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ABSTRACT We present a model of capital allocation in a foreign exchange proprietary
trading firm. The owner allocates capital to individual traders, who operate within strict risk
limits. Traders specialize in individual currencies, but are given discretion over their choice of
trading rule. The owner provides the simple formula that determines position sizes – a
formula that does not require estimation of the firm-level covariance matrix. We provide
supporting empirical evidence of excess risk-adjusted returns to the firm-level portfolio, and
we discuss a modification of the model in which the owner dictates the choice of trading rule.
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INTRODUCTION
We present a model in which a foreign
exchange trading firm owner shares capital
among a group of traders. His objective is to
earn excess risk-adjusted returns to the firm-
level portfolio, but under the constraint that his
employees trade as individuals. They specialize
in individual currencies, concentrating solely
on the exchange rate between their designated
currency and the US dollar.

We contribute to the literature on
risk-adjusted performance measurement
(RAPM) in two distinct ways. First, we derive
a simple plug-in formula for capital allocation
that may be adapted to different risk
measures1 and, second, we highlight the
impact organizational constraints may have
on the allocation problem.

A full mean-variance optimization exercise
(based on the firm-level covariance matrix)
would likely generate a volatile capital
allocation scheme. This is due in part to the
high sensitivity of the optimal weights to
changes in the problem set-up brought about
by time-varying sample estimates of variances
and covariances, but also due to estimation
error. A literature has developed that deals
with the problem – the shrinkage literature.2

We propose that the owner adopts a simple
risk budgeting scheme that is based on
the conditional volatilities of individual
currencies, but not on the correlations
between them.

We discuss two versions of the model: the
‘discretionary’ and the ‘automated’ model.
In the former, each trader is tasked with
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trading a single currency, but is given
discretion over his choice of trading rule.
In the latter, owners dictate both the risk
limits and the trading rule choices. In both
versions, the owner provides the formula
that determines position sizes. The key
distinction between the models lies in the way
information is processed. The discretionary
model is an ‘as-if ’ model, in which optimal
rules are chosen with the benefit of hindsight
– accordingly, a higher statistical threshold is
put in place if the results are to be deemed
significant. In the automated model, the
owner’s choice of rule is adapted to the
information actually available in real time. His
choice of rule is based on an ever-expanding
information set, and can be seen as an exercise
in statistical learning.

The remainder of this article is set out as
follows. In the section ‘Position-sizing
formula’, we develop the position-sizing
formula for the case of a single trader. In the
case of multiple traders, we introduce a
simple method of risk budgeting that is based
on an equitable distribution of capital. We
assume that risk budgets are binding, and that
variations in position sizes are driven primarily
by time variation in conditional volatilities.
The section ‘Expectations and conditional
volatility’ introduces the owner’s forward-
looking risk-adjusted performance target –
the target Sharpe ratio acts as the transmission
mechanism from conditional volatilities to
position sizes. The ‘Results’ section provides
supporting empirical evidence of the ability
of both versions of our model to deliver
statistically and economically significant
excess returns to the firm-level portfolio.
The final section concludes, and discusses
concurrent research in which we allow traders
to use their full risk allocations selectively.

POSITION-SIZING FORMULA
We begin by solving the owner’s capital
allocation problem for the case of one trader.
In this case, the solution provides an optimal
level of leverage. The model follows

Campbell and Viceira (2002), modified to
the choice between a foreign currency and a
risk-free domestic asset.

The owner exhibits constant relative risk
aversion (CRRA), with power utility defined
over next-period wealth:

UðWt + 1Þ ¼ W 1 - γ
t + 1

1 - γ
; (1)

where W is wealth and γ is the coefficient
of relative risk aversion.

We assume portfolio returns are log-
normally distributed, which implies that
next-period wealth is also log-normally
distributed. In conjunction with CRRA
preferences, the assumption of log-normally
distributed portfolio returns leads to a closed-
form solution for capital allocation to the risky
asset, equation (18), which is increasing in
expected log returns and decreasing in the
variance of log returns. Our specification has
the convenient property that the percentage
of capital allocated to the risky asset is
independent of the owner’s current level
of wealth.

