algebraically closed field, and

let V ⊆ Kn×(K×)n be an algebraic variety. We say V is Kummer-generic if

for every r ∈ N+ the variety Vr = {(x̄, ȳ) ∈ K : r ·(x̄, ȳ) ∈ V } is irreducible.

Fact 2.5.8. The Thumbtack Lemma [15, Fact 2.16] Let M be a model

of ECF, ā ∈ M, and F an ELA-subfield of M. Then there exists m ∈ N

such that Loc( ā
m
, e

ā
m/F ) is Kummer-generic.

Lemma 2.5.9. LetM be a model in ECF. Let F be a strong ELA-subfield

of M and let ā ∈ Mr be a finite tuple. Let ā′ ∈ Mn be a basis of dāF eM

over F , and define the algebraic variety V = Loc(ā′, eā
′
/F ). Then V is

irreducible, free, and rotund. Furthermore, we may choose ā′ such that V

is Kummer-generic.
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Proof. Let ā′ be any basis for the hull of ā over F . Then in particular

ā′ is Q-linearly independent over F and so it is additively free over F .

Therefore exp(ā′) is multiplicatively free over F ; otherwise we would have∏n
i=1 e

λia
′
i = c for some c ∈ F and λi ∈ Q, implying that

∑n
i=1 λia

′
i = b for

some b a logarithm of c in F . Then V = Loc(ā′, eā
′
/F ) is additively and

multiplicatively free and irreducible, so since ā′ spans the hull of ā over F

we have V rotund. By Fact 2.5.8 we may replace ā′ with ā′

m
for some m ∈ N

so that V is Kummer-generic.

Proposition 2.5.10. Suppose that F ⊆ M is a semi-strong ELA-subfield

and ā ∈ Mr is a tuple such that tp(ā/F ) is orthogonal to the kernel, wit-

nessed by M ∈ ECF. Let ā′ ∈ Mn be a basis for the hull of ā over F in

M. Define V = Loc(ā′, eā
′
/F ) and let M ∈ Matr×n(Q) and c̄ ∈ F r such

that Mā′ + c̄ = ā. Suppose that b̄ ∈Mr such that there exists b̄′ ∈Mn with

• Loc(b̄′, eb̄
′
/F ker(M)) = V ,

• etd(b̄/F ) = dim(V )− n, and

• Mb̄′ + c̄ = b̄.

Then tpg(b̄/F ) = tpg(ā/F ).

Proof. We have ā′ a basis for dāF eM over F so F ā′ /M, and M ≺p M, so

therefore F ā′ ≺p M. Since Loc(ā′, eā
′
/F ) = Loc(b̄′, eb̄

′
/F ker(M)) we have

ldimQ(b̄′/F ker(M)) = n. Noting also that dimV = td(b̄′, eb̄
′
/F ker(M)),

we have etd(b̄′/F ) = ∆M(b̄′/F ). Since F is semi-strong in M, by

Corollary 2.2.11 we have ∆M(x̄/F b̄′) ≥ 0 for all x̄ ∈ M. In or-

der to prove F b̄ ≺p M, we need to show that F b̄′eb̄
′ |̂ ACF0

ker(F )
ker(M).
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Since F ≺p M we have td(F/ ker(M)) = td(F/ ker(F )), and since

Loc(b̄′, eb̄
′
/F ker(M)) = Loc(ā′, eā

′
/F ) = Loc(b̄′, eb̄

′
/F ) it follows that

td(b̄′, eb̄
′
/F ) = td(b̄′, eb̄

′
/F ker(M)). By additivity of transcendence degree

we have

td(F b̄′, eb̄
′
/ ker(F )) = td(b̄′eb̄

′
/F )− td(F/ ker(F ))

= td(b̄′eb̄
′
/F ker(M))− td(F/ ker(M))

= td(F b̄′, eb̄
′
/ ker(M))

and so F b̄′ ≺p M as required.

By Lemma 2.3.3 we have dF āeM = 〈F ā′ ker(M)〉M, and similarly

dF b̄eM = 〈F b̄′ ker(M)〉M. We may then define an isomorphism of strong vec-

tor subspaces of M by θ0 : 〈F ā′ ker(M)〉M → 〈F b̄′ ker(M)〉M where θ0(ā′) = b̄′

and θ0 fixes F ∪ ker(M) pointwise. Note that we have |F ā′| = |F b̄′| < |M|,

and since M is the monster model by Proposition 2.5.5 M is saturated

over the kernel. We will apply Theorem 2.5.6, with M1 = M2 = M,

A1 = 〈F ā′ ker(M)〉M and A2 = 〈F b̄′ ker(M)〉M. We know θ0 fixes the ker-

nel pointwise, which fixes Z(M) pointwise. Therefore define θZ = idZ(M).

Since θ0 is an isomorphism it maps an exponential transcendence basis for

F ā′ to one for F b̄′, which we can extend to a bijection θB of exponen-

tial transcendence bases of M. Applying Theorem 2.5.6, θ0 extends to an

automorphism of M fixing F pointwise and sending ā′ to b̄′. Therefore

tpg(ā′/F ) = tpg(b̄′/F ), and so tpg(ā/F ) = tpg(b̄/F ).

Corollary 2.5.11. Let F be a semi-strong ELA-subfield of M. Suppose

that we have ā, b̄ ∈ Mr such that tp(ā/F ) = tp(b̄/F ) is orthogonal to the

kernel. Then tpg(ā/F ) = tpg(b̄/F ).
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Proof. Let M and N ∈ ECF witness orthogonality of tp(ā/F ) such that

ā ∈ Mr and b̄ ∈ N r respectively. Let ā′ ∈ Mn be a basis for dāF eM

over F , and let c̄ ∈ F n and M ∈ Matr×n(Z) such that Mā′ + c̄ = ā.

Since tp(ā/F ) = tp(b̄/F ) we can find a basis b̄′ ∈ N n for db̄F eN such

that Mb̄′ + c̄ = b̄, and we note that Loc(ā′, eā
′
/F ) = Loc(b̄′, eb̄

′
/F ). We

also have td(ā′, eā
′
/F ) = td(b̄′, eb̄

′
/F ) where ā′ and b̄′ are Q-linearly inde-

pendent over F , and so ∆(ā′/F ) = ∆(b̄′/F ). As these are hull bases, by

Fact 2.2.10 we have etd(ā/F ) = etd(b̄/F ). Hence by Proposition 2.5.10 we

have tpg(ā/F ) = tpg(b̄/F ).

We have shown that the Galois type of a tuple ā ∈M over a semi-strong

ELA-subfield F ⊆M is equal to the set of realisations of the syntactic type

tp(ā/F ) when this type is orthogonal to the kernel. In the next section we

shall use the characterisation of types given in Proposition 2.5.10 to show

that types orthogonal the kernel may be fully described by a certain small

subset of F .

2.6 Grounded types in ECF

Definition 2.6.1. Let F ⊆M be a semi-strong ELA-subfield, p a type over

F realised by ā in some modelM∈ ECF with F ≺pM. For a given subset

A ⊆ F , we say p is grounded at A if A ≺p F and there is a basis ā′ ∈Mn of

the hull of ā over F such that

• Loc(ā′, eā
′
/F ) = Loc(ā′, eā

′
/A, eA),

• etd(ā/A) = etd(ā/F ), and
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• for the unique matrix M ∈ Matr×n(Q) and c̄ ∈ F such that Mā′− ā =

c̄, we have c̄ ∈ Ar.

We say such ā′ is an A-basis (or simply grounding basis) for the hull of ā

over F , and call A a grounding set for p.

A type being grounded in ECF is similar to the notion of ‘based’ for

non-forking independence in first order theories. At the end of this chapter

we shall specify just how closely they are related.

Lemma 2.6.2. Let p be a type over a semi-strong ELA-subfield F . If p is

grounded at A for some subset A ⊆ F , then p is orthogonal to the kernel.

Proof. Suppose that p is not orthogonal to the kernel, and letM∈ ECF be

a model such that some ā ∈M realises p, so in particular ker(F ) 6= ker(M).

Let ā′ be a basis for dāF eM over F . Then there is a matrix M ∈ Matr×n(Z),

c̄ ∈ F r and d̄ ∈ (ker(M) \ ker(F ))r such that ā = Mā′ + c̄ + d̄. Then any

set A containing c̄ + d̄ cannot be a subset of F , as in particular d̄ /∈ F .

Therefore p cannot be grounded.

Example 2.6.3. We revisit the types described in Example 2.5.3, and use

the machinery we have developed to prove their orthogonality (or non-

orthogonality) to the kernel in ECF. As before we set F to be a semi-strong

ELA-subfield of M.

1. The type generated by x /∈ F and x = ex is grounded by A = ∅, and

hence by Lemma 2.6.2 this type is orthogonal to the kernel.

2. Let λ ∈ F× and consider the type generated by x /∈ F and λ = ex.

Suppose that this type is orthogonal to the kernel, witnessed byM∈
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ECF and realised by b ∈ M. Then ∆M(b/F ) = 1 − 1 = 0, so by

Corollary 2.2.11 we have Fb /M, and so b is a basis for dFbeM over

F . By Lemma 2.5.9 the algebraic variety Loc(b, eb/F ) is irreducible,

free, and rotund; however, this variety is defined by the formula λ = y

so it is not even free, which is a contradiction. Therefore no such M

exists, and this type is not orthogonal to the kernel.

3. As before we set λ ∈ F× and a, b, c ∈ M \ F such that Fabc ≺p M,

a2 = ea + λ, eb = a and c + ec = b. By Lemma 2.6.2, the following

types are orthogonal to the kernel by the existence of their grounding

sets:

• tp(a/F ) has grounding set {λ},

• tp(c/F ) has grounding set ∅,

• tp(a, c/F ) has grounding set {λ},

• tp(a, b, c/F ) has grounding set {λ}.

Now let F ′ be a semi-strong ELA-subfield containing Fa such that

ker(F ′) = ker(F ), and consider tp(c/F ′). Then F ′c 6≺p M since

∆M(b/F ′c) = −1, but F ′cb ≺p M so we have cb a basis for dF ′ceM

over F ′. Suppose that tp(c/F ′) is orthogonal to the kernel witnessed

by M. Then c + ec = b ∈ M, so cb is a basis for dF ′ceM over F ′.

We have Loc(c, b, ec, eb/F ′) ⊆ {y2 = a}, so Loc(c, b, ec, eb/F ′) is not

free. Therefore by Lemma 2.5.9 M does not exist, and so tp(c/F ) is

non-orthogonal to the kernel.

Henceforth in this section, unless otherwise stated, F is a semi-strong

ELA-subfield of M, p is a complete type over F such that p is orthogonal
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to the kernel witnessed by some model M∈ ECF, and ā ∈Mr realises p.

Lemma 2.6.4. Let p be grounded at A with grounding basis ā′ ∈Mn. Then

Aā′ ≺pM.

Proof. We have Loc(ā′, eā
′
/F ) = Loc(ā′, eā

′
/A, eA), and so

Aā′eAā
′ |̂ ACF0

A,eA
F , which by monotonicity of (field-theoretic) alge-

braic independence in ACF0 means that Aā′eAā
′ |̂ ACF0

A,eA
ker(F ). As

A ≺p F we have A, eA |̂ ACF0

ker(A)
ker(F ), so by (left) transitivity of alge-

braic independence in ACF0 we have Aā′, eAā
′ |̂ ACF0

ker(A)
ker(F ). Since

ker(Aā′) ⊆ ker(M) = ker(F ) and Aā′, eAā
′ |̂ ACF0

ker(A)
ker(F ) we have

ker(Aā′) = ker(A), and so Aā′, eAā
′ |̂ ACF0

ker(Aā′)
ker(M).

Secondly we need to show that for all b̄ ∈ M we have ∆M(b̄/Aā′) ≥ 0.

We have etd(ā′/A) = etd(ā′/F ), and by Fact 2.2.10 and F ā′ /M we

have ∆(ā′/F ) = etd(ā′/F ). By finite character of the predimension func-

tion, for some finite tuple d̄ ∈ F we have ∆(ā′/F ) = ∆(ā′/d̄). How-

ever Loc(ā′, eā
′
/AeA) = Loc(ā′eā

′
/F ) so we can choose d̄ ∈ A. Therefore

∆(ā′/A) = etd(ā′/A), so for any b̄ ∈ M by additivity of the predimension

we have ∆(b̄/Aā′) = ∆(b̄ā′/A)− etd(ā′/A) ≥ 0. Therefore Aā′ ≺pM.

Proposition 2.6.5. Let ā′ ∈Mn be a basis for the hull of ā over F in M.

Then there exists a finite subset A ⊆ F such that p is grounded at A, and

ā′ is a A-basis for ā over F .

Proof. As ā′ is a basis for dāF eM over F and ker(F ) = ker(M), we have

F ā′ /M, and there exists a matrix M ∈ Matr×n(Q) and c̄ ∈ F r such that

ā = Mā′ + c̄. We can find a finite subset A ⊆ F containing c̄ such that
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Loc(ā′, eā
′
/F ) is defined over A∪ exp(A) and etd(ā/A) = etd(ā/F ), and we

may extend A in F so that A ≺p F . Then p is grounded at A.

Lemma 2.6.6. Suppose that p is grounded at A ⊆ F , and let B ⊆ F be

any semi-strong subset of F containing A. Then p is grounded at B.

