
Multi-Objective Evolutionary
Algorithms for Data Clustering

Oliver Andrew Kirkland

A thesis submitted for the Degree of

Doctor of Philosophy

University of East Anglia

School of Computing Sciences

October 2014

c©This copy of the thesis has been supplied on condition that anyone who consults it is understood
to recognise that its copyright rests with the author and that no quotation from the thesis, nor
any information derived therefrom, may be published without the author’s prior written consent.

Abstract

In this work we investigate the use of Multi-Objective metaheuristics for the data

mining task of clustering. We first investigate methods of evaluating the quality of

clustering solutions, we then propose a new Multi-Objective clustering algorithm

driven by multiple measures of cluster quality and then perform investigations into

the performance of different Multi-Objective clustering algorithms.

In the context of clustering, a robust measure for evaluating clustering solutions is

an important component of an algorithm. These Cluster Quality Measures (CQMs)

should rely solely on the structure of the clustering solution. A robust CQM should

have three properties: it should be able to reward a “good” clustering solution; it

should decrease in value monotonically as the solution quality deteriorates and, it

should be able to evaluate clustering solutions with varying numbers of clusters. We

review existing CQMs and present an experimental evaluation of their robustness.

We find that measures based on connectivity are more robust than other measures

for cluster evaluation.

We then introduce a new Multi-Objective Clustering algorithm (MOCA). The

use of Multi-Objective optimisation in clustering is desirable because it permits the

incorporation of multiple measures of cluster quality. Since the definition of what

constitutes a good clustering is far from clear, it is beneficial to develop algorithms

that allow for multiple CQMs to be accommodated. The selection of the clustering

quality measures to use as objectives for MOCA is informed by our previous work

with internal evaluation measures. We explain the implementation details and per-

form experimental work to establish its worth. We compare MOCA with k-means

i

ii

and find some promising results. We find that MOCA can generate a pool of clus-

tering solutions that is more likely to contain the optimal clustering solution than

the pool of solutions generated by k-means.

We also perform an investigation into the performance of different implementa-

tions of MOEA algorithms for clustering. We find that representations of clustering

based around centroids and medoids produce more desirable clustering solutions

and Pareto fronts. We also find that mutation operators that greatly disrupt the

clustering solutions lead to better exploration of the Pareto front whereas mutation

operators that modify the clustering solutions in a more moderate way lead to higher

quality clustering solutions.

We then perform more specific investigations into the performance of mutation

operators focussing on operators that promote clustering solution quality, explo-

ration of the Pareto front and a hybrid combination. We use a number of techniques

to assess the performance of the mutation operators as the algorithms execute. We

confirm that a disruptive mutation operator leads to better exploration of the Pareto

front and mutation operators that modify the clustering solutions lead to the dis-

covery of higher quality clustering solutions. We find that our implementation of a

hybrid mutation operator does not lead to a good improvement with respect to the

other mutation operators but does show promise for future work.

Acknowlegments

I would like to thank my supervisor Beatriz De La Iglesia for her supervision. Her

advice and never ending patience has made the last five years possible. Thanks

to my viva examiners, Wenjia Wang and Alex Freitas and to all the lecturers who

provided me with additional advice, support or opportunities at sometime or another

including: Piere Chardaire, Tony Bagnall, Gavin Cawley and Barry Theobold and

Stephen Laycock.

I would like to acknowledge Craig Howard and the staff at Evoke Systems for

providing me the opportunity to work for them during and after my studies. I don’t

know where I would be without their support and exceptional flexibility.

Thanks to all the people I shared working space with and socialised with within

the department. In no particular order: Sarah Taylor, Philip Harding, Jason Lines,

Luke Davis, John Taylor, Jacob Newman, Osama Dorgham, Dominic Howell, Chris

Watkins, Faheem Khan, Chris Asque, Andrea DeMarco, Chris Bocking, Felix Shaw,

Helen Bear, Chris Applegate, Stuart Lynch, Mike Harris, Geoffrey French, Jao Bet-

tencourt Da Silva and George Kettleburgh. I would also like to acknowledge all

the people from UEA I played football with, I don’t know how you survived my

ineptitude. Thanks to all of my friends outside of CMP who have provided support,

even though they had no idea what I was talking about, including: Michelle Stur-

man, Alex Morter, Mark Davidson, Donald Ashworth, Mark Beeby, Lauren Gollop,

Alex Swain, Oliver Henderson, Andy Cadley, Andy Courtenay, Justin Breeze, Daniel

Norton, Julian Polzella, Alex Jenkins, Steve Watson and Taya Allen.1

Finally, I would like to thank my parents, Monica and Ivan, as without them

none of this would have been possible.

1If I have forgotten anyone I’l buy you a pint to make up for it... There are a lot of you!

iii

CONTENTS iv

Contents

List of Abbreviations vii

List of Figures viii

List of Tables xi

List of Algorithms xiii

1 Introduction 1
1.1 Research Methodology . 2
1.2 Contributions . 3
1.3 Thesis Structure . 4

2 The Clustering Problem 6
2.1 Problem Definitions . 6

2.1.1 Distance Measure Definitions 7
2.1.2 Clustering Solution Definitions 9
2.1.3 Clustering Solution Properties 11

2.2 Existing Clustering Techniques . 13
2.2.1 Partitional Techniques . 14

2.2.1.1 k-Means . 14
2.2.1.2 k-Medoids . 15
2.2.1.3 Selecting k . 17

2.2.2 Hierarchical Techniques . 18
2.2.2.1 Ward’s Method . 19
2.2.2.2 Other Methods . 20
2.2.2.3 Selecting the Number of Clusters 23

2.2.3 Density Based Techniques . 23
2.3 Internal Cluster Quality Measures . 24

2.3.1 Variance Ratio Criterion . 25
2.3.2 Dunn and Dunn like Indices 25
2.3.3 Davies-Bouldin Index . 28
2.3.4 Halkidi Indexes . 29

2.3.4.1 SD Validity Index 29
2.3.4.2 SDbw Validity Index 30
2.3.4.3 CDbw Validity Index 31

CONTENTS v

2.3.5 RMSSDT & RS . 33
2.3.6 Silhouette Width Criterion . 34
2.3.7 Connectivity & Disconnectivity 35

2.4 External Clustering Quality Measures 37
2.5 Summary . 38

3 Cluster Quality Measures Experimentation 40
3.1 Introduction . 40
3.2 Methodology . 41
3.3 Results . 44

3.3.1 Varying the Number of Dimensions 45
3.3.2 Varying the Number of Clusters 47
3.3.3 Varying the Cluster Size . 48
3.3.4 Varying the Number of Outliers 50
3.3.5 Overall Results . 52

3.4 Summary & Conclusions . 52

4 Solving Problems with Multiple Objectives 55
4.1 Multiple Criteria Decision Making . 56

4.1.1 Pareto Dominance . 59
4.2 Solving MCDM Problems . 63

4.2.1 Genetic Algorithms . 63
4.2.2 Multi-Objective Evolutionary Algorithms 66

4.2.2.1 Aggregation Based Algorithms 66
4.2.2.2 Criterion Based Algorithms 67
4.2.2.3 Dominance Based Algorithms 68
4.2.2.4 Dominance Depth Algorithms 69
4.2.2.5 Recent Algorithms 73

4.3 Evaluation of Pareto Fronts . 74
4.3.1 Volume of Dominated Space 75
4.3.2 Coverage . 77
4.3.3 Spread . 78
4.3.4 Generational Distance &

Inverted Generational Distance 80
4.3.4.1 Entropy . 82

4.4 Representations of Clustering Solutions for Evolutionary Algorithms . 82
4.4.1 Medoid Based Binary Encoding 83

4.4.1.1 Mutation Operators 84
4.4.1.2 Crossover Operators 86

4.4.2 Label Based Integer Encoding 87
4.4.2.1 Mutation Operators 89
4.4.2.2 Crossover Operators 89

4.4.3 Centroid Based Real Encoding 90
4.4.3.1 Mutation Operators 90
4.4.3.2 Crossover Operators 91

CONTENTS vi

4.5 An Overview of MOEAs for Clustering 93
4.6 Summary . 96

5 A Novel MO Clustering Algorithm 97
5.1 Introduction . 97
5.2 The Proposed Multi-Objective Clustering Algorithm 98

5.2.1 Solutions Representation & Initialisation 99
5.2.2 Mutation Operator . 100

5.2.2.1 Decrease . 100
5.2.2.2 Increase . 100
5.2.2.3 Recompute Prototypes 101
5.2.2.4 Sub-Operator Selection 101

5.2.3 Crossover Operator . 101
5.2.4 Fitness Measures for MOCA 102

5.2.4.1 Homogeneity Based Fitness Measure 102
5.2.4.2 Separation Based Fitness Measure 103
5.2.4.3 Connectivity Based Fitness Measure 104

5.2.5 Overview . 105
5.3 Preliminary Experimental Evaluation of MOCA 105

5.3.1 Construction of Synthetic Data Sets 107
5.3.2 Experimental Method . 107
5.3.3 Comparison to DBSCAN . 108

5.4 Preliminary Results with Synthetic Datasets 109
5.5 Conclusions & Summary . 112

6 Experimental Comparison of Clustering Representations 114
6.1 Introduction . 114
6.2 Experimental Design . 115
6.3 Results . 119
6.4 Conclusion & Summary . 125

7 Experimental Comparison of New Mutation Operators 128
7.1 Introduction . 128
7.2 Multi-Objective Clustering Algorithm 129

7.2.1 Representation . 130
7.2.2 Crossover . 130
7.2.3 Mutation Operators . 131

7.2.3.1 Randomness Mutation (RM) 131
7.2.3.2 k-Means Like Mutation (KMLM) 133
7.2.3.3 Hybrid Mutation (HM) 134

7.3 Experimental Setup . 134
7.4 Results . 138

7.4.1 Volume of Dominated Space 138
7.4.2 GD & IGD . 141
7.4.3 Spread . 146

CONTENTS vii

7.4.4 Entropy . 151
7.4.5 Average Rand Index . 153

7.5 Summary & Conclusions . 156

8 Conclusions and Further Work 159
8.1 Summary & Contributions . 159
8.2 Further Work . 162

Appendices 165

A Graphs for Mutation Operator Comparison 166

B Additional MOCA Experimental Results 194

Bibliography 197

List of Abbreviations

Abbreviation Meaning
CBRE Centroid Based Real Encoding
CLARA Clustering LARge Applications
CLARANS Clustering Large Applications based upon RANdomized Search
CQM Cluster Quality Measures
DB Davies-Bouldin index
DBSCAN Density Based Spatial Clustering of Applications with Noise
GA Genetic Algorithms
GD Generational Distance
HM Hybrid Mutation
HypE Hypervolume E Optimisation
IGD Inverted Generational Distance
KMA k-Means Algorithm
KMLM k-Means Like Mutation
LBIE Label Based Integer Encoding
MBBE Medoid Based Binary Encoding
MCDM Multiple Criteria Decision Making
MO Multi-Objective
MOCK Multi-Objective Clustering with automatic determination of k
MOEA Multi-Objective Evolutionary Algorithms
MOGA Multiple Objective Genetic Algorithm
NPGA Niched Pareto Genetic Algorithm
NSGA-II Non-Dominated Sorting Genetic Algorithm II
OPTICS Ordering Points to Identify the Clustering Structure
PAM Partitioning Around Medoids
PESA- II Pareto Evolutionary Strength Algorithm
RM Randomness Mutation
RMSSTD Root-Mean-Square Standard Total Deviation
RS R-Squared
SMS-EMOA S Metric Selection Evolutionary Multi-Objective Algorithm
SPEA Strength Pareto Evolutionary Algorithm
SWC Silhouette Width Criterion
VEGA Vector Evaluated Genetic Algorithm
VIENNA Voronoi Initialised Evolutionary Nearest-Neighbour Algorithm
VRC Variance Ratio Criterion

viii

LIST OF FIGURES ix

List of Figures

2.1 An example Dendrogram . 19

3.1 Example of the change of the Rand Index on the Iris data set as it is
misclassified. 44

3.2 Key to plots . 44
3.3 Change in maximum correlation value between external and internal

cluster quality measures as the number of dimensions is varied. 45
3.4 Change in minimum correlation value as the number of dimensions is

varied. 46
3.5 Change in mean correlation value between external and internal clus-

ter quality measures as the number of dimensions is varied. 46
3.6 Change in maximum correlation value as the number of clusters is

varied. 47
3.7 Change in minimum correlation value as the number of clusters is

varied. 47
3.8 Change in mean correlation value as the number of clusters is varied. 48

4.1 Example of a set of solutions (squares) to a problem where the goals
are to maximise quality and minimise cost. 57

4.2 Example of which solutions (squares) can be considered: better (in
the green area), worse (in the red area) or incomparable (in the white
area) when compared to a specific solution (the black square). 58

4.3 Example where solutions that dominate and strictly dominate other
solutions have been highlighted for discussion. 60

4.4 Example of which solutions (red) form the Pareto front from a given
set of solutions (squares) to a problem. 61

4.5 Example of ε-dominance and cone dominance. 62
4.6 Example of Dominance Depth. 70
4.7 Example of the area dominated by different sets of solutions. λ (Sa) =

0.58805 λ (Sb) = 0.3025 λ (Sc) = 0.24795. 76
4.8 Examples of C̃-Measure; C̃ (Sa,Sb) = 1 , C̃ (Sa,Sc) = 1, C̃ (Sb,Sa) =

0, C̃ (Sb,Sc) = 4
9
, C̃ (Sc,Sa) = 0 and C̃ (Sc,Sb) = 4

8
. 78

4.9 Example of the distances used to calculated Sa for a constructed
optimal Pareto front and a constructed Pareto front. 79

4.10 Distances used to calculate GD and IGD for a constructed optimal
Pareto front, S∗, and a constructed Pareto front Sa that is being
evaluated. 81

LIST OF FIGURES x

4.11 Individual Bit Mutation . 85
4.12 Multiple Bit Mutation . 85
4.13 Invert Mutation . 85
4.14 One Point Crossover . 86
4.15 Two Point Crossover . 86
4.16 Three Point Crossover . 86
4.17 Uniform Crossover . 87
4.18 Variable Length One Point Crossover 91

7.1 Visual Representation of Constructed Data Sets 136
7.2 Change in Volume of Dominated Space for Dataset e 139
7.3 Change in Volume of Dominated Space for Dataset g 139
7.4 Critical difference diagram for Volume of the Dominated Space 140
7.5 Change in GD for Dataset g . 141
7.6 Change in GD for Dataset a . 142
7.7 Change in GD for Dataset b . 142
7.8 Critical difference diagram for GD 144
7.9 Change in IGD for Dataset e . 144
7.10 Change in IGD for Dataset f . 145
7.11 Change in IGD for Dataset h . 146
7.12 Critical difference diagram for IGD 147
7.13 Change in Spread for Dataset g . 148
7.14 Change in Spread for Dataset e . 148
7.15 Change in Spread for Dataset f . 149
7.16 Critical difference diagram for Spread 150
7.17 Change in Entropy for Dataset a . 151
7.18 Change in Entropy for Dataset b . 152
7.19 Critical difference diagram for Entropy 153
7.20 Change in Average Rand Index for Dataset a 154
7.21 Change in Average Rand Index for Dataset c 154
7.22 Change in Average Rand Index for Dataset h 155

A.1 Change in Volume of Dominated Space for Dataset a 166
A.2 Change in Volume of Dominated Space for Dataset b 167
A.3 Change in Volume of Dominated Space for Dataset c 167
A.4 Change in Volume of Dominated Space for Dataset d 168
A.5 Change in Volume of Dominated Space for Dataset e 168
A.6 Change in Volume of Dominated Space for Dataset f 169
A.7 Change in Volume of Dominated Space for Dataset g 169
A.8 Change in Volume of Dominated Space for Dataset h 170
A.9 Change in Volume of Dominated Space for Dataset i 170
A.10 Change in GD for Dataset a . 171
A.11 Change in GD for Dataset b . 171
A.12 Change in GD for Dataset c . 172
A.13 Change in GD for Dataset d . 172

A.14 Change in GD for Dataset e . 173
A.15 Change in GD for Dataset f . 173
A.16 Change in GD for Dataset g . 174
A.17 Change in GD for Dataset h . 174
A.18 Change in GD for Dataset i . 175
A.19 Change in IGD for Dataset a . 175
A.20 Change in IGD for Dataset b . 176
A.21 Change in IGD for Dataset c . 176
A.22 Change in IGD for Dataset d . 177
A.23 Change in IGD for Dataset e . 177
A.24 Change in IGD for Dataset f . 178
A.25 Change in IGD for Dataset g . 178
A.26 Change in IGD for Dataset h . 179
A.27 Change in IGD for Dataset i . 179
A.28 Change in Spread for Dataset a . 180
A.29 Change in Spread for Dataset b . 180
A.30 Change in Spread for Dataset c . 181
A.31 Change in Spread for Dataset d . 181
A.32 Change in Spread for Dataset e . 182
A.33 Change in Spread for Dataset f . 182
A.34 Change in Spread for Dataset g . 183
A.35 Change in Spread for Dataset h . 183
A.36 Change in Spread for Dataset i . 184
A.37 Change in Entropy for Dataset a . 184
A.38 Change in Entropy for Dataset b . 185
A.39 Change in Entropy for Dataset c . 185
A.40 Change in Entropy for Dataset d . 186
A.41 Change in Entropy for Dataset e . 186
A.42 Change in Entropy for Dataset f . 187
A.43 Change in Entropy for Dataset g . 187
A.44 Change in Entropy for Dataset h . 188
A.45 Change in Entropy for Dataset i . 188
A.46 Change in Average Rand Index for Dataset a 189
A.47 Change in Average Rand Index for Dataset b 189
A.48 Change in Average Rand Index for Dataset c 190
A.49 Change in Average Rand Index for Dataset d 190
A.50 Change in Average Rand Index for Dataset e 191
A.51 Change in Average Rand Index for Dataset f 191
A.52 Change in Average Rand Index for Dataset g 192
A.53 Change in Average Rand Index for Dataset h 192
A.54 Change in Average Rand Index for Dataset i 193

xi

LIST OF TABLES xii

List of Tables

3.1 Change in maximum correlation value as the cluster size is varied. . . 48
3.2 Change in minimum correlation value as the cluster size is varied. . . 49
3.3 Change in mean correlation value as the cluster size is varied. 49
3.4 Change in maximum correlation value as the number of outliers is

varied. 50
3.5 Change in minimum correlation value as the number of outliers is

varied. 51
3.6 Change in mean correlation value as the number of outliers is varied. 51
3.7 Minimum, Maximum, Mean, S.D. of correlation values for each cluster

quality measure. 51

5.1 Summary of Results . 110
5.2 Comparison of k-means, DBSCAN and MOCA on selected synthetic

data sets where the intended value of k is 2 or 6 and there are no
outliers. 111

6.1 Data Sets . 115
6.2 Configurations . 117
6.3 Results of the Proposed MOEA for Clustering by Front Quality . . . 120
6.4 Results of the Proposed MOEA for Clustering by RI (P ,P ′) 122
6.5 Results of the Proposed MOEA for Clustering for Mutation by Front

Quality . 123
6.6 Results of the Proposed MOEA for Clustering for Mutation byRI (P ,P ′)124
6.7 Results of the Proposed MOEA for Clustering for Crossover by Front

Quality . 125
6.8 Results of the Proposed MOEA for Clustering for Crossover byRI (P ,P ′)125

7.1 Data Sets . 137
7.2 Volume of the Dominated Space of the final Pareto front (best results

highlighted) . 140
7.3 GD of the final Pareto front (best results highlighted) 143
7.4 IGD of the final Pareto front (best results highlighted) 147
7.5 Spread of the final Pareto front (best results highlighted) 150
7.6 Entropy of the final Pareto front (best results highlighted) 152
7.7 Average Rand Index in the final Pareto front (best results highlighted)156

LIST OF TABLES xiii

B.1 Comparison of k-means, DBSCAN and MOCA on selected synthetic
data sets where the intended value of k ≤ 6. 195

B.2 Comparison of k-means, DBSCAN and MOCA on selected synthetic
data sets where the intended value of k ≥ 10. 196

List of Algorithms

2.1 k-means . 15
2.2 k-Medoids . 16
4.1 Outline of a Simple Genetic Algorithm 64
4.2 Calculate Dominance Depth . 71
4.3 Calculate Crowding Distance . 72
4.4 Renumbering Procedure . 88
5.1 MOCA . 106

xiv

Chapter 1

Introduction

Clustering is the process of dividing a set of observations into subsets in an unsuper-

vised manner. It has a wide variety of applications within Knowledge Discovery and

Data Mining and in other areas such as image processing [21, 131] and psychology

[4]. Clustering is now a well developed field.

A large number of techniques have been investigated with an aim to solving

the clustering problem [76]. This has led to the development of a large number of

clustering algorithms. An inherent problem with clustering algorithms developed to

date is the definition of what is a good solution to a clustering problem. There are a

large number of conflicting definitions and opinions on what makes a good clustering.

Clustering is also a very subjective problem and may be task dependant. It may be

helpful in this context to find a range of potentially good clustering solutions.

Multi-Objective Evolutionary Algorithms (MOEA) [46, 72] are a class of algo-

rithm that attempts to solve problems where there are conflicting objectives. That

is to say, there is no single solution to the problem, instead they find a set of trade-

off solutions. These algorithms are an interesting area of study as they apply the

concepts of biological evolution to problem solving with good results in real world

problems. They will suit our goal of trying to produce a range of solutions to

clustering problems according to different objectives.

1

CHAPTER 1. INTRODUCTION 2

MOEAs have been previously applied to clustering problems successfully. We

believe that there is room for further work on applying MOEAs to the clustering

problem. We will investigate various methods of assessing the quality of clustering

solutions to see if combining these methods together will lead to the discovery of a

good range of clustering solutions. We will also investigate various ways of repre-

senting and manipulating clustering solutions within the context of Multi-Objective

Evolutionary Algorithms.

1.1 Research Methodology

In broad terms a MOEA consists of: a representation of solutions to a problem,

a method of initialising solutions, method(s) of assessing the fitness of solutions, a

mutation operator to modify solutions, a crossover operator to combine solutions,

a method for selecting solutions and a strategy to manage the Pareto front. In out

work we will experiment with some of those, in particular representation, initialisa-

tion, fitness functions, mutation and crossover operators to create an effective MO

clustering algorithm.

We begin by reviewing a number of Cluster Quality Measures (CQMs) as CQMs

will be suitable fitness measures of an MOEA. We also review methods for comparing

clustering solutions.We perform our experiment by degrading clustering solutions in

a steady fashion on the assumption that we should also see a steady degradation of

CQMs in a similar fashion. A good CQM should show a gradual improvement as a

clustering solution approaches an optimal clustering solution.

We then review a number of MOEAs and MO tools to inform our decision of

which MOEA to use. We are focussing our studies on applying existing MOEAs

to the clustering problem and we do not propose any new strategies for maintaing

a population of solutions or selecting solutions as part of a MOEA. We review

a number of ways of representing a clustering solution that are compatible with

an MOEA and ways of modifying these solutions using crossover and mutation

CHAPTER 1. INTRODUCTION 3

operators.

We also review and discuss a number of methods of assessing the quality of

Pareto fronts and individual clustering solutions generated by an MOEA. We need

to assess the quality of sets of solutions generated by an MOEA so we can determine

if different ways of representing solutions, assessing the fitness of solutions with

CQMs and manipulating solutions lead to higher quality sets of solutions.

We propose an MOEA for clustering with novel mutation and crossover opera-

tors. We base this upon an existing MOEA, representation of a clustering solution

informed by our previous review and CQMs as the fitness functions based upon our

previous experimentation. We then review the performance of this algorithm by

assessing the quality of the clustering solutions generated.

We perform a more in depth study of representations and their manipulation

within a MOCA. Finally, we perform a further experimental evaluation that focusses

on the effects on performance of mutation operators.

1.2 Contributions

In this thesis we provide four main contributions in Chapters 3, 5, 6 and 7.

• In Chapter 3 proposes an experimental method for assessing CQMs based

upon degrading solutions and assess a number of CQMs. This was originally

published in [83].

• Chapter 5 proposes a MOCA that uses novel mutation and crossover operators.

This was originally described in [85].

• Chapter 6 provides an experimental comparison of representations of clustering

solutions and methods for manipulating these representations.

• Chapter 7 is a further experimental comparison that focusses upon the per-

formance of mutation operators measured by the quality of the clustering

CHAPTER 1. INTRODUCTION 4

solutions produced and the quality of the Pareto fronts discovered. This was

originally published in [84].

We also provide an extensive review of CQMs in Chapter 2 and a review of

representations of clustering solutions and methods of manipulating them in Chapter

4.

1.3 Thesis Structure

Here we describe the content and arrangement of the other chapters of this thesis.

Chapter 2 serves as an introduction and background to the clustering problem.

It provides some definitions that are used throughout the thesis. We introduce a

number of algorithms used to solve clustering problems. We then introduce methods

of assessing the quality of clustering solutions and the concept of Cluster Quality

Measures (CQM). These are used throughout the thesis.

Chapter 3 defines an experiment to determine the performance of CQMs. This is

important for our later work. The results of this experiment were published in [83].

Multi-Objective Evolutionary Algorithms (MOEA) are introduced in Chapter 4.

We provide some overview of MOEAs and introduce methods of assessing the quality

of the Pareto fronts produced by MOEAs.

Chapter 5 presents a MOEA we devised to solve clustering problems. We perform

a brief evaluation of the algorithm to test its validity. Our results for this were

presented in [85].

In Chapter 6, we define an experiment to assess combinations of the various

MOEA operators and problem representations we defined in Chapters 4 and 5.

This study focusses on the problem representation.

In Chapter 7, we present a further study focussing on the performance of various

mutation operators. We also define enhancements to the mutation operator we

defined in Chapter 5. The experiment and its conclusions were presented in [84].

CHAPTER 1. INTRODUCTION 5

Chapter 8 concludes the thesis. We present a discussion of our findings, and the

problems and limitations we encountered. Finally, we present suggestions for future

work.

Chapter 2

The Clustering Problem

Clustering algorithms divide a data set of observations (or objects) into a number

of partitions or clusters. This is an important task in the Knowledge Discovery

and Data mining (KDD) process, in visualisation, and in other contexts. Many

clustering algorithms have been proposed. These are tailored to produce different

results for specific types of data sets.

Here we introduce the problem of clustering, some of the relevant algorithms and

the many, valid, clustering evaluation measures [25, 140] that may encapsulate the

essential properties of clustering.

2.1 Problem Definitions

We define an object, ~xi, as a d dimensional feature vector, ~xi = (xi1, . . . , xid), where

xie ∈ R, e = 1...d. A data set, D, is a set of n of these objects D = {~x1, . . . , ~xn}.

For any two objects, ~xi and ~xj, we can measure the distance between them using

a distance function, δ (~xi, ~xj). This is used to give an indication of the similarity of

any two given objects.

6

CHAPTER 2. THE CLUSTERING PROBLEM 7

2.1.1 Distance Measure Definitions

A distance measure that is used for clustering must satisfy the following properties:

• All distances should be non-negative: δ (~xi, ~xj) ∈ [0,∞)∀~xi, ~xj ∈ D;

• The distance between two objects is 0 only if and only if the objects are equal:

δ (~xi, ~xj) = 0 if and only if ~xi = ~xj, i.e. identity;

• The distance between two objects must be consistent; or symmetric:

δ (~xi, ~xj) = δ (~xj, ~xi)∀~xi, ~xj ∈ D; and,

• The distance function must adhere to the triangle inequality: δ (~xi, ~xj) ≤

δ (~xi, ~xk) + δ (~xk, ~xj)∀~xi, ~xj, ~xk ∈ D.

Numerous distance measures that satisfy these properties have been defined to

date. Here we detail several popular distance measures for the clustering problem.

The Minkowski distance measure [76] is the generalised form of three popular

distance measures. It is given as:

δMinkowski (~xi, ~xj) =

(
d∑
e=1

(xie − xje)p
) 1

p

(2.1)

The Manhattan distance measure [76], also known as the city block distance

measure, is the sum of the absolute distances of the objects. It is a special case of

the Minkowski distance where p = 1. It is defined formally as:

δManhattan (~xi, ~xj) =
d∑
e=1

|xie − xje| (2.2)

The Euclidean distance measure [76] is another special case of the Minkowski

distance measure where p = 2. It is formally defined as:

δEuclidean (~xi, ~xj) =

√√√√ d∑
e=1

(xie − xje)2 (2.3)

CHAPTER 2. THE CLUSTERING PROBLEM 8

The Chebyshev distance measure [76], also known as the chessboard distance

measure, is another special case of the Minkowski distance measure where p is in-

finite. This is equivalent to the greatest distance between the objects in a single

dimension.

δChebyshev (~xi, ~xj) = lim
p→inf

(
d∑
e=1

(xie − xje)p
) 1

p

=
d

max
e=1
|xie − xje| (2.4)

The Canberra distance measure [93] is similar to the Manhattan distance mea-

sure. It is more sensitive to distances between objects that are close to the origin

than the Manhattan distance measure, but is less sensitive to high values in a given

dimension than the Manhattan distance measure. This measure is useful for detect-

ing differences between objects in high dimensional spaces.

δCanberra (~xi, ~xj) =

0 for ~xi = ~xj = 0∑d
e=1

|xie−xje|
|xie|+|xje| for ~xi 6= 0 or ~xj 6= 0

(2.5)

The Pearson correlation coefficient [128] may be used as a measure of dissimilarity

between two objects which gives us a distance between any two objects. The Pearson

correlation coefficient of two objects, ~xi and ~xj, is given as φ (~xi, ~xj) where −1 ≤

φ (~xi, ~xj) ≤ 1. By transforming the value of the Pearson correlation coefficient into

the interval [0, 1] we can obtain a distance measure:

δPearson (~xi, ~xj) = 1− φ (~xi, ~xj) (2.6)

where φ (~xi, ~xj) =

∑d
e=1 (xie − µ~xi)

(
xje − µ~xj

)√∑d
e=1 (xie − µ~xi)

2
√∑d

e=1

(
xje − µ~xj

)2 (2.7)

and µ~xi =

∑d
e=1 xie
d

(2.8)

CHAPTER 2. THE CLUSTERING PROBLEM 9

Unfortunately this equation has the drawback of computing the mean across all of

the variables. Each of the variables has different meanings and may be on a different

scale which means that this measure of dissimilarity is not very meaningful in some

cases.

Similarly we can use the cross product index of two objects, ~xi and ~xj, to obtain

the angular separation of the objects. Again by transforming the result into the

interval [0, 1] we obtain another distance measure:

δ (~xi, ~xj) = 1− φ (~xi, ~xj) (2.9)

where φ (~xi, ~xj)

∑d
e=1 xiexje√∑d

e=1 x
2
ie

∑d
e=1 x

2
je

(2.10)

In this work we use the Euclidean distance metric to measure the distance between

any given pair of objects, hence δ (~xi, ~xj) refers to the Euclidean distance between

~xi and ~xj.

2.1.2 Clustering Solution Definitions

D can be partitioned to form a set of k subsets representing a clustering, P =

{P1, . . . ,Pk}. Each cluster Pg, where g runs from 1 to k, is a set of ng objects

from D, Pg =
{
~xg1, . . . , ~x

g
ng

}
, so each object is a d dimensional feature vector,

~xgi = (xgi1, . . . , x
g
id).

We are concerned with complete, non-overlapping, clustering solutions. That is

to say,

• all objects must belong to at most one cluster: Pg ∩ Ph = ∅, ∀Pg,Ph ∈ P

where g 6= h;

• all objects must belong to one cluster so no objects are classified as outliers or

noise: P1 ∪ · · · ∪ Pk = D; and,

CHAPTER 2. THE CLUSTERING PROBLEM 10

• no cluster is allowed to be empty: Pg 6= ∅.

Assigning an object to a cluster may be a complete or partial assignment, known

as crisp or fuzzy clustering respectively. In this work we use crisp clustering as each

object in the data set i assigned to one cluster only. Fuzzy clustering is an alternative

method of assigning each object from the data set to more than one cluster. Each

object is assigned proportionately to each cluster in the solution with a strength

of membership in the range [0, 1]. In traditional crisp clustering the membership

of each cluster is either 0 or 1 for a given object. In fuzzy clustering an object

could have, for instance, a membership to one cluster of 0.6 and a membership to

another cluster of 0.4. This allows us to say that an object belongs to more than one

cluster. This is useful where the boundaries of clusters overlap or the area around

the objects is noisy. Fuzzy clustering is a more complex form of clustering than crisp

clustering. The calculation of centroids and medoids is more complicated, and the

final result may be required in a crisp form to be useful. We have chosen to use crisp

clustering in this work as it simplifies the assessment of clustering solutions and the

techniques for assessing the quality of clustering solutions that we will introduce in

section 2.3. Fuzzy clustering is of relevance as there are algorithms that have been

developed for the task of fuzzy clustering such as fuzzy c-means [10]. There have

also been developments in the areas of measuring cluster quality that we use in this

work and developments in multi-objective optimisation algorithms for the task of

fuzzy clustering that are similar to the goals of this work [105].

The centroid of Pg, ~cg, is a d dimensional feature vector representing the centre

point of Pg. ~cg may, or may not, correspond to a member of Pg. To compute ~cg the

value of each dimension must first be calculated. The e-th dimension is calculated

as: cge =
(∑ng

i=1 x
g
ie

)
/ng. Thus, ~cg = (cg1, . . . , cgd). The centroid of the data set D,

~v = (v1, . . . , vd), is calculated in a similar fashion.

For a given data set, D, a set of N clustering solutions may be generated

P =
{
P1, . . . ,PN

}
. Many sets of of clustering solutions may be produced for a

given data set by using different clustering algorithms or from different executions

CHAPTER 2. THE CLUSTERING PROBLEM 11

of the same algorithm. Depending on the clustering algorithm used, this may be as

part of the process or because execution is repeated with different parameters (e.g.

hierarchical clustering, partitional clustering) or as the result of a multi-objective ge-

netic algorithm. The set of clustering solutions often contains solutions constructed

with a varied number of clusters, k. Selecting the correct k is an important task

within cluster analysis [109, 138]. Even for a fixed k, many solutions may be con-

structed which divide a data set differently into k clusters and selecting the “best”

solution from this set is still a challenging task [145]. More detail on how to evaluate

and compare individual solutions within a set of solutions is presented in Chapter

4.

2.1.3 Clustering Solution Properties

First we will establish some essential properties of the structure of a clustering

solution that can be measured and often form part of different quality measures.

The total variation, DT , of a given data set, D, is the sum of the squared Euclidean

the centroid of the data set, ~v, and each element in the data set, ~xi:

DT =
n∑
i=1

δ (~xi, ~v)2 (2.11)

For a given cluster, Pg, the total variation, PTPg
, a measure of heterogeneity, is

calculated as:

PTPg
=

ng∑
i=1

δ (~xgi ,~cg)
2 (2.12)

The within-cluster variation, PW , is the sum of the total variation for all clusters:

CHAPTER 2. THE CLUSTERING PROBLEM 12

PW =
k∑
g=1

PTPg
=

k∑
g=1

ng∑
i=1

δ (~xgi ,~cg)
2 (2.13)

A good solution is expected to group objects that are similar to each other into

the same cluster. A good solution will therefore lead to homogeneous clusters with

low within-cluster variation.

A good solution should also ensure that clusters are different from each other,

and therefore, well separated. In other words the clusters should be heterogeneous

with respect to one another. The between-cluster variation, PB, is a measure of het-

erogeneity calculated as the weighted sum of squared distances between the clusters

centroids and the data centroid. The weight for each term in the sum is the number

of members of a given cluster. For a good clustering solution PB should have a high

value.

PB =
k∑
g=1

ngδ (~cg, ~v)2 (2.14)

It is worth noting that the between-cluster variation and within-cluster variation

sum to become the total variation of the data set, DT = PW +PB. These measures

work in parallel, and therefore minimisation of one should result in maximisation of

the other.

As well as homogeneity of objects within a cluster and heterogeneity (or sepa-

ration) of the clustering solution, a third property often considered in clustering is

that of connectivity between the objects within a cluster and disconnectivity be-

tween objects of different clusters. The concepts of k-nearest neighbour(kNN) and

k-mutual nearest neighbour (kMN) consistent clustering have been proposed [32] in

the context of connected clusters. Note that k in this context does not refer to the

number of clusters.

CHAPTER 2. THE CLUSTERING PROBLEM 13

The nearest neighbour of an object, ~xi, is the object, ~x1i , where

δ
(
~xi, ~x

1
i

)
≤ δ (~xi, ~xj) for ∀j ∈ D, where ~xi 6= ~x1i (2.15)

Following from this, we can construct a ranked list of nearest neighbours of object

~xi where ~x1i is the nearest neighbour, ~x2i is the second nearest neighbour, and so on.

The mth nearest neighbour of ~xi is the object ~xmi as ranked by its distance to object

~xi. If ~xi is the kth nearest neighbour of ~xj and ~xj is the lth nearest neighbour of ~xi then

~xi and ~xj are the pth mutual nearest-neighbour of each other, where p = max (k, l).

A kNN consistent cluster is a group of objects where the k nearest-neighbours of

each object are also within the cluster and a kMN consistent cluster is a group of

objects where the k mutual nearest-neighbours are members of that cluster.

2.2 Existing Clustering Techniques

A clustering algorithm is an algorithm that partitions a set of objects into a set of

subsets according to some measure of similarity so that similar objects are placed

in the same subset.

In this work we are only considering hard, or crisp, partitions of the objects

into mutually disjoint sets. It is worth noting that clustering techniques exist for

partitioning the data set into soft, or fuzzy, sets of clusters [121].

There are a multitude of clustering algorithms presented in the literature [8, 65,

76, 81, 94, 150]. These can be grouped into many categories such as: partitional

techniques, hierarchical techniques and density based techniques, among others.

The clustering techniques most relevant to this work are partitional techniques

and hierarchical clustering techniques. A brief summary of these are given:

CHAPTER 2. THE CLUSTERING PROBLEM 14

2.2.1 Partitional Techniques

Partitional clustering techniques produce a single clustering solution for the data.

These techniques start with a random or user-defined clustering solution. This so-

lution is then optimised according to some objective by changing the cluster mem-

bership of the objects until a stopping criterion is met, such as no change in the

membership of any objects or no change in a clustering-quality measure.

Partitional algorithms are in general very efficient and easy to implement. How-

ever, parameters must be defined such as the number of clusters and the initial

clustering solution. The final clustering solution generated may vary depending

upon these initial parameters, so it is desirable to run the algorithm several times

with different parameters and select the best of these solutions.

2.2.1.1 k-Means

The k-means algorithm is the classic example of a clustering algorithm. The main

goal of the algorithm is to discover a given number of clusters by minimising the

distance between each object in a cluster and the centroid of the cluster [64, 69, 101].

Given a dataset, D, the algorithm will create a clustering solution, P , that consists

of k clusters. The value of k is typically specified by the end user of the algorithm.

First, k objects must be defined as the initial cluster centroids. The k objects

may be selected at random from the data set or selected using prior knowledge. At

the second stage, the clusters within the clustering solution are instantiated. Each

object in the dataset is assigned to the cluster with the closest centroid. Once each

object has been assigned to a cluster, the cluster centroids are recomputed. At this

stage a set of initial clusters exist.

The next stage of the algorithm is the improvement stage, where the clusters are

rearranged to find an optimum clustering solution. For each object in the dataset the

closest cluster centroid is calculated. If the object is not assigned to that cluster then

the object is reassigned and the cluster centroids are recalculated. This sequence

CHAPTER 2. THE CLUSTERING PROBLEM 15

of steps is repeated until a stopping criterion is met. This may be a given number

of iterations or when no change in cluster membership has occurred. The h-means

algorithm [137] differs from k-means at this stage. h-means is a clustering algorithm

commonly used in place of k-means as they are nearly identical. When using h-

Means the cluster centroids are recomputed once for every iteration through the

dataset. Given the same initial cluster centroids the same clustering solution is

usually calculated. However, the amount of time needed to compute the solution is

less as the cluster centroids are recomputed less often. h-means also lends itself to

parallel processing allowing a further reduction in the computing time required.

