The role of the transcription factor

JAGGED in early floral organogenesis

A thesis submitted to the University of East Anglia

for the degree of Doctor of Philosophy

Katharina Schiessl

John Innes Centre
Norwich, UK

May 2014

This copy of the thesis has been supplied on condition that anyone
who consults it is understood to recognise that its copyrights rest
with the author and that no quotation from the thesis, or any

information derived from, may be published without the author’s
prior written consent.



Abstract

Initiation of organ primordia from pools of undifferentiated cells requires coordinated
cytoplasmic growth, oriented cell wall extension, and cell cycle progression. It is debated
which of these processes are primary drivers for organ morphogenesis and directly
targeted by developmental regulators. The single zinc finger transcription factor JAGGED
(JAG) is a direct target of several floral organ identity genes and is expressed in early
organ primordia (Dinneny et al., 2004; Ohno et al., 2004; Gomez et al., 2005; Kaufmann et
al., 2009). Loss of function jag mutants have narrow floral organs with reduced distal
growth. Quantitative 3D imaging has revealed that JAG is required for the transition from
meristematic to organ primordium cell behaviour. The transition involves an increase in
the rates of cell division and cell growth, a shift from isotropic to anisotropic growth, and
modifications in cell size homeostasis in primordia (Schiessl et al., 2012). In this project,
ChlIP-Seq was combined with transcriptome analysis to identify global direct target genes
of JAG.

Consistent with the roles of JAG during organ initiation and organ growth, | found that
JAG directly repressed genes involved in meristem development, such as the TALE
PROTEIN BELL1 and genes involved in organ boundaries specification such as PETAL LOSS.
In addition, JAG directly regulated genes involved in growth regulatory pathways, tissue
polarity, cell wall modification, and cell cycle progression. For example, JAG directly
repressed the cell cycle inhibitors KIP RELATED PROTEIN 2 and 4 (KRP2/4). The krp2 and
krp4 mutations suppressed jag loss of function defects in organ growth and cell type
patterning. In particular, loss of KRP4 rescued the defects of cell size homeostasis in the
primordia of the jag loss of function mutant. In summary, this work revealed that JAG

directly coordinates organ patterning with cellular processes required for tissue growth.
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Chapter 1 - General Introduction

1.1. What does it take to produce a determinate plant organ?

Plants undergo post-embryonic organogenesis and continuously produce lateral
organs such as leaves and flowers during their lifetime. What does it take to produce a
floral organ? Organs initiate from a small number of founder cells which are recruited
from pools of undifferentiated cells within meristems. Their development is under tight
control of gene regulatory networks that regulate the timing and position of organ
initiation, organ identity, organ patterning (establishment of organ boundaries, organ
margins and growth axes), growth and morphogenesis to final size, shape, and function.
To reach final organ size, shape and function, cells in an organ initial increase in number
by cell division, increase in volume by cell growth — expansion, and acquire specific cell
identities by cell differentiation. These cellular processes are also coordinated in the
spatial and temporal context of the developing organ primordium by developmental

regulators.

1.2. The shoot apical meristem is an indeterminate source of undifferentiated cells

The shoot apical meristem consists of undifferentiated cells that divide to maintain the
pool of cells from which founder cells are continuously recruited into organ primordia at
the flanks of the shoot apical meristem. In the central zone of the dome-shaped shoot
apical meristem, cells divide relatively slowly and grow at equal rates resulting in a cell
population that have uniform sizes, are isotropic in shape and have small vacuoles. With
every round of cell division, daughter cells are pushed into the peripheral zone, where
they divide twice as fast as cells in the central zone, to be recruited as founder cells into
lateral organ primordia (Reddy et al., 2004; Carraro et al., 2006; Besnard et al., 2011;
Schiessl et al., 2012).

Development of the shoot apical meristem and its size homeostasis are regulated by
meristem maintenance genes such as the KNOTTED 1-like homeobox (KNOX) genes

SHOOTMERISTEMLESS (STM) and BREVIPEDICELLUS (BP), and by the WUSCHEL-CLAVATA
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pathway (Schoff et al., 2000; Long et al., 1996; Byrne et al., 2002). WUSCHEL and KNOX
genes promote cytokinin biosynthesis and cytokinin signalling which plays a major role in
promoting cell proliferation and in preventing differentiation (reviewed by Veit, 2009;
Holst et al., 2011). By contrast, KNOX genes repress biosynthesis and promote
degradation of gibberellins resulting in a high cytokinin/gibberellins ratio in the shoot
apical meristem (reviewed by Veit, 2009).

In the peripheral zone of the shoot apical meristem, organs sequentially initiate at sites
of high auxin accumulation. During vegetative growth, the shoot apical meristem gives
rise to leaf primordia and after plants have undergone the transition to flowering, the
shoot apical meristem becomes an inflorescence meristem that gives rise to floral
primordia. Floral primordia consist of a determinate floral meristem from which the floral
organs are initiated (recently reviewed by O’ Maoiléidigh et al., 2014). In the Arabidopsis
flower, the floral organs initiate in concentric whorls, with four sepals in the outermost
whorl protecting four petals in the second whorl, six stamen in the third whorl and two
fused carpels in the centre of the flower. Flower development in Arabidopsis was
described and staged by Smyth et al. (1990), who defined the initiation of floral primordia
from the inflorescence meristem as stage 1, the emergence of the first sepal primordium
from the floral meristem as stage 3, subsequent emergence of petal and stamen
primordia as stage 5 and the appearance of the gynoceum as stage 6. These stages are
followed by stages 7-11, which involve processes of organ expansion and cell type
specification, followed by stage 12, when the flower opens for anthesis, on average 13.25
days after initiation of the floral primordium (Smyth et al., 1990).

The gene regulatory network that defines floral primordia identity and the identity of
the different floral organs has been well studied over the past thirty years: Floral
primordia identity is promoted by the transcription factor LEAFY (LFY) and the partly
redundant transcription factors APETALA1 (AP1), CAULIFLOWER (CAL), and FRUITFUL
(FUL). Once floral organ primordia are established, LFY and AP1 promote the expression
of floral organ identity genes. Floral organ identity genes, predominantly MADS-box
transcription factors, act in a combinatorial manner to superimpose the organ identity of
sepals, petals, and the reproductive organs on groups of founder cells in the floral
meristem (Coen and Meyerowitz, 1991; Krizek and Fletcher, 2005; O’ Maoiléidigh et al.,
2014).
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Because floral organ identity genes function as master regulators, their direct
downstream targets could provide important clues about what it takes to produce an
organ including the gene regulatory network of floral organogenesis. Global transcription
profiling and genome-wide analysis of DNA binding sites revealed that the floral
primordium identity gene LFY and floral organ identity genes such as SEPALATA3 (SEP3)
and APETALA3/PISTILATA (AP3/PIl) target predominantly transcription factors involved in
hormone response (specifically auxin response), meristem development, and organ
growth such as members of the TEOSINTE BRANCHED1/CYCLOIDEA/PCF (TCPs), GROWTH
REGULATORY FACTORS (GRFs), GRF INTERACTING FACTORS (GIFs), AINTEGUMENTA/
AINTEGUMENTA-LIKE protein families (Kaufmann et al., 2009; Winter et al., 2011; Wuest
et al., 2012). Consequently, these transcription factors have been considered as putative
master regulators and have been analysed in more detail, but still little is known about
how the gene regulatory network of early organogenesis is interconnected with organ
patterning, growth, and morphogenesis to produce floral organs with their final size,

shape and function.