The owner’s objective is to maximize the
expected utility of next-period wealth:

max E
W 1- γ

t + 1

1 - γ

 !

subject to the budget constraint

Wt + 1 ¼ 1 +Rp;t + 1
� �

Wt; (2)

where Rp,t+1 is the simple portfolio return.
We detail the algebraic steps necessary to
restate this problem equivalently in terms of
log(Wt ), rather than Wt . The idea is to
modify the problem set-up in order to take
advantage of the log-normality of returns
assumption.

Observe first that, because (1−γ) is a
constant, maximizing E½W 1 - γ

t + 1 =ð1 - γÞ� is the
same as maximizing E½W 1- γ

t + 1 �: Furthermore,
applying the natural log function results in a
monotonic transformation, thus maximizing
E½W 1 - γ

t + 1 � is the same as maximizing
logðE½W 1 - γ

t + 1 �Þ:
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Our assumption of log-normally
distributed wealth now enables convenient
manipulation of the awkward-looking
expression logðE½W 1 - γ

t + 1 �Þ: We make use of
the standard result of the log-normal density
function that, if ln(Wt+1) is normally
distributed, then

E Wt + 1½ � ¼ exp

�
E log Wt + 1ð Þ½ �

+
1
2
V log Wt + 1ð Þ½ �

�
; ð3Þ

where E and V are the expectation and
variance operators, respectively. Taking
natural logs of both sides of equation (3) yields

log E Wt + 1½ �ð Þ ¼ E log Wt + 1ð Þ½ �
+
1
2
V log Wt + 1ð Þ½ �; ð4Þ

from which it follows that

log E W 1 - γ
t + 1

� �� � ¼ E log W 1 - γ
t + 1

� �� �
+
1
2
V log W 1- γ

t + 1

� �� �
: ð5Þ

By using standard rules for manipulating
expectations, variances and natural logs,
the expression in equation (5) simplifies to

1 - γð Þ log E Wt + 1½ �ð Þ ¼ 1 - γð ÞE log Wt + 1ð Þ½ �
+
1
2

1 - γð Þ2V log Wt + 1ð Þ½ �;
ð6Þ

and after dividing equation (6) throughout by
(1−γ), we are left with the useful expression

log E Wt + 1½ �ð Þ ¼ E log Wt + 1ð Þ½ �
+
1
2

1 - γð ÞV log Wt + 1ð Þ½ �: ð7Þ

Applying natural logs to the budget
equation, that is equation (2), yields

log Wt + 1ð Þ ¼ log 1 +Rp;t + 1
� �

+ log Wtð Þ:
(8)

Substituting for log(Wt+1) from
equation (8) in equation (7) yields the
objective function

log E Wt + 1½ �ð Þ ¼ E log 1 +Rp;t + 1
� �� �

+E log Wtð Þ½ �
+
1
2

1 - γð ÞV log Rp;t + 1
� �� �

: ð9Þ

Of course, E log Wtð Þ½ � is the same as log
(Wt ), because Wt is known at time t.
Constants do not affect the maximization
exercise, thus maximizing log E Wt + 1½ �ð Þ is
equivalent to the following maximization
problem:

max E log 1 +Rp;t + 1
� �� �

+
1
2

1 - γð ÞV log Rp;t + 1
� �� �

: ð10Þ

After introducing the lower-case notation
rp,t+1≡ log(1+Rp,t+1), we arrive at the much
simpler-looking maximization objective:

max E rp;t + 1
� �

+
1
2

1 - γð ÞV rp;t + 1
� �

: (11)

The maximization problem is now
stated in terms of log portfolio returns,
which are a non-linear combination of the
individual assets in the portfolio. We follow
the Campbell and Viceira (2002) linear
approximation of these returns, adapted to the
special case of foreign exchange. The
equation of the simple return Rt+1 to the
foreign currency is

1 +Rt + 1 ¼ 1 +R*
0;t + 1

� 	 St + 1
St

� �
; (12)

where R0,t+1
* is the foreign risk-free interest

rate and St is the exchange rate expressed as
domestic currency units per unit of foreign
currency. Taking natural logarithms
throughout equation (12) gives

log 1 +Rt + 1ð Þ ¼ log 1 +R*
0;t + 1

� 	
+ log St + 1ð Þ

- log Stð Þ: ð13Þ
The trader allocates αt of his wealth to the

foreign currency and 1−αt to the domestic
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risk-free asset, giving an equation in terms of
the portfolio simple return Rp,t+1 of