Algorithm 2.1 k-means

Designate k initial centroids
Associate each object in the dataset to its nearest centroid
Recalculate the centroids
repeat

for each object in the dataset do
Calculate the nearest centroid to the object
Associate the object to that centroid
Recalculate the affected centroids

end for
until no more improvement is possible

2.2.1.2 k-Medoids

k-Medoids algorithms are conceptually similar to k-means, the main difference is the

use of medoids in the place of centroids. The medoid of a cluster is an object that is

a typical representative of the cluster. It is usually the most centrally located object

within the cluster. To determine the medoid of a cluster we identify the object that

is a member of the cluster and has the minimal average dissimilarity to all of the

other objects within the cluster. There may be one or more objects that have a

minimal dissimilarity to other objects in the cluster. Where there are more than

one candidates for the medoid of a cluster only one candidate should be chosen.

Formally we define a medoid as:

CHAPTER 2. THE CLUSTERING PROBLEM 16

~mg = arg min
~xgi∈Pg

cost (~xgi) (2.16)

cost (~xgi) =
∑
j

δ
(
~xgi , ~x

g
j

)
∀~xgj ∈ D where j 6= i (2.17)

Determining the medoid of a cluster is computationally inefficient as each object

in the cluster must be tested. For large datasets the calculation of medoids becomes

time consuming as the number of objects in each cluster normally increases in line

with the size of the dataset.

Partitioning Around Medoids (PAM) [79] is a common implementation of the

k-Medoids algorithm. The implementation of a basic k-Medoids algorithm is very

similar to the k-Means algorithm. The main difference is the computation of medoids

in place of centroids.

Algorithm 2.2 k-Medoids

Designate k initial medoids
Associate each object in the dataset to its nearest medoid
Recalculate the medoid
repeat

for each object in the dataset do
Calculate the nearest medoid to the object
Associate the object to that medoid
Recalculate the affected medoid

end for
until no more improvement is possible

The centroid of a cluster is sensitive to outliers within the data set. This can lead

to partitions of the data that are influenced by these outliers. The use of medoids

reduces the effects of these outliers on the final clustering solution. Computing the

medoids of the cluster is more complex than calculating the centroid of a cluster.

However, in some cases [144] it has been found that k-medoids converges to a solu-

tions faster than using k-means, which can negate the effects of the increased time

of finding the medoids of the clusters.

CHAPTER 2. THE CLUSTERING PROBLEM 17

CLARA Clustering LARge Applications (CLARA) [80] is a clustering algorithm

designed for use with large data sets. It does not use all of the data to calculate par-

titions. Instead, a sample of the data set is used to calculate a set of medoids using

the PAM algorithm previously described in Section 2.2.1.2. This is performed sev-

eral times to produce a range of solutions. This approach leads to a known number

of calculations regardless of the size of the data sets. Therefore, the computational

complexity is linear instead of quadratic.

The set of medoids that is judged best on the whole data set is accepted as the

final set of medoids. For each set of medoids that has been produced the average

dissimilarity between the objects and their medoid is calculated. The solution that

has the lowest dissimilarity is accepted as the final solution.

Clustering Large Applications based upon RANdomized Search (CLARANS)

[117] is a further extension of CLARA that also produces sets of medoids using

a more complex method of drawing subsets from the overall data set. CLARANS

differs from CLARA by resampling the original data set at each step of the algorithm

by drawing a new subset of objects from the neighbours of the current subset. This

allows the algorithm to find better clusterings than the original CLARA algorithm

at the cost of greater computational complexity.

2.2.1.3 Selecting k

The main challenge within partitional clustering is selecting the correct value of k

[109]. For this, we can use many runs of k-means to generate a set of clustering

solutions for a range of possible values of k. From this set of solutions, we can

then select the clustering solution that we consider to be “best” by using internal

clustering quality measures (see Section 2.3) to compare their relative quality and

therefore attempt to determine the correct value of k.

Partitional algorithms can also be affected by initial values. In the case of k-

means, this is the selection of the initial centroids. Initial centroids could be selected

at random or by using some prior analysis of the data set. k-means will produce the

CHAPTER 2. THE CLUSTERING PROBLEM 18

same clustering solution for a given set of initial centroids but may produce different

clustering solutions for different initial centroids. It may be appropriate to execute

k-means several times with different initial values to produce a pool of clustering

solutions with the same value of k and then select the clustering solution that we

consider “best” from the pool. An internal clustering quality measure can be used

to select the “best” solution from this pool.

2.2.2 Hierarchical Techniques

Hierarchical techniques are subdivided into agglomerative methods and divisive

methods [77, 114, 91]. Agglomerative techniques may be thought of as “bottom

up” techniques as they merge clusters together to create new clustering solutions

that have less clusters than the clustering solutions that were used to produce them.

Divisive techniques may be thought of as “top down” processes as they divide a

cluster to produce a new clustering solution with more clusters than the previous

clustering solution.

Agglomerative methods [28] begin with each object in the data set being treated

as a cluster that consists of only one object. At each step in the algorithm two

clusters are merged together to form a new cluster and this is repeated until only

one cluster remains. There are a number of methods for determining which clusters

should be merged together detailed further in this section.

Divisive methods begin with one cluster containing every object within the data

set, at each step in the algorithm a cluster is divided into new smaller clusters

until the clustering solution consists of only singleton clusters. Divisive clustering

algorithms require a method of selecting which cluster should be divided and a

method of dividing the cluster into sub-clusters.

At each step in these methods the clustering solutions are usually stored. This

leads to the production of a set of clustering solutions, defined as Sa = {~sa1, . . . , ~saN}.

The set of clustering solutions may be represented visually as a dendrogram. This

CHAPTER 2. THE CLUSTERING PROBLEM 19

ABCDEFG

AB

A B

CDEFG

C DEFG

D EFG

E FG

F G

Figure 2.1: An example Dendrogram

is a tree structure that shows which clusters are merged together at each step of the

algorithm. The length of each edge between each pair of clusters that have been

merged on the dendrogram may represent the distance between the two clusters

that have been merged at the previous level to form the new cluster. We elaborate

on ways of measuring the distance between two clusters later in this section. A

dendrogram may be used to select the number of clusters and therefore the final

clustering solution from the set of clustering solutions. There may be a significant

change in the distance between the merged clusters at some point during the process

that is usually obvious when represented with a dendrogram. Where the distance

between the merged clusters is unusually large or small this is often the bases to

identifying a good clustering solution. An example of a dendrogram is shown in

Figure 2.1.

2.2.2.1 Ward’s Method

Ward’s method [147] is an agglomerative technique that attempts to minimise the

within-cluster variation PW . For each possible new clustering solution that can be

formed by merging any pair of clusters from the current clustering solution, the

value of PW is computed. The clustering solution that is found to lead to the

CHAPTER 2. THE CLUSTERING PROBLEM 20

smallest increase in the value of PW is accepted as the next clustering solution.

The process is repeated until all of the objects have been merged into one cluster.

Clustering solutions and the value of PW are recorded at each stage to produce a

set of clustering solutions. The increase in the value of PW may alternatively be

calculated as:

Ward (Pg,Ph) =
ngnh
ng + nh

δ (~cg,~ch) (2.18)

The final clustering solution may be selected in a number of ways. The user may

wish for a predetermined number of clusters and can therefore select best clustering

solution that has that number of clusters. The user may use the change in the value

of PW to inform their decision of which clustering solution to pick as the size of the

change may indicate a natural stopping point, or the user may use a cluster quality

measure to select a clustering solution from the candidate solutions.

2.2.2.2 Other Methods

In addition to Ward’s method, a number of other methods may be used to determine

which clusters should be merged together to form new clusters. The process is in

general the same as Ward’s method: a clustering solution is initialised so that each

object within the data set is a member of a singleton cluster. Clusters are selected

for merging where they minimise some property. They are merged together and

the process is repeated until all of the clusters have been merged together into one

cluster that encompasses the whole data set. Here, we detail a number of methods

to determine the distance between clusters. The clusters that minimise the property

are considered closest and will be chosen to be merged together. The methods are

as follows:

CHAPTER 2. THE CLUSTERING PROBLEM 21

Single Linkage The first method of measuring the distance between two given

clusters, Pg and Ph, is the single linkage distance, also known as the nearest-

neighbour distance. In this technique, the distance between two clusters is defined

as the distance between the closest pair of individuals where one object is in cluster

Pg and the other is in Ph. This is given formally as:

Single Linkage (Pg,Ph) = min
~xi∈Pg ,
~xj∈Ph

δ (~xi, ~xj) (2.19)

This method of measuring the distance between two clusters leads to clusters

that are continuous and near each other. However, it may cause some clusters to be

merged together because they both have outliers near each other, which may lead

to undesirable clusterings.

Complete Linkage The complete linkage distance, also known as the furthest

neighbour distance, defines the distance between two clusters, Pg and Ph, as the

maximum distance between a pair of objects, where only pairs of objects consisting

of an object from Pg and an object from Ph are considered. This is given as:

Complete Linkage (Pg,Ph) = max
~xi∈Pg ,
~xj∈Ph

δ (~xi, ~xj) (2.20)

Unlike in the single linkage method, clusters will not be merged because they have

outliers that are near each other. The use of complete linkage often leads to compact

and dense clusters. However, outliers may also interfere with the calculation.

Average Linkage Alternatively, the average linkage method may be used to mea-

sure the distance between two clusters, Pg and Ph. The distance is given as the

average of the distance between every pair of objects, where each pair of objects

CHAPTER 2. THE CLUSTERING PROBLEM 22

comprises of one object from Pg and one from Ph.

Average Linkage (Pg,Ph) =
1

ng · nh

ng∑
i=1

nh∑
j=1

δ (~xi, ~xj) (2.21)

Average linkage is less sensitive to outliers than single linkage and complete link-

age.

Centroid Linkage The centroid linkage method defines the distance between two

clusters as the distance between the centroids of the clusters:

Centroid Linkage (Pg,Ph) = δ
(
~cPg ,~cPh

)
(2.22)

When using centroid linkage the clusters that are created are often dominated

by the characteristics of the largest of the two clusters that was merged. This can

lead to some clusters becoming insignificant during the merging process.

Median Linkage The median linkage method requires the definition of a weighted

centroid. This is an object defined recursively based upon the clusters that were

merged to create the cluster it is associated with. If cluster Pg was formed from the

merging of clusters Pg′ and Pg′′ then the weighted centroid is recursively defined as:

~cg = {cg1, cg2, . . . , cgd−1, cgd} (2.23)

where cge =
cg′e + cg′′e

2
, e = 1...d (2.24)

For the base case, where the cluster was not formed from merging two clusters,

the value of the cluster centroid is used instead, ~cg = ~cg. This is known as a

CHAPTER 2. THE CLUSTERING PROBLEM 23

weighted centroid as it is the midpoint of the two clusters that were merged to form

the clusters instead of the centroid of the current cluster.

The median linkage method of determining the distance between two clusters is

defined as:

Median Linkage (Pg,Ph) = δ
(
~cPg ,~cPh

)
(2.25)

Median linkage avoids the problem with centroid linkage by locating the new

weighted centroid in-between the weighted centroids of the merged clusters. This

causes new clusters to not be dominated by the largest of the clusters that were

merged to form it.

2.2.2.3 Selecting the Number of Clusters

Selecting the best clustering solution within a set of solutions generated by a hi-

erarchical clustering algorithm is a difficult task. Clustering quality measures are

used to select which clustering solution should be returned as the final clustering

solution. There have been many studies [42, 109, 138] about how to do this with no

one conclusive technique identified to date.

2.2.3 Density Based Techniques

In section 2.2.2.2 we discussed the linkage between objects and how this can be

used with hierarchical clustering to merge clusters together to form larger clusters.

Density based clustering aims to identify regions of the data set where there are

many objects close together and regions where there are not: these are dense and

sparse areas of the data set respectively.

Dense regions of the data set are then treated as clusters and sparse regions are

treated as the space between clusters. Any data points in these areas are then treated

CHAPTER 2. THE CLUSTERING PROBLEM 24

as outliers or anomalies and may not be included as members of a cluster. Density

Based Spatial Clustering of Applications with Noise (DBSCAN) [35] and Ordering

Points to Identify the Clustering Structure (OPTICS) [1] are popular density based

clustering algorithms.

Density based techniques rely upon the idea that there will be a significant change

in the distance between points that will allow the edges of each cluster to be iden-

tified. This is advantageous as it allows for the identification of arbitrarily shaped

clusters whereas a method such as k-Means may only discover clusters that are

hyper-spherical in nature. These techniques generally only need a single linear scan

of the data set to identify the borders between clusters, which can reduce the run

time of density based techniques compared to other techniques. Density based tech-

niques rely on there being a significant difference between sparse and dense regions

to define the edge of a cluster. Some clusters that are close together may be merged

together if there is not a large enough sparse region between them. Clusters that

do not have a homogeneous density may also not be correctly identified by density

based techniques as there may not be a clear border between the clusters or they

may be divided into many clusters as the density within them varies.

2.3 Internal Cluster Quality Measures

Internal cluster quality measures are methods of evaluating the quality of clustering

solutions using only the internal structures of the clusters to make these judgements.

They are often used to select the “best” solutions from a set of potential clustering

solutions. This would be useful after a range of solutions have been generated from

multiple executions of the k-means algorithm to select the best solution or as a

stopping criterion for a hierarchical clustering technique.

There are numerous measures of internal cluster quality, and algorithms have

been developed to optimise some of the measures of cluster quality. Many clustering

algorithms have similar goals, even if they are optimising different measures of cluster

CHAPTER 2. THE CLUSTERING PROBLEM 25

quality, so the results of the algorithms are often similar to each other. However,

it is possible that a clustering solution that is considered good by one measure of

internal cluster quality may be considered bad by another.

We review a number of measures based upon the concepts of density and sep-

aration, a measure that is not explicitly related to either and two measures which

are based upon connectivity. We have redefined the measures to ensure a consistent

notation.

2.3.1 Variance Ratio Criterion

The Variance Ratio Criterion (VRC) [16] is a cluster validity measure dependent on

homogeneity and heterogeneity. The value of VRC for a given clustering solution

is defined as the ratio between the between-cluster variation and the within-cluster

variation. High values of this ratio suggest a better clustering. The ratio must be

normalised to stop it increasing monotonically as the number of clusters increases.

V RC (P) =
PB
/

(k − 1)

PW/ (n− k)
(2.26)

The clustering solution that generates the maximum value is the optimal clus-

tering solution according to VRC.

2.3.2 Dunn and Dunn like Indices

Dunn’s index, DN (P), [33] is a cluster quality measure based upon cluster com-

pactness and cluster separation. The measure requires the definition of a measure

of cluster diameter,∆ (Pl), and a measure of cluster distance, d (Pg,Ph). There are

many possible measures of cluster diameter and cluster separation, some of which

will be defined in the following section. The general form of Dunn’s index is defined

as:

CHAPTER 2. THE CLUSTERING PROBLEM 26

DN (P) = min
Pg ,Ph∈P
g 6=h

 d (Pg,Ph)
max
Pl∈P

∆ (Pl)

 (2.27)

Possible measures of the distance between two given clusters, Pg and Ph that are

used for computing DN (P) are introduced below [146].

Previously in Section 2.2.2.2 we described several measures of similarity between

two clusters. Some of these may be used as the measure of the distance between two

clusters for use with Dunn’s Index, we also introduce additional ways of measuring

the distance between two clusters here.

The single linkage distance measure is given as:

da (Pg,Ph) = Single Linkage (Pg,Ph) = min
~xi∈Pg ,
j∈Ph

δ (~xi, ~xj) (2.28)

The complete linkage distance measure is given as:

db (Pg,Ph) = Complete Linkage (Pg,Ph) = max
~xi∈Pg ,
j∈Ph

δ (~xi, ~xj) (2.29)

The average linkage distance measure is given as:

dc (Pg,Ph) = Average Linkage (Pg,Ph) =
1

ng · nh

ng∑
i=1

nh∑
j=1

δ (~xi, ~xj) (2.30)

The centroid linkage distance measure is given as:

dd (Pg,Ph) = Centroid Linkage (Pg,Ph) = δ
(
~cPg ,~cPh

)
(2.31)

CHAPTER 2. THE CLUSTERING PROBLEM 27

The inter group distance measure is given as:

de (Pg,Ph) =
1

ng + nh

(
ng∑
i=1

δ (~xgi ,~ch) +

nh∑
j=1

δ
(
~xhj ,~cg

))
(2.32)

The Hausdorff distance metric is calculated by using the Supremum and Infimum,

the least upper bound of a set and greatest lower bound of a set, of each dimension

of the objects belonging to a pair of clusters. The Hausdorff distance metric is given

as:

df (Pg,Ph) = max

{
sup
~xgi

inf
~xhj

δ
(
~xgi , ~x

h
j

)
, sup
~xhj

inf
~xgi

δ
(
~xgi , ~x

h
j

)}
(2.33)

Possible measures of cluster diameter are given below and include the maximum

distance between any pair of objects in the cluster, defined as:

∆a (Pl) = max
i 6=j

δ
(
~xli, ~x

l
j

)
(2.34)

The average distance among all pairs of objects is defined as:

∆b (Pl) =
2

nl (nl − 1)

nl∑
i=1

i∑
j=1

δ
(
~xli, ~x

l
j

)
(2.35)

The average distance between each object in the cluster and its centroid is defined

as:

∆c (Pl) =
2

nl

nl∑
i=1

δ
(
~xli,~cl

)
(2.36)

where 2 is used to convert the radius of the cluster into a diameter [12].

CHAPTER 2. THE CLUSTERING PROBLEM 28

Several of the seventeen possible variations on DN are included in an experi-

mental comparative study by Vendramin [146]. It was found that using db and ∆c

to calculate DN was more effective at finding the correct clustering solution than

other combinations of d and ∆. For this reason, in our experimental work we will

use db and ∆c to calculate DN .

2.3.3 Davies-Bouldin Index

The Davies-Bouldin index (DB) [89] is based on the ratio of a measure of the

between-cluster and within-cluster distances so we define those first.

We start by defining the average of the within-cluster distance of a cluster:

s
(
Pg
)

=
1

ng

ng∑
i=1

δ (~xgi ,~cg) (2.37)

We also define a measure of the between-cluster distance for two given clusters, Pg
and Ph. This can be the centroid linkage between the clusters, given as δ (~cg,~ch)

Usually, a similarity measure, r (Pg,Ph), is then defined based on the between-

cluster and within-cluster distances:

r (Pg,Ph) =
s
(
Pg
)

+ s
(
Ph
)

δ (~cg,~ch)
(2.38)

However, other similarity measures r (Pg,Ph) could be defined freely, providing

they meet the following conditions:

• r (Pg,Ph) ≥ 0

• r (Pg,Ph) = r (Ph,Pg)

• if s
(
Pg
)

= 0 and s
(
Ph
)

= 0 then r (Pg,Ph) = 0

• if s
(
Pg
)
> s
(
Pm
)

and δ (~cg,~ch) = δ (~cg,~cm) then r (Pg,Ph) > r (Pg,Pm)

CHAPTER 2. THE CLUSTERING PROBLEM 29

• if s
(
Pg
)

= s
(
Pm
)

and δ (~cg,~ch) < δ (~cg,~cm) then r (Pg,Ph) > r (Pg,Pm)

The DB Index determines for each cluster which other cluster it is most similar

to and measures this similarity, using a measure of similarity such as the one just

presented. The index provides an average of these maximum cluster similarities:

DB (P) =
1

k

k∑
g=1

max
h=1...k,h6=g

r (Pg,Ph) (2.39)

If DB is low then the clusters are very dissimilar to each other. This indicates that

the clusters have similar objects (homogeneous) and are well separated (heteroge-

neous).

2.3.4 Halkidi Indexes

A series of cluster quality measures have been developed incrementally by Halkidi

and colleagues. These are SD [55], SDbw [53] and CDbw [54]. The SD validity index

is based upon a cluster quality measure developed for the fuzzy clustering algorithm

Fuzzy-C-Means [121].

2.3.4.1 SD Validity Index

Again, to define this measure, a number of other measures must be presented first.

The average scattering of the objects within the clusters is an indication of homo-

geneity. It is defined as the average of the ratio between the variation of each cluster

and the variation of the data set.

scatt (P) =
1

k

k∑
g=1

PTPg

DT
(2.40)

The maximum and minimum centroid linkages can be defined as

δmax = max (δ (~cg,~ch)) and δmin min (δ (~cg,~ch)) for ∀Pg,Ph ∈ P where Pg 6= Ph.

CHAPTER 2. THE CLUSTERING PROBLEM 30

The total separation of the clusters, dis (P), based on δmax and δmin measures

the between-cluster distance of the clustering solution.

dis (P) =
δmax

δmin

k∑
g=1

(
k∑

h=1,h6=g

δ (~cg,~ch)

)−1
(2.41)

The total separation of clusters is influenced by k. To mitigate this a weighting

factor, dis (P ′), is used where P ′ is the solution in the set of solutions to be evaluated

by SD for which the value of k is the highest.

Now we are in a position to define SD as, SD (P) = dis (P ′) · scatt (P) + dis (P).

A low value of SD corresponds to a good clustering solution.

2.3.4.2 SDbw Validity Index

The SDbw Validity Index [53] is an enhancement of the SD index. The term scatt (P)

is retained. A weighting factor is no longer required as the term dis (P) is replaced

with the term densBW (P), defined below.

First, let us define for an object, ~xi, its neighbourhood as a hyper-sphere where

the radius is equal to the standard deviation of the clusters:

stdev =
1

k

√√√√ k∑
g=1

||σ(Pg)|| (2.42)

||x|| = (xTx)
1
2 where x is a vector. (2.43)

and σ(Pg) is the variance of cluster for each dimension.

The density of ~xi within two given clusters, Pg and Ph, is defined as the number

of objects belonging to either Pg or Ph that occur within the neighbourhood of ~xi:

CHAPTER 2. THE CLUSTERING PROBLEM 31

den (~xi,Pg,Ph) =
∑

~xj∈Pg∪Ph

f (~xi, ~xj) (2.44)

where f (~xi, ~xj) =

0 if δ (~xi, ~xj) > σD,

1 otherwise

(2.45)

The midpoint of two clusters, Pg and Ph, is the midpoint of a line running from ~cg

to ~ch, defined as the feature vector m (Pg,Ph) = {(cg1 + ch1) /2, . . . , (cgd + chd) /2}.

densBW (P) represents the inter-cluster density of a clustering solution:

densBW (P) =
1

k (k − 1)

k∑
g=1

k∑
h=1,h6=g

den (m (Pg,Ph) ,Pg,Ph)
max (den (~cg,Pg,Ph) , den (~ch,Pg,Ph))

(2.46)

It evaluates the average density of the region between each pair of clusters in

relation to the density of the clusters in the clustering solution. It is desirable for

the density of the regions between clusters to be low compared to the density of the

clusters.

SDbw is defined as the sum of the inter-cluster density and the separation of

clusters, so SDbw (P) = scatt (P) + densBW (P). The value of SDbw should be

minimised to obtain dense and well separated clusters.

2.3.4.3 CDbw Validity Index

The CDbw index [54] consists of two new terms: densBW (P) is replaced by

interDens (P) as a measure of the inter-cluster density, and the term scatt (P)

is replaced by sep (P) as a measure of cluster separation.

We now look at some building blocks for the CDbw definition. The closest rep-

CHAPTER 2. THE CLUSTERING PROBLEM 32

resentatives of a pair of clusters, Pg and Ph, are the pair of objects ~xi and ~xj, where

~xi ∈ Pg and ~xj ∈ Ph, that minimise δ (~xi, ~xj). The midpoint of two clusters is now

redefined as the midpoint of their closest representatives. This is represented by the

vector m (Pg,Ph) = {(xi1 + xj1) /2, . . . , (xid + xjd) /2}.

The neighbourhood of an object is redefined as a hyper-sphere where the radius

is equal to the average of the standard deviations, σPg and σPh
, of the clusters Pg

and Ph. The density between two clusters, Pg and Ph, is calculated as the sum

of the ratio between the number of objects belonging to the clusters within the

hyper-sphere and the combined number of objects in the clusters.

den (Pg,Ph) =
∑

~xi∈Pg∪Ph

f (~xi)

ng + nh
(2.47)

where f (~xi) =

0 if δ (~xi,m (Pg,Ph)) >
σPg+σPh

2
,

1 otherwise

(2.48)

The between-cluster density of the clustering solution is defined as interDens (P).

This is the sum, for each possible pairing of clusters Pg and Ph from P , of the

density of the clusters multiplied by the ratio of the distance between the closest

representatives of the clusters and the summed standard deviations of the clusters.

interDens (P) =
k∑
g=1

k∑
h=1,g 6=h

den (Pg,Ph) ·
min~xi∈Pg ,j∈Ph

δ (~xi, ~xj)

σPg + σPh

(2.49)

The cluster separation, sep (P), is defined here as the ratio between the summed

distances of the closest representatives of every pair of clusters and the between-

cluster density. In well separated clusters the area between them has low density,

so this term should be maximised.

CHAPTER 2. THE CLUSTERING PROBLEM 33

sep (P) =

∑k
g=1

∑k
h=1,g 6=h min~xi∈Pg ,~xj∈Ph

δ (~xi, ~xj)

1 + interDens (P)
(2.50)

The neighbourhood of an object, in the context of the within-cluster density, is

defined as a hyper-sphere where the radius is the standard deviation of the data

set. The density of an object, ~xi, is the number of objects in Pg that are within its

neighbourhood.

den (~xi) =

ng∑
i=1

f (~xi, ~x
g
i) (2.51)

where f (~xi, ~x
g
i) was previously defined in equation 2.45. The average density

of a cluster is the average of the ratio between the density of each object and the

standard deviation of the data set, given as:

intraDens (P) =
1

k

k∑
g=1

1

ng

ng∑
i=1

den (~xgi)

σD
(2.52)

CDbw should be maximised and will not be influenced by k. The cluster qual-

ity index, CDbw, is defined as the product of the between-cluster density and the

separation of the clusters, CDbw (P) = intraDens (P) · sep (P).

2.3.5 RMSSDT & RS

The Root-Mean-Square Standard Total Deviation (RMSSTD) [132] of a cluster is a

measure of its heterogeneity. A lower RMSSTD indicates that the cluster is hetero-

geneous, however, there is no guidance as to what a “high” or “low” value is as it

is a characteristic of the data set. Calculating the RMSSTD of a cluster formed at

an iteration of a hierarchical algorithm can help to establish if creating the cluster

CHAPTER 2. THE CLUSTERING PROBLEM 34

was beneficial. The RMSSTD of a cluster is the value of total variation of the clus-

ter divided by the number of objects within. For other techniques the sum of the

RMSSTD of each cluster can be used as a measure of quality based upon density

and not on separation. This technique is not sensitive to k.

RMSSTD (P) =
k∑
g=1

PTPg

ng − 1
(2.53)

R-Squared (RS) [132] is a cluster quality measure used as part of the same en-

semble of cluster quality measures. RS is the ratio of the between-group variation

of the clustering solution and the total variation of the data set: RS (P) = PB/DT .

RS ranges from zero to one. A value of one indicates that the clusters are well

separated and a value of zero indicates the inverse.

2.3.6 Silhouette Width Criterion

The Silhouette Width Criterion (SWC) [129] is a cluster quality measure that as-

sesses how well objects fit into the clusters they are members of. Firstly the average

distance between an object, ~xi, and the other members in its cluster, Pg, must be

calculated.

a (~xi) =

∑
j∈Pg ,j 6=~xi δ (~xi, ~xj)

ng − 1
~xi ∈ Pg (2.54)

Secondly, the average distance between ~xi and the objects in its nearest neighbour

cluster must be calculated as b (~xi):

b (~xi) = min
Ph 6=Pg

∑
~xj∈Ph

δ (~xi, ~xj)

nh
~xi ∈ Pg (2.55)

CHAPTER 2. THE CLUSTERING PROBLEM 35

where Ph is the nearest neighbour cluster of Pg.

The silhouette of an object, s (~xi), measuring how well ~xi fits into the cluster it

is currently a member of, rather than its nearest neighbour cluster is given as:

s (~xi) =
b (~xi)− a (~xi)

max (a (~xi) , b (~xi))
(2.56)

If s (~xi) is close to one then ~xi is well classified. If it is close to negative one then

~xi is misclassified and should belong to the neighbour cluster. If it is close to zero

then it is unclear if ~xi should belong to the neighbour cluster or to the cluster it

is currently a member of. The average silhouette width for a clustering solution is

defined as:

SWC (P) =

∑n
i=1 s (~xi)

n
(2.57)

The average silhouette width can be used as a measure of the quality of a clus-

tering solution. Higher values of this measure are desirable. The Silhouette width

is insensitive to k. Silhouette width does not explicitly relate to either density or

separation.

2.3.7 Connectivity & Disconnectivity

Chen and Wang [20] introduced a new clustering method using a multi-objective

algorithm to determine a solution for a data set. Two quality measures are used as

the objectives: Overall Deviation, equivalent to PW defined in equation 2.13, and

connectivity. The algorithm optimises the clustering solution by minimising both

measures.

First we define the nearest neighbour of an object, ~xi, as, ~x1i , where

CHAPTER 2. THE CLUSTERING PROBLEM 36

δ
(
~xi, ~x

1
i

)
≤ δ (~xi, ~xj) for ∀~xj ∈ D, where ~xi 6= ~x1i (2.58)

A solution is connected if objects are in a cluster with their l nearest neighbours.

Connectivity measures the degree to which neighbouring objects have been placed

in the same cluster by calculating penalties for each object. An enhancement to

connectivity has been proposed by Handl and Knowles [62]. The penalty for an

object in relation to its uth nearest neighbour is 0 if they are in the same cluster and

1
u

otherwise. The decreasing penalties emphasise the nearest neighbours and allow

for clusters smaller than l.

Conn =
n∑
i=1

l∑
u=1

p (~xi, ~x
u
i) (2.59)

where p (~xi, ~x
u
i) =

1
u

if 6 ∃ Pg : ~xi ∈ Pg ∧ ~xui ∈ Pg,

0 otherwise

(2.60)

We have not performed a significant investigation into selecting the correct value

of l. The original works suggested that 6 would be a sensible value to use.

Disconnectivity [97] measures the violation of kNN and kMN consistency in a

solution, it is therefore conceptually similar to connectivity. If ~xi is the kth nearest

neighbour of ~xj and ~xj is the lth nearest neighbour of ~xi then ~xi and ~xj are the pth

mutual nearest-neighbour of each other, where p = max (k, l). A kNN consistent

cluster is a group of objects where the k nearest-neighbours of each object are also

within the cluster to which that object belongs, and a kMN consistent cluster is a

group of objects where the k mutual nearest-neighbours are members of the same

cluster.

CHAPTER 2. THE CLUSTERING PROBLEM 37

disconn (P) =
∑
Pg∈P

∑
~xi∈Pg

∑
~xj 6∈Pg

(n (~xi, ~xj) + n (~xj, ~xi))
1

δ (~xi, ~xj)
(2.61)

where n (~xi, ~xj) =

1 if ~xi ∈
{
~x1j , . . . , ~x

l
j

}
0 otherwise

(2.62)

A low value of disconn(p) indicates a good clustering.

2.4 External Clustering Quality Measures

An external cluster quality measure is a method that evaluates the quality of a

clustering solution, P , against a known optimal clustering solution, P ′. The optimal

solution is designated as such because it has been labelled by a human or has been

specifically generated for the purpose. External cluster quality measures compare

two given clustering solutions and determine how similar they are to each other

where one solution is the intended solution and the other is the solution to be

tested. Here we have chosen to use the Rand Statistic, the Jaccard Coefficient and

The Fowlkes and Mallows index which measures the similarity of any two clustering

solutions, Pg and Ph.

A pair of objects, ~xi and ~xj, are classified as follows:

SS If ~xi ∈ Pg, ~xj ∈ Pg, ~xi ∈ Ph and ~xj ∈ Ph

SD If ~xi ∈ Pg, ~xj ∈ Pg, ~xi ∈ Ph and ~xj 6∈ Ph

DS If ~xi ∈ Pg, ~xj 6∈ Pg, ~xi ∈ Ph and ~xj ∈ Ph

DD If ~xi ∈ Pg, ~xj 6∈ Pg, ~xi ∈ Ph and ~xj 6∈ Ph

where Pg ∈ P and Ph ∈ P ′ and SD stands for “same” and “different”.

CHAPTER 2. THE CLUSTERING PROBLEM 38

The values of a, b, c and d are the numbers of pairs of objects classified as SS,

SD, DS and DD respectively. From this the Rand Statistic[122] is defined as:

RI (Pg,Ph) =
a+ d

a+ b+ c+ d
(2.63)

The value of R is between 0 and 1. A value of 0 indicates that the solutions are

totally dissimilar and a value of 1 indicates that they are identical.

The Jaccard Coefficient [74] is calculated in a similar manner:

J =
a

a+ b+ c
(2.64)

and also gives values between 0 and 1. The result is usually similar to the value

of R.

The Fowlkes and Mallows index [41] is defined as:

FM =

√
a

a+ b
.
a

a+ c
(2.65)

Higher values of FM indicate that the two clustering solutions are of greater

similarity.

2.5 Summary

In this chapter we have introduced the clustering problem, including distance mea-

sures, types of clustering and characteristics of clustering solutions. Additionally we

reviewed the main classic methods of partitional and hierarchical clustering tech-

niques, including methods to select the number of clusters, k.

CHAPTER 2. THE CLUSTERING PROBLEM 39

Finally, we introduced the concept of Clustering Quality Measures (CQM). CQMs

are used to determine the quality of a clustering solution so they can be ranked in an

order of preference. They are essential to our later work on optimisation algorithms

for clustering. We also introduced a number of external measures for comparing

how similar clustering solutions are.

Overall we have found that the clustering quality problem is hard. Correct clus-

tering depends on the context of the data, the types of clusters that the end user

wishes to find within the data and the method of measuring the similarity. The

preferred solution to a clustering problem is often subjectively chosen.

Chapter 3

Cluster Quality Measures

Experimentation

3.1 Introduction

In Chapter 2, we reviewed a number of techniques to determine the best clustering

solution from a set of clustering solutions using cluster quality measures. Our overall

goal is to create a multi-objective clustering algorithm, hence understanding which

Cluster Quality Measures to use as objectives is important. We believe that a Cluster

Quality Measure should exhibit certain behaviour. A Cluster Quality Measure that

robustly increases in value as the clustering solution improves is more useful than

one that shows us low quality for all solutions other than the perfect solution.

In this chapter we propose and use a method of assessing Cluster Quality Mea-

sures to test their behaviour. We have published our results in [83]. Our study will

focus on the following measures: the Variance Ratio Criterion (VRC), the Davies-

Bouldin index (DB), the SD validity index (SD), the SDbw validity index (SDbw),

the CDbw validity index (CDbw), Root-Mean-Square Standard Total Deviation

(RMSSTD), R-Squared(RS), Silhouette Width Criterion (SWC), Overall Deviation

(Dev), Connectivity and Disconnectivity.

40

CHAPTER 3. CLUSTER QUALITY MEASURES EXPERIMENTATION 41

We anticipate that some measures may fare better in certain situations. For

example, a measure may be poor at dealing with clustering solutions where clusters

are of varying sizes or where clusters are very sparse. However, to test different

scenarios we propose a method for generating problems which includes a number of

parameters to produce diverse test beds.

In general, we expect the value of a clustering quality measure to be at its highest

for what we determine to be the “perfect” or intended clustering solution. Since

datasets are generated synthetically, the correct clustering solution is assumed to

be the intended clustering generated. To corrupt a perfect clustering solution we

propose to change the cluster membership of some objects in the data set in a

random incremental fashion, thereby introducing noise in the clusters. We believe

this should lead to a stepwise deterioration in the quality of the clustering solution

which should be detectable using the internal quality measures.

An external quality measure should be used to measure the similarity of a given

solution with the intended solution. Here we use the Rand Statistic defined in

Equation 2.63 as our external quality measure. As solutions are successively cor-

rupted, the similarity between the corrupted solution and the intended solution,

and therefore the value of the external quality measure, should decrease. We can

then measure the correlation between the internal clustering quality measure and

the external clustering quality measure. High correlation over a set of incrementally

degraded clustering solutions indicates robust performance of the internal quality

measure.

3.2 Methodology

For this study, we constructed a large number of synthetic data sets following a tech-

nique used by Milligan [107]. For the study, one hundred and eight synthetic data

sets were produced by identifying three parameters in the data generation process

and combining them to produce data sets. We introduce an additional parameter

CHAPTER 3. CLUSTER QUALITY MEASURES EXPERIMENTATION 42

that allows us to introduce outliers, so we explore the following: datasets with differ-

ent number of clusters; different dimensionality of the data; different sizes of clusters;

and different number of outliers. We also extend the data construction method by

using larger ranges of possible values for each parameter. Milligan has explained in

detail the method for generating the data sets [108]. It is briefly summarised here

and then expanded upon.

To generate data objects we must first identify the boundaries of each cluster.

Points are generated within these boundaries. The boundaries of the clusters may

not overlap in the first dimension. The length of the boundaries is selected from

a uniform distribution running from ten to forty. The centroid of each cluster is

then determined. The value of the centroid for a given dimension is the midpoint

of its boundary for that dimension. The standard deviation of a cluster for a given

dimension is defined as a third of the length of its boundary for that dimension.

Points are generated using a multivariate normal distribution with the centroid of

the distribution defined as the centroid of the cluster to be generated. The diagonal

entries of the variance-covariance matrix are set to the standard deviations of each

dimension of the cluster. Each point that is generated must be within 1.5 standard

deviations of the centroid. The process is repeated for each cluster that is to be

generated.

In our experimentation, first we consider the number of clusters in a data set:

values between two and forty are used. The second parameter is the number of

dimensions: values used range from two to twenty dimensions within Euclidean space

so that no one dimension dominates the other dimensions. The third parameter is

the proportion of objects that are members of each cluster. For this, we use three

possible designs: in the first design the objects are evenly distributed between all

of the clusters; in the second design a cluster consists of 10% of the objects and

the rest are as evenly distributed as possible; in the third design, a cluster consists

of 60% of the objects and the rest are as evenly distributed as possible. Finally,

the fourth parameter is the proportion of objects that are generated as outliers.

CHAPTER 3. CLUSTER QUALITY MEASURES EXPERIMENTATION 43

Outliers are defined as within 9 standard deviations of the centroid of each cluster.

The proportion of outliers is either: 0%, 20% or 40% of the objects generated.

The variation of these factors produces six thousand six hundred and sixty nine

different data set designs. Each design is then generated three times resulting in

a final set of twenty thousand and seven data sets. Each data set consists of five

hundred objects.

For each data set, twenty clustering solutions are generated where the first rep-

resents the optimal clustering solution and those that follow are copies where a

proportion of the objects have been randomly misclassified in 1% steps. That is,

in the first solution all objects are correctly assigned to the clusters; in the second

solution 1% of objects are misclassified, then 2%, etc. The quality of the clustering

solutions should decrease as more objects are misclassified. For each solution, the

value of each internal quality measure is calculated. This process produces a set of

results for each internal quality measure. Each set of results for an internal quality

measure associated with a data set are normalised to the range 0 to 1. Finally

minimisation measures are then inverted so they become maximisation measures to

allow for easier comprehension of the results.

For each solution, the Rand Index [107] is calculated in relation to the optimal

solution. It is expected that as the clusters are misclassified the Rand Index should

deteriorate in value. The correlation between each set of average results for a mea-

sure and a set of average results of the Rand Index for a given data set is calculated

using the Pearson’s Correlation Coefficient [128] across the 20 clustering solutions.

Measures that are robust with respect to the deterioration of a solution should cor-

relate well to the Rand Index and the correlation should be consistent. In Figure

3.1 we show a simple example of the decrease in the value of the Rand Index as we

use the misclassification process on the classic Iris data set [2]. We start with the

standard three cluster solution and then degrade this solution. This is included for

illustration only as we do not use this data set in this work. In this example we

have misclassified the objects in 1% steps as it is a very small data set.

CHAPTER 3. CLUSTER QUALITY MEASURES EXPERIMENTATION 44

0.7

0.75

0.8

0.85

0.9

0.95

1

0 5 10 15 20 25

V
al

u
e

of
R

an
d

In
d
ex

Missclassification Percentage

Rand Index

Figure 3.1: Example of the change of the Rand Index on the Iris data set as it is
misclassified.