1.3. Initiation of organ primordia

During organ initiation, a group of around sixty undifferentiated meristem cells are
recruited as pre-founder cells in the flanks of the shoot apical meristem. These pre-
founder cells are still part of the shoot apical meristem, but undergo transcriptional
changes and express the early markers of founder cell identity such as REVOLUTA (REV)
and the auxin efflux carrier PIN-FORMED 1 (PIN1) (Heisler et al., 2005; reviewed by
Carraro et al., 2006). Only a limited and reproducible number of true founder cells are
recruited from the pool of pre-founder cells to form the organ primordium. For example,
four cells are the foundation of a floral primordium at the inflorescence meristem and
between four and sixteen cells are the core founder cells of leaf and floral organ
primordia (Bossinger and Smyth, 1996; Donnelly et al., 1999; Roeder et al., 2010).
Founder cells undergo a transition from meristem growth behaviour to a primordium
growth behaviour that involves an increase in cell proliferation rates and cell growth rates

by about three-fold compared to meristem cells (Reddy et al., 2004; Schiessl et al., 2012)
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and a loss of coordination between these two processes (Schiessl et al., 2012). In order to
bulge out and to form an early organ primordium that is distinct from the morphology of
the shoot apical meristem, founder cells change division planes and shift from isotropic to
anisotropic cell growth behaviour (Grandjean et al., 2004; Reddy et al., 2004; Schiessl et
al., 2012; Burian et al., 2013).

While undergoing this transition, founder cells acquire a transcriptional profile that
significantly differs from meristem cells: Downregulation of meristem identity genes such
as the KNOX genes SHOOTMERISTEMLESS (STM) and BREVIPEDICELLUS (BP) is considered
a hallmark in the recruitment of founder cells from the peripheral zone of the shoot apical
meristem (Carraro et al., 2006). In Arabidopsis leaves, the MYB transcription factor
ASYMMETRIC LEAVES1 (AS1) and its co-activator the lateral organ boundary domain
transcription factor ASYMMETRIC LEAVES2 (AS2) have been identified as early
primordium markers that down-regulate KNOX genes. Conversely, STM represses AS1,
suggesting that there is a mutual antagonism between KNOX genes and early primordium
markers (Byrne et al., 2000 and 2002). Additionally, the growth-promoting AP2/ERF
transcription factor AINTEGUMENTA (ANT) and the related AINTEGUMENTA-LIKE 6 (AIL6)
have been identified as early markers of primordium identity. In initiating floral
primordia, ANT and AIL6 and the floral primordium identity gene LEAFY are directly
promoted by the AUXIN-RESPONSE FACTOR 5/MONOPTEROS (ARF5/MP) in response to

auxin accumulation (Krizek, 2009; Yamaguchi et al., 2013).

1.4. Establishing growth axes in early organ primordia

One of the first patterning processes in incipient lateral organ primordia is to
determine growth directions relative to the position of the meristem, which consequently
establishes a proximal/distal axis, medial/lateral and an adaxial/abaxial axis for polar
organ growth. Primordia initiate at sites of high accumulation of the growth promoting
hormone auxin. The auxin efflux carrier PIN1 has been found as an early marker of pre-
founder cell identity and PIN1 proteins point to the distal tip of early organ primordia,
suggesting that an auxin gradient may be involved in the establishment of the

proximal/distal growth axis (Benkova et al., 2003; Heisler et al., 2005; Sauret et al., 2013).
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Auxin accumulation at the site of primordium initiation promotes the early down-
regulation of meristem identity genes such as STM and BP in primordium founder cells,
while adjacent undifferentiated cells maintain high expression levels of meristem identity
genes. Therefore, it has been suggested that down-regulation of KNOX genes defines the
initial process of proximal/distal organ patterning relative to the meristem (Bolduc et al.,
2012). KNOX genes are also down-regulated by AS1 and the associated transcriptional
activators BOP1/BOP2, which are expressed specifically at the site of incipient floral
primordia and at the adaxial base of sepals and petals and have been shown to play a role
in adaxial/abaxial patterning (Ha et al., 2003 and 2007; Jun et al., 2010). In addition,
BOP1/2 have been shown to be expressed in the proximal region of leaf primordia where
they restrict blade tissue growth and therefore have been suggested to be involved in
proximal/distal organ patterning (Norberg et al., 2005). Besides this information, little is
known about the gene regulatory network and the molecular mechanisms that establish
the proximal/distal growth axis downstream of or independently from the effects of auxin
gradients during early organogenesis.

Primordia initiate as radially symmetric cylindrical bulges that soon acquire a flattened
shape in the case of leaves, sepals and petals and establish an adaxial/abaxial growth axis.
Unlike for the proximal/distal processes, the gene regulatory network that defines the
adaxial/abaxial patterning is well established, with HD-ZIPIII transcription factors
PHAVOLUTA, PHABULOSA and REVOLUTA defining the adaxial domain and members of
the KANADI and YABBY transcription factor families defining the abaxial side (reviewed by
Barkoulas et al., 2007).
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1.5. Organ boundaries and margins delimit lateral organs

Concomitantly with the determination of the founder cells, adjacent cells are recruited
as boundary cells that separate the primordium from the neighbouring meristem cells
and from neighbouring organs (reviewed by Aida and Tasaka, 2006). In addition,
boundaries play a major role in separating domains during organ patterning where they
form juxtapositions between domains that are important sources of signals (reviewed by
Barkoulas et al., 2007; Nawy et al., 2010).

Boundary cells are small, thick-walled cells that elongate parallel to the tissue plane
into concave, saddle-shaped cells. Owing to their position, boundaries are regions under
high mechanical stress with tension in longitudinal direction and compression towards
the medial/lateral direction. It has been disputed whether boundary cells divide not at all
or at very slow rates parallel to the longitudinal axis of the boundary (Breuil-Broyer et al.,
2004; Aida and Tasaka, 2006; Burian et al., 2013). RNA in situ hybridisation suggested that
cell cycle related genes that are highly expressed in organ primoridia are excluded from
the band of adjacent boundary cells (Breuil-Broyer et al., 2004). As a band of non-
proliferating or slowly proliferating cells, boundary cells serve as a stable barrier to avoid
overgrowth into neighbouring domains. It has also been speculated that boundary cells
may also serve as a barrier for the movement of proteins and signalling molecules. As a
result, loss of boundary cell identity causes organ fusions and loss or conversion of tissues
and whole organs (Aida and Tasaka, 2006).

Organ boundary cell identity is determined by the expression of organ boundary-
specifying genes such as members of the NAC transcription factor family CUP-SHAPED
COTYLEDONS (CUC), the GATA transcription factor HANABA TARANU (HAN) and the floral
organ specific boundary genes trihelix transcription factor PETAL LOSS (PTL), and the
C2H2 single zinc finger transcription factors SUPERMAN (SUP) and RABBIT EAR (RBE)
(reviewed by Aida and Tasaka, 2006). In Arabidopsis, the three members of the CUC gene
family, CUC1-3, promote boundary formation throughout postembryonic development.
CUC genes are expressed in a narrow strip of cells between the meristem and emerging
organs and between neighbouring organs. In floral buds, CUC2 and CUC3 expression
marks the band of boundary cells prior to primordia emergence, providing evidence that

boundary establishment is one of the early steps of organogenesis. In Arabidopsis, cuc
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double loss of function mutants show fusions in all lateral organs, providing evidence that
CUC genes play a crucial role in organ separation (Breuil-Broyer et al., 2004; Hibara et al.,
2006; reviewed by Aida and Tasaka, 2006). On the other hand, ectopic expression of
boundary-specifying genes leads to repressed cell proliferation and tissue growth,
therefore expression domains of boundary-specifying genes are strictly delimited by
growth promoting factors such as AS1/AS2 (Xu et al., 2008).