1 +Rp;t + 1 ¼ 1 + αtRt + 1 + 1 - αtð ÞR0;t + 1

¼ 1 +R0;t + 1 + αt Rt + 1 -R0;t + 1
� �

;

where R0,t+1 denotes the rate of interest on
the domestic risk-free asset. This equation can
be rearranged to give

1 +Rp;t + 1

1 +R0;t + 1
¼ 1 + αt

1 +Rt + 1

1 -R0;t + 1
- 1

� �
: (14)

Substituting for 1+Rt+1 from equation (12)
in equation (14), and taking natural logarithms
throughout, yields

rp;t + 1 - r0;t + 1 ¼ log 1 + αt exp½f ðr*0;t + 1 - r0;t + 1
+ st + 1 - stÞ - 1�g: ð15Þ

Here we have introduced the lower-case
notation rp,t+1≡ log(1+Rp,t+1), r0,t+1≡
log(1+R0,t+1), rp,t+1

* ≡ log(1+R0,t+1
* ) and

st≡ log(St ). Equation (15) shows that
portfolio excess returns are a function of the
log interest rate differential, r0,t+1− r0,t+1

* ,
and the log return on the exchange rate,
st+1− st. Let

f r*0;t + 1 - r0;t + 1; st + 1 - st
� 	
¼ log 1 + αt exp r*0;t + 1 - r0;t + 1 + st + 1 - st

� 	
- 1

h in o
:

ð16Þ

The second-order Taylor expansion of the
function f around the point r0,t+1

* − r0,t+1 +
st+1− st= 0 yields

f r*0;t + 1 - r0;t + 1 + st + 1 - st
� 	
� f 0ð Þ + f ′ 0ð Þ r*0;t + 1 - r0;t + 1 + st + 1 - st

� 	
+
1
2
f ′′ 0ð Þ r*0;t + 1 - r0;t + 1 + st + 1 - st

� 	2
;

with f ′(0)= αt and f ″(0)= αt(1−αt). After
replacing (r0,t+1

* − r0,t+1 + st+1− st)
2 with its

conditional expectation σt
2, the linear

approximation for excess log returns can be
written as

rp;t + 1 - r0;t + 1 ¼ αt r*0;t + 1 + - r0;t + 1 + st + 1 - st
� 	

+
1
2
αt 1 - αtð Þσ2t : ð17Þ

The final stage is to substitute equation (17)
and the corresponding variance of portfolio
log returns, αt

2σt
2, into the objective function,

that is equation (11):

max αtEt r*0;t + 1 - r0;t + 1 + st + 1 - st
� 	

+
1
2
αt 1 - αtð Þσ2t +

1
2

1 - γð Þα2t σ2t :
The first-order condition yields an optimal

allocation of wealth to the foreign currency of

αt ¼
Et st + 1 - stð Þ + r*0;t + 1 - r0;t + 1 + σ2t =2

γσ2t
:

(18)

The proportion of wealth allocated to
the foreign currency is increasing in the
expected appreciation of the foreign currency
and increasing in the differential between
the foreign interest rate and the domestic
risk-free rate. The proportion is decreasing in
conditional volatility and decreasing in the
owner’s coefficient of relative risk aversion.

Portfolio construction
Of course, the owner’s allocation problem is
complicated by there being multiple
currencies and by each currency being
assigned to an individual trader. Although we
do not discuss the principal-agent problem
in this article, employees in proprietary firms
commonly have individual contracts that
detail percentage profit splits with the owner,
who in return offers substantially reduced
commissions that reflect the large trading
volumes the firm places with third parties.
That traders act as individuals – rather than as
part of a team – restricts the ability of the
owner to allocate capital in accordance with
a full mean-variance optimization scheme.
The allocations would likely be too volatile,
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with certain traders being allocated large
shares of capital purely on the basis of pairwise
correlations between currencies. We suggest
that the owner is more likely to adopt an
equitable scheme, with departures reflecting
the discipline of traders in staying within their
risk limits, or by their ability to choose ‘good’
trading rules. As an abstraction, we adopt the
purely equitable approach and leave for future
research the interesting questions of how to
measure and reward individual performance.

