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Abstract

The isothiocyanate (ITC) sulforaphane (SFN) was shown at low levels (1–5 mM) to

promote cell proliferation to 120–143% of the controls in a number of human cell

lines, whilst at high levels (10–40 mM) it inhibited such cell proliferation. Similar

dose responses were observed for cell migration, i.e. SFN at 2.5 mM increased cell

migration in bladder cancer T24 cells to 128% whilst high levels inhibited cell

migration. This hormetic action was also found in an angiogenesis assay where

SFN at 2.5 mM promoted endothelial tube formation (118% of the control), whereas

at 10–20 mM it caused significant inhibition. The precise mechanism by which SFN

influences promotion of cell growth and migration is not known, but probably

involves activation of autophagy since an autophagy inhibitor, 3-methyladenine,

abolished the effect of SFN on cell migration. Moreover, low doses of SFN offered a

protective effect against free-radical mediated cell death, an effect that was

enhanced by co-treatment with selenium. These results suggest that SFN may

either prevent or promote tumour cell growth depending on the dose and the nature

of the target cells. In normal cells, the promotion of cell growth may be of benefit,

but in transformed or cancer cells it may be an undesirable risk factor. In summary,

ITCs have a biphasic effect on cell growth and migration. The benefits and risks of

ITCs are not only determined by the doses, but are affected by interactions with Se

and the measured endpoint.
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Introduction

The term ‘hormesis’ is often used by toxicologists to refer to a ‘biphasic dose

response to an environmental agent characterized by low dose stimulation and by

high dose inhibitory or toxic effect’ [1, 2]. The hormesis concept is the most

fundamental dose-response relationship in the biomedical, nutrition and

toxicological sciences [1]. In a comprehensive review, Calabrese provided

evidence that more than a hundred anti-tumour agents enhanced the proliferation

of human tumour cells at low doses in a manner fully consistent with the

hormetic dose-response relationship [2]. One of the interesting characteristics of

such dose-responses was that they occurred in most types of tumour cells and

were independent of organ. Recent findings suggest that some phytochemicals

exhibit biphasic dose responses in cells with low doses activating signalling

pathways that result in increased expression of genes encoding cytoprotective

proteins and antioxidant enzymes [3]. The dietary hormetic compounds

identified so far include resveratrol, epigallocatechin gallate (EGCG), curcumin,

quercetin, allicin, capsaicin, carnosic acid and sulforaphane (SFN) [4–8]. From an

evolutionary perspective, the noxious properties of phytochemicals have an

important protective role in dissuading insects and fungi from damaging plants.

However, the relatively small doses of phytochemicals ingested by humans that

consume these plants are not toxic and instead induce mild cellular stress

responses. This phenomenon has been widely described as ‘hormesis’ or adaptive

dose response in the fields of biology and medicine [4, 9, 10].

The isothiocyanate (ITC), SFN (4-methylsulfinylbutylisothiocyanate), was first

isolated from the commonly-consumed cruciferous vegetable, broccoli and is one

of the most potent naturally-occurring inducers of the Kelch-like ECH-associated

protein 1 (Keap1)-nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant

response elements (ARE) pathway [11]. The induction of Nrf2 protects normal

cells from free-radical mediated oxidative stress via upregulation of chemopro-

tective genes, and the action of SFN is based on its ability to induce a Nrf2-driven

enzyme quinone reductase (NQO1) [12]. In the 20 years subsequent to its

discovery, the protective effects of SFN have been demonstrated in various cell

culture systems and animal models, with the result that SFN is by far the most

extensively studied ITC from cruciferous vegetables. The anti-carcinogenic

mechanisms of ITCs have also been well-documented, including up-regulation of

phase II detoxification enzymes, anti-inflammation, promotion of cell cycle arrest

and apoptosis [13–17]. During the last decade, Keap1-Nrf2-ARE has been

considered as a critical anti-cancer pathway in chemoprevention [18-20].