According to their function, it could be speculated that boundary-specifying genes
negatively regulate cell proliferation and cell growth, but only a few downstream targets
have been identified so far. For example, global transcription profiling showed that upon
ectopic expression of HAN, cell cycle genes and cell wall related genes were differentially
expressed (Zhang et al., 2013). However, no direct molecular or genetic interactions have
been revealed between boundary specifying genes and regulators of the cell cycle.

Not only organ boundaries to neighbouring cells but also organ margins have to be
defined in order to determine final organ size, shape and function. In this context,
members of the CINCINNATA-like TEOSINTE-BRANCHED1/CYCLOIDEA/PCF (CIN-like TCP)
family have been shown to play a crucial role in promoting cell differentiation during leaf
development, particularly affecting the leaf margins (Nath et al., 2003; Koyama et al.,
2007 and 2010). By contrast, CUC genes are expressed in the sinus of developing
serrations of organ margins and promote undifferentiated cell fates by promoting KNOX
gene expression (Hasson et al., 2011). During leaf differentiation, members of the CIN-like
TCP genes have been shown to indirectly repress CUC gene expression in leaf margins by
promoting expression of the MYB transcription factor AS1 and the microRNA 164, which
targets transcripts of CUC1 and CUC2 for degradation. In tcp loss of function mutants,
ectopic expression of CUC genes promoted ectopic expression of KNOX genes leading to
delayed cell differentiation. Consequently, tcp mutants have wavy leaves with severely
serrated margins, serrated sepals and wavy petals (Koyama et al., 2007; Koyama et al.,
2010; Koyama et al., 2011)

The boundary specifying gene PTL is not only expressed in the floral primordia, but also
in the distal margins of petal and sepal primordia, suggesting that PTL may have a role in
restricting organ outgrowth in margins. This hypothesis is further supported by the fact
that ectopic expression of PTL leads to severe reduction in organ growth (Brewer et al.,

2004; Lampugnani et al., 2012).
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1.6. Organ growth and morphogenesis

In early primordia, cells undergo several rounds of mitotic divisions. This phase of
primordium formation is also referred to as primary morphogenesis. In a second phase of
morphogenesis, cells exit mitotic cell proliferation, undergo endoreduplication, post-
mitotic cell expansion and cell differentiation to acquire final cell sizes, shapes, and
functions (Donnelly et al., 1999; Gonzalez et al., 2010; Asl et al., 2011; Adriankaja et al.,
2012; Powell and Lenhard, 2012). Over the time-course of development, organs are
shaped by variations in local division rates, growth rates, growth directions, the timing of
exit from division and growth, and onset of differentiation. These processes have to be
coordinated within and between tissues of an organ to maintain tissue integrity (Roeder
et al. 2010; Kuchen et al., 2012; Sauret et al., 2013). For example, within developing
leaves, growth ceases in a coordinated pattern from the tip to the base in an apical-basal
cell cycle arrest front, where cells undergo the transition from mitotic cell proliferation to
endoreduplication and cell expansion followed by stomatal cell differentiation (Donnelly
et al., 1999; Gonzalez et al., 2010; Asl et al., 2011). Similarly, Roeder et al. (2010), who
followed the development of sepal primordia, found that the top half of the cells in early
sepal primordia generates the tip of the sepal, indicating that the cells on top stop
dividing after only few cycles of division. In the central region, cells divide and enter
endoreduplication in order to become giant cells. Cells at the base stay in proliferation
phase the longest, undergoing comparatively more cell divisions, and thus generating the
basal half of the sepal. In the case of petals, mitotic cell division rates are different
between the proximal and distal area, but appear to decrease more homogenously within
the entire organ over the time-course of development. Moreover, petal cells do not
undergo endoreduplication and keep expanding until flowering. Clonal analysis in
developing petal primordia has shown that the formation of a petal lobe requires an
increase in growth rates perpendicular to the proximal/distal axis in the distal areas
(Sauret et al., 2013).

Together, these studies provide evidence that plant organ growth and morphogenesis
depend on the regulation of cell division and cell expansion in a spatial and temporal

context.
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1.7. The plant mitotic cell cycle

The mitotic cell cycle is the core process that gives rise to new daughter cells and
determine the final number of cells in an organ. The mitotic cycle in eukaryotes is divided
in four phases: Cells that enter a round of mitotic division start in interphase/gap phase 1
(G1), enter S-phase (DNA replication phase), in which the nuclear DNA is replicated, gap
phase 2 (G2), where cells check the integrity of the newly synthesised DNA and prepare
for division, followed by M-phase, where sister chromatids separate and cells undergo
cytokinesis (De Veylder et al., 2003). During this process, the cytoplasmic and nuclear
contents are divided by formation of a new plasma membrane that separates the two
new daughter cells along the division plane, whose location in plants is pre-determined by
a preprophase band consisting of microtubules and actin filaments (reviewed by Jirgens,
2005).

Cells divide symmetrically (proliferative division) or asymmetrically (formative
division). For example, in the central zone of the meristem, proliferative cell divisions
maintain a pool of undifferentiated cells with uniform cell sizes. By contrast, in the
peripheral zone and in organ primordia, cells also undergo asymmetric cell divisions,
which are considered an important mechanism to establish divergent cell fates during
growth and morphogenesis, for example in stomatal development (reviewed by Blomme
et al., 2013). In addition to the mitotic cell cycle that gives rise to two daughter cells,
endoreduplication is a cell cycle where DNA replication phase is not followed by
cytokinesis, resulting in an increase of nuclear DNA content with ploidy levels higher than
2C (De Veylder et al., 2011).

The transition between cell cycle phases strongly depends on the activity of cyclin-
dependent kinases (CDKs). CDKs are activated by CDK-ACTIVATING KINASES (CAKs).
Besides positive and negative phosphorylation events, CDK activity is positively regulated
by binding of cyclins that are periodically expressed and degraded by ubiquitin-dependent
proteolysis. Complexes with specific cyclins determine phase-specific activity and
substrate specificity of CDKs during progression through the cell cycle. In total, 13 CDKs
and 49 cyclins have been identified in Arabidopsis (Inze and De Veylder, 2006; reviewed
by Harashima et al., 2013; Blomme et al., 2013) with CDKA;1 being the most important

cyclin-dependent kinase that is required throughout the cell cycle and has been shown to
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keep cells in a cell proliferation competent state. At the transition from G1 to S-phase,
phosphorylation of RBR1 by CDKA;1 — CYCD complexes relieves the repression of the
transcriptional activator complex E2FA/B-DP that promotes expression of genes involved
in DNA synthesis, chromatin dynamics and progression through S-phase, such as the
origin recognition complex (ORC) genes and mini-chromosome maintenance complex
(MCM) genes. The transition from G2 to M-phase is mediated by specific mitotic CDK-
cyclin complexes involving CDKA, B-type CDKs, A-type CYCLINs, and B-type CYCLINs that
regulate the activation of MYB3R proteins. MYB3R proteins act as transcriptional
activators of M-phase specific genes that share an M-specific activator (MSA) cis
regulatory element in their promoter region. Interestingly, also mitotic CDKs and cyclins
have been found to have MSA elements in their promoters, suggesting a regulatory feed
back loop between these regulators of cell cycle progression (reviewed by de Veylder et

al., 2003 and 2007; Harashima et al., 2013).