As each data set design was generated three times we averaged the correlations

from each of the data set generations, to assess each given criterion (outliers, dimen-

sions, density factor and number of clusters). This allows us to examine the results

and isolate the behaviour that is the result of one of these factors.

3.3 Results

We examined problems with different numbers of dimensions, numbers of clusters,

numbers of outliers and relative sizes of clusters. We have presented our results as

a series of plots or tables. A key that is common to all plots is given in figure 3.2.

Our findings are as follows:

VRC
DB
SD

SDbw
CDbw

RMSSTD

RS
SWC
Dev

Connectivity
Disconnectivity

Figure 3.2: Key to plots

CHAPTER 3. CLUSTER QUALITY MEASURES EXPERIMENTATION 45

0.95
0.955
0.96

0.965
0.97

0.975
0.98

0.985
0.99

0.995
1

2 4 6 8 10 12 14 16 18 20

C
or

re
la

ti
on

Number of Dimensions

Figure 3.3: Change in maximum correlation value between external and internal
cluster quality measures as the number of dimensions is varied.

3.3.1 Varying the Number of Dimensions

We first test the effect of generating data in a lower or higher dimensional space.

The maximum, minimum and mean values of correlation are shown in figures 3.3, 3.4

and 3.5 respectively. Measures tend to perform better as the number of dimensions

is increased initially and this may be due to a larger and more sparse space allowing

for better clustering definition.

In terms of performance, we observe that CDbw is very erratic as we vary the

number of dimensions whereas all the other cluster quality measures have steady

behaviour. We see that at low dimensionality the minimum correlation shown by

SD, SWC and DB is low and it increases with the number of dimensions until there

are 5 dimensions when it levels out. The other measures remain constant both in

terms of minimum and maximum correlation. The best values, showing the highest

minimum and maximum correlation, are obtained by Connectivity, Disconnectivity,

RS and Dev.

CHAPTER 3. CLUSTER QUALITY MEASURES EXPERIMENTATION 46

−1
−0.8
−0.6
−0.4
−0.2

0
0.2
0.4
0.6
0.8

1

2 4 6 8 10 12 14 16 18 20

C
or

re
la

ti
on

Number of Dimensions

Figure 3.4: Change in minimum correlation value as the number of dimensions is
varied.

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

2 4 6 8 10 12 14 16 18 20

C
or

re
la

ti
on

Number of Dimensions

Figure 3.5: Change in mean correlation value between external and internal cluster
quality measures as the number of dimensions is varied.

CHAPTER 3. CLUSTER QUALITY MEASURES EXPERIMENTATION 47

0.88

0.9

0.92

0.94

0.96

0.98

1

5 10 15 20 25 30 35 40

C
or

re
la

ti
on

Number of Clusters

Figure 3.6: Change in maximum correlation value as the number of clusters is varied.

−1
−0.8
−0.6
−0.4
−0.2

0
0.2
0.4
0.6
0.8

1

5 10 15 20 25 30 35 40

C
or

re
la

ti
on

Number of Clusters

Figure 3.7: Change in minimum correlation value as the number of clusters is varied.

3.3.2 Varying the Number of Clusters

The results for this are presented in figures 3.6, 3.7 and 3.8. As the number of clusters

increases the correlation for some measures deteriorates. The performance of the

CDbw measure appears to be less than the other measures. SDbw improves as the

number of clusters increases. Also maximum and minimum observed correlations get

closer as the number of clusters increases, showing that performance of the cluster

quality measures tends to converge as the number of clusters is increased. We can

also see that the connectivity and disconnectivity do not appear to be affected by

the change in the value of k.

CHAPTER 3. CLUSTER QUALITY MEASURES EXPERIMENTATION 48

−0.8
−0.6
−0.4
−0.2

0
0.2
0.4
0.6
0.8

1

2 4 6 8 10 12 14 16 18 20

C
or

re
la

ti
on

Number of Clusters

Figure 3.8: Change in mean correlation value as the number of clusters is varied.

Table 3.1: Change in maximum correlation value as the cluster size is varied.

CQM a b c
VRC 0.9996 0.9994 0.9995
DB 0.9998 0.9998 0.9998
SD 0.9999 0.9998 0.9989
SDbw 0.9997 0.9998 0.9997
CDbw 0.9906 0.9946 0.9814
RMSSTD 1 1 1
RS 1 1 1
SWC 1 1 1
Dev 1 1 1
Connectivity 0.9999 0.9999 0.9999
Disconnectivity 1 0.9999 1

3.3.3 Varying the Cluster Size

For this, we present data in tables, as with only 3 different parameter values to test,

the results are easier to appreciate in a table. The maximum minimum and mean

correlation values are show in Tables 3.1, 3.2 and 3.3 respectively. In the tables, we

have denoted the case where all of the clusters are the same size as a, the case where

10% of objects belong to one cluster and the rest are distributed among equal size

clusters as b and the final case where 60% of objects belong to one cluster and the

rest are distributed among equal size clusters as c. Connectivity, Disconnectivity,

RS, RMSSTD and Dev show the best maximum and minimum correlations.

CHAPTER 3. CLUSTER QUALITY MEASURES EXPERIMENTATION 49

Table 3.2: Change in minimum correlation value as the cluster size is varied.

CQM a b c
VRC 0.7349 0.7070 0.6182
DB 0.5384 0.5522 0.2457
SD 0.0066 0.0080 0.0011
SDbw -0.9998 -0.9999 -0.9995
CDbw 0.0011 0.0050 0.0130
RMSSTD 0.9158 0.9455 0.6171
RS 0.9158 0.9455 0.6171
SWC 0.9497 0.9664 0.0917
Dev 0.9158 0.9455 0.6171
Connectivity 0.8051 0.6993 0.7206
Disconnectivity 0.7757 0.8078 0.7344

Table 3.3: Change in mean correlation value as the cluster size is varied.

CQM a b c
VRC 0.9569 0.9579 0.9574
DB 0.9732 0.9726 0.9697
SD 0.9091 0.9101 0.8982
SDbw 0.8210 0.8106 0.7774
CDbw 0.7673 0.7691 0.7681
RMSSTD 0.9971 0.9969 0.9959
RS 0.9971 0.9969 0.9959
SWC 0.9992 0.9989 0.9971
Dev 0.9971 0.9969 0.9959
Connectivity 0.9963 0.9963 0.9964
Disconnectivity 0.9976 0.9975 0.9975

CHAPTER 3. CLUSTER QUALITY MEASURES EXPERIMENTATION 50

Table 3.4: Change in maximum correlation value as the number of outliers is varied.

CQM a b c
VRC 0.9739 0.9980 0.9996
DB 0.9998 0.9998 0.9997
SD 0.9999 0.9998 0.9997
SDbw 0.9998 0.9997 0.9997
CDbw 0.9656 0.9854 0.9946
RMSSTD 1 1 1
RS 1 1 1
SWC 1 1 1
Dev 1 1 1
Connectivity 0.9999 0.9999 0.9999
Disconnectivity 1 1 1

3.3.4 Varying the Number of Outliers

Again with only 3 different parameter values, results are presented as Tables 3.4,

3.5 and 3.6 for maximum, minimum and mean correlation values respectively. We

find that changing the number of outliers generated for each cluster does not have a

significant effect on the correlation between the clustering quality measures and the

external clustering quality measures. The best measures in terms of both minimum

and maximum correlation are Connectivity and Disconnectivity followed by Dev,

RS and RMSSTD.

The results show that in the case of CDbw, Connectivity and Disconnectivity

the mean correlations increase as the number of outliers increase. The maximum

correlations increase for all of the measures. It may be that more distributed clusters

are treated as many clusters by the validity measures. The Rand Index measures

whether objects are in the same cluster in a pairwise fashion so if a cluster is divided

into more than one part it will not degrade the value as much as dividing and merging

two clusters.

CHAPTER 3. CLUSTER QUALITY MEASURES EXPERIMENTATION 51

Table 3.5: Change in minimum correlation value as the number of outliers is varied.

CQM a b c
VRC 0.7070 0.8591 0.6182
DB 0.6313 0.2457 0.4804
SD 0.0011 0.0038 0.0061
SDbw -0.9999 -0.9996 -0.9992
CDbw 0.0161 0.0011 0.0073
RMSSTD 0.9116 0.9145 0.6171
RS 0.9116 0.9145 0.6171
SWC 0.8930 0.0917 0.2625
Dev 0.9116 0.9145 0.6171
Connectivity 0.7206 0.6993 0.8396
Disconnectivity 0.7344 0.7757 0.8814

Table 3.6: Change in mean correlation value as the number of outliers is varied.

CQM a b c
VRC 0.9078 0.9731 0.9914
DB 0.9776 0.9725 0.9654
SD 0.9160 0.9054 0.8961
SDbw 0.8078 0.8085 0.7927
CDbw 0.7266 0.7726 0.8054
RMSSTD 0.9982 0.9969 0.9948
RS 0.9982 0.9969 0.9948
SWC 0.9995 0.9986 0.9972
Dev 0.9982 0.9969 0.9948
Connectivity 0.9951 0.9968 0.9971
Disconnectivity 0.9970 0.9979 0.9977

Table 3.7: Minimum, Maximum, Mean, S.D. of correlation values for each cluster
quality measure.

CQM Min Max Mean S.D.
VRC 0.6182 0.9996 0.9574 0.0410
DB 0.2457 0.9998 0.9718 0.0271
SD 0.0011 0.9999 0.9058 0.1517
SDbw -0.9999 0.9998 0.8030 0.5425
CDbw 0.0011 0.9946 0.7682 0.1344
RMSSTD 0.6171 1 0.9966 0.0069
RS 0.6171 1 0.9966 0.0069
SWC 0.0917 1 0.9984 0.0151
Dev 0.6171 1 0.9966 0.0069
Connectivity 0.6993 0.9999 0.9963 0.0093
Disconnectivity 0.7344 1 0.9975 0.0071

CHAPTER 3. CLUSTER QUALITY MEASURES EXPERIMENTATION 52

3.3.5 Overall Results

Our results show that Connectivity and Disconnectivity show near identical per-

formance. Of these clustering quality measures we would recommend the use of

Connectivity over Disconnectivity as it has the highest performance based on our

experiment, and the most simple definition. Further experimentation with various

values of l may show improvements to the performance of Connectivity or Discon-

nectivity.

Of the measures proposed by Halkidi et al., previously defined in section 2.3.4,

we find the first iteration of their proposed measures, SD, to be the most effective

on average in this experiment; so we recommend the use of SD instead of CDbw

and SDbw. SD has the potential to have a lower performance than CDbw but on

the whole seems to perform better.

Our results also show that the measures RS, RMSSTD and Dev provide the same

information. Hence, only one of these measures should be used when trying to find

optimal clustering solutions. The performance of these measures is good; there was

a strong correlation between the deterioration of the clustering solution and the

value of the measures so any one of them is a good candidate for a clustering quality

measure.

The other measures of clustering quality we examined: VRC, DB and SWC,

showed mixed performance. The VRC measure was highly correlated only in some

cases. On average DB was better than VRC but still showed poor performance.

SWC is the best performer of this group.

3.4 Summary & Conclusions

In this chapter we discussed cluster quality measures and we discussed what is a

desirable cluster quality measure. We determined that cluster quality measures

can be grouped together according to what they measure; for example: separation,

CHAPTER 3. CLUSTER QUALITY MEASURES EXPERIMENTATION 53

density or connectivity. For discovering interesting clusters it may be desirable to

use a mix of clustering quality measures assessing different qualities of the clustering

solutions. We have also discussed a search strategy. We decided that cluster quality

measures that show a steady change in value as the clustering solutions improve or

degrade in quality are more useful than those that can only determine the “best”

solution to measure this steady behaviour. We degraded clustering solutions in a

step wise manner by randomly reassigning some members of the data set from one

cluster to another and assessed how cluster quality measures behaved. We proposed

the use of the correlation between an external quality measure, the Rand Statistic,

and the various internal quality measures as our indicator of robust performance.

Our results have shown that the measures based on the concept of connectivity

have the highest correlation and hence the most robust performance in this study.

Some of the measures presented have very similar performance so may not work well

together in the context of MO algorithms, where we aim to select measures that are

not completely correlated to each other (i.e. from different performance subgroups).

Connectivity in an MO context may be complemented by another measure such as

RS or Dev as these measures also performed well but attempt to investigate different

concepts of cluster quality.

Future work could include a study to identify redundant cluster quantity mea-

sures. Cluster quality measures that perfectly correlate with each other could be

considered redundant as there would be no point in using them together. If we group

cluster quality measures that correlated with each other we could then select the

best cluster quality measures based upon other factors such as runtime performance.

Future studies could also consider different types of data sets. The data sets that

we used in this study were all generated with a multivariate normal distribution

and results of this study may not be applicable to other types of data set. The

hyper spherical clusters that we generated should be identifiable by algorithms such

as k-means but they may behave very differently if the clusters took the form of

different shapes. We leave this as an open question for future research.

CHAPTER 3. CLUSTER QUALITY MEASURES EXPERIMENTATION 54

As part of our overall goals we now have a method for identifying useful Cluster

Quality Measures and identified some suitable Cluster Quality Measures. The find-

ings have been published in [83] and the identified measures will be useful for our

work with Multi-Objective Evolutionary Algorithms.

Chapter 4

Solving Problems with Multiple

Objectives

In an optimisation problem, a large number of valid solutions exist [22, 88, 152].

These solutions can be judged using a function that assesses their quality to deter-

mine if one solution is better than another. A solution to a problem is expressed

as a set of variables that may all be continuous variables, discrete variables or a

mixture. Problems where all of the variables are discrete are known as combina-

torial optimisation problems as there is a finite number of possible solutions. In

this work we are attempting to optimise the assignment of objects in a data set

to a number of clusters. These assignments are of a binary nature, as we are not

considering the fuzzy clustering problem. Therefore, the problem of crisp clustering

can be considered as a combinatorial optimisation problem.

To find a solution to a combinatorial optimisation problem it may be possible

to enumerate all of the possible solutions to the problem. However, for anything

but a relatively small problem it is not computationally possible to enumerate all

of these solutions. This has led to the development of a large number of heuristic

algorithms that search the solution space in an attempt to find an optimal or near

optimal solution without testing all of the solutions. In the simplest case we may

have a problem where we must find an integer in a large range that minimises a

55

CHAPTER 4. SOLVING PROBLEMS WITH MULTIPLE OBJECTIVES 56

function. A simple search strategy may involve reducing or increasing the input

value and continuing in the direction that gives the desired result until a minimum

value of the function is found. Such local search techniques are likely to become

trapped in a local minimum and miss the global minimum. Several algorithms have

been developed to overcome the problems of local search, for example Simulated

Annealing [19, 86] and Tabu search [47, 48]. There are also other methods such as

Evolutionary Algorithms inspired by evolution in nature, and particularly genetic

algorithms which are relevant to our research.

4.1 Multiple Criteria Decision Making

Multiple Criteria Decision Making (MCDM) is the study of how to find solutions to

problems where there are multiple conflicting criteria. MCDM is often performed

on problems where each objective is said to be a “black box”. General MCDM

algorithms are not tailored to specific objective functions.

The process of making a decision where there is only one criterion is relatively

trivial. For example if we wish to purchase a piece of equipment we may choose to

purchase the piece of equipment with the minimum cost. This choice is relatively

trivial as there is only a single criterion. We may also decide that we should purchase

the piece of equipment that is of the highest quality. This is also a trivial single

criterion problem. However, we may decide that we should purchase a piece of

equipment that is of high quality and is also of minimum cost to get the best “value

for money”. These objectives are in conflict with each other as expensive equipment

if often of higher quality. We would be required to make a decision where there are

multiple conflicting criteria.

CHAPTER 4. SOLVING PROBLEMS WITH MULTIPLE OBJECTIVES 57

0

5

10

15

20

0 5 10 15 20 25 30 35 40

Q
u
al

it
y

Cost

Figure 4.1: Example of a set of solutions (squares) to a problem where the goals are
to maximise quality and minimise cost.

In figure 4.1 we show an example where there are a number of solutions to the

problem of buying a piece of equipment of the highest quality and lowest cost. That

is to say we aim to maximise quality and minimise cost. We have represented each

solution as a square where the highest quality solutions are towards the top and the

lowest cost solutions are on the left so the best solutions should be in the top left.

We cannot say that one solution is better than all of the other solutions based on

both criteria but we can say there are solutions that we would consider best if we

were only making the decision using a single criterion.

CHAPTER 4. SOLVING PROBLEMS WITH MULTIPLE OBJECTIVES 58

0

5

10

15

20

0 5 10 15 20 25 30 35 40

Q
u
al

it
y

Cost

Better

Worse

Incomparable

Figure 4.2: Example of which solutions (squares) can be considered: better (in
the green area), worse (in the red area) or incomparable (in the white area) when
compared to a specific solution (the black square).

If we identify a single solution, we may define certain properties of it. In figure

4.2 we have plotted a number of solutions as squares and highlighted an individual

solution by colouring it black. We may say that some solutions are worse than the

solution we have highlighted. These solutions are of greater cost and of lower quality,

this region has been coloured red. We may also say that some solutions are better

that the highlighted solution as they cost less and they are of higher quality, this

region has been coloured green. The other solutions are said to be incomparable

to the highlighted solution as they are neither better or worse than the highlighted

solution. They are either more costly and of higher quality or less costly and of lower

quality than the highlighted solution. The incomparable solutions are not better or

worse than the highlighted solutions for both criteria.

We will formally define a solution to a given problem as:

~s = (s1, . . . , so) (4.1)

CHAPTER 4. SOLVING PROBLEMS WITH MULTIPLE OBJECTIVES 59

where ~s is an o dimensional vector and each se represents the value of one objec-

tive function. There are o objective functions. The value of each se may be any real

value, se ∈ R, and is the value of the eth objective function used to assess a solution

to a problem. The exact range of values is dependent on the objective function that

is used to assess each solution to the given problem.

Sets of solutions are often generated in an attempt to solve a given problem. In

this work we will denote a set of solutions as:

S = {~s1, . . . , ~sN} (4.2)

where each ~si is a vector containing the value of the objective functions for a

solution and N is the number of solutions in the set.

4.1.1 Pareto Dominance

Previously we stated that when we are comparing a solution to another solution we

can define the solutions as: better, worse or incomparable. Formally we will call

these dominating, dominated or incomparable solutions respectively. In Figure 4.2

we highlighted a specific solution as a black square. The solutions in the green area

dominate the highlighted solution, the solutions in the red region are dominated by

the highlighted solution and the other solutions are incomparable.

In figure 4.3 we have highlighted several solutions and labeled them A, B, C and D.

Solution A has a more desirable cost than solution B. However, solution B has a more

desirable quality than solution A demonstrating two trade off solutions. Solutions C

and D are dominated by solutions A and B as the values of the objectives of solutions

C and D are less desirable or equal to the values of the objectives of solutions A and

B. Solution D is strictly dominated by solutions A, B and C. However, solution C is

not strictly dominated by solutions A and B as the value of the quality objective of

solutions A and C is equal and the value of the cost objective is equal in solutions

B and C. We now formally define these concepts with notation:

CHAPTER 4. SOLVING PROBLEMS WITH MULTIPLE OBJECTIVES 60

0

5

10

15

20

0 5 10 15 20 25 30 35 40

Q
u
al

it
y

Cost

A

B

C

D

Figure 4.3: Example where solutions that dominate and strictly dominate other
solutions have been highlighted for discussion.

Given two solutions, ~si and ~sj, we may say: ~si is preferred to ~sj; ~sj is preferred

to ~si; ~si is equal to ~sj; or neither ~si or ~sj is the preferred solution. A solution is

preferred to another solution if it dominates the other solution. ~si dominates ~sj,

within a problem where all of the objectives are to be minimised, if all of the values

of the objectives in ~si are less than or equal to the corresponding values in ~sj and

there is at least one objective in ~si with value less than the corresponding value in

~sj. Formally we define this as:

~si � ~sj if sie ≤ sje∀sie ∈ ~si, sje ∈ ~sj ∧ ∃sie < sje, sie ∈ ~si, sje ∈ ~sj (4.3)

CHAPTER 4. SOLVING PROBLEMS WITH MULTIPLE OBJECTIVES 61

0

5

10

15

20

0 5 10 15 20 25 30 35 40

Q
u
al

it
y

Cost

Figure 4.4: Example of which solutions (red) form the Pareto front from a given set
of solutions (squares) to a problem.

Solutions that are not dominated by any other solution are said to be non-

dominated. When a solution is non-dominated we can say that no other solution is

better. From a set of solutions we may identify a subset of solutions that are non-

dominated, this set is known as the Pareto front. In Figure 4.4 we have highlighted

the solutions that form the Pareto front in our example problem in red. MCDM

often results in discovering the Pareto front or a set of solutions that is the best

obtainable approximation of the Pareto front.

Alternatively, we may say a solution, sie, strictly dominates another solution, sje,

if all of the values of the objectives in ~si are less than the equivalent values in ~sj.

This differs from the previous definition of dominance as equal values may not be

dominated. This is formally defined as:

~si � ~sj if sie < sje∀sie ∈ ~si, sje ∈ ~sj (4.4)

CHAPTER 4. SOLVING PROBLEMS WITH MULTIPLE OBJECTIVES 62

The definition of non-strict dominance that we have given earlier is also known

as preference or weak dominance. If ~si � ~sj then ~si � ~sj, however the reverse is not

true. Differing methods of defining dominance lead a different interpretation of the

Pareto front [36, 118].

Alternatively more relaxed definitions of dominance may be used such as cone

dominance [13, 71]. This is a more relaxed form of dominance that may encourage

more evenly spread Pareto fronts. We show a conceptual example of cone dominace

in Figure 4.5.

0

5

10

15

20

0 5 10 15 20 25 30 35 40

Q
u
al

it
y

Cost

Cone Dominated

ε-Dominated

Pareto
Dominated

ε

ε

Figure 4.5: Example of ε-dominance and cone dominance.

The concept of ε-dominance was proposed by Laumanns [95]. ε-dominance is

also a more relaxed form of dominance that uses a weight, ε, to allow a solution

to dominate solutions around it. An example of ε-dominance is shown in Figure

4.5. Where ε-dominance is used in place of the standard definition of dominance,

solutions will be at least ε apart from each other in all dimensions [7], therefore

the value of ε must be tuned so a useful number of non-dominated solutions are ε-

dominated. Finding solutions to problems with a small number of potential solutions

may be hampered by the use of ε-dominance [68].

CHAPTER 4. SOLVING PROBLEMS WITH MULTIPLE OBJECTIVES 63

4.2 Solving MCDM Problems

There are a number of approaches to solving MCDM problems. A simple way to

solve the problem would be to attempt to enumerate all of the possible solutions.

This would be unfeasible for all but relatively small problems regardless of the

number of objectives. It is also possible to transform multi-objective problems into

single objective problems through objective ranking or other techniques. However,

this would not produce a Pareto set of solutions. It would instead produce a single

solution therefore missing all of the possible trade-off solutions in a Pareto front

[44].

Before we embark upon solving MCDM problems we must first define what the

goal of the optimisation problem is. We may wish to identify all of the Pareto opti-

mal solutions, but as we said previously this may be impossible if the search space

is large. We may therefore try to find a representative subset or an approximation

of the Pareto front. We must then try to decide how good the quality of these ap-

proximations are. We can assess the quality of approximations by using assessments

of Pareto quality. In Section 4.3 we discuss this further.

In our studies we plan to use Multi-Objective Evolutionary Algorithms (MOEA)

to solve MCDM problems. Before we introduce MEOAs we first introduce Genetic

Algorithms (GA) as they are the single objective precursors of MOEAs.

4.2.1 Genetic Algorithms

A Genetic Algorithm (GA) [40, 52, 66] is a subclass of Evolutionary Algorithms

(EA). A number of reviews of the topic have been published [17, 50, 113]. These are

algorithms that utilise techniques inspired by natural evolution. Evolution is the

combination of two processes: natural selection and sexual reproduction. Natural

selection is a process where a population of individuals is reduced in size, individuals

that are not fit enough to survive until mating are eliminated from the population

and do not pass their traits to the next generation. Fitter individuals are more

CHAPTER 4. SOLVING PROBLEMS WITH MULTIPLE OBJECTIVES 64

likely to find food, survive attacks by predators and find suitable mates. Sexual

reproduction is a process where chromosomes from two individuals are mixed to

create two new individuals with characteristics from both parents. During sexual

reproduction sometimes mutation occurs, this is where some chromosomes of the

individual are randomly changed, which may lead to new characteristics emerging

in the population.

Algorithm 4.1 Outline of a Simple Genetic Algorithm

Require: N the population size
Require: m the maximum number of generations
Require: x the crossover rate
Require: µ the mutation rate
P0 ← population of N randomly generated solutions
evaluate(P0) evaluate solutions
g ← 1 the current generation
repeat

select (1− x)×N solutions from Pg−1 and copy into Pg
select x×N solutions from Pg−1 in pairs for crossover
crossover each pair of selected solutions and insert into Pg
randomly mutate µ×N solutions from Pg
evaluate(Pg) evaluate new solutions
g ← g + 1
create Pg

until fittest solution in Pg is fit enough or g ≥ m
return fittest solution in Pg

A GA mimics the process of evolution to solve problems. In Algorithm 4.1 we

show an outline of a simple Genetic Algorithm. In that simple algorithm we first

create a population of randomly generated solutions to our problem. Each solution

in our population is then evaluated to determine its fitness (quality). The following

tasks are then repeated until a solution that meets a quality threshold is found or a

maximum number of generations is reached.

The first task in our simple GA is to select solutions from the current population

to copy into the next population unchanged. A number of techniques are available

to select which solutions should be chosen [14, 51]. Three classic techniques for

selecting solutions are: rank selection, Roulette wheel selection and tournament

CHAPTER 4. SOLVING PROBLEMS WITH MULTIPLE OBJECTIVES 65

selection. In rank selection the solutions are sorted by fitness and the probability a

solution is chosen is based upon the solution’s position in the sorted list. In roulette

wheel selection the probability that a solution is chosen is proportional to the fitness

of the solution, this is often likened to a roulette wheel where the size of each segment

is controlled by the fitness of each solution. Tournament selection is a process where

a number of solutions are randomly chosen from the population, the fittest solution

is retained and the other solutions are discarded. This process is repeated until the

desired number solutions are chosen.

The second task in our simple GA is to crossover solutions from the current

generation to produce new solutions to join the next generation. Solutions are

selected for crossover in the same manner as the copy step. Crossing over solutions

mimics the process of sexual reproduction. In a simple example where each solution

is a list of boolean values a crossover may just cut each list in two at a random

point and then exchange the values either side of the point. We elaborate on some

of the simple crossover operators later in Section 4.4.1.2 in the context of modifying

representations of clustering solutions.

The third task is mutation. A mutation operator randomly modifies solutions in

the new population. If each solution was a list of booleans the mutation operator

could randomly flip a bit in the list to mutate a solution. In more complex problems

where the solutions are represented as list of real numbers, a random value could be

added or subtracted to change a solution. In Section 4.4.1.1 we detail some simple

mutation operators.

The final task is to evaluate the new population of solutions. The fittest solution

in the population must first be identified. If the fittest solution is fitter than a

desired threshold then the algorithm may finish executing and return the solution

as its result. If the fittest solution does not exceed the desired fitness the algorithm

should return to the first task and repeat the process. A maximum number of

generations should also be specified as an alternative stopping criterion.

CHAPTER 4. SOLVING PROBLEMS WITH MULTIPLE OBJECTIVES 66

4.2.2 Multi-Objective Evolutionary Algorithms

Multi-Objective Evolutionary Algorithms follow broadly the same procedure as the

Genetic Algorithms we described in Algorithm 4.1 [46]. The main difference here is

how the fitness of the solutions is calculated and the method used to select those to

be passed from one generation to the next. In the single objective case the solutions

can simply be ranked by the value of the objective function but we cannot do this

in the Multi-Objective case as we must take all of the objectives into consideration.

A MOEA must also attempt to guide the whole population of solutions towards the

Pareto front to find a wide range of high quality solutions.

Here we review several well known algorithms from the literature by dividing

them into groups based on their method of determining the fitness of solutions.

4.2.2.1 Aggregation Based Algorithms

Aggregation based techniques were among the first to be used for determining the

fitness of a solution in a multi-objective environment. These are techniques that

combine all of the objectives into a single objective and then evaluate the fitness

by computing the highest (or lowest in a minimisation problem) values of this new

objective. A classic example of this is weighted-sum aggregation [73].

The weighted-sum algorithm uses a fitness function that combines all of the ob-

jective functions for the given problem. A random weight is applied to each of the

objective functions and the weighted objectives are then summed. At each gener-

ation the weights are randomly regenerated to encourage exploration in different

areas of the Pareto front.

A number of the non-dominated solutions are randomly added to the new pop-

ulation that is produced. The new population then passes through the process of

crossover and mutation that is common to other evolutionary algorithms and then

repeats until some termination criterion is met.

The weighted-sum algorithm also maintains a separate external archive of solu-

CHAPTER 4. SOLVING PROBLEMS WITH MULTIPLE OBJECTIVES 67

tions that contains all of the non-dominated solutions observed during the execution

of the algorithm. This improves the performance of the algorithm as it ensures that

all of the non-dominated solutions that are found during execution can be reported

when the algorithm finishes.

Aggregation based methods can be advantageous as they are computationally

efficient. Aggregation methods are not useful when we are attempting to identify a

Pareto front that is non-convex or has non-convex regions [106] as these algorithms

may not effectively find the solutions in these regions of the Pareto front [78]. These

algorithms can be made more effective if more information is known about the

problem that is being solved. For example, the weights can be set so that they

scale the objectives appropriately. Poorly scaled weights may lead to one objective

dominating the Pareto front.

4.2.2.2 Criterion Based Algorithms

Criterion based selection techniques differ from other selection techniques by us-

ing each of the objective functions in turn to select the solutions that pass to the

next generation [46]. For a population of size N with o objective functions, o sub-

populations of size N
o

are generated by assessing each sub-population with each ob-

jective function in isolation. Solutions are selected from the solutions selected from

the sub-populations by using a single objective selection procedure such as roulette

wheel selection that we previously described in Section 4.2.1. The sub-populations

are then combined together and the solutions are shuffled into a random order to

produce the next population of solutions for the algorithm.

Vector Evaluated Genetic Algorithm (VEGA) [130] is the classic example of a

criterion based algorithm. The algorithm is based on a simple genetic algorithm.

The algorithm has been modified to use the criterion based selection technique

described above.

Criterion based algorithms are very simple to implement, which is advantageous.

The algorithms are poor at finding tradeoff solutions that represent a compromise

CHAPTER 4. SOLVING PROBLEMS WITH MULTIPLE OBJECTIVES 68

between several objectives. They instead find a set of solutions where each excels

at only one of the objectives.

4.2.2.3 Dominance Based Algorithms

An alternative method of ranking the fitness of individuals within a population

is to use dominance-based methods. These were first proposed by Goldberg [51].

Dominance-based methods are divided into three main methods: dominance rank,

dominance count and dominance depth.

Dominance Rank The dominance rank of a solution is based on the count of

the number of other solutions that dominate it. The basic method of calculating

the dominance rank of the solutions within a population begins by identifying the

non-dominated solutions within the population. These solutions are then assigned a

rank of 1. The remaining solutions are then ranked by the number of other solutions

that dominate them. For a solution, ~s, the rank is calculated as 1 + the number of

solutions that dominate ~s.

Using the dominance rank leads to the emergence of dominance classes, i.e. sub-

sets of solutions that have the same dominance rank and therefore cannot be ordered.

The fitness of the solutions within the same dominance class may be determined

within the dominance rank in a number of ways. The density of the solutions may

be used as an indicator of the fitness of solutions within a dominance rank. Density

may be calculated in a number of ways. For example, a kernel method may be used

that is a function of the distances to the other solutions within the same dominance

rank. Alternatively a measure of the distance to the k-th nearest neighbour distance

of the solution or a histogram method that measures the number of solutions within

a bounding area around the solution being evaluated can also be used.

Multiple Objective Genetic Algorithm (MOGA) [38] determines the fitness of the

solutions using the dominance rank of the solutions. The final fitness values of the

solutions within the current population are determined from the dominance ranks

CHAPTER 4. SOLVING PROBLEMS WITH MULTIPLE OBJECTIVES 69

by using a Niche-formation method so that all of the solutions selected to form the

next population are evenly distributed.

Niched Pareto Genetic Algorithm (NPGA) [67] uses the dominance rank of solu-

tions as part of a tournament based selection method. A tournament based selection

method is one that randomly chooses two or more solutions from the population;

the fittest of those two solutions is added to the new population. This process is

completed when enough solutions are selected to form a new population. In NPGA

the solution that has the lowest dominance rank is considered the fittest solution

and wins the tournament contest. In the case that two solutions have the same

dominance rank, the tie must be broken using a niche method. This involves the

calculation of the number of other solutions that are contained within a niche around

the solutions. The solution that has the smallest number of other solutions within

the niche that surrounds it is chosen as the winner of the tournament and is added

to the next population.

Dominance Count The dominance count of a solution is the count of the number

of individuals that solution dominates. The dominance count can be used in conjunc-

tion with the dominance rank. This technique is used by the algorithms Strength

Pareto Evolutionary Algorithm (SPEA) [154] and SPEA2 [153]. The strength of a

solution is its dominance count. A solution is stronger if it dominates more solu-

tions. The dominance rank of the solutions is calculated in the normal way but each

solution is weighted by its strength. A solution that is dominated by a solution that

has a low strength is penalised less than a solution that is dominated by a solution

that has a high strength.

4.2.2.4 Dominance Depth Algorithms

Dominance depth is a technique for determining fitness that divides the population

into a series of non dominated fronts.

In Figure 4.6 we provide an example of how to calculate the dominance depth of

CHAPTER 4. SOLVING PROBLEMS WITH MULTIPLE OBJECTIVES 70

solutions. The solutions that are part of the Pareto front, i.e, the non-dominated

solutions, have a dominance depth of 1. In the diagram these solutions are high-

lighted red. To determine which solutions have a dominance depth of 2 we eliminate

the solutions that have a dominance depth of 1 from the population. We then re-

calculate which solutions form the Pareto front and define the solutions that form

the new Pareto front as having a dominance depth of 3. In the diagram these have

been highlighted green. We repeat this process until no solutions remain. In the

diagram the blue solutions have a dominance depth of 3, the black solutions have a

dominance depth of 4 and the grey solution has a dominance depth of 5.

0

5

10

15

20

0 5 10 15 20 25 30 35 40

Q
u
al

it
y

Cost

Figure 4.6: Example of Dominance Depth.

The process we have just described for calculating the dominance depth of so-

lutions is at best a näıve and inefficient method. In Algorithm 4.2 we describe an

algorithm for determining the dominance depth of solutions within a set of solutions,

S. The algorithm generates a set of fronts, {F1, . . . ,Ff}, where Fc is the cth front

and a set of ranks, {r1, . . . , rN}, where ri is the dominance depth of ~si.

Dominance depth is the technique used by Non-Dominated Sorting Genetic Al-

gorithm (NSGA) [136] and NSGA-II [29] to determine the fitness of solutions within

CHAPTER 4. SOLVING PROBLEMS WITH MULTIPLE OBJECTIVES 71

Algorithm 4.2 Calculate Dominance Depth

• ∀~si ∈ S

– Initialise Xi = ∅. Xi will contain all the solutions that are dominated by
~si.

– Initialise ni = 0. ni will be the number of solutions that dominate ~si.

– ∀~sj ∈ S
∗ if ~si � ~sj
· Xi = Xi ∪ {~sj}

∗ else if ~sj � ~si
· ni = ni + 1

– if ni = 0

∗ ri = 1. Rank of ~si is 1.

∗ F1 = F1 ∪ {~si}. Add ~si to the first front.

• F2 = ∅. Initialise second front.

• c = 1. Initialise front counter.

• while Fc 6= ∅

– Q = ∅
– ∀~si ∈ Fc. For each solution in the current front.

∗ ∀~sj ∈ Xi. For each solution dominated by ~si.

· nj = nj − 1. Reduce the number of solutions ~sj is dominated by.

· if nj = 0 then rj = c + 1 and Q = Q ∪ {~sj}. If ~sj is no longer
dominated add it to the current front.

– c = c+ 1

– Fc = Q

CHAPTER 4. SOLVING PROBLEMS WITH MULTIPLE OBJECTIVES 72

a population. NSGA-II also uses a parameter called the crowding distance to de-

termine the fitness of solutions that have same dominance depth. The crowding

distance is a measure of how close a solution is to its neighbouring solutions. Popu-

lations of solutions with a large average crowding distance lead to increased diversity

in the population of solutions. The crowding distance of the ith solution in the cth

front is Fc(di). The crowding distance of a solution is a measure of its distance to its

neighbours. The crowding distance of the tails of a front are set to infinity so they

are always selected. The calculation of the crowding distance is given in Algorithm

4.3.

Algorithm 4.3 Calculate Crowding Distance

• ∀Fc ∈ F

– ∀~si ∈ F . For each solution in the current front.

∗ Fc(di) = 0. Set crowding distance to 0.

– e = 1. Initialise objective counter.

– while e ≤ o. For each objective function.

∗ sort(Fc, e). Sort the individuals in the front based on the value of
the objective function.

∗ Fc(d1) =∞. Assign infinite distance to boundary.

∗ Fc(df) =∞. Assign infinite distance to boundary.

∗ ∀i ∈ {2, . . . , f − 1}

· Fc(di) = Fc(di) +
s(i+1)e − s(i−1)e
Fmaxe −Fmaxe

, where s(i)e is the value of the

eth objective function of the ith solution in F .

The fitness of solutions in the population maintained by NSGA-II is calculated

using the crowded comparison operator, ≺n, which sorts solutions by their domi-

nance depth and then by their crowding distance. ~si ≺n ~sj if ri < rj or ri = rj and

Fc(di) < Fc(dj). That is to say, ~si has a lower dominance depth than ~sj or they

belong to the same front and the crowding distance of ~si is lower than the crowding

distance of ~sj.

To execute NSGA-II it must be supplied with a suitable random start population,

CHAPTER 4. SOLVING PROBLEMS WITH MULTIPLE OBJECTIVES 73

this may be randomly generated or generated in a method that is suitable for the

problem at hand. The algorithm then selects solutions for mutation and crossover

using a standard binary tournament selection with the crowded comparison opera-

tor, ≺n. The selected solutions are then mutated and crossed over using supplied

mutation and crossover operators. The solutions are added to the current popula-

tion which is then sorted again using the crowded comparison operator. The next

population is then filled with the fittest solutions until it is full, this ensures that all

the current and previous best solutions are retained which ensures convergence to

the optimal Pareto front. The process is then repeated until a maximum number of

generations is met.

In our experiments that we detail in subsequent chapters of this thesis we use

NSGA-II as the main framework of our research. We provide start populations,

mutation operators and crossover operators to an implementation of this algorithm.

4.2.2.5 Recent Algorithms

Some relatively recent developments in MOEAs now use the hyper volume indicator

to guide the selection of solutions. We elaborate on the hyper volume indicator in

Section 4.3.1 in the context of using it as a method of assessing and comparing the

quality of Pareto fronts. Briefly, the hyper volume measure calculates the volume of

the objective space that is covered by a Pareto front. As a Pareto front gets closer to

an optimal Pareto front, the volume of the objective space covered should increase.

Several algorithms have been developed that use this technique.

S Metric Selection Evolutionary Multi Objective Algorithm (SMS-EMOA) [9,

34] is a similar algorithm to NSGA-II but it uses hyper volume to select a single

solution to be replaced at each generation. Hypervolume E Optimisation (HypE)

[3] is another algorithm that uses the hyper volume indicator but also adds further

improvements that allow for a larger number of objectives to evaluated in a feasible

timescale. These more recent developments may be better MOEAs than the ones

we use in this work, but we leave this for future work.

CHAPTER 4. SOLVING PROBLEMS WITH MULTIPLE OBJECTIVES 74

4.3 Evaluation of Pareto Fronts

In this section we will introduce some techniques to evaluate Pareto fronts. Previ-

ously in Equation 4.2 we defined a set of solutions to a problem as S. A Pareto front

was defined as a set of solutions where each solutions is not dominated by any other

solution (included or not in that set). When we come to evaluate the performance of

an MOEA, an important task is assessing the quality of the set of solutions that is

produced. We could also assess algorithms based on other criteria such as execution

time or number of generations to converge.