However, more recently, there have been some deleterious reports of Nrf2,

including promotion of tumour cell growth and chemoresistance [21–25]. In

order to survive, cancer cells may hijack the Nrf2 pathway which upregulates a

battery of antioxidant enzymes, thereby maintaining a favourable redox balance in

order to acquire malignant properties [26]. Overexpression of Nrf2 could enhance

cell proliferation and cause resistance to chemotherapeutic interventions in some

types of cancer, including human lung and pancreatic cancers [27, 28]. A few
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previous investigations have shown that SFN exhibits a dose-dependent effects on

cell proliferation in cultured tumour cell lines and normal cells including human

mesenchymal stem cells [29–31]. In the present study, we showed that SFN

exhibited a hormetic dose response on cell growth, migration and angiogenesis.

Whether the hormetic effect is beneficial or harmful depends on the selected

endpoint and/or the nature of the cells (normal or tumour). Although the term

hormesis is employed by toxicologists to describe a bell-shaped dose response,

characterized by a beneficial effect at low doses and a toxic (or inhibitory) activity

at high doses, this expression of low dose benefit might not be true for the effect of

ITCs in cancer chemoprevention. Since hormesis shows little selectivity, the

biological effects of ITCs on normal cells and tumour cells will differ. From this

perspective, a low dose effect of ITCs in promoting tumour cell proliferation and

migration in animal models must be evaluated prudently. Thus, a precise strategy

that aims to optimise the beneficial effects and minimise the risk of ITCs should

be developed with care in relation to cancer prevention and treatment.

Results

Effects of ITCs on cell growth

Due to the nature of the hormetic dose response, there is no selectivity of ITCs on

cell growth, so it is likely that ITCs can promote tumour cell growth at low doses.

In several in vitro cell culture studies, low concentrations of SFN have been shown

to promote tumour cell growth, but no detailed discussion or suggestions for

follow-up studies to investigate the mechanisms were provided [32–34]. At low

concentrations, ITCs have been shown to induce proliferation and/or protect cells

against a toxic agent, H2O2, in Caco-2 cells [30] and in hepatocytes [29]. Fig. 1A

shows the effects of SFN on cell growth, with lower doses (1–5 mM) promoting

cell growth (20–43% greater than the control) and high doses (10–40 mM)

inhibiting cell growth in a number of tumour cell lines, namely, bladder cancer

T24, hepatoma HepG2, and colon cancer Caco-2. Similar dose response effects

were found in normal cell lines including immortalised hepatocyte HHL-5, colon

epithelial CCD841 and skin fibroblast CCD-1092SK cell lines (Fig. 1B).

Effects of SFN on cell migration

Fig. 2A shows a bell-shaped dose response of SFN on bladder cancer T24 cell

migration. SFN at 2.5 and 3.75 mM increased tumour cell migration to 128 and

133% in comparison with corresponding controls. Such SFN-induced cell

migration is associated with the ability of SFN to activate autophagy. When an

autophagy inhibitor, 3-methyladenine (3-MA), was used it alleviated SFN

(2.5 mM)-induced cell migration from 128 to 26% although it has less inhibitory

effect on SFN treatments at 5 or 10 mM (Fig. 2B). Moreover, 3-MA also decreased

the migration of non-SFN treated cells to 12% of the control.
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Fig. 1. Effects of SFN on the proliferation of normal and tumour cells. When cells grew to 70–80% confluence, a range of doses of SFN (0–160 mM)
were added to the cell culture medium for 24–48 h. The control cells were treated with DMSO (0.1%), and cell viability was determined by the MTT cell
proliferation assay (CCD-1092SK cell viability was determined by WST-1 assay according to manufacturer’s instructions [88]). Each data point represents
the mean ¡ SD of at least 5 replicates. Statistical significance from the control, *p,0.05, or **p,0.01. A: results from bladder cancer T24, hepatoma
HepG2, and colon cancer Caco-2 cells. B: Results from immortalised hepatocyte HHL-5, colon epithelial CCD841, and skin fibroblast CCD-1092SK cell
lines.

doi:10.1371/journal.pone.0114764.g001

Fig. 2. Effects of SFN and 3-MA on cell migration. A: After starvation overnight, bladder cancer T24 cells were treated with SFN at the concentrations
indicated for 24 h, cell migration was measured by a cell migration assay using the ThinCert cell culture inserts (Greiner Bio-One Ltd.). Each bar represents
the mean ¡ SD of 3 replicates. B: Effect of pre-treatment of 3-MA on cell migration. DMSO (0.1% was used as a control). Statistical significance from the
control, *p,0.05, or **p,0.01.