1.7.1. Plant cell cycle regulation

Progression through the phases of the cell cycle is directed by CDK-cyclin complexes,
consequently, they are the prime targets for cell cycle regulation. Cell cycle progression is
predominantly regulated by post-translational modifications of CDK-CYCLIN complexes
such as phosphorylation/dephosphorylation, protein-protein interactions, and most
importantly, targeted proteasome-dependent degradation (reviewed by Blomme et al.,
2013).

Proliferating cells arrest or commit to enter a new round of DNA replication at the
transition from G1/S phase. Therefore, CDKA-CYCLIN D complexes which regulate this
transition are prime targets to regulate cell proliferation rate and the duration of cell
proliferation phase. In this context, KIP-related proteins or INHIBITOR/INTERACTOR OF
CDK (KRPs or ICKs) and members of the SIAMESE (SIM) and the SIAMESE-related (SMR)
proteins are two groups of cell cycle regulators with CDK- and cyclin-binding motifs that
have been shown to specifically interact with CDKA and D-type cyclins in vitro and in vivo
(De Veylder et al., 2001; Churchman et al., 2006). In Arabidopsis, seven members of the
Kip-related proteins, four core members and 16 putative members of the SIAMESE and
SIAMESE-related proteins have been identified (De Veylder et al., 2001; Churchman et al.,

2006; John Larkin, personal communication). While SIM/SMR proteins are plant-specific,
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Kip-related proteins show some sequence similarity to mammalian Kip/Cip proteins that
regulate G1 to S phase transition, have checkpoint functions and regulate exit from cell
proliferation (reviewed by Besson et al., 2008). Ectopic expression of several different
members of KRPs and SIM/SMR proteins led to a reduction of final cell number and
reduced organ sizes (De Veylder et al., 2001; Churchman et al., 2006; Bemis and Torii,
2007; Roeder et al., 2010). In particular, SIM/SMR proteins have been shown to promote
endoreduplication (Churchman et al., 2006). For example, SMR1 is highly expressed in
flowers, where it promotes the formation of giant cells in sepals. Giant cells have been
described to exit mitotic proliferation prematurely, to undergo several rounds of
endoreduplication to subsequently grow to the enormous sizes compared to their
neighbouring cells (Roeder et al., 2010). Mild ectopic expression of KRP2 also promoted
endoreduplication (Verkest et al., 2005).

There are numerous additional examples where modulating the expression levels
and/or activity of core cell cycle components altered the final number of cells in an organ
and affected final cell sizes, cell type patterning, or final organ size and morphology. For
example, a decrease in CDKA activity led to disorganisation and onset of cell
differentiation in the meristem and to smaller organs with increased cell sizes
(Gaamouche et al., 2010). Similarly, loss of CAK function resulted in dwarfed plants with
small, curled, and serrated leaves. By contrast, ectopic expression of Arabidopsis CYCD;2,
CYCD;4 and CYCD;5 caused an increase in cell proliferation rates by accelerated
progression through G1/S-phase transition and resulted in leaves with an increased
number but smaller cells (Qi and John, 2007). Mild ectopic expression of CYCD3;1 resulted
in increased leaf size owing to an increase in cell numbers. By contrast, ectopic expression
of CYCD3;1 under the 35S promoter resulted in smaller leaves with hyperplasia and
delayed cell differentiation (Dewitte et al., 2003).

The APC/C (anaphase promoting complex/cyclosome) is a multidomain E3-ligase which
specifically targets mitotic CDK-cyclin complexes for protein degradation at the G2 to M-
phase transition. Therefore, APC/C plays a crucial role in mediating the onset of
endoreduplication (De Veylder et al., 2003 and 2007). Misexpression of subunits and
interactors of APC/C affected final cell number, the degree of endoreduplication and
overall organ size. For example, the dwarfed hobbit mutant has a loss of function

mutation in one of the subunits of APC/C. By contrast, the loss of function mutant of the
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SAMBA protein, an interactor of the APC/C, shows an increase in overall leaf size which
manifests itself already at the early stages of organ initiation, when an increased number
of cells is recruited into the organ primordia owing to an increase in cell number in the
peripheral zone of the shoot apical meristem (reviewed by Blomme et al., 2013).

Based on this variety of phenotypes caused by modulation of cell cycle components, it
can be speculated that developmental regulators target the components of the core cell
cycle machinery to fine tune local cell proliferation rates and exit from cell proliferation in
order to regulate final organ size. However, only few functional and molecular links have
been provided for the interaction between developmental regulators and the core cell
cycle machinery. For example, the transcription factor TCP20 has been reported to
directly bind to the promoter region of CYCB1,1 (Li et al., 2005) and the transcription
factor AINTEGUMENTA (ANT) has been proposed to promote growth by activating
expression of CYCD3 (Mizukami and Fischer, 2000). However, whether this interaction is
direct or indirect still remains unclear.

By contrast, plant hormones, in particular cytokinins, auxins and gibberellins, have
been shown to modulate cell cycle progression by targeting components of the core cell
cycle machinery. Cytokinins play a crucial role in maintaining cell proliferation in the
meristem. Cytokinins have been shown to target CYCD3, which is a limiting factor at the
G1 to S-phase transition (Dewitte et al., 2007). In this context, meristem maintenance
genes have been suggested to indirectly promote expression of D-type cyclins via
cytokinin signalling (Dewitte et al., 2007). During lateral root formation, KRP2 levels were
repressed upon auxin accumulation (Himanen et al., 2002; Sanz et al., 2011). Also
gibberellin-mediated growth responses target the cell cycle machinery. In this respect,
DELLA proteins, which restrain plant growth in the absence of gibberellins, have been
shown to restrain cell proliferation rates by promoting the expression of the cell cycle
inhibitors KRP2, SIM, SMR1 and SMR2 (Achard et al., 2009), in addition to their well

known function in restraining cell expansion.
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1.8. Plant cell expansion

1.8.1. Cellular and vacuolar growth

In plants, increase in cell volume is achieved on the one hand by increase in
cytoplasmic and nuclear content, and on the other hand by enlargement of the vacuoles
through water uptake (reviewed by Schopfer, 2006; Sablowski and Carnier Dornelas,
2013). During cytoplasmic growth, cells increase their macromolecular content and the
number of cellular compartments and organelles. This process is particularly important in
proliferating cells, where the cytoplasmic content has to be divided in order to produce
two viable daughter cells. Cytoplasmic growth, which is strongly linked to biosynthesis of
proteins, carbohydrates and lipids, turns a growing cell into a sink for energy and
nutrients. An important regulator of cytoplasmic growth is the Target of Rapamycin (TOR)
pathway, which integrates the nutrient status (levels of sucrose and glucose in plants,
amino acid levels in yeast and mammals) with the regulation of ribosome biogenesis,
which drives mRNA translation and protein biosynthesis, and sugar-related metabolic
processes such as starch and lipid metabolism. Modulation of TOR expression in plants
resulted in smaller and larger plant organs accordingly and has, thus, provided evidence
that TOR activity is a limiting factor for overall plant organ growth (reviewed by Henriques
et al., 2014).