Proof. Let ā′ ∈Mn be an A-basis for ā over F inM. For a unique matrix

M ∈ Matr×n(Q) and tuple c̄ ∈ F r we have Mā′ − ā = c̄, and by definition

of A we have c̄ ∈ Ar ⊆ Br. Since A ⊆ B ⊆ F and etd(ā/A) = etd(ā/F ),

it follows that etd(ā/B) = etd(ā/F ), and similarly Loc(ā′, eā
′
/A, eA) =

Loc(ā′, eā
′
/F ) implies that Loc(ā′, eā

′
/B, eB) = Loc(ā′, eā

′
/F ). Therefore p

is grounded at B.

The final technical result of this chapter implicitly uses a conjecture from

Diophantine geometry formulated by Zilber in [25] known as the conjecture

of intersections of tori with subvarieties, or CIT. Our result states that if a

type over a set B is grounded, it uniquely extends to a type over dBeELA.

We will not explicitly use the conjecture so we do not state it, however we

shall now briefly describe its equivalence to ECF being an elementary class.

First, consider the axioms for ECF. In [16, Proposition 2.2] it was shown

that assuming CIT, axiom (III) is first order expressible. Axioms (I),(IIa)

and (IIb) are first order expressible, and assuming axioms (I),(IIa),(IIb) and

(III), axiom (IV) is also first order expressible [16, Lemma 5.1]. Thus assum-

ing CIT, ECF is an elementary class; in fact, the converse also holds [16,

Theorem 1.4].

In [16, Theorem 6.1] it is shown that, assuming CIT, ECF has quantifier

elimination in the language (+, ·, exp) expanded by predicates for every
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definable subset of Z and all existential formulas. Considering quantifier-free

types in this expanded language L′, if we have ā, b̄ ∈ M tuples and C ⊆ M

a subset such that qftpL′(ā/C) = qftpL′(b̄/C), we see that tpg(ā/C) =

tpg(b̄/C).

If CIT holds, then ECF is the class of models of a complete first order

theory [16, Theorem 1.3]; this implies that Galois types are equivalent to

syntactic types over sets, and allows us to use some first order techniques in

the following theorem, which will lead to a stationarity result. The following

theorem will later be used to show that if p is a global type, orthogonal to

the kernel and grounded at A, then p is a definable type, definable over A.

Theorem 2.6.7. Assume CIT, and suppose p is grounded at A ⊆ F , and

B ⊂ F is a semi-strong subset of F containing A. Then for any N ∈ ECF

such that M≤ N , we have a set of formulas Θ(x̄) with parameters from B

such that if b̄ ∈ N such that N |= Θ(b̄), then b̄ realises p|dBeELAN .

Proof. Let N ∈ ECF such that M≤ N , so by CIT and [16, Theorem 6.1

(3)] N is an elementary extension ofM. Let p = tp(ā/F ) for some ā ∈Mr,

and set n = ldimQ(dāeM/ ker). Let ā′ ∈Mn be an A-basis for the hull of ā

over F , and define V = Loc(ā′, eā
′
/A, exp(A)). For each s ∈ N, each formula

Φ(w̄) with implicit parameters in B defining a subset of (dBeELA)s as found

in Proposition 2.4.6, and each affine sub-variety W ⊆ A2n+s defined over Q,

define θW,Φ(x̄) = ∃ȳ φW,Φ(x̄, ȳ) where

φW,Φ(x̄, ȳ) =∀w̄ (Φ(w̄)→ [(ȳ, eȳ, w̄) ∈ W → ∀ū ((ū, eū) ∈ V

→ (ū, eū, w̄) ∈ W )]) ∧ (ȳ, eȳ) ∈ V ∧ x̄ = Mȳ + c̄
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Let Θ(x̄) be the set of all such θW,Φ(x̄), and note that Θ(x̄) is defined over

B. Suppose that we have b̄ ∈ N such that N |= θW,Φ(b̄) for all formulae

Φ defining subsets of (dBeELA
N )s and affine sub-varieties W ⊆ A2n+s for

each s > 0. Let q(ȳ) be the partial type containing all formulae φW,Φ(b̄, ȳ)

for all formulae Φ defining subsets of (dBeELA
N )s and affine sub-varieties

W ⊆ A2n+s for each s > 0, and let q0 be a finite subset of q. Then q0(ȳ) =

{φW1,Φ1(b̄, ȳ), ..., φWk,Φk(b̄, ȳ)} where for each i = 1, ..., k we have Φi(N si) ⊆

(dBeELA
N )si for some si > 0 and Wi an affine variety of A2n+si . Let ζi(ȳ, z̄, w̄i)

be the formula defining Wi, with |z̄| = |w̄| = n and |w̄i| = si. Then letting

s =
∑k

i=1 si and w̄ = w̄1...w̄k, define W be the affine subvariety of A2n+s

with defining formula ϕ(ȳ, z̄, ū, w̄) =
∧k
i=1 ζi(ȳ, z̄, ūi, w̄i) with parameters in

Q, where ū = ū1...ūk. Define Φ(w̄) =
∧k
i=1 Φi(w̄i) and note that Φ(N s) is a

definable subset of (dBeELA
N )s. Then N |= θW,Φ(b̄) and there exists b̄0 ∈ N

witnessing ȳ in φW,Φ(b̄, ȳ). Then for a given tuple d̄ = (d̄1, ..., d̄k) ∈ Φ(N s) ⊆

(dBeELA
N )s, with d̄i ∈ Φi(N si) for each i = 1, ..., k, we have N |= ϕ(b̄0, e

b̄0 , d̄)

if and only if for every i = 1, ..., k we have N |= ζi(b̄0, e
b̄0 , d̄i). Therefore b̄0

also realises q0, and so q is finitely satisfiable. By compactness there exists

N ′ � N such that q is realised by some b̄′ ∈ N ′.

We have b̄′ ∈ N ′ witnessing ȳ in all θW,Φ(b̄) for all affine varieties W

defined over Q and formulae Φ defining subsets of powers of dBeELA
N , so

b̄ = Mb̄′+ c̄ and for all proper sub-varieties V ′ of V defined over dBeELA
N we

have (b̄′, eb̄
′
) ∈ V \ V ′. Therefore Loc(b̄′, eb̄

′
/dBeELA

N ) = V .

We now wish to prove that b̄′dBeELA
N ≺p N ′. Since we also have V =
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Loc(ā′, eā
′
/dBeELA

N ), it follows that

b̄′eb̄
′ ACF0

|̂
dBeELA
N

ker(N ′), and so b̄′eb̄
′dBeELA

N

ACF0

|̂
dBeELA
N

ker(N ′).

We have dBeELA
N |̂ ACF0

ker(dBeELA
N )

ker(N ′) trivially since dBeELA
N ≺p N ′. There-

fore

b̄′eb̄
′dBeELA

N

ACF0

|̂
ker(dBeELA

N )

ker(N ′)

by transitivity of field-theoretic algebraic independence.

Since N ′ |= φW,Φ(b̄, b̄′) for all affine varieties W defined over Q and

all formulas Φ defining subsets of dBeELA, we also know that b̄′ satisfies

only those Q-linear dependencies over dBeELA
N that hold on all pr(V ), so

ldimQ(b̄′/dBeELA
N ) = r. Thence

td(b̄′, eb̄
′
/dBeELA

N ) ≤ dim(V ) + etd(b̄′/dBeELA
N ) = r + etd(b̄′/dBeELA

N )

and so ∆N ′(b̄
′/dBeELA

N ) ≤ etd(b̄′/dBeELA
N ). By Fact 2.2.10

∆N ′(b̄
′/dBeELA

N ) = etd(b̄′/dBeELA
N ), and for any x̄ ∈ N ′ we have

∆M(x̄b̄′/dBeELA
N ) ≥ etd(b̄′/dBeELA

N ). By additivity,

∆M(x̄/b̄′dBeELA
N ) = ∆M(x̄b̄′/dBeELA

N )−∆M(b̄′/dBeELA
N )

≥ etd(b̄′/dBeELA
N )− etd(b̄′/dBeELA

N ) = 0

and so b̄′dBeELA
N ≺p N ′. Applying Proposition 2.5.10, we have

tpg(ā/dBeELA
N ) = tpg(b̄/dBeELA

N ).

Corollary 2.6.8. Assume CIT. Let p be grounded at A for some subset

A ⊆ F , and suppose that B ⊆ F is a subset containing A. Then for any
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N ∈ ECF such that M≤ N , p|B uniquely extends to p|dBeELAN .

Proof. Immediate from Theorem 2.6.7.

Theorem 2.6.7 provides us with a useful set of formulas determining

a complete type over a model. In the next chapter, the tools we have

developed shall be used to prove that our proposed independence relations

satisfy all necessary independence properties. Before we proceed to defining

these independence relations, we use Theorem 2.6.7 to demonstrate the

connection between a grounding set and a base in ECF.

2.7 A remark on bases and grounding sets

In a first order theory, the canonical base of a global type p is a definably

closed tuple α such that for any automorphism σ we have σp = p iff σα = α.

If it exists, the canonical base is unique up to permutation. A canonical

base may not exist in general for types in ECF, however we can obtain a

result connecting a canonical base to the notion of a grounding set in ECF.

As before we fix a monster model M for ECF.

Definition 2.7.1. Let p be a complete type in ECF. We say that a tuple

α from M is a base for p if σp = p for any automorphism σ ∈ Aut(M/α).

The above definition is adapted from [3, p.223, Definition 5.1.9], which

is a definition for stable theories stating that a syntactic type p is based

at α if there exists a complete type q over α such that p and q have the

same non-forking extension. Considering instead a Galois type q over A

that uniquely extends to p, if an automorphism σ fixes A pointwise, then σ



2.7 A remark on bases and grounding sets 53

must fix q. Therefore σ must fix the unique extension p of q setwise, so the

definitions correspond.

Lemma 2.7.2. Assuming CIT, let p be a complete type over a semi-strong

ELA-subfield F , orthogonal to the kernel, grounded by α ≺p F . Then α is a

base for p.

Proof. Let the orthogonality to the kernel of p be witnessed byM∈ ECF,

and let p = tp(ā/F ) for some tuple ā ∈ Mr. Suppose that α is a ground-

ing set for p. Then for some α-basis ā′ of p, the algebraic variety V =

Loc(ā′, eā
′
/F ) is defined over α, and for a unique matrix M ∈ Matr×n(Q)

we have Mā′− ā = c̄ ∈ F and c̄ ⊆ α. For any b̄ ∈Mr we have b̄ realising p iff

M |= Θ(b̄) where Θ(x̄) is the set of formulas as obtained in Theorem 2.6.7,

except that our parameters come from the ELA-subfield F rather than a

subset B. By the definition of Θ(x̄), any automorphism fixing α pointwise

will fix Θ(x̄) setwise, and thus fix p setwise. Therefore α is a base for p.

Lemma 2.7.3. Assuming CIT, let p be a complete type over a semi-strong

ELA-subfield F , orthogonal to the kernel. Let α ≺p F be a base for p. Then

dcl(α) is a grounding set for p.

Proof. Let σ ∈ Aut(M) be an automorphism fixing α pointwise. Then σ

fixes p setwise, so by Theorem 2.6.7, σ fixes Θ(x̄) setwise. Let ā′ be a basis

for dāF e over F such that Loc(ā′eā
′
/F ) = V , where V is the algebraic

variety defined in Θ(x̄) in the proof of Theorem 2.6.7, and we also have a

unique matrix M ∈ Matr×n(Q) and c̄ ∈ F such that Mā′ − ā = c̄. Since

Θ(x̄) is fixed setwise by σ, by the definition of Θ(x̄) we have c̄ ⊆ dcl(α) and

V is defined over dcl(α). Therefore Loc(ā′, eā
′
/F ) = Loc(ā′, eā

′
/dcl(α)).
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By finite character of ∆ we have ∆(ā′/F ) = ∆(ā′/b̄) for some b̄ ∈ F .

Since Loc(ā′eā
′
/F ) = Loc(ā′, eā

′
/dcl(α)) we may assume b̄ ∈ dcl(α), and so

etd(ā′/F ) = etd(ā′/dcl(α)). Therefore dcl(α) is a grounding set for p.
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Chapter 3

Independence in exponential

fields

In this chapter we develop notions of independence for the classes

ECF,ECFSK and ECFSK,CCP that can be defined in terms of exponential

algebra. We go on show that these relations are equivalent to natural model

theoretic independence notions in ECFSK and ECFSK,CCP. We demon-

strate that our relation is a sensible and useful notion of independence in

ECF, where no appropriate natural notions exist. As ECFSK is a finitary

abstract elementary class, using work of Hyttinen and Kesala we prove that

|̂ ECF is exactly the independence notion coming from non-splitting of Las-

car types. We also prove that |̂ ECFSK,CCP is the canonical independence

notion coming from the pregeometry, so all the basic independence proper-

ties follow; furthermore by work of Hyttinen, Kesälä and Kangas we show

that |̂ ECFSK,CCP is equivalent to non-splitting of weak types.

In [16, Theorem 6.1] it is shown that, assuming CIT, ECF is ‘superstable
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over the integers’. There can be no canonical independence notion in ECF

due to its theory containing Th(Z), but we assert that our independence

notion |̂ ECF, defined as it is ‘over the kernel’, is a useful and appropriate

independence relation for dealing with this class. In Chapter 4 we will use

our independence notion for ECF to prove generic stability of types that

are orthogonal to the kernel, corroborating this assertion.