doi:10.1371/journal.pone.0114764.g002
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ITCs and activation of Nrf2

SFN is an activator of Nrf2 via which it can up-regulate more than a hundred

protective genes, including most antioxidant and chemopreventive enzymes

[11, 35]. There is no doubt that up-regulation of Nrf2-ARE pathway is beneficial

in normal cells, i.e. activation of Nrf2 and its driven cytoprotective enzymes can

be protective against oxidative damage and it has been suggested that activation of

the Nrf2 signalling pathway can thus be a promising strategy in cancer prevention

[36]. But, ITCs have no selectivity towards either normal or tumour cells with

regards to Nrf2 activation. Nrf2 can be hijacked by tumour cells [26], and a recent

report suggests that Nrf2 is a protooncogene which modulates tumour cell growth

[37]. In transformed cells, Nrf2 may promote cell growth or cause chemoresis-

tance [38]. In this study, SFN (2.5–10 mM) induced similar levels of translocation

of Nrf2 into the nucleus of normal human hepatocytes HHL-5 (4.1–7.1 fold), and

hepatoma HepG2 (4.1–5.9 fold) cells (Fig. 3).

Protective role of low dose ITC treatment against oxidative

damage

In the fields of biology and medicine, hormesis is defined as an adaptive response

of cells and organisms to a moderate stress. A mild stress induces the activation of

signalling pathways such as Nrf2, NF-kB, Sirtuin, FOXO, hypoxia-inducible factor

(HIF) thus leading to intrinsic changes (e.g. induction of antioxidant enzymes)

that can confer resistance to more severe stress [4, 6]. Fig. 4A and 4B show that

pretreatment of HHL-5 and MCF-7 cells with 5 mM SFN offered protection

against H2O2-induced cell death, i.e. cell viability increased from 36.6 to 63.9%;

and from 50.3 to 83.7% with 400 mM H2O2 treatments, respectively. Moreover,

the protective effect of pretreatment with SFN (2 mM) on H2O2-induced cell

death could be enhanced by cotreatment with selenium (Se) in HHL-5 cells

(Fig. 4C), i.e. H2O2 decreased cell viability to 34.8% in HHL-5 cells but when cells

were pre-treated with SFN (2 mM), or Se (0.1 mM) for 24 h, the cell viability

increased to 41.7 and 51%, respectively and co-treatment SFN and Se increased

cell viability to 65.5%. This protective effect may be involved in either

chemoprotection or chemoresistance, depending on the nature of the cells.

Biphasic effects of SFN on angiogenesis

Angiogenesis (new blood vessel growth) is crucial in the development and spread

of a variety of human cancers. It is, therefore, important to examine the anti-

angiogenic effects of potential anti-cancer agents. In contrast, inadequate blood

supply to the heart and other tissues, resulting from insufficient new blood vessel

growth, is a feature of many cardiovascular diseases. SFN has been shown to

inhibit angiogenesis at high concentrations [39]. In this study, SFN at 2.5 mM

promoted tube formation to 118% of the control, i.e. total tube length was

4.78 mm/mm2 in control and 5.65 mm/mm2 in SFN (2.5 mM) treated cells

(Fig. 5). SFN at 5 mM showed a less significant promotion (111% relative to the
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control), whereas 10 and 20 mM SFN inhibited tube formation significantly

(decreased to 61 and 20% of the control, respectively). SFN at low dose promoted

the formation of a continuous basement membrane around endothelial tubes;

whereas at high doses of SFN, fragmented basement membranes were found

(Fig. 5A). These data suggest that for anti-angiogenesis a relatively high dose of

SFN should be used since a lower dose may promote angiogenesis. However, the

stimulating effect of low doses on new blood vessel formation could be beneficial

in patients with cardiovascular diseases.