In comparison, vacuolar growth is predominantly achieved by uptake of water, is less
energy and nutrient consuming and leads to comparatively larger cell volumes
predominantly during post-mitotic expansion of cells. In meristems and early organ
primordia, cells increase in volume predominantly by cytoplasmic growth, while post-
mitotic growth of differentiated cells is predominantly achieved by vacuolar growth. In
both growth-related processes, cell wall modifications play a major role to facilitate the

increase in cell volume (reviewed by Wolf et al., 2012).
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1.8.2. Cell expansion is dependent on processes in the cell wall

Plant cells are surrounded by cell walls that hold against the turgor pressure of the
protoplast, give shape to the cell, and connect neighbouring cells. Therefore, expansion
of a single cell but also local tissue growth and overall organ growth need to be
coordinated with reversible and irreversible cell wall remodelling processes.

In young growing cells, the cell walls are 0.1 to 1.0 um thick dynamic structures that
undergo continuous remodelling in composition and in physical and chemical properties.
The cell wall is a composite material made of stiff but tensionally resistant cellulose
microfibrils, which are embedded in a matrix of hemicelluloses, pectins and cell wall
proteins. Hemicelluloses consist of xyloglucan, arabinoxylan and mannan backbones, with
branches that are decorated with galactose, fucose, arabinose, and glucuronic acid
residues. Xyloglucan as the predominant hemicellulose can bind to the surface of
cellulose microfibrils and crosslink them or get trapped within microfibrils. Pectins consist
of homogalacturonan and rhamnogalacturonan chains with a wide range of sugars such
as xylose, arabinose, fucose, galactan, rhamnose side chains that are modified with
additional methyl and acetyl groups. These side chains can interact with cellulose
microfibrils. Pectins can form hydrated gels that allow cellulose fibrils to slide and
contribute to cell wall loosening. By contrast, pectins can also crosslink with calcium and
borate to form a rigid matrix. In addition to cell wall carbohydrates, structural proteins
such as glycine-rich glycoproteins can make up to 10% of the cell wall of a growing cell
(reviewed by Cosgrove, 2005; Wolf and Greiner et al., 2012, Wolf et al., 2012).

In expanding cells, the turgor pressure generates a tensile stress and upon cell wall
loosening, cell walls are irreversibly stretched to accommodate the expanded cell volume
(reviewed by Cosgrove, 2005). In order to allow turgor-driven cell expansion and to
maintain cell wall integrity at the same time, the processes of cell wall loosening and wall
extension have to be in balance with the process of cell wall stiffening and deposition of
new wall material. In this respect, cell growth has been described as an oscillating process
that is controlled by a mechano-sensing feed back loop. It involves, in order: cell wall
relaxation, cell wall extension, sensing of the stretching, cell wall stiffening and deposition
of new cell wall material that promotes a new round of cell wall relaxation and extension
(Wolf et al., 2012). Cell wall hydration and swelling is mediated by plasma membrane

proton ATPases that pump protons into the apoplast, causing hyperpolarisation of the
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plasma membrane and acidification of the apoplast, which leads to rapid hydration and
swelling of the cell wall. Acidification of the apoplast promotes the activity of expansins,
pectin methylesterases and cell wall degrading enzymes, resulting in the loosening and
extension of the cell wall. Extension of the cell wall stretches the plasma membrane and
opens stretch sensitive calcium channels, which in turn increase the level of free cytosolic
calcium. High cytosolic calcium levels inhibit proton ATPases. In addition, proton channels
open, which drain the apoplast of protons; the alkalinisation of the apoplast inhibits
expansins and cell wall degrading enzymes. In addition, high cytosolic calcium levels also
activate NADPH-oxidase that generates and releases superoxide into the cell wall leading
to cross-linking of cell wall components and partial dehydration of the cell wall. In the
following step, newly synthesised cell wall polymers are deposited and integrated into the
extended cell wall (reviewed by Wolf et al., 2012).

Cell wall reinforcement is particularly achieved by cellulose synthase complexes which
migrate along the plasma membrane and deposit new cellulose microfibrils. Cortical
microtubules have been shown to guide the insertion and trajectories of the cellulose
synthase complexes (Paredez et al., 2006). During growth, the hydrostatic turgor pressure
in a cell is strictly isotropic, however, the local force and stress it generates on the cell
wall surfaces is dependent on the shape of the cell. The degree of reversible (elastic) and
irreversible (plastic) deformation (strain) that stress causes in the wall is dependent on
the resistance of the wall. The resistance of the cell wall to local stress is modulated by
wall reinforcement and loosening processes that can be anisotropically distributed within
a cell and therefore translate isotropic force into specific strain directions. Cellulose
microfibrils restrict the elastic deformation parallel to the direction of alignment resulting
in growth perpendicular to the direction of cellulose microfibril reinforcement. Thus, in
elongating cells circumferential microfibrils act as main contributors of longitudinal
growth. For example, in mutants with disrupted microtubules or cellulose deficiency, cell
growth shifts from anisotropic to isotropic growth, suggesting that both microtubule
organisation and cellulose microfibril alignment play a major role locally and
anisotropically to reinforce the cell wall during cell growth (reviewed by Baskin et al.,
2005; Hamant et al., 2008; Burian et al., 2013).

It is debated how local stress and strain generated by anisotropic growth processes are

perceived and how they can subsequently feed back to direct microtubule alignment and
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the directional alignment of cellulose microfibrils during organogensis. These questions
are currently subject to biophysical approaches and computational modelling efforts
(Hamant et al., 2008; Burian et al., 2013). In addition, the function of cell wall matrix
components such as expansins and pectin methylesterases in anisotropic growth remains
to be elucidated. Furthermore it remains unclear how biomechanical and biochemical
signals, in particular auxin and gibberellins are integrated in the context of the regulatory
network of organogenesis. Andriankaja et al., (2012), who tracked leaf development using
transcriptional profiling, found that at the transition from proliferation phase to post-
mitotic expansion a considerable number of cell wall-related genes was transcriptionally
up-regulated, for example members of the expansin family and the cellulose synthase-like
family, suggesting that up-regulation of cell-wall related genes plays a key role in
facilitating post-mitotic growth and cell differentiation. In addition, modulating the
activity of cell wall-related expansins and pectin methyl esterases and their inhibitors
have been shown to have dramatic effects on organ initiation and final organ size
(Peaucelle et al., 2011; Zenoni et al., 2011). However, only few direct functional and
molecular links between transcriptional growth regulators and cell wall-related genes
have been established yet. Revealing the mechanisms of anisotropic growth, and how

they are linked to growth regulatory genes, will be key to understanding organ growth.

1.9. Coordination of cell proliferation and cell growth

Although cell cycle progression and cell expansion function together to promote tissue
and organ growth, little is known about the regulation between these processes.
Particularly in tissues with high mitotic cell division rates, cell cycle progression and cell
growth have to be coordinated in order to maintain cell size homeostasis over several
rounds of divisions. Work in the unicellular, eukaryotic fission yeast and budding yeast
has revealed that cells have to reach a minimum cell size before they can progress into S-
phase, generating a dependency of cell cycle progression on cell size (Jorgensen and
Tyers, 2004). In plants, minimum size thresholds for cell cycle progression have been
proposed by Francis (1998) and by Donnelly et al., (1999), however no size threshold
mechanisms have been identified in plants so far. Experiments inhibiting either cell

growth or cell cycle have supported the idea that also in plants cell cycle progression
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depends on cell growth, while cell growth does not depend on cell division (Grandjean et
al., 2004). In multicellular organisms, it has been suggested that these cell autonomous
dependencies are modulated by developmental regulators during organ growth and
morphogenesis (Jorgensen and Tyers et al., 2004).