3.1 Independence relations

Independence relations are fundamental to stability theory. They generalise

key model theoretic concepts such as algebraic independence in fields and

linear independence in vector spaces to make sense in more varied theories.

They allow us to understand and relate types within a theory, and the

existence and properties of independence relations within a theory provide

us with structural understanding of the theory as a whole. We begin this

chapter with a definition of an independence relation, and relate it to various

theories and classes of structures from model theory.

Definition 3.1.1. [1, Definition 1.1] For a structure M, we say that a

ternary relation |̂ is a pre-independence relation if the following hold for

any small subsets A,B,C ⊆M:

1. Monotonicity If A |̂
C
B and X ⊆ B then A |̂

C
X.

2. Transitivity Suppose C ⊆ X ⊆ B. Then A |̂
C
B if and only if

A |̂
C
X and A |̂

X
B.

3. Invariance If σ ∈ Aut(M) and A |̂
C
B, then σ(A) |̂

σ(C)
σ(B).
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4. Finite Character A |̂
C
B if and only if for every ā ∈ A we have

ā |̂
C
B.

We say that |̂ is an independence relation if the following also hold:

5. Extension If ā |̂
C
B and B′ ⊇ B, then there exists b̄ such that

tp(b̄/BC) = tp(ā/BC) and b̄ |̂
C
B′.

6. Local character There exists an ordinal κ such that for every finite

tuple ā and subset C there exists C0 ⊆ C with |C0| < κ such that

ā |̂
C0
C.

In [1] the above notions were defined for a model M of a first order

theory T , but we want a definition that makes sense of an independence

relation for models in a class of structures C. Note also that the extension

property necessitates a saturated model, but a pre-independence relation

makes sense for any model.

We also have the following additional properties which an independence

relation may or may not satisfy, dependent on the theory.

7. Symmetry If A |̂
C
B then B |̂

C
A.

8. Independence over models Let M04M be a submodel,

tp(ā/M0) = tp(b̄/M0) and let ā′, b̄′ be such that ā′ |̂ M0
b̄′, ā |̂ M0

ā′,

and b̄ |̂ M0
b̄′. Then there exists c̄ such that tp(c̄/M0ā

′) =

tp(ā/M0ā
′) and tp(c̄/M0b̄

′) = tp(b̄/M0b̄
′) and c̄ |̂ M0

ā′b̄′.

9. Stationarity If tp(ā/C) = tp(b̄/C), ā |̂
C
B, and b̄ |̂

C
B, then

tp(ā/BC) = tp(b̄/BC).
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10. Stationarity over models The same statement as Stationarity, with

the additional requirement that C4M be a submodel.

11. Pairs lemma Let A ⊆ B, ā |̂
A
B, and b̄ |̂

Aā
B. Then āb̄ |̂

A
B.

12. Finite base If ā |̂
C
B then there exists a finite tuple c̄ ∈ C such

that ā |̂
c̄
B.

We now give an overview of independence relations for various theories. The

classic examples of independence are algebraic independence in ACF0 and

linear independence in vector spaces.

Recall from the introduction that for A,B,C subsets of an algebraically

closed field K of characteristic zero, we say A is field-theoretically alge-

braically independent from B over C if for any tuple ā ∈ A we have

td(ā/BC) = td(ā/C), written as A |̂ ACF0

C
B. Similarly recall that for a Q-

vector space V with subsetsX, Y, Z, we say thatX is Q-linearly independent

from Y over Z if for any tuple x̄ ∈ X we have ldimQ(x̄/Y Z) = ldimQ(x̄/Z),

written X |̂ Q-lin

Z
Y . These are in fact both examples of pregeometric inde-

pendence, which we shall now define.

A pregeometry (X, cl) is a set X and a map cl : P(X) → P(X) such

that for any subset A ⊆ X we have

• A ⊆ cl(A),

• cl(A) = cl(cl(A)),

• cl(A) =
⋃
{cl(A0) : A0 ⊆fin A}, and

• Steinitz Exchange Property If a ∈ cl(Ab) \ cl(A) then b ∈ cl(Aa).
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There is a natural independence relation on a pregeometry (see for exam-

ple [4, Section 2]) which we shall now briefly describe. Let A ⊆ X. We

say that B ⊆ A is a basis for A if cl(A) = cl(B) and for every b ∈ B we

have b /∈ cl(B \ {b}). We define the dimension of A, written dim(A), to

be the cardinality of a basis for A. This is well defined, and we also write

dim(A/C) = dim(AC) − dim(C). We then have an independence relation

given by

A
cl

|̂
C

B if and only if for each finite tuple ā ∈ A we have dim(ā/B) = dim(ā/BC)

which we call the pregeometric independence relation derived from the clo-

sure operator cl(−). This is the canonical independence notion for pregeom-

etry structures; in algebraically closed fields, pregeometric independence de-

rived from acl(−) is field-theoretic algebraic independence, and in Q-vector

spaces the closure operator spanQ(−) gives rise to Q-linear independence.

The traditional example of independence in first order theories is non-

forking independence. Let M be a monster model of a complete first order L-

theory T . For a subset B ⊂M and an L-formula φ(x, ā) with parameters ā

in M, we say φ(x, ā) divides over B if there exist a sequence of indiscernibles

(c̄i)i<ω such that tp(ā/B) = tp(c̄i/B) for all i, and the partial type given by

{φ(x, c̄i)}i<ω is inconsistent. We say φ(x, ā) forks over B if there exist some

finite number of formulas φ1, ..., φn dividing over B such that φ→
∨n
i=1 φn.

We say that the type tp(ā/BC) forks over C if it contains a formula that

forks over C. We say that A |̂ f
C
B if tp(ā/BC) does not fork over C for

each ā ∈ A. Similarly we say that A |̂ d
C
B if tp(ā/BC) does not divide

over C for each ā ∈ A.
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In simple theories |̂ f = |̂ d, as proved in [9]. The theories of vector

spaces and algebraically closed fields are simple, and in fact |̂ f = |̂ ACF0

in algebraically closed fields and |̂ f = |̂ Q-lin in vector spaces. A complete

first order theory is simple if and only if |̂ f satisfies local character, which

occurs if and only if |̂ f satisfies symmetry [10, Theorem 2.4].

Theorem 3.1.2. [11, Theorem 4.2] Let T be a complete theory with mon-

ster model M, and let |̂ ∗ be a ternary relation on small subsets of M such

that |̂ ∗ is an independence relation satisfying independence over models

and symmetry. Then T is simple and |̂ ∗ = |̂ f .

In particular, any simple theory has a unique independence relation. If

T is simple and |̂ f satisfies stationarity over models, then T is stable. If T

is simple and |̂ f also satisfies finite base, then T is supersimple. Similarly

if T is stable and |̂ f satisfies finite base, then T is superstable.

It is possible to give sufficient conditions on a finitary AEC to have a

unique independence relation.

Definition 3.1.3. [6, Definition 2.12] Let (C,≤C) be an AEC with a mon-

ster model M. Suppose that ā, b̄ are finite tuples of equal length in M and

C ⊆ M is a subset. We say that ā and b̄ have the same weak type over C,

written tpw(ā/C) = tpw(b̄/C), if for every finite subset C0 ⊆ C we have

tpg(ā/C0) = tpg(b̄/C0).

Definition 3.1.4. [6, Definition 2.14, 4.2, 4.3] Let (C,≤C) be an abstract

elementary class with AP, JEP and ALM, and fix M a monster model for

C.

• Let A be a subset of M. We say that a sequence (āi)i<ω in M is



3.1 Independence relations 61

strongly A-indiscernible if for all cardinals κ > ω there exist (āi)ω<i<κ

such that (āi)i<κ is an indiscernible sequence over A.

• Let ā, c̄ be tuples in M and let B ⊆ M be a subset such that

c̄ ∈ B. We say that tpw(ā/B) Lascar-splits over c̄ if there is a

strongly c̄-indiscernible sequence (b̄i)i<ω such that b̄0, b̄1 are in B and

tpg(b̄0/c̄ā) 6= tpg(b̄1/c̄ā).

• Let A,B,C be subsets of M. We say that A is Lascar-independent of

B over C, written A |̂ L
C
B if there exists a finite tuple c̄ ∈ C such

that for all D ⊇ B ∪ C there exists a finite tuple b̄ ∈ M such that

tpw(b̄/BC) = tpw(ā/BC) and tpw(b̄/D) does not Lascar-split over c̄.

Theorem 3.1.5. [6, Theorem 4.9] Let (C,≤C) be a finitary abstract ele-

mentary class, and fix M a monster model for C. Suppose that |̂ ∗ is a

ternary relation on small subsets of M satisfying the following:

• |̂ ∗ is an independence relation with the extension property for weak

types.

• Bounded number of free extensions: There is a cardinal κ such

that if C is finite and (āi)i<κ+ is a sequence of realisations of tpw(ā/C)

such that āi |̂ ∗C B for each i < κ+, then there are i < j < κ+ such

that tpw(āi/B) = tpw(āj/B).

Then |̂ ∗ = |̂ L. Furthermore, |̂ ∗ is symmetric, satisfying stationarity

over ℵ0-saturated models for weak types, and the Pairs lemma.

In this chapter we shall use this theorem and other facts about pregeo-

metric structures to prove uniqueness results for independence relations in
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our classes of exponential fields.

3.2 Freeness in exponential fields

In this section we define a ‘free from’ relation for subsets of models in ExpF,

and prove that this is a symmetric pre-independence relation. Later we will

develop this relation into separate independence relations |̂ ECF, |̂ ECFSK

and |̂ ECFSK,CCP for the classes ECF, ECFSK and ECFSK,CCP respec-

tively.

Definition 3.2.1. Let M be any model in ExpF, and let A,B,C ⊆ M.

We say A is free from B over C in M, written A ↓MC B, if

(i) dACeM exp(dACeM) |̂ ACF0

dCeM exp(dCeM)
dBCeM exp(dBCeM),

(ii) dACeM |̂ Q-lin

dCeM
dBCeM, and

(iii) 〈dACeM, dBCeM〉 /M.

Lemma 3.2.2. Let M ⊆ N be models in ExpF such that M ≺p N . Let

A,B,C ⊆M be subsets. Then A ↓MC B if and only if A ↓NC B.

Proof. We consider each property (i),(ii) and (iii) from Definition 3.2.1 sep-

arately. We have

dACeMedACeM
ACF0

|̂
dCeMedCeM

dBCeMedBCeM

and so

dACeMedACeM ker(N )
ACF0

|̂
dCeMedCeM ker(N )

dBCeMedBCeM ker(N ).
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By Lemma 2.3.3 for any X ⊆ M we have 〈dXeM ∪ ker(N )〉N = dXeN ,

therefore

dACeN edACeN
ACF0

|̂
dCeN edCeN

dBCeN edBCeN .

Similarly we have

dACeM
Q-lin

|̂
dCeM

dBCeM ⇒ dACeM ker(N )
Q-lin

|̂
dCeM ker(N )

dBCeM ker(N )

and so dACeN |̂ Q-lin

dCeN
dBCeN . Finally we observe that

〈dACeN , dBCeN 〉N = 〈dACeMdBCeM ker(N )〉N by Lemma 2.3.3

= 〈〈dACeMdBCeM〉M ker(N )〉N by construction

= 〈dABCeM ker(N )〉N as A ↓MC B

= dABCeN by Lemma 2.3.3

and therefore A ↓NC B.

Conversely, assume A ↓NC B. Then

dACeN edACeN |̂ ACF0

dCeN edCeN
dBCeedBCeN , so by monotonicity of |̂ ACF0

we have

dACeMedACeM
ACF0

|̂
dCeN edCeN

dBCeMedBCeM .

SinceM≺p N implies thatM |̂ ACF0

ker(M)
ker(N ), by monotonicity of |̂ ACF0

we have dACeMedACeM |̂ ACF0

ker(M)
ker(N ). Then, again by Lemma 2.3.3, we

have

dACeMedACeM
ACF0

|̂
dCeMedCeM

dCeN edCeN .
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Therefore by transitivity in ACF0 we have

dACeMedACeM
ACF0

|̂
dCeMedCeM

dBCeedBCeM .

We also have dACeM |̂ Q-lin

dCeN
dBCeM by monotonicity of Q-linear inde-

pendence. Noting that M |̂ ACF0

ker(M)
ker(N ) implies M |̂ Q-lin

ker(M)
ker(N ), by

monotonicity of Q-linear independence we obtain dACeM |̂ Q-lin

ker(M)
ker(N ).

Then dACeM |̂ Q-lin

dCeM
dCeN , and so by transitivity of Q-linear independence

we obtain dACeM |̂ Q-lin

dCeM
dBCeN .

Finally 〈dACeN , dBCeN 〉 = ddACeN , dBCeN eN , so by Lemma 2.3.3

we have 〈dACeMdBCeM ker(N )〉 = 〈dABCeM ker(N )〉. Since

M |̂ Q-lin

ker(M)
ker(N ) it follows that 〈dACeM, dBCeM〉 = dABCeM. There-

fore A ↓MC B as required.

The above lemma demonstrates that our free-from relation is preserved

under semi-strong embeddings and extensions of models, so we may omit

the model superscript on ↓ when the context is clear. Next we give a lemma

providing a nice consequence and a useful special case of the definition of ↓

that will make it easier to use the free-from notion.