We suggest that the owner achieves an
equitable allocation simply by multiplying
his coefficient of relative risk aversion by the
number of traders in the firm. Diversification
benefits to the firm-level portfolio ensure
that portfolio risk lies within the owner’s
original risk tolerance. An equitable allocation
can be thought of as a risk-adjusted naive
diversification3 strategy without short-sale
constraints. A justification for this approach
could be to avoid the problem of distinguishing
current profitability due to chance from that
of trading skill. Logistically, the owner then
presents a simple position-sizing formula to
each trader, with variations in position size
reflecting changes in conditional volatility and
the level of the firm’s capital:

αt ¼ 1
N

Et st + 1 - stð Þ + r*0;t + 1 - r0;t + 1 + σ2t =2
γσ2t

;

(19)

where N is the number of traders. It now
remains to discuss how the owner calculates
conditional volatility and how traders use
trading rules in forming expectations.

EXPECTATIONS AND
CONDITIONAL VOLATILITY
We now introduce the notion of a ‘target
Sharpe Ratio’. The idea offers a practical
solution to the problem of mapping binary
signals into expectations, but also offers a
practical insight into the way traders use
simple rules-of-thumb in their decision-
making. The method is grounded in several

references in the literature to firms’ use of
threshold levels of risk-adjusted profitability.
Lyons (2001) provides anecdotal evidence
that foreign exchange trading firms only
allocate capital to those strategies expected to
yield annualized Sharpe ratios in the range
0.5–1.0; Grinold and Kahn (2000) and
Menkhoff and Taylor (2007) suggest that
0.5 is a common benchmark used for
identifying ‘good’ trading rules.

We propose, uncontroversially, that the
owner expects to earn a risk premium as
compensation for being exposed to exchange
rate risk. Owners adopt a target Sharpe ratio,
which when rearranged and augmented by a
trading rule signal gives an expression for the
expected appreciation of each foreign
currency:

Et st + 1 - stð Þ ¼ It
SRtarget ´ σtffiffiffiffiffiffiffiffi

250
p : (20)

Here SRtarget is an annualized measure of
the Sharpe ratio, It∈ {−1, 1} is a binary signal,
and we assume that there are 250 trading days
in a year. Owners use an exponentially
weighted moving average (EWMA)
estimate of volatility. The advantage of the
method – which is well established in the
risk management industry – is that it can be
used to produce estimates extremely quickly.
The EWMA estimator is defined by

σ̂2t ¼ 1 - λð Þμ2t - 1 + λσ̂2t - 1; (21)

where λ is a smoothing parameter and μt−1 is
last period’s return. A smoothing parameter of
0.94 is generally regarded as appropriate for
daily observations (Alexander and Sheedy,
2010).

Substituting equations (20) and (21)
into the capital allocation equation, that is
equation (19), yields the bottom-line
position-sizing formula:

αt ¼ 1
Nγ

ItSRtargetffiffiffiffiffiffiffiffi
250

p
σ̂t

+
r*0;t + 1 - r0;t + 1

σ̂2t
+
1
2

 !
:

(22)

Let us examine the sensitivity of the
position size to each variable in equation (22).

Allocating capital in a foreign exchange proprietary trading firm
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First, we use a simple risk-budgeting
scheme (rather than full mean-variance
optimization). To allocate 1/N of optimal
position sizes to each currency is to be
conservative; likely there would be benefits
to diversification at the portfolio level that
would allow larger position sizes in each
currency. Second, position sizes are inversely
related to the risk aversion, γ, of the
owner. Now, examining the terms in the
parentheses, a higher target Sharpe ratio
implies higher expected returns, and hence
larger position sizes. The target Sharpe
ratio – or the expected market price of risk –
is the mechanism that maps volatility into
expected returns. On balance, however,
higher estimates of conditional volatility are
accompanied by smaller position sizes. Even
though the target Sharpe ratio heuristic
maps higher volatilities into greater absolute
expected exchange rate movements, smaller
position sizes result, as the risk term
dominates. Larger position sizes are taken
when trading rule signals act in the same
direction as the interest rate differential –
the ‘carry trade’ effect.

Trading rules
In the ‘discretionary’ version of our model,
traders are free to choose the trading rule that
generates signals in their particular currency.
In the ‘automated’ version, the owner dictates
the choice of trading rule. We now describe
the choice set of trading rules.

