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Abstract 

 

The isothiocyanate (ITC) sulforaphane (SFN) was shown at low levels (1-5 µM) to promote cell 

proliferation to 120-143% of the controls in a number of human cell lines, whilst at high levels 

(10-40 µM) it inhibited such cell proliferation. Similar dose responses were observed for cell 

migration, i.e. SFN at 2.5 µM increased cell migration in bladder cancer T24 cells to 128% 

whilst high levels inhibited cell migration. This hormetic action was also found in an 

angiogenesis assay where SFN at 2.5 µM promoted endothelial tube formation (118% of the 

control), whereas at 10-20 µM it caused significant inhibition. The precise mechanism by which 

SFN influences promotion of cell growth and migration is not known, but probably involves 

activation of autophagy since an autophagy inhibitor, 3-methyladenine, abolished the effect of 

SFN on cell migration. Moreover, low doses of SFN offered a protective effect against free-

radical mediated cell death, an effect that was enhanced by co-treatment with selenium. These 

results suggest that SFN may either prevent or promote tumour cell growth depending on the 

dose and the nature of the target cells. In normal cells, the promotion of cell growth may be of 

benefit, but in transformed or cancer cells it may be an undesirable risk factor.  In summary, 

ITCs have a biphasic effect on cell growth and migration. The benefits and risks of ITCs are not 

only determined by the doses, but are affected by interactions with Se and the measured 

endpoint.  

 

 

Keywords: cruciferous vegetables; isothiocyanate; sulforaphane; hormesis; NF-E2-related factor 
2; angiogenesis; cancer. 
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Introduction  

     The term ‘hormesis’ is often used by toxicologists to refer to a ‘biphasic dose response to an 

environmental agent characterized by low dose stimulation and by high dose inhibitory or toxic 

effect’ [1,2]. The hormesis concept is the most fundamental dose-response relationship in the 

biomedical, nutrition and toxicological sciences [1]. In a comprehensive review, Calabrese 

provided evidence that more than a hundred anti-tumour agents enhanced the proliferation of 

human tumour cells at low doses in a manner fully consistent with the hormetic dose-response 

relationship [2]. One of the interesting characteristics of such dose-responses was that they 

occurred in most types of tumour cells and were independent of organ. Recent findings suggest 

that some phytochemicals exhibit biphasic dose responses in cells with low doses activating 

signalling pathways that result in increased expression of genes encoding cytoprotective proteins 

and antioxidant enzymes [3]. The dietary hormetic compounds identified so far include 

resveratrol, epigallocatechin gallate (EGCG), curcumin, quercetin, allicin, capsaicin, carnosic 

acid and sulforaphane (SFN) [4-8]. From an evolutionary perspective, the noxious properties of 

phytochemicals have an important protective role in dissuading insects and fungi from damaging 

plants. However, the relatively small doses of phytochemicals ingested by humans that consume 

these plants are not toxic and instead induce mild cellular stress responses. This phenomenon has 

been widely described as ‘hormesis’ or adaptive dose response in the fields of biology and 

medicine [4,9,10].  

   The isothiocyanate (ITC), SFN (4-methylsulfinylbutylisothiocyanate), was first isolated from 

the commonly-consumed cruciferous vegetable, broccoli and is one of the most potent naturally-

occurring inducers of the Kelch-like ECH-associated protein 1 (Keap1)-nuclear factor erythroid 

2-related factor 2 (Nrf2)-antioxidant response elements (ARE) pathway [11]. The induction of 

Nrf2 protects normal cells from free-radical mediated oxidative stress via upregulation of 

chemoprotective genes, and the action of SFN is based on its ability to induce a Nrf2-driven 

enzyme quinone reductase (NQO1) [12]. In the 20 years subsequent to its discovery, the 

protective effects of SFN have been demonstrated in various cell culture systems and animal 

models, with the result that SFN is by far the most extensively studied ITC from cruciferous 

vegetables.  The anti-carcinogenic mechanisms of ITCs have also been well-documented, 

including up-regulation of phase II detoxification enzymes, anti-inflammation, promotion of cell 

cycle arrest and apoptosis [13-17]. During the last decade, Keap1-Nrf2-ARE has been 

considered as a critical anti-cancer pathway in chemoprevention [18-20]. However, more 