To evaluate a Pareto front we must have other Pareto fronts to compare it to.

When we execute a MOEA many times or execute many MOEAs we will generate

many Pareto fronts. Because of this, we will first introduce some additional notation.

We will define a family of Pareto fronts as:

S = {S1, . . . ,Ss} (4.5)

where s is the number of Pareto fronts within a family. S will represent all of

the Pareto fronts discovered while attempting to solve a problem.

Some techniques for evaluating Pareto fronts require an optimal, or idealised,

Pareto front to compare the Pareto front generated by the algorithm against. This

will be defined as:

S∗ = {~s∗1, . . . , ~s∗N} (4.6)

where each solution within the optimal front is defined as: ~s∗i = (s∗i1, . . . , s
∗
io). S∗

is in practice equivalent to the definition of Sa given in Equation 4.2.

Where an optimal Pareto front is not known one may be approximated from S

by combining all ~sai that are not dominated by any solutions in other Pareto fronts.

To assess the solutions we normalise the values of each objective so one objective

CHAPTER 4. SOLVING PROBLEMS WITH MULTIPLE OBJECTIVES 75

is not dominant [36]. Y is the set of all Sa and HY is the smallest hypercube that

contains all of Y :

HY =
{
~z ∈ Ro : ai ≤ zi ≤ bi;~a,~b ∈ Y ; i = 1, . . . , o

}
(4.7)

where Y =
⋃
Sa∈S

Sa

The function hY (~z) : HY 7−→ [0, 1]o normalises the solution space. hY (~sai) maps

~sai into the normalised objective space. For the rest of this work ~sai shall be taken

as the value of hY (~sai) so saij ∈ [0, 1].

Now, we introduce some of the measures available in the literature to compare

Pareto fronts. All of these measures require that the fronts have been normalised

first.

4.3.1 Volume of Dominated Space

The volume of the objective space that has been covered by a Pareto front, λ (Sa),

may be used as an indication of the quality of a Pareto front. Pareto fronts that

dominate a higher volume of the objective space are assumed to be better [125, 98].

However, Pareto fronts that dominate similar areas may be very different to each

other, as seen in figure 4.7, where Sa and Sb have similar volumes of dominated

space. The method used to determine the volume of the dominated objective space

varies based upon the number of objectives [45]. For example, in a problem with

two objectives it would be possible to calculate the area of a polygon formed from

the Pareto front, whereas in a problem with a greater number of objectives an

approximation of the Lebesgue measure [148] could be used. Algorithms such as the

the Dimension-Sweep Algorithm [39] can also be used to give an indication of the

volume of the dominated objective space.

In this work, to evaluate the area of HY that is dominated by a solution that

CHAPTER 4. SOLVING PROBLEMS WITH MULTIPLE OBJECTIVES 76

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

N
or

m
al

iz
ed

O
b

je
ct

iv
e

1

Normalized Objective 2

Sa
Sb
Sc

Figure 4.7: Example of the area dominated by different sets of solutions. λ (Sa) =
0.58805 λ (Sb) = 0.3025 λ (Sc) = 0.24795.

has been previously normalised, Sa, we form an o dimensional polytope by adding

vectors on each edge of the hypercube at the minimum value of each dimension and

in the corner:

Sa
⋃
{(min sai1, . . . , 1) , . . . , (1, . . . ,min saie, . . . , 1) , . . . (1, . . . ,min saio) , (1, . . . , 1)}

(4.8)

We then calculate the area of the polytope to give a measure of the area of the

objective space. In the case of two objectives this method results in a simple polygon

where the area can be calculated trivially. Calculating the volume where the number

of objectives is higher than in this work is more complex but is out of the scope of

this work.

CHAPTER 4. SOLVING PROBLEMS WITH MULTIPLE OBJECTIVES 77

4.3.2 Coverage

The C-Measure, proposed by [151], provides an indication of the coverage of a

Pareto front, Sb, by another Pareto front, Sa. To calculate this, first the number of

solutions in Sa that dominate or equal solutions in Sb, ~sai � ~sbi, must be determined.

A solution is said to dominate another solution if the value of each objective function

is better than or equal to the corresponding value in the other solution and at least

one objective value of the former solution is better than the corresponding value in

the latter solution. This is then normalised by the size of the Pareto front. The

C-Measure is defined formally as:

C (Sa,Sb) =
|{~sbi ∈ Sb : ∃~sai ∈ Sa : ~sai � ~sbi}|

N
(4.9)

where N is the number of solutions in Pareto front Sb.

The value of C (Sa,Sb) is in the interval [0, 1] and gives the fraction of Sb dom-

inated by Sa. If C (Sa,Sb) = 1 then all solutions in Sb are dominated by Sa, if

C (S,Sb) = 0 then no solutions in Sb are strictly dominated by Sa and if C (Sa,Sb) >

C (Sb,Sa) then Sa has better solutions than Sb.

A modified version of the C-Measure has also been proposed by [36, 125], this is

defined as:

C̃ (Sa,Sb) =
|{~sbi ∈ Sb : ∃~sai ∈ Sa : ~sai � ~sbi}|

N
(4.10)

The C̃-Measure is the same as the C-Measure except the number of solutions

in Sa that ’covered’ in Sb, ~sai � ~sbi, is determined instead of dominated or equal

solutions. The C-Measure also has the property that if W is a bi-dominated set,

one where two Pareto fronts overlap, where Sa ⊆ W and Sb ⊆ W then C (Sa,Sb)

may take any value in [0, 1]. The C̃-Measure removes this property.

CHAPTER 4. SOLVING PROBLEMS WITH MULTIPLE OBJECTIVES 78

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

N
or

m
al

iz
ed

O
b

je
ct

iv
e

1

Normalized Objective 2

Sa
Sb
Sc

Figure 4.8: Examples of C̃-Measure; C̃ (Sa,Sb) = 1 , C̃ (Sa,Sc) = 1, C̃ (Sb,Sa) = 0,
C̃ (Sb,Sc) = 4

9
, C̃ (Sc,Sa) = 0 and C̃ (Sc,Sb) = 4

8
.

In this work we use the C̃-Measure to compute how many solutions dominate

other solutions. For each set of solution, Sa, in the family of solutions, S, we

calculate the C̃-Measure against every other set of solutions, Sb, in S. We then

compute the number of cases where C̃ (Sa,Sb) > C̃ (Sb,Sa) as C̃Sa . Higher values

of C̃Sa indicate that the set of solutions is better than other sets of solutions within

the family of sets of solutions. An example of the C̃-Measure is shown in figure 4.8.

4.3.3 Spread

A Pareto front can be said to be good if the solutions upon it are evenly spread

[98, 29]. This means that the search space has been well explored as the solutions

are not clumped around local optima. A method of assessing this is the Spread

measure [116], also known as the diversity metric [29].

The spread of a given Pareto front, Sa, denoted S(Sa) measures the distance

between consecutive solutions in the Pareto front. It also takes into account the

CHAPTER 4. SOLVING PROBLEMS WITH MULTIPLE OBJECTIVES 79

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

N
or

m
al

iz
ed

O
b

je
ct

iv
e

1

Normalized Objective 2

S∗
Sa

Figure 4.9: Example of the distances used to calculated Sa for a constructed optimal
Pareto front and a constructed Pareto front.

extreme solutions in the optimal Pareto front and the Pareto front that is being

assessed. There are o extreme solutions in each Pareto front.

S(Sa) =
(
∑o

e=1 δe) +
∑N−1

i=1

(
δ (~sai, ~sai+1)− δ̄

)
(
∑o

e=1 δe) + (N − 1) δ̄
(4.11)

where δ̄ =

(
N−1∑
i=1

δ (~sai, ~sai+1)

)
/N − 1

and δe = δ (~sai, ~s
∗
i) , min saie ∈ Sa, min s∗ie ∈ S∗

If the Pareto front includes the extreme solutions and they are evenly spread

then the value of the measure is zero. Higher values of the measure indicate that

the Pareto front is not well spread. A visual example of the distances used to

calculate the spread of a Pareto front is shown in figure 4.9.

CHAPTER 4. SOLVING PROBLEMS WITH MULTIPLE OBJECTIVES 80

4.3.4 Generational Distance &

Inverted Generational Distance

A Pareto front, Sa, can be said to be good if the solutions within it are among

the optimal Pareto front, S∗. The Generational Distance, GD, [142] is a measure

that determines if all of the solutions are also within the optimal Pareto front, in

which case GD(Sa) = 0, and if they are not it gives an indication of how far the

set of solutions is from the optimal set of solutions GD(Sa) > 0. It has been used

in previous experimental studies as an indication of how good a Pareto front is

[116, 30]. More precisely the generational distance measures the distance between

each solution in the Pareto front and its nearest neighbour in the optimal Pareto

front, and it is defined formally as follows:

GD(Sa) =

√∑N
i=1 min δ

(
~si,~s∗j

)
N

, ~s∗j ∈ S∗ (4.12)

where N is the number of solutions in Sa.

The generational distance gives an indication of how close a Pareto front is to the

optimal Pareto front. However, the Pareto front being evaluated may only cover a

small area of the optimal Pareto front, so a set of solutions may be indicated to be

good by GD but may not cover the majority of the optimal Pareto front. This can

be seen in figure 4.10a.

The Inverted Generational Distance, IGD, [99, 120] measures the distance be-

tween each solution in the optimal Pareto front and its nearest neighbours in the

Pareto front that is being evaluated. If all of the solutions within the optimal Pareto

front are contained in the Pareto front being evaluated then IGD(Sa) = 0, if they

are not then IGD(Sa) > 0. This measure gives a better indication of how much of

the search space has been covered by a given Pareto front. However, it does give

extra weight to extreme solutions within the search space. This is shown in figure

CHAPTER 4. SOLVING PROBLEMS WITH MULTIPLE OBJECTIVES 81

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

N
or

m
al

iz
ed

O
b

je
ct

iv
e

1

Normalized Objective 2

S∗
Sa

(a) GD

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

N
or

m
al

iz
ed

O
b

je
ct

iv
e

1

Normalized Objective 2

S∗
Sa

(b) IGD

Figure 4.10: Distances used to calculate GD and IGD for a constructed optimal
Pareto front, S∗, and a constructed Pareto front Sa that is being evaluated.

4.10b. It is defined formally as follows:

CHAPTER 4. SOLVING PROBLEMS WITH MULTIPLE OBJECTIVES 82

IGD(Sa) =

√∑N
i=1 min δ (~s∗i , ~saj)

N
, ~saj ∈ Sa (4.13)

where N is the number of solutions in S∗.

The distances between solutions used by GD and IGD are calculated using the

Euclidean distance. It is assumed that all of the solutions have been normalised

before these measures are applied to evaluating sets of solutions.

4.3.4.1 Entropy

We can use the information entropy of the population as a measure of the diversity

of a given Sa [124]. Here we define entropy as:

E (Sa) = −
N∑
i=1

pi log2 pi (4.14)

where pi is the probability that ~sai or one solution identical to it is randomly

drawn from Sa.

Higher values indicate that Sa is diverse. Diverse Sa are desirable as they lead to

a larger set of non-dominated Sa for a decision maker to choose from.

4.4 Representations of Clustering Solutions for

Evolutionary Algorithms

Throughout previous studies it was shown that important areas to investigate were

the representations and operators. Not all operators may be used with all represen-

tations. We will provide an overview of some previous studies in Section 4.5. In this

section, we group the available options by the representation. For each representa-

CHAPTER 4. SOLVING PROBLEMS WITH MULTIPLE OBJECTIVES 83

tion we detail some suitable mutation operators and crossover operators. We also

detail an initialisation routine that generates sets of random solutions that we use

throughout the thesis for all the algorithms we use.

Evolutionary algorithms rely on a good representation of solutions that can be

manipulated appropriately. For clustering problems several representations have

been proposed [23, 70]. Popular methods include representing a solution as a set

of medoids, a set of centroids, labelling each object in the data set or a graph

representation [62]. In the following section we describe some implementations of

these representations.

A major challenge for clustering in general is how to determine the number of

clusters [20]. In this work we are interested in algorithms that can set the number

of clusters as part of the optimisation process, hence we use representations that

allow for solutions with a non-fixed number of clusters. To this end, we present

modifications to established representations and operators where necessary. Most

of the required modifications are focussed around the crossover operators.

4.4.1 Medoid Based Binary Encoding

A clustering solution may be represented as a set of cluster prototypes where each

object from the data set is associated with its closest cluster prototype to form

a clustering solution. This encoding is known as Medoid Based Binary Encoding

(MBBE) [92], ~m = (m1, . . . ,mn). Each object from the data set, ~xi, is associated

with an element of the encoding, mi. The value of mi is 1 to indicate that the

associated object is a prototype cluster or it is 0 otherwise [126]. Clustering solutions

are generated from the encoding by assigning objects from the data set to the cluster

prototype that is closest to the object. The value of k (number of clusters) is equal to

the number of cluster prototypes or medoids and can vary as part of the optimisation

process. A minimum of one object is assigned to each cluster by definition. This

avoids creating empty clusters.

CHAPTER 4. SOLVING PROBLEMS WITH MULTIPLE OBJECTIVES 84

A conceptually identical technique, that we do not use in this work, is the integer

based medoid representation [133] where each solution is a list of the indexes of

objects to be used as medoids. This technique increases the complexity of varying k

as it leads to encodings of different lengths which require more elaborate crossover

operators.

However, there are some advantages to using the MBBE representation. The

representation is scalable as the search set for selecting k clusters is lower than

the total number of partitions of a dataset into k clusters [75]. Medoids are also

interpretable in circumstances where physical feasibility is crucial. Centroids derived

from objects in the dataset may not themselves be valid objects that can be verified

by a domain expert, for example a variable may need to be an integer to construct

a real world valid object whereas a centroid may have a real value.

The mutation and crossover operators that are often used with MBBE are un-

guided operators, that is to say, they are not task dependent so they do not use

knowledge of the data set or the quality of previous clustering solutions to guide

the search towards solutions of higher quality. Since they operate on fixed length

strings, they are relatively straightforward to implement.

To initialise a medoid vector, ~m, the value of k must first be decided. We use a

random value drawn from a uniform distribution running from two to n
10

, where n is

the number of objects in the dataset. We then randomly select k objects from the

data set to be the initial cluster prototypes.

4.4.1.1 Mutation Operators

Several simple mutation operators are suitable for mutating a given medoid ~m. They

are as follows:

Individual Bit Mutation A medoid, mi, is randomly selected and the value is

inverted, as seen in figure 4.11. This has the effect of adding or removing a cluster

prototype.

CHAPTER 4. SOLVING PROBLEMS WITH MULTIPLE OBJECTIVES 85

→

Figure 4.11: Individual Bit Mutation

Bezdek [11] used a mutation operator that added or removed one cluster from the

solution. This mutation operator was functionally the same as the given mutation

operator but was used on a matrix representation.

Multiple Bit Mutation First a threshold is set as 1
n
. For each mi a random

number in the interval [0, 1) is generated. If it is smaller than that threshold then

mi is inverted, as in figure 4.12. This operator is more disruptive than the previous

operator as it may lead to many clusters being added or removed from the clustering

solution. Sheng [133] mutated solutions by flipping each feature in a solution.

→

Figure 4.12: Multiple Bit Mutation

It is possible that this implementation may lead to a solutions that have a a value

of k that is greater than n
10

. This is undesirable as it will lead to a large number of

medoids as this will lead to a large number of small clusters or even clusters that

contain only single objects.

Invert Mutation All mi in the solution are inverted to produce a solution that is

the opposite of the original, as in figure 4.13. This operator is extremely disruptive to

the solution, it may lead to a clustering solution with an abnormally high number

of clusters. Clustering solutions generated from this technique are unlikely to be

considered good clustering solutions. This mutation operator has not been used in

any previous work and we do not expect it to generate good results.

→

Figure 4.13: Invert Mutation

CHAPTER 4. SOLVING PROBLEMS WITH MULTIPLE OBJECTIVES 86

4.4.1.2 Crossover Operators

Crossover operators swap characteristics from two given parent solutions to pro-

duce two new child solutions that both have characteristics from each parent. The

crossover operators we use with MBBE are as follows:

One Point Crossover A single point is randomly selected from the solutions and

all of the values on a side of this point are exchanged to form two new solutions as

seen in figure 4.14.

→

Figure 4.14: One Point Crossover

Two Point Crossover Two points within the solutions are selected and the values

within the area between the points are exchanged to form two new solutions as seen

in figure 4.15.

→

Figure 4.15: Two Point Crossover

Three Point Crossover Three points within the solutions are selected, the values

contained in-between the first two points and the values in-between the third point

and the end of the solutions are exchanged, as in figure 4.16.

→

Figure 4.16: Three Point Crossover

Uniform Crossover For two solutions to be crossed, ~m and ~m′, there is a 50%

chance that mi will be exchanged for m′i [139]. This can be seen in figure 4.17.

CHAPTER 4. SOLVING PROBLEMS WITH MULTIPLE OBJECTIVES 87

→

Figure 4.17: Uniform Crossover

4.4.2 Label Based Integer Encoding

Label Based Integer Encoding (LBIE) [90, 115, 100] represents a clustering solution

by recording the cluster membership of each object from the data set. Each LBIE

representation, ~l, is a integer vector, li ∈ [1, k], of length n. Each position, li,

corresponds to an object in the data set ~xi and defines the cluster the object belongs

to. For example, the vector (111222233) describes a clustering solution for a data set

of nine objects where there is a cluster containing three objects, a cluster containing

four objects and a cluster containing two objects.

This representation is naturally redundant; for example (333111122) would gen-

erate a clustering solution that is identical to the previous example, even though

the two solutions have completely redundant phenotypes. To eliminate this issue a

renumbering procedure can be employed so that all permutations of a solution are

treated as identical solutions. A suitable procedure is given in Algorithm 4.4.

where ~l is the vector to be renumbered, k is the number of clusters and n is the

size of the dataset. ~a is a vector of size k that stores the order in which each cluster

number is observed in the solution, in the solution (333111122) cluster 3 is the first

observed cluster, cluster 1 is the second observed cluster and cluster 2 is the third

observed cluster. This is populated by looping through the solution and using a

counter, b, of the number of clusters we have not observed and added to ~a yet. ~t is

then populated by looping through the observed clusters, this vector maps from the

order the cluster was observed to the cluster number. Finally the algorithm loops

through the solution again replacing the cluster numbers with the value in ~t which

results in a renumbered vector.

This representation is advantageous as it can be used to represent a cluster of

any shape. However, a disadvantage is that it may not scale well to large datasets

CHAPTER 4. SOLVING PROBLEMS WITH MULTIPLE OBJECTIVES 88

Algorithm 4.4 Renumbering Procedure

Require: ~l = (l1, . . . , ln)
~a← (a1, . . . , ak)
~t← (t1, . . . , tk)
b← 1
for i = 1 to n do

if li 6∈ ~a then
ab ← li
b← b+ 1

end if
end for
for i = 1 to k do
tai ← i

end for
for i = 1 to n do
li ← tli

end for
return ~l

as each solution will have to be the same length as the number of objects in the

dataset. Larger solutions will require more space for storage and require a greater

amount of time for execution.

Krishna and Murty [90] describe an alternative matrix based binary encoding

representation that is conceptually similar. The representation is a n by k sparse

matrix of binary values where each row represents an object from the data set and

each column represents a cluster, only one column from each row may be set to 1.

This technique requires a pre-defined value of k and cannot be manipulated easily

by common mutation and crossover operators, so in this work we use label based

integer encoding. We did not use this alternative encoding in our main investigation

and only present it here for comparison.

For our implementation, each ~l is randomly initialised. The value of k is selected

from the range of integers
[
2, n

10

]
and each position in the new ~l is set to a random

integer value in the range [1, k].

CHAPTER 4. SOLVING PROBLEMS WITH MULTIPLE OBJECTIVES 89

4.4.2.1 Mutation Operators

We experiment with mutation operators that manipulate multiple or single positions

in an unguided or guided fashion giving rise to four mutation operators. For each

invocation of a mutation operator that mutates multiple positions the probability

of mutating multiple positions is first determined by a random value drawn from

the range [0, 1]. For each position, further random values are drawn to determine if

that position will be mutated. Where only one position is to be mutated a random

position is selected from the representation. The mutation that is performed on

each position is either guided or unguided, that is to say it has knowledge of the

data set and present clustering solution or it does not.

Unguided Mutation To manipulate a position in an unguided fashion the value

of the position is set to an integer drawn from [1, k].

Guided Mutation Krishna [90] proposed a guided mutation operator where clus-

ter memberships of objects are changed at random with a weighting towards clusters

that are close to the object. We calculate the probability that the object in the ith

position is assigned to the gth cluster as follows:

Pr {li = g} =
δmax − δ (~xi,~cg)∑

j∈P (δmax − δ (~xi,~cg))
where δmax = max δ (~xi,~cg)∀Pg ∈ P (4.15)

where P is the clustering solution derived from the encoding, ~l. From this we can

then assign an object to a cluster in a biased fashion.

4.4.2.2 Crossover Operators

The encodings used for LBIE are fixed length encodings, that is, for a given data

set all of the solutions are of the same length. Therefore, we can experiment us-

ing the standard one-point, two-point, three-point and uniform crossover operators

previously defined in section 4.4.1.2.

CHAPTER 4. SOLVING PROBLEMS WITH MULTIPLE OBJECTIVES 90

4.4.3 Centroid Based Real Encoding

A Centroid Based Real Encoding (CBRE) is a set of cluster centroids that are not

restricted to the values of the objects within the dataset, R = {~r1, . . . , ~rr}. Each

~rg represents a potential cluster centroid in the same space as D, ~rg = (rg1, . . . , rgd)

and each rgi ∈ R.

To generate a clustering solution, P , from an encoding, R, the clustering solution

is initialised so that the value of r, the number of centroids, is equal to k. Each

object from the data set, ~xi ∈ D, is assigned to the cluster, Pg, whose centroid is

closest to the object, min δ (~xi, ~rg)∀~rg ∈ R. Any cluster that is empty, ng = 0, is

removed so the solution is consistent with the rules defined in section 2.1.2. So, a

P derived from a given R shall have k ≤ r.

Each R is randomly initialised as follows. The value of r is an integer drawn

randomly from the interval [2, n], then r objects are randomly copied from D to

become the initial set of cluster centroids in R.

4.4.3.1 Mutation Operators

Previously defined mutation operators for CBRE are designed to operate on solu-

tions with a fixed number of clusters. Because of this, they only change the values

of the prototype centroids and do not vary r. We have defined some mutation and

crossover operators that can vary r. They are as follows:

Swap Mutation The value of a cluster centroid in the solution, ~rg, is replaced

with the value of an object randomly drawn from D. This technique has been used

by [43, 87].

Addition Mutation For each rgi there is a chance that it may be mutated.

Maulik and Bandyopadhyay [102] and Scheunders [131] use a probability of 0.05

to determine wether or not each rgi should be mutated. To mutate an rgi a value of

CHAPTER 4. SOLVING PROBLEMS WITH MULTIPLE OBJECTIVES 91

either one or negative one is added to that component with a 50% probability.

Bandyopadhyay and Maulik [6] used a similar technique where the value to be

added takes into account the minimum and maximum values within the data set in

the appropriate dimension to produce a scaled value to be added. The version used

by Bandyopadhyay and Maulik used the value of a single objective to determine the

value to be added and was not suitable for our multi-objective problems so we used

the first implementation.

4.4.3.2 Crossover Operators

Several crossover operators exist within the literature that are suitable for a CBRE

where the number of clusters has been pre-defined. However, in this work the number

of clusters has not been pre-defined, so pre-existing techniques are not applicable or

require modification.

Devising crossover operators for variable length solutions is a difficult task. Stan-

dard operators must be modified to take in to account variable lengths. Where the

representation and operators allow solutions of variable length, sometimes solutions

that are longer are favoured [18]. For clustering, this would favour solutions with a

greater number of clusters.

The one point crossover operator described in section 4.4.1.2 is relatively easy to

modify. It requires a cut off point to be chosen in each solution and the solutions

then recombined appropriately. This is exemplified in figure 4.18. A one point

crossover operator has been used with CBRE in several different implementations

[6, 102, 131]. The variable length modification has been used in several genetic

algorithms [23, 15, 49, 127].

→

Figure 4.18: Variable Length One Point Crossover

A variation of the two point crossover operator was presented by Bezdek et al.

CHAPTER 4. SOLVING PROBLEMS WITH MULTIPLE OBJECTIVES 92

[11]. Brie and Morignot [15] experimented on a genetic planning problem and used

a larger number of cut points in their crossover operator with poor results. In this

work, therefore, we only use the one point crossover operator.

The uniform crossover operator may also be modified to work with solutions that

are not of the same length [23, 92, 135]. For this, we can randomly select (with

equal probability) if a centroid chromosome should now belong to the first or second

new solution generated. As the order of the values in the solutions is unimportant

in this representation the solutions that will be produced will still be valid. Speer el

al. [135] used Uniform Crossover but had a fixed number of clusters. The crossover

points are allowed to fall inside a cluster so it can be split into two clusters.

A further set of crossover operators are described by Frnti et al.[43]and Kivijrvi

el al. [87]. We have produced slightly modified implementations for our experiments

to allow them to be used with clustering solutions that are not the same size. The

details of our implementations are as follows:

Centroid Distance Crossover The cluster centroids that are closest to the cen-

troid of the data set are exchanged to form two new solutions. First we must order

the cluster centroids by the distance between each cluster centroid and the centroid

of the data set, ~v. Then we exchange the r
2

cluster prototypes that are closest to ~v

from encoding R with the r′

2
cluster prototypes that are closest to ~v from encoding

R′ resulting in two new sets of prototype clusters. In the original implementation r

and r′ are the same value and in our implementation they can differ.

Largest Partitions Crossover To perform crossover of two sets of centroid-

based solutions, R and R′, first we rank each cluster centroid by the number of data

objects that are members of the associated cluster in the clustering generated from

that solution. To generate the first new set of centroid-based clusters we remove

the cluster centroid with the largest number of data objects from R and add it to

the new solution. The data objects that were associated with this cluster centroid

CHAPTER 4. SOLVING PROBLEMS WITH MULTIPLE OBJECTIVES 93

are excluded from our calculations for the rest of this process. The cluster centroids

for both R and R′ are re-ranked taking into account the excluded data objects. A

cluster prototype is then removed fromR′ in the same manner, this process continues

until r or r′ reach 0. To produce a second new solution R and R′ are swapped and

the whole process is repeated. In the original implementation r and r′ are the same

and here they may differ.

Multipoint Pairwise Crossover Each cluster centroid, ~rg, in a solution, R, is

associated with its nearest neighbour, ~rh, from another solution, R′, that it is be-

ing crossed with, min δ (~rg, ~rh) where ~rg ∈ R and ~rh ∈ R′. Cluster centroids that

have been associated with each other are not placed in the same new solution. This

prevents cluster centroids that are close together being in the same new solution.

Cluster centroids are then randomly distributed to two new solutions while main-

taining this rule.

4.5 An Overview of MOEAs for Clustering

To date there has been some work in the literature on applying MOEA to the

clustering problem. A number of algorithms have been implemented and developed

but so far there has been no developments that establish the best implementation

of an MOEA for clustering.

Early attempts at applying genetic algorithms showed promise [11, 115]. The

results of the genetic algorithm were better than those generated by the k-means

algorithm on a single data set. A later attempt found similar results when applied to

larger data sets but was not practical for real world usage as the algorithm took too

long to execute [43]. Other studies performed in the same year used evolutionary

algorithms as an initialisation procedure to determine an initial set of prototype

centroids for classical clustering algorithms to cluster data [92] and to cluster regions

of images [131]. Later algorithms [90, 100, 133] used hybrid strategies that combined

CHAPTER 4. SOLVING PROBLEMS WITH MULTIPLE OBJECTIVES 94

k-means with genetic algorithms to aid the search and found some promising results.

An early comparative study [23] focussed on small data sets and a limited number

of representations. The findings indicated that the performance of these algorithms

was not good as they took a large period of time to execute. It was shown that the

choice of representation was important and the objective function was a main con-

tributing factor to performance of the algorithm. It appeared that a representation

based on labelling the cluster of individual solutions worked well. This representa-

tion has also been used in other algorithms since this study was published [96]. We

described this representation in Section 4.4.2.

A number of experimental studies and literature reviews have focussed on apply-

ing MOEAs to the crisp clustering problem[63, 70, 123, 110]. Studies focussed on

applying MOEA to the fuzzy clustering problem with some success [105].

In 2004 Handl designed and implemented an interesting algorithm called Voronoi

Inisalized Evolutionary Nearest-Neighbour Algorithm (VIENNA) [56] that used an

LBIE encoding in conjunction with the Pareto Evolutionary Strength Algorithm

(PESA-II) algorithm [27, 26]. The algorithm used objectives based upon Connec-

tivity that we previously described in Section 2.3.7. It did not have a crossover

operator but used a mutation operator that moved several objects from one cluster

to another cluster.

Handl later improved VIENNA with MOCK (Multi-Objective Clustering with

automatic determination of the number of clusters) [57, 58, 59, 62, 61]. MOCK

improved on VIENNA by introducing a novel adjacency graph based representation

of a clustering solution that works well with Connectivity and also introduced the

uniform crossover operator. MOCK uses the Gap statistic [141] to determine the

solution that occurs at a ’knee’ in the Pareto front as the final clustering solution.

We have not implemented MOCK here as it has a very specific implementation

of its representation. In 2005 Handl described MOCK-am [60], this version of the

algorithm was based upon MOCK but used an MBBE representation instead of the

graph based representation, while this implementation performed faster their later

CHAPTER 4. SOLVING PROBLEMS WITH MULTIPLE OBJECTIVES 95

experiments continued to use the graph based representation as it produced better

clustering solutions.

MOCK has also inspired a number of other clustering algorithms. The graph

based representation is now being used for applications within social networking

to identify groups of users [82, 37]. A number of other algorithms have also been

devised that either extend or slightly modify MOCK. Chen introduced a variation

of MOCK called MOEAD [20] that used NSGA-II instead of PESA-II and used the

CBRE to represent the clustering solutions. Shirakawa [134] introduced another

variant of MOCK that specialised in identifying regions in images, this was based

on SPEA2 and introduced a modified version of Connectivity called Edge designed

to identify the boundaries between regions of colour. Qian implemented MECEA

[119] which is the same as MOCK with the exception that it uses a novel technique

for merging the Pareto solutions together to find edges in images.

In 2000 Maulik and Bandyopadhyay [102] introduced a genetic algorithm for clus-

tering that used a version of Centroid Based Real Encoding we described in Section

4.4.3 to represent clusters, this implementation used a fixed number of clusters.

They crossed over their solutions used the single point crossover and mutated indi-

vidual values of each centroid by multiplying them with positive or negative values

randomly drawn from a uniform distribution in the range [0,1]. Later in 2007 they

expanded upon this with a novel Multi-objective algorithm for clustering, MOGA

[5]. MOGA uses NSGA-II and is designed for detecting regions in satellite imagery.

This algorithm differs from some of the other algorithms as it identifies fuzzy clus-

ters. The algorithm used two objectives XB [149] and Jm. XB is a cluster quality

measure for fuzzy clustering that uses the ratio between the total variation and min-

imum separation of the clusters which is similar to the measures defined for crisp

clustering later by Halkidi that we defined in Section 2.3.4. The clustering solution

with the highest value of the I index [103] was chosen as the final clustering solution.

They later expanded upon this algorithm with MOGA-SVM [111], this iteration of

the algorithm improved upon the previous version of the algorithm by using a novel

CHAPTER 4. SOLVING PROBLEMS WITH MULTIPLE OBJECTIVES 96

technique where an SVM [143] is combined with the results of NSGA-II to select

the final clustering solution. MOGA-SVM has also been applied to bioinformatics

problems [104]. The most recent version of this algorithm MOVGA [112, 105] now

allows for the number of clusters to be varied. MOVGA uses updated versions of

the objective functions and reverts to using the I index to select the final clustering

solution.

4.6 Summary

In this chapter we have introduced the concept of multi-criteria decision making,

dominance and the Pareto front. We then reviewed Genetic Algorithms and then

Multi-Objective Evolutionary Algorithms. We also introduced a range of techniques

that allow us to assess the quality of Pareto fronts: the volume of the dominated

space, coverage, generational distance, inverted generational distance and a measure

of entropy.

We then detailed some of the other work that has used MOEA to attempt to

solve clustering problems. In particular we detailed three possible representations

of the clustering problem with a range of mutation and crossover operators that

work with these representations. Later we will perform experimental evaluations of

various combinations of these operators and representations.

Chapter 5

A Novel Multi-Objective

Evolutionary Clustering

Algorithm

5.1 Introduction

Multi-Objective Evolutionary Algorithms (MOEAs) have some good potential for

cluster analysis. Clustering algorithms optimise specific measures of cluster qual-

ity, such as compactness and separation. Many clustering algorithms have been

defined in the literature [76] and they generally aim to optimise a single objective.

Unfortunately, defining what constitutes a good clustering solution remains a dif-

ficult problem and no individual measure of clustering quality has emerged as the

overall winner. In this context, MOEAs give us the opportunity to optimise sev-

eral of these quality measures at once. Furthermore, they will deliver a number of

clustering solutions representing trade-offs between the different quality measures.

Previous research into evolutionary algorithms for clustering has been conducted

by Cole [23] who explored various techniques for representing clustering solutions

and various objectives to be optimised. Handl and Knowles [56] and Chen and Wang

97

CHAPTER 5. A NOVEL MO CLUSTERING ALGORITHM 98

[20] have developed their own multi-objective clustering algorithms that operate with

new cluster quality measures. These previous works have used different methods

such as a graph based technique to assign objects to clusters. Here we will use a

new centroid-based technique to establish cluster membership.

Broadly speaking, a MOEA consists of the following several components: a selec-

tion method; a strategy to manage the Pareto front; a fitness function; a crossover

operator(s); a mutation operator(s). This research re-uses the selection method

and the strategy to manage the Pareto front of NSGA-II, but the other three com-

ponents (fitness, crossover and mutation operators) are new or new variations of

existing operators introduced in this thesis.

In this chapter, we propose a new MOCA and evaluate its performance against

the well known k-means algorithm, as an initial benchmark. In section 5.2 we

propose a new Multi-Objective Cluster Algorithm; in section 5.3, we propose a

method of assessing its quality; finally, we report our results in section 5.4 and give

our conclusions in section 5.5.

5.2 The Proposed Multi-Objective Clustering Al-

gorithm

Previously in Chapter 4 we reviewed Multi-Objective Evolutionary Algorithms. In

Section 4.4 we reviewed a number of existing techniques for solving the clustering

problem using MOEAs. Here we will propose a novel Multi-Objective Clustering

Algorithm (MOCA) to solve the clustering problem.

MOEA is an evolutionary algorithm. More precisely, we have chosen to use

NSGA-II [29], one of the best known MOEAs, as the underlying implementation for

our MOCA. NSGA-II introduced techniques for producing a set of solutions that

provide good coverage and convergence. To adapt NSGA-II for clustering we need

to provide the following:

CHAPTER 5. A NOVEL MO CLUSTERING ALGORITHM 99

• an appropriate representation of a clustering solution,

• a set of evaluation functions for a clustering solution,

• an initialisation operator that creates valid solutions,

• a mutation operator,

• a crossover operator.

Additional parameters are used to define a minimum and maximum number of

clusters allowed, kmin and kmax respectively. Sensible values are kmin = 2 and kmax =

n/2 but the decision maker may use any values as long as 1 ≤ kmin ≤ kmax ≤ n.

5.2.1 Solutions Representation & Initialisation

Previously in Section 4.4.3 we reviewed Centroid Based Real Encoding. Here we

describe an implementation of CBRE that we will use in our MOCA.

The solution representation consists of two sets of cluster prototypes: the set

of selected prototypes A = {A (1) , . . . ,A (a)} and the set of potential prototypes,

not in use, B = {B (1) , . . . ,B (b)}. Therefore, each cluster Pg in the represented

clustering solution is associated with a cluster prototype, A (g), from set A .

To generate initial valid clustering solutions, the values of the cluster prototypes

are drawn from D, hence the initial prototypes are medoids. The lengths of A

and B are required to create the initial solutions. The value of a is set to kmin +

(kmax − kmin) /2 and b is set to n−a. Each object from the data set is then randomly

added to either A or B.

Once a set of selected prototypes has been defined, the distance between every

object in the data set, x ∈ D, and every cluster prototype, A (g) ∈ A, is calculated.

x is added to the cluster that minimises δ (x,A (g)) to generate a clustering solution.

CHAPTER 5. A NOVEL MO CLUSTERING ALGORITHM 100

5.2.2 Mutation Operator

The novel mutation operator that we define encompasses three techniques for alter-

ing a solution. This mutation operator has not been defined in any previous work.

These sub-operators use knowledge of clustering to encourage better clustering solu-

tions so they differ from the more general mutation operators that are not problem

specific. The techniques are defined as follows:

5.2.2.1 Decrease

The decrease sub-operator removes a cluster prototype from the solution that leads

to a reduction in the number of clusters in the solution. A cluster prototype is

moved from A to B decreasing the number of elements. To determine the pro-

totype to remove, we first identify the nearest neighbour prototype, A (g)ANN , of

every cluster prototype A (g) in A. We then move the prototype that minimises

δ (A (g),A (g)ANN), ∀A (g) ∈ A. The objects associated with the removed proto-

type, A (g), are likely to be associated with A (g)ANN after the removal.

5.2.2.2 Increase

The increase sub-operator adds a cluster prototype from the solution that leads to

an increase in the number of clusters in the solution. A cluster prototype is moved

from B to A, increasing the number of clusters. The prototype drawn from B is

the cluster prototype that is furthest away from any cluster prototype in A. That

is, for each cluster prototype, A (g) ∈ A, its furthest neighbour in B, A (g)BFN , is

computed. The cluster prototype in B that maximises δ (A (g),A (g)BFN) is moved

to A. This ensures that new cluster prototypes are not near pre-existing cluster

prototypes so they should produce new and interesting clusters.

CHAPTER 5. A NOVEL MO CLUSTERING ALGORITHM 101

5.2.2.3 Recompute Prototypes

The values of the cluster prototypes are recomputed as the values of the centroids

of the clusters with which they are associated. For example, the value of a cluster

prototype, A (g), will be replaced with the value of Vg where Vg is the centroid of

Pg. This process is similar to a single iteration of the clustering algorithm, k-means.

5.2.2.4 Sub-Operator Selection

The alterations proposed are applied with a probability. We used a 50% probabil-

ity of decreasing the number of prototypes in A, a 25% probability of increasing

the number of prototypes in A, or a 25% probability of recomputing the cluster

prototypes.

5.2.3 Crossover Operator

Our novel crossover operator works by exchanging clusters between two clustering

solutions. This crossover operator has not been previously defined.

Given two clustering solutions, we first identify the clustering solution with the

largest number of clusters, P l, and the clustering solution with the smallest number

of clusters, Ps. If the number of clusters is equal then this tie is broken at random.

For the smaller solution, Ps, we then identify the largest cluster, Psg ∈ Ps, and

its prototype, A (g)s.

For each object x ∈ Psg we determine the cluster in P l in which it lies and the

associated prototype in the larger solution. Let
{
A (1)l , . . . ,A (o)l

}
denote this set

of prototypes. The crossover operation then exchanges prototype A (g)s in the small

solution with all the prototypes
{
A (1)l , . . . ,A (o)l

}
associated with it in the larger

solution.

We must ensure that the size of the new A and B still sum to n after they have

been generated. To ensure that a+b = n, we randomly remove the required number

CHAPTER 5. A NOVEL MO CLUSTERING ALGORITHM 102

of prototypes from the set B in the smaller solution and add them to the set B of

the larger solution.

The resulting crossover is therefore an exchange of one cluster in one solution

with the corresponding smaller clusters in the other solution.

5.2.4 Fitness Measures for MOCA

Previously in Chapter 2 we defined a number of Cluster Quality Measures. These

are measures that assess and rank the quality of clustering solutions. Some of the

CQMs measured different attributes of clustering solutions such as the density of

clusters, separation of clusters or identified continuous shapes within the clustering

solution.

In Chapter 3 we described how some CQMs may be better than others as part

of an optimisation process as they may be more sensitive to changes in quality.