We include four types of rule – designed
to broadly follow those of Qi and Wu (2006),
who in turn apply the stock index rules of
Sullivan et al (1999). With the exception of
the ‘filter’ rule, the variable of interest is the
number of days of sample data. There are four
types of trading rule, each having 250 possible
parameter values, giving a total trading rule
universe of 1000 rules. The ‘momentum’,
‘moving average’ and ‘trading range break’
rules are trend-following rules, whereas the
‘filter’ is a contrarian rule. Each rule is
described below.

Momentum
The momentum indicator signals whether the
rate of change of the exchange rate has been
positive or negative over a historical time
period n∈ {1, 2, 3,…, 250}:

ItðnÞ ¼
+ 1 if St > St - n
0 if St ¼ St - n
- 1 if St < St - n

8<
: :

Moving average
The moving average indicator offers a slightly
more complicated version of the momentum
rule; it includes all sample points in its
calculation:

SMAt ¼
Xt
t¼t - n

St
n + 1

:

The indicator function for the simple
moving average rule is

ItðnÞ ¼
+ 1 if St > SMAt

0 if St ¼ SMAt

- 1 if St < SMAt

8<
: :

Trading range break
The n-day breakout indicator generates a
positive signal if today’s close is greater than
the highest high of the previous n prices:

ItðnÞ ¼
+ 1 if St>max St - 1; St - 2; :::; St - nð Þ
- 1 if St<min St - 1; St - 2; :::; St - nð Þ
It - 1 otherwise

8<
: :

The indicator is zero until the first
breakout, and maintains this value until a
breakout occurs in the opposite direction.

Filter
The filter rule focuses on recent highs and
lows. Consider a falling market. The low is
reset at subsequent lower lows until an
n-per cent rise generates a buy signal. We
consider n∈ {1.000 per cent,1.006 per
cent,1.012 per cent,…, 2.494 per cent},
designed to capture 250 rules in a range
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consistent with the previous literature.
Sell signals in a rising market are generated
similarly.

The trading rule signals provide the
final piece of information required by the
position-sizing formula, that is equation (22).
We provide empirical evidence that the
owner is able to allocate capital equitably,
while still generating firm-level excess
risk-adjusted returns. Our exchange rates are
drawn from the Federal Reserve Board’s
H.10 series, and interest rates are British
Bankers Association 3-month LIBOR rates.
They cover the period from 4 January 1999 to
20 January 2012, and comprise six major
foreign currencies: the Australian dollar,
British pound, Canadian dollar, Euro,
Japanese yen and Swiss franc. We now
compare the returns to the ‘discretionary’
and ‘automated’ versions of our model.

RESULTS
In the discretionary model, the owner dictates
the position-sizing formula, but allows traders
discretion in their choice of trading rule.
This version offers the owner diversification
across methods, as well as diversification across
currencies. The discretionary model raises the
question of how traders choose their trading
rule. Although this is an interesting question
in itself, we sidestep the modelling problem
by allowing traders to choose the optimal
in-sample rule for their particular currency.
Clearly this is not achievable in reality, and
thus any statistical inference drawn from the
exercise must take into account the so-called
‘data snooping’ problem (Lo and MacKinlay,
1990).

The Reality Check (White, 2000) tests
whether the best rule beats the null hypothesis
of zero excess profitability. The idea is that the
researcher can search aggressively across a
wide variety of rules, safe in the knowledge
that the distribution of the test statistic under
the null hypothesis adjusts to compensate for
the increased chance of achieving ‘lucky’
results across many searches. The time-series

bootstrap (Politis and Romano, 1994)
generates pseudo-time series of returns by
sampling blocks of observations from the
empirical series, where the size of each block
is drawn from a geometric distribution with
mean size q. The size of the block is an
increasing function of the dependency
evident in the empirical data – we use a
conservative block size of q= 10, as in
Sullivan et al (1999).