Fig. 3. Effect of SFN on translocation of Nrf2 into cell nucleus. Nrf2 was detected in nuclear extracts from
cells exposed to SFN (0, 2.5, 5 and 10 mM) for 24 h, using a Western blot assay. Control cells were treated
with DMSO (0.1%). A: immortalised human hepatocyte HHL-5; B: human heptoma HepG2 cells.

doi:10.1371/journal.pone.0114764.g003

Fig. 4. Effect of pre-treatment of cells with SFN protect against H2O2-induced cell death. Cells were cultured in 96 well plates. When they reached 70–
80% confluence, cells were pre-treated with SFN (5 mM) for 24 h (HHL-5, A) or 48 h (MCF-7, B). The cell culture medium was replaced with H2O2 at the
concentrations indicated for a further 24 h. C: HHL-5 cell were pre-treated with SFN (2 mM) and Se (0.1 mM) for 24 h before exposure to H2O2 (400 mM) for a
further 24 h. The cell viability was measured using MTT assay. Statistical significance from corresponding controls: *p,0.05; **p,0.01.

doi:10.1371/journal.pone.0114764.g004
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Discussion

Hormetic effect of ITCs on cell growth, migration and

angiogenesis

The hormetic zone concentrations (approximately 1–5 mM) of ITCs that are

added in cell culture could readily be achieved in human plasma after

consumption of a meal rich in cruciferous vegetables, or from extracts or

supplements [40–44]. Table 1 shows the plasma levels of ITCs measured in several

Fig. 5. Effect of SFN on endothelial tube formation in a 3-D angiogenesis assay. Culture medium supplemented with SFN (0–40 mM) was added to the
top of 3-D collagen gels and then changed every 24 h with fresh SFN added. 3-D gels were fixed at day 5, immunostained with CD31 (red) and collagen type
IV (green), and counterstained with DAPI (blue). (A): Low magnification pictures were taken from five random fields of each sample and calculated for
average tube length. (B) Representative pictures are shown in triple staining with higher magnification. Data are expressed as mean ¡ SD (n55) (C).
*P,0.05; ** P,0.01 compared to untreated control.

doi:10.1371/journal.pone.0114764.g005
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human studies (see also reference [45]). SFN is derived from the action of the

endogenous enzyme, myrosinase on the glucosinolate, glucoraphanin which is

found in cruciferous vegetables. The glucosinolate contents of common Brassica

are available from a database developed by McNaughton and Marks [46]. The

highest glucosinolate value was from cress (389 mg/100 g fresh weight) while the

lowest value was from Chinese cabbage (20 mg/100 g fresh weight), although

cultivar type and growing conditions both influence these figures. Broccoli

contains 61.7 mg/100 g (19.3–127.5 mg glucoraphinin/100 g) [46], which is

equivalent to 141.3 mmol SFN/100 g (44.2–292.1 mmol/100 g fresh weight) if the

conversion is 100% efficient. Food processing and cooking conditions are crucial

factors in influencing the activity of myrosinase, and subsequent formation of

ITCs [47]. The main influence on the ensuing production of ITCs in vivo is how

the brassica vegetables have been cooked [48]. Extensive studies of SFN have

provided convincing evidence that SFN is a chemopreventive agent [49, 50]; and

the mechanisms of its action involves the induction of phase II enzymes, cell cycle

arrest and apoptosis [16, 51].

In general, findings from epidemiological studies on the association between

vegetable intake and cancer risk are inconsistent. A high intake of cruciferous

vegetables has, however, been shown to decrease the risk of several types of cancer,

including those of colon and lung [52, 53]. If the hormetic effects of ITCs are

involved in cancer growth, the overall biological impact of cruciferous vegetable

on cancer risk becomes much more complicated. However, if a low dose of ITCs

promotes cancer cell growth it may help to explain why epidemiological studies

do not show a consistent association between cruciferous vegetable intake and the

risk of cancer. Therefore, it is crucial to understand the mechanisms of action of

the hormetic effects of ITCs. In in vitro cell cultures, the mechanisms by which low

doses of SFN promote cell growth may be related to the effect SFN has on the

activation of growth promoting molecules (such as HER2, RAS, RAF, MEK, ERK,

PI3K, AKT and mTOR), signal transduction pathways such as NF-kB, FOXO,

HIF, Nrf2, autophagy and receptors [54–56].

