
ar
X

iv
:1

20
5.

48
85

v3
 [

m
at

h.
R

A
]

 2
2

O
ct

 2
01

4

Finite Gröbner–Shirshov bases for
Plactic algebras and biautomatic
structures for Plactic monoids

Alan J.Cain, Robert D. Gray, António Malheiro

[AJC] Centro de Matemática, Faculdade de Ciências, Universidade do Porto
Rua do Campo Alegre 687, 4169–007 Porto, Portugal

Email: ajcain@fc.up.pt
Web page: www.fc.up.pt/pessoas/ajcain/

[RDG] Centro de Álgebra da Universidade de Lisboa
Av. Prof. Gama Pinto 2, 1649–003 Lisboa, Portugal

Email: Robert.D.Gray@uea.ac.uk

[AM] Centro de Álgebra da Universidade de Lisboa
Av. Prof. Gama Pinto 2, 1649–003 Lisboa, Portugal

and
Departamento de Matemática,
Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa,
2829–516 Caparica, Portugal

Email: ajm@fct.unl.pt

abstract

This paper shows that every Plactic algebra of finite rank admits a finite
Gröbner–Shirshov basis. The result is proved by using the combinato-
rial properties of Young tableaux to construct a finite complete rewrit-
ing system for the corresponding Plactic monoid, which also yields the
corollaries that Plactic monoids of finite rank have finite derivation type
and satisfy the homological finiteness properties left and right FP∞.
Also, answering a question of Zelmanov, we apply this rewriting sys-
tem and other techniques to show that Plactic monoids of finite rank are
biautomatic.

Keywords: Plactic algebra; Plactic monoid; Gröbner–Shirshov basis;
complete rewriting system; Young tableau; automatic monoids.

2010 Mathematics Subject Classification: 16s36; 68q42, 20m25, 20m35.

1 introduction

The Plactic monoid has its origins in work of Schensted [Sch61] and
Knuth [Knu70] concerned with certain combinatorial problems and operations on
Young tableaux. It was later studied in depth by Lascoux and Shützenberger [LS81]
and has since become an important tool in several aspects of representation theory
and algebraic combinatorics; see [Ful97, Lot02]. The first significant application of
the Plactic monoid was to the Littlewood–Richardson rule for Schur functions. This
is explained in detail in the appendix to the second edition of J. A. Green’s influential

Acknowledgements: The first author was supported by the European Regional Development Fund through
the programme COMPETE and by the Portuguese Government through the FCT (Fundação para a
Ciência e a Tecnologia) under the project PEst-C/MAT/UI0144/2011 and through an FCT Ciência 2008

fellowship. For the second and third author, this work was supported by CAUL within the project
PEst-OE/MAT/UI0143/2012–13 financed by Fundação para a Ciência e a Tecnologia.

1

http://arxiv.org/abs/1205.4885v3
http://www.fc.up.pt/pessoas/ajcain/

monograph on the representation theory of the general linear group [Gre07]. The
Littlewood–Richardson rule [LR34] is one of the most important results in the theory
of symmetric functions. It provides a combinatorial rule for expressing a product of
two Schur functions as a linear combination of Schur functions. Since Schur functions
in n variables are the irreducible polynomial characters of GLn(C), the Littlewood-
Richardson rule gives a tensor product rule for GLn(C). One of the most enlightening
proofs of the Littlewood–Richardson rule (see [Lot02, Section 5.4]) is given by lifting
the calculus of the Schur function to the integral monoid ring of the Plactic monoid
(called the tableau ring; see [Ful97, Chapter 2]).

Subsequently the Plactic monoid has been found to have applications in a range
of areas including a combinatorial description of Kostka–Foulkes polynomials [LS81,
LS78], and to Kashiwara’s theory of crystal bases [DJM90, Kas91] leading to the defi-
nition of Plactic algebras associated to all classical simple Lie algebras [Lit96, LLT95,
KT97]. Further results on Robinson–Schensted correspondence and the Plactic rela-
tions may be found in [DJM90, LT96]. Several variations and generalizations of the
Plactic monoid have been proposed and investigated including hypoplactic monoids
[KT97], and shifted Plactic monoids [Ser10]. In [DK94] it is show that the Hilbert
series of the Plactic monoid is given by the Schur–Littlewood formula, and that there
are exactly three families of ternary monoids with this Hilbert series. Schützenberger
[Sch97] argues that the Plactic monoid ought to be considered as “one of the most fun-
damental monoids in algebra”. He cites three reasons for his own personal “weak-
ness” for the Plactic monoid, the first of them being the application to symmetric
functions mentioned above.

Various aspects of the corresponding semigroup algebras, the Plactic algebras,
have been investigated; see, for example, [CO04, LS90]. These algebras are important
special cases in the more general study of algebras defined by homogeneous semi-
group presentations [CJO10]. Frequently, fundamental problems about such semi-
group algebras require detailed analysis of the corresponding semigroups. An im-
portant example of this is given by the theory of Gröbner–Shirshov bases. Kubat &
Okniński showed that the Plactic algebra of rank 3 has a finite Gröbner–Shirshov ba-
sis [KO14, Theorem 1] and that Plactic algebras of rank 4 or more do not admit a
finite Gröbner–Shirshov basis with respect to the degree-lexicographic ordering over
the usual generating set for the Plactic monoid [KO14, Theorem 3]. In contrast, the
related Chinese monoid admits a finite complete rewriting system with respect to the
usual generating set [GK10], and so its semigroup algebra, the Chinese algebra, is
known to admit a finite Gröbner–Shirshov basis [CQ08].

The first aim of this paper is to use the combinatorial properties of Young tableaux
to construct finite complete rewriting systems for Plactic monoids of arbitrary finite
rank, and thus prove that the corresponding Plactic algebras admit finite Gröbner–
Shirshov bases (see [Hey00] for an explanation of the connection between Gröbner–
Shirshov bases and complete rewriting systems). The rewriting system is not over
the usual generating set for the Plactic monoid; rather, the generating set comprises
the (finite) set of columns of Young tableaux. As a corollary we deduce that Plac-
tic monoids of finite rank satisfy the homological finiteness property FP∞, a result
which gives information about the existence of free resolutions of ZMn-modules,
where ZMn is the tableau ring featuring in the theory of symmetric functions out-
lined above.

During the writing of this paper, the authors came across the work of Chen &
Li [CL11], who exhibit infinite complete rewriting systems for Plactic monoids over
the (infinite) set of rows of Young tableaux. Thus Chen & Li’s work yields infinite
Gröbner–Shirshov bases for Plactic algebras. Part of their reasoning is an analogue
for rows of Lemma 3.1 below, but they use a direct, more technical, proof and later
recover as a corollary of their main result the fact that tableaux form a cross-section
of the Plactic monoid.