In this context, plant hormones, in particular auxin and gibberellins in crosstalk with
brassinosteroids have been shown to promote cell expansion but are also able to
transcriptionally target cell cycle regulators. For example, expansins have been shown to
have auxin and gibberellin transcriptional response elements in their promoters and in
particular CDK inhibitors such as KRP2 and SMR1 are targeted by DELLA proteins and
auxin (reviewed by Lee and Kende, 2002; reviewed by Perrot-Rechenmann, 2010;
Sablowski and Carnier Dornelas, 2013; Himanen et al., 2002; Achard et al., 2009; Sanz et
al., 2011). Therefore, one hypothesis could be that growth regulators may specifically
target hormone signalling to mediate the coordination of cell growth and cell cycle
progression.

A striking example of developmentally controlled cell size changes is the formation of
giant and non-giant cells in the abaxial sepal epidermis. Studying this process, Roeder et
al. (2010) showed that modulation of the cell cycle duration in tissues with uniform
growth rates plays a role in determining final cell sizes and in cell type specification.
However, little is known about how this coordination is achieved in the first place and
how it could be modulated during organ morphogenesis. It has been suggested that such
a coordinating factor would either have to be able to generate a dependency of one
process on the other, or be able to control both processes in parallel. In the special case
of mitotic cell division, these processes have to be reset in the two newly separated
daughter cells after cytokinesis (Jorgensen and Tyers 2004). In relation to the
coordination between cell growth and cell cycle, we are faced with one of the unsolved
key questions in biology (recently reviewed by Marshall et al., 2012): How do cells
measure their size or monitor processes that lead to changes in their size? And, is this the

mechanism by which cells maintain size homeostasis?
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1.10. Links between cellular processes required for growth and genes that regulate

organ growth

In the search for regulatory factors that affect final organ size, several mutants and
transgenic lines with increased or decreased cell numbers and cell sizes have been
identified (reviewed by Krizek, 2009a; Breuninger and Lenhard, 2010).

Many of them have been reported to promote the duration of cell proliferation phase
(primary morphogenesis) and only comparatively few have been shown to increase the
rate of proliferation or the process of cell expansion. This has resulted in the idea that the
transition from cell cycle exit to endoreduplication and expansion phase is a key
contributor to determine final number of cells and final organ size. For example, the
transcription factor ANT has been shown to promote cell proliferation by acting as a
transcriptional activator of the D-type cyclin CYCD3, which as described above is a limiting
factor for the G1/S-phase transition and plays a major role in preventing exit from the
mitotic cycle (Mizukami and Fischer, 2000). Reinforcing the connection between D-type
cyclins and organ growth, CYCD3,2 was the only core cell cycle gene identified to be
transcriptionally down-regulated during the transition from cell proliferation to post-
mitotic phase by Andriankaja et al. (2012). Over-expression of ANT caused an increase of
final organ size with increased number of cells owing to prolonged cell proliferation phase
while loss of ANT function caused smaller organs with a reduced number of cells (Krizek,
1999). Furthermore, GRFs and their co-activators GIFs act redundantly to promote and
prolong cell proliferation (Horiguchi et al., 2005). By contrast, members of the CIN-like
transcription factor family have been shown to promote exit from cell proliferation and
onset of cell differentiation (Koyama et al., 2010). Finally, JAGGED (JAG) has been
proposed to control cell proliferation to promote growth of shoot organs (Dinneny et al.,
2004; Ohno et al., 2004), as described in more detail below.

While the examples above relate to the control of cell cycle progression, a few
developmental regulators appear to target both cytoplasmic growth and cell cycle
progression. For example, TCP20 has been reported to be able to bind to the promoters
of CYCB1,;1 and of several ribosomal subunits, linking cell cycle activity with cytoplasmic
growth (Li et al., 2005). Furthermore, it was speculated that apart from promoting the

expression of CYCD3, ANT may target cell growth-related processes, because ectopic
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CYCD3 expression did not cause an increase in organ size as observed when ANT was
ectopically expressed. However, mild ectopic expression of CYCD3 under its endogenous
promoter was reported to increase final organ sizes (Krizek, 1999; Mizukami and Fischer
2000; Dewitte et al., 2003 and 2007). Overall, although connections have been found
between regulatory genes and growth-related cellular processes, the molecular details
and functional relevance of these links remain unknown.

In addition to transcriptional regulators, genes involved in targeted protein
degradation, for example the ubiquitin receptor DA1 and the E3 ubiquitin ligases DA2 and
BIG BROTHER, are associated with the ubiquitin-dependent proteasomal protein
degradation pathway. Because their loss of function mutants show an increase in overall
flower size, while ectopic expression reduces flower sizes, it has been suggested that DAI,
DA2 and BB target growth promoting factors (Disch et al., 2006; Li et al., 2008; Xia et al.,
2013). In a non-cell autonomously manner, the phytochrome P450 protein KLUH CYP78A5
has been shown to promote the duration of cell proliferation. While being expressed in
the organ margins it promotes proliferation in the central regions of the organ by an
unidentified mobile factor and, additionally, has been reported to coordinate organ sizes
within an inflorescence (Anastasiou et al., 2007; Eriksson et al., 2010).

Modulating the activity of factors like ANT, GRFs/GIFs, DA1, BB, or KLUH,
predominantly causes changes in overall organ size. By contrast, STEROL
METHLYTRANSFERASE 2 (SMT2) has been found to suppress endoreduplication in petals
and loss of SMT2 in the frill1 mutant causes serrations in petals and sepals and thus has
an effect on final size and shape (Hase et al., 2005). A more severe alteration in
morphology has been observed in the bop1/2 loss of function mutants, where leaf blade
tissue proliferates ectopically along the petiole. Furthermore, the bop1/2 mutant shows
ectopic formation of floral bracts, a leaf-like structure subtending floral buds, which does
not form in wild-type Arabidopsis flowers (Norberg et al., 2005). It was therefore
suggested that BOP1/2 not only restricts tissue growth, but also may interact with organ
patterning genes (axis-specifying genes and boundary-specifying genes) to coordinate
growth behaviour in relation to boundaries and axes. However, little is known about the

link between growth regulators and genes involved in early organ patterning.
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1.11. Research Questions and Objectives

During my PhD project | focussed on the question of how regulatory genes link early
events of organ patterning to the cellular processes required for organ outgrowth and
morphogenesis. This relates to the broader question of how the processes of cell
proliferation and cell growth are coordinated to sculpt an organ of specific size, shape and

function.

1.11.1. The role of the transcription factor JAG during early organogenesis

In order to address these questions, | studied the function of the transcription factor
JAGGED (JAG), which has been characterised for its macroscopic phenotype of serrated,
narrow leaves, narrow sepals and petals with defective distal growth and defects in cell
type patterning. JAG (At1g68480) encodes a protein comprising a putative nuclear
localisation signal close to the N-terminus, a single C,H, zinc finger domain of 31 amino-
acids, followed by a proline rich sequence, and a leucine rich EAR motif at the C terminus
(Ohno et al. 2004). JAG forms a monophyletic group with NUBBIN (NUB) and shows 35%
overall amino-acid sequence similarity to the boundary specifying gene SUPERMAN (SUP)
(Dinneny et al. 2004).