recently, there have been some deleterious reports of Nrf2, including promotion of tumour cell 
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growth and chemoresistance [21-25]. In order to survive, cancer cells may hijack the Nrf2 

pathway which upregulates a battery of antioxidant enzymes, thereby maintaining a favourable 

redox balance in order to acquire malignant properties [26]. Overexpression of Nrf2 could 

enhance cell proliferation and cause resistance to chemotherapeutic interventions in some types 

of cancer, including human lung and pancreatic cancers [27,28]. A few previous investigations 

have shown that SFN exhibits a dose-dependent effects on cell proliferation in cultured tumour 

cell lines and normal cells including human mesenchymal stem cells [29-31]. In the present 

study, we showed that SFN exhibited a hormetic dose response on cell growth, migration and 

angiogenesis. Whether the hormetic effect is beneficial or harmful depends on the selected 

endpoint and/or the nature of the cells (normal or tumour). Although the term hormesis is 

employed by toxicologists to describe a bell-shaped dose response, characterized by a beneficial 

effect at low doses and a toxic (or inhibitory) activity at high doses, this expression of low dose 

benefit might not be true for the effect of ITCs in cancer chemoprevention. Since hormesis 

shows little selectivity, the biological effects of ITCs on normal cells and tumour cells will 

differ. From this perspective, a low dose effect of ITCs in promoting tumour cell proliferation 

and migration in animal models must be evaluated prudently. Thus, a precise strategy that aims 

to optimise the beneficial effects and minimise the risk of ITCs should be developed with care in 

relation to cancer prevention and treatment. 
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Results  

 

Effects of ITCs on cell growth 

   Due to the nature of the hormetic dose response, there is no selectivity of ITCs on cell growth, 

so it is likely that ITCs can promote tumour cell growth at low doses.  In several in vitro cell 

culture studies, low concentrations of SFN have been shown to promote tumour cell growth, but 

no detailed discussion or suggestions for follow-up studies to investigate the mechanisms were 

provided [32-34]. At low concentrations, ITCs have been shown to induce proliferation and/or 

protect cells against a toxic agent, H2O2, in Caco-2 cells [30] and in hepatocytes [29].  Fig. 1A 

shows the effects of SFN on cell growth, with lower doses (1-5 µM) promoting cell growth (20-

43% greater than the control) and high doses (10-40 µM) inhibiting cell growth in a number of 

tumour cell lines, namely, bladder cancer T24, hepatoma HepG2, and colon cancer Caco-2. 

Similar dose response effects were found in normal cell lines including immortalised hepatocyte 

HHL-5, colon epithelial CCD841 and skin fibroblast CCD-1092SK cell lines (Fig. 1B).  

 

Effects of SFN on cell migration 

   Fig. 2A shows a bell-shaped dose response of SFN on bladder cancer T24 cell migration. SFN 

at 2.5 and 3.75 µM increased tumour cell migration to 128 and 133% in comparison with 

corresponding controls. Such SFN-induced cell migration is associated with the ability of SFN to 

activate autophagy. When an autophagy inhibitor, 3-methyladenine (3-MA), was used it 

alleviated SFN (2.5 µM)-induced cell migration from 128 to 26% although it has less inhibitory 

effect on SFN treatments at 5 or 10 µM (Fig. 2B). Moreover, 3-MA also decreased the migration 

of non-SFN treated cells to 12% of the control.   

 

ITCs and activation of Nrf2 

   SFN is an activator of Nrf2 via which it can up-regulate more than a hundred protective genes, 

including most antioxidant and chemopreventive enzymes [11,35]. There is no doubt that up-

regulation of Nrf2-ARE pathway is beneficial in normal cells, i.e. activation of Nrf2 and its 

driven cytoprotective enzymes can be protective against oxidative damage and  it has been 

suggested that activation of the Nrf2 signalling pathway can thus be a promising strategy in 
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cancer prevention [36]. But, ITCs have no selectivity towards either normal or tumour cells with 

regards to Nrf2 activation. Nrf2 can be hijacked by tumour cells [26], and a recent report 

suggests that Nrf2 is a protooncogene which modulates tumour cell growth [37].  In transformed 

cells, Nrf2 may promote cell growth or cause chemoresistance [38]. In this study, SFN (2.5-10 

µM) induced similar levels of translocation of Nrf2 into the nucleus of normal human 

hepatocytes HHL-5 (4.1-7.1 fold), and hepatoma HepG2 (4.1-5.9 fold) cells (Fig. 3).  