Lemma 3.2.3. Let M be a model in ExpF, and let A,B,C be subsets of

M.

(a) Suppose that A ↓C B. Then for all tuples ā ∈ A we have ∆(ā/BC) =

∆(ā/C).
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(b) Suppose that C is a strong ELA-subfield of M. Then

dACeedACe
ACF0

|̂
C

dBCeedBCe ⇒ dACe
Q-lin

|̂
C

dBCe

Proof. Note that A ↓C B if and only if dACe ↓dCe dBCe, so without loss of

generality we may assume that A = dACe, B = dBCe, and C = dCe.

(a) Let ā ∈ A. Then as A ↓C B we have td(ā, eā/BeB ker(M)) =

td(ā, eā/CeC ker(M)) and ldimQ(ā/B ker(M)) = ldimQ(ā/C ker(M)).

By the definition of the predimension, the result follows.

(b) For Q-vector spaces A,B,C we have A |̂ Q-lin

C
B if and only if A∩B = C,

and we shall use the latter statement. Certainly A ∩ B contains C. If

a ∈ (A ∩ B) \ C then td(a/C) = 1 since C is an algebraically closed

field. But also a ∈ B which implies that td(a/BeB) = 0, and therefore

by monotonicity AeA 6 |̂ ACF0

C
BeB.

Proposition 3.2.4. Let M be a model in ExpF. Then ↓M is a symmetric

pre-independence relation.

Proof. We may assume that A,B,C,X ⊆M are subsets such that dACe =

A, dBCXe = B, dCe = C and dXCe = X in M.

7. Symmetry We have A ↓C B and so AeA |̂ ACF0

CeC
BeB. By symmetry

of non-forking independence in ACF0 we have BeB |̂ ACF0

CeC
AeA. We

also know that A ↓C B implies that A |̂ Q-lin

C
B, and by symmetry of

non-forking independence for vector spaces we have B |̂ Q-lin

C
A. It is

also clearly the case that 〈B,A〉 = 〈A,B〉 /M and so B ↓C A.
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1. Monotonicity If A ↓C B then AeA |̂ ACF0

CeC
BeB by the definition of

A ↓C B. Given that X ⊆ B, by monotonicity of |̂ ACF0 we have

AeA |̂ ACF0

CeC
XeX . The definition also tells us that A |̂ Q-lin

C
B, so by

monotonicity of |̂ Q-lin we have A |̂ Q-lin

C
X.

We now demonstrate that 〈AX〉 / 〈AB〉. Let x̄ ∈ 〈AB〉. Then there

exist ā ∈ A and b̄ ∈ B Q-linearly independent over ā such that 〈x̄〉 =

〈āb̄〉. Then ∆(x̄/AX) = ∆(āb̄/AX) = ∆(b̄/AX). Since ∆ has finite

character, we have ∆(b̄/AX) = ∆(b̄/d̄A) for some finite tuple d̄ ∈ X.

Extending d̄ if necessary we may assume that d̄C / X. By additivity

of the predimension again, we have

∆(x̄/AX) = ∆(b̄d̄/A)−∆(d̄/A)

By symmetry of ↓ and Lemma 3.2.3(a) we have ∆(ȳ/A) = ∆(ȳ/C) for

any ȳ ∈ B. But then ∆(b̄d̄/A) = ∆(b̄d̄/C) and ∆(d̄/A) = ∆(d̄/C).

By the above, and the fact that d̄C / X, we have

∆(x̄/AX) = ∆(b̄d̄/C)−∆(d̄/C) ≥ 0

Therefore 〈AX〉 / 〈AB〉 and since 〈AB〉 /M, by transitivity of strong

embeddings we have 〈AX〉 /M. Thus, A ↓C X.

2. Transitivity Suppose that A ↓C X and A ↓X B. Then

AeA |̂ ACF0

XeX
BeB and AeA |̂ ACF0

CeC
XeX , which by transitivity of non-

forking independence in ACF0 implies that AeA |̂ ACF0

CeC
BeB. Mean-

while we have A |̂ Q-lin

X
B and A |̂ Q-lin

C
X, from which it follows that

A |̂ Q-lin

C
B by transitivity of non-forking independence for vector
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spaces. Also since A ↓X B we have 〈AB〉 /M, and therefore A ↓C B.

Conversely, suppose that A ↓C B with C ⊆ X ⊆ B. Then

AeA |̂ ACF0

CeC
BeB and by transitivity of non-forking independence in

ACF0 it follows that AeA |̂
CeC

XeX and AeA |̂
XeX

BeB. We also

have A |̂ Q-lin

C
B which implies that A |̂ Q-lin

C
B and A |̂ Q-lin

X
B by

transitivity of Q-linear independence. Since A ↓C B we also have

A ↓C X by monotonicity, which means that 〈AX〉 /M. Hence we

have AeA |̂ ACF0

CeC
XeX , A |̂ Q-lin

C
X and 〈AX〉 /M, so A ↓C X. We

also have AeA |̂ ACF0

XeX
BeB, A |̂ Q-lin

X
B and 〈AB〉 /M, and therefore

A ↓X B.

3. Invariance By definition A ↓C B implies that AeA |̂ ACF0

CeC
BeB.

For any automorphism σ ∈ Aut(M), we have

σ(A)eσ(A) |̂ ACF0

σ(C)eσ(C) σ(B)eσ(B) by automorphism invariance of

|̂ ACF0 . By definition, A ↓C B also implies that A |̂ Q-lin

C
B and so

by automorphism invariance of |̂ Q-lin we obtain σ(A) |̂ Q-lin

σ(C)
σ(B).

Property (iii) of A ↓C B tells us that we have 〈AB〉/M. Suppose that

σ is an automorphism of M such that 〈σ(AB)〉 is not strong in M.

Then we can find c̄ ∈ dσ(AB)e\〈σ(AB)〉, that is with ∆(c̄/σ(AB)) <

0. Then c̄ = σ(d̄) for some d̄ ∈M so ∆(σ(d̄)/σ(AB)) < 0. Since tran-

scendence degree and linear dimension are automorphism invariant, so

is the predimension, so ∆(d̄/AB) < 0, contradicting that 〈AB〉 /M.

Therefore 〈σ(AB)〉 /M, and so we have σ(A) ↓σ(C) σ(B).

4. Finite character Suppose A ↓C B and ā ∈ A. By symmetry and

monotonicity we have left-monotonicity, so we have ā ↓C B.

Conversely, if A 6↓C B then at least one of the three properties from
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the definition will fail. If (i) fails, then for some ā ∈ A and x̄ ∈

dāCe we have x̄ex̄ 6 |̂ ACF0

CeC
BeB by finite character of |̂ ACF0 . By left-

monotonicity, dāCeedāCe 6 |̂ ACF0

CeC
BeB and so ā 6↓C B. Alternatively if

(ii) fails, then there exists ā ∈ A and x̄ ∈ dāCe such that ā 6 |̂ Q-lin

C
B

by finite character of |̂ Q-lin. By monotonicity of |̂ Q-lin we have

dāCe 6 |̂ Q-lin

C
B and hence ā 6↓C B. Finally if (iii) fails, then there

exists c̄ ∈M such that ∆(c̄/AB) < 0. Then by finite character of the

predimension, ∆(c̄/āB) < 0 for some ā ∈ A. Then 〈āB〉 is not strong

in M, and so ā 6↓C B.

We conclude this section with more useful results about our free-from

relation.

Lemma 3.2.5. Let M be a model in ExpF and let A and C be subsets of

M. Suppose that B0 ⊆ B1 ⊆ · · · ⊆ Bγ =
⋃
α<γ Bα is a chain of subsets of

M with A ↓C Bα for each α < γ, where γ is a limit ordinal. Then A ↓C Bγ.

Proof. If A 6↓C Bγ, then by finite character and symmetry of ↓ we have

A 6↓C d̄ for some finite d̄ ∈ Bγ. For some α < γ we have d̄ ∈ Bα, therefore

by monotonicity A 6↓C Bα.

Proposition 3.2.6. Let M be a model in ExpF and let A,B,C be subsets

of M. Then A ↓C B iff A ↓C dBeELA.

Proof. We may assume that B = dBCe, A = dACe and C = dCe. Right to

left is immediate by monotonicity. For the other direction, let γ = |B|+ℵ0

and enumerate dBeELA as B ∪ {bα : α < γ} such that for all α < γ either
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bα or ebα is field-theoretically algebraic over B ∪ exp(B)∪ {bβ, ebβ : β < α},

which is possible by the definition of the ELA-closure. Define B0 = B. For

all ordinals α < γ define Bα+1 = 〈Bα, bα〉. For δ < γ a limit ordinal define

Bδ =
⋃
β<δ Bβ. By Lemma 3.2.5 it suffices to show that A ↓C Bα for every

ordinal α < γ.

We shall prove that for every α < γ we have Bα /M, Dα = 〈ABα〉 /M,

and we will use these to show that A ↓C Bα. We proceed by induc-

tion. Note that B0 = dBe / M and by hypothesis A ↓C B0, which

immediately implies that D0 / M. Suppose that A ↓C Bα, and that

Bα / M for some α < γ. If bα ∈ Bα then set Bα+1 = Bα and so

A ↓C Bα+1 is immediate. If bα /∈ Bα, then setting Bα+1 = 〈Bαbα〉 we have

ldimQ(Bα+1/Bα) = 1. At least one of bα, e
bα is field-theoretically algebraic

over Bα ∪ exp(Bα), so td(Bα+1e
Bα+1/Bαe

Bα) = td(bα+1, e
bα+1/Bαe

Bα) ≤ 1,

and thus ∆(Bα+1/Bα) ≤ 1− 1 = 0. But Bα /M so ∆(Bα+1/Bα) = 0, and

thus td(Bα+1e
Bα+1/Bαe

Bα) = 1. If d̄ ∈M, then

∆(d̄/Bα+1) = ∆(d̄/bα, Bα) = ∆(d̄bα/Bα)−∆(bα/Bα) = ∆(d̄bα/Bα) ≥ 0

since Bα /M. Therefore Bα+1 is strong in M.

We prove by induction that if Dα /M then Dα+1 /M. Furthermore

Dα+1 = 〈Dα, bα〉, td(Dα+1e
Dα+1/Dαe

Dα) = ldimQ(Dα+1/Dα) = 1, and

∆(Dα+1/Dα) = 0.

Suppose that Dα /M. We have Bα+1 6= Bα, so Dα+1 = 〈Dα, bα〉 so

ldimQ(Dα+1/Dα) = 1 and td(Dα+1e
Dα+1/Dαe

Dα) = td(bα, e
bα/Dαe

Dα) ≤

1 since one of bα, e
b
α is algebraic over Bα and thus over Dα. Therefore
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∆(Dα+1/Dα) ≤ 0, but Dα /M so ∆(Dα+1/Dα) = 0. If d̄ ∈M then

∆(d̄/Dα+1) = ∆(d̄/Dα, bα) = ∆(d̄, bα/Dα)−∆(bα/Dα) ≥ 0

so we have Dα+1 /M.

We have td(Dα+1e
Dα+1/Dαe

Dα) = td(Bα+1e
Bα+1/Bαe

Bα) which implies

that AeA |̂ ACF0

BαeBα
Bα+1e

Bα+1 by monotonicity and symmetry. Since A ↓C Bα

we have AeA |̂ ACF0

CeC
Bαe

Bα , and so by transitivity of non-forking inde-

pendence in ACF0 it follows that AeA |̂ ACF0

CeC
Bα+1e

Bα+1 . We also have

ldimQ(Dα+1/Dα) = ldimQ(Bα+1/Bα), so applying monotonicity again we

obtain A |̂ Q-lin

Bα
Bα+1. By transitivity of non-forking independence for Q-

vector spaces we have A |̂ Q-lin

C
Bα+1. Therefore A ↓C Bα+1 and we are

done.

3.3 Independence in ECF, ECFSK and

ECFSK,CCP

We now develop this pre-independence relation for ExpF into independence

relations specific to the classes ExpF, ECF, ECFSK and ECFSK,CCP.

We prove that these relations are symmetric independence relations, some

satisfying additional properties.

Definition 3.3.1. Let C be one of ECF,ECFSK or ECFSK,CCP. Let M

be a model in C and let A, B and C be subsets of M. Respective to the

class C, we define A |̂ C,M
C

B in the following way.

• We write A |̂ ECF,M
C

B if A ↓MdCeELA B.
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• We write A |̂ ECFSK,M
C

B if A ↓MdCeELA B.

• We write A |̂ ECFSK,CCP,M
C

B if A ↓M
eclM(C)

B.

We say A is C-independent from B over C in M.

We may drop the ‘C’ superscript and prefix if the context is clear, for

example within proofs.

Proposition 3.3.2. Let M ≤ N be models of ECF, and suppose that

A,B,C ⊆M are subsets. Then A |̂ ECF,M
C

B iff A |̂ ECF,N
C

B.