Using HISTONE 4 expression as a cell cycle marker Dinneny et al. (2004) revealed that
in the jag mutant cells exit cell proliferation earlier during flower development than in the
wild type, suggesting that JAG has a function in promoting cell proliferation. Similarly to
loss of BOP1/2 function, ectopic JAG expression caused extended leaf blade growth and
was sufficient and necessary to induce ectopic bract outgrowth in Arabidopsis. In flowers,
ectopic expression of JAG under the flower-specific AP1 promoter caused organ fusions
and ectopic growth of sepal tissue along the pedicels. This is in contrast to the regulatory
function of ANT, which is not sufficient to cause ectopic bract formation and extended
ectopic tissue growth (Ohno et al., 2004).

JAG has been identified to be a direct downstream target of the floral organ identity
genes SEPALATA3, APETALA3/PISTILATA, and AGAMOUS, suggesting that JAG acts
immediately downstream of floral organ identity genes. This early function of JAG was
further supported by its expression pattern: During floral organogenesis, JAG was strongly
expressed in initiating organ primordia but excluded from the inflorescence meristem or

floral primordia. Over the time-course of organogenesis, JAG expression was restricted to
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the distal regions of the organ primordia and faded away when cell proliferation ceased
and organs started to expand and to differentiate (Dinneny et al., 2004; Ohno et al.,
2004).

In the context of these findings, the transcription factor JAG was considered an ideal
candidate to investigate how the gene regulatory network directing floral organogenesis
is wired to the control of cell proliferation, cell growth and cell type patterning. Apart
from being a direct downstream target of several floral organ identity genes, little is
known how JAG is connected to the gene regulatory network of organogenesis: JAG has
been shown to be repressed by the transcriptional co-activators BOP1/BOP2 and by the
boundary specifying gene HANABA TARANU (HAN) (Norberg et al., 2005; Zhang et al.,
2013).

1.11.2. Objectives

Here, | aimed to identify direct downstream transcriptional targets of JAG that might
reveal molecular links to cell proliferation and cell growth during early organogenesis. |
used global transcriptome profiling combined with genome-wide analysis of DNA binding
sites to identify direct downstream targets of JAG. Furthermore, | used reverse genetics,
reporter lines, and quantitative 3D imaging to confirm and to further investigate the
functional relevance of the interaction between JAG and downstream candidate genes at

cellular and molecular levels.
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Chapter 2 - Global expression analysis

2.1. Introduction

Plants grow and develop new organs over their entire lifetime, first producing leaves
and after floral transition producing floral organs as diverse as sepals, petals and
reproductive organs. To produce floral organs of species-specific size, shape and function,
fundamental but coordinated changes in gene transcription are required. The gene
regulatory network that predetermines floral organ identity in floral primordia has been
studied in great detail over the past 20 years. MADS-domain transcription factors have
been identified as key players of this gene regulatory network and their function has been
conceptualised in the extended ABCE model (Coen and Meyerowitz, 1991; reviewed by
Krizek and Fletcher, 2005; reviewed by O’ Maoiléidigh et al., 2014). Recent advances in
global transcriptome profiling and genome-wide mapping of DNA binding sites have
generated very detailed information on the regulatory functions of MADS-domain
transcription factors with high spatial and temporal resolution (Wellmer et al., 2006;
Kaufmann et al., 2010; Wuest et al., 2012). By contrast, little is known about the gene
regulatory network that directs organ outgrowth once organ identity has been defined.
Because development of a floral organ of final size, shape and function from a few
founder cells requires an increase in cell number and cell size, and cell type specification,
the gene regulatory networks downstream of floral organ identity genes need to co-
ordinate the processes of cell growth, cell proliferation and cell differentiation in the
spatial and temporal context of a developing organ.

In this respect, the C,H, single zinc finger transcription factor JAGGED (JAG) is a good
candidate to study: JAG is expressed in incipient and early organ primordia and it has
been shown to act as a direct downstream target of the floral organ identity genes
SEPALATAS3 (SEP3), APETALA3/PISTILATA (AP3/PI), and AGAMOUS (AG) (Dinneny et al.,
2004; Ohno et al., 2004; Gomez et al., 2005; Kaufmann et al., 2010, Wuest et al., 2012).
Loss of function jag mutants show growth defects in early organ primordia (Schiessl et al.,
2012) and have narrow mature floral organs with reduced distal growth (Dinneny et al.,

2004; Ohno et al., 2004;). Furthermore, it has been shown by quantitative 3D imaging
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that JAG promotes cell growth, growth anisotropy and cell proliferation, and modulates
cell size homeostasis in early organ primordia (Schiessl et al., 2012).

In summary, this has led to the hypothesis that JAG is a key upstream regulator of
early organogenesis acting immediately downstream of floral organ identity genes. In
order to further investigate how JAG promotes cell growth and cell proliferation and how
it modulates the coordination of these two processes, | aimed to find the direct

downstream targets of JAG.

2.2. Identifying genes under transcriptional control of JAG

In order to monitor the global transcriptional response to changes in JAG function in
early floral organogenesis, | performed an expression array experiment using unopened
flower buds from inflorescence apices that were dissected and left to recover for 24
hours. In a first expression array experiment, | compared jag-1 with wild-type
inflorescence apices to assess the steady state effects of loss of endogenous JAG function.
In order to detect genes with an immediate and early transcriptional response to JAG, |
generated a dexamethasone (DEX)-inducible 355:JAG-GR construct where the JAG cDNA
was translationally fused to the dexamethasone-inducible glucocorticoid receptor (GR)
under control of the constitutive 35S promoter, using a cloning strategy similar as
described in Gallois et al. (2002). To show that 355:JAG-GR was fully functional, |
confirmed that the construct was able to induce the previously observed phenotype of
ectopic JAG activity (twisted and elongated petals and sepals) in both the wildtype and
jag-2 L-er mutant background by dexamethasone treatment (Figure 2.1.A-D). In addition,
ectopic activation of JAG-GR in seedlings by supplementing the germination medium with
10 uM DEX resulted in cup-shaped and fused cotyledons seven days after germination
(Figure 2.1.C-D). Subsequently, leaves developed which had no clear petiole and were
broader at the base. While wild-type plants grown on DEX medium developed normal
leaves and flowered after 4 weeks, the plants harbouring the 355:JAG-GR construct failed
to flower, instead producing an increased number of leaves (Figure 2.1.E-F), providing
evidence that constitutive ectopic expression of JAG causes severe developmental and

morphological changes.
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For the expression array experiment, the inflorescence apices of 355:JAG-GR L-er wild-
type plants were dipped with solutions of 0.1% ethanol as control treatment (mock) and
10 uM dexamethasone with 0.1% ethanol for ectopic JAG-GR activation. In order to filter
for candidate genes that are putative immediate targets of JAG, | included a
cycloheximide treatment for inhibition of de novo protein synthesis, comparing plants
treated with 10 uM dexamethasone, 0.1% ethanol and 10 uM cycloheximide, or 10 uM
cycloheximide, 0.1% ethanol. Furthermore, a jag-1 versus wild type comparison was
included, using the 355:JAG-GR line in L-er wild-type background and the jag-1 loss of
function mutant, both mock-treated with 0.1% ethanol. All dipped inflorescences were
incubated for 5 h under daylight conditions. For each treatment, three biological
replicates were harvested with 12 inflorescence apices (flowers < stage 10) per sample.
RNA samples were prepared and hybridised with Affymetrix ATH1 oligonucleotide arrays.
The raw data and experiment metadata were made available at
http://affymetrix.arabidopsis.info/, experiment ID: NASCARRAYS-605. Array data (CEL
files) were normalised using the GCRMA method (Gharaibeh et al., 2008), differential
expression was tested using t-test statistics and False Discovery Rate (FDR) control
method described by Benjamini and Hochberg (1995) (data analysis performed with
bioinformatics support from Jose Muifo). A gene was considered significantly

differentially expressed with an absolute value of the log, ratio > 0.5 and FDR <0.01.