 

Protective role of low dose ITC treatment against oxidative damage 

   In the fields of biology and medicine, hormesis is defined as an adaptive response of cells and 

organisms to a moderate stress. A mild stress induces the activation of signalling pathways such 

as Nrf2, NF-kB, Sirtuin, FOXO, hypoxia-inducible factor (HIF) thus leading to intrinsic changes 

(e.g. induction of antioxidant enzymes) that can confer resistance to more severe stress [4,6].  

Fig. 4A and 4B show that pretreatment of HHL-5 and MCF-7 cells with 5 µM SFN offered 

protection against H2O2-induced cell death, i.e. cell viability increased from 36.6 to 63.9%; and 

from 50.3 to 83.7% with 400 µM H2O2 treatments, respectively. Moreover, the protective effect 

of pretreatment with SFN (2 µM) on H2O2-induced cell death could be enhanced by cotreatment 

with selenium (Se) in HHL-5 cells (Fig. 4C), i.e. H2O2 decreased cell viability to 34.8% in HHL-

5 cells but when cells were pre-treated with SFN (2 µM), or Se (0.1 µM) for 24 h, the cell 

viability increased to 41.7 and 51%, respectively and co-treatment SFN and Se increased cell 

viability to 65.5%. This protective effect may be involved in either chemoprotection or 

chemoresistance, depending on the nature of the cells.   

 

Biphasic effects of SFN on angiogenesis  

   Angiogenesis (new blood vessel growth) is crucial in the development and spread of a variety 

of human cancers. It is, therefore, important to examine the anti-angiogenic effects of potential 

anti-cancer agents. In contrast, inadequate blood supply to the heart and other tissues, resulting 

from insufficient new blood vessel growth, is a feature of many cardiovascular diseases.  SFN 

has been shown to inhibit angiogenesis at high concentrations [39]. In this study, SFN at 2.5 µM 

promoted tube formation to 118% of the control, i.e. total tube length was 4.78 mm/mm2 in 

control and 5.65 mm/mm2 in SFN (2.5 µM) treated cells (Fig. 5). SFN at 5 µM showed a less 

significant promotion (111% relative to the control), whereas 10 and 20 µM SFN inhibited tube 
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formation significantly (decreased to 61 and 20% of the control, respectively).  SFN at low dose 

promoted the formation of a continuous basement membrane around endothelial tubes; whereas 

at high doses of SFN, fragmented basement membranes were found (Fig. 5A). These data 

suggest that for anti-angiogenesis a relatively high dose of SFN should be used since a lower 

dose may promote angiogenesis. However, the stimulating effect of low doses on new blood 

vessel formation could be beneficial in patients with cardiovascular diseases. 
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Discussion 

Hormetic effect of ITCs on cell growth, migration and angiogenesis 

   The hormetic zone concentrations (approximately 1-5 µM) of ITCs that are added in cell 

culture could readily be achieved in human plasma after consumption of a meal rich in 

cruciferous vegetables, or from extracts or supplements [40-44].  Table 1 shows the plasma 

levels of ITCs measured in several human studies (see also reference [45]).  SFN is derived from 

the action of the endogenous enzyme, myrosinase on the glucosinolate, glucoraphanin which is 

found in cruciferous vegetables. The glucosinolate contents of common Brassica are available 

from a database developed by McNaughton and Marks [46]. The highest glucosinolate value was 

from cress (389 mg/100g fresh weight) while the lowest value was from Chinese cabbage (20 

mg/100g fresh weight), although cultivar type and growing conditions both influence these 

figures. Broccoli contains 61.7 mg/100g (19.3-127.5mg glucoraphinin/100g) [46], which is 

equivalent to 141.3 µmol SFN/100g (44.2-292.1 µmol/100g fresh weight) if the conversion is 

100% efficient. Food processing and cooking conditions are crucial factors in influencing the 

activity of myrosinase, and subsequent formation of ITCs [47].  The main influence on the 

ensuing production of ITCs in vivo is how the brassica vegetables have been cooked [48]. 