Proof. We observe that A |̂ ECF,M
C

B if and only if

dAdCeELA
M eM

ECF,M
|̂

dCeELA
M

dBdCeELA
M eM,

so we may assume that A = dAdCeELA
M eM and B = dBdCeELA

M e. By defini-

tion A |̂ ECF,M
C

B implies that A ↓MdCeELA
M

B, which by Lemma 3.2.2 means

that A ↓NdCeELA
M

B. Equivalently

dAeN ↓NdCeELA
M
dBeN

from which it trivially follows that

dAeN ∪ dCeELA
N ↓NdCeELA

N
dBeN ∪ dCeELA

N

By symmetry and Proposition 3.2.6 this implies that

ddAeN ∪ dCeELA
N eELA

N ↓NdCeELA
N
ddBeN ∪ dCeELA

N eELA
N
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However, ddAeN ∪ dCeELA
N eELA

N = dAeELA
N and ddBeN ∪ dCeELA

N eELA
N =

dBeELA
N . Therefore,

dAdCeELA
N eELA

N ↓NdCeELA
N
dBdCeELA

N eELA
N

hence by monotonicity of ↓ we have dAdCeELA
N eN ↓NdCeELA

N
dBdCeELA

N eN , and

so A |̂ ECF,N
C

B.

Conversely, if A |̂ ECF,N
C

B then by definition of ↓ and monotonicity we

have

dAdCeELA
M eM ↓NdCeELA

N
dBdCeELA

M eM

Trivially dAdCeELA
M eM ↓NdCeELA

M
dCeELA

M and we have ddCeELA
M eELA

N = dCeELA
N

so by Proposition 3.2.6 we observe that

dAdCeELA
M eM ↓NdCeELA

M
dCeELA

N

Applying transitivity of ↓ we obtain

dAdCeELA
M eM ↓NdCeELA

M
dBdCeELA

M eM

By Lemma 3.2.2 it follows that dAdCeELA
M eM ↓MdCeELA

M
dBdCeELA

M eM and so

A |̂ ECF,M
C

B as required.

The above proposition tells us that ECF-independence is preserved un-

der ≤-extensions of models in ECF. We may therefore drop the model su-

perscript when the context is clear, writing |̂ ECF for ECF-independence.

Corollary 3.3.3. Let M / N be models in ECFSK, and let A,B,C be

subsets of M. Then A |̂ ECFSK,M
C

B if and only if A |̂ ECFSK,N
C

B.
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Corollary 3.3.4. Let M ⊆cl N be models in ECFSK,CCP and let A,B,C

be subsets of M. Then A |̂ ECFSK,CCP,M
C

B if and only if A |̂ ECFSK,CCP,N
C

B.

The proof of Corollary 3.3.3 is the same as that of Proposition 3.3.2 with

the added simplification that dXeM = dXeN for all subsets X ⊆ M. It

follows that ECFSK-independence is preserved under strong extensions in

ECF, so we may drop the model subscript and write |̂ ECFSK when the con-

text is clear. Corollary 3.3.4 follows immediately from Proposition 3.3.2 and

the observation that for any subset C ⊆ M we have eclM(C) = eclN (C)

since eclN (M) = M. Hence ECFSK,CCP-independence is preserved un-

der closed embeddings in ECFSK,CCP so we may write |̂ ECFSK,CCP for

|̂ ECFSK,CCP,M.

Before we prove more facts about these relations we make the following

observations which shall shorten future proofs.

Lemma 3.3.5. Let M be a model in ExpF and suppose that

we have A,B,C subsets of M such that C = dCeELA and

dACeedACe |̂ ACF0

C
dBCeedBCe. Then dACe |̂ Q-lin

C
dBCe.

Proof. Since ā, eā |̂ ACF0

C
dBCeedBCe for any ā ∈ dACe, by monotonicity

and symmetry we have ā |̂ ACF0

C
dBCe. By Lemma 3.2.3(ii) it follows that

ā |̂ Q-lin

C
dBCe. Therefore dACe |̂ Q-lin

C
dBCe by finite character of |̂ Q-lin.

Corollary 3.3.6. Let C be one of ECF or ECFSK and let M be a model

in C. Suppose A,B,C are subsets ofM with C = dCeELA and 〈ABC〉/M.

Then A |̂ C,M
C

B if and only if dACeedACe |̂ ACF0

C
dBCeedBCe.

Proof. Immediate from Lemma 3.3.5.
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3.4 Pregeometric independence in exponen-

tial fields

Let C be one of the classes ECF, ECFSK, ECFSK,CCP and let M be a

model in C. Then (M; ecl) is a pregeometry, and inherits an independence

relation given by

A
ecl

|̂
C

B if and only if for each finite tuple ā ∈ A we have etd(ā/B) = etd(ā/B∪C).

Proposition 3.4.1. Let C be one of ECF, ECFSK, ECFSK,CCP and let

M be a model of C. Then for subsets A,B,C ⊆M we have

A
ecl

|̂
C

B if and only if A
C,M
|̂

ecl(C)

B

Proof. We may assume that C = ecl(C), A = dACe and B = dBCe, so in

particular C ⊇ ker(M). The proof is then the same for C equal to any of

the classes ECF,ECFSK or ECFSK,CCP.

First suppose that A 6 |̂ ecl

C
B. Then there exists ā ∈ A such that āB /M

and etd(ā/B) < etd(ā/C). By Fact 2.2.10 we have

etd(ā/C) ≤ ∆(ā/C) = td(ā, eā/C)− ldimQ(ā/C).

Now āB is strong inM, so by Corollary 2.2.11 we have etd(ā/B) = ∆(ā/B).

Therefore td(ā, eā/BeB) − ldimQ(ā/B) < td(ā, eā/C) − ldimQ(ā/C). Since

ldimQ(ā/B) ≤ ldimQ(ā/C) it follows that td(ā, eā/BeB) < td(ā, eā/C).

Therefore A 6 |̂ ACF0

C
B and so A 6 |̂

C
B.
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Conversely suppose that A 6 |̂
C
B. Then by Corollary 3.3.6 either

AeA 6 |̂ ACF0

C
BeB or AB is not strong in M. If the former, then there

exists ā ∈ A such that āC / A and td(ā, eā/BeB) < td(ā, eā/C). If

ldimQ(ā/C) > ldimQ(ā/B) then (〈āC〉 ∩ B) \ C is non-empty, contain-

ing say d ∈ A. But then etd(d/B) = 0 and etd(d/C) = 1 as d /∈ C and

C = ecl(C), witnessing A 6 |̂ ecl

C
B. However if ldimQ(ā/C) = ldimQ(ā/B)

then ∆(ā/C) > ∆(ā/B) by definition of ∆. By Fact 2.2.10 we know

that etd(ā/B) ≤ ∆(ā/B), and since āC /M by Corollary 2.2.11 we have

etd(ā/C) = ∆(ā/C). Therefore etd(ā/B) < etd(ā/C) as required.

Suppose then that AeA |̂ ACF0

C
BeB but AB is not strong in M. Then

there exists ā ∈ A such that āC is strong in A but āB is not strong inM, so

by Corollary 2.2.11 we have etd(ā/B) < ∆(ā/B). We know td(ā, eā/BeB) =

td(ā, eā/C), so by Corollary 3.3.6 we have ldimQ(ā/B) = ldimQ(ā/C) and

hence ∆(ā/C) = ∆(ā/B). Since āC is strong in M, applying Corol-

lary 2.2.11 we have etd(ā/C) = ∆(ā/C), and so etd(ā/B) < etd(ā/C)

as required.

Corollary 3.4.2. Let M be a model for ECFSK,CCP, and let A,B,C be

subsets of M such that C = ecl(C). Then A |̂ ECFSK,CCP

C
B if and only if

A |̂ ecl

C
B. In particular |̂ ECFSK,CCP is a symmetric independence relation.

Proof. Immediate from Proposition 3.4.1.

Since |̂ ECFSK,CCP coincides with pregeometric independence in

ECFSK,CCP, our independence notion is exactly the canonical model the-

oretic independence notion in this class. Before we move on to study in-

dependence in ECF and ECFSK,CCP, we observe some more pure model
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theoretic equivalences to ECFSK,CCP-independence.

Definition 3.4.3. Let (C,≤C) be an AEC with a monster model M.

(a) [8, Definition 2.9] Let ā be a tuple and D ⊆ B subsets with D finite.

We say that tpw(ā/B) splits over D if there are b̄, c̄ ∈ B such that

tpw(b̄/D) = tpw(c̄/D) but tpw(āb̄/D) 6= tpw(āc̄/D). We say a tuple ā

is non-splitting free from B over C and write a ↓nsC B if there exists a

finite subset D ⊆ C such that tpw(ā/BC) does not split over D. We

write A ↓nsC B if ā ↓nsC B for all ā ∈ A.

(b) [8, Definition 2.28] For a tuple ā and a model M define the U-rank of

ā over M inductively by

• U(ā/M) ≥ 0

• U(ā/M) ≥ n+1 if there is some model N ⊇M such that ā 6↓nsM N

and U(ā/N ) ≥ n

• U(ā/M) = n if n is maximal such that U(ā/M) ≥ n.

For a subset B ⊆ M we define U(ā/B) = max{U(ā/M) :

M is a model with B ⊆M}.

Lemma 3.4.4. [8, Lemma 2.29] Let (C,≤C) be an AEC with monster

model M. For models M,N and a tuple ā we have ā ↓nsM N if and only if

U(ā/M) = U(ā/N ).

In any quasiminimal pregeometry structure, the pregeometric dimen-

sion is equal to U-rank, as shown in [8, Lemma 2.92]. Fixing M a mon-

ster model in ECFSK,CCP, we have (M, ecl) a quasiminimal pregeometry

structure, so by Lemma 3.4.4 above it follows that |̂ ecl =↓ns. Therefore
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ECFSK,CCP-independence in M is equivalent to non-splitting independence

of weak types.

We consider one final rephrasing of our independence notion.

Definition 3.4.5. [5, Definition 5.19] Let C be an AEC with AP, JEP and

ALM, and let M denote the monster model of C. For any subset A ⊆ M

and tuple ā ∈M, define rā(A) to be the set

rā(A) = {c̄ ∈M : tpw(c̄/A) = tpw(ā/A)}

that is, rā(A) denotes the set of realisations of tpw(c̄/A). Then for A ⊆ M

we define the bounded closure of A in C by

bddC(A) = {a ∈M : |ra(A)| < |M|}

Lemma 3.4.6. Let M be the monster model in ECFSK,CCP and A ⊆M a

countable subset. Then bddECFSK,CCP
(A) = ecl(A).

Proof. If x ∈ ecl(A), then x is exponentially algebraic over A in the sense

of Macintyre [18, Definition 5, Section 2.5], that is we have f̄ polynomials

defined over some ā, eā where ā ∈ A such that the f̄ form a Khovanskii

system, given by some formula χf̄ (x, ā). By the countable closure property

χf̄ (x, ā) has only countably many realisations, so x ∈ bdd(A). If x /∈ ecl(A)

then x |= q|A the unique complete exponentially transcendental type over

A in ECFSK,CCP, which has unboundedly many realisations in M.

By Lemma 3.4.6, A |̂ ECFSK,CCP,M
C

B can also be defined as A ↓Mbdd(C) B
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since bdd(C) = ecl(C). So in ECFSK,CCP we also have

A
ecl

|̂
bdd(C)

B if and only if A
ECFSK,CCP

|̂
C

B.

3.5 Independence properties in ECF and

ECFSK

Proposition 3.5.1. |̂ ECF is a symmetric pre-independence relation.

Proof. LetM be a model in ECF and let A,B,C be subsets ofM. As be-

fore we may assume that A = dACe, B = dBCe and C = dCe. Symmetry,

monotonicity and finite character for |̂ follow immediately from these prop-

erties for ↓ in Proposition 3.2.4. Observing that σ(dCeELA) = dσ(C)eELA

for any C ⊆ M and σ ∈ Aut(M), invariance for |̂ follows from in-

variance for ↓. For transitivity, by Proposition 3.2.6 and the defini-

tion of |̂ we have A |̂
C
B ⇔ A ↓dCeELA dBeELA. Then for X ⊆ B

we have dXeELA ⊆ dBeELA, and so by transitivity of ↓ it follows that

A ↓dCeELA dBeELA iff A ↓dCeELA dXeELA and A ↓dXeELA dBeELA. Apply-

ing Proposition 3.2.6 again, we obtain transitivity.

Corollary 3.5.2. |̂ ECFSK is a symmetric pre-independence relation.

The proof of the corollary is the same as that of Proposition 3.5.1. If

we replace ECF with ECFSK,CCP and dCeELA with ecl(C) in the proof of

Proposition 3.5.1, we obtain an alternative proof of Corollary 3.4.2.

Lemma 3.5.3. Let C be one of ECF,ECFSK and ECFSK,CCP. LetM be a

model in C and let A,B,C be subsets ofM. Then A |̂ C
C
B iff A |̂ C

C
dBeELA.
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Proof. Immediate from Proposition 3.2.6 and the definition of independence

for each class.

Lemma 3.5.4. Let M be a model in ECF and let A,B,C be subsets of

M. Then A |̂ ECF

C
B if and only if dAeELA |̂ ECF

dCeELAdBeELA.

Proof.

A |̂
C

B if and only if A |̂
C

dBeELA by Lemma 3.5.3

if and only if dBeELA |̂
C

dAeELA by symmetry and Lemma 3.5.3

if and only if dBeELA |̂
dCeELA

dAeELA by the definition of |̂

if and only if dAeELA |̂
dCeELA

dBeELA by symmetry.

Next we have a lemma that provides sufficient conditions for indepen-

dence in terms of Q-linear independence and exponential transcendence

degree alone.