As a consequence of the Schensted insertion algorithm and the representation of
elements by tableaux, it follows that the Plactic monoid has word problem that is
solvable in quadratic time. This leads us naturally to the second major theme of the
present article: the subject of automatic structures. The concept of an automatic group

2

was introduced in order to describe a large class of groups with easily solvable word
problem. The best general reference for the theory of automatic groups is the book
[ECH+92]. The notion has been extended to automatic monoids and semigroups
[CRRT01]. In both cases the defining property is the existence of a rational set of
normal forms (with respect to some finite generating set A) such that we have, for
each generator in A, a finite automaton that recognizes pairs of normal forms that
differ by multiplication by that generator. It is a consequence of the definition that
automatic monoids (and in particular automatic groups) have word problem that is
solvable in quadratic time [CRRT01, Corollary 3.7].

Automatic groups have attracted a lot of attention over the last 20 years, in part
because of the large number of natural and important classes of groups that have
this property. The class of automatic groups includes: finite groups, free groups,
free abelian groups, various small cancellation groups [GS90], Artin groups of finite
and large type [HR12], Braid groups, and hyperbolic groups in the sense of Gro-
mov [Gro87]. In parallel, the theory of automatic monoids has been extended and
developed over recent years. Classes of monoids that have been shown to be auto-
matic include divisibility monoids [Pic06] and singular Artin monoids of finite type
[CHKT11]. Several complexity and decidability results for automatic monoids are
obtained in [Loh05]. Other aspects of the theory of automatic monoids that have
been investigated include connections with the theory of Dehn functions [Ott00] and
complete rewriting systems [OSKM98].

Given the algorithmic properties of the Plactic monoid mentioned above, the nat-
ural question of whether the Plactic monoid itself admits an automatic structure was
asked by Efim Zelmanov [during his plenary lecture at the international conference
Groups and Semigroups: Interactions and Computations (Lisbon, 25–29 July 2011)]. The
second main result of this article is an affirmative answer to this question. Begin-
ning with the finite complete rewriting system obtained in Section 3, we shall show
how for Plactic monoids finite transducers may be constructed to perform left (re-
spectively right) multiplication by a generator. We then apply this result to show
that Plactic monoids of arbitrary finite rank are biautomatic (the strongest form of
automaticity for monoids).

2 preliminaries

This paper assumes familiarity with rewriting systems, Gröbner–Shirshov
bases, automata and regular languages, and transducers and rational relations.

For background information, see, for example, [BO93] on complete rewriting sys-
tems; [Ufn98] on Gröbner–Shirshov bases; [Hey00] on the connection between them.
See also [HU79] on automata and regular languages and [Ber79]) on transducers and
rational relations.

We denote the empty word (over any alphabet) by ε. For an alphabet A, we denote
by A∗ the set of all words over A. When A is a generating set for a monoid M, every
element of A∗ can be interpreted either as a word or as an element of M. For words
u, v ∈ A∗, we write u = v to indicate that u and v are equal as words and u =M v

to denote that u and v represent the same element of the monoid M. The length of
u ∈ A∗ is denoted |u|. For a relation R on A∗, the presentation 〈A | R〉 defines [any
monoid isomorphic to] A∗/R#, where R# denotes the congruence generated by R.

2.1 Plactic monoid

This section recalls only the relevant definition and properties of the
Plactic monoid; for a full introduction, see [Lot02, Chapter 5].

Let n ∈ N. Let A be the finite ordered alphabet {1 < 2 < . . . < n}. Let R be the set
of defining relations

{(xzy, zxy) : x 6 y < z} ∪ {(yxz, yzx) : x < y 6 z}. (2.1)

Then the Plactic monoid Mn is presented by 〈A | R〉.

3

A row is a non-decreasing word in A∗ (that is, a word α = α1 · · ·αk, where αi ∈ A,
in which αi 6 αi+1 for all i = 1, . . . , k−1). Let α = α1 · · ·αk and β = β1 · · ·βl (where
αi, βi ∈ A) be rows. The row α dominates the row β, denoted α ⊲ β, if k 6 l and
αi > βi for all i = 1, . . . , k.

Any word w ∈ A∗ has a decomposition as a product of rows of maximal length
w = α(1) · · ·α(k). Such a word w is a tableau if α(i)

⊲α(i+1) for all i = 1, . . . , k− 1. It is
usual to write tableaux in a planar form, with the rows placed in order of domination
and left-justified. For example, the tableau 6 3455 11235 is written as follows:

6

3 4 5 5

1 1 2 3 5

The set of tableaux form a cross-section of the Plactic monoid Mn [Lot02, Theo-
rem 5.2.5]. For each u ∈ A∗, denote by P(u) the unique tableau with P(u) =Mn

u.
If u is a tableau, P(u) = u. Since the defining relations in the presentation 〈A | R〉
preserve the number of symbols, it follows that |P(u)| = |u| for all u ∈ A∗.

A column is a strictly decreasing word in A∗ (that is, a word α = αk · · ·α1, where
αi ∈ A, in which αi+1 > αi for all i = 1, . . . , k − 1). [Notice the decreasing order of
the subscripts on symbols of columns, so as to match the order of the symbols them-
selves.] This definition matches the notion of a column in the planar representation
of a tableau.

Define a relation � on columns as follows: if α = αk · · ·α1 and β = βl · · ·β1, then
α � β if and only if k > l and αi 6 βi for all i 6 l. Thus α � β if and only if the
column α can appear immediately to the left of β in the planar representation of a
tableau.

For any tableau w, denote by C(w) the word obtained by reading (the planar
representation of) that tableau column-wise from left to right and top to bottom. In
the example above, C(6 3455 11235) = 631 41 52 53 5. Then C(w) =Mn

w for all
tableau w [Lot02, Problem 5.2.4].

The following result states the key combinatorial facts about tableaux:

Theorem 2.1 ([Sch61, Theorems 1 & 2]; see also [Lot02, Theorem 5.1.1]). Let u ∈
A∗. The number of columns in P(u) is equal to the length of the longest non-decreasing
subsequence in u. The number of rows in P(u) is equal to the length of the longest decreasing
subsequence in u.