Autophagy involves the formation of double-membraned vesicles (autopha-

gosomes), which encapsulate the cytoplasm and organelles and fuse with

lysosomes, leading to degradation of the contents of the vesicle [57]. SFN is

Table 1. Human studies with plasma levels of dietary ITCs.

Study type Subjects (n) Dose Plasma conc. (mM) Refs

Metabolisms, pharmacokinetics 4 200 mmol ITCs (largely SFN) 0.94–2.27 Ye et al., 2002 [40].

Metabolism 16 GST(+): 107 & 345.8 mmol SFN; GST(-): 95 &
342 mmol SFN

2.2; 7.3 2.3; 7.4 Gasper et al., 2005
[41].

Metabolism 4 70 or 120 mmol SFN 0.9 or 2.1 Cramer et al., 2011
[42].

Bioavailability 12 150 mmol glucoraphanin 2.2 Clarke et al., 2011
[43].

Pharmacokinetics 4 100 g watercress 0.928 (¡0.25) Ji et al., 2003 [44].

doi:10.1371/journal.pone.0114764.t001
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known to be an inducer of autophagy [58], but it is unclear how induction of

autophagy is associated with suppression of cell migration. Other potential targets

of SFN may include matrix metalloproteinases (MMPs), microtubules, collagens

and integrins, survivin and zinc finger E-box binding homeobox 1 (ZEB1) [59]. A

very recent study suggests that activation of autophagy is associated with

chemoresistance, and that histone deacetylase (HDAC)10 protects neuroblastoma

cells from cytotoxic agents by mediating autophagy [55]. This work indicates that

co-treatment with HDAC10 inhibitor and a chemotherapeutic drug (doxorubi-

cin) is a promising way to improve treatment response. Another study suggests

that Notch activation is largely dispensable for SFN-mediated inhibition of cell

migration in human prostate cancers [60], and this could be a therapeutic

advantage as Notch activation is common in human prostate cancers. High

constitutive levels of Nrf2 occur in many tumours, whilst overexpression of Nrf2

in cancer cells protects them from the cytotoxic effects of anticancer therapies,

resulting in chemoresistance [22, 61]. There are interactions between ITCs and Se

in the up-regulation of thioredoxin reductase (TR-1) and glutathione peroxidase

2 (GPx2) [30] and it is clear that ITCs and Se exhibit a plethora of multi-targeted

effects in cancer chemoprevention. Interestingly, Se also promotes the migration

and invasion of prostate cancer PC3 cells [62].

Assessment of the hormetic effect of ITCs

Consumption of cruciferous vegetables would not only provide ITCs but also

contribute other nutrients and phytochemicals, including tocopherols, flavonoids,

ascorbate and Se. These components could counteract/interact with the

prooxidant/antioxidant activities of ITCs. Based on the hormetic nature of ITCs,

consumption of a quantity of cruciferous vegetables that provide a hormetic level

of ITCs in plasma could be a risk factor for those who have transformed cells in

the body. A schematic diagram for analysing the benefits and risks of dietary ITCs

is proposed in Fig. 6. For all dietary compounds and toxic substances, ‘‘the dose

makes the poison’’ [wording simplified from ‘‘all things are poison, and nothing is

without poison; only the dose permits something not to be poisonous’’

(Paracelsus, 1493–1541)]. For dietary ITCs, there should be a ‘‘no effect level’’

prior to the detection of any biological effects. Indeed, the level of ITCs in the

plasma of a majority of the population is likely to be much lower than sub-mM

and may not exert any biological effects on cells. However, following increased

intakes, such as in the trials listed in Table 1 or for individuals taking

supplements, the plasma ITC levels could reach the hormetic zone concentrations.