Lemma 3.5.5. Let M be a model in ECF, let A,B ⊆ M be subsets

and C ⊆ M be a strong ELA-subfield of M. Suppose that etd(A/C) =

etd(A/BC) and dACeM |̂ Q-lin

C
dBCeM. Then A |̂

C
B.

Proof. We may assume that A ⊇ C ⊆ B and dACe = A, dBCe = B. We

first prove that AeA |̂ ACF0

C
BeB. Let x̄ ∈ A. Then there exists ā ∈ A such

that āC ≺pM and x̄ ∈ Q(ā, eā). Since A |̂ Q-lin

C
B we have ldimQ(ā/B) =
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ldimQ(ā/C). Then

∆(ā/B) = td(ā, eā/BeB)− ldimQ(ā/B)

= td(ā, eā/BeB)− ldimQ(ā/C)

≤ td(ā, eā/CeC)− ldimQ(ā/C) = ∆(ā/C)

and by Fact 2.2.10 we have ∆(ā/C) = etd(ā/C), so ∆(ā/B) ≤ etd(ā/C).

By hypothesis etd(ā/B) = etd(ā/C), so ∆(ā/B) ≤ etd(ā/B). However by

Fact 2.2.10 again etd(ā/B) ≤ ∆(ā/B), and so etd(ā/B) = ∆(ā/B). There-

fore ∆(ā/B) = ∆(ā/C), which combined with ldimQ(ā/B) = ldimQ(ā/C)

gives us that td(ā, eā/BeB) = td(ā, eā/C). Therefore ā, eā |̂ ACF0

C
BeB, and

by monotonicity x̄ |̂ ACF0

C
BeB. By finite character, AeA |̂ ACF0

C
BeB.

We also need to show that 〈AB〉 /M. For any x̄ ∈ M there exist

ā ∈ A and b̄ ∈ B strong over C such that ∆(x̄/AB) = ∆(x̄/āb̄C). Since

ā, eā |̂ ACF0

C
BeB we have td(ā, eā/b̄C) = td(ā, eā/C), and since ā |̂ Q-lin

C
B

we have ldimQ(ā/C) = ldimQ(ā/b̄C). Therefore ∆(ā/b̄C) = ∆(ā/C), and

by Fact 2.2.10 ∆(ā/b̄C) = etd(ā/C). By Fact 2.2.10 again, ∆(x̄ā/b̄C) ≥

etd(ā/b̄C) ≥ etd(ā/C). By the addition property ∆(x̄/āb̄C) = ∆(x̄ā/b̄C)−

∆(ā/b̄C), and so

∆(x̄/āb̄C) ≥ etd(ā/C)− etd(ā/C) = 0,

hence 〈AB〉 /M.

We now use pre-independence properties to show how |̂ ECF is related

to types orthogonal over the kernel, specifically to grounding sets.
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Lemma 3.5.6. Let p be a complete type over a semi-strong ELA-subfield

B such that p is orthogonal to the kernel, witnessed byM∈ ECF. Suppose

that p is grounded at A ⊆ B, and ā is a realisation for p in M. Then

ā |̂ ECF

A
B.

Proof. Let ā′ be a basis for dāBeM over B. By Lemma 2.6.4 Aā ≺p M.

Let Â = dAeELA
M . Then Loc(ā′, eā

′
/B) = Loc(ā′, eā

′
/Â) and etd(ā′/Â) =

etd(ā′/B). Therefore ā′, eā
′ |̂ ACF0

Â
B and by Lemma 3.3.5 ā′ |̂ Q-lin

Â
B.

Since Aā′ ≺pM, by Lemma 2.4.3 we have Âā′ /M, and so ā′ |̂
Â
B. By the

definition of independence, ā′ |̂
A
B, and by symmetry and monotonicity of

ECF-independence we have ā |̂
A
B.

Proposition 3.5.7. Let M be a saturated model in ECF. Then |̂ ECF,M

is an independence relation, satisfying the following additional property.

9’. Stationarity over strong ELA-subfields Let ā1 and ā2 be finite

tuples in M, and suppose that A/M is a strong ELA-subfield of M.

If ā1 |̂ AB and ā2 |̂ AB with tp(ā1/A) = tp(ā2/A) then tp(ā1/B) =

tp(ā2/B).

Property 9’. is close to stationarity, but has the additional requirement

that A is a strong ELA-subfield. Note that we do not have stationarity in

ECF, as the requirement that A is a strong ELA-subfield is unavoidable.

For example, let M be the monster model in ECF and suppose we have

a subset A ⊆ M such that A 6= dAeELA. Suppose that a1 and a2 are two

distinct elements in Z(M)\bddECF(A) such that tp(a1/A) = tp(a2/A). Set

B = A ∪ {a1, a2}. Then a1, a2 ∈ dAeELA \ A, so trivially a1 |̂ ECF

A
B and

a2 |̂ ECF

A
B. However, tp(a1/B) 6= tp(a2/B), so stationarity fails.
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We now prove Proposition 3.5.7.

Proof. By Proposition 3.5.1 |̂ ECF satisfies the pre-independence properties

of an independence relation in Definition 3.1.1.

5. Extension: Let ā |̂
C
B and B′ ⊇ B. By Lemma 3.5.3 may assume

that B = dBCeELA and B′ = dB′eELA. We may also assume that ā

is a Q-linear basis for dāBe over B, else we would proceed with such

a basis ā′ and then apply monotonicity at the end of the proof. Let

V = Loc(ā, eā/B). Since B′ is an ELA-field, by strong exponential

closure and saturation of M we can realise B′|V as a strong ELA-

subfield of M, generated over B′ by a Q-linearly independent tuple

b̄ ∈M. We haveB′b̄/M and db̄Ce |̂ Q-lin

C
B′ by definition of b̄. We also

have Loc(b̄, eb̄/B′) = V and since ā |̂
C
B it follows that V is defined

over C, so Loc(b̄, eb̄/B′) = Loc(b̄, eb̄/C). Therefore b̄eb̄ |̂ ACF0

C
B′ and

so b̄ |̂
C
B′. Finally ∆(b̄/B′) = td(b̄, eb̄/B′)− ldimQ(b̄/B′) is minimal

and td(b̄, eb̄/B′) = dim(V ) since b̄ is semi-strong over B′, so we have

etd(b̄) = dim(V ) − |ā|. By Proposition 2.5.10 we have tpg(b̄/B) =

tpg(ā/B), and so tp(b̄/B) = tp(ā/B) as required.

6. Local character: We show that κ = ω. Let C ⊆ M be a subset and

let ā ∈ M be a tuple. By Lemma 3.5.3 we may take C = dCeELA
M .

Therefore tp(ā/C) is orthogonal to the kernel witnessed byM, so by

Lemma 2.6.5 there exists b̄ ∈ C a grounding set for tp(ā/C). Applying

Lemma 3.5.6 the result follows.

9’. We have A = dAeELA, and by Lemma 3.5.3 and Corollary 2.6.8(i) we

may also assume that B = dBeELA. By Corollary 2.5.11 it is sufficient
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to prove the result for Galois types. Furthermore we assume that

Aāi /M and āi are Q-linearly independent over A, else we proceed

with ā′i a basis of dāiAe over A and then use monotonicity of |̂ .

For each i = 1, 2 we have āi |̂ AB and so dAāieedAāie |̂ ACF0

A
B.

By monotonicity, and since A = dAeELA is algebraically closed,

we have Loc(āi, e
āi/A) = Loc(āi, e

āi/B). Since tpg(ā1/A) =

tpg(ā2/A) it follows that Loc(ā1, e
ā1/A) = Loc(ā2, e

ā2/A). There-

fore Loc(ā1, e
ā1/B) = Loc(ā2, e

ā2/B). Since also āi |̂ AB, we have

td(ā1, e
ā1/B) = td(ā2, e

ā2/B).

From property (ii) in the definition of |̂ ECF, for i = 1, 2 we have

dAāie |̂ Q-lin

A
B and so by monotonicity ldimQ(āi/A) = ldimQ(āi/B).

As tpg(ā1/A) = tpg(ā2/A) it follows that ldimQ(ā1/A) = ldimQ(ā2/A).

Therefore ldimQ(ā1/B) = ldimQ(ā2/B), and so ∆(ā1/B) = ∆(ā2/B).

Since āi |̂ AB and Aāi /M we have 〈dāiAe, B〉 = 〈āiB〉 /M, that

is we have Bāi strong in M. Hence ∆(āi/B) is minimal, that is for

any x̄ ∈M we have ∆(x̄āi/B) ≥ ∆(āi/B). By Fact 2.2.10 this means

that ∆(āi/B) = etd(āi/B), and so etd(ā1/B) = etd(ā2/B).

Taking ldimQ(ā1/B) = n and V = Loc(ā1, e
ā1/B), we observe that

etd(ā2/B) = dimV − n. Taking M ∈ Mat(Q) to be the identity

matrix, we have satisfied all hypotheses of Proposition 2.5.10, and

therefore tpg(ā1/B) = tpg(ā2/B).

We now demonstrate that under certain strong assumptions, non-forking
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independence in ECF implies ECF-independence. We shall need the fol-

lowing lemma.

Lemma 3.5.8. Let M be a model in ECF, and let B ⊆ M be a strong

ELA-subfield. Then B is model theoretically algebraically closed.

Proof. By Proposition 2.5.5, we can find an elementary extensionN ∈ ECF

of M such that N is saturated over the kernel and |N | > |B|. Suppose

that a ∈ N \ B. Let ā be a Q-linear basis for daeN over the kernel with

first coordinate a, and define W = Loc(ā, eā/B). Since N is saturated over

its kernel, setting b̄0 = ā we can find a sequence (b̄i)i<ω in N indiscernible

over B, in particular for each i < ω we have Wi = Loc(b̄i, e
b̄i/B) = W . We

can construct a chain of strong ELA-field extensions, setting F0 = B, such

that each b̄i generates an ELA-field extension Fi+1 /N with Fi+1 = Fi|Wi

as in [16, Proposition 3.17]. Then for all i < ω we have Wi = W and

ldimQ(b̄i/B) = |ā|, so etd(b̄i) = dimW − |ā|. Then by Proposition 2.5.10

we have tpg(b̄i/B) = tpg(ā/B). Hence tpg(bi/B) = tpg(a/B) for all i < ω,

taking bi to be the first coordinate of b̄i. Therefore if φ is a formula defined

over B such that N |= φ(a), then N |= φ(bi) for all i < ω, so φ(N ) is

infinite.

Lemma 3.5.9. Let M be a model of ECF. Suppose we have subsets C ⊆

B ⊆ M with C = dCeELAM , and a tuple ā ∈ M such that etd(ā/C) =

etd(ā/B). Then ā |̂ f
C
B implies that ā |̂ ECF

C
B.

Proof. Suppose that ā 6 |̂ ECF

C
B. Then etd(ā/C) = etd(ā/B), so by

Lemma 3.5.5 we have ldimQ(ā/C) > ldimQ(ā/dBeELAM ). That is, there
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exists λ1, ..., λk ∈ Q such that
∑k

i=1 λiai = b for some b ∈ dBeELAM \ C. De-

fine φ(x̄, y) to be the formula
∑k

i=1 λixi = y. Extending N if necessary, let

(bi)i<ω ⊆ N be an indiscernible sequence such that tpg(bi/C) = tpg(b/C).

Since C is a strong ELA-subfield ofM by Lemma 3.5.8 C is model theoret-

ically algebraically closed. Since b /∈ C there exist infinitely many realisa-

tions of tp(b/C), and in particular the bi are distinct. Then φ(x̄, b1)∧φ(x̄, b2)

is inconsistent as b1 6= b2, and so ā 6 |̂ f
C
B.

We now show that we may freely extend grounded types in ECF, indi-

cating that |̂ ECF is an ideal tool to use in order to study types in ECF

that are orthogonal to the kernel.

Lemma 3.5.10. Assume CIT, and work in the monster model M of ECF.

Let p be a complete type over a subset C, and let B be a subset containing

C. Suppose that we have two types p1 and p2 over B extending p, that is,

p1|C = p2|C, such that p1 and p2 are grounded at C. Then p1 = p2.

We say p1 is the (unique) free extension over B of p.

Proof. For i = 1, 2, let the orthogonality to the kernel of pi be wit-

nessed by Mi ∈ ECF and let āi ∈ Mi be a realisation of pi. Since

ker(M1) = ker(M2), by following through the method of Lemma 2.2.16

we may amalgamate to a model M ∈ ECF such that for i = 1, 2 we have

ker(M) = ker(Mi) and Mi ⊆ M, so in particular āi ∈ M. Assuming

CIT we may apply Corollary 2.6.8 so p|C uniquely extends to p|dCeELA
M .

By Lemma 3.5.6 since p is grounded at C we have āi |̂ ECF,M
dCeELA
M
dBeELA

M for

i = 1, 2. Since p1|dCeELA
M = p2|dCeELA

M , by stationarity over strong ELA-

subfields from Proposition 3.5.7 we have p1 = p2.
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3.6 Lascar-independence in ECFSK

In this section we show that |̂ ECFSK is in fact the only independence

relation on ECFSK, using work by Hyttinen and Kesälä [6].

Proposition 3.6.1. Let M denote the monster model in ECFSK and A ⊆

M a subset. Then bddECFSK
(A) = dAeELA.