Using those findings we have identified several CQMs that would be useful as fitness

functions for our MOCA. These are as follows:

5.2.4.1 Homogeneity Based Fitness Measure

A common measure of the quality of a clustering solution is the density of the clus-

ters. A clustering solution is homogeneous if the distances between the objects in

each cluster are low. Previously in Chapter 3 we found that the Overall Deviation

(Dev) was highly correlated with the degradation of clustering solutions so we will

use this operator here. Overall Deviation was introduced in Section 2.3.7 as equiva-

lent to the value of PW that was previously defined in section 2.1.3. PW can give us

an indication of the homogeneity of a clustering solution but it does not take into

account the value of k.

Here we will use a variation of the previous measure, the Average Within Group

Sum of Squares. This also measures the homogeneity property of clustering solutions

but takes the value of k into account. This can be measured by taking the average

CHAPTER 5. A NOVEL MO CLUSTERING ALGORITHM 103

of the distance between each object in the cluster and its centroid. The density of

each cluster can then be summed to give the Average Within Group Sum of Squares

for a given clustering solution:

awgss (P) =
k∑
g=1

∑|Pg |
i=1 δ (Pg (i),Vg)2

|Pg|
(5.1)

Values of this measure are high when the clusters are not very dense so this

measure should be minimised.

This measure was not included in our previous experiment in Chapter 3. This

CQM is measuring the density property that was shown to find good results in the

previous experiment. We feel that taking the number of clusters into account in

the measure will be beneficial when we come to compare clustering solutions that

contain different numbers of clusters.

5.2.4.2 Separation Based Fitness Measure

Another method of assessing the quality of a clustering solution is the separation of

clusters. A clustering solution is considered good if the clusters are well separated.

Previously in section 2.1.3 we defined between-cluster variation, PB, which gives us

an indication of how well separated a clusterings solution is. PB is the opposite

of PW , which we found was highly correlated with the degradation of clustering

solutions in Chapter 3. By using two objectives that work in opposite ways we hope

to generate a wide range of clustering solutions. PB does not allow us to compare

clustering solutions with a varied value of k so here we define the Average Between

Group Sum of Squares.

The Average Between Group Sum of Squares of a clustering solution, abgss (P),

is the average distance between the centroids of the clusters and the centroid of the

data set:

CHAPTER 5. A NOVEL MO CLUSTERING ALGORITHM 104

abgss (P) =

∑k
g=1 |Pg| δ (Vg,V)2

k
(5.2)

A low value of abgss (P) would indicate that all of the cluster centroids are near

the centroid of the data set and therefore also near each other, so the value of this

measure should be maximised.

This measure was chosen because it behaves in the opposite way to the Average

Within Group Sum of Squares that we introduced previously. This measure was

also not in the previous experiment but is measuring the separation property of

clustering solutions that was shown to be useful in the previous experiment.

5.2.4.3 Connectivity Based Fitness Measure

The concept of connectivity was introduced previously in section 2.3.7. We propose

using the definition of connectivity introduced by Handl and Knowles [62]. Pre-

viously in Chapter 3 we discovered that the performance of Handl and Knowles’

measure appeared to be identical to the slightly simpler definition by Chen and

Wang [20]. We feel that there is a possibility that the definition given by Handl

and Knowles may be beneficial for cases where very small clusters are formed as the

penalties are scaled so clusters with less than l objects can exist whereas the version

given by Chen and Wang used penalties of 1 and will not allow clusters with less

than l objects.

The version of Connectivity we use as a fitness measure is as follows. Connectivity

calculates the sum of the values of a penalty function for each object in the data

set and its l nearest neighbours. A penalty for an object, x, and its mth nearest

neighbour, xmNN , is 0 if they are contained in the same cluster and 1
m

if they are

not members of the same cluster. The quality measure we use as an objective is

defined as follows:

CHAPTER 5. A NOVEL MO CLUSTERING ALGORITHM 105

connectivity (P) =
n∑
i=1

l∑
m=1

penalty (D (i) ,D (i)m) (5.3)

where penalty (xmNN) =

1
m

if 6 ∃ Pg : x ∈ Pg ∧ xmNN ∈ Pg,

0 otherwise.

(5.4)

5.2.5 Overview

Our algorithm uses the NSGA-II algorithm, described previously in Section 4.2.2.4,

as its main framework. Our contributions are: the initialisation operator defined in

Section 5.2.1, the mutation operator defined in Section 5.2.2 and the crossover oper-

ator defined in Section 5.2.3 which are all novel. We also provide fitness functions,

defined in Section 5.2.4, that we have selected from the literature and implemented

so they are compatible with the representation of a clustering solution defined. An

overview of the MOCA components and the main steps from NSGA-II is given in

Algorithm 5.1.

5.3 Preliminary Experimental Evaluation of MOCA

To initially test our MOCA we performed a comparison using k-means to cluster a

large number of prefabricated data sets where a desired clustering solution exists.

This initial comparison should enable us to test if it is producing correct clustering

solutions and performing at least inline with the benchmark clustering algorithm. In

later chapters we perform more complex experiments against other Multi-Objective

Evolutionary Algorithms to determine if our MOCA is more efficient than other

MOEA implementations for clustering.

First, we constructed a series of synthetic data sets; then we defined an exper-

imental methodology for comparing the algorithm’s performance against k-means;

finally we report our results.

CHAPTER 5. A NOVEL MO CLUSTERING ALGORITHM 106

Algorithm 5.1 MOCA

• Initialise the population, S.

• Randomly create solutions by drawing objects from D to form sets of medoids
and insert into S1 to serve as the start population.

• g = 1.

• while g < number of generations.

– ∀~s∈ Sg
∗ Calculate awgss (P).

∗ Calculate abgss (P).

∗ Calculate connectivity (P).

– Calculate dominance depth of solutions in S as in Algorithm 4.2.

– Calculate crowding distance of solutions in S as in Algorithm 4.3.

– Select solutions to mutate using binary tournament selection with ≺n.

– Mutate each selected solution to with a randomly selected a mutation
sub-operator:

∗ Decrease the number of clusters in the solution.

∗ Increase the number of clusters in the solution.

∗ Recompute the cluster prototypes.

– Select solutions to crossover using binary tournament selection with ≺n.

– Crossover the selected solutions by exchanging cluster prototypes.

– Add the mutated and crossed over solutions into the population.

– Sort S with ≺n.

– Add the fittest solution from Sg to Sg+1 until it is full.

– g = g + 1.

• Return the final population.

CHAPTER 5. A NOVEL MO CLUSTERING ALGORITHM 107

5.3.1 Construction of Synthetic Data Sets

In Section 3.2 we described a method for generating a synthetic data sets based upon

the work of Milligan and Cooper [107, 108]. The proposed method can be used to

generate data sets where the following factors are varied: the number of naturally

occurring clusters, the number of dimensions, the distribution of the membership of

objects to clusters and the proportion of outliers that exist within the data set.

We varied each of the four factors to produce different data designs. A data set

was generated from each design three times leading to twenty thousand and seven

data sets for this experiment. Each data set contained five hundred objects. These

data sets were newly generated and are not identical to those in Chapter 3.

5.3.2 Experimental Method

We set the population size for our version of NSGA-II to 100; the number of gener-

ations was set to 1,000; the mutation probability and the crossover probability were

both set to 0.5. These choices were made based upon preliminary work where we

experimented with mutation and crossover probabilities in the range of [0.1 : 0.9] in

increments of 0.1, the population size was varied in the range [50 : 200] in increments

of 10 and the number of generations was in the range of [100 : 2000] in increments

of 100.

Our MOCA was executed on each of the previously described synthetic data

sets with these parameters. The result of this is a set of clustering solutions. We

test each solution generated against the optimal clustering solution using the Rand

Statistic, R, previously defined in Section 2.4. We extract the highest, lowest and

mean average values of R recorded for each Pareto set of solutions returned by an

execution of MOCA. The value of k associated with the solutions that generated the

minimum and maximum values of R and the average value of R are also reported.

We also make a comparison of performance against the algorithm k-means. For

each synthetic data set, we execute the algorithm k-means for varying values of k

CHAPTER 5. A NOVEL MO CLUSTERING ALGORITHM 108

ranging from 2 to 40 in increments of 1. We report the highest value of R recorded

for each pool of solutions associated with a data set and the associated k value.

5.3.3 Comparison to DBSCAN

We will also compare MOCA against another clustering algorithm, we have chosen

to compare MOCA against k-means and DBSCAN [35], a clustering algorithm that

is based upon density, discussed in Section 2.2.3.

We will draw a subset of the data sets described in Sections 3.2 and 5.3.1. The

number of clusters in the data sets will be between two and twenty in increments of

two. The number of dimensions will be between two and ten in increments of two.

All three data set designs (df) are used; an even distribution of clusters is denoted

as ”a”, a cluster consisting of 10% of the objects and the rest as evenly distributed

as possible is denoted ”b”; and a cluster consisting of 60% of the objects and the

rest as evenly distributed as possible is denoted ”c”. The proportion of outliers is

either 0% or 40% which is denoted as ”a” and ”b” respectively.

For each data set we execute the DBSCAN algorithm. This algorithm returns

a single clustering solution without the need for a pre-determined value of k to be

provided. We will then calculate the value of R of this solution compared to the

intended clustering solution. We also report the value of k.

k-means is run in the same fashion as we described in Section 5.3.2. For each

synthetic data set, we run the k-means algorithm with values of k from 2 to 40.

Again we report the highest value of R for each pool of k-means solutions and the

value of k associated with it.

MOCA is performed in almost exactly the same way as described in Section

5.3.2. The number of generations has been reduced to 100. Again, from each set of

solutions returned by MOCA we extract the solutions with the highest and lowest

values of R and report the value of k for this solution. We also report the mean and

S.D. of k and R for each set of solutions returned by MOCA.

CHAPTER 5. A NOVEL MO CLUSTERING ALGORITHM 109

5.4 Preliminary Results with Synthetic Datasets

The results of our experiments are reported in table 5.1. The table contains columns

summarising the best, worst and average solutions found by MOCA, as well as the

best solutions found by k-means. When looking at the best solution reported by

MOCA for each dataset (largest R, reported as MOCA Best column in table 5.1)

the optimal clustering solution, equivalent to R = 1, was contained in the pool of

solutions generated by MOCA at least once for 18.18% of the data sets. However,

the optimal solution was drawn from the pool of solutions generated by k-means in

only 4.09% of cases (k-means Best column in table 5.1). Furthermore, when looking

at solutions close to the optimal solution (R ≥ 0.9) they were found by k-means in

21.37% of cases but by MOCA in 100% of cases.

We also extracted the worst solution from each pool of solutions generated by

MOCA (the minimum value of R, reported as MOCA Worst) and found that in

1.07% of cases this value was equal to 1. This shows that in 1.07% of cases the

worst solution offered by MOCA was the optimal solution.

We extracted the average solutions reported by MOCA (average R, reported as

MOCA Average). In 30.11% of cases the average solution was close to the optimal

solution. This shows that on average MOCA finds near optimal solutions more often

than k-means.

We average our results and found that the average value of R from the best

solutions generated by MOCA was 0.98. This was higher than the average equivalent

generated by k-means which was 0.88. Also we calculated the average R from

the worst and average solutions generated by MOCA. They were 0.56 and 0.89

respectively. Hence the average solution generated by MOCA is close to the best

solution generated by k-means.

We also extracted the value of k associated with the solutions with the highest

and lowest values of R generated by MOCA. Similarly, we extracted k associated

with the solutions generated by k-means. We did not extract an average value of k

CHAPTER 5. A NOVEL MO CLUSTERING ALGORITHM 110

Table 5.1: Summary of Results

MOCA
Best Average Worst k-means Best

R ≥ 0.9 total 100% 30.11% 3.79% 21.37%
R = 1 total 18.18% 1.07% 1.07% 4.09%
Max R 1 1 1 1
Min R 0.92 0.38 0.11 0.53
Average R 0.98 0.89 0.56 0.88
StDev R 0.02 0.03 0.11 0.05
Correct value of k 30.54% 1.41% 8.34%
Average difference of k 5.78 20.44 18.9 -2.42
StDev of difference of k 6.50 11.32 11.47 11.67

for MOCA as the mean value of k drawn from a set of solutions is unlikely to be an

integer and is therefore never the correct value of k. We found that MOCA found

the correct value of k in 30.54% of cases whereas k-means had the correct value in

8.34% of cases. The best solution drawn from the solutions generated by MOCA

had 5.78 extra clusters on average and the worst solution had 18.9 extra clusters on

average, whereas the best solution generated by k-means had 2.42 less clusters than

the optimal number of clusters on average.

In Table 5.1 the number of runs of MOCA that have produced sets of solutions

where R = 1 for the average and worst cases are both 1.07%. For the worst solution

in the set of solutions generated by MOCA to have a value of R = 1 all of the

solutions generated by that run of MOCA must have an R of 1. For the average R

of a set of solutions to be 1 all the clustering solutions must have an R of 1 also.

Therefore the runs of MOCA where the average value of R = 1 and the runs where

the worst value of R = 1 are the same runs of MOCA.

In table 5.2 we report a subset of our comparison between MOCA and DBSCAN.

The complete results are reported in Appendix B in Tables B.1 and B.2.

In table 5.2 we can see that DBSCAN has identified the correct number of clusters

for all the synthetic data sets. This is true for all of the synthetic data sets reported

in Tables B.1 and B.2. k-means successfully identifies the correct number of clusters

CHAPTER 5. A NOVEL MO CLUSTERING ALGORITHM 111

Table 5.2: Comparison of k-means, DBSCAN and MOCA on selected synthetic data
sets where the intended value of k is 2 or 6 and there are no outliers.

Dataset DBSCAN k-means MOCA Best MOCA Worst MOCA Average k MOCA Mean R
k d df k R k R k R k R Mean k S.D. Mean R S.D.
2 2 a 2 0.50100 2 1 2 1 19 0.57090 10.53623 1.01892 0.72273 0.01828
2 2 b 2 0.29946 2 1 2 1 17 0.36900 10.26471 0.81677 0.56809 0.02414
2 2 c 2 0.06148 2 1 2 1 31 0.12160 14.58667 2.01072 0.35144 0.02654
2 4 a 2 0.50100 2 1 2 1 3 0.90270 2.50000 0.35355 0.95135 0.03440
2 4 b 2 0.29946 2 1 2 1 2 1 2 0 1 0
2 4 c 2 0.06148 2 1 2 1 9 0.99910 5.07692 1.08807 0.99938 0.00008
2 6 a 2 0.50100 2 1 2 1 2 1 2 0 1 0
2 6 b 2 0.29946 2 1 2 1 2 1 2 0 1 0
2 6 c 2 0.06148 2 1 2 1 9 0.99910 5.25000 1.08253 0.99939 0.00008
2 8 a 2 0.50100 2 1 2 1 3 0.99800 2.50000 0.35355 0.99900 0.00071
2 8 b 2 0.29946 2 1 2 1 2 1 2 0 1 0
2 8 c 2 0.06148 2 1 2 1 2 1 2 0 1 0
2 10 a 2 0.50100 2 1 2 1 2 1 2 0 1 0
2 10 b 2 0.29946 2 1 2 1 2 1 2 0 1 0
2 10 c 2 0.06148 2 1 2 1 2 1 2 0 1 0
6 2 a 6 0.83500 6 0.87174 6 1 2 0.66600 13.59677 1.32121 0.93538 0.00575
6 2 b 6 0.83259 3 0.75106 6 1 2 0.58450 13.70149 1.13599 0.92616 0.00365
6 2 c 6 0.80926 5 0.89634 6 1 2 0.66870 11.35849 1.04964 0.93031 0.00337
6 4 a 6 0.83500 4 0.88956 6 1 2 0.60940 4.37500 0.92808 0.86669 0.04505
6 4 b 6 0.83259 4 0.85395 6 1 2 0.66700 6.88889 1.70370 0.92386 0.02155
6 4 c 6 0.80926 21 0.87966 6 1 2 0.52970 4.44444 0.85185 0.88350 0.03877
6 6 a 6 0.83500 39 0.79297 6 1 2 0.61210 3.85714 0.70193 0.84166 0.08676
6 6 b 6 0.83259 26 0.97076 6 1 2 0.62490 3.85714 0.70193 0.83661 0.08002
6 6 c 6 0.80926 37 0.88581 6 1 2 0.52970 3.83333 0.74846 0.83942 0.12644
6 8 a 6 0.83500 3 0.66867 6 1 2 0.61210 3.71429 0.64794 0.81809 0.07786
6 8 b 6 0.83259 20 0.86673 6 1 2 0.66700 4 0.89443 0.87082 0.09115
6 8 c 6 0.80926 20 0.87944 6 1 2 0.66870 3.66667 0.68041 0.84720 0.06977
6 10 a 6 0.83500 5 0.94478 6 1 2 0.66600 3.83333 0.74846 0.85152 0.07574
6 10 b 6 0.83259 36 0.90824 6 1 2 0.66700 4 0.89443 0.87082 0.09115
6 10 c 6 0.80926 11 0.96077 6 1 2 0.66810 3.57143 0.59394 0.83480 0.06301

when there are two clusters. For other numbers of clusters k-means is unsuccessful

more often than not and tends towards high values of k. In all cases the worst

solution (by R) has two clusters and the best solution has broadly the correct

number of clusters. The average number of clusters in the solutions maintained by

MOCA is slightly lower than the intended number of clusters.

We can also see that DBSCAN cannot find high quality clustering solutions as

we vary the data set design. When one cluster is significantly larger than the others

DBSCAN performs worse. Varying the data set design also affects the performance

of k-means. As one cluster becomes larger than all of the other clusters the value of

k favoured by k-means appears to increase. Varying the design of the data set does

not appear to have an effect on MOCA.

It appears that according to the value ofR for the best solution, MOCA produces

better solutions than the other techniques. The worst solution found by MOCA is

of less quality than the solutions found by the other techniques. On average the

solutions found by MOCA are of higher quality than those found by k-means and

DBSCAN.

CHAPTER 5. A NOVEL MO CLUSTERING ALGORITHM 112

Varying the number of dimensions does not appear have to have an effect on any

of the algorithms. As all of the algorithms are using the same distance metric it

appears that any changes caused by the change in the number of dimensions affects

all of the algorithms equally.

We can see in Tables B.1 and B.2 that k-means shows lower performance for data

sets with a higher number of outliers. k-means is by definition susceptible to lower

performance where there are a higher number of outliers. The other algorithms do

not appears to have been affected by this factor.

5.5 Conclusions & Summary

In this chapter we have proposed a novel Multi-Objective Clustering Algorithm,

which has been published independently in [85]. In the algorithm, we proposed a

representation based on a set of prototypes. We also defined some guided operators

including initialisation, mutation and crossover. We then proposed an experimental

methodology to test the validity of the algorithm, using synthetic datasets where

the optimal clustering solution is known by design.

We have shown that MOCA can generate a pool of clustering solutions that is

more likely to contain the optimal clustering solution than the pool of solutions

generated by k-means. The solutions in this pool are generally more similar to the

optimal solution than the solutions generated by k-means. We have seen that it

is more effective to use MOCA to find the optimal number of clusters than using

k-means in a trial and error fashion. We therefore have proved the validity of the

algorithm.

We also compared MOCA against another well known clustering algorithm, DB-

SCAN, and found that MOCA generally produces results of higher quality. We also

have shown that MOCA is not been effected the design of the data set or the number

of clusters.

There is still scope to investigate further configurations of MOCA in comparison

CHAPTER 5. A NOVEL MO CLUSTERING ALGORITHM 113

to more clustering algorithms on a data sets that can varied in a larger number of

ways. Also, we have focussed on evaluating MOCA only in terms of the clustering

solutions that it produces and not the Pareto fronts that it produces. Chapters 6 and

7 report studies that follow on from our initial findings with MOCA by investigating

the effect of different configurations of the MOCA by also assessing of the Pareto

fronts produced.

Future versions of the algorithm could modify the mutation operator so that the

recompute sub-operator is executed after the increase or decrease operators have

been used. This may lead to improved clustering solutions as the recompute sub-

operation will be performed more often. It is also possible that other mutation and

crossover operators may be more effective. We must now compare this algorithm to

other MOEA algorithms and other configurations of operators.

Chapter 6

Experimental Comparison of

Clustering Representations

6.1 Introduction

In Chapter 4 we introduced Multi-Objective Evolutionary Algorithms, and in Sec-

tion 4.4 we discussed a number of representations that can be used to represent a

clustering solution, and associated mutation and crossover operators. In summary,

• Section 4.4.1 introduced Medoid Based Binary Encoding (MBBE). This is

a representation that uses a set of objects drawn from the data set being

clustered as medoids to form clustering solutions.

• Section 4.4.2 introduced Label Based Integer Encoding (LBIE). This is a rep-

resentation that assigns each member of the data set to a cluster within the

clustering solution.

• Section 4.4.3 introduced Centroid Based Real Encoding (CBRE). This rep-

resentation is similar to MBBE but uses centroids instead of medoids. Each

centroid is encoded as a point within the space occupied by the data set and

clustering solutions are generated from this.

114

CHAPTER 6. COMPARISON OF CLUSTERING REPRESENTATIONS 115

In Chapter 4 we did not experiment with the different representations and op-

erators available to use. In Chapter 5 we introduced a Multi-Objective Clustering

Algorithm that used CBRE as the representation and novel mutation and crossover

operators. We compared this novel algorithm against the standard k-means al-

gorithm. We must now compare this algorithm to other configurations of Multi-

Objective Algorithms for clustering. Here we will find how the configuration we

proposed compares against other possible configurations that we reviewed in Chap-

ter 4.

In this chapter, we present a framework for experimental evaluation of represen-

tations. First we define the data sets. Then we define the core MOEA components,

that is the representation and operators that will be varied during the experiment.

We then discuss how to evaluate and compare the quality of Pareto fronts. Finally,

we report our results.

6.2 Experimental Design

In these experiments, a number of data sets for clustering problems are used. Each

of these datasets has a classification which can be used as a reference clustering

solution in the evaluation. The data sets used in this experiment are drawn from

the UCI machine learning repository [2]; they are summarised in Table 6.1.

Table 6.1: Data Sets

Name Dimensions Objects Classes (used as Clusters)

Balance Scale 4 625 3
Breast Cancer Wisconsin 10 569 2
Sonar 60 208 2
Vowel Recognition 10 528 10
Glass 9 214 7
Ionosphere 34 351 2
Iris 4 150 3
Pima Indians Diabetes 8 768 2
Heart Statlog 13 270 2
Vehicle Silhouettes 18 946 4
Zoo 17 101 7

CHAPTER 6. COMPARISON OF CLUSTERING REPRESENTATIONS 116

We have decided to use the pre-defined class labels as the ground truth clusters

for this experiment, trusting that these classifications provide a natural grouping

of the data. However, we acknowledge that the ideal clustering of any data set is

difficult to establish and may not coincide with the classification. Actually, in a

classification dataset it is possible that some objects that belong to the same class

are very far from each other in the data space, in which case assigning those objects

to the same cluster would be a mistake. Investigating the extent to which those

problem occurs in the datasets list in table 6.1 (and other classification datasets) is

left for future research.

We have chosen to use data sets that are not overly large as we perform a large

number of calculations in this experiment when we run the MOEAs. These include

generating clustering solutions from sets of solutions, calculating the cluster qual-

ity measures on these clustering solutions and assessing the Pareto front at each

iteration of the algorithm. Larger data sets would have required significantly more

computational time.

We use the algorithm NSGA-II [29] as the MOEA which forms the basis for this

set of experiments. Some parameters within NSGA-II need to be set and for this we

will use fixed values. The number of generations will be set to 100; the population

size will also be set to 100 and the mutation probability and crossover probability

will both be 0.3. We determined these values from our preliminary work where we

experimented with mutation and crossover probabilities in the range of [0.1 : 0.9] in

increments of 0.1, the population size was varied in the range [50 : 200] in increments

of 10 and the number of generations was in the range of [100 : 2000] in increments of

100. We observed that as the number of generations approached 100 there was not

a large amount of change in the results and we also saw little change as we increased

the population size from 100. To initialise solutions we used a random initialisation

as in this experiment we are concerned with the effect of the mutation and crossover

operators.

For a full implementation, we define the data set to be clustered within a given

CHAPTER 6. COMPARISON OF CLUSTERING REPRESENTATIONS 117

representation and provide a mutation operator, a crossover operator and a pair of

fitness functions to the algorithm. We then run NSGA-II to generate a Pareto front.

The possible experimental configurations are summarised in Table 6.2. We will

test all those configurations, that is, every combination of representation, mutation

and crossover.

Table 6.2: Configurations

Representation Mutation Operators Crossover Operators

MBBE Individual Bit One Point
Multiple Bit Two Point
Invert Three Point

Uniform

LBIE Unguided (Single) One Point
Unguided (Multiple) Two Point
Guided (Single) Three Point
Guided (Multiple) Uniform

CBRE Swap One Point
Addition Uniform
MOCA MOCA

Centroid Distance
Largest Partition

All of the clustering quality measures defined in section 2.3 will be used as fitness

functions in pairs. However, we will not pair the Dunn like indexes described in

section 2.3.2 together as they are all very similar to one another. We average these

results together so we can focus our study on the behaviour of the representation,

mutation and crossover operators.

Each configuration and pair of objective functions will produce a Pareto Front

or set of hopefully optimal solutions, Sa. We will then normalise the values of the

objective functions to allow us to meaningfully compare Pareto fronts. To do this

we use the function hY (~sai) described previously in section 4.3.

We can also compute the best obtainable Pareto front, S∗, by combining all of

the solutions generated for a particular dataset and pair of objective functions and

keeping all those solutions that are non-dominated.

CHAPTER 6. COMPARISON OF CLUSTERING REPRESENTATIONS 118

S∗ =
⋃
~sai ∈ Sa ∈ S where ∃~sbj ∈ Sb ∈ S : ~saj � ~sbi (6.1)

Hence this constructed semi-optimal Pareto front will contain all of the best

solutions obtained in different runs of the algorithm.

From the normalised solutions and semi-optimal Pareto front, S∗, we then com-

pute for each front the area of dominated space, the number of other fronts that are

covered, the spread, the generational distance and the inverse generational distance.

We use these values to determine which configuration most effectively explores the

solution space by ranking configurations as follows. As the measures may not be in

agreement we first rank each Sa in relation to the value of each of the measures of

Pareto front quality, where one is the rank of the Sa that had the most desirable

value for a given measure of quality, ties are allowed. For each Sa, its measure of

quality are then summed together and the Sa with the lowest summed rank is then

considered the best configuration of the algorithm for the data set and the pair of

fitness functions.

To determine the general performance of a configuration of the algorithm we

sum together the number of times each configuration was considered the best con-

figuration (best lowest summed rank), thus giving them a vote. If more than one

configuration are tied then we reduce the influence of that configuration; that is,

if two configurations have tied votes then we sum a 1
2

vote instead for each. The

voting gives a performance score for each configuration and allows us to summarise

performance at different levels; for example we can summarise performance of con-

figurations for different datasets or different pairs of objective functions. We can also

determine the number of votes for each of the individual representations, crossover

and mutation operators.

Most of the previous discussion relates to assessing the quality of the Pareto fronts

generated, i.e. assessing the quality of solutions generated by the MO algorithm.

CHAPTER 6. COMPARISON OF CLUSTERING REPRESENTATIONS 119

Additionally, it is important to evaluate all of the solutions within the Pareto front

to assess the quality of the individual clustering solutions so we can identify which

configuration produces the best individual clustering solutions, as well as the best

Pareto front.

Two clustering solutions, P and P ′, may be compared to each other using the

Rand Index that we described previously in section 2.4. To establish the worth of

individual clustering solutions, we will record the value of RI (P ,P ′), where P ′ is

the “perfect” or reference clustering solution known for each dataset.

We can also modify the voting technique presented earlier to use RI (P ,P ′) to

determine which Sa contains the best clustering (i.e. the one closest to the reference

clustering solution) for a given S. Now we will rank solutions Sa according to the

value of RI (P ,P ′). The rest of the voting procedure remains the same.

6.3 Results

We calculated the frequency with which each possible configuration of the algorithm

has been judged as the best configuration by assessing the quality of the Pareto

fronts generated for each possible combination of a data set and a pair of fitness

functions, summarising results with the voting procedure described earlier. This

is reported in Table 6.3. We also report these results based on the quality of the

individual clustering solutions produced; this is reported in Table 6.4. These results

are summarised to show the performance of the mutation operators and the crossover

operators as judged by the quality of the front and by the quality of the generated

solutions in Tables 6.5, 6.6, 6.7 and 6.8 respectively.

CHAPTER 6. COMPARISON OF CLUSTERING REPRESENTATIONS 120

Table 6.3: Results of the Proposed MOEA for Clustering by Front Quality

Rep Crossover Mutation Score

MBBE Three Point Invert 113.0
CBRE One Point MOCA 108.8
MBBE One Point Invert 85.5
MBBE Uniform Individual Bit 80.7
MBBE One Point Individual Bit 77.7
MBBE Two Point Invert 70.8
CBRE Centroid Distance Addition 69.7
MBBE Three Point Individual Bit 68.0
MBBE Two Point Individual Bit 60.5
MBBE Uniform Invert 52.5
MBBE Uniform Multiple Bit 51.0
CBRE Uniform MOCA 49.8
MBBE Three Point Multiple Bit 46.0
MBBE Two Point Multiple Bit 40.8
MBBE One Point Multiple Bit 37.8
CBRE MOCA MOCA 36.9
CBRE Multipoint Pairwise MOCA 35.6
CBRE Largest Partitions MOCA 33.6
CBRE Centroid Distance MOCA 32.6
CBRE Largest Partitions Addition 28.3
CBRE One Point Addition 28.3
CBRE One Point Swap 24.8
CBRE MOCA Addition 20.3
CBRE Multipoint Pairwise Addition 20.0
CBRE Uniform Swap 18.8
CBRE Uniform Addition 15.1
CBRE Multipoint Pairwise Swap 13.0
CBRE MOCA Swap 11.3
CBRE Largest Partitions Swap 10.8
CBRE Centroid Distance Swap 7.8
LBIE One Point Guided (Individual) 6.0
LBIE Two Point Guided (Individual) 5.5
LBIE Three Point Guided (Individual) 5.5
LBIE One Point Unguided (Individual) 4.0
LBIE Three Point Unguided (Multiple) 3.0
LBIE Uniform Unguided (Multiple) 3.0
LBIE Three Point Unguided (Individual) 2.0
LBIE One Point Guided (Multiple) 2.0
LBIE One Point Unguided (Multiple) 2.0
LBIE Uniform Guided (Multiple) 1.0
LBIE Two Point Guided (Multiple) 1.0
LBIE Two Point Unguided (Individual) 1.0
LBIE Two Point Unguided (Multiple) 0.0
LBIE Three Point Guided (Multiple) 0.0
LBIE Uniform Guided (Individual) 0.0
LBIE Uniform Unguided (Individual) 0.0

CHAPTER 6. COMPARISON OF CLUSTERING REPRESENTATIONS 121

LBIE as the representation, with all its configurations, performed poorly in terms

of both quality of the Pareto front and quality of the clustering solutions obtained.

This can be seen in tables 6.3 and 6.5 respectively where LBIE ranked low. In all

cases the quality of the Pareto fronts produced was lower than all of the other pos-

sible configurations, which implies that the Pareto fronts were far from the optimal

front and explored a limited part of the objective space. The fronts also contained

clustering solutions that were less similar to the intended clustering solutions than

most of the other configurations.

Configurations using the MBBE representation generally perform well when per-

formance is judged by the quality of the Pareto Fronts produced as can be observed

in Table 6.3. On the other hand, when judged using the quality of the clustering

solutions CBRE configurations performed better, as can be observed in Table 6.4.

Hence , overall, MBBE produces good Pareto fronts, whereas CBRE produces better

individual solutions.

CHAPTER 6. COMPARISON OF CLUSTERING REPRESENTATIONS 122

Table 6.4: Results of the Proposed MOEA for Clustering by RI (P ,P ′)

Rep Crossover Mutation Score

CBRE MOCA MOCA 112.5
CBRE Centroid Distance MOCA 103.8
CBRE MOCA Addition 96.0
CBRE Uniform Addition 95.5
CBRE Largest Partitions MOCA 92.0
CBRE Multipoint Pairwise MOCA 88.1
CBRE Multipoint Pairwise Addition 85.0
CBRE Largest Partitions Addition 82.0
CBRE Centroid Distance Addition 74.5
CBRE Multipoint Pairwise Swap 64.0
CBRE One Point Addition 63.0
CBRE Uniform MOCA 48.5
CBRE Centroid Distance Swap 46.5
CBRE One Point MOCA 35.5
CBRE Largest Partitions Swap 27.0
MBBE Uniform Invert 24.0
CBRE MOCA Swap 23.5
MBBE One Point Invert 22.0
MBBE Two Point Invert 20.0
MBBE Three Point Invert 20.0
MBBE One Point Individual Bit 18.3
CBRE One Point Swap 16.0
MBBE Three Point Individual Bit 14.0
MBBE Two Point Individual Bit 13.3
LBIE One Point Guided (Individual) 13.0
LBIE Three Point Guided (Individual) 12.0
MBBE Uniform Individual Bit 11.5
LBIE One Point Unguided (Individual) 10.0
MBBE Two Point Multiple Bit 7.0
LBIE One Point Guided (Multiple) 7.0
LBIE Three Point Unguided (Individual) 6.0
LBIE Two Point Guided (Individual) 5.0
CBRE Uniform Swap 4.5
MBBE Uniform Multiple Bit 4.0
LBIE Three Point Guided (Multiple) 4.0
LBIE Three Point Unguided (Multiple) 3.0
MBBE One Point Multiple Bit 3.0
MBBE Three Point Multiple Bit 3.0
LBIE Two Point Unguided (Individual) 3.0
LBIE Two Point Guided (Multiple) 2.0
LBIE One Point Unguided (Multiple) 2.0
LBIE Two Point Unguided (Multiple) 1.0
LBIE Uniform Guided (Individual) 0.0
LBIE Uniform Unguided (Multiple) 0.0
LBIE Uniform Unguided (Individual) 0.0
LBIE Uniform Guided (Multiple) 0.0

CHAPTER 6. COMPARISON OF CLUSTERING REPRESENTATIONS 123

Tables 6.5 and 6.6 summarise the results for mutation operators and show us that

in terms of Pareto front quality, the Invert mutation operator used with MBBE had

the highest evaluation of the mutation operators with our method. The invert mu-

tation operator is the most disruptive operator in terms of changing the clustering

solution. The MOCA mutation operator with CBRE and Individual Bit muta-

tion operator within MBBE also performed well. The MOCA mutation operator is

somewhat disruptive, hence disruptive mutation mechanisms appear advantageous

for exploration of the search space, in order to to obtain good Pareto fronts. Table

6.6 shows us that Addition and MOCA mutation operators performed significantly

better than all of the other operators when the quality of the clustering solutions pro-

duced is being judged by the Rand Index. The MOCA mutation operator performed

well both in terms of quality of Pareto fronts and quality of individual solutions, so

it seems a good compromise.

Table 6.5: Results of the Proposed MOEA for Clustering for Mutation by Front
Quality

Rep Mutation Score
MBBE Invert 321.8
CBRE MOCA 297.4
MBBE Individual Bit 286.8
CBRE Addition 181.8
MBBE Multiple Bit 175.7
CBRE Swap 86.6
LBIE Guided (Individual) 17.0
LBIE Unguided (Multiple) 8.0
LBIE Unguided (Individual) 7.0
LBIE Guided (Multiple) 4.0

CHAPTER 6. COMPARISON OF CLUSTERING REPRESENTATIONS 124

Table 6.6: Results of the Proposed MOEA for Clustering for Mutation byRI (P ,P ′)

Rep Mutation Score
CBRE Addition 496.2
CBRE MOCA 480.3
CBRE Swap 181.5
MBBE Invert 86.0
MBBE Individual Bit 57.0
LBIE Guided (Individual) 30.0
LBIE Unguided (Individual) 19.0
MBBE Multiple Bit 17.0
LBIE Guided (Multiple) 13.0
LBIE Unguided (Multiple) 6.0

The guided mutation operators did not perform well, which initially seems sur-

prising, given that they are specifically designed for the clustering task. A likely

explanation for these results is that the guided mutation operators were only used

with the LBIR encoding, which was the worst encoding that we experimented with.

Considering only the results for LBIE encoding in Tables 6.5 and 6.6, we can ob-

serve that, in the context of LBIE, the Guided (Individual) mutation was the most

successful operator, outperforming the unguided operators. However, the Guided

(Multiple) mutation operator was not successful as it performed worse than the un-

guided mutation operators. It is possible that when multiple changes were made

to the solutions these changes may somehow work against each other. Perhaps this

causes some clusters to loose or gain too many members in one iteration.

Tables 6.7 and 6.8 summarise results for crossover operators. Crossover oper-

ators used with MBBE have again outperformed the other operators in terms of

Pareto front quality (Table 6.7), whereas in terms of clustering solution quality, as

shown in Table 6.8, operators associated with CBRE perform better. The operators

used with a LBIE have performed poorly. There does not appear to be a clearly

superior crossover operator, but for CBRE the guided operators perform better.

Simple crossover schemes such as the one point crossover have performed well in

this experiment.

CHAPTER 6. COMPARISON OF CLUSTERING REPRESENTATIONS 125

Table 6.7: Results of the Proposed MOEA for Clustering for Crossover by Front
Quality

Rep Crossover Guided? Score
MBBE Three Point No 227.0
MBBE One Point No 201.0
MBBE Uniform No 184.2
MBBE Two Point No 172.1
CBRE One Point No 161.9
CBRE Centroid Distance Yes 110.1
CBRE Uniform No 83.8
CBRE Largest Partitions Yes 72.8
CBRE Multipoint Pairwise Yes 68.6
CBRE MOCA No 68.5
LBIE One Point No 14.0
LBIE Three Point No 10.5
LBIE Two Point No 7.5
LBIE Uniform No 4.0

Table 6.8: Results of the Proposed MOEA for Clustering for Crossover byRI (P ,P ′)

Representation Crossover Guided? Score
CBRE Multipoint Pairwise Yes 237.1
CBRE MOCA Yes 232.0
CBRE Centroid Distance Yes 224.8
CBRE Largest Partitions Yes 201.0
CBRE Uniform No 148.5
CBRE One Point No 114.5
MBBE One Point No 43.3
MBBE Two Point No 40.3
MBBE Uniform No 39.5
MBBE Three Point No 37.0
LBIE One Point No 32.0
LBIE Three Point No 25.0
LBIE Two Point No 11.0
LBIE Uniform No 0.0

6.4 Conclusion & Summary

This chapter has presented an experimental study on components of Multi-Objective

Evolutionary Algorithms for clusterings. In Chapter 4, we described how a good

CHAPTER 6. COMPARISON OF CLUSTERING REPRESENTATIONS 126

configuration for a MOEA should lead to a set of diverse solutions that are close

to the Pareto front. Using the techniques we described in Section 4.3, we evaluated

the sets of solutions (or Pareto fronts) that were generated.

The experimental results show that CBRE and MBBE are superior clustering

representations to LBIE as they generate better Pareto fronts and better individual

solutions.

The CBRE representation is likely to produce a Pareto Front containing good

clustering solutions. The results also show that this representation in-conjunction

with the MOCA mutation operator can find good Pareto fronts, so it appears as a

good compromise. Part of our motivation for this study was to assess how well our

proposed implementation of a Multi-Objective Evolutionary Algorithm for cluster-

ing, including the MOCA operators, worked in relation to other implementations.

The results validate our approach.

We also found that in terms of mutation, operators such as Addition or MOCA

that manipulate the values of the centroids provide good results. They outperform

others such as the swap operator that only exchanges centroids. Furthermore, muta-

tion operators that are very disruptive, that is to say change the solutions drastically,

cause the algorithm to explore a larger area of the objective space and return better

Pareto fronts. More constructive mutation operators that modify the solution with

respect to the problem with little disruption such as: Addition, Swap or MOCA

tend to produce clustering solutions that are more similar to the desired clustering

solutions. Such information provides useful guidance to produce better mutation

operators.

In terms of exploring the objective space and producing a good Pareto front,

MBBE was better, particularly when the very disruptive Invert mutation operator

was used. The Invert operator drastically changes the solution and may lead to

solutions that are very different from the pre-existing population, hence why the

space may be well explored. However, Invert mutation can lead to a great increase

in the number of clusters, hence further research could be performed with mutation

CHAPTER 6. COMPARISON OF CLUSTERING REPRESENTATIONS 127

operators that radically change the resulting clustering solutions without causing a

large increase in the number of clusters.