The following iterative procedure
(White, 2000) obtains the P-value for the best
model. Starting with the first model, and
B= 1000 bootstrap replicate series, the test
statistic V 1 is defined as

V 1 ¼ n
1
2R1;

where R1 denotes the mean excess return of
the first model and n is the number of returns.
For each of the B= 1000 bootstrap replicate
series, one calculates the statistic

V *
1;i ¼ n

1
2 R*

1;i -R1

� 	
;

i ¼ 1; ¼ ; 1; 000
(23)

where the superscript ‘*’ identifies simulated
series. The P-value of the first rule is obtained
by comparing V 1 to the percentiles of V *

1;i.
One then proceeds to examine the second
trading rule. Compute

V 2 ¼ max n
1
2R2;V 1

n o
(24)

and

V *
2;i ¼ max n

1
2 R*

2;i -R2

� 	
;V *

1;i

n o
;

i ¼ 1; ¼ ; 1000 ð25Þ
noting that equation (25) uses the same
replicate series as in equation (23).

One proceeds recursively through the
remaining k models, obtaining

Vk ¼ max n
1
2Rk;Vk - 1

n o
and

V *
k;i ¼ max n

1
2 R*

2;i -R2

� 	
;V *

k - 1;i

n o
;

i ¼ 1; ¼ ; 1000:
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The P-value of the optimal rule is obtained
by comparing Vk with the percentiles of V *

k;i:
Table 1 presents the results for

discretionary traders. Panel A presents, for
comparison, the results for the time series of
returns conditioned on the trading rule signals
of the optimal rule. To enable meaningful
comparisons between absolute levels of excess
return, we calibrate the coefficient of relative
risk aversion, γ, to a restricted version of
equation (22), in which the conditional
volatility estimate is fixed and the trader
ignores the interest rate differential:

αt ¼ 1
γ

ItSRtargetffiffiffiffiffiffiffiffi
250

p
~σt

� �
� k;

where k is a constant. Now γ merely acts as a
leverage parameter – the same percentage of
capital is invested or borrowed for all signals.
Reality Check P-values and Sharpe ratios are
unaffected by the particular value of γ chosen,
but the calibrated value of γ= 3.7 ensures
that, on average, position sizes are equal with
and without the owner’s position-sizing
formula. An equivalent exercise – and the
one followed by most studies of technical
trading rules – is to condition the time series

of returns by a sequence of 1s and −1s
(corresponding to long and short positions),
and to then analyse the conditioned time
series of returns. Our restricted version of
equation (22) merely changes the sequence of
conditioning variables to +/−k, where k is
chosen to generate position sizes that are,
on average, equal to those generated by the
owner’s formula.

Panel B presents the results for discretionary
traders using the optimal rule in combination
with the owner’s position-sizing
formula. This is an ‘as-if ’ analysis, where
we study the situation in which each trader
chooses the single in-sample rule that is
optimal for their currency. The improvement
in Reality Check P-values – as traders actively
manage their position sizes – is evident across
all currencies. The economic significance of
the results – the Sharpe ratio – increases
markedly once the traders actively manage
their position sizes. However, the results in
Panel B present an interesting dilemma to the
owner. After adjusting for data snooping bias,
half of the traders appear to generate excess
returns. In practice, the owner may have to
balance the competing claims of the star

Table 1: Table presenting the excess returns, Reality Check P-values and Sharpe ratios of individual traders in the
‘discretionary’ model

Best trading rule Round-trip transaction costs

Excess return (annualized) Reality check (P-value) Sharpe (annualized)

0.00% 0.05% 0.00% 0.05% 0.00% 0.05%

Panel A: Without Position Sizing
Australian dollar 103-day momentum 9.4 9.0 0.224 0.271 0.66 0.63
Canadian dollar 113-day momentum 6.2 5.9 0.252 0.327 0.63 0.60
Swiss franc 22-day breakout 5.4 5.1 0.619 0.687 0.47 0.45
Euro 26-day momentum 9.8 9.0 0.046* 0.077 0.93 0.86
British pound 101-day breakout 6.7 6.7 0.217 0.235 0.68 0.67
Japanese yen 176-day breakout 5.5 5.5 0.514 0.531 0.54 0.54

Panel B: With Position Sizing
Australian dollar 1.7% filter 21.0 19.6 0.009** 0.023* 1.08 1.00
Canadian dollar 113-day momentum 12.0 11.0 0.134 0.226 0.73 0.67
Swiss franc 108-day momentum 8.7 7.9 0.452 0.558 0.52 0.46
Euro 26-day momentum 17.2 15.6 0.021* 0.044* 1.04 0.95
British pound 101-day breakout 15.9 15.3 0.046* 0.069 0.87 0.84
Japanese yen 176-day breakout 15.2 14.7 0.100 0.131 0.73 0.70