Typical characteristics of the hormetic zone (dose A-C) includes low concentra-

tions stimulating and high concentrations inhibiting effects. For SFN, the

hormetic zone is found to be 1–5 mM in the in vitro cell culture experiments,

although the dose-effects found in vitro experiments should not be directly

extrapolated to humans. It is possible that the hormetic zone and the No

Observed Adverse Effect Level (NOAEL, dose C) in humans is significantly

different. In order to maximise the beneficial effect and minimise the risk, both
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genetic factors and interactions between dietary components should be

considered. For example, genetic polymorphisms of glutathione transferases

(GSTs) affect SFN metabolism and the risk of cancer [63]. On the other hand,

supplementation with cruciferous vegetables increased GSTA1/2 activity, the

effect being most marked in GSTM1-null/GSTT1-null men [64]. Although there

are currently few epidemiological studies that employ genotyping, research of this

nature will increase in the future and it is likely the nutrigenetics will provide a

basis for personalised medicine and nutrition. Interactions between bioactive

phytochemicals and nutrients may contribute to the overall benefits and risks of

ITCs depending on the health status of the individuals. The inductions of Nrf2

and antioxidant enzymes such as TR-1 could also be of either benefit or risk

depending on the nature of the target cells (normal vs tumour).

Where are we now? How can we maximise the benefits and

minimise the risks?

Thirty years ago, researchers focused on the potential toxic (goitrogenic)

properties of glucosinolate breakdown products [65]. In 1992, sulforaphane was

isolated from broccoli and anti-carcinogenic studies were based on its potent

Fig. 6. A schematic diagram on the hormetic effect of ITCs. For all cell types, dosage range 0-A is safe. In
the majority of diets, the intakes of hormetic phytochemicals are likely to fall within this safe range. For normal
cells, dose B could be used promote new blood vessel formation or promote wound healing; doses .C are
toxic. For tumour cells, doses between A and C should be avoided; and doses .C to D could be used for
chemotherapy.

doi:10.1371/journal.pone.0114764.g006
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activity in the induction of phase II enzymes [12, 66]. Over the last decade, many

Nrf2 inducers including ITCs, resveratrol, catechin, cucurmin, and quercetin have

been reported [67, 68] with both chemopreventive and oncogenic activities [69–

71]. Recently, two Nrf2 inhibitors, brusatol (from the seeds of Brucea sumatrana)

and trigonelline (from coffee) were reported to enhance the efficacy of anticancer

therapy [72, 73]. Moreover, Nrf2 knockdown has been shown to inhibit tumour

growth, increase the efficacy of chemotherapy in cervical cancer [74], and inhibit

the angiogenesis of rat cardiac micro-vascular endothelial cells under hypoxic

conditions [75]. Therefore, it is clear that the role of Nrf2 in cancer development

is a topic of controversy and Nrf2 activators such as SFN and other ITCs may

contribute both benefits and risks in cancer development.

An understanding of the complex plethora and divergent natures of ITCs and

other dietary Nrf2 activators and their hormetic dose responses, combined with

an accurate diagnosis (stage of cancer), and genetic analysis may, in the not-too-

distant future, initiate the significant potential that personalised medicine may

have. New diagnostic techniques exploiting gold nanoparticles can spot tumour-

like masses as small as 5 mm in the liver [76]. Gold nanoparticles with a

polyelectrolyte coating can make even smaller tumours visible through X-ray

scatter imaging, thereby enabling earlier diagnosis. Once tumours can be

diagnosed at such a very early stage, a potential therapeutic approach could be the

nanoencapsulation of cancer-fighting phytochemicals or drugs through mon-

itored and targeted delivery [77]. But, it must be remembered that ITCs at high

concentrations are also toxic towards normal cells. Adverse effects have been

reported in in vitro studies using 10–30 mM SFN, including induction of DNA,

RNA and mitochondrial damage [78–80]. Moreover, there was also a case report

of liver toxicity in an individual who consumed 800 ml broccoli soup a day for 4

weeks [81]. Low levels of ITCs can generate reactive oxygen species (ROS), and

activate Nrf2-ARE to switch on antioxidant enzymes. Although high levels of ROS

can damage protein, lipids and DNA in cells, low levels of ROS can play an

important role in immune defence, antibacterial action, vascular tone, and signal

transduction [82]. Recently, James Watson hypothesised that diabetes, dementias,

cardiovascular disease and some cancers are all linked to a failure to generate

sufficient ROS [83]. The challenge is to define the balance between the generation

of ROS and the antioxidant capacity in each type of cells. For dietary ITCs, it is

important to define the optimal range of intakes for promoting health.