Let w be a tableau and let γ ∈ A. The unique tableau P(wγ) equal to wγ in Mn

can be computed via Schensted’s algorithm [Lot02, § 5.1–2], which we recall here:

Algorithm 2.2 (Schensted’s algorithm).
Input: A tableau w with rows α(1), . . . , α(k) and a symbol γ ∈ A.
Output: The unique tableau P(wγ) equal to wγ in Mn.
Method:

1. If α(k)γ is a row, the result is α(1) · · ·α(k)γ.

2. If α(k)γ is not a row, then suppose α(k) = α1 · · ·αl (where αi ∈ A) and let j

be minimal such that αj > γ. Then the result is P(α(1) · · ·α(k−1)αj)α
′(k), where

α ′(k) = α1 · · ·αj−1γαj+1 · · ·αl.

Notice that in case 2, the algorithm replaces αj by γ in the lowest row and recur-
sively right-multiplies by αj the tableau formed by all rows except the lowest. This is
referred to as ‘bumping’ αj to a higher row. When αj is bumped, it will be inserted
into the row above either in the same column or in some column further to the left,
as shown in Figure 1. This happens because columns are strictly decreasing from top
to bottom, so either the cell above αj contains some symbol η greater than αj, or αj

is the topmost element of its column. In the former case, αj will be inserted so as
to replace the leftmost symbol greater than αj, which must either be to the left of η

4

αj

figure 1. If the symbol αj is bumped during Schensted’s algorithm, it must be inserted
into one of the shaded cells, since the cell above αj must contain a symbol strictly greater
than αj.

or η itself, since rows are non-decreasing from left to right. In the latter case, αj will
be appended to the end of the row above and so will be placed either in the same
column or further left.

For any word u ∈ A∗, the tableau P(u) can be effectively computed by starting
with the empty word, which is a valid tableau, and iteratively applying Schensted’s
algorithm.

2.2 Biautomatic structures

This subsection contains the definitions and basic results from the the-
ory of automatic and biautomatic monoids needed hereafter. For further information
on automatic semigroups, see [CRRT01].

Definition 2.3. Let A be an alphabet and let $ be a new symbol not in A. Define the
mapping δR : A∗ ×A∗ → ((A ∪ {$})× (A ∪ {$}))∗ by

(u1 · · ·um, v1 · · · vn) 7→






(u1, v1) · · · (um, vn) if m = n,

(u1, v1) · · · (un, vn)(un+1, $) · · · (um, $) if m > n,

(u1, v1) · · · (um, vm)($, vm+1) · · · ($, vn) if m < n,

and the mapping δL : A∗ ×A∗ → ((A ∪ {$})× (A ∪ {$}))∗ by

(u1 · · ·um, v1 · · · vn) 7→






(u1, v1) · · · (um, vn) if m = n,

(u1, $) · · · (um−n, $)(um−n+1, v1) · · · (um, vn) if m > n,

($, v1) · · · ($, vn−m)(u1, vn−m+1) · · · (um, vn) if m < n,

where ui, vi ∈ A.

Definition 2.4. Let M be a monoid. Let A be a finite alphabet representing a set of
generators for M and let L ⊆ A∗ be a regular language such that every element of M
has at least one representative in L. For each a ∈ A ∪ {ε}, define the relations

La = {(u, v) : u, v ∈ L, ua =M v}

aL = {(u, v) : u, v ∈ L, au =M v}.

The pair (A, L) is an automatic structure for M if LaδR is a regular languages over
(A ∪ {$}) × (A ∪ {$}) for all a ∈ A ∪ {ε}. A monoid M is automatic if it admits a
automatic structure with respect to some generating set.

The pair (A, L) is a biautomatic structure for M if LaδR, aLδR, LaδL, and aLδL are
regular languages over (A∪{$})×(A∪{$}) for all a ∈ A∪{ε}. A monoid M is biautomatic
if it admits a biautomatic structure with respect to some generating set. [Note that
biautomaticity implies automaticity.]

Unlike the situation for groups, biautomaticity for monoids and semigroups, like
automaticity, is dependent on the choice of generating set [CRRT01, Example 4.5].
However, for monoids, biautomaticity and automaticity are independent of the choice
of semigroup generating sets [DRR99, Theorem 1.1].

Hoffmann & Thomas have made a careful study of biautomaticity for semigroups
[HT05]. They distinguish four notions of biautomaticity for semigroups:

5

• right-biautomaticity, where LaδR and aLδR are regular languages;

• left-biautomaticity, where LaδL and aLδL are regular languages;

• same-biautomaticity, where LaδR and aLδL are regular languages;

• cross-biautomaticity, where aLδR and LaδL are regular languages.

These notions are all equivalent for groups and more generally for cancellative semi-
groups [HT05, Theorem 1] but distinct for semigroups [HT05, Remark 1 & § 4]. In
the sense used in this paper, ‘biautomaticity’ implies all four notions of biautomaticity
above.

In proving certain that RδR or RδL is regular, where R is a relation on A∗, a useful
strategy is to prove that R is a rational relation (that is, a relation recognized by a
finite transducer [Ber79, Theorem 6.1]) and then apply the following result, which is
a combination of [FS93, Corollary 2.5] and [HT05, Proposition 4]:

Proposition 2.5. If R ⊆ A∗ × A∗ is rational relation and there is a constant k such that
∣

∣|u|− |v|
∣

∣ 6 k for all (u, v) ∈ R, then RδR and RδL are regular.

Remark 2.6. When constructing transducers to recognize particular relations, we will
make use of certain strategies.

One strategy will be to consider a transducer reading elements of a relation R from
right to left, instead of (as usual) left to right. In effect, such a transducer recognizes
the reverse of R, which is the relation

Rrev = {(urev, vrev) : (u, v) ∈ R},

where urev and vrev are the reverses of the words u and v respectively. Since the
class of rational relations is closed under reversal [Ber79, p.65–66], constructing such
a (right-to-left) transducer suffices to show that R is a rational relation.

Another important strategy will be for the transducer to non-deterministically
guess some symbol yet to be read. More exactly, the transducer will non-deterministically
select a symbol and store it in its state. When it later reads the relevant symbol, it
checks it against the stored guessed symbol. If the guess was correct, the transducer
continues. If the guess was wrong, the transducer enters a failure state. Similarly,
the transducer can non-deterministically guess that it has reached the end of its input
and enter an accept state. If it subsequently reads another symbol, it knows that its
guess was wrong, and it enters a failure state.

3 complete rewriting system & gröbner–shirshov basis

The aim of this section is to construct a finite complete rewriting system
for Mn and so deduce the existence of a finite Gröbner–Shirshov basis for the the
corresponding Plactic algebra.

The following lemma will play a crucial role in defining the rewriting system:

Lemma 3.1. Suppose α and β are columns with α 6� β. Then P(αβ) contains at most two
columns. Furthermore, if P(αβ) contains exactly two columns, the left column contains more
symbols than α.