All simulations use a target Sharpe ratio of 0.5 and deduct 0.05 per cent proportional round-trip transaction costs, as
in Qi and Wu (2006).
Levels of significance are *= 5 per cent and **=1 per cent.
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traders (those delegated with the responsibility
of trading the Australian dollar, Euro and
British pound) with those of the under-
performers – traders who still offer value to
the owner in terms of method and currency
diversification. This principal/agent problem
is one we are actively researching, but from
which we abstract in the current article.

The corresponding performance of the
firm-level portfolio is described in Table 2.
The value to the owner in imposing the
position-sizing formula is striking. Reality
Check P-values for constant position sizing
are 0.193 with transaction costs, and 0.287
without transaction costs. The Sharpe ratio
of the best rule – the 108-day momentum
rule – is 0.60, reducing to 0.54 when
transaction costs are properly taken into
account. In stark contrast, the returns to
the firm-level portfolio when traders are
charged with using the owner’s position-
sizing formula are both statistically and
economically significant. The 108-day
momentum rule is still the optimal in-sample
rule, but the Reality Check P-value is now
0.024, with a corresponding Sharpe ratio of
0.89. That the Sharpe ratio has also increased
provides evidence that the results have
economic, as well as statistical, merit.

Table 3 examines the impact on individual
currency traders of being forced to move
away from the currency-specific optimal
trading rule to the portfolio optimal trading
rule, the 108-day momentum strategy. It can

be seen that, with the exception of the
Japanese yen, which has been forced into
losses, individual currency trading remains
profitable. In Panel B, one observes consistent
improvement in returns once the position-
sizing formula is applied. Interestingly,
position sizing turns the Japanese Yen returns
into profit, suggesting that economic benefit
is being derived from estimating time-varying
volatility in accordance with the EWMA
estimator.

In the ‘automated’ model, the owner
assumes control of the trading rule choice.
We assume the owner instructs every trader
to use the same trading rule – the best-
performing rule on the available historical
data. At the beginning of the sample – where
there is little historical information – the
trading rule choice is volatile. But eventually
the owner’s choice converges to the 108-day
momentum rule that was found to be the best
in-sample rule in Table 2.

Table 4 presents the results for the firm-
level portfolio in the ‘automated’ model.
Naturally, mean returns are lower than for the
in-sample ‘discretionary’ model: the best net
returns in Table 2 were 10.0 per cent, whereas
they have decreased to 7.5 per cent in Table 4.
Nevertheless, the P-value has decreased further
to 0.021. The reduction in mean returns has
been more than offset by the elimination of
data-snooping bias – the owner only uses
historical information in the ‘automated’
model. The qualitative conclusion of the

Table 2: Table presenting excess returns, Reality Check P-values and Sharpe ratios for the firm-level portfolio in
the ‘automated’ model

Best trading rule Excess return
(annualized)

Reality check
(P-value)

Sharpe
(annualized)

Panel A: Without Position Sizing
0.00% round-trip costs 108-day momentum 4.4 0.193 0.60
0.05% round-trip costs 108-day momentum 4.0 0.287 0.54

Panel B: With Position Sizing
0.00% round-trip costs 108-day momentum 11.1 0.013* 0.99
0.05% round-trip costs 108-day momentum 10.0 0.024* 0.89

All simulations use a target Sharpe ratio of 0.5 and deduct 0.05% proportional round-trip transaction costs,
as in Qi and Wu (2006).
Levels of significance are *= 5 per cent and **=1 per cent.
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previous section remains – the position-sizing
formula is crucial in generating excess returns
to the firm-level portfolio.