Extensive studies of SFN have provided convincing evidence that SFN is a chemopreventive 

agent [49,50]; and the mechanisms of its action involves the induction of phase II enzymes, cell 

cycle arrest and apoptosis [16,51].  

   In general, findings from epidemiological studies on the association between vegetable intake 

and cancer risk are inconsistent. A high intake of cruciferous vegetables has, however, been 

shown to decrease the risk of several types of cancer, including those of colon and lung [52,53]. 

If the hormetic effects of ITCs are involved in cancer growth, the overall biological impact of 

cruciferous vegetable on cancer risk becomes much more complicated. However, if a low dose 

of ITCs promotes cancer cell growth it may help to explain why epidemiological studies do not 

show a consistent association between cruciferous vegetable intake and the risk of cancer. 

Therefore, it is crucial to understand the mechanisms of action of the hormetic effects of ITCs. In 

in vitro cell cultures, the mechanisms by which low doses of SFN promote cell growth may be 

related to the effect SFN has on the activation of growth promoting molecules (such as HER2, 

RAS, RAF, MEK, ERK, PI3K, AKT and mTOR), signal transduction pathways such as NF-kB, 

FOXO, HIF, Nrf2, autophagy and receptors [54-56].   
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     Autophagy involves the formation of double-membraned vesicles (autophagosomes), which 

encapsulate the cytoplasm and organelles and fuse with lysosomes, leading to degradation of the 

contents of the vesicle [57]. SFN is known to be an inducer of autophagy [58], but it is unclear 

how induction of autophagy is associated with suppression of cell migration. Other potential 

targets of SFN may include matrix metalloproteinases (MMPs), microtubules, collagens and 

integrins, survivin and zinc finger E-box binding homeobox 1 (ZEB1) [59]. A very recent study 

suggests that activation of autophagy is associated with chemoresistance, and that histone 

deacetylase (HDAC)10 protects neuroblastoma cells from cytotoxic agents by mediating 

autophagy [55]. This work indicates that co-treatment with HDAC10 inhibitor and a 

chemotherapeutic drug (doxorubicin) is a promising way to improve treatment response. Another 

study suggests that Notch activation is largely dispensable for SFN-mediated inhibition of cell 

migration in human prostate cancers [60], and this could be a therapeutic advantage as Notch 

activation is common in human prostate cancers.  High constitutive levels of Nrf2 occur in many 

tumours, whilst overexpression of Nrf2 in cancer cells protects them from the cytotoxic effects 

of anticancer therapies, resulting in chemoresistance [22,61]. There are interactions between 

ITCs and Se in the up-regulation of thioredoxin reductase (TR-1) and glutathione peroxidase 2 

(GPx2) [30] and it is clear that ITCs and Se exhibit a plethora of multi-targeted effects in cancer 

chemoprevention. Interestingly, Se also promotes the migration and invasion of prostate cancer 

PC3 cells [62].  

 

Assessment of the hormetic effect of ITCs 

      Consumption of cruciferous vegetables would not only provide ITCs but also contribute 

other nutrients and phytochemicals, including tocopherols, flavonoids, ascorbate and Se.  These 

components could counteract/interact with the prooxidant/antioxidant activities of ITCs. Based 

on the hormetic nature of ITCs, consumption of a quantity of cruciferous vegetables that provide 

a hormetic level of ITCs in plasma could be a risk factor for those who have transformed cells in 

the body. A schematic diagram for analysing the benefits and risks of dietary ITCs is proposed in 

Fig. 6. For all dietary compounds and toxic substances, “the dose makes the poison” [wording 

simplified from “all things are poison, and nothing is without poison; only the dose permits 

something not to be poisonous” (Paracelsus, 1493-1541)]. For dietary ITCs, there should be a 