Proof. We first show that dAeELA ⊆ bdd(A). Suppose c ∈ dAeELA; then

c ∈ dāeELA for some finite tuple ā ∈ A. Let b̄ be a Q-linear basis for dāe over

ā, let W = Loc(b̄, exp(b̄)/ā, exp(ā)), and let M denote the unique integer

matrix such that Mb̄ = ā. Let ψ(ȳ) be the formula given by

(ȳ, exp(ȳ)) ∈ W ∧ ȳ is Q-linearly independent ∧Mȳ = ā

where Q = {x ∈ M : (∃y, z ∈ ker)[xz = y]}, and note that Q(M) = Q and

M |= ψ(b̄). We shall show that ψ is bounded. Suppose we have b̄′ ∈M such

that M |= ψ(b̄′). Then in particular b̄′ ∈ 〈b̄〉, and since |b̄| = |b̄′| and b̄′ are

Q-linearly independent, it follows that 〈b̄〉 = 〈b̄′〉. There are only countably

many bases of a finite dimensional vector space, so ψ is bounded.

Suppose a ∈ bdd(A), so there exists some bounded formula φ(x) defined

over A such that M |= φ(a). Then ea and log(a) satisfy the formulas

∃y(x = ey ∧ φ(y)) and ∃z(z = ex ∧ φ(z)) respectively, which both witness

finite conjunctions of bounded formulas and therefore ea, log(a) ∈ bdd(A).

Finally we need to show that if b ∈ M is field-theoretically algebraic over

bdd(A) then b ∈ bdd(A). However,

aclACF0(bdd(A)) ⊆ acl(bdd(A)) ⊆ bdd(bdd(A)) = bdd(A)
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so this is true, and therefore dAeELA ⊆ bdd(A).

If x /∈ dAeELA, then either x ∈ ecl(A) \ dAeELA or x /∈ ecl(A). We note

that dAeELA ⊆ bdd(A) and so bdd(dAeELA) ⊆ bdd(bdd(A)) = bdd(A), but

also A ⊆ dAeELA so therefore bdd(dAeELA) = bdd(A). Consequentially, for

the remainder of this proof we may assume that A = dAeELA.

If x /∈ ecl(A) then x |= q|A the unique exponentially transcendental type

in ECFSK, which has unboundedly many realisations in M, so x /∈ bdd(A).

Suppose then that x ∈ ecl(A) \ A. By Lemma 2.5.9 we can choose a finite

Q-linear basis x̄ ∈ M for dAxeM over A such that W = Loc(x̄, ex̄/A) is

additively and multiplicatively free, rotund, and Kummer-generic. Let A1 =

〈Ax̄〉ELA
M be the ELA-field extension of A by (x̄, ex̄), and for any ordinal α

let Aα+1 = 〈Aαx̄α〉ELA, the ELA-field extension of Aα by (x̄α, e
x̄α) ∈ V

generic over Aα. Fix an arbitrarily large κ and let Aκ =
⋃
α<κAα. For

any given α < κ, let Bα = dA, x̄, x̄αeELA
M . Applying [15, Lemma 5.9] we

have an automorphism σ of Bα fixing A with σ(x̄) = x̄α and σ(x̄α) = x̄.

By [7, Theorem 8.2.1], any model in an inductive class K of L-structures is

contained within an existentially-closed model in K, which means that the

automorphism orbit of x̄ over A in M contains {x̄α : α < κ}. Therefore

tpg(x̄/A) = tpg(x̄α/A) for all α < κ, so in particular x /∈ bdd(A).

The above proposition immediately implies that A |̂ ECFSK,M
C

B can also

be defined as A ↓Mbdd(C) B.

Proposition 3.6.2. Let M be the monster model of ECFSK and suppose

that A,B,C are subsets of M. Then A |̂ ECFSK

C
B if and only if A |̂ L

C
B.

In particular, |̂ ECFSK is the unique independence notion for ECFSK with

bounded free extensions for weak types.
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Proof. ECFSK is a finitary abstract elementary class, so it suffices to prove

that |̂ ECFSK satisfies the hypotheses of Theorem 3.1.5. Proposition 3.5.7

tells us that |̂ ECF is an independence relation, satisfying the first hypoth-

esis.

We now need to prove that the number of free extensions of weak types

over finite sets is bounded; we show this is true for Galois types and the

result for weak types follows, since the number of weak types is bounded

above by the number of Galois types. If κ bounds the number of free

extension of Galois 1-types over finite sets, then the number of n-types will

be bounded by κn = κ, so we need only prove the statement for 1-types.

Let B,C be subsets with C finite, and let a ∈ M. We claim that if

(ai)i<ω+ is a sequence of realisations of tpg(a/C) such that ā |̂
C
B for each

i < ω+, then there are i < j < ω+ such that tpg(ai/B) = tpg(aj/B). That

is, there are at most countably many extensions of tpg(a/C) to a Galois

type over B.

If a ∈ dCeELA, then there are at most countably many extensions of

tpg(a/C) since dCeELA is countable. If a ∈M is exponentially transcenden-

tal over C, then a is exponentially transcendental over B. Therefore there

is only one extension of tpg(a/C) to B, namely the exponentially transcen-

dental type over B. Suppose then that a ∈ ecl(C) \ dCeELA. There are

only countably many types over dCeELA, as a 1-type tpg(b/dCeELA) corre-

sponds uniquely with the countable strong ELA-subfield dbdCeELAeELA. In

particular there are at most countably many Galois types p over dCeELA

such that p|C = tpg(a/C). Since a |̂ ECFSK

C
B, by stationarity over strong

ELA-subfields tpg(a/dCeELA) uniquely extends to tpg(a/B). Therefore the
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number of free extensions of a Galois 1-type over a finite set is at most

countable.

Applying Theorem 3.1.5, the result follows.

It may be possible to excise the final qualifier, that |̂ ECFSK is the unique

independence relation with bounded free extensions for weak types, so that

|̂ ECFSK is indeed the unique independence relation on ECFSK. In this

chapter we have shown that |̂ ECFSK,CCP is the canonical independence rela-

tion on ECFSK,CCP, and that |̂ ECFSK is the unique independence relation

on ECFSK with bounded free extensions for weak types. An independence

relation on ECF must be defined over the kernel, as for a given model M

we have Z(M) interpretable, so an independence relation on all ofM would

restrict to an independence relation on (Z(M); +, ·) |= Th(Z; +, ·) which is

not simple. The main difference between structures in the classes ECF and

ECFSK is the variability of the kernel, which means that types in ECF are

less predictable. Our ECF-independence notion works around issues from

the kernel by keeping the kernel in the base. In particular, this indepen-

dence notion allows us to investigate types over models that are realised in

kernel preserving extensions, that is, types orthogonal to the kernel. In the

next chapter we use ECF-independence to show that these types are ex-

actly the generically stable types, and consequentially ECF-independence

is a useful definition of independence in ECF.
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Chapter 4

Generic stability in ECF

In this chapter we use our independence relation |̂ ECF to show that, as-

suming CIT, the global types that are orthogonal to the kernel are exactly

the generically stable types in ECF.

We observed in Corollary 2.5.11 that Galois types and syntactic types

over semi-strong ELA-subfields coincide in ECF, so unconditionally they

coincide over models. Assuming CIT, all Galois types and syntactic types

over sets in ECF coincide.

4.1 Types orthogonal to the kernel revisited

Fix M a monster model for ECF. LetM be a model in ECF, and suppose

that p is a complete type over M realised by ā ∈ Mr. In particular M is

a semi-strong ELA-subfield of M, so recall from Definition 2.5.2 that p is

orthogonal to the kernel if there exists some N ∈ ECF such that ā ∈ N r

and M≤ N with ker(M) = ker(N ) (that is, M /N ). Recall also that by
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Proposition 2.6.5, if p is orthogonal to the kernel then it is grounded over a

finite set.

Proposition 4.1.1. Assume CIT. Let M be a model in ECF and let p be

a complete syntactic type overM such that p is realised in some N ∈ ECF

such that M≤ N . Suppose that for every countable submodel M′ ⊆M in

ECF we have p|M′ orthogonal to the kernel. Then p is orthogonal to the

kernel.

Proof. Suppose that for every countable submodel M′ ⊆ M in ECF we

have p|M′ orthogonal to the kernel. Let (Mi)i∈I denote the directed system

of countable submodels ofM in ECF for some indexing set I. For each i ∈ I

we have p|Mi orthogonal to the kernel, realised in some strong extension Ni

ofMi by b̄i ∈ Ni. By Proposition 2.6.5 there exists a finite subset Ai ⊆Mi

grounding p|Mi and a grounding basis b̄′i for db̄iMie over Mi. Then Vi =

Loc(b̄′i, e
b̄′i/Mi) and Ai characterise p|Mi as in Proposition 2.5.10, where

b̄i ∈ dcl(Aib̄
′
i).

Let i0 ∈ I be such that dimVi0 = min{dimVi : i ∈ I}. Set J = {i ∈

I : Mi ⊇ Mi0}, and let j ∈ J . Then dimVj = dimVi0 , and since Vj is

absolutely irreducible we must have Vj = Vi0 , which is defined over Ai0 .

Therefore Ai0 is a grounding set for p|Mj with b̄′i0 a grounding basis. By

CIT and Lemma 3.5.10, p|Mj is the unique free extension of p|Mi0 . Viewed

syntactically, p is the union of p|Mj over all j ∈ J , consequentially p is the

unique free extension of p|Mi0 and p is grounded at Ai0 . By Lemma 2.6.2

p must be orthogonal to the kernel.

Definition 4.1.2. A complete syntactic type p over a saturated model M

is A-invariant if for any automorphism σ ∈ Aut(M/A) we have σp = p.
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Proposition 4.1.3. Assume CIT. Let p be a global type over a saturated

model M such that p is orthogonal to the kernel, and let A ⊆M be a finite

subset such that p is grounded at A. Then p is A-invariant.

Proof. As in the proof of Theorem 2.6.7 we can construct a set of formulas

Θ(x̄) defined over M such that Θ(x̄) ` p(x̄). Let θW,Ψ(x̄) ∈ Θ(x̄) for some

affine variety W defined over Q and definable subset Ψ(M) ofM. Then for

any automorphism σ ∈ Aut(M/A), we have σ(θW,Ψ(x̄)) = θW,σ(Ψ)(x̄) as the

parameters defining ΘW,Ψ are comprised of the tuple c̄ from the kernel and

the parameters over which the algebraic variety V from Proposition 2.5.10

is defined, and the parameters from M over which the formula Ψ and the

algebraic variety W are defined. The set of parameters for V is A and

c̄ ∈ A, so the parameters of ΘW,Ψ are fixed by σ apart from those in Ψ.

However σ(Ψ(M)) is simply another definable subset of M, and so the

scheme of formulae Θ is fixed set-wise by Aut(M/A). Suppose N is an

elementary extension of M with b̄ ∈ N such that N |= Θ(b̄). By applying

Theorem 2.6.7 again we see that b̄ is a realisation of p. However it is also

the case that for any automorphism σ ∈ Aut(M/A) we have N |= σΘ(b̄),

and so b̄ satisfies σp. Therefore p is A-invariant.

4.2 Generic stability

We shall adapt the notion of generic stability of a type from its definition in

an arbitrary complete first order theory by Pillay and Tanovic [21, Definition

1].

Definition 4.2.1. Let p be a complete type over a model M, and let
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A ⊆M be a small subset.

1. A Morley sequence of p over A is a sequence (āi)i<ω fromM such that

p|A = tp(āi/A) and āi |̂ fAAā1...āi−1 for all i < ω.

2. We say p is generically stable over A if

(†) p is A-invariant, and

(‡) for any Morley sequence (āi)i<ω fromM for p over A, and for any

formula φ(x̄) with parameters in M, we have {i : M |= φ(āi)}

finite or cofinite.

We say p is generically stable if it is generically stable over A for some

subset A.

In particular we are interested in the case whereM is a saturated model

for ECF with very full kernel, which allows us to quantify over all Morley

sequences.

Lemma 4.2.2. Let p be a complete type over a model M∈ ECF. Suppose

that p satisfies (‡) for some finite subset A ⊆M. Then for every countable

submodel M′ of M in ECF containing A we have p|M′ satisfying (‡).

Proof. Let M′ ⊆ M be a countable submodel of M in ECF and let φ(x̄)

be a formula with parameters in M′. Any Morley sequence (āi)i<ω from

M′ for p|M′ over A is a Morley sequence from M for p over A. Since p

satisfies (‡) we have {i : M′ |= φ(āi)} finite or cofinite. Therefore p|M′

satisfies (‡).

Proposition 4.2.3. Let M be a countable model in ECF, p a complete

type over M. If p satisfies (‡), then p is orthogonal to the kernel.
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Proof. Suppose p is not orthogonal to the kernel, that is if N is an elemen-

tary extension of M realising p, then ker(N ) 6= ker(M). The kernel is in

definable bijection with Z, so there exists a new integer z ∈ Z(N ) \Z(M),

and since Z is a definable ring, by replacing z with −z if necessary we may

take z > 0. Define π(x) = {Z(x) ∧ x > 0 ∧ x 6= b : b ∈ Z(M)} to be a

partial type over M for a new non-standard positive integer.