Proof of 3.1. Since α and β are strictly decreasing, the longest non-decreasing se-
quence in αβ is at most 2, since it can contain at most one symbol from each of α
and β. (It may have length 1 if every symbol in β is less than the minimum symbol
in α.) Hence by Theorem 2.1, P(αβ) contains at most two columns.

Suppose that P(αβ) contains exactly two columns. Let α = αk · · ·α1 and β =

βl · · ·β1. Then since α 6� β, either k < l or αi > βi for some i 6 l, as in the examples
in Figure 2. In the first case, β is a decreasing subsequence of αβ containing more
symbols than α. In the second case, αk · · ·αiβi · · ·β1 is a decreasing subsequence
of αβ of length k + 1 and hence contains more symbols than α. In either case, αβ
contains a decreasing sequence of length greater than α, and so by Theorem 2.1, P(αβ)
contains more rows than there are symbols in α, and hence the left column of P(αβ)
contains more symbols than α. 3.1

6

6

4 5

2 3

1 1

6

4 5

3 2

1 1

figure 2. Two columns not related by � always contain a decreasing subsequence of
length greater than the left column, as indicated by the dotted arrows.

To construct a finite complete rewriting system presenting Mn, introduce a new
set of generators. Let

C = {cα : α ∈ A+ is a column}

The idea is that each symbol cα represents the element α of Mn. Thus the symbols
c1, c2, . . . , cn represent the original generating set for Mn, and so the set C also gen-
erates Mn. Furthermore, since the set of columns is finite (since a strictly decreasing
sequence of elements of A has length at most |A|), the set C is finite. Notice that Mn

is presented by 〈C | R ′ ∪ S〉, where

R ′ = {(cxczcy, czcxcy) : x, y, z ∈ A∧ x 6 y < z}

∪ {(cycxcz, cyczcx) : x, y, z ∈ A∧ x < y 6 z}

S = {(cαk···α1
, cαk

· · · cα1
) : αk · · ·α1 is a column};

the relations R ′ are simply those in R expressed using the symbols cx (where x ∈ A),
and those in S define the extra generators Cα where |α| > 2.

Define a set of rewriting rules T on C∗ as follows:

T =
{
cαcβ → cγ : α 6� β∧ P(αβ) consists of one column γ

}
(3.1)

∪
{
cαcβ → cγcδ : α 6� β∧ (3.2)

P(αβ) consists of two columns, left col. γ and right col. δ
}

Notice that every rule in T holds in the monoid Mn: this follows from the facts that
cζ =Mn

ζ for any column ζ, that u =Mn
P(u) for all u ∈ A∗, and that C(w) =Mn

w

for all tableau w. For type (3.1) rules, cαcβ =Mn
αβ =Mn

P(αβ) =Mn
C(P(αβ)) =

γ =Mn
cγ; for type (3.2) rules, cαcβ =Mn

αβ =Mn
P(αβ) =Mn

C(P(αβ)) = γδ =Mn

cγcδ. Thus every rule in T is a consequence of the relations in R ′ ∪ S.
Notice further that by k − 1 applications of type (3.1) rules, one can deduce every

relation (cαk···α1
, cαk

· · · cα1
). Finally, it is easy to see that every relation in R ′ is also

a consequence of those in T. Thus Mn is presented by 〈C | T〉. It remains to show that
(C,T) is a finite complete rewriting system.

By Lemma 3.1, if α 6� β, then P(αβ) has at most two columns. Hence T contains
a rewriting rule with left-hand side cαcβ whenever α 6� β. Furthermore, since P(αβ)
is uniquely determined, T contains exactly one such rewriting rule, and hence the
number of rules in T is finite.

Lemma 3.2. The rewriting system (C,T) is noetherian.

Proof of 3.2. Choose an ordering ⊏ on C that reverses the partial order induced by
lengths of subscripts, in the sense that cα ⊏ cβ whenever |α| > |β|. (Such an order
must exist: simply reverse the order induces by the length of subscripts and then
arbitrarily order elements with same-length subscripts.)

Let ≪ be the length-plus-lexicographic order on C∗ induced by ⊏. That is:

c(1)c(2) · · · c(k) ≪ d(1)d(2) · · ·d(l)

⇐⇒ k < l∨
(

k = l∧ (∃i)
(

c(i) ⊏ d(i) ∧ (∀j < i)(c(j) = d(j))
)

)

,

7

where all symbols c(h) and d(h) lie in C. Then ≪ is a well-ordering of C∗. The aim is
to prove that if w → w′, then w′ ≪ w.

First, if the rule applied to obtain w′ from w is of type (3.1), then w = pcαcβq and
w′ = pcγq for some p, q ∈ C∗ and cα, cβ, cγ ∈ C. So w′ is a shorter word than w and
so w′ ≪ w.

Second, if the rule applied to obtain w′ from w is of type (3.2), then w = pcαcβq
and w′ = pcγcδq for some p, q ∈ C∗ and cα, cβ, cγ, cδ ∈ C with P(αβ) having
columns γ and δ. By Lemma 3.1, γ contains more symbols than α; that is, |γ| > |α|.
Hence, cγ ⊏ cα by the choice of ⊏. So in the definition of ≪, we have k = l and
c(i) = cγ ⊏ cα = d(i) and c(j) = d(j) for all j < i (where i is |p| + 1). Hence again
w′ ≪ w.

Since ≪ is a well-ordering of C∗, there are no infinite ≪-infinite descending chains
in C∗. Thus, since every application of a rule from T yields a ≪-preceding word, it
follows that any sequence of rewriting using T must terminate. Hence T is noetherian.

3.2

Lemma 3.3. The rewriting system (C,T) is confluent.

Proof of 3.3. Let w ∈ C∗. Since (C,T) is noetherian by Lemma 3.2, applying T to
w will always eventually yield an irreducible word. Let w′ and w′′ be irreducible
words obtained from w. Suppose w′ = cα(1)cα(2) · · · cα(k) . Now, since w′ is irre-
ducible, it does not contain any subword forming a left-hand side of a rule in T.
That is, there is no i such that α(i) 6� α(i+1). Equivalently, α(i) � α(i+1) for all i.
Thus α(1)α(2) · · ·α(k) = C(t ′) for some tableau t ′. But t ′ must be the unique tableau
with t ′ =Mn

α(1)α(2) · · ·α(k) =Mn
w′. Similarly, if w′′ = cβ(1)cβ(2) · · · cβ(l) then

β(1)β(2) · · ·β(l) = C(t ′′), where t ′′ is the unique tableau with t ′′ =Mn
β(1)β(2) · · ·β(l) =Mn

w′′. But since w =Mn
w′ =Mn

w′′, and tableau form a cross-section of Mn, it follows
that t ′ = t ′′. Hence k = l and α(i) = β(i) for all i = 1, . . . , k, and so w′ = w′′. Hence
rewriting an arbitrary word w ∈ C∗ always terminates with a unique irreducible word.
Thus the rewriting system (C,T) is confluent. 3.3

Lemmata 3.2 and 3.3, together with the finiteness of T, yield the following result:

Theorem 3.4. (C,T) is a finite complete rewriting system for the Plactic monoid Mn.