“no effect level” prior to the detection of any biological effects. Indeed, the level of ITCs in the 

plasma of a majority of the population is likely to be much lower than sub-µM and may not exert 

any biological effects on cells.  However, following increased intakes, such as in the trials listed 
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in Table 1 or for individuals taking supplements, the plasma ITC levels could reach the hormetic 

zone concentrations. Typical characteristics of the hormetic zone (dose A-C) includes low 

concentrations stimulating and high concentrations inhibiting effects. For SFN, the hormetic 

zone is found to be 1-5 µM in the in vitro cell culture experiments, although the dose-effects 

found in vitro experiments should not be directly extrapolated to humans.  It is possible that the 

hormetic zone and the No Observed Adverse Effect Level (NOAEL, dose C) in humans is 

significantly different. In order to maximise the beneficial effect and minimise the risk, both 

genetic factors and interactions between dietary components should be considered. For example, 

genetic polymorphisms of glutathione transferases (GSTs) affect SFN metabolism and the risk of 

cancer [63]. On the other hand, supplementation with cruciferous vegetables increased GSTA1/2 

activity, the effect being most marked in GSTM1-null/GSTT1-null men [64]. Although there are 

currently few epidemiological studies that employ genotyping, research of this nature will 

increase in the future and it is likely the nutrigenetics will provide a basis for personalised 

medicine and nutrition. Interactions between bioactive phytochemicals and nutrients may 

contribute to the overall benefits and risks of ITCs depending on the health status of the 

individuals. The inductions of Nrf2 and antioxidant enzymes such as TR-1 could also be of 

either benefit or risk depending on the nature of the target cells (normal vs tumour). 

 

Where are we now? How can we maximise the benefits and minimise the risks?   

   Thirty years ago, researchers focused on the potential toxic (goitrogenic) properties of 

glucosinolate breakdown products [65].  In 1992, sulforaphane was isolated from broccoli and 

anti-carcinogenic studies were based on its potent activity in the induction of phase II enzymes 

[12,66]. Over the last decade, many Nrf2 inducers including ITCs, resveratrol, catechin, 

cucurmin, and quercetin have been reported [67,68] with both chemopreventive and oncogenic 

activities [69-71]. Recently, two Nrf2 inhibitors, brusatol (from the seeds of Brucea sumatrana) 

and trigonelline (from coffee) were reported to enhance the efficacy of anticancer therapy 

[72,73] . Moreover, Nrf2 knockdown has been shown to inhibit tumour growth, increase the 

efficacy of chemotherapy in cervical cancer [74], and inhibit the angiogenesis of rat cardiac 

micro-vascular endothelial cells under hypoxic conditions [75]. Therefore, it is clear that the role 

of Nrf2 in cancer development is a topic of controversy and Nrf2 activators such as SFN and 

other ITCs may contribute both benefits and risks in cancer development.  
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   An understanding of the complex plethora and divergent natures of ITCs and other dietary 

Nrf2 activators and their hormetic dose responses, combined with an accurate diagnosis (stage of 

cancer), and genetic analysis  may, in the not-too-distant future, initiate the significant potential 

that personalised medicine may have. New diagnostic techniques exploiting gold nanoparticles 

can spot tumour-like masses as small as 5 mm in the liver [76]. Gold nanoparticles with a 

polyelectrolyte coating can make even smaller tumours visible through X-ray scatter imaging, 

thereby enabling earlier diagnosis. Once tumours can be diagnosed at such a very early stage, a 

potential therapeutic approach could be the nanoencapsulation of cancer-fighting phytochemicals 

or drugs through monitored and targeted delivery [77]. But, it must be remembered that ITCs at 

high concentrations are also toxic towards normal cells. Adverse effects have been reported in in 

vitro studies using 10-30 µM SFN, including induction of DNA, RNA and mitochondrial 

damage [78-80].  Moreover, there was also a case report of liver toxicity in an individual who 

consumed 800 ml broccoli soup a day for 4 weeks [81]. Low levels of ITCs can generate reactive 

oxygen species (ROS), and activate Nrf2-ARE to switch on antioxidant enzymes. Although high 

levels of ROS can damage protein, lipids and DNA in cells, low levels of ROS can play an 

important role in immune defence, antibacterial action, vascular tone, and signal transduction 

[82]. Recently, James Watson hypothesised that diabetes, dementias, cardiovascular disease and 

some cancers are all linked to a failure to generate sufficient ROS [83]. The challenge is to 

define the balance between the generation of ROS and the antioxidant capacity in each type of 

cells. For dietary ITCs, it is important to define the optimal range of intakes for promoting 

health. Nevertheless, further human studies are required to establish the personalised optimal 

doses, safety and efficacy profiles using more sensitive biomarkers. 