Nevertheless, further human studies are required to establish the personalised

optimal doses, safety and efficacy profiles using more sensitive biomarkers.

Materials and Methods

Materials

Sulforaphane was purchased from Enzo Life Sciences (UK). Sodium selenite,

dimethylsulfoxide (DMSO), hydrogen peroxide, Bradford reagent, methylthia-

zolyldiphenyl-tetrazolium bromide (MTT), phenylmethylsulfonyl fluoride

Benefits and Risks of Isothiocyanates
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(PMSF), and all other materials and reagents were purchased from Sigma-Aldrich

(UK). Rabbit polyclonal primary antibodies to Nrf2, Sam68 and horseradish

peroxidase (HRP)-conjugated goat anti-rabbit IgG as secondary antibodies were

all obtained from Santa Cruz Biotechnology Inc. (Heidelberg, Germany). Anti-

collagen IV and anti-human CD31/PECAM-1 were purchased from Millipore and

BD Biosciences (UK), respectively. Secondary antibodies conjugated with Cy2 and

Cy3 were purchased from Jackson Immuno Research (UK). Mini-complete

proteinase inhibitor and WST-1 reagent were purchased from Roche Applied

Sciences (UK). Electrophoresis and Western blotting supplies were supplied by

Bio-Rad (UK). The enhanced chemiluminescence (ECL) kit was purchased from

GE Healthcare (UK).

Cell culture

Immortalised human hepatocytes (defined as HHL-5) were kindly supplied by Dr

Arvind Patel, Medical Research Council (MRC) Virology Unit (Glasgow, UK)

[84]. All other cell lines were purchased from ATCC. Cells were routinely cultured

in DMEM supplemented with foetal bovine serum (10%), 2 mM glutamine,

penicillin (100 U/ml) and streptomycin (100 mg/ml) under 5% CO2 in air at 37 C̊.

Cell proliferation assay

The cell proliferation MTT assay was employed to detect the toxicity of SFN (1–

160 mM) on cultured cells. When cells were at approximately 70–80% confluence,

cells were exposed to various concentrations of SFN for different times using

DMSO (0.1%) as control. After all treatments, the medium was removed, 5 mg/

ml MTT was added, and incubated at 37 C̊ for 1 h to allow the MTT to be

metabolized. Then the formazan produced was re-suspended in 100 ml DMSO per

well. The final absorbance in the wells was recorded using a microplate reader

(BMG Labtech Ltd, UK) at a wavelength of 550 nm and a reference wavelength of

650 nm.

Cell migration assay

Cell migration was quantified using a ThinCert cell culture inserts cell migration

assay (Greiner Bio-One Ltd.). After overnight starvation in serum free medium,

cells were treated with various concentrations of SFN for 24 h, the cells migrating

through a PET membrane were labelled fluorescently with Calcein-AM and

quantified by microplate reader (BMG Labtech Ltd, UK) with an excitation

wavelength of 485 nm and emission wavelength of 525 nm.

Protein extraction and Western blot Analysis

For total protein, HHL-5 cells were washed twice with ice-cold PBS, harvested by

scraping in 20 mM Tris-HCl (pH 8), 150 mM NaCl, 2 mM EDTA, 10% glycerol,

1% Nonidet P40 (NP-40) containing mini-complete proteinase inhibitor. The cell
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suspensions were placed in an ice bath for 20 min and then centrifuged at

12,000 g for 15 min at 4 C̊. Supernatant was collected and the protein

concentration determined by the Bradford Brilliant Blue G dye-binding assay of

using BSA as a standard. For the nuclear protein, the extraction was performed by

using a Nuclear Extract Kit (Active Motif, UK), following the manufacturer’s

instructions.

Protein extracts were heated at 95 C̊ for 5 min in loading buffer and loaded

onto 10% SDS-polyacrylamide gels together with a molecular weight marker.

After routine electrophoresis and transfer, the polyvinylidene difluoride (PVDF)

membrane was blocked with 5% fat free milk in PBST (0.05% Tween 20) for 1 h

and incubated with a specific primary antibody in 5% milk in PBST for 1 h. The

membrane was washed three times for 45 min with PBST and then incubated with

the secondary antibody diluted with 5% milk in PBST for 1 h. After three further

washes for 45 min with PBST, the antibody binding was determined using an ECL

kit (GE Healthcare, UK) and densitometry was measured by Fluor Chem Imager

(Alpha Innotech, San Leandro, CA).