The following corollary is immediate [SOK94]:

Corollary 3.5. Every Plactic monoid has finite derivation type.

By a result originally proved by Anick in different form [Ani86], but also proved
by various other authors (see [Coh97]):

Corollary 3.6. Every Plactic monoid is of type right and left FP∞.

Now let K be a field. Let F = {l − r : (l → r) ∈ T} ⊂ K[C∗]. Then the semigroup
algebra K[Mn] is isomorphic to the factor algebra K[C∗]/〈F〉 (where 〈F〉 is the ideal
generated by F) [Hey00, Proposition on p. 1]. Since (C,T) is a finite complete rewriting
system, F is a finite Gröbner–Shirshov basis for K[Mn] [Hey00, Theorem on p. 1].
Furthermore, the order ≪ defined in the proof of Lemma 3.2 corresponds in K[C∗] to
the degree-lexicographic order. These remarks yield the following result:

Theorem 3.7. A Plactic algebra of arbitrary finite rank over an arbitrary field admits a finite
Gröbner–Shirshov basis over C with respect to degree-lexicographic order.

4 biautomaticity

The aim of this section is to prove that the Plactic monoid Mn is biau-
tomatic. We will prove biautomaticity with respect to the usual generating set A, but
we will initially work with the generating set C. The first step is to define a language
of representatives over C.

8

Let

K =
{
cα(1)cα(2) · · · cα(k) : k ∈ N ∪ {0}, cα(i) ∈ C,α(j) � α(j+1) for all j

}
.

Notice that for any cα(1) , cα(2) , . . . , cα(k) ∈ C, we have cα(1)cα(2) · · · cα(k) ∈ K if and
only if α(1) α(2) · · ·α(k) is the column reading of the corresponding tableau (that is,
α(1) α(2) · · · α(k) = C(P(α(1)α(2) · · ·α(k))). Then K is a regular language over C,
since an automaton need only store the previously-read symbol in its state in order to
check that α(j) � α(j+1). Actually, K is the language of normal forms for the rewriting
system (C,T) [BO93, Lemma 2.1.3]. Duchamp & Krob [DK94, § 3.2] noted that this
language K is a regular cross-section of the Plactic monoid, although their definition
of K is rather different.

4.1 Right-multiplication by transducer

We will first of all prove that for any γ ∈ A the relation Kcγ
is recognized

by a finite transducer.
We imagine a transducer reading a pair of words

(cα(1) · · · cα(k) , cβ(1) · · · cβ(l)) ∈ K× K

from right to left, with the aim of checking whether this pair is in Kcγ
. It is easiest to

describe the transducer as reading symbols from the left tape and outputting symbols
on the right tape. Essentially, the transducer will perform Schensted’s algorithm using
the alphabet C as a column representation of the tableau.

The transducer non-deterministically looks one symbol ahead (that is, further left)
on the input tape. In its state, it stores a symbol η from A and a counter m which can
take any value from {1, . . . , n,∞}. Initially, η is set to be γ and m is 1, corresponding
to the bottom row of the tableau. The idea is that when m 6= ∞, the transducer is
looking for the correct column in which to insert η in row m. Following Schensted’s
algorithm, the transducer will know if it has found the correct column cα(i) if the
m-th symbol from the bottom of α(i) is greater than γ and the m-th symbol from
the bottom of α(i−1) is less than or equal to γ. The crucial observation is that the
transducer only needs a single right-to-left pass because when a symbol η is bumped,
it is inserted into the next row either in the same column or in the some column
further to the left, as was shown in Figure 1. When m = ∞, the transducer has
completed the algorithm and simply reads symbols from the input tape and writes
them on the output tape.

Initially, the transducer has m = 1, η = γ, and non-deterministically knows cα(k) .
If the bottom symbol of α(k) is less than or equal to η = γ, then the transducer outputs
cγ before reading any input and then sets m = ∞.

When reading a symbol cα(i) , the transducer non-deterministically knows cα(i−1)

(or non-deterministically guesses that it has reached cα(1)). As seen before, this is
sufficient information to check whether the symbol η should be inserted into the
column α(i) at row m (bumping the m-th symbol from the bottom of α(i)). If such
an insertion and bump is carried out, m is incremented by 1 and η replaced by the
bumped symbol. The transducer may have to carry out several such insertions and
bumps within the same column, but since there are only finitely many possibilities
for cα(i) , cα(i−1) , m, and η, the result of carrying out all the necessary insertions and
bumps can be stored in a finite lookup table. The transition function of the transducer
can then be defined using this lookup table. Thus the transducer can calculate the
value of the resulting column β and output cβ. If no such insertion and bumping is
carried out, the transducer simply outputs cα(i) .

Notice that when the transducer reads cα(i) and bumps symbols it may increment
m to |cα(i) | + 1. In this case, the transducer must insert η at the end of the m-
th row, which corresponds to finding the first (rightmost) symbol cα(j) such that
|cα(j−1) | > m, and adding η to the top α(j) to calculate the column β and output cβ.
If the transducer reaches the leftmost end of the input word without finding such an
cα(j) , the m-th row is empty and so the symbol η is added to the top of α(1). When a

9

symbol is added to the top of some cα(j) , the transducer has completed the algorithm
and sets m = ∞.

Since it is recognized by a finite transducer, Lcγ
is a rational relation.

4.2 Left-multiplication by transducer

To prove that the relation cγ
K = {(u, v) : u, v ∈ K, cγu =Mn

v} is rec-
ognized by a finite transducer whenever |γ| = 1, we start with the following lemma,
which is a straightforward consequence of Schensted’s algorithm:

Lemma 4.1. Let γ ∈ A and let α = αp · · ·α1 (where αi ∈ A) be a column. Then

1. γ > αp if and only if P(γα) is a single column γαp · · ·α1.

2. r is minimal with γ 6 αr if and only if P(γα) has two columns: left column αp · · ·αr+1γαr−1 · · ·α1,
and right column αr.