  



12 

 

Materials and Methods 

Materials 

   Sulforaphane was purchased from Enzo Life Sciences (UK). Sodium selenite, 

dimethylsulfoxide (DMSO), hydrogen peroxide, Bradford reagent, methylthiazolyldiphenyl-

tetrazolium bromide (MTT), phenylmethylsulfonyl fluoride (PMSF), and all other materials and 

reagents were purchased from Sigma-Aldrich (UK). Rabbit polyclonal primary antibodies to 

Nrf2, Sam68 and horseradish peroxidase (HRP)-conjugated goat anti-rabbit IgG as secondary 

antibodies were all obtained from Santa Cruz Biotechnology Inc. (Heidelberg, Germany). Anti-

collagen IV and anti-human CD31/PECAM-1 were purchased from Millipore and BD 

Biosciences (UK), respectively. Secondary antibodies conjugated with Cy2 and Cy3 were 

purchased from Jackson Immuno Research (UK). Mini-complete proteinase inhibitor and WST-1 

reagent were purchased from Roche Applied Sciences (UK). Electrophoresis and Western 

blotting supplies were supplied by Bio-Rad (UK). The enhanced chemiluminescence (ECL) kit 

was purchased from GE Healthcare (UK). 

 

Cell culture 

   Immortalised human hepatocytes (defined as HHL-5) were kindly supplied by Dr Arvind Patel, 

Medical Research Council (MRC) Virology Unit (Glasgow, UK) [84]. All other cell lines were 

purchased from ATCC.  Cells were routinely cultured in DMEM supplemented with foetal 

bovine serum (10%), 2mM glutamine, penicillin (100 U/ml) and streptomycin (100 µg/ml) under 

5% CO2 in air at 37oC.  

 

Cell proliferation assay 

   The cell proliferation MTT assay was employed to detect the toxicity of SFN (1-160 µM) on 

cultured cells. When cells were at approximately 70–80% confluence, cells were exposed to 

various concentrations of SFN for different times using DMSO (0.1%) as control.  After all 

treatments, the medium was removed, 5 mg/ml MTT was added, and incubated at 37oC for 1 h to 

allow the MTT to be metabolized. Then the formazan produced was re-suspended in 100 µl 

DMSO per well.  The final absorbance in the wells was recorded using a microplate reader 

(BMG Labtech Ltd, UK) at a wavelength of 550 nm and a reference wavelength of 650 nm. 
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Cell migration assay 

   Cell migration was quantified using a ThinCert cell culture inserts cell migration assay 

(Greiner Bio-One Ltd.). After overnight starvation in serum free medium, cells were treated with 

various concentrations of SFN for 24 h, the cells migrating through a PET membrane were 

labelled fluorescently with Calcein-AM and quantified by microplate reader (BMG Labtech Ltd, 

UK) with an excitation wavelength of 485 nm and emission wavelength of 525 nm. 

 

Protein extraction and Western blot Analysis 

   For total protein, HHL-5 cells were washed twice with ice-cold PBS, harvested by scraping in 

20 mM Tris-HCl (pH 8), 150 mM NaCl, 2 mM EDTA, 10% glycerol, 1% Nonidet P40 (NP-40) 

containing mini-complete proteinase inhibitor. The cell suspensions were placed in an ice bath 

for 20 min and then centrifuged at 12,000 g for 15 min at 4oC. Supernatant was collected and the 

protein concentration determined by the Bradford Brilliant Blue G dye-binding assay of using 

BSA as a standard. For the nuclear protein, the extraction was performed by using a Nuclear 

Extract Kit (Active Motif, UK), following the manufacturer’s instructions.   

   Protein extracts were heated at 95°C for 5 min in loading buffer and loaded onto 10% SDS-

polyacrylamide gels together with a molecular weight marker. After routine electrophoresis and 

transfer, the polyvinylidene difluoride (PVDF) membrane was blocked with 5% fat free milk in 

PBST (0.05% Tween 20) for 1 h and incubated with a specific primary antibody in 5% milk in 

PBST for 1 h. The membrane was washed three times for 45 min with PBST and then incubated 

with the secondary antibody diluted with 5% milk in PBST for 1 h. After three further washes for 

45 min with PBST, the antibody binding was determined using an ECL kit (GE Healthcare, UK) 

and densitometry was measured by Fluor Chem Imager (Alpha Innotech, San Leandro, CA).  