Let (ci)i<ω2 be a Morley sequence for p over M. For each i < ω2

define a new language Li = L ∪ {ci, (m)m∈M} where ci is a new constant

symbol and (m)m∈M are new constant symbols for every element of M.

We also construct a new theory Ti = Diag(M) ∪ p(ci) for each i < ω2,

where Diag(M) is the diagram of M. Any model of Ti must realise π, so

by the Omitting Types Theorem [23, Section 4.10] π(x) is isolated in Ti by

ψ(x, ci) for some formula ψ(x, y) ∈ L(M); here we may choose ψ(x, y) to be

independent of i, as (ci)i<ω is an sequence of indiscernibles. Since Th(N; +, ·)

is definably well ordered, we may take ψ′(x, y) to be the formula picking

out the minimal x > 0 such that ψ(x, ci) holds. Then Ti |= ∃!xψ′(x, ci)

for each i < ω2. Take N � M to be an elementary extension such that

ci ∈ N for all i < ω2. Then for each i we have N |= ∃!xψ′(x, ci) witnessed

by bi ∈ Z(N ).

Since (ci)i<ω2 is a Morley sequence we have tpg(c1, c2) = tpg(ci, cj) for

all i < j < ω2. Let θ(y1, y2) = ∃x1x2ψ
′(x1, y1) ∧ ψ′(x2, y2) ∧ x1 < x2, so for

i < j < ω2 we have N |= θ(ci, cj) if and only if bi < bj. Either θ(y1, y2)

or θ(y2, y1) is in tpg(c1, c2), so without loss of generality say θ(y1, y2) ∈

tpg(c1, c2). Let b = bω and consider the formula ϕ(y, b) = ∃xψ(x, y)∧x < b.

Then {i : N |= ϕ(ci, b)} is infinite and co-infinite, so ϕ(x, b̄) witnesses the
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failure of (‡) for p.

Proposition 4.2.4. Let p be a complete type over a model M∈ ECF. If

p satisfies (‡), then p is orthogonal to the kernel.

Proof. If p satisfies (‡) then by Lemma 4.2.2 we have p|M′ satisfying (‡) for

all countable submodels M′ ⊆ M. But then by Proposition 4.2.3 we have

p|M′ orthogonal to the kernel for everyM′. Therefore by Proposition 4.1.1

p is orthogonal to the kernel.

Theorem 4.2.5. Assume CIT. Let M be a saturated model, and suppose

that p is a complete type over M. Then p is orthogonal to the kernel if and

only if p is generically stable.

Proof. If p is generically stable then p satisfies (‡), so by Proposition 4.2.4

p is orthogonal to the kernel. Suppose conversely that p is orthogonal to

the kernel. By Proposition 2.6.5 we can find a finite subset A0 ⊆ M such

that p is grounded at A0. We have A0 ≺p M so defining A = dA0eELA
M ,

by Corollary 2.6.8 we have p|A the unique type extending p|A0. Then for

N ∈ ECF a strong elementary extension of M with ā ∈ N realising p,

and ā′ ∈ N a Q-linear basis for the hull of ā over the kernel, we have

etd(ā/A) = etd(ā/M), A /M, and Aā′ / N . By Proposition 4.1.3, p is

A-invariant.

Let φ(x̄, b̄) be a formula with b̄ ∈ M. By changing parameters if nec-

essary we may assume that b̄ is Q-linearly independent and Ab̄ /M. Let

(āi)i<ω be a Morley sequence for p over A. Note that etd(āi/A) is fixed

for all i < ω, and set d = etd(āi/A). For any given i1, ..., in < ω we have

etd(āi1 , ..., āin/A) = nd. Define I = {i : etd(āi/Ab̄) < etd(āi/A)}. We
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demonstrate that I must be finite. Let i1, ..., in ∈ I so etd(āik/Ab) ≤ d− 1.

Then by additivity

etd(āi1 , ..., āin b̄/A) = etd(b̄/Aāi1 , ..., āin) + etd(āi1 , ..., āin/A)

= etd(b̄/Aāi1 , ..., āin) + nd

Using additivity the other way we obtain

etd(āi1 , ..., āin b̄/A) = etd(b̄/A) + etd(āi1 , ..., āin/Ab̄)

≤ etd(b̄/A) +
n∑
k=1

etd(āik/Ab̄)

≤ etd(b̄/A) +
n∑
k=1

[etd(āik/A)− 1]

= etd(b̄/A) + n(d− 1)

Therefore etd(b̄/Aāi1 , ..., āin) + nd ≤ etd(b̄/A) + n(d − 1) and so

etd(b̄/Aāi1 , ..., āin) + n ≤ etd(b̄/A), so n is bounded by etd(b̄/A), and hence

I is finite.

Define J = {i : āi 6 |̂ A b̄} ∩ I
c. We show that J is also finite. Since

A is a strong ELA-subfield and etd(āi/A) = etd(āi/Ab̄) for all i ∈ J , by

Lemma 3.5.5 we have J = {i : āi 6 |̂ Q-lin

A
b̄} ∩ Ic.

Suppose J is not finite. Treating the āi as sets,
⋃
i∈J āi is a Q-linearly

independent set over A, where ldimQ(āi) = n for each i ∈ J . The dAāie are

orthogonal as subspaces of M over A, that is ldimQ(āi1 , āi2 , ..., āir/A) = rn

for any i1, ..., ir ∈ J . Suppose then that for each i ∈ J , there exists non-zero

ui ∈ dAb̄e ∩ dAāie for each i ∈ J . Setting m = ldimQ(b̄/A), there exist Q-

linearly dependent ui1 , ..., uim+1 ∈ dAb̄e. But the ui ∈ dAāie and the dAāie



4.2 Generic stability 97

are orthogonal, which is a contradiction.

For any i, j /∈ J we have āi |̂ A b̄, āj |̂ A b̄ and tpg(āi/A) = tpg(āj/A);

therefore by stationarity over strong ELA-subfields from Proposition 3.5.7

we have tpg(āi/Ab̄) = tpg(āj/Ab̄), and so tp(āi/Ab̄) = tp(āj/Ab̄). If φ(x̄, b̄) ∈

tp(āi/Ab̄) for some i ∈ J c, then φ(x̄, b̄) ∈ tp(āi/Ab̄) for all i ∈ J c, that is

M |= φ(āi, b̄) for all i ∈ J c. But then {i : M |= φ(āi, b̄)} ⊇ J c, and in

particular is cofinite. If φ(x̄, b̄) /∈ tp(āi/Ab̄) for some i ∈ J c then ¬φ(x̄, b̄) ∈

tp(āi/Ab̄), and proceeding as before we see that {i : M |= ¬φ(āi, b̄)} is

cofinite.

Corollary 4.2.6. Assume CIT, and let p be a complete type over a saturated

model M that is orthogonal to the kernel and grounded at A. Then:

(i) p is A-definable.

(ii) p is finitely satisfiable over A, that is, any finite partial type comprised

of formulas from p is satisfiable in any elementary substructure of M

containing A.

(iii) Any Morley sequence of p over A is totally indiscernible.

(iv) p is the unique non-forking extension of p|A.

Proof. By Theorem 4.2.5 p is A-invariant and generically stable. Then [21,

Prop. 1(ii)-(iv)] gives us the above results.

We have seen that in ECF, assuming CIT, the exponential-field the-

oretic property of orthogonality to the kernel coincides with the model-

theoretic property of generic stability. ECF-independence is therefore a
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useful notion of independence for this class, and could potentially lead to

further results. It would be interesting to study other meaningful model-

theoretic properties of types orthogonal to the kernel. We shall describe

this and other possible future directions in the final section.

4.3 Final remarks

In this chapter we have proved that a model-theoretic property, generic

stability, is equivalent to an exponential-algebraic property, orthogonality

to the kernel. Assuming CIT means that ECF is the class of all models

of a complete first order theory, which allows for many first-order model-

theoretic concepts. We would like to know which of these concepts can also

be understood in terms of exponential algebra. We provide an encouraging

example.

Definition 4.3.1. [21, Definition 3] Let p be a non-algebraic complete type

over a saturated modelM in ECF. Then p is invariant regular if for some

small A, it is A-invariant and for any superset B ⊇ A in M and ā ∈ M

realising p|A, either ā realises p|B, or p|B ` p|Bā.

We say that p is invariant strongly regular if there exists a formula φ ∈ p

and some small A such that p is A-invariant and for any superset B ⊇ A

in M and ā ∈ M such that M |= φ(ā), then either ā realises p|B or

p|B ` p|Bā.

If p is invariant (strongly) regular and generically stable we say that it

is generically stable (strongly) regular.

Proposition 4.3.2. The exponentially transcendental complete type q over
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a model M ∈ ECF is generically stable strongly regular for the formula

x = x.

Proof. Generic stability: Let φ(x, ȳ) be a formula and b̄ a parameter set

in the model M. Let (ai)i<ω be a Morley sequence for q over A, so the

ai are exponentially transcendental over A and exponentially algebraically

independent over A. Since etd(b̄) ≤ |b̄|, by the exchange property |{i :

ai exponentially algebraic over b̄}| ≤ |b̄|, and so either {i : M |= φ(ai, b̄)}

or its complement will be finite.

Regularity: Let A ⊆ B be subsets of M. Let a be a realisation of

q|A, that is a exponentially transcendental over A. If a 6|= q|B then a is

exponentially algebraic over B, so if c |= q|B then c |= q|Ba.

The above proof that the exponentially transcendental type in ECF is

generically stable is a special case of the proof of Theorem 4.2.5. Strong

regularity of q follows from etd(−) being the dimension of a pregeometry

on M.

We would like to know what other types are generically stable regular

in ECF.

Definition 4.3.3. [15, Definition 5.1] Let V ⊆ Gn be an algebraic subva-

riety. We say that V is perfectly rotund iff it is irreducible, dimV = n, and

for every matrix M ∈ Matn×n(Z) such that 0 < rkM < n,

dimM · V ≥ rkM + 1.

Assume CIT. Let p be a complete type over a model M orthogonal to
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the kernel, grounded at A ⊆M. Then p has a realisation ā in some strong

extension N ∈ ECF ofM, and let ā′ be a grounding basis for dāMeN over

M. With this setup, we make the following conjecture.

Conjecture 4.3.4. If Loc(ā′, eā
′
/A, eA) is perfectly rotund, then p is regu-

lar.

The converse does not always hold; let ā = (a1, ..., an) ∈M be a ground-

ing basis for dāMe over M such that tp(ā, eā/M) is regular, and V =

Loc(ā, eā/M) is perfectly rotund. Setting b̄ = āea1 we have W = Loc(b̄, eb̄)

not perfectly rotund. Similarly U = {(x̄, x̄, ȳ, ȳ) : (x̄, ȳ) ∈ V } is not per-

fectly rotund. However U, V,W all give rise to a regular type p.

A pertinent direction for future research could be to determine, assuming

CIT, what other model-theoretic properties are equivalent to meaningful ex-

ponential algebraic properties. For instance, in ECF how can one describe

a locally modular type, or a trivial type, in terms of exponential algebra?

It is hoped that this thesis is an encouraging first step towards answering

these sorts of questions, and that our independence relation |̂ ECF may

prove a useful tool in future research of ECF.

The assumption that CIT holds has been used at several points in this

thesis to allow us to consider ECF as an elementary class, in particular

so that we can apply first order tools such as compactness in the proof

of Theorem 2.6.7, and assume that Galois and syntactic types coincide

over sets. This application of CIT has quite an effect on later chapters;

in particular our proof of Proposition 4.1.3 relies on the set of formulas

defined in the proof of Theorem 2.6.7. Referencing this Proposition appears

to be the only use of CIT in Theorem 4.2.5. It should be possible to remove
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the assumption of CIT from the thesis entirely, and certainly a good first

step would be to find an alternative proof to Theorem 2.6.7 not assuming

CIT.

We make a final observation, based on a suggestion of Kirby and Zilber

in [16, Section 7]. Hitherto in this thesis the proofs of results for ECF have

not explicitly used axiom (IIb), which states that (Z; +, ·) |= Th(Z; +, ·).

Without this axiom, by axiom (IIa) we still have (Z; +, ·) an integral domain

with (Z; +) ≡ (Z; +). Replacing axiom (IIb) with an axiom stating that

(Z; +, ·) is a model of the complete theory of any other integral domain

whose additive group is a model of Th(Z; +), it would be interesting to see

if our conclusions also hold for this theory.
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Appendix A

Classes of exponential fields

We provide a summary of the AECs of exponential fields studied in this

thesis. The axiomatic definition of these classes are from Definition 2.1.3

and finitary/non-finitary results are from Proposition 2.2.19.

(ECFSK,CCP,⊆cl) is the class of all structures satisfying axioms (I), (II),

(III), (IV), (V). It is a non-finitary AEC.

Definition 2.2.18 For M ⊆ N in ECFSK,CCP, we say M ⊆cl N if

eclN (M) =M.

(ECFSK, /) is the class of all structures satisfying axioms (I), (II), (III),

(IV). It is a finitary AEC.

Definition 2.2.7 For M ⊆ N in ECFSK, we say M /N if ∆(ā/M) ≥ 0

for all ā ∈ N .

(ECF,≤) is the class of all structures satisfying axioms (I), (IIa), (IIb),

(III), (IV), (V). It is a finitary AEC.

Definition 2.2.12 For M ⊆ N in ECF we say M ≤ N if M ≺p N and

Z(M)4Z(N ).
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