Notice that if cγcα is reducible with respect to the rewriting system (C,T), then
cγcα either rewrites to a single symbol cγα with γα ≻ α or to a two-symbol word
cα′cη with α ′ � α and γ 6 η.

Lemma 4.2. Let α = αp · · ·α1 and β = βq · · ·β1 be columns (where αi, βi ∈ A) with
α � β. Let i ∈ {1, . . . , p}, and let η be the left-hand column of P(αiβ). Then α � η.

Proof of 4.2. Since α � β, it follows that p > q and αj 6 βj for all j 6 q. We
distinguish two cases:

1. Suppose P(αiβ) has two columns. Then η has the form βq · · ·βr+1αiβr−1 · · ·β1,
where r is minimal with αi 6 βr. So |η| = |β| and thus |α| > |η|. Notice that r 6 i,
since otherwise we would have αi 6 βi < βr, contradicting the minimality of r.
Therefore αr 6 αi and for all j 6 q with j 6= r we have αj 6 βj. Thus α � η.

2. Suppose P(αiβ) has one column (namely η). By Lemma 4.1 we have αi > βq.
Since βq > αq and α is a column, we conclude i > q. Thus p > q. Therefore η

has the form αiβq · · ·β1 and α = αp · · ·αi · · ·αq+1αq · · ·α1. Since αq+1 6 αi, it
follows that α � η. 4.2

Lemma 4.3. Let γ ∈ A and cα, cβ ∈ C with α � β.

1. If cγcαcβ → cα′cηcβ → cα′cβ′cζ, then α ′ � β ′.

2. If cγcαcβ → cα′cηcβ → cα′cβ′ , then α ′ � β ′.

3. If cγcαcβ → cα′cβ, then α ′ � β.

Proof of 4.3. 1. From Lemma 4.1 and the remarks following it, we know that α ′ � α

and η is a letter from α. Therefore, by Lemma 4.2, α � β ′. Hence, since � is
transitive, we have α ′ � β ′.

2. The reasoning is the same as part 1.

3. From Lemma 4.1 and the remarks following it, we know that α ′ � α. Since α � β

and � is transitive, we have α ′ � β. 4.3

Let cα(1) · · · cα(k) ∈ K. Recall that α(1) � · · · � α(k). Consider rewriting the word
cγcα(1) · · · cα(k) to normal form using rules in T. Suppose the rewriting proceeds as
follows:

cγcα(1)cα(2) · · · cα(k)

→ cα′(1)cγ1
cα(2) · · · cα(k)

→ . . .

→ cα′(1)cα′(2) · · · cα′(i)cγi
cα(i+1) · · · cα(k) .

10

By Lemma 4.3, α ′(1) � · · · � α ′(i). If i = k, then α ′(i) � γi by the definition of T.
Suppose rewriting continues as follows:

. . .

→ cα′(1) · · · cα′(j)cγj
cα(j+1)cα(j+2) · · · cα(k)

→ cα′(1) · · · cα′(j)cα′(j+1)cα(j+2) · · · cα(k) .

By Lemma 4.3, cα ′(i) � β � α(j+2). Hence rewriting cγcα(1) · · · cα(k) to normal form
requires only a single left-to-right pass, which can be performed by a transducer: it
simply stores the symbol cγi

in its state. Therefore the relation cγ
K can be recognized

by a transducer.

4.3 Deducing biautomaticity

Let Q ⊆ C∗ ×A∗ be the relation
{
(cα(1)cα(2) · · · cα(k) , α(1)α(2) · · ·α(k)) : k ∈ N ∪ {0}, each α(i) is a column

}
.

It is easy to see that Q is a rational relation. Let

L = K ◦ Q =
{
v ∈ A∗ : (∃u ∈ K)

(

(u, v) ∈ Q
)}

.

Then L is a regular language over A that maps onto Mn, since the set of regular
languages is closed under applying rational relations. (In fact, L is the set of column
readings of tableaux, but this is not important for us.) Then for any γ ∈ A,

(u, v) ∈ Lγ ⇐⇒ u ∈ L∧ v ∈ L∧ uγ =Mn
v

⇐⇒ (∃u′, v ′ ∈ K)((u, u′) ∈ Q ∧ (v, v ′) ∈ Q ∧ u′cγ =Mn
v ′)

⇐⇒ (∃u′, v ′ ∈ K)((u, u′) ∈ Q ∧ (v, v ′) ∈ Q ∧ (u′, v ′) ∈ Kcγ
)

⇐⇒ (u, v) ∈ Q−1 ◦ Kcγ
◦ Q.

Therefore, Lγ is a rational relation. Now, if (u, v) ∈ Lγ, then |v| = |u| + 1 since
uγ =Mn

v and the defining relations (2.1) preserve lengths of words. By Proposition
2.5, LγδR and LγδL are regular.

Similarly, from the fact that cγ
K is a rational relation, we deduce that γL = Q−1 ◦

cγ
K ◦ Q is rational and thus, by Proposition 2.5, that γLδR and γLδL are regular.

Theorem 4.4. (A, L) is a biautomatic structure for the Plactic monoid Mn.

Corollary 4.5. Let B be a generating set for the Plactic monoid Mn. Then Mn admits a
biautomatic structure over B.

Proof of 4.5. Since each generator in A admits no non-trivial decomposition in Mn, it
follows that every element of A must also appear in B. Hence L is also a language
over B. Let b ∈ B and let u1 · · ·un ∈ A∗ (where ui ∈ A) be such that b =Mn

u1 · · ·un.
Then Lb = Lu1

◦ Lu2
◦ · · · ◦ Lun

and bL = u1
L ◦ u2

L ◦ · · · ◦ un
L. So LbδR, LbδL, bLδR,

and bLδR are all regular (see, for example, [HT03, Proposition 2.4]). Hence (B, L) is a
biautomatic structure for Mn. 4.5

5 references

[Ani86] D. J. Anick. ‘On the homology of associative algebras’. Trans. Amer. Math. Soc.,
296, no. 2 (1986), pp. 641–659. doi: 10.2307/2000383.

[Ber79] J. Berstel. Transductions and context-free languages, vol. 38 of Leitfäden der Ange-
wandten Mathematik und Mechanik [Guides to Applied Mathematics and Mechanics].
B.G. Teubner, Stuttgart, 1979.

[BO93] R. V. Book & F. Otto. String-Rewriting Systems. Texts and Monographs in Com-
puter Science. Springer-Verlag, New York, 1993.