 

Angiogenesis assay - tube formation in a 3-D model 

   Human umbilical vein endothelial cells (HUVEC) and pericytes (PVC) were co-cultured in 

collagen type I gel as described previously [85]. SFN (0-40 µM) was added to the medium (top 

of 3-D collagen gel) and the medium was changed every 24 h with fresh SFN added. At day 5, 

samples were fixed, immunostained with CD31 and collagen type IV and counterstained with 
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DAPI. Magnification pictures were taken from five random fields of each sample and average 

tube length measured.  

 

Statistics 

   Data are represented as the mean ± SD. The differences between the groups were examined 

using one-way ANOVA test, or student’s t-test. A p value <0.05 was considered to be 

statistically significant. IC50 values of SFN and H2O2 were determined using CalcuSyn Software 

(Biosoft, UK). 
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Conclusions and future perspectives 

   Based on findings from the research reported here, greater effort should be expended on the 

evaluation of the interactive/synergistic effects on the cancer risk of various phytochemicals and 

phytochemical-rich foods. Risk/benefit assessment of ITCs and other dietary bioactives may be 

linked to genotype, health status or tumour stage, and of course the dose, all of which must be 

included in future research priorities. More precise dietary guidelines and policies for cancer 

prevention could also be developed based on the understanding of these fundamental factors. 

There are at least five ongoing human trials using SFN or broccoli sprout preparations registered 

with http://www.clinicaltrials.gov/ and it will be of great interest to study the results in coming 

years. In the absence of precise knowledge in these areas, it is considered prudent to study the 

molecular mechanisms of the interactions between ITCs and other bioactives/nutrients in cell 

cultures and animal models prior to undertaking large, very expensive human trials. In this sense, 

β-carotene has been a good example.  In observational studies, high intake of carotenoids from 

food has been associated with reduced risk of cancer. However, observational studies are 

inherently unreliable and it would be a big mistake to conduct human trials without having 

sufficient information about the mechanisms of action in cells.  In intervention trials, β-carotene 

supplements have not been found to offer any benefits; in fact, when taken in high doses for a 

long period of time, they slightly increased the risk of some forms of cancer [86].  However, this 

is an area of activity that is rapidly developing and this assessment may well need to be revisited 

in the light of emerging scientific data. These results show that low concentrations of ITCs 

especially SFN may be potentially beneficial or harmful, depending on the endpoint of interest 

and the cell type, i.e. beneficial to normal angiogenesis and harmful in promotion of cancer cell 

growth. SFN is important because it is present in our normal diet from cruciferous vegetables 

and also because of its commercial applications (there are many different brands of broccoli 

extracts marketed as supplements). Based on the hormetic dose response, nutraceutical producers 

should carefully consider the efficacy of the application of ITC/SFN-rich products/supplements. 

On the basis of their biphasic effects on cell growth and migration, there is no doubt that ITCs 

belong to the so-called hormetic class of phytochemicals. 

   In summary, low concentrations of ITCs can potentially be either beneficial or harmful. Since 

there is little selectivity in the hormetic effect, the benefits or risks of ITCs at lower doses could 

be different in normal and tumour cells. In tumour cells, low doses of SFN could have the 

capability to increase the risk of tumour development.  In contrast, in normal endothelial cells, 

SFN could be significantly cardio-protective (angiogenetic). This type of conflict between 
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beneficial and harmful effects is not uncommon and may be related to the different biological 

systems, tissues and chemical agents under investigation [87]. The evidence regarding the 

hormetic dose response induced by SFN is obvious, but the relevant molecular mechanisms are 

not fully understood, and thus deserve greater attention in future research. Nutrition scientists 

and oncologists should be aware of the potential risks of dietary ITCs, especially of the possible 

role of hormesis if they are used as food supplements.  Finally, the majority of the available 

evidence described above is based on in vitro cell culture experiments. Research is also needed 

to evaluate the relative risks, as well as benefits, of the hormetic effects in medium- to long-term 

supplementation with dietary ITCs and other phytochemicals in animal studies and small scale 

human trials. 
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Figure legends 

 

Fig. 1. Effects of SFN on the proliferation of normal and tumour cells.  