Sensitivity analysis
The owner’s coefficient of relative risk
aversion and his choice of target Sharpe ratio
are leverage parameters that do not affect
the results, other than by scaling the mean
returns. Variations in capital allocation are
driven by time-varying estimates of volatility.
The degree to which the EWMA estimator

(equation (21)) discounts past information is
determined by the smoothing parameter λ.
Setting λ= 1.00 is equivalent to using a
constant volatility estimate, which in
combination with a target Sharpe ratio,
implies expectations of a constant risk
premium. It is evident from the first row of
Table 5 that the worst results follow from an
assumption of constant volatility. If, however,
the trader uses a value of λ in the region of
0.94 – as suggested by J.P. Morgan/Reuters
(1996) – then the results are robust to
variations around this level. The results are
more forgiving of a trader who errs on the
side of placing greater weight on recent
returns, than of one who errs on the side of
treating volatility as constant. The implication
is that the owner should be confident using
the J.P. Morgan/Reuters (1996) parameter.

CONCLUSION
We consider an organizational structure in
which a trading firm owner shares capital
among a group of traders, each of whom
trades in isolation from his colleagues. We
propose an equitable risk-budgeting scheme,
a key strength of which is its computational
simplicity. The allocation scheme offers

Table 3: Table presenting the excess returns and Sharpe ratios of individual traders when all traders use the
108-day momentum rule

108-day momentum

Best trading rule Excess return
(annualized)

Sharpe
(annualized)

Excess return
(annualized)

Sharpe
(annualized)

Panel A: Without Position Sizing
Australian dollar 103-day momentum 9.0 0.63 8.3 0.58
Canadian dollar 113-day momentum 5.9 0.60 4.1 0.42
Swiss franc 22-day breakout 5.1 0.45 4.4 0.38
Euro 26-day momentum 9.0 0.86 4.2 0.40
British pound 101-day breakout 6.7 0.67 4.6 0.46
Japanese yen 176-day breakout 5.5 0.54 −1.7 −0.17

Panel B: With Position Sizing
Australian dollar 1.7% filter 19.6 1.00 17.8 0.87
Canadian dollar 113-day momentum 11.0 0.67 8.9 0.54
Swiss franc 108-day momentum 7.9 0.46 7.9 0.46
Euro 26-day momentum 15.6 0.95 9.3 0.55
British pound 101-day breakout 15.3 0.84 11.4 0.64
Japanese yen 176-day breakout 14.7 0.70 4.6 0.21

All simulations use a target Sharpe ratio of 0.5 and deduct 0.05% proportional round-trip transaction costs, as in Qi
and Wu (2006).

Table 4: Table presenting excess returns and Sharpe
ratios for the firm-level portfolio in the ‘automated’
model

Excess
return
(annualized)

Time-series
bootstrap
(P-value)

Sharpe
(annualized)

Panel A: Without Position Sizing
0.00% round-
trip costs

1.5 0.240 0.21

0.05% round-
trip costs

0.9 0.344 0.12

Panel B: With Position Sizing
0.00% round-
trip costs

8.0 0.020* 0.70

0.05% round-
trip costs

7.5 0.021* 0.66

Levels of significance are *= 5 per cent and
**=1 per cent.
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some stability, with variations in position sizes
resulting from changes in conditional
volatility, rather than from traders’ past
performance. We show that this abstraction
of the owner’s capital allocation problem
generates statistically and economically
significant excess returns to the firm-level
portfolio in both the ‘discretionary’ and
‘automated’ versions of the model.

We are actively researching extensions to
the model that reflect the finer organizational
details of actual proprietary trading firms.
One departure from our abstract model is in
the way owners compensate traders – traders
tend to be self-employed, with formal profit-
sharing contracts. Successful traders see their
capital accounts grow, whereas unsuccessful
traders see their accounts shrink, creating
interesting intra-firm capital dynamics.

A second extension lies in the way traders
use their risk limits. In this article, we assume
risk limits are binding, as the owner dictates
the position-sizing formula. A relaxation of
this assumption creates an incentive for traders
exhibiting the traits associated with Prospect
Theory (Kahneman and Tversky, 1979) to

trade within their limits when in the domain
of profits, and only at their limits when in the
domain of losses. Should the owner wish to
adopt our equitable structure, his contracts
will need to be structured accordingly.

NOTES
1. For a survey of the problem approached from a

Value-at-Risk perspective, see Aziz and Rosen (2010).
2. See, for example, Ledoit and Wolf (2003, 2004).
3. Naive diversification is a strategy that allocates an equal

share of capital to the constituents of a portfolio constructed
with a no-sales constraint. See, for example, DeMiguel et al
(2009).
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