11

http://dx.doi.org/10.2307/2000383

[CHKT11] R. Corran, M. Hoffmann, D. Kuske, & R. M. Thomas. ‘Singular Artin monoids
of finite Coxeter type are automatic’. In Language and Automata Theory and Ap-
plications, vol. 6638 of Lecture Notes in Computer Science, pp. 250–261, 2011. doi:
10.1007/978-3-642-21254-3_19.

[CJO10] F. Cedó, E. Jespers, & J. Okniński. ‘Finitely presented algebras and groups
defined by permutation relations’. J. Pure Appl. Algebra, 214, no. 7 (2010), pp.
1095–1102. doi: 10.1016/j.jpaa.2009.09.015.

[CL11] Y. Chen & J. Li. ‘New approach to Schensted–Knuth normal forms’. 2011.
arXiv: 1106.4753v1.

[CO04] F. Cedó & J. Okniński. ‘Plactic algebras’. J. Algebra, 274, no. 1 (2004), pp. 97–117.
doi: 10.1016/j.jalgebra.2003.12.004.

[Coh97] D. E. Cohen. ‘String rewriting and homology of monoids’. Math. Structures
Comput. Sci., 7, no. 3 (1997), pp. 207–240. doi: 10.1017/S0960129596002149.

[CQ08] Y. Chen & J. Qiu. ‘Gröbner-Shirshov basis for the Chinese monoid’. J. Algebra
Appl., 7, no. 5 (2008), pp. 623–628. doi: 10.1142/S0219498808003028.

[CRRT01] C. M. Campbell, E. F. Robertson, N. Ruškuc, & R. M. Thomas. ‘Automatic
semigroups’. Theoret. Comput. Sci., 250, no. 1–2 (2001), pp. 365–391. doi:
10.1016/S0304-3975(99)00151-6.

[DJM90] E. Date, M. Jimbo, & T. Miwa. ‘Representations of Uq(gl(n,C)) at q = 0 and
the Robinson-Shensted [Schensted] correspondence’. In Physics and mathematics
of strings, pp. 185–211. World Sci. Publ., Teaneck, NJ, 1990.

[DK94] G. Duchamp & D. Krob. ‘Plactic-growth-like monoids’. In Words, languages
and combinatorics, II (Kyoto, 1992), pp. 124–142. World Sci. Publ., River Edge, NJ,
1994.

[DRR99] A. J. Duncan, E. F. Robertson, & N. Ruškuc. ‘Automatic monoids and change
of generators’. Math. Proc. Cambridge Philos. Soc., 127, no. 3 (1999), pp. 403–409.
doi: 10.1017/S0305004199003722.

[ECH+92] D. B. A. Epstein, J. W. Cannon, D. F. Holt, S. V. F. Levy, M. S. Paterson, & W. P.
Thurston. Word Processing in Groups. Jones & Bartlett, Boston, Mass., 1992.

[FS93] C. Frougny & J. Sakarovitch. ‘Synchronized rational relations of finite and
infinite words’. Theoret. Comput. Sci., 108, no. 1 (1993), pp. 45–82. Interna-
tional Colloquium on Words, Languages and Combinatorics (Kyoto, 1990). doi:
10.1016/0304-3975(93)90230-Q.

[Ful97] W. Fulton. Young Tableaux, vol. 35 of London Mathematical Society Student Texts.
Cambridge University Press, Cambridge, 1997. With applications to representa-
tion theory and geometry.

[GK10] E. Güzel Karpuz. ‘Complete rewriting system for the Chinese monoid’.
Appl. Math. Sci. (Ruse), 4, no. 21–24 (2010), pp. 1081–1087. url:
www.m-hikari.com/ams/ams-2010/ams-21-24-2010/karpuzAMS21-24-2010-2.pdf.

[Gre07] J. A. Green. Polynomial representations of GLn, vol. 830 of Lecture Notes in Math-
ematics. Springer, Berlin, augmented edition, 2007. With an appendix on
Schensted correspondence and Littelmann paths by K. Erdmann, Green and
M. Schocker.

[Gro87] M. Gromov. ‘Hyperbolic groups’. In S. M. Gersten, ed., Essays in group theory,
vol. 8 of Math. Sci. Res. Inst. Publ., pp. 75–263. Springer, New York, 1987.

[GS90] S. M. Gersten & H. B. Short. ‘Small cancellation theory and automatic groups’.
Invent. Math., 102, no. 2 (1990), pp. 305–334. doi: 10.1007/BF01233430.

[Hey00] A. Heyworth. ‘Rewriting as a special case of non-commutative Gröbner basis
theory’. 275 (2000), pp. 101–105. doi: 10.1017/CBO9780511600609.009.

[HR12] D. F. Holt & S. Rees. ‘Artin groups of large type are shortlex automatic with
regular geodesics’. Proc. Lond. Math. Soc. (3), 104, no. 3 (2012), pp. 486–512. doi:
10.1112/plms/pdr035.

[HT03] M. Hoffmann & R. M. Thomas. ‘Notions of automaticity in semigroups’. Semi-
group Forum, 66, no. 3 (2003), pp. 337–367. doi: 10.1007/s002330010161.

[HT05] M. Hoffmann & R. M. Thomas. ‘Biautomatic semigroups’. In Fundamentals of
computation theory, vol. 3623 of Lecture Notes in Comput. Sci., pp. 56–67. Springer,
Berlin, 2005. doi: 10.1007/11537311_6.

12

http://dx.doi.org/10.1007/978-3-642-21254-3_19
http://dx.doi.org/10.1016/j.jpaa.2009.09.015
http://arxiv.org/abs/1106.4753v1
http://dx.doi.org/10.1016/j.jalgebra.2003.12.004
http://dx.doi.org/10.1017/S0960129596002149
http://dx.doi.org/10.1142/S0219498808003028
http://dx.doi.org/10.1016/S0304-3975(99)00151-6
http://dx.doi.org/10.1017/S0305004199003722
http://dx.doi.org/10.1016/0304-3975(93)90230-Q
http://www.m-hikari.com/ams/ams-2010/ams-21-24-2010/karpuzAMS21-24-2010-2.pdf
http://dx.doi.org/10.1007/BF01233430
http://dx.doi.org/10.1017/CBO9780511600609.009
http://dx.doi.org/10.1112/plms/pdr035
http://dx.doi.org/10.1007/s002330010161
http://dx.doi.org/10.1007/11537311_6

[HU79] J. E. Hopcroft & J. D. Ullman. Introduction to Automata Theory, Languages, and
Computation. Addison–Wesley Publishing Co., Reading, Mass., 1979.