Angiogenesis assay - tube formation in a 3-D model

Human umbilical vein endothelial cells (HUVEC) and pericytes (PVC) were co-

cultured in collagen type I gel as described previously [85]. SFN (0–40 mM) was

added to the medium (top of 3-D collagen gel) and the medium was changed

every 24 h with fresh SFN added. At day 5, samples were fixed, immunostained

with CD31 and collagen type IV and counterstained with DAPI. Magnification

pictures were taken from five random fields of each sample and average tube

length measured.

Statistics

Data are represented as the mean ¡ SD. The differences between the groups were

examined using one-way ANOVA test, or student’s t-test. A p value ,0.05 was

considered to be statistically significant. IC50 values of SFN and H2O2 were

determined using CalcuSyn Software (Biosoft, UK).

Conclusions and Future Perspectives

Based on findings from the research reported here, greater effort should be

expended on the evaluation of the interactive/synergistic effects on the cancer risk

of various phytochemicals and phytochemical-rich foods. Risk/benefit assessment

of ITCs and other dietary bioactives may be linked to genotype, health status or

tumour stage, and of course the dose, all of which must be included in future

research priorities. More precise dietary guidelines and policies for cancer

prevention could also be developed based on the understanding of these

fundamental factors. There are at least five ongoing human trials using SFN or

broccoli sprout preparations registered with http://www.clinicaltrials.gov/ and it
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will be of great interest to study the results in coming years. In the absence of

precise knowledge in these areas, it is considered prudent to study the molecular

mechanisms of the interactions between ITCs and other bioactives/nutrients in

cell cultures and animal models prior to undertaking large, very expensive human

trials. In this sense, b-carotene has been a good example. In observational studies,

high intake of carotenoids from food has been associated with reduced risk of

cancer. However, observational studies are inherently unreliable and it would be a

big mistake to conduct human trials without having sufficient information about

the mechanisms of action in cells. In intervention trials, b-carotene supplements

have not been found to offer any benefits; in fact, when taken in high doses for a

long period of time, they slightly increased the risk of some forms of cancer [86].

However, this is an area of activity that is rapidly developing and this assessment

may well need to be revisited in the light of emerging scientific data. These results

show that low concentrations of ITCs especially SFN may be potentially beneficial

or harmful, depending on the endpoint of interest and the cell type, i.e. beneficial

to normal angiogenesis and harmful in promotion of cancer cell growth. SFN is

important because it is present in our normal diet from cruciferous vegetables and

also because of its commercial applications (there are many different brands of

broccoli extracts marketed as supplements). Based on the hormetic dose response,

nutraceutical producers should carefully consider the efficacy of the application of

ITC/SFN-rich products/supplements. On the basis of their biphasic effects on cell

growth and migration, there is no doubt that ITCs belong to the so-called

hormetic class of phytochemicals.

In summary, low concentrations of ITCs can potentially be either beneficial or

harmful. Since there is little selectivity in the hormetic effect, the benefits or risks

of ITCs at lower doses could be different in normal and tumour cells. In tumour

cells, low doses of SFN could have the capability to increase the risk of tumour

development. In contrast, in normal endothelial cells, SFN could be significantly

cardio-protective (angiogenetic). This type of conflict between beneficial and

harmful effects is not uncommon and may be related to the different biological

systems, tissues and chemical agents under investigation [87]. The evidence

regarding the hormetic dose response induced by SFN is obvious, but the relevant

molecular mechanisms are not fully understood, and thus deserve greater

attention in future research. Nutrition scientists and oncologists should be aware

of the potential risks of dietary ITCs, especially of the possible role of hormesis if

they are used as food supplements. Finally, the majority of the available evidence

described above is based on in vitro cell culture experiments. Research is also

needed to evaluate the relative risks, as well as benefits, of the hormetic effects in

medium- to long-term supplementation with dietary ITCs and other phyto-

chemicals in animal studies and small scale human trials.
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