When cells grew to 70–80% confluence, a range of doses of SFN (0-160 µM) were added to the cell 

culture medium for 24-48 h. The control cells were treated with DMSO (0.1%), and cell viability was 

determined by the MTT cell proliferation assay (CCD-1092SK cell viability was determined by WST-1 

assay according to manufacturer’s instructions [88]). Each data point represents the mean ± SD of at least 

5 replicates. Statistical significance from the control, *p< 0.05, or **p<0.01. A: results from bladder 

cancer T24, hepatoma HepG2, and colon cancer Caco-2 cells.  B: Results from immortalised hepatocyte 

HHL-5, colon epithelial CCD841, and skin fibroblast CCD-1092SK cell lines. 

 

Fig. 2.  Effects of SFN and 3-MA on cell migration.  

A: After starvation overnight, bladder cancer T24 cells were treated with SFN at the concentrations 

indicated for 24 h, cell migration was measured by a cell migration assay using the ThinCert cell culture 

inserts (Greiner Bio-One Ltd.). Each bar represents the mean ± SD of 3 replicates. B: Effect of pre-

treatment of 3-MA on cell migration. DMSO (0.1% was used as a control). Statistical significance from 

the control, *p<0.05, or **p<0.01. 

 

Fig. 3. Effect of SFN on translocation of Nrf2 into cell nucleus.  

Nrf2 was detected in nuclear extracts from cells exposed to SFN (0, 2.5, 5 and 10 µM) for 24 h, using a 

Western blot assay. Control cells were treated with DMSO (0.1%). A: immortalised human hepatocyte 

HHL-5; B: human heptoma HepG2 cells. 

 

Fig. 4. Effect of pre-treatment of cells with SFN protect against H2O2-induced cell death.  

Cells were cultured in 96 well plates. When they reached 70–80% confluence, cells were pre-treated with 

SFN (5 µM) for 24 h (HHL-5, A) or 48 h (MCF-7, B). The cell culture medium was replaced with H2O2 

at the concentrations indicated for a further 24 h.  C: HHL-5 cell were pre-treated with SFN (2 µM) and 

Se (0.1 µM) for 24 h before exposure to H2O2 (400 µM) for a further 24 h.  The cell viability was 

measured using MTT assay.  Statistical significance from corresponding controls: *p<0.05; **p<0.01. 

 

Fig. 5. Effect of SFN on endothelial tube formation in a 3-D angiogenesis assay.  

Culture medium supplemented with SFN (0-40 µM) was added to the top of 3-D collagen gels and then 

changed every 24 h with fresh SFN added. 3-D gels were fixed at day 5, immunostained with CD31 (red) 
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and collagen type IV (green), and counterstained with DAPI (blue). (A): Low magnification pictures were 

taken from five random fields of each sample and calculated for average tube length. (B) Representative 

pictures are shown in triple staining with higher magnification. Data are expressed as mean ± SD (n=5) 

(C). *P<0.05; ** P<0.01 compared to untreated control. 

 

Fig. 6. A schematic diagram on the hormetic effect of ITCs. 

For all cell types, dosage range 0-A is safe. In the majority of diets, the intakes of hormetic 

phytochemicals are likely to fall within this safe range.  For normal cells, dose B could be used 

promote new blood vessel formation or promote wound healing; doses >C are toxic. For tumour 

cells, doses between A and C should be avoided; and doses >C to D could be used for 

chemotherapy.  
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Table 1.  Human studies with plasma levels of dietary ITCs 

Study type Subjects 
(n) 
 

Dose Plasma conc. 
(µM) 

Refs 

Metabolisms, 
pharmacokinetics  

4 200 µmol ITCs (largely SFN) 0.94-2.27 Ye et al., 
2002 [40]. 

Metabolism 16 GST(+): 107 & 345.8 µmol SFN; 

GST(-): 95 & 342 µmol SFN 

2.2; 7.3 

2.3; 7.4 

Gasper et al., 
2005 [41]. 

Metabolism 
 

4 70 or 120 µmol SFN 0.9 or 2.1 Cramer et al., 
2011 [42]. 

Bioavailability 12 150 µmol glucoraphanin 2.2 Clarke et al., 
2011 [43]. 

Pharmacokinetics 4 100 g watercress 0.928 (±0.25) Ji et al., 2003 
[44]. 

 