[Kas91] M. Kashiwara. ‘On crystal bases of the Q-analogue of universal en-
veloping algebras’. Duke Math. J., 63, no. 2 (1991), pp. 465–516. doi:
10.1215/S0012-7094-91-06321-0.

[Knu70] D. E. Knuth. ‘Permutations, matrices, and generalized Young tableaux’. Pacific
J. Math., 34 (1970), pp. 709–727. url: projecteuclid.org/euclid.pjm/1102971948.

[KO14] Ł. Kubat & J. Okniński. ‘Gröbner-Shirshov Bases for Plactic Algebras’. Algebra
Colloq., 21, no. 4 (2014), pp. 591–596. doi: 10.1142/S1005386714000534.

[KT97] D. Krob & J. Y. Thibon. ‘Noncommutative symmetric functions. IV. Quantum
linear groups and Hecke algebras at q = 0’. J. Algebraic Combin., 6, no. 4 (1997),
pp. 339–376. doi: 10.1023/A:1008673127310.

[Lit96] P. Littelmann. ‘A plactic algebra for semisimple Lie algebras’. Adv. Math., 124,
no. 2 (1996), pp. 312–331. doi: 10.1006/aima.1996.0085.

[LLT95] A. Lascoux, B. Leclerc, & J. Y. Thibon. ‘Crystal graphs and q-analogues of
weight multiplicities for the root system An’. Lett. Math. Phys., 35, no. 4 (1995),
pp. 359–374. doi: 10.1007/BF00750843.

[Loh05] M. Lohrey. ‘Decidability and complexity in automatic monoids’. In-
ternat. J. Found. Comput. Sci., 16, no. 4 (2005), pp. 707–722. doi:
10.1142/S0129054105003248.

[Lot02] M. Lothaire. Algebraic combinatorics on words, vol. 90 of Encyclopedia of Mathemat-
ics and its Applications. Cambridge University Press, Cambridge, 2002.

[LR34] D. Littlewood & A. Richardson. ‘Group characters and algebra’. Phi-
los Trans. Roy. Soc. London Ser. A, 233 (1934), pp. 99–141. url:
http://www.jstor.org/stable/91293.

[LS78] A. Lascoux & M. P. Schützenberger. ‘Sur une conjecture de H. O. Foulkes’. C.
R. Acad. Sci. Paris Sér. A-B, 286, no. 7 (1978), pp. A323–A324.

[LS81] A. Lascoux & M. P. Schützenberger. ‘Le monoïde plaxique’. In Noncommutative
structures in algebra and geometric combinatorics (Naples, 1978), vol. 109 of Quad.
“Ricerca Sci.”, pp. 129–156. CNR, Rome, 1981.

[LS90] A. Lascoux & M. P. Schützenberger. ‘Keys & standard bases’. In Invariant theory
and tableaux (Minneapolis, MN, 1988), vol. 19 of IMA Vol. Math. Appl., pp. 125–144.
Springer, New York, 1990.

[LT96] B. Leclerc & J. Y. Thibon. ‘The Robinson-Schensted correspondence, crystal
bases, and the quantum straightening at q = 0’. Electron. J. Combin., 3, no. 2

(1996), pp. Research Paper 11, approx. 24 pp. (electronic). The Foata Festschrift.
url: http://www.combinatorics.org/Volume_3/Abstracts/v3i2r11.html.

[OSKM98] F. Otto, A. Sattler-Klein, & K. Madlener. ‘Automatic monoids versus monoids
with finite convergent presentations’. In Rewriting techniques and applications
(Tsukuba, 1998), vol. 1379 of Lecture Notes in Comput. Sci., pp. 32–46. Springer,
Berlin, 1998. doi: 10.1007/BFb0052359.

[Ott00] F. Otto. ‘On Dehn functions of finitely presented bi-automatic monoids’. J.
Autom. Lang. Comb., 5, no. 4 (2000), pp. 405–419.

[Pic06] M. Picantin. ‘Finite transducers for divisibility monoids’. Theoret. Comput. Sci.,
362, no. 1-3 (2006), pp. 207–221. doi: 10.1016/j.tcs.2006.06.019.

[Sch61] C. Schensted. ‘Longest increasing and decreasing subsequences’. Canad. J. Math.,
13 (1961), pp. 179–191. doi: 10.4153/CJM-1961-015-3.

[Sch97] M. P. Schützenberger. ‘Pour le monoïde plaxique’. Math. Inform. Sci. Humaines,
, no. 140 (1997), pp. 5–10. url: www.ehess.fr/revue-msh/pdf/N140R764.pdf.

[Ser10] L. Serrano. ‘The shifted plactic monoid’. Math. Z., 266, no. 2 (2010), pp. 363–392.
doi: 10.1007/s00209-009-0573-0.

[SOK94] C. C. Squier, F. Otto, & Y. Kobayashi. ‘A finiteness condition for rewrit-
ing systems’. Theoret. Comput. Sci., 131, no. 2 (1994), pp. 271–294. doi:
10.1016/0304-3975(94)90175-9.

13

http://dx.doi.org/10.1215/S0012-7094-91-06321-0
http://projecteuclid.org/euclid.pjm/1102971948
http://dx.doi.org/10.1142/S1005386714000534
http://dx.doi.org/10.1023/A:1008673127310
http://dx.doi.org/10.1006/aima.1996.0085
http://dx.doi.org/10.1007/BF00750843
http://dx.doi.org/10.1142/S0129054105003248
http://www.jstor.org/stable/91293
http://www.combinatorics.org/Volume_3/Abstracts/v3i2r11.html
http://dx.doi.org/10.1007/BFb0052359
http://dx.doi.org/10.1016/j.tcs.2006.06.019
http://dx.doi.org/10.4153/CJM-1961-015-3
http://www.ehess.fr/revue-msh/pdf/N140R764.pdf
http://dx.doi.org/10.1007/s00209-009-0573-0
http://dx.doi.org/10.1016/0304-3975(94)90175-9

[Ufn98] V. Ufnarovski. ‘Introduction to noncommutative Gröbner bases theory’. In
Gröbner bases and applications (Linz, 1998), vol. 251 of London Math. Soc. Lec-
ture Note Ser., pp. 259–280. Cambridge Univ. Press, Cambridge, 1998. doi:
10.1017/CBO9780511565847.015.

14

http://dx.doi.org/10.1017/CBO9780511565847.015

	Title
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Plactic monoid
	2.2 Biautomatic structures

	3 Complete rewriting system & Gröbner–Shirshov basis
	4 Biautomaticity
	4.1 Right-multiplication by transducer
	4.2 Left-multiplication by transducer
	4.3 Deducing biautomaticity

	5 References