In the results, we did not find that there was a clearly superior crossover operator

for both producing high quality clustering solutions and investigating the objective

space. This is an area that may require further investigation, for example, designing

a crossover operator that attempts to improve the Pareto front and the clustering

quality of the solutions in the population using a combination of disruptive and

constructive techniques when appropriate.

In fact, future work on Multi-objective algorithms for clustering could focus upon

medoid or centroid based representations of a clustering solution and should inves-

tigate the effects of including an initial exploration phase with disruptive operators

followed by a local search phase with more constructive operators. This may be key

to investigating the space fully while also producing high quality clustering solutions.

The LBIE performed poorly. This may be because it is difficult to randomly pro-

duce solutions where the clusters are continuous shapes within the space. Clusters

that are not continuous will obviously be of poor quality. This representation may

still be worth considering as it allows the production of arbitrarily shaped clusters.

This technique may show an improved performance if there was a stage of the algo-

rithm that increased the quality of the clustering solutions that were found. Future

work could also include enhancements that establish rules about clusters being con-

tinuous. This could involve constraints using the K-nearest neighbours of objects as

a method of forming clusters, which has been used previously by [62].

We observed that the Guided (Individual) mutation operator outperformed the

Guided (Multiple) mutation operator for the LBIE. This was unusual as many pre-

vious approaches to clustering change many cluster memberships at each iteration

so we had not expected this bad result. Similarly, guided mutation operators for

the other encodings should also be investigated.

Chapter 7

Experimental Comparison of New

Mutation Operators

7.1 Introduction

In this chapter we expand upon the experiment that we presented in Chapter 6.

Previously we concluded that we had seen promising results using Centroid Based

Real Encoding as the representation for a Multi-Objective Clustering Algorithm. We

found that mutation operators that were very disruptive explored the objective space

well and found good Pareto fronts but did not find the highest quality clustering

solutions. We also found that mutation operators that manipulated the clustering

solutions directly lead to highest quality clustering solutions but did not explore the

Pareto front as well as the disruptive operators. We therefore suggested that further

research on the performance of the operators used within the algorithm should be

conducted. Here we will present an investigation into three mutation operators

designed to emphasise these properties.

In this chapter we report on an investigation into the performance of three differ-

ent mutation operators used in conjunction with CBRE. We first explain in section

7.2 the main configuration of the algorithm used: the representation, crossover op-

128

CHAPTER 7. COMPARISON OF NEW MUTATION OPERATORS 129

erator and MOEA.

In Section 7.2.3 we describe three mutation operators that attempt to promote

different aspects of a solution: front quality, clustering solution quality and a hybrid

combination of these. The mutation operator designed to promote front quality is

a variation of the mutation operator that we proposed in Chapter 5. The mutation

operator designed to promote the quality of the clustering solutions is loosely based

upon the clustering algorithm k-means. The final choice is a combination of the two

other mutation operators.

We present the experimental setup in section 7.3. The results are presented in

section 7.4. Supporting figures have been placed in Appendix A.

7.2 Multi-Objective Clustering Algorithm

The algorithm we use here is similar to one we have presented in previous work

[85], Chapter 5 and Chapter 6. Again we use NSGA-II [29] with 100 generations,

population size of 100 and mutation and crossover probability of 0.3. For a full

implementation, we used a representation, a mutation operator, a crossover operator

described in Section 7.2.2 and a pair of fitness functions. We use the Centroid Based

Real Encoding (CBRE) previously defined in Section 4.4.3 as the representation;

the uniform crossover operator; and for the fitness functions we use average within

group sum of squares and Conn, previously described and used in Chapter 5. We

do not use the between group sum of squares as a third objective as our preliminary

work suggested that using it and the within group sum of squares together did not

change the results significantly. Using two objectives instead of three made the task

of analysing the results more manageable.

CHAPTER 7. COMPARISON OF NEW MUTATION OPERATORS 130

7.2.1 Representation

For this experiment we will be using a Centroid Based Real Encoding. This rep-

resentation of a clustering solution is based on storing a set of prototype cluster

centroids. Modifications to the solution can be made by moving the prototype cen-

troids into new positions and by changing the number of prototype centroids in the

solution. Clustering solutions are then derived from the representation by assigning

each object in the data set to the closest prototype centroid. We previously fully

defined CBRE in Section 4.4.3. Formally we define a CBRE as R = {~r1, . . . , ~rr}

where each ~rg, g = 1, ..., r, represents an individual prototype cluster centroid.

We have chosen to use CBRE as the representation based on our previous work

reported in Chapter 6, which highlighted it as leading to high quality individual solu-

tions. However, this representation was not the most effective in terms of improving

the quality of the Pareto front. Here, we further investigate its performance.

7.2.2 Crossover

To crossover two CBRE solutions, R and R′, we will use a uniform crossover op-

erator. A simple uniform crossover has been widely used in conjunction with a

CBRE[23, 92, 135] and we also found that it performed fairly well in our previous

experiments in Chapter 6. The Centroid Distance crossover operator defined in

Section 4.4.3.2 was better in some instances. However, we have chosen to not use

that crossover operator here, as it is complex and is very disruptive to the clustering

solutions and could be sensitive to the nature of the data.

The implementation of the uniform crossover operator is as follows. From two

solutions, R and R′, we produce two new solutions R′′ and R′′′. For each ~rg ∈

R
⋃
R′ there is a 50% chance that ~rg will be included in either R′′ or R′′′. R′′ and

R′′′ will be valid solutions as the order of the prototypes is unimportant. If identical

prototypes exist within a new solution only one is used when a clustering solution

is generated. This crossover operator has been modified to work with solutions that

CHAPTER 7. COMPARISON OF NEW MUTATION OPERATORS 131

are not of equal length unlike their original definitions.

7.2.3 Mutation Operators

Our main contribution in this chapter is to investigate the performance of three mu-

tation operators: one that is entirely based on randomness, one that refines solutions

in a form of local search using concepts from k-means and a hybrid combination of

them.

Previously in Chapter 6 we found that the Pareto front was best explored by

the mutation operators that were the most disruptive to the solutions. We also

found that the mutation operators that directly manipulated the clustering solutions

produced higher quality clustering solutions. Here we aim to test this hypothesis

further by proposing two mutation operators that we have designed to emphasise

these two characteristics.

The initial assumption is that the Randomness Mutation operator will better

explore the search space by producing very disruptive changes in solutions, whereas

the k-means Like Mutation operator will improve the quality of individual solutions

by performing a form of local search. The hybrid mutation operator is expected to

combine the exploration of the Pareto front with the exploitation of good solutions.

They are as follows:

7.2.3.1 Randomness Mutation (RM)

Previously in Section 5.2.2 we defined a mutation operator designed as part of

MOCA [85]. In Section 5.4 we showed that MOCA appeared to be working correctly.

In Chapter 6 we performed an experiment to compare the different characteristics

of representations of the clustering problem and we found that the MOCA mutation

operator showed good performance both in terms of the quality of the Pareto fronts

generated and the quality of the clustering solutions produced.

We felt that this mutation operator promoted randomness within the clustering

CHAPTER 7. COMPARISON OF NEW MUTATION OPERATORS 132

solution as it is very disruptive to the structure of the solutions. The operator

combines three tasks (each considered a ”sub-operator” in Section 5.2.2): decreasing

the number of prototypes; increasing the number of prototypes; and modifying

the prototypes. Here we present a refined version of this operator: now each sub

operation is performed with equal probability. Previously we biased the algorithm

to decrease the number of clusters in each solution as our preliminary work had

found that the algorithm tended to increase the number of clusters in the clustering

solutions.

We have changed the implementation of the evolutionary algorithm to use a single

set of prototype centroids, R, instead of a more complex solution where two sets

of cluster prototypes were used. We therefore present the increase and decrease

sub operators here again. These operators are conceptually very similar to the sub

operators we presented in 5.2.2.

The third sub operator we used previously was a recompute operation that recal-

culated the prototype centroids using a method similar to a single iteration of the

k-means algorithm. Here we use a modification operator instead. This operation

is based upon moving the centroids around the solution space randomly instead of

refining the solution.

Here, we redefine the operator as follows:

• All three tasks defined bellow are equiprobable.

• We use only one set of prototype centroids, R, instead of two.

• We redefine the tasks that can be performed, and, in particular, the recalcu-

lation of cluster prototypes.

The tasks that can be performed are:

Decrease To decrease the number of prototypes, first the pair of prototypes that

are closest together must be found, computing min δ (~rg, ~rh) ∀~rg, ~rh ∈ R. For each

CHAPTER 7. COMPARISON OF NEW MUTATION OPERATORS 133

prototype in this pair, the second closest prototype is found. The prototype of the

original pair that has the closest neighbour is removed. That is, min δ (~rg, ~ri)∀~ri ∈

R < min δ (~rh, ~rj)∀~rj ∈ R then ~rg is removed, else ~rh is removed. This sub-operator

is conceptually the same as the sub-operator defined in section 5.2.2.1.

Increase To increase the number of prototypes, a new prototype is drawn from

D. The ~xi within D that is furthest away from any prototype is inserted into R,

computing max δ (~xi, ~ri)∀~xi ∈ D ∧ ∀~ri ∈ R. This sub-operator is conceptually the

same as the sub-operator defined in section 5.2.2.2.

Modification For each dimension of each prototype, rgi, there is a chance that

this dimension maybe modified. Scheunders [131] and Maulik [102] use a probability

of 0.05. To mutate a dimension, a negative or positive value is added with an equal

chance to the dimension. We use the technique inspired by the technique that

Bandyopadhyay [6] used. We calculate a scaled value by using the minimum and

maximum values of the dimension within D. The value that is added, or subtracted

is equal to 1% of the difference between the minimum and maximum values in that

dimension of the data set.

7.2.3.2 k-Means Like Mutation (KMLM)

An iteration of the k-means algorithm can be used as a mutation operator by re-

calculating the cluster prototypes. The mutation operator we previously used in

Section 5.2.2 used a single iteration of k-means as a sub operation to refine the

clustering solution. Here we use this sub operation as a mutation operator in its

own right. This operator is intended to refine the quality of the clustering solutions.

This type of mutation has been used before with successful results [90, 100].

To perform the mutation, first a clustering solution, P , is derived from R. If

r 6= k because there are identical prototypes then r is changed to k by adding

additional centroids. Each new prototype ~rg is set to the value of a random centroid

CHAPTER 7. COMPARISON OF NEW MUTATION OPERATORS 134

~cg from the generated clustering P .

7.2.3.3 Hybrid Mutation (HM)

The hybrid mutation operator combines the other operators with a linearly varying

probability of application. Initially, the probability of using RM is higher to explore

the solution space; later in the search, the probability of using KMLM becomes

higher in order to refine solutions. The probability of application of KMLM over

RM is calculated as g/m where g is the current generation and m is the number

of generations in total. This mutation operator relies on the maximum number of

generations as a stopping criterion so there must be a value of m.

7.3 Experimental Setup

We compare the performance of the mutation operators in terms of both individual

solution quality and Pareto front quality, as described in section 2.4 and 4.3. As a

benchmark, we also generate Pareto fronts using the k-means algorithm described

in section 2.2.1.1.

For the implementations based upon NSGA-II we keep a record of all the solutions

in the current population at each generation to see how the quality of the population

changes as the algorithm progresses.

For the k-means algorithm, an execution begins with a single solution that is

modified incrementally over a number of iterations. Typically k-means is executed

several times and CQMs are used to select a solution. We run P instances of k-

means in parallel for G iterations, where P is the population size and G is the number

of generations used for NSGA-II. The k-means algorithm typically converges well

before all G iterations have occurred. In this case P and G are both set to 100 but

they could be set to different values in future work. Therefore, the solutions present

at the first iterations are equivalent to the first generation of a genetic algorithm

and so on. When all of the instances of k-means have finished executing we return

CHAPTER 7. COMPARISON OF NEW MUTATION OPERATORS 135

the non-dominated solutions. We did not vary these values so that we could create

create a simple environment for the experimental configuration as these values have

been shown to be sensible choices in our preliminary work.

Each run of NSGA-II (with a different mutation operator) starts with identical

populations to ensure differences in performance are not due to the random gener-

ation of the start populations. We use the same populations to supply centroids to

the k-means instances. This ensures a variety of start populations while isolating

performance differences to the mutation operators.

We use nine data sets, described in Table 7.1. Six are popular benchmark data

sets for clustering problems drawn from the UCI Machine Learning Repository 1

and three have been generated for this experiment, and are visualised in Figure 7.1

as follows. The data sets drawn from the UCI repository in this experiment differ

from the data sets that we used in our previous experiment that we described in

Table 6.1. For this experiment we chose to eliminate some of the larger data sets

as performing experiments upon them took significantly longer than the data sets

that we retained. Data set g is designed to represent a typical clustering solution

where the clusters are roughly spherical and well separated, data set h is designed to

represent two continuous clusters that cannot be easily defined by their centroids as

they are approximately the same and data set i is designed to show two continuous

clusters that are separated but also cannot be well described by their centroids. To

cluster the data we use all of the variables within the data sets, other than the

variable that represents the correct class. As before the class labels are assumed to

be representative of the expected clustering solution as we explained in Section 6.2.

For each dataset we perform 100 executions of NSGA-II and 100× P executions

of k-means, each with a distinct random seed used to create the initial population.

We record all solutions ever discovered to generate S∗, the simulated optimal front

described in section 4.3.

For each generation of solutions we calculate: Volume of Dominated Space;

1http://archive.ics.uci.edu/ml/datasets.html

http://archive.ics.uci.edu/ml/datasets.html

CHAPTER 7. COMPARISON OF NEW MUTATION OPERATORS 136

(a) Data Set g

(b) Data Set h

(c) Data Set i

Figure 7.1: Visual Representation of Constructed Data Sets

CHAPTER 7. COMPARISON OF NEW MUTATION OPERATORS 137

Table 7.1: Data Sets

Data Set Name Dimensions Objects Classes
(used as Clusters)

UCI Data Sets
a Balance Scale 4 625 3
b Breast Cancer Wisconsin 10 569 2
c Glass 9 214 7
d Heart Statlog 13 270 2
e Iris 4 150 3
f Zoo 17 101 7

Constructed Data Sets
g Blobs 2 150 3
h Circles 2 150 2
i Moons 2 150 2

Spread; GD; IGD; Entropy; and the average Rand Index for each clustering solution.

We calculate the arithmetic mean of these across 100 executions. This averaging

gives us a good description of the algorithms whilst eliminating any anomalies that

may be introduced by randomly generating the start populations.

We will also calculate a statistical test to determine if one representation is sig-

nificantly different from the others. Here we will use the Friedman test [24] for this

task. The Friedman test is a non parametric statistical test that we will use to see

if any of the representations produces statistically different rankings of the results

for each measure of quality.

To perform the Friedman test first for each measure of quality we are using we

rank the best representation as 1 and the worst representation as 4 for each data set.

We then calculate the value of the Friedman test as described by Demšar [31]. We

use a critical value of 3.01 for the 0.05 significance level. If the result of the Friedman

test is statistically significant then we perform a post-hoc test to determine which

representation produced significantly different results to the others. To perform the

post-hoc test we use the Nemenyi test with a critical value of 1.563 for the 0.05

significance level. The results of post-hoc tests are presented as critical difference

diagrams as proposed by Demšar.

CHAPTER 7. COMPARISON OF NEW MUTATION OPERATORS 138

7.4 Results

Here we present a comparison of the performance of the benchmark k-means Algo-

rithm (KMA) against the implementations of NSGA-II that use RM, KMLM and

HM that we proposed in Section 7.2.3. The results are presented graphically as the

algorithms progress and as tables summarising the values of each measure at the

final, most important, Pareto front in Appendix A. We assess a number of Pareto

front quality measures as they may indicate different aspects of quality. We also

assess the quality of individual solutions with the Rand Index. Throughout we

observe that KMA converges quickly to a fixed set of solutions where no further

improvements are made and the implementations of NSGA-II continue to change

the population of the solutions throughout.

7.4.1 Volume of Dominated Space

Previously in Section 4.3.1 we introduced how we could use the volume of the space

dominated by a set of solutions as a measure of performance. Figures A.1 through

A.9 show the change in the volume of the space dominated by the Pareto front as

the algorithms progress. In general as each algorithm progresses the volume of space

that the Pareto front dominates increases.

Generally KMA improves initially and then stabilises without further change. In

the case of Figure 7.2, we can see that the results actually got worse after an initial

improvement when executing the algorithm on dataset e. We did not observe this

behaviour for any other data sets used in conjunction with KMA.

The algorithm using RM generally improves early on in the process and then

no further improvements are seen. In the case of datasets; a, b, d, h and i we

see that there is a gradual improvement throughout the execution of the algorithm,

but the volume of the data set that is dominated is lower than that of the other

implementations OF NSGA-II. In the case of data set g there is a slight loss in the

volume of the space dominated but this is very small.

CHAPTER 7. COMPARISON OF NEW MUTATION OPERATORS 139

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0 20 40 60 80 100

A
re

a

Generation

Randomness Mutation
K-Means Like Mutation

Hybrid Mutation
K-Means Algorithm

Figure 7.2: Change in Volume of Dominated Space for Dataset e
over 100 generations

0.98

0.98

0.98

0.98

0.98

0.98

0.98

0.98

0.99

0.99

0 20 40 60 80 100

A
re

a

Generation

Randomness Mutation
K-Means Like Mutation

Hybrid Mutation
K-Means Algorithm

Figure 7.3: Change in Volume of Dominated Space for Dataset g
over 100 generations

In the majority of cases the area dominated by the implementations using KMLM

and HM increases as the algorithm progresses. KMLM increases at the quickest rate

but in most cases HM and KMLM converge to similar values, though KMLM is often

slightly higher. Dataset g shows a case where KMLM and KMA performed almost

identically and were better than HM, this can be seen in Figure 7.3.

Table 7.2 shows that KMLM dominates a larger volume of the objective space

CHAPTER 7. COMPARISON OF NEW MUTATION OPERATORS 140

Table 7.2: Volume of the Dominated Space of the final Pareto front (best results
highlighted)

Data Set RM KMLM HM KMA
a 0.6001 0.6728 0.6672 0.6436
b 0.7945 0.8791 0.8796 0.8468
c 0.8241 0.9090 0.8937 0.8672
d 0.7965 0.8364 0.8341 0.7767
e 0.9585 0.9763 0.9730 0.9517
f 0.8785 0.9308 0.9011 0.8890
g 0.9819 0.9862 0.9853 0.9861
h 0.7620 0.7864 0.7785 0.7446
i 0.8949 0.9188 0.9136 0.8574

CD

4 3 2 1

1.4444
RM

1.6667
KMA

3
HM

3.8889
KMLM

Figure 7.4: Critical difference diagram for Volume of the Dominated Space

at the final generation for most of the datasets. HM showed better performance

by this method of assessment only in the case of dataset b. None of the other

implementations showed better performance after 100 generations.

We performed the Friedman test on the data presented in Table 7.2 and obtained a

value of 13.13 which shows statistical significance. We performed the Nemenyi post-

hoc test and we report the results of this in Figure 7.4. We can see that KMLM

produces statistically different results to KMA and RM. We cannot say that the

other pairings are statistically different to one another. The results of KMLM and

KMA are statistically different from one another and the results for KMLM are

more desirable so KMLM has performed better than KMA when assessed with the

CHAPTER 7. COMPARISON OF NEW MUTATION OPERATORS 141

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009
0.010
0.011
0.012

0 20 40 60 80 100

G
D

Generation

Randomness Mutation
K-Means Like Mutation

Hybrid Mutation
K-Means Algorithm

Figure 7.5: Change in GD for Dataset g
over 100 generations

volume of the dominated space.

7.4.2 GD & IGD

The Generational Distance (GD) is the distance between the optimal Pareto front,

S∗, and a given Pareto front. As the algorithm converges GD should reduce. This

measure was previously introduced in Section 4.3.4. We show our results in Figures

A.10 through A.18. In general the distance decreases as we would expect.

KMLM shows continuous improvement of GD and therefore of the Pareto front.

For all of the data sets we studied, the value of GD is initially very high, consistently

with a poor initial Pareto front. Most improvement occurs early in the search. In

the case of dataset g (Figure 7.5) the initial decrease in the value of GD is less

pronounced as the values found later continue to improve at a faster rate than the

other implementations.

The convergence to S∗ in terms of GD by HM is similar, though sometimes slower

than KMLM. In the cases of dataset a and b (Figures 7.6 and 7.7) the results actually

get slightly worse initially before slowly improving as the algorithm progresses. The

value of GD appears erratic on dataset g but it is very small and may not therefore

CHAPTER 7. COMPARISON OF NEW MUTATION OPERATORS 142

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0 20 40 60 80 100

G
D

Generation

Randomness Mutation
K-Means Like Mutation

Hybrid Mutation
K-Means Algorithm

Figure 7.6: Change in GD for Dataset a
over 100 generations

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0 20 40 60 80 100

G
D

Generation

Randomness Mutation
K-Means Like Mutation

Hybrid Mutation
K-Means Algorithm

Figure 7.7: Change in GD for Dataset b
over 100 generations

be significant.

We observe that initially KMA performs similarly to KMLM, but it does not

show continuous improvement with more generations. The implementation of the

k-means algorithm that we used in this experiment converges quickly for all of

the datasets. KMLM exhibits a behaviour where early populations are significantly

further away from S∗ than the solutions maintained by KMA. This is not an artefact

CHAPTER 7. COMPARISON OF NEW MUTATION OPERATORS 143

Table 7.3: GD of the final Pareto front (best results highlighted)

Data Set RM KMLM HM KMA
a 0.0453 0.0022 0.0060 0.0075
b 0.0604 0.0040 0.0032 0.0205
c 0.0452 0.0048 0.0091 0.0340
d 0.0358 0.0047 0.0065 0.0259
e 0.0206 0.0015 0.0041 0.0530
f 0.0318 0.0002 0.0060 0.0242
g 0.0047 0.0020 0.0042 0.0064
h 0.0312 0.0103 0.0191 0.0193
i 0.0392 0.0114 0.0196 0.0355

of the population’s initialisation process as starting populations are shared by each

algorithm across each run. The initial behaviour of KMLM is generally similar to

KMA once the solutions have improved from their initial low quality until KMA

stops improving. This shows that KMLM acts very similarly to KMA but is not

constrained by the same covering conditions. As the mutation operator is essentially

k-means any further improvements after KMA stops improving should be attributed

to the MOEA.

RM shows consistently less desirable values of GD that the other implementa-

tions. The value of GD continues to improve as the algorithm is executed, but in the

cases of datasets a and b it is considerably worse than the other implementations.

However, it does show better performance that KMA for datasets e and g.

The final value of GD shown in Table 7.3 is higher (worse) for KMA with respect

to KMLM at the end of the experiment. RM shows the worst performance. It does

not produce a Pareto front that is closest to the optimal Pareto front in any of

the cases and is the worst in most of them. In all but one of the cases the distance

between the final Pareto front and S∗ is best for KMLM and KMA. KMLM obtained

the best result in eight out of the nine datasets.

We performed a Friedman test on this data and obtained a result of 65.63 which

shows that the representations are statistically different to one another. We per-

formed a Nemenyi test and report the results in Figure 7.8. The results for KMLM

CHAPTER 7. COMPARISON OF NEW MUTATION OPERATORS 144

CD

4 3 2 1

1.1111
KMLM

1.8889
HM

3.2222
KMA

3.7778
RM

Figure 7.8: Critical difference diagram for GD

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0 20 40 60 80 100

I
G
D

Generation

Randomness Mutation
K-Means Like Mutation

Hybrid Mutation
K-Means Algorithm

Figure 7.9: Change in IGD for Dataset e
over 100 generations

are statistically different from RM and KMA. RM is also statistically different from

HM. KMLM has produced more desirable values than KMA and RM so we can say

that KMLM has performed better than KMA and RM when measured with GD.

HM has also performed better than RM when measured with GD.

Previously in Section 4.3.4 we introduced IGD, the inverse of GD. The evalua-

tion of Pareto quality by IGD and GD are different for the problems we have used.

If all of the solutions in a Pareto front are in S∗ but the tail ends of S∗ are not

included then it would have a low GD and high IGD. Conversely, a high GD and

CHAPTER 7. COMPARISON OF NEW MUTATION OPERATORS 145

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0 20 40 60 80 100

I
G
D

Generation

Randomness Mutation
K-Means Like Mutation

Hybrid Mutation
K-Means Algorithm

Figure 7.10: Change in IGD for Dataset f
over 100 generations

low IGD may be achieved if the front contained the extreme solutions but not the

solutions in the middle of the front. We see these effects in Figures A.19 through

A.27 and Table 7.4, where the values of IGD for KMA are much higher than the

values of GD presented previously.

The performance of HM and KMLM are less similar when measured with IGD,

particularly in the case of datasets e and f (Figures 7.9 and 7.10.) where the final

value for HM is much higher. KMLM is superior to the other implementations in

eight out of nine datasets, HM shows slightly more favourable results on dataset h

(Figure 7.11). These results imply that for some data sets KMLM is more effective

at locating the tail ends of S∗.

KMA shows the worst performance in the majority of datasets when assessed by

IGD. This shows that KMA does not locate the solutions at the tail ends of the

Pareto front, so most of the solutions it identifies are compromise solutions in the

middle of the front and possibly quite similar.

In the final Pareto front generated for each dataset (Table 7.4) the IGD values

of HM and KMLM are much lower than the values of KMA and RM. This implies

HM and KMLM are better at converging their Pareto fronts towards S∗ than RM

CHAPTER 7. COMPARISON OF NEW MUTATION OPERATORS 146

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0 20 40 60 80 100

I
G
D

Generation

Randomness Mutation
K-Means Like Mutation

Hybrid Mutation
K-Means Algorithm

Figure 7.11: Change in IGD for Dataset h
over 100 generations

and KMA.

We performed a Friedman test on this data and obtained a result of 93.25 so

the results for the different representations are statistically different to one another.

We performed a post-hoc test using the Nemenyi test and found that KMLM is

statistically different from RM and KMA. We also see that HM and KMA are also

statistically different. These results are slightly different to the results we observed

of GD as HM is not statistically different from RM but it is statistically different to

RM when measured with IGD. When compared to HM RM seems to perform better

when measured with GD and KMLM performs better when measured with IGD.

This would suggest that RM has found the solutions in the middle of the optimal

Pareto front whereas HM has found the tail ends of the Pareto front.

7.4.3 Spread

The Spread of a set of solutions is an indicator of how well separated a set of solutions

are and how near these solutions are to the extreme ends of the optimal Pareto front.

We defined this previously in Section 4.3.3. Lower values of spread are desirable.

Generally we observe that the values of the Spread reduce as the algorithms are

CHAPTER 7. COMPARISON OF NEW MUTATION OPERATORS 147

Table 7.4: IGD of the final Pareto front (best results highlighted)

Data Set RM KMLM HM KMA
a 0.0503 0.0111 0.0126 0.0485
b 0.0550 0.0075 0.0100 0.0976
c 0.0553 0.0092 0.0141 0.0717
d 0.0285 0.0080 0.0089 0.0796
e 0.0365 0.0028 0.0219 0.0377
f 0.0554 0.0011 0.0380 0.0647
g 0.0102 0.0066 0.0088 0.0203
h 0.0278 0.0214 0.0194 0.0833
i 0.0378 0.0159 0.0252 0.0845

CD

4 3 2 1

1.1111
KMLM

1.8889
HM

3.1111
RM

3.8889
KMA

Figure 7.12: Critical difference diagram for IGD

executed. This is shown in Figures A.28 through A.36 and Table 7.5.

The solutions generated by RM become well Spread quickly in most cases and

then stabilise. Dataset g (Figure 7.13) shows some fluctuation in the value of Spread

as the algorithm progresses, but very erratic and unusual behaviour is observed on

all of the implementations we are investigating, so this is probably related to a

property of the dataset. For dataset e (Figure 7.14) there is no improvement or

change in the value of Spread as the RM algorithm progresses. These results imply

that the solutions generated using RM are distinct from each other and show a

consistent tradeoff in the values of the objective functions. The solutions must also

be fairly close to the tail ends of the optimal Pareto front to obtain low values

CHAPTER 7. COMPARISON OF NEW MUTATION OPERATORS 148

0.49

0.50

0.51

0.52

0.53

0.54

0.55

0.56

0 20 40 60 80 100

S
p

re
ad

Generation

Randomness Mutation
K-Means Like Mutation

Hybrid Mutation
K-Means Algorithm

Figure 7.13: Change in Spread for Dataset g
over 100 generations

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0 20 40 60 80 100

S
p

re
ad

Generation

Randomness Mutation
K-Means Like Mutation

Hybrid Mutation
K-Means Algorithm

Figure 7.14: Change in Spread for Dataset e
over 100 generations

of Spread. Previously, when measuring with IGD, our results implied that the

solutions generated may be far from the tail ends of the optimal Pareto front. This

suggests that the solutions are evenly spaced and near the tail ends of the optimal

Pareto front and converge towards the middle of the optimal Pareto front as the

algorithm executes.

For most of the datasets we studied the behaviour of HM and KMLM appeared

CHAPTER 7. COMPARISON OF NEW MUTATION OPERATORS 149

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0 20 40 60 80 100

S
p

re
ad

Generation

Randomness Mutation
K-Means Like Mutation

Hybrid Mutation
K-Means Algorithm

Figure 7.15: Change in Spread for Dataset f
over 100 generations

to be similar as the algorithm progressed, but were very different at the start of ex-

ecution as you would expect, because HM becomes KMLM as it progresses. KMLM

showed low values of Spread before getting worse whereas HM showed high values

of Spread before improving. The behaviour of KMLM and HM then converges after

approximately ten generations as the behaviour of the mutation operators become

more similar. The behaviour of HM initially is quite similar to RM because it is

initially based on RM. RM seems to be encouraging well Spread solutions to be

found, whereas KMLM is encouraging solutions to be very similar to each other.

Unusually, for dataset f (Figure 7.15) the solutions found using KMLM become

much more spread (lower values of the Spread measure) than those found using the

other implementations. There does not appear to be a clear reason for this. KMLM

and HM exhibit erratic behaviour in the case of dataset g. This was also seen for

RM, so it must be caused by the structure of the dataset.

Overall, solutions found using KMA are generally less spread (larger values of the

spread measure) than those generated using any of the NSGA-II implementations

(Table 7.5). This implies that KMA produces solutions that are very similar to each

other. Given that the algorithm is progressing until one objective is minimised this

is to be expected. RM is producing sets of solutions that are generally very well

CHAPTER 7. COMPARISON OF NEW MUTATION OPERATORS 150

Table 7.5: Spread of the final Pareto front (best results highlighted)

Data Set RM KMLM HM KMA
a 0.0851 0.1176 0.1094 0.1959
b 0.1050 0.1820 0.2045 0.5333
c 0.2281 0.3048 0.3126 0.4147
d 0.1254 0.2157 0.2119 0.4506
e 0.5651 0.4928 0.5788 0.2550
f 0.3410 0.2346 0.3502 0.5722
g 0.5132 0.5032 0.5063 0.5541
h 0.1637 0.2307 0.2047 0.4646
i 0.2104 0.2502 0.2503 0.5616

CD

4 3 2 1

1.5556
RM

2.1111
KMLM

2.6667
HM

3.6667
KMA

Figure 7.16: Critical difference diagram for Spread

spread compared to the sets of solutions generated using the other implementations.

This shows that RM is good at exploring the objective space. RM obtained the best

results in eight of the nine datasets.

Again, we assessed these results using the Friedman test and obtained a result of

7.58 which shows statistical difference. We report the results of the post-hoc test in

Figure 7.16. We can see that RM is statistically different to KMA, the other pairs

are not statistically different. This confirms that RM has performed better than

KMA when measured with the Spread measure.

CHAPTER 7. COMPARISON OF NEW MUTATION OPERATORS 151

4.20
4.40
4.60
4.80
5.00
5.20
5.40
5.60
5.80
6.00
6.20
6.40

0 20 40 60 80 100

E
n
tr

op
y

Generation

Randomness Mutation
K-Means Like Mutation

Hybrid Mutation
K-Means Algorithm

Figure 7.17: Change in Entropy for Dataset a
over 100 generations

7.4.4 Entropy

A large Entropy indicates that the Pareto front is more diverse, there are less du-

plicate solutions and, where there are duplicates, there are less copies of them. We

previously fully defined Entropy in Section 4.3.4.1. Generally the starting popula-

tions are initially diverse then the sets of solutions immediately become significantly

less diverse before quickly regaining their diversity, this is shown in Figures A.37

through A.44 A.45.

The solutions found by KMA are the least diverse. The lack of diversity is not

surprising as the algorithm has only one objective, so the solutions are all drawn

towards on ideal solution. The Entropy of the populations maintained by the other

techniques tends to initially rise quickly before stabilising.

The sets of solutions found using KMLM are generally very diverse. The changes

in the diversity during execution of the algorithm are less significant than the changes

observed when using HM and RM. This implies that the populations maintained by

the implementations using HM and RM are changing frequently. For datasets a

and b (Figures 7.17 and 7.18) the diversity of the population becomes significantly

lower and takes a large amount of iterations of the algorithm to improve for the HM

CHAPTER 7. COMPARISON OF NEW MUTATION OPERATORS 152

4.20
4.40
4.60
4.80
5.00
5.20
5.40
5.60
5.80
6.00
6.20
6.40

0 20 40 60 80 100

E
n
tr

op
y

Generation

Randomness Mutation
K-Means Like Mutation

Hybrid Mutation
K-Means Algorithm

Figure 7.18: Change in Entropy for Dataset b
over 100 generations

Table 7.6: Entropy of the final Pareto front (best results highlighted)

Data Set RM KMLM HM KMA
a 5.8897 6.2744 6.1201 5.8831
b 5.8445 6.0879 6.0583 6.0375
c 5.6126 5.5089 5.3285 4.9315
d 5.6671 5.4663 5.5959 4.8916
e 5.0365 5.6119 5.1939 4.5209
f 4.4439 5.1797 4.8716 4.0788
g 5.0758 5.5078 5.3445 4.3125
h 4.9235 5.3053 5.1261 4.0508
i 4.9646 5.6359 4.7627 4.4176

representation. This behaviour is not observed in the other implementations. These

results imply that there are some duplicate solutions in the populations maintained

by the implementations using HM and RM.

Table 7.6 shows the Entropy of the Pareto fronts generated using implementations

of NSGA-II were higher at the final Pareto front than those found using KMA. For

seven of the nine datasets the sets of solutions found using KMLM were the most

diverse, followed by HM in most cases. This implies that using KMLM as the

mutation operator leads to sets of solutions that contain unique solutions.

The value of the Friedman test was calculated as 15.55 which means that the rep-

CHAPTER 7. COMPARISON OF NEW MUTATION OPERATORS 153

CD

4 3 2 1

1.1111
KMA

2.4444
RM

2.7778
HM

3.6667
KMLM

Figure 7.19: Critical difference diagram for Entropy

resentations show statistically different performance to one another. We performed

a post-hoc test and report out results in Figure 7.19. Our results show that KMA

is significantly different from HM and KMLM, the other pairs are not statistically

different. This confirms that the solutions found by KMA were less diverse than

those found by KMLM and HM.

7.4.5 Average Rand Index

The Rand Index was introduced in Section 2.4. The Rand Index differs from the

previous measures of quality as it does not assess the quality of the Pareto front. It

assesses the quality of individual clusterings with respect to some pre-defined ideal

clustering. As we are interested in finding techniques that deliver high quality Pareto

fronts and high quality clustering solutions this is therefore useful. High values close

to 1 indicate that a clustering solution is similar to a pre-defined ideal clustering

solution, whereas values close to 0 show that it is not similar. Here we averaged the

similarity of each solution in a Pareto front to determine how similar each front is to

an ideal solution. The similarities that we observed varied from dataset to dataset

significantly, this is show in Figures A.46 through A.54 and Table 7.7.

The solutions found using KMA quickly converge steadily towards the intended

clustering solution and do not continue to change as the algorithm has converged.

CHAPTER 7. COMPARISON OF NEW MUTATION OPERATORS 154

0.52

0.53

0.54

0.55

0.56

0.57

0.58

0.59

0 20 40 60 80 100

A
ve

ra
n

ge
R

an
d

In
d

ex

Generation

Randomness Mutation
K-Means Like Mutation

Hybrid Mutation
K-Means Algorithm

Figure 7.20: Change in Average Rand Index for Dataset a
over 100 generations

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0 20 40 60 80 100

A
ve

ra
n

ge
R

an
d

In
d

ex

Generation

Randomness Mutation
K-Means Like Mutation

Hybrid Mutation
K-Means Algorithm

Figure 7.21: Change in Average Rand Index for Dataset c
over 100 generations

The results we observed were good for datasets: a, b, c, f, g and i. This implies

that the solutions generated using KMA were often close to the solution that we

intended to discover.

KMLM does not show consistent behaviour, for datasets a (Figure 7.20), b and e

the performance of KMLM is very similar to KMA. For datasets c (Figure 7.21), f, g

and i the solutions found become more dissimilar rapidly before steadily improving

CHAPTER 7. COMPARISON OF NEW MUTATION OPERATORS 155

0.48

0.48

0.49

0.49

0.50

0.51

0.51

0.52

0.52

0.53

0 20 40 60 80 100

A
ve

ra
n

ge
R

an
d

In
d

ex

Generation

Randomness Mutation
K-Means Like Mutation

Hybrid Mutation
K-Means Algorithm

Figure 7.22: Change in Average Rand Index for Dataset h
over 100 generations

as the algorithm executes. In the case of dataset h (Figure 7.22) the similarity to

the intended solution increases initially before steadily declining as the algorithm

executes, this change in value is small but noticeable.

The sets of solutions found by RM either start similar to the intended solution

and then become less similar as the algorithm progresses, as demonstrated in the

case of a, b, c, f and i; or they start dissimilar to the intended solution and gain

similarity as the algorithm progresses as in d, e, g and h. There appears to be no

obvious explanation for this phenomena. Data sets g and h have been visualised in

Figure 7.1 and it can be seen that they are very different to each other, we would

have expected a difference between these data sets and the others. These results

imply that clusters have been formed in data set g that cover more than one of the

clusters in the original solution which seems very unintuitive.

The behaviour shown by HM tends to be similar, though slight worse, in com-

parison to the behaviour exhibited by KMLM. In the case of datasets a and b

the similarity gets significantly worse early on. This behaviour is not exhibited by

KMLM or RM or upon any other datasets, so this may be an anomaly.

Generally there does not seem to be a best operator arising from the experiments

CHAPTER 7. COMPARISON OF NEW MUTATION OPERATORS 156

Table 7.7: Average Rand Index in the final Pareto front (best results highlighted)

Data Set RM KMLM HM KMA
a 0.5557 0.5841 0.5799 0.5872
b 0.7111 0.7137 0.7439 0.5544
c 0.4079 0.5446 0.5052 0.6912
d 0.5127 0.5123 0.5124 0.5098
e 0.7920 0.7945 0.8220 0.7777
f 0.4315 0.7993 0.6866 0.7852
g 0.7971 0.8131 0.8161 0.8299
h 0.5114 0.4950 0.5039 0.4854
i 0.5634 0.5924 0.5671 0.6191

in terms of individual solution quality. The solutions found by KMA are often more

similar to the intended solution, with KMA obtaining the best result in four out of

the nine datasets.

We performed the Friedman test on this data and we cannot say that any one

representation is statically different to any of the others. We obtained a value of

0.95 which is not statistically significant at the levels we are testing so we have not

performed a post-hoc test. We cannot say that any representation is statistically

better than another representation when assessed with the Rand Index.

7.5 Summary & Conclusions

We have investigated the performance of mutation operators that promote random

changes, solution quality and a hybrid combination. We have compared their per-

formance against a benchmark, the k-means algorithm for clustering. We have also

shown how to investigate the performance difference between these techniques using

a variety of measures of performance that assess Pareto front quality and individual

solution quality. Part of our contribution is to have created an experimental set-up

for testing both individual solution quality and Pareto front quality through the

execution of the algorithms. This allows for more experimentation with crossover,

mutation and other multi-objective algorithm parameters.

CHAPTER 7. COMPARISON OF NEW MUTATION OPERATORS 157

We have performed the Friedman test on each set of results that we have gener-

ated and found that the representations were statistically different to each other for

all of our results except the Rand Index. We have seen that KMLM and KMA are

statistically different to each other when measured with the volume, GD, IGD and

Entropy. KMA performed better when measured with Entropy and the KMLM mu-

tation performed better for the other measures. They were not statistically different

when measured with Spread. It appears that KMLM mutation is producing solu-

tions more similar to the optimal Pareto front than KMA but KMA has produced

more diverse solutions.

We have seen that KMLM performs best for Pareto front quality by a number of

measures. The Pareto fronts generated dominate the largest area of the objective

space; they lie on a simulated optimal Pareto front; they are closer to the extreme

ends of the simulated optimal Pareto front and contain a larger proportion of unique

solutions. However, we have also seen that these solutions are not always evenly

spread throughout the objective space and that the similarity to the clustering

solutions that we desired, that is, the quality of individual solutions, varies from

data set to data set.

We have also shown that using RM produced poorer Pareto fronts that do not

dominate all of the objective space, do not lie on the optimal Pareto front and

exclude the extreme ends of the optimal Pareto front. However, the Pareto fronts

contain a large quantity of unique and varied solutions that are evenly spaced. The

mutation operator that promotes random chances appears to offer some advantages

in terms of diversity and should be investigated further. We have shown that this

implementation of a mutation operator designed to disrupt the solutions may not

be as disruptive as we desired.

We postulate that KMLM is performing some form of local search on specific

solutions which leads to faster convergence to the optimal Pareto front. We also

note that the use of KMLM does not lead to the diverse Pareto front found by RM

even though it converges better to the optimal Pareto front than KMLM.

CHAPTER 7. COMPARISON OF NEW MUTATION OPERATORS 158

HM, as we implemented it, did not represent a good improvement with respect

to KMLM. This may be because our initial assumption that the random operator

would promote better Pareto fronts, whereas KMLM may provide some form of

local optimisation of solutions did not prove correct with our implementation of the

random operator. A better operator or combination of operators that consistently

delivers diverse and improved Pareto fronts may be needed.

As we have produced an experimental set-up which allows us to observe the

quality of both the Pareto front and the individual solutions over a number of

generations, other operators can now be investigated. We expect that some form

of adaptive mechanism which switches the emphasis of the search from the quality

of the Pareto front to the quality of individual solutions or to the diversity in the

population may present advantages for this and other multi-objective problems.

Our experimental set-up should allow for further parameter experimentation and

eventually deliver more effective and efficient MO algorithms. In future we should

also look at ways of improving the technique to identify which representation is

producing very different results from the others. We performed a statistical test on

the results of the values of the final front and we did not find any of these to be

statistically different from one another.

Chapter 8

Conclusions and Further Work

The overall objective of this thesis was to investigate how Multi-Objective Evolu-

tionary Algorithms can be applied to the clustering problem. First we needed to

investigate ways of assessing clustering solutions. We performed an experimental

study in Chapter 3 that produced a number of recommendations about possible

objectives. Secondly we needed to investigate how to represent and manipulate

clustering solutions in the context of MOEAs. In Chapter 5 we proposed our own

algorithm using a pre-existing representation and our own operators to manipulate

the solutions. In Chapter 6 we extensively investigated the performance of different

representations and operators from the literature. Finally, in chapter 7 we specif-

ically investigated the performance of mutation operators. Overall we have given

advice on which objective functions can be used for this problem, how the problem

can be represented in an MOEA context and how the solutions to the problem can

be manipulated.

8.1 Summary & Contributions

In Chapter 2 we introduced the general clustering problem and important related

concepts: data sets, distance measures, characteristics of clustering solutions, classic

clustering algorithms and Clustering Quality Measures (CQM). We discussed the

159

CHAPTER 8. CONCLUSIONS AND FURTHER WORK 160

difficulties of establishing what constitutes a good clustering solution to a problem.

In reality, the evaluation of clustering solutions may be subjective, that is to say,

the best clustering solution to a given clustering problem may be dependent on the

decision maker, the intended use of the clustering solution or other factors. In this

context, we proposed the use of Multi-Objective Evolutionary Algorithms (MOEA)

for clustering because they allow for the incorporation of multiple objectives to be

optimised and provide a set of trade-off solutions which are hopefully optimal which

respect to those objectives.

In order to investigate the many CQM proposed for clustering, we designed some

experiments, which are presented on Chapter 3. The results of those experiments

were published in [83]. We discussed that measures could be grouped together ac-

cording to the properties they measure, e.g: separation, density or connectivity. For

a Multi-Objective clustering algorithm, it may be desirable to include as objectives

a number of measures representing different properties. We proposed that the most

useful measures should show a steady change in their value in relation to a steady

change in the quality of a clustering. To test which measures may exhibit this be-

haviour, we produced a number of synthetic clustering solutions and deteriorated

them steadily by randomly assigning objects to other clusters. We then observed

how the CQM behaved. We found that connectivity based measures and some simple

measures based on the separation and density of clusters, such as Overall Deviation

and R-Squared, showed the most favourable behaviour. These findings informed our

choice of objective functions for the Multi-Objective Clustering Algorithm described

in later chapters.

We have contributed a novel Multi-Objective Clustering Algorithm (MOCA) in

Chapter 5. This was published independently in [85]. We performed an initial

experimentation to validate our implementation and found that our MOCA was

more likely than the standard k-means algorithm to produce high quality clustering

solutions.

Since other MOCAs have been defined in the literature, with different repre-

CHAPTER 8. CONCLUSIONS AND FURTHER WORK 161

sentations and operators, in Chapter 6 we performed an experimental comparison.

Instead of implementing specific algorithms, we focused on the components of the

algorithms to find the best possible configuration for a MOCA. We compared a large

number of possible configurations, including a number of representations combined

with related mutation and crossover operators proposed by others. Furthermore, in

order to assess the real power of a Multi-Objective algorithm, it is important to be

able to compare not only the quality of the individual solutions produced but also

the quality of the Pareto Fronts produced. To this aim, we implemented a number

of measures of Pareto front quality and ranked the various configurations accord-

ing to all those measures. We then discussed which representations and operators

lead to the best Pareto fronts and to the best individual clustering solutions. We

found that representations based on centroids or medoids generally produced good

individual solutions and good Pareto fronts, whereas representations based on Label

Based Integer Encoding gave poor results for both. A centroid based representation

such as the one we proposed appeared to show some advantage for finding indi-

vidual clustering solutions of high quality whereas the medoid based representation

showed an advantage for finding good Pareto fronts. Our own implementation with

the MOCA mutation operator we devised did well for both. We noticed also with

this set of experiments that certain characteristics of the mutation operator could

have specific effect on the search. For example, disruptive mutation operators may

encourage better exploration of the search space.

Our observations on the mutation operators in Chapter 6 led us to another set

of experiments that we published separately [84]. We attempted to investigate how

mutation operators could be used to improve both the exploratory and exploitative

phases of the search by promoting diversity of solutions in the Pareto front and

quality of individual solutions. For this, we devised a mutation operator that pro-

moted random changes in order to diversify the search; one based on one iteration of

the k-means algorithm that promoted solution improvement to intensify the search;

and a hybrid combination of both which was supposed to change the emphasis of

the search between diversification and intensification We were able to confirm with

CHAPTER 8. CONCLUSIONS AND FURTHER WORK 162

our results that some operators promote Pareto front quality and some operators

promote clustering solution quality.

Overall, we believe that the use of MOEA for clustering is justified. We have in-

vestigated a number of Cluster Quality Measures as potential objectives for MOEAs.

Measures based upon the concept of connectivity were shown to be very good at

identifying good clustering solutions, i.e. those that were similar to the expected

clustering solution according to the Rand Index. We believe this is because they

promote solutions that contain clusters that are continuous regions. We have also

recommended measures based upon the concepts of density and separation. These

are simple and effective measures. The cluster quality measures that mixed differ-

ent concepts are not suitable in the MOEA context as each objective in an MOEA

should attempt to measure only one quality of a clustering solution.

Our investigations have also produced recommendations on how to represent a

clustering solution in a MOEA context. We have found that representations based

around centroids and medoids have produced the most promising results here. This

implies that clustering solutions that contain clusters that are hyper-spherical have

been well evaluated. It may be that clustering is inherently biased towards hyper-

spherical clusters.

We have also investigated operators for manipulating clustering solutions. We

found that operators that were very disruptive discovered a large number of varied

clustering solutions. We also found that operators that used information about

a clustering solution represented by an individual led to higher quality clustering

solutions but were less capable of investigating the Pareto front. We attempted to

combine these characteristics unsuccessfully.

8.2 Further Work

There is a significant number of measures of cluster quality that we have investigated

but others may not have been covered in our work and may deserve further research.

CHAPTER 8. CONCLUSIONS AND FURTHER WORK 163

Future work should continue to assess new Cluster Quality Measures as they emerge

and should also focus on how the measures interact with each other when they are

combined in an MOEA context.

It is worth noting that although our experiments point at centroid or medoid

based representations as being better, these types of representation can lead to

finding hyper-spherical clusters and may not therefore be optimal for all problems.

Therefore, there is still scope for other representations such as the one use by Handl

[61], which have been shown to produce good results.

Our attempt to create a hybrid operator did not provide us with good results,

hence an improved algorithm which switches the search from exploration to ex-

ploitation would require further research. A more sophisticated adaptive mechanism

guided by measures of solution quality would probably be necessary to deliver im-

proved results and should be the subject of further research. It may also be possible

to design an MOEA that automatically changes between solution representations,

mutation operators and crossover operators as the algorithm executes to create a

self-adaptive MOEA for clustering.

We believe there is also further scope for the development of specific mutation

operators tailored to the clustering problem that could use a hybrid approach that

is different from the one we proposed to discover high quality clustering solutions

within diverse Pareto fronts. Further investigations into hybrid mutation operators

may also have applications to other problems that can be solved with MOEA al-

gorithms. We have only briefly investigated the performance of specific crossover

operators, the further development of specific clustering crossover operators for the

clustering problem may lead to more effective implementations.

A major limiting factor we encountered during our investigations was the exe-

cution time of MOEAs attempting to solve clustering problems. Anecdotally, the

evaluation of the quality measures of a clustering solution was generally slow. The

time factor may be improved with the use of more specific implementations of CQMs.

Throughout our experiments, we did not create specific optimised implementations

CHAPTER 8. CONCLUSIONS AND FURTHER WORK 164

of CQMs. An efficient implementation, for example, could retain information from

one generation to the next so the values of the CQMs would need to be regenerated

less often. Novel implementations of MOEAs specifically for generating clustering

solutions may also be able to generate interesting results. A large number of possible

representations of clustering solutions exist, not all of these have been investigated

in this thesis and new representations will be developed in time. Future work should

continue to investigate and propose different methods of representing clustering so-

lutions as they emerge.

Appendices

165

Appendix A

Graphs for Mutation Operator

Comparison

0.54

0.56

0.58

0.60

0.62

0.64

0.66

0.68

0 20 40 60 80 100

A
re

a

Generation

Randomness Mutation
K-Means Like Mutation

Hybrid Mutation
K-Means Algorithm

Figure A.1: Change in Volume of Dominated Space for Dataset a
over 100 generations

166

APPENDIX A. GRAPHS FOR MUTATION OPERATOR COMPARISON 167

0.54

0.56

0.58

0.60

0.62

0.64

0.66

0.68

0 20 40 60 80 100

A
re

a

Generation

Randomness Mutation
K-Means Like Mutation

Hybrid Mutation
K-Means Algorithm

Figure A.2: Change in Volume of Dominated Space for Dataset b
over 100 generations

0.70

0.75

0.80

0.85

0.90

0.95

0 20 40 60 80 100

A
re

a

Generation

Randomness Mutation
K-Means Like Mutation

Hybrid Mutation
K-Means Algorithm

Figure A.3: Change in Volume of Dominated Space for Dataset c
over 100 generations

APPENDIX A. GRAPHS FOR MUTATION OPERATOR COMPARISON 168

0.66

0.68

0.70

0.72

0.74

0.76

0.78

0.80

0.82

0.84

0 20 40 60 80 100

A
re

a

Generation

Randomness Mutation
K-Means Like Mutation

Hybrid Mutation
K-Means Algorithm

Figure A.4: Change in Volume of Dominated Space for Dataset d
over 100 generations

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0 20 40 60 80 100

A
re

a

Generation

Randomness Mutation
K-Means Like Mutation

Hybrid Mutation
K-Means Algorithm

Figure A.5: Change in Volume of Dominated Space for Dataset e
over 100 generations

APPENDIX A. GRAPHS FOR MUTATION OPERATOR COMPARISON 169

0.76

0.78

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0 20 40 60 80 100

A
re

a

Generation

Randomness Mutation
K-Means Like Mutation

Hybrid Mutation
K-Means Algorithm

Figure A.6: Change in Volume of Dominated Space for Dataset f
over 100 generations

0.98

0.98

0.98

0.98

0.98

0.98

0.98

0.98

0.99

0.99

0 20 40 60 80 100

A
re

a

Generation

Randomness Mutation
K-Means Like Mutation

Hybrid Mutation
K-Means Algorithm

Figure A.7: Change in Volume of Dominated Space for Dataset g
over 100 generations

APPENDIX A. GRAPHS FOR MUTATION OPERATOR COMPARISON 170

0.69
0.70
0.71
0.72
0.73
0.74
0.75
0.76
0.77
0.78
0.79

0 20 40 60 80 100

A
re

a

Generation

Randomness Mutation
K-Means Like Mutation

Hybrid Mutation
K-Means Algorithm

Figure A.8: Change in Volume of Dominated Space for Dataset h
over 100 generations

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0 20 40 60 80 100

A
re

a

Generation

Randomness Mutation
K-Means Like Mutation

Hybrid Mutation
K-Means Algorithm

Figure A.9: Change in Volume of Dominated Space for Dataset i
over 100 generations

APPENDIX A. GRAPHS FOR MUTATION OPERATOR COMPARISON 171

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0 20 40 60 80 100

G
D

Generation

Randomness Mutation
K-Means Like Mutation

Hybrid Mutation
K-Means Algorithm

Figure A.10: Change in GD for Dataset a
over 100 generations

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0 20 40 60 80 100

G
D

Generation

Randomness Mutation
K-Means Like Mutation

Hybrid Mutation
K-Means Algorithm

Figure A.11: Change in GD for Dataset b
over 100 generations

APPENDIX A. GRAPHS FOR MUTATION OPERATOR COMPARISON 172

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0 20 40 60 80 100

G
D

Generation

Randomness Mutation
K-Means Like Mutation

Hybrid Mutation
K-Means Algorithm

Figure A.12: Change in GD for Dataset c
over 100 generations

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0 20 40 60 80 100

G
D

Generation

Randomness Mutation
K-Means Like Mutation

Hybrid Mutation
K-Means Algorithm

Figure A.13: Change in GD for Dataset d
over 100 generations

APPENDIX A. GRAPHS FOR MUTATION OPERATOR COMPARISON 173

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0 20 40 60 80 100

G
D

Generation

Randomness Mutation
K-Means Like Mutation

Hybrid Mutation
K-Means Algorithm

Figure A.14: Change in GD for Dataset e
over 100 generations

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0 20 40 60 80 100

G
D

Generation

Randomness Mutation
K-Means Like Mutation

Hybrid Mutation
K-Means Algorithm

Figure A.15: Change in GD for Dataset f
over 100 generations

APPENDIX A. GRAPHS FOR MUTATION OPERATOR COMPARISON 174

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009
0.010
0.011
0.012

0 20 40 60 80 100

G
D

Generation

Randomness Mutation
K-Means Like Mutation

Hybrid Mutation
K-Means Algorithm

Figure A.16: Change in GD for Dataset g
over 100 generations

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0 20 40 60 80 100

G
D

Generation

Randomness Mutation
K-Means Like Mutation

Hybrid Mutation
K-Means Algorithm

Figure A.17: Change in GD for Dataset h
over 100 generations

APPENDIX A. GRAPHS FOR MUTATION OPERATOR COMPARISON 175

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0 20 40 60 80 100

G
D

Generation

Randomness Mutation
K-Means Like Mutation

Hybrid Mutation
K-Means Algorithm

Figure A.18: Change in GD for Dataset i
over 100 generations

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0 20 40 60 80 100

I
G
D

Generation

Randomness Mutation
K-Means Like Mutation

Hybrid Mutation
K-Means Algorithm

Figure A.19: Change in IGD for Dataset a
over 100 generations

APPENDIX A. GRAPHS FOR MUTATION OPERATOR COMPARISON 176

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0 20 40 60 80 100

I
G
D

Generation

Randomness Mutation
K-Means Like Mutation

Hybrid Mutation
K-Means Algorithm

Figure A.20: Change in IGD for Dataset b
over 100 generations

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0 20 40 60 80 100

I
G
D

Generation

Randomness Mutation
K-Means Like Mutation

Hybrid Mutation
K-Means Algorithm

Figure A.21: Change in IGD for Dataset c
over 100 generations

APPENDIX A. GRAPHS FOR MUTATION OPERATOR COMPARISON 177

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0 20 40 60 80 100

I
G
D

Generation

Randomness Mutation
K-Means Like Mutation

Hybrid Mutation
K-Means Algorithm

Figure A.22: Change in IGD for Dataset d
over 100 generations

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0 20 40 60 80 100

I
G
D

Generation

Randomness Mutation
K-Means Like Mutation

Hybrid Mutation
K-Means Algorithm

Figure A.23: Change in IGD for Dataset e
over 100 generations

APPENDIX A. GRAPHS FOR MUTATION OPERATOR COMPARISON 178

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0 20 40 60 80 100

I
G
D

Generation

Randomness Mutation
K-Means Like Mutation

Hybrid Mutation
K-Means Algorithm

Figure A.24: Change in IGD for Dataset f
over 100 generations

0.01

0.01

0.01

0.02

0.03

0.03

0 20 40 60 80 100

I
G
D

Generation

Randomness Mutation
K-Means Like Mutation

Hybrid Mutation
K-Means Algorithm

Figure A.25: Change in IGD for Dataset g
over 100 generations

APPENDIX A. GRAPHS FOR MUTATION OPERATOR COMPARISON 179

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0 20 40 60 80 100

I
G
D

Generation

Randomness Mutation
K-Means Like Mutation

Hybrid Mutation
K-Means Algorithm

Figure A.26: Change in IGD for Dataset h
over 100 generations

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0 20 40 60 80 100

I
G
D

Generation

Randomness Mutation
K-Means Like Mutation

Hybrid Mutation
K-Means Algorithm

Figure A.27: Change in IGD for Dataset i
over 100 generations

APPENDIX A. GRAPHS FOR MUTATION OPERATOR COMPARISON 180

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0 20 40 60 80 100

S
p
re

ad

Generation

Randomness Mutation
K-Means Like Mutation

Hybrid Mutation
K-Means Algorithm

Figure A.28: Change in Spread for Dataset a
over 100 generations

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0 20 40 60 80 100

S
p
re

ad

Generation

Randomness Mutation
K-Means Like Mutation

Hybrid Mutation
K-Means Algorithm

Figure A.29: Change in Spread for Dataset b
over 100 generations

APPENDIX A. GRAPHS FOR MUTATION OPERATOR COMPARISON 181

0.20

0.25

0.30

0.35

0.40

0.45

0 20 40 60 80 100

S
p
re

ad

Generation

Randomness Mutation
K-Means Like Mutation

Hybrid Mutation
K-Means Algorithm

Figure A.30: Change in Spread for Dataset c
over 100 generations

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0 20 40 60 80 100

S
p
re

ad

Generation

Randomness Mutation
K-Means Like Mutation

Hybrid Mutation
K-Means Algorithm

Figure A.31: Change in Spread for Dataset d
over 100 generations

APPENDIX A. GRAPHS FOR MUTATION OPERATOR COMPARISON 182

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0 20 40 60 80 100

S
p
re

ad

Generation

Randomness Mutation
K-Means Like Mutation

Hybrid Mutation
K-Means Algorithm

Figure A.32: Change in Spread for Dataset e
over 100 generations

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0 20 40 60 80 100

S
p
re

ad

Generation

Randomness Mutation
K-Means Like Mutation

Hybrid Mutation
K-Means Algorithm

Figure A.33: Change in Spread for Dataset f
over 100 generations

APPENDIX A. GRAPHS FOR MUTATION OPERATOR COMPARISON 183

0.49

0.50

0.51

0.52

0.53

0.54

0.55

0.56

0 20 40 60 80 100

S
p
re

ad

Generation

Randomness Mutation
K-Means Like Mutation

Hybrid Mutation
K-Means Algorithm

Figure A.34: Change in Spread for Dataset g
over 100 generations

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0 20 40 60 80 100

S
p
re

ad

Generation

Randomness Mutation
K-Means Like Mutation

Hybrid Mutation
K-Means Algorithm

Figure A.35: Change in Spread for Dataset h
over 100 generations

APPENDIX A. GRAPHS FOR MUTATION OPERATOR COMPARISON 184

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0 20 40 60 80 100

S
p
re

ad

Generation

Randomness Mutation
K-Means Like Mutation

Hybrid Mutation
K-Means Algorithm

Figure A.36: Change in Spread for Dataset i
over 100 generations

4.20
4.40
4.60
4.80
5.00
5.20
5.40
5.60
5.80
6.00
6.20
6.40

0 20 40 60 80 100

E
n
tr

op
y

Generation

Randomness Mutation
K-Means Like Mutation

Hybrid Mutation
K-Means Algorithm

Figure A.37: Change in Entropy for Dataset a
over 100 generations

APPENDIX A. GRAPHS FOR MUTATION OPERATOR COMPARISON 185

4.20
4.40
4.60
4.80
5.00
5.20
5.40
5.60
5.80
6.00
6.20
6.40

0 20 40 60 80 100

E
n
tr

op
y

Generation

Randomness Mutation
K-Means Like Mutation

Hybrid Mutation
K-Means Algorithm

Figure A.38: Change in Entropy for Dataset b
over 100 generations

3.00

3.50

4.00

4.50

5.00

5.50

6.00

0 20 40 60 80 100

E
n
tr

op
y

Generation

Randomness Mutation
K-Means Like Mutation

Hybrid Mutation
K-Means Algorithm

Figure A.39: Change in Entropy for Dataset c
over 100 generations

APPENDIX A. GRAPHS FOR MUTATION OPERATOR COMPARISON 186

3.00

3.50

4.00

4.50

5.00

5.50

6.00

0 20 40 60 80 100

E
n
tr

op
y

Generation

Randomness Mutation
K-Means Like Mutation

Hybrid Mutation
K-Means Algorithm

Figure A.40: Change in Entropy for Dataset d
over 100 generations

3.00

3.50

4.00

4.50

5.00

5.50

6.00

0 20 40 60 80 100

E
n
tr

op
y

Generation

Randomness Mutation
K-Means Like Mutation

Hybrid Mutation
K-Means Algorithm

Figure A.41: Change in Entropy for Dataset e
over 100 generations

APPENDIX A. GRAPHS FOR MUTATION OPERATOR COMPARISON 187

3.00

3.50

4.00

4.50

5.00

5.50

0 20 40 60 80 100

E
n
tr

op
y

Generation

Randomness Mutation
K-Means Like Mutation

Hybrid Mutation
K-Means Algorithm

Figure A.42: Change in Entropy for Dataset f
over 100 generations

3.50

4.00

4.50

5.00

5.50

6.00

0 20 40 60 80 100

E
n
tr

op
y

Generation

Randomness Mutation
K-Means Like Mutation

Hybrid Mutation
K-Means Algorithm

Figure A.43: Change in Entropy for Dataset g
over 100 generations

APPENDIX A. GRAPHS FOR MUTATION OPERATOR COMPARISON 188

3.00

3.50

4.00

4.50

5.00

5.50

0 20 40 60 80 100

E
n
tr

op
y

Generation

Randomness Mutation
K-Means Like Mutation

Hybrid Mutation
K-Means Algorithm

Figure A.44: Change in Entropy for Dataset h
over 100 generations

3.00

3.50

4.00

4.50

5.00

5.50

6.00

0 20 40 60 80 100

E
n
tr

op
y

Generation

Randomness Mutation
K-Means Like Mutation

Hybrid Mutation
K-Means Algorithm

Figure A.45: Change in Entropy for Dataset i
over 100 generations

APPENDIX A. GRAPHS FOR MUTATION OPERATOR COMPARISON 189

0.52

0.53

0.54

0.55

0.56

0.57

0.58

0.59

0 20 40 60 80 100

A
ve

ra
n
ge

R
an

d
In

d
ex

Generation

Randomness Mutation
K-Means Like Mutation

Hybrid Mutation
K-Means Algorithm

Figure A.46: Change in Average Rand Index for Dataset a
over 100 generations

0.52

0.53

0.54

0.55

0.56

0.57

0.58

0.59

0 20 40 60 80 100

A
ve

ra
n
ge

R
an

d
In

d
ex

Generation

Randomness Mutation
K-Means Like Mutation

Hybrid Mutation
K-Means Algorithm

Figure A.47: Change in Average Rand Index for Dataset b
over 100 generations

APPENDIX A. GRAPHS FOR MUTATION OPERATOR COMPARISON 190

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0 20 40 60 80 100

A
ve

ra
n
ge

R
an

d
In

d
ex

Generation

Randomness Mutation
K-Means Like Mutation

Hybrid Mutation
K-Means Algorithm

Figure A.48: Change in Average Rand Index for Dataset c
over 100 generations

0.51

0.51

0.51

0.51

0.51

0.51

0.51

0 20 40 60 80 100

A
ve

ra
n
ge

R
an

d
In

d
ex

Generation

Randomness Mutation
K-Means Like Mutation

Hybrid Mutation
K-Means Algorithm

Figure A.49: Change in Average Rand Index for Dataset d
over 100 generations

APPENDIX A. GRAPHS FOR MUTATION OPERATOR COMPARISON 191

0.70

0.72

0.74

0.76

0.78

0.80

0.82

0.84

0 20 40 60 80 100

A
ve

ra
n
ge

R
an

d
In

d
ex

Generation

Randomness Mutation
K-Means Like Mutation

Hybrid Mutation
K-Means Algorithm

Figure A.50: Change in Average Rand Index for Dataset e
over 100 generations

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0 20 40 60 80 100

A
ve

ra
n
ge

R
an

d
In

d
ex

Generation

Randomness Mutation
K-Means Like Mutation

Hybrid Mutation
K-Means Algorithm

Figure A.51: Change in Average Rand Index for Dataset f
over 100 generations

APPENDIX A. GRAPHS FOR MUTATION OPERATOR COMPARISON 192

0.78
0.79
0.79
0.80
0.80
0.81
0.81
0.82
0.82
0.83
0.83
0.84

0 20 40 60 80 100

A
ve

ra
n
ge

R
an

d
In

d
ex

Generation

Randomness Mutation
K-Means Like Mutation

Hybrid Mutation
K-Means Algorithm

Figure A.52: Change in Average Rand Index for Dataset g
over 100 generations

0.48

0.48

0.49

0.49

0.50

0.51

0.51

0.52

0.52

0.53

0 20 40 60 80 100

A
ve

ra
n
ge

R
an

d
In

d
ex

Generation

Randomness Mutation
K-Means Like Mutation

Hybrid Mutation
K-Means Algorithm

Figure A.53: Change in Average Rand Index for Dataset h
over 100 generations

APPENDIX A. GRAPHS FOR MUTATION OPERATOR COMPARISON 193

0.53
0.54
0.55
0.56
0.57
0.58
0.59
0.60
0.61
0.62
0.63

0 20 40 60 80 100

A
ve

ra
n
ge

R
an

d
In

d
ex

Generation

Randomness Mutation
K-Means Like Mutation

Hybrid Mutation
K-Means Algorithm

Figure A.54: Change in Average Rand Index for Dataset i
over 100 generations

Appendix B

Additional MOCA Experimental

Results

194

APPENDIX B. ADDITIONAL MOCA EXPERIMENTAL RESULTS 195

Table B.1: Comparison of k-means, DBSCAN and MOCA on selected synthetic
data sets where the intended value of k ≤ 6.

Dataset DBSCAN k-means MOCA Best MOCA Worst MOCA Average k MOCA Mean R
k d df o k R k R k R k R Mean k S.D. Mean R S.D.
2 2 a a 2 0.50100 2 1 2 1 19 0.57090 10.53623 1.01892 0.72273 0.01828
2 2 a b 2 0.50100 2 0.96845 2 0.97230 17 0.62840 10.50000 1.03940 0.74461 0.02013
2 2 b a 2 0.29946 2 1 2 1 17 0.36900 10.26471 0.81677 0.56809 0.02414
2 2 b b 2 0.29946 2 0.96404 2 1 18 0.38540 10.28571 1.10204 0.57940 0.02771
2 2 c a 2 0.06148 2 1 2 1 31 0.12160 14.58667 2.01072 0.35144 0.02654
2 2 c b 2 0.06148 2 1 2 1 20 0.22000 6.29412 3.32416 0.91222 0.16789
2 4 a a 2 0.50100 2 1 2 1 3 0.90270 2.50000 0.35355 0.95135 0.03440
2 4 a b 2 0.50100 2 0.95306 2 0.93790 2 0.93790 2 0 0.93790 0
2 4 b a 2 0.29946 2 1 2 1 2 1 2 0 1 0
2 4 b b 2 0.29946 2 0.99270 2 1 2 0.99270 3 0.50000 0.99598 0.00049
2 4 c a 2 0.06148 2 1 2 1 9 0.99910 5.07692 1.08807 0.99938 0.00008
2 4 c b 2 0.06148 2 0.96876 2 1 2 0.97650 2.25000 0.37500 0.99210 0.00385
2 6 a a 2 0.50100 2 1 2 1 2 1 2 0 1 0
2 6 a b 2 0.50100 2 1 2 1 2 1 2 0 1 0
2 6 b a 2 0.29946 2 1 2 1 2 1 2 0 1 0
2 6 b b 2 0.29946 2 1 2 0.99270 2 0.99270 2 0 0.99270 0
2 6 c a 2 0.06148 2 1 2 1 9 0.99910 5.25000 1.08253 0.99939 0.00008
2 6 c b 2 0.06148 5 0.98388 2 1 3 0.53210 2.33333 0.38490 0.84140 0.17857
2 8 a a 2 0.50100 2 1 2 1 3 0.99800 2.50000 0.35355 0.99900 0.00071
2 8 a b 2 0.50100 2 1 2 1 2 1 2 0 1 0
2 8 b a 2 0.29946 2 1 2 1 2 1 2 0 1 0
2 8 b b 2 0.29946 2 0.99270 2 0.99270 2 0.99270 2 0 0.99270 0
2 8 c a 2 0.06148 2 1 2 1 2 1 2 0 1 0
2 8 c b 2 0.06148 2 1 2 1 3 0.99980 2.50000 0.35355 0.99990 0.00007
2 10 a a 2 0.50100 2 1 2 1 2 1 2 0 1 0
2 10 a b 2 0.50100 2 0.99600 2 0.98020 2 0.98020 2 0 0.98020 0
2 10 b a 2 0.29946 2 1 2 1 2 1 2 0 1 0
2 10 b b 2 0.29946 2 0.99270 2 0.99270 3 0.99140 2.50000 0.35355 0.99205 0.00046
2 10 c a 2 0.06148 2 1 2 1 2 1 2 0 1 0
2 10 c b 2 0.06148 2 1 2 1 4 0.99960 3 0.57735 0.99980 0.00012
6 2 a a 6 0.83500 6 0.87174 6 1 2 0.66600 13.59677 1.32121 0.93538 0.00575
6 2 a b 6 0.83500 6 0.93088 6 0.98450 2 0.44240 6.05556 1.16542 0.86817 0.01931
6 2 b a 6 0.83259 3 0.75106 6 1 2 0.58450 13.70149 1.13599 0.92616 0.00365
6 2 b b 6 0.83259 8 0.92471 6 0.99200 2 0.45840 5.85294 0.88271 0.87563 0.01641
6 2 c a 6 0.80926 5 0.89634 6 1 2 0.66870 11.35849 1.04964 0.93031 0.00337
6 2 c b 6 0.80926 13 0.96613 6 0.98770 2 0.66870 7.55882 1.96215 0.92766 0.00399
6 4 a a 6 0.83500 4 0.88956 6 1 2 0.60940 4.37500 0.92808 0.86669 0.04505
6 4 a b 6 0.83500 6 0.93288 6 0.99600 2 0.66210 4.12500 0.66291 0.85879 0.04805
6 4 b a 6 0.83259 4 0.85395 6 1 2 0.66700 6.88889 1.70370 0.92386 0.02155
6 4 b b 6 0.83259 25 0.91290 6 0.99200 2 0.66500 4.24000 0.75200 0.86000 0.02592
6 4 c a 6 0.80926 21 0.87966 6 1 2 0.52970 4.44444 0.85185 0.88350 0.03877
6 4 c b 6 0.80926 4 0.91313 6 0.99150 2 0.50680 4.46154 1.25874 0.86625 0.02919
6 6 a a 6 0.83500 39 0.79297 6 1 2 0.61210 3.85714 0.70193 0.84166 0.08676
6 6 a b 6 0.83500 6 0.94147 6 0.99740 2 0.66600 3.71429 0.26997 0.84083 0.02250
6 6 b a 6 0.83259 26 0.97076 6 1 2 0.62490 3.85714 0.70193 0.83661 0.08002
6 6 b b 6 0.83259 20 0.96804 6 0.98910 2 0.66700 4 0.26726 0.86226 0.01856
6 6 c a 6 0.80926 37 0.88581 6 1 2 0.52970 3.83333 0.74846 0.83942 0.12644
6 6 c b 6 0.80926 11 0.96794 6 1 2 0.67630 4 0.37796 0.87203 0.01350
6 8 a a 6 0.83500 3 0.66867 6 1 2 0.61210 3.71429 0.64794 0.81809 0.07786
6 8 a b 6 0.83500 13 0.98218 6 0.99470 2 0.66600 4 0.66667 0.86803 0.04222
6 8 b a 6 0.83259 20 0.86673 6 1 2 0.66700 4 0.89443 0.87082 0.09115
6 8 b b 6 0.83259 14 0.97387 7 0.99500 2 0.66700 5.56250 0.85938 0.90980 0.02070
6 8 c a 6 0.80926 20 0.87944 6 1 2 0.66870 3.66667 0.68041 0.84720 0.06977
6 8 c b 6 0.80926 20 0.87797 5 0.99040 2 0.66870 4.16667 1.15670 0.86573 0.04975
6 10 a a 6 0.83500 5 0.94478 6 1 2 0.66600 3.83333 0.74846 0.85152 0.07574
6 10 a b 6 0.83500 13 0.97643 6 0.98970 2 0.44510 3.46154 0.70404 0.77478 0.05961
6 10 b a 6 0.83259 36 0.90824 6 1 2 0.66700 4 0.89443 0.87082 0.09115
6 10 b b 6 0.83259 5 0.93777 12 0.98710 2 0.66700 7.85714 1.94382 0.88117 0.03554
6 10 c a 6 0.80926 11 0.96077 6 1 2 0.66810 3.57143 0.59394 0.83480 0.06301
6 10 c b 6 0.80926 5 0.92194 6 0.98690 2 0.52970 3.37500 0.40625 0.77336 0.05148

APPENDIX B. ADDITIONAL MOCA EXPERIMENTAL RESULTS 196

Table B.2: Comparison of k-means, DBSCAN and MOCA on selected synthetic
data sets where the intended value of k ≥ 10.

10 2 a a 10 0.90180 6 0.89941 10 1 2 0.59920 13.25000 1.54161 0.95494 0.00023
10 2 a b 10 0.90180 6 0.89957 13 0.98210 2 0.41880 9.06897 1.28706 0.88141 0.01742
10 2 b a 10 0.90186 5 0.82442 11 0.99550 2 0.52650 14.22222 0.91662 0.94725 0.00197
10 2 b b 10 0.90186 7 0.89340 10 0.98770 2 0.51310 9.84783 1.64430 0.90803 0.00899
10 2 c a 10 0.89458 4 0.78231 10 1 2 0.60260 13.12727 1.19640 0.94611 0.00146
10 2 c b 10 0.89458 38 0.91231 10 0.99090 2 0.59820 7.03846 1.36527 0.88811 0.01869
10 4 a a 10 0.90180 5 0.85972 10 1 2 0.59920 6.53333 1.41149 0.89934 0.02452
10 4 a b 10 0.90180 5 0.85162 10 0.98990 2 0.27860 5.07018 0.00929 0.79066 0.01055
10 4 b a 10 0.90186 4 0.80491 10 1 2 0.59920 5.88235 0.45654 0.87738 0.00994
10 4 b b 10 0.90186 16 0.88718 11 0.99520 2 0.51580 5.44444 0.10692 0.82153 0.01658
10 4 c a 10 0.89458 5 0.87335 10 1 2 0.59880 6.78571 1.12632 0.90622 0.02351
10 4 c b 10 0.89458 6 0.86350 10 0.98640 2 0.55820 5.93750 0.16573 0.87431 0.00233
10 6 a a 10 0.90180 24 0.85044 13 0.99320 2 0.57920 7.05263 0.44676 0.87206 0.00958
10 6 a b 10 0.90180 15 0.85033 10 0.99450 3 0.55910 4.80645 0.21437 0.81182 0.01825
10 6 b a 10 0.90186 6 0.90245 10 1 2 0.59920 6 1.33333 0.87597 0.09226
10 6 b b 10 0.90186 26 0.90950 10 0.99220 2 0.59920 5.36842 0.54335 0.84662 0.02104
10 6 c a 10 0.89458 26 0.85767 10 1 2 0.55820 5.87500 0.03125 0.87181 0.00737
10 6 c b 10 0.89458 5 0.84186 11 0.99230 2 0.54780 5.82759 1.14619 0.83142 0.02978
10 8 a a 10 0.90180 34 0.89021 10 1 2 0.57920 5.58333 0.74574 0.84168 0.02828
10 8 a b 10 0.90180 24 0.94120 10 0.99920 2 0.59840 5.07143 0.39146 0.83701 0.01875
10 8 b a 10 0.90186 33 0.80789 10 1 2 0.52650 5.61538 1.00273 0.84700 0.07341
10 8 b b 10 0.90186 28 0.86588 11 0.99340 2 0.57700 5.97222 0.00463 0.87913 0.00554
10 8 c a 10 0.89460 37 0.91683 10 1 2 0.57110 9.77273 1.65715 0.92504 0.07546
10 8 c b 10 0.89458 38 0.88075 13 0.99020 2 0.54620 8.16667 1.61063 0.87056 0.02796
10 10 a a 10 0.90180 4 0.79960 12 0.99080 2 0.57920 6.09091 1.78166 0.86606 0.03761
10 10 a b 10 0.90180 4 0.83630 10 0.99840 2 0.57920 6.85714 1.34048 0.90279 0.02051
10 10 b a 10 0.90186 16 0.83257 10 1 2 0.57700 5.75000 1.08253 0.86943 0.08442
10 10 b b 10 0.90186 20 0.91100 10 0.99420 2 0.59920 7 1.33333 0.87658 0.01924
10 10 c a 10 0.89458 5 0.78627 10 1 2 0.54620 5.57143 0.95450 0.84637 0.06707
10 10 c b 10 0.89458 36 0.92884 10 0.99610 2 0.59660 5.70000 0.60374 0.85802 0.02447
14 2 a a 14 0.93042 5 0.77715 14 1 2 0.57050 14.68750 1.63282 0.95535 0.00497
14 2 a b 14 0.93042 22 0.89251 14 0.98070 2 0.47130 10.01563 1.37305 0.89293 0.01036
14 2 b a 14 0.92900 38 0.88997 15 0.99530 2 0.55580 11.73684 1.50268 0.92736 0.00987
14 2 b b 14 0.92900 18 0.91172 15 0.99230 2 0.55440 8.87273 1.23072 0.88575 0.01395
14 2 c a 14 0.92752 40 0.84899 14 1 2 0.55140 13.51220 1.32557 0.94419 0.00636
14 2 c b 14 0.92753 20 0.85389 17 0.98160 2 0.50860 13.16129 1.24952 0.91920 0.00744
14 4 a a 14 0.93042 5 0.83719 14 1 2 0.56130 8.15000 0.63728 0.89118 0.01700
14 4 a b 14 0.93042 24 0.88244 16 0.98530 2 0.47360 8.43137 1.05982 0.87581 0.01533
14 4 b a 14 0.92900 38 0.85650 16 0.99580 2 0.55580 10.17391 1.42334 0.91853 0.01570
14 4 b b 14 0.92900 7 0.89221 15 0.99640 2 0.56740 7.59459 1.54624 0.85479 0.02226
14 4 c a 14 0.92752 40 0.83532 13 0.99730 2 0.57180 8.10526 2.27001 0.89746 0.02251
14 4 c b 14 0.92752 20 0.80091 14 0.99150 2 0.55230 6.93651 0.13399 0.84374 0.00987
14 6 a a 14 0.93042 38 0.84372 13 0.99020 2 0.56130 7.52941 1.09854 0.87904 0.03874
14 6 a b 14 0.93042 20 0.87131 15 0.99380 2 0.55900 7.84848 0.32178 0.89060 0.00103
14 6 b a 14 0.92900 11 0.83861 15 0.99840 2 0.56720 7.70000 1.85594 0.87063 0.02806
14 6 b b 14 0.92900 6 0.85831 14 0.99800 2 0.54480 8.40000 0.86298 0.89992 0.04495
14 6 c a 14 0.92752 5 0.80098 13 0.98860 2 0.50970 7 1.06600 0.83308 0.05662
14 6 c b 14 0.92752 7 0.84437 15 0.99160 2 0.57160 8.42553 0.22966 0.90184 0.00783
14 8 a a 14 0.93042 5 0.78756 14 1 2 0.57050 8.27778 0.40593 0.89788 0.01427
14 8 a b 14 0.93042 29 0.91129 12 0.97780 2 0.55900 5.75439 0.03253 0.83998 0.00558
14 8 b a 14 0.92899 14 0.84873 14 1 2 0.57120 7.23077 0.63361 0.88422 0.01793
14 8 b b 14 0.92900 12 0.89231 14 0.99860 2 0.55650 7.44444 0.09259 0.87412 0.00975
14 8 c a 14 0.92752 40 0.86078 14 0.99110 2 0.56950 8.08696 0.22665 0.90150 0.00102
14 8 c b 14 0.92752 39 0.91661 13 0.99340 2 0.54430 6.45455 0.17904 0.83310 0.00144
14 10 a a 14 0.93042 25 0.86358 14 1 2 0.55900 7.48000 0.49600 0.87112 0.00112
14 10 a b 14 0.93042 15 0.85352 14 0.99720 2 0.53130 7.21053 1.10140 0.87819 0.01931
14 10 b a 14 0.92900 14 0.87436 15 0.99770 2 0.46890 7.38889 0.85115 0.85862 0.02536
14 10 b b 14 0.92900 40 0.89401 18 0.99460 2 0.55520 8.13158 1.60087 0.88033 0.01854
14 10 c a 14 0.92752 40 0.87218 16 0.99480 2 0.56900 9 0.81650 0.89292 0.01628
14 10 c b 14 0.92752 40 0.86121 14 0.99360 2 0.54190 7.78378 0.52874 0.87960 0.01496
18 2 a a 18 0.94632 7 0.87695 18 0.98610 2 0.52770 12.06667 1.48077 0.91408 0.01009
18 2 a b 18 0.94632 38 0.89513 17 0.98010 2 0.54650 9.08475 1.03048 0.88581 0.01228
18 2 b a 18 0.94346 31 0.89783 18 0.97820 2 0.54460 10.84091 1.68230 0.91268 0.00923
18 2 b b 18 0.94346 8 0.84937 16 0.98040 2 0.55600 10.85000 1.43946 0.90152 0.00929
18 2 c a 18 0.94498 32 0.82390 16 0.98450 2 0.55410 12.97368 1.13982 0.93414 0.00739
18 2 c b 18 0.94498 40 0.89787 18 0.97980 2 0.55240 10 1.08012 0.89000 0.01366
18 4 a a 18 0.94632 23 0.86244 16 0.98440 2 0.55460 8.81481 1.11906 0.87833 0.03111
18 4 a b 18 0.94632 28 0.89122 17 0.98550 2 0.54750 8.45455 1.15227 0.87875 0.01439
18 4 b a 18 0.94346 19 0.85807 17 0.98750 2 0.55600 8.76000 0.35200 0.89610 0.00194
18 4 b b 18 0.94346 30 0.85331 19 0.96970 2 0.52210 11.61818 1.26504 0.89738 0.00962
18 4 c a 18 0.94499 6 0.74852 16 0.98580 2 0.55260 11 1.29777 0.91199 0.01158
18 4 c b 18 0.94499 12 0.87149 18 0.98760 2 0.55560 9.59091 0.91200 0.90531 0.00972
18 6 a a 18 0.94632 34 0.84968 17 0.99060 2 0.53130 10.83333 2.27939 0.91444 0.01510
18 6 a b 18 0.94632 34 0.89125 18 0.98930 2 0.55330 8.86538 0.98939 0.86855 0.01590
18 6 b a 18 0.94346 36 0.84474 17 0.99450 2 0.52210 9.18919 0.19550 0.89457 0.00339
18 6 b b 18 0.94346 9 0.88771 17 0.97980 2 0.52210 8.86885 0.40090 0.88219 0.00895
18 6 c a 18 0.94498 37 0.82842 17 0.98990 2 0.55480 9.04167 1.82861 0.88312 0.02169
18 6 c b 18 0.94498 10 0.87986 15 0.98220 2 0.50660 7.98387 0.50595 0.85907 0.00824
18 8 a a 18 0.94632 20 0.85008 17 0.98630 2 0.54930 10.44000 0.71200 0.91506 0.01129
18 8 a b 18 0.94632 12 0.88769 17 0.98350 2 0.54650 10.01724 0.78557 0.89909 0.01099
18 8 b a 18 0.94346 9 0.80996 16 0.98900 2 0.49180 8.88571 0.82584 0.89355 0.01603
18 8 b b 18 0.94346 29 0.84521 18 0.98520 2 0.44410 8.72727 0.50259 0.87558 0.00562
18 8 c a 18 0.94498 19 0.83494 17 0.99000 2 0.55480 9.44444 1.45407 0.91430 0.01457
18 8 c b 18 0.94499 32 0.87670 16 0.98940 2 0.54550 8.83871 0.61452 0.89889 0.01242
18 10 a a 18 0.94632 33 0.83083 16 0.98720 2 0.54930 9.90909 0.28781 0.91245 0.00010
18 10 a b 18 0.94632 19 0.89929 14 0.96680 2 0.52770 7.85965 0.24632 0.86876 0.00152
18 10 b a 18 0.94346 14 0.83039 17 0.97790 2 0.54590 9.90625 1.25401 0.89715 0.01428
18 10 b b 18 0.94346 18 0.84141 17 0.98680 2 0.55600 9.42308 0.08000 0.89644 0.00633
18 10 c a 18 0.94498 36 0.90478 19 0.98780 2 0.55410 8.67742 1.85399 0.89609 0.01647
18 10 c b 18 0.94498 35 0.87163 18 0.98750 2 0.55510 8.28889 0.10601 0.87117 0.00735

Bibliography

[1] Mihael Ankerst, Markus M. Breunig, Hans-Peter Kriegel, and Jörg Sander.
OPTICS: Ordering points to identify the clustering structure. Special Interest
Group on Management of Data, 28(2):49–60, June 1999.

[2] K. Bache and M. Lichman. UCI machine learning repository, 2013.

[3] Johannes Bader and Eckart Zitzler. HypE: An algorithm for fast hypervolume-
based many-objective optimization. Evolutionary Computation, 19(1):45–76,
February 2011.

[4] Kenneth Bailey. Typologies and taxonomies : an introduction to classification
techniques. Sage Publications, Thousand Oaks, California, 1994.

[5] S. Bandyopadhyay, U. Maulik, and A. Mukhopadhyay. Multiobjective genetic
clustering for pixel classification in remote sensing imagery. IEEE Transactions
on Geoscience and Remote Sensing, 45(5):1506–1511, 2007.

[6] Sanghamitra Bandyopadhyay and Ujjwal Maulik. An evolutionary technique
based on K-means algorithm for optimal clustering in Rn. Information Sci-
ences, 146(1-4):221–237, oct 2002.

[7] LucasS. Batista, Felipe Campelo, FredericoG. Guimarães, and JaimeA.
Ramı́rez. Pareto cone ε-dominance: improving convergence and diversity in
multiobjective evolutionary algorithms. In RicardoH.C. Takahashi, Kalyan-
moy Deb, ElizabethF. Wanner, and Salvatore Greco, editors, Evolutionary
Multi-Criterion Optimization, volume 6576, pages 76–90. Springer, 2011.

[8] P. Berkhin. A survey of clustering data mining techniques. In Jacob Ko-
gan, Charles Nicholas, and Marc Teboulle, editors, Grouping Multidimensional
Data, pages 25–71. Springer Berlin Heidelberg, 2006.

[9] Nicola Beume, Boris Naujoks, and Michael Emmerich. SMS-EMOA: Multi-
objective selection based on dominated hypervolume. European Journal of
Operational Research, 181(3):1653–1669, 2007.

[10] James C Bezdek, Robert Ehrlich, and William Full. FCM: The fuzzy c-means
clustering algorithm. Computers & Geosciences, 10(2):191–203, 1984.

197

BIBLIOGRAPHY 198

[11] J.C. Bezdek, S. Boggavarapu, L.O. Hall, and A. Bensaid. Genetic algorithm
guided clustering. In In Proceedings of the First IEEE Conference on Evolu-
tionary Computation, IEEE World Congress on Computational Intelligence,
pages 34–39, 1994.

[12] J.C. Bezdek and N.R. Pal. Some new indexes of cluster validity. IEEE Transac-
tions on Systems, Man, and Cybernetics, Part B: Cybernetics, 28(3):301–315,
1998.

[13] Gabriel Richard Bitran and Thomas L Magnanti. The structure of admissible
points with respect to cone dominance. Journal of Optimization Theory and
Applications, 29(4):573–614, 1979.

[14] Tobias Blickle and Lothar Thiele. A comparison of selection schemes used in
evolutionary algorithms. Evolutionary Computation, 4(4):361–394, 1996.

[15] A.H. Brie and P. Morignot. Genetic planning using variable length chromo-
somes. In 15th International Conference on Automated Planning and Schedul-
ing, pages 320–329, 2005.

[16] T. Caliński and J. Harabasz. A dendrite method for cluster analysis. Com-
munications in Statistics-Simulation and Computation, 3(1):1–27, 1974.

[17] Erick Cantú-Paz. A survey of parallel genetic algorithms. Calculateurs paral-
leles, reseaux et systems repartis, 10(2):141–171, 1998.

[18] R. Cavill, S.L. Smith, and A.M. Tyrrell. Variable length genetic algorithms
with multiple chromosomes on a variant of the onemax problem. In Proceedings
of the 8th annual conference on Genetic and evolutionary computation, pages
1405–1406. ACM, 2006.

[19] Vladimı́r Černỳ. Thermodynamical approach to the traveling salesman prob-
lem: An efficient simulation algorithm. Journal of optimization theory and
applications, 45(1):41–51, 1985.

[20] E. Chen and F. Wang. Dynamic clustering using multi-objective evolutionary
algorithm. Computational Intelligence and Security, pages 73–80, 2005.

[21] Keh-Shih Chuang, Hong-Long Tzeng, Sharon Chen, Jay Wu, and Tzong-Jer
Chen. Fuzzy c-means clustering with spatial information for image segmenta-
tion. computerized medical imaging and graphics, 30(1):9–15, 2006.

[22] Carlos A Coello Coello Coello. A short tutorial on evolutionary multiobjec-
tive optimization. In Evolutionary Multi-Criterion Optimization, pages 21–40.
Springer, 2001.

[23] R.M. Cole. Clustering with genetic algorithms. Master’s thesis, University of
Western Australia, 1998.

BIBLIOGRAPHY 199

[24] William J Conover and Ronald L Iman. Rank transformations as a bridge
between parametric and nonparametric statistics. The American Statistician,
35(3):124–129, 1981.

[25] R.M. Cormack. A review of classification. J. Roy. Statistical Society,
134(3):321–367, 1971.

[26] David Corne, Joshua D. Knowles, and Martin J. Oates. The pareto envelope-
based selection algorithm for multi-objective optimisation. In Proceedings of
the 6th International Conference on Parallel Problem Solving from Nature,
PPSN VI, pages 839–848, London, UK, UK, 2000. Springer-Verlag.

[27] D.W. Corne, N.R. Jerram, J.D. Knowles, M.J. Oates, et al. Pesa-ii: Region-
based selection in evolutionary multiobjective optimization. In Proceedings of
the Genetic and Evolutionary Computation Conference (GECCO’2001, pages
283–290, 2001.

[28] William HE Day and Herbert Edelsbrunner. Efficient algorithms for agglom-
erative hierarchical clustering methods. Journal of classification, 1(1):7–24,
1984.

[29] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multi-
objective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary
Computation, 6(2):182–197, 2002.

[30] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler. Scalable test problems for
evolutionary multiobjective optimization. Evolutionary Multiobjective Opti-
mization, pages 105–145, 2005.

[31] Janez Demšar. Statistical comparisons of classifiers over multiple data sets.
The Journal of Machine Learning Research, 7:1–30, 2006.

[32] C. Ding and X. He. K-means clustering via principal component analysis. In
Proceedings of the twenty-first international conference on Machine learnin,
pages 29–45. ACM New York, NY, USA, 2004.

[33] J.C. Dunn. Well-separated clusters and optimal fuzzy partitions. Cybernetics
and Systems, 4(1):95–104, 1974.

[34] Michael Emmerich, Nicola Beume, and Boris Naujoks. An EMO algorithm
using the hypervolume measure as selection criterion. In Evolutionary Multi-
Criterion Optimization, pages 62–76. Springer, 2005.

[35] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-
based algorithm for discovering clusters in large spatial databases with noise.
In Knowledge Discovery and Data Mining, volume 96, pages 226–231, 1996.

BIBLIOGRAPHY 200

[36] J.E. Fieldsend, R.M. Everson, and S. Singh. Using unconstrained elite archives
for multiobjective optimization. IEEE Transactions on Evolutionary Compu-
tation, 7(3):305–323, 2003.

[37] Francesco Folino and Clara Pizzuti. A multiobjective and evolutionary cluster-
ing method for dynamic networks. In International Conference on Advances
in Social Networks Analysis and Mining (ASONAM), 2010, pages 256–263.
IEEE, 2010.

[38] Carlos M Fonseca, Peter J Fleming, et al. Genetic algorithms for multiobjec-
tive optimization: Formulationdiscussion and generalization. In Proceedings
of the 5th International Conference on Genetic Algorithms, volume 93, pages
416–423. ACM, 1993.

[39] C.M. Fonseca, L. Paquete, and M. López-Ibánez. An improved dimension-
sweep algorithm for the hypervolume indicator. In IEEE Congress on Evolu-
tionary Computation, pages 1157–1163. IEEE, 2006.

[40] Stephanie Forrest. Genetic algorithms: principles of natural selection applied
to computation. Science, 261(5123):872–878, 1993.

[41] E.B. Fowlkes and C.L. Mallows. A method for comparing two hierarchical
clusterings. Journal of the American Statistical Association, 78(383):553–569,
1983.

[42] Chris Fraley and Adrian E Raftery. How many clusters? Which clustering
method? Answers via model-based cluster analysis. The Computer Journal,
41(8):578–600, 1998.

[43] P. Fränti, J. Kivijärvi, T. Kaukoranta, and O. Nevalainen. Genetic algorithms
for large-scale clustering problems. The Computer Journal, 40(9):547, 1997.

[44] Alex A. Freitas. A critical review of multi-objective optimization in data
mining: a position paper. ACM SIGKDD Explorations, pages 77–86, 2004.

[45] T. Friedrich, K. Bringmann, T. Voß, and C. Igel. The logarithmic hypervolume
indicator. In Proceedings of the 11th workshop proceedings on Foundations of
genetic algorithms, pages 81–92, 2011.

[46] Ashish Ghosh and Satchidananda Dehuri. Evolutionary algorithms for multi-
criterion optimization: A survey. International Journal of Computing & In-
formation Sciences, 2(1):38–57, 2004.

[47] Fred Glover. Tabu search—part i. ORSA Journal on computing, 1(3):190–206,
1989.

[48] Fred Glover. Tabu search—part ii. ORSA Journal on computing, 2(1):4–32,
1990.

BIBLIOGRAPHY 201

[49] D. Goldberg, K. Deb, and B. Korb. Messy genetic algorithms: Motivation,
analysis, and first results. Complex systems, 3(3):493–530, 1989.

[50] David E Goldberg. Genetic algorithms: A tutorial. Computer Design, 1995.

[51] David E Goldberg and Kalyanmoy Deb. A comparative analysis of selection
schemes used in genetic algorithms. Urbana, 51:61801–2996, 1991.

[52] David E Goldberg and John H Holland. Genetic algorithms and machine
learning. Machine learning, 3(2):95–99, 1988.

[53] M. Halkidi and M. Vazirgiannis. Clustering validity assessment: Finding the
optimal partitioning of a data set. In Industrial Conference on Data Mining,
pages 187–194, 2001.

[54] M. Halkidi and M. Vazirgiannis. Clustering validity assessment using multi
representatives. In Proceedings of the Hellenic Conference on Artificial Intel-
ligence, SETN, pages 237–249, 2002.

[55] M. Halkidi, M. Vazirgiannis, and Y. Batistakis. Quality scheme assessment in
the clustering process. Principles of Data Mining and Knowledge Discovery,
pages 265–276, 2000.

[56] J. Handl and J. Knowles. Evolutionary multiobjective clustering. In Parallel
Problem Solving from Nature-PPSN VIII, pages 1081–1091, 2004.

[57] J. Handl and J. Knowles. Multiobjective clustering with automatic determi-
nation of the number of clusters. University of Manchester Institute of Science
and Technology Report TR-COMPSYSBIO-2004-02, 2004.

[58] J. Handl and J. Knowles. Exploiting the trade-off: the benefits of multiple
objectives in data clustering. In Proceedings of the Third International Con-
ference on Evolutionary Multicriterion Optimization, pages 547–560. Springer,
2005.

[59] J. Handl and J. Knowles. Improvements to the scalability of multiobjective
clustering. In Evolutionary Computation, 2005. The 2005 IEEE Congress on,
volume 3, 2005.

[60] J. Handl and J. Knowles. Multiobjective clustering around medoids. In Evo-
lutionary Computation, 2005. The 2005 IEEE Congress on, volume 1, 2005.

[61] J. Handl and J. Knowles. Multiobjective clustering and cluster validation.
Springer Series on Computational Intelligence. Springer, 2006.

[62] J. Handl and J. Knowles. An evolutionary approach to multiobjective clus-
tering. IEEE Transactions on Evolutionary Computation, 11(1):56–76, 2007.

BIBLIOGRAPHY 202

[63] J. Handl and J. Knowles. Clustering criteria in multiobjective data clustering.
In Parallel Problem Solving from Nature-PPSN XII, pages 32–41. Springer,
2012.

[64] J. A. Hartigan and M. A. Wong. Algorithm as 136: A k-means clustering algo-
rithm. Journal of the Royal Statistical Society. Series C (Applied Statistics),
28(1):100–108, 1979.

[65] J.A. Hartigan. Statistical theory in clustering. Journal of classification,
2(1):63–76, 1985.

[66] John H Holland. Genetic algorithms. Scientific american, 267(1):66–72, 1992.

[67] Jeffrey Horn, Nicholas Nafpliotis, and David E Goldberg. A niched pareto
genetic algorithm for multiobjective optimization. In In Proceedings of the
First IEEE Conference on Evolutionary Computation, IEEE World Congress
on Computational Intelligence, pages 82–87. IEEE, 1994.

[68] Christian Horoba and Frank Neumann. Benefits and drawbacks for the use of
epsilon-dominance in evolutionary multi-objective optimization. In Proceed-
ings of the 10th annual conference on Genetic and evolutionary computation,
pages 641–648. ACM, 2008.

[69] R. Howard. Classifying a population into homogeneous groups. Operational
Research in the Social Sciences. Tavistock Publ., London, pages 585–594, 1966.

[70] Eduardo R Hruschka, Ricardo José Gabrielli Barreto Campello, Alex Alves
Freitas, and AC Ponce Leon F De Carvalho. A survey of evolutionary algo-
rithms for clustering. IEEE Transactions on Systems, Man, and Cybernetics,
Part C: Applications and Reviews, 39(2):133–155, 2009.

[71] Brian J Hunt and Margaret M Wiecek. Cones to aid decision making in multi-
criteria programming. Multi-Objective Programming and Goal Programming,
pages 153–158, 2003.

[72] Ching-Lai Hwang, Abu Syed Md Masud, Sudhakar R Paidy, and Kwang-
sun Paul Yoon. Multiple objective decision making, methods and applications:
a state-of-the-art survey, volume 164. Springer, 1979.

[73] Hisao Ishibuchi and Tadahiko Murata. Multi-objective genetic local search
algorithm. In Proceedings of IEEE International Conference on Evolutionary
Computation, pages 119–124. IEEE, 1996.

[74] Paul Jaccard. Étude comparative de la distribution florale dans une portion
des alpes et du jura. Bulletin de la Société Vaudoise des Sciences Naturelles,
57:547–579, 1901.

[75] A.K. Jain and R.C. Dubes. Algorithms for Clustering Data. Advanced Refer-
ence Series. Prentice-Hall, 1988.

BIBLIOGRAPHY 203

[76] A.K Jain, MN Murty, and PJ Flynn. Data clustering: a review. ACM Com-
puting Surveys (CSUR), 31(3):264–323, 1999.

[77] Stephen C Johnson. Hierarchical clustering schemes. Psychometrika,
32(3):241–254, 1967.

[78] Abimbola M Jubril. A nonlinear weights selection in weighted sum for con-
vex multiobjective optimization. Facta universitatis-series: Mathematics and
Informatics, 27(3):357–372, 2012.

[79] L. Kaufman and P. Rousseeuw. Clustering by means of medoids. Statistical
Data Analysis Based on the L1 Norm and Related Methods, pages 405–416,
1987.

[80] Leonard Kaufman and Peter J. Rousseeuw. Finding Groups in Data. John
Wiley & Sons, Inc., 1990.

[81] J.R. Kettenring. The practice of cluster analysis. Journal of classification,
23(1):3–30, 2006.

[82] Keehyung Kim, Robert Ian McKay, and Byung-Ro Moon. Multiobjective
evolutionary algorithms for dynamic social network clustering. In Proceedings
of the 12th annual conference on Genetic and evolutionary computation, pages
1179–1186. ACM, 2010.

[83] O. Kirkland and B. de la Iglesia. Experimental evaluation of cluster quality
measures. UK Workshop on Computational Intelligence 2013, 2013.

[84] O. Kirkland and B. de la Iglesia. Moea for clustering: Comparison of mutation
operators. In Genetic and Evolutionary Computation Conference 2013, 2013.

[85] O. Kirkland, V. Rayward-Smith, and B. de la Iglesia. A novel multi-objective
genetic algorithm for clustering. International Conference on Intelligent Data
Engineering and Automated Learning 2011, pages 317–326, 2011.

[86] Scott Kirkpatrick, MP Vecchi, et al. Optimization by simmulated annealing.
science, 220(4598):671–680, 1983.

[87] J. Kivijärvi, P. Fränti, and O. Nevalainen. Self-adaptive genetic algorithm for
clustering. Journal of Heuristics, 9(2):113–129, 2003.

[88] Abdullah Konak, David W Coit, and Alice E Smith. Multi-objective optimiza-
tion using genetic algorithms: A tutorial. Reliability Engineering & System
Safety, 91(9):992–1007, 2006.

[89] F. Kovacs, C. Legány, and A. Babos. Cluster validity measurement tech-
niques. In Proceedings Sixth International Symposium Hungarian Researchers
on Computational Intelligence (CINTI), 2005.

BIBLIOGRAPHY 204

[90] K. Krishna and N.M. Murty. Genetic K-means algorithm. IEEE Transactions
on Systems, Man, and Cybernetics, 29(3):433–439, 1999.

[91] Mirko Křivánek and Jaroslav Morávek. Np-hard problems in hierarchical-tree
clustering. Acta Informatica, 23(3):311–323, 1986.

[92] L.I. Kuncheva and J.C. Bezdek. Selection of cluster prototypes from data by
a genetic algorithm. Proceedings of the 5th European Congress on Intelligent
Techniques and Soft Computing, 1997.

[93] G.N. Lance and W.T. Williams. A general theory of classificatory sorting
strategies. The computer journal, 9(4):373, 1967.

[94] BS Landau, S. Landau, and M. Leese. Cluster Analysis. Arnold, London,
2001.

[95] Marco Laumanns, Lothar Thiele, Kalyanmoy Deb, and Eckart Zitzler. Com-
bining convergence and diversity in evolutionary multiobjective optimization.
Evolutionary computation, 10(3):263–282, 2002.

[96] Martin HC Law, Alexander P Topchy, and Anil K Jain. Multiobjective data
clustering. In Computer Vision and Pattern Recognition, 2004. CVPR 2004.
Proceedings of the 2004 IEEE Computer Society Conference on, volume 2,
pages II–424. IEEE, 2004.

[97] J.S. Lee. Preserving nearest neighbor consistency in cluster analysis. PhD
thesis, Iowa State University, 2009.

[98] S. Lee, P. von Allmen, W. Fink, A.E. Petropoulos, and R.J. Terrile. Compar-
ison of multi-objective genetic algorithms in optimizing q-law low-thrust orbit
transfers. In Genetic and Evolutionary Computation Conference Late-breaking
Paper, Washington, DC, 2005.

[99] H. Li and Q. Zhang. Multiobjective optimization problems with complicated
pareto sets, MOEA/D and NSGA-II. IEEE Transactions on Evolutionary
Computation, 13(2):284–302, 2009.

[100] Y. Lu, S. Lu, F. Fotouhi, Y. Deng, and S.J. Brown. FGKA: a fast genetic
K-means clustering algorithm. In ACM Symposium On Applied Computing,
pages 622–623, 2004.

[101] JB MacQueen. Some methods for classification and analysis of multivari-
ate observations. In Proceedings of 5th Berkeley Symposium on Mathematical
Statistics and Probability, 1967.

[102] U. Maulik and S. Bandyopadhyay. Genetic algorithm-based clustering tech-
nique. Pattern recognition, 33(9):1455–1465, 2000.

BIBLIOGRAPHY 205

[103] Ujjwal Maulik and Sanghamitra Bandyopadhyay. Performance evaluation of
some clustering algorithms and validity indices. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 24(12):1650–1654, 2002.

[104] Ujjwal Maulik, Anirban Mukhopadhyay, and Sanghamitra Bandyopadhyay.
Combining pareto-optimal clusters using supervised learning for identifying
co-expressed genes. BMC Bioinformatics, 10(1):27, 2009.

[105] Mukhopadhyay Anirban Maulik Ujjwal, Bandyopadhyay Sanghamitra. Multi-
objective Genetic Algorithms for Clustering. Applications in Data Mining and
Bioinformatics. Springer, 2011.

[106] Achille Messac, Cyriaque Puemi-Sukam, and Emanuel Melachrinoudis. Ag-
gregate objective functions and pareto frontiers: required relationships and
practical implications. Optimization and Engineering, 1(2):171–188, 2000.

[107] G.W. Milligan. A Monte Carlo study of thirty internal criterion measures for
cluster analysis. Psychometrika, 46(2):187–199, 1981.

[108] G.W. Milligan. An algorithm for generating artificial test clusters. Psychome-
trika, 50(1):123–127, 1985.

[109] G.W. Milligan and M.C. Cooper. An examination of procedures for deter-
mining the number of clusters in a data set. Psychometrika, 50(2):159–179,
1985.

[110] A Mukhopadhyay, U. Maulik, S. Bandyopadhyay, and C.AC. Coello. Survey
of multiobjective evolutionary algorithms for data mining: Part ii. IEEE
Transactions on Evolutionary Computation, 18(1):20–35, Feb 2014.

[111] Anirban Mukhopadhyay and Ujjwal Maulik. Unsupervised pixel classification
in satellite imagery using multiobjective fuzzy clustering combined with svm
classifier. IEEE Transactions on Geoscience and Remote Sensing, 47(4):1132–
1138, 2009.

[112] Anirban Mukhopadhyay and Ujjwal Maulik. A multiobjective approach to mr
brain image segmentation. Applied Soft Computing, 11(1):872–880, 2011.

[113] Deep Malya Mukhopadhyay, Maricel O Balitanas, Alisherov Farkhod, Seung-
Hwan Jeon, and Debnath Bhattacharyya. Genetic algorithm: A tutorial re-
view. International Journal of of Grid and Distributed Computing, 2(3):25–32,
2009.

[114] Fionn Murtagh. A survey of recent advances in hierarchical clustering algo-
rithms. The Computer Journal, 26(4):354–359, 1983.

[115] C.A. Murthy and N. Chowdhury. In search of optimal clusters using genetic
algorithms. Pattern Recognition Letters, 17(8):825–832, 1996.

BIBLIOGRAPHY 206

[116] A.J. Nebro, F. Luna, E. Alba, B. Dorronsoro, J.J. Durillo, and A. Beham.
AbYSS: Adapting scatter search to multiobjective optimization. IEEE Trans-
actions on Evolutionary Computation, 12(4):439–457, 2008.

[117] Raymond T. Ng and Jiawei Han. Clarans: A method for clustering objects for
spatial data mining. IEEE Transactions on Knowledge and Data Engineering,
14(5):1003–1016, 2002.

[118] Conor O’Mahony and Nic Wilson. Sorted-pareto dominance: an extension to
the pareto dominance relation and its application in soft constraints. In 11th
Workshop on Preferences and Soft Constraints, page 91, 2011.

[119] Xiaoxue Qian, Xiangrong Zhang, Licheng Jiao, and Wenping Ma. Unsu-
pervised texture image segmentation using multiobjective evolutionary clus-
tering ensemble algorithm. In IEEE Congress on Evolutionary Computa-
tion, 2008. CEC 2008.(IEEE World Congress on Computational Intelligence),
pages 3561–3567. IEEE, 2008.

[120] I. Radziukynienė and A. Žilinskas. Evolutionary methods for multi-objective
portfolio optimization. In Proceedings of the World Congress on Engineering,
2008.

[121] M. Ramze Rezaee, BPF Lelieveldt, and JHC Reiber. A new cluster validity
index for the fuzzy c-mean. Pattern Recognition Letters, 19(3-4):237–246,
1998.

[122] W.M. Rand. Objective criteria for the evaluation of clustering methods. Jour-
nal of the American Statistical association, 66(336):846–850, 1971.

[123] Ramachandra Rao Kurada, K Karteeka Pavan, and AV Rao. A preliminary
survey on optimized multiobjective metaheuristic methods for data clustering
using evolutionary approaches. International Journal of Computer Science &
Information Technology, 5(5):57–77, 2013.

[124] A.P. Reynolds and B. de la Iglesia. Managing population diversity through the
use of weighted objectives and modified dominance: An example from data
mining. In IEEE Symposium on Computational Intelligence in Multicriteria
Decision-Making, pages 99–106. IEEE, 2007.

[125] A.P. Reynolds and B. De la Iglesia. A multi-objective grasp for partial classi-
fication. Soft Computing-A Fusion of Foundations, Methodologies and Appli-
cations, 13(3):227–243, 2009.

[126] Kazi Shah Nawaz Ripon and Mia Nazmul Haque Siddique. Evolutionary multi-
objective clustering for overlapping clusters detection. In IEEE Congress on
Evolutionary Computation, 2009. CEC’09, pages 976–982. IEEE, 2009.

BIBLIOGRAPHY 207

[127] J. Riquelme, MA Ridao, EF Camacho, and M. Toro. Using genetic algorithms
with variable-length individuals for planning two-manipulators motion. In
Proceedings of the International Conference on Artificial Neural Networks and
Genetic Algorithms, pages 26–30, 1997.

[128] Joseph Lee Rodgers and W. Alan Nicewander. Thirteen ways to look at the
correlation coefficient. The American Statistician, 42(1):59–66, 1988.

[129] P.J Rousseeuw. Silhouettes: a graphical aid to the interpretation and valida-
tion of cluster analysis. Journal of computational and applied mathematics,
20:53–65, 1987.

[130] J. David Schaffer. Multiple objective optimization with vector evaluated ge-
netic algorithms. In Proceedings of the 1st International Conference on Genetic
Algorithms, pages 93–100, Hillsdale, NJ, USA, 1985. L. Erlbaum Associates
Inc.

[131] P. Scheunders. A genetic c-means clustering algorithm applied to color image
quantization. Pattern Recognition, 30(6):859–866, 1997.

[132] Subhash Sharma. Applied multivariate techniques. John Wiley & Sons. New
York, USA, 1995.

[133] W. Sheng and X. Liu. A hybrid algorithm for K-medoid clustering of large
data sets. In Congress on Evolutionary Computation, 2004, volume 1, pages
77–82, 2004.

[134] S. Shirakawa and T. Nagao. Evolutionary image segmentation based on mul-
tiobjective clustering. In IEEE Congress on Evolutionary Computation, 2009,
pages 2466–2473, May 2009.

[135] N. Speer, P. Merz, C. Spieth, and A. Zell. Clustering gene expression data
with memetic algorithms based on minimum spanning trees. In Evolutionary
Computation, 2003. CEC’03. The 2003 Congress on, volume 3, pages 1848–
1855, 2003.

[136] Nidamarthi Srinivas and Kalyanmoy Deb. Muiltiobjective optimization us-
ing nondominated sorting in genetic algorithms. Evolutionary computation,
2(3):221–248, 1994.

[137] K. Stoffel and A. Belkoniene. Parallel k/h-means clustering for large data sets.
Lecture notes in computer science, pages 1451–1454, 1999.

[138] C.A. Sugar and G.M. James. Finding the number of clusters in a dataset.
Journal of the American Statistical Association, 98(463):750–763, 2003.

[139] Gilbert Syswerda. Uniform crossover in genetic algorithms. In Proceedings of
the 3rd International Conference on Genetic Algorithms, pages 2–9. Morgan
Kaufmann Publishers, Inc., 1989.

BIBLIOGRAPHY 208

[140] P.N. Tan, M. Steinbach, and V. Kumar. Introduction to Data Mining.
Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA, 2005.

[141] Robert Tibshirani, Guenther Walther, and Trevor Hastie. Estimating the
number of clusters in a data set via the gap statistic. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 63(2):411–423, 2001.

[142] D.A. Van Veldhuizen and G.B. Lamont. Multiobjective evolutionary algorithm
research: A history and analysis. Air Force Institute Technology, Dayton, OH,
1998.

[143] Vladimir Naumovich Vapnik and Vlamimir Vapnik. Statistical learning theory,
volume 2. Wiley New York, 1998.

[144] T. Velmurugan and T. Santhanam. Computational complexity between K-
Means and K-Medoids clustering algorithms for normal and uniform distribu-
tions of data points. Journal of Computer Science, 6(3):363–368, 2010.

[145] L. Vendramin, R. Campello, and E. Hruschka. A robust methodology for
comparing performances of clustering validity criteria. Advances in Artificial
Intelligence, pages 237–247, 2008.

[146] L. Vendramin, R.J.G.B. Campello, and E.R. Hruschka. On the comparison
of relative clustering validity criteria. In Proceedings of the 2009 Society for
Industrial and Applied Mathematics International Conference on Data Mining,
volume 733–744, 2009.

[147] J.H. Ward Jr. Hierarchical grouping to optimize an objective function. Journal
of the American statistical association, 58(301):236–244, 1963.

[148] Lyndon While. A new analysis of the lebmeasure algorithm for calculating
hypervolume. In Evolutionary Multi-Criterion Optimization, pages 326–340.
Springer, 2005.

[149] Xuanli Lisa Xie and Gerardo Beni. A validity measure for fuzzy clustering.
IEEE Transactions on pattern analysis and machine intelligence, 13(8):841–
847, 1991.

[150] R. Xu, D. Wunsch, et al. Survey of clustering algorithms. IEEE Transactions
on Neural Networks, 16(3):645–678, 2005.

[151] E. Zitzler and L. Thiele. Multiobjective evolutionary algorithms: A compar-
ative case study and the strength pareto approach. IEEE Transactions on
Evolutionary Computation, 3(4):257–271, 1999.

[152] Eckart Zitzler, Marco Laumanns, and Stefan Bleuler. A tutorial on evolution-
ary multiobjective optimization. In Metaheuristics for multiobjective optimi-
sation, pages 3–37. Springer, 2004.

BIBLIOGRAPHY 209

[153] Eckart Zitzler, Marco Laumanns, Lothar Thiele, Eckart Zitzler, Eckart Zitzler,
Lothar Thiele, and Lothar Thiele. SPEA2: Improving the strength pareto
evolutionary algorithm, 2001.

[154] Eckart Zitzler and Lothar Thiele. Multiobjective optimization using evolution-
ary algorithms—a comparative case study. In Parallel problem solving from
nature-PPSN V, pages 292–301. Springer, 1998.

	List of Abbreviations
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Research Methodology
	Contributions
	Thesis Structure

	The Clustering Problem
	Problem Definitions
	Distance Measure Definitions
	Clustering Solution Definitions
	Clustering Solution Properties

	Existing Clustering Techniques
	Partitional Techniques
	k-Means
	k-Medoids
	Selecting k

	Hierarchical Techniques
	Ward's Method
	Other Methods
	Selecting the Number of Clusters

	Density Based Techniques

	Internal Cluster Quality Measures
	Variance Ratio Criterion
	Dunn and Dunn like Indices
	Davies-Bouldin Index
	Halkidi Indexes
	SD Validity Index
	SDbw Validity Index
	CDbw Validity Index

	RMSSDT & RS
	Silhouette Width Criterion
	Connectivity & Disconnectivity

	External Clustering Quality Measures
	Summary

	Cluster Quality Measures Experimentation
	Introduction
	Methodology
	Results
	Varying the Number of Dimensions
	Varying the Number of Clusters
	Varying the Cluster Size
	Varying the Number of Outliers
	Overall Results

	Summary & Conclusions

	Solving Problems with Multiple Objectives
	Multiple Criteria Decision Making
	Pareto Dominance

	Solving MCDM Problems
	Genetic Algorithms
	Multi-Objective Evolutionary Algorithms
	Aggregation Based Algorithms
	Criterion Based Algorithms
	Dominance Based Algorithms
	Dominance Depth Algorithms
	Recent Algorithms

	Evaluation of Pareto Fronts
	Volume of Dominated Space
	Coverage
	Spread
	Generational Distance & Inverted Generational Distance
	Entropy

	Representations of Clustering Solutions for Evolutionary Algorithms
	Medoid Based Binary Encoding
	Mutation Operators
	Crossover Operators

	Label Based Integer Encoding
	Mutation Operators
	Crossover Operators

	Centroid Based Real Encoding
	Mutation Operators
	Crossover Operators

	An Overview of MOEAs for Clustering
	Summary

	A Novel MO Clustering Algorithm
	Introduction
	The Proposed Multi-Objective Clustering Algorithm
	Solutions Representation & Initialisation
	Mutation Operator
	Decrease
	Increase
	Recompute Prototypes
	Sub-Operator Selection

	Crossover Operator
	Fitness Measures for MOCA
	Homogeneity Based Fitness Measure
	Separation Based Fitness Measure
	Connectivity Based Fitness Measure

	Overview

	Preliminary Experimental Evaluation of MOCA
	Construction of Synthetic Data Sets
	Experimental Method
	Comparison to DBSCAN

	Preliminary Results with Synthetic Datasets
	Conclusions & Summary

	Experimental Comparison of Clustering Representations
	Introduction
	Experimental Design
	Results
	Conclusion & Summary

	Experimental Comparison of New Mutation Operators
	Introduction
	Multi-Objective Clustering Algorithm
	Representation
	Crossover
	Mutation Operators
	Randomness Mutation (RM)
	k-Means Like Mutation (KMLM)
	Hybrid Mutation (HM)

	Experimental Setup
	Results
	Volume of Dominated Space
	GD & IGD
	Spread
	Entropy
	Average Rand Index

	Summary & Conclusions

	Conclusions and Further Work
	Summary & Contributions
	Further Work

	Appendices
	Graphs for Mutation Operator Comparison
	Additional MOCA Experimental Results
	Bibliography