2.3. Results of the global expression array analysis

In total, 495 genes were identified to be significantly differentially expressed in
response to ectopic JAG-GR activation (log; ratio >0.5, FDR<0.01), with 232 up-regulated
and 263 down-regulated genes (Figure 2.2.; full analysis shown in Apendices Tables A and
B). In order to assess the steady state effects of endogenous JAG function on gene
expression | compared inflorescence apices of mock-treated jag-1 to that of mock-treated
35S5:JAG-GR (with gene expression comparable to wild type). This comparison resulted in
1289 genes that were up-regulated in mock-treated jag-1 compared to the mock-treated
35S5:JAG-GR and 1158 down-regulated genes (Figure 2.2.).

In the next step, | overlapped the sets of differentially expressed genes obtained from

both comparisons. In detail, 39 genes were repressed by JAG-GR activation and up-
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regulated in the jag-1 mutant. This overlap was significantly higher than expected by
chance (p=1.20 x 10™, Fisher’s exact test) within the 16164 genes that were considered
as the total gene set expressed in inflorescence apices because they had expression levels
above the minimum expression level detected in our expression array experiment. By
contrast, 23 genes overlapped between genes activated by ectopic JAG-GR activation and
genes with significantly lower expression levels in the jag-1 mutant, which was not
significantly higher than expected by chance (p = 0.071, Fisher’s exact test). This is
consistent with the proposed repressor function of JAG (Dinneny et al., 2004; Ohno et al.,
2004). Surprisingly, 88 genes responded in the same way to JAG-GR activation and to loss
of endogenous JAG function leading to an enrichment with significant values of p=3.08 x
10™ for genes activated by JAG-GR and in jag-1 and p= 2.28 x 10° for genes repressed by
JAG-GR and with lower expression in jag-1 (Fisher’s exact test). Comparison of tissues
with severe phenotypic differences (jag-1 versus wild-type floral buds) and inhibited
growth processes of the relevant tissues in jag loss of function mutant may be the main
cause that genes repressed by JAG-GR are also found to be down-regulated in the
mutant. By contrast, negative feedback or the absence of tissue-specific co-factors might
alter the function of ectopically activated JAG-GR, in the case of genes activated by JAG-
GR and with higher expression in the mutant (Figure 2.2.).

In preparation for the ChIP-Seq experiments, | aimed to filter for putative direct
transcriptional targets of JAG. In the presence of cycloheximide, 581 genes were
significantly down-regulated and 312 genes were significantly up-regulated upon ectopic
JAG-GR activation, suggesting that the numbers of genes responding to ectopic JAG-GR
activation are higher in the presence of the cycloheximide treatment than in the absence
of the drug. The overlap of the two sets of differentially expressed genes obtained from
ectopic JAG-GR activation in the absence and in the presence of cycloheximide resulted in
75 up-regulated genes (Figure 2.3.A) and 96 down-regulated genes (Figure 2.3.B) and
provided a first preliminary global overview of putative direct transcriptional targets of

JAG.
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2.4. Functional categorisation of genes controlled by JAG

Gene Ontology (GO) analysis of the 495 JAG-GR responsive genes using BAR
SuperViewer (http://bar.utoronto.ca/ntools/cgi-
bin/ntools_classification_superviewer.cgi) revealed that JAG targets genes with a
significant enrichment for the molecular function of transcription factor activity (p-value=
1.302 x 10°®) and kinase activity (p-value= 7.308 x 10%). This is in line with JAG being a
regulator of floral organogenesis upstream in the gene regulatory network of floral
organogenesis. Furthermore, JAG targets showed a significant enrichment for the
molecular function of hydrolases (p=2.45 x 10™), transferases (1.691 x 10°%) and
transporters (p=1.302 x 10°®). The annotation of JAG targets was enriched for subcellular
localisation at the plasma membrane (p=3.28 x 10™° ) and cell wall (p= 2.67 x 10), in line
with the observation from the quantitative 3D imaging experiments that JAG promotes
growth (Schiessl et al., 2012), considering that cell expansion and increase in cell volume
as well as anisotropic growth processes are strongly dependent on the physical properties
of the plasmamembrane and the cell wall.

Using the GO software tool BINGO (Maere et al., 2005) to identify significantly
enriched GO terms (corrected p-value < 0.01) for biological processes (Figure 2.4.A-B)
(data analysis performed with bioinformatics support from Jose Muifio), JAG targeted
genes involved in meristem development and meristem maintenance, for example the
TALE proteins BELL-domain 1 (BEL1), BREVIPEDICELLUS (BP), and SHOOTMERISTEMLESS
(STM) are repressed upon JAG activation. Repression of meristem identity genes is in line
with the observations from the quantitative 3D imaging approach that the transition from
meristem cell behaviour to primordium cell behaviour is JAG-dependent. Furthermore,
the GO terms response to auxin stimulus and gibberellin stimulus and other GO terms
related to these two hormones were enriched, suggesting that JAG is involved in the
coordination of auxin- and gibberellin-mediated processes. Furthermore, the GO term
“response to abscisic acid stimulus” was enriched. In addition, more than 10 out of 68
significantly enriched GO terms were related to processes in the cell wall, suggesting that
JAG promotes growth by promoting cell wall related processes. The GO analysis for
biological processes of the mutant versus wild-type comparison was less informative, with

a general enrichment for developmental processes, stress responses, and a strong
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enrichment for genes involved in pollen development, suggesting that the loss of JAG
function has broad secondary downstream effects on overall transcription as would be
expected from the severe phenotypic changes observed in the jag loss of function

mutants.

2.5. Discussion

Here, | aimed to obtain an overview of the putative transcriptional targets of the single
C,H, zinc finger transcription factor JAG in early floral organogenesis by using a global
expression array approach. Comparison of transcript levels between jag-1 and wild-type
inflorescences apices resulted in more than 2200 significantly up- and down-regulated
genes, which include direct and indirect targets but also the broader transcriptional
downstream consequences of the morphological changes caused by the loss of JAG
function. Conversely, constitutive ectopic JAG expression also causes severe phenotypic
changes and appears to repress flowering (Figure 2.1.E-F). Therefore, | decided to use a
DEX-inducible system in wild-type background, which allowed for activation of ectopic
JAG-GR once floral organs with wild-type morphology had developed.

Activation of ectopic JAG-GR by dexamethasone treatment of wild-type inflorescences
harbouring the 355:JAG-GR construct followed by five hours of incubation resulted in 495
differentially expressed genes between DEX-treated and mock-treated 355:JAG-GR plants
of comparable wild-type tissue morphology. Changes in expression of these 495 genes
were considered short-term transcriptional responses to ectopic JAG activation in
inflorescence apices. In addition, by expressing JAG-GR under the control of the 35S
promoter, | aimed to detect local interactions in very early developmental stages of
primordia development that would otherwise be diluted by the comparatively larger
amounts of older bud tissue in a wild-type background with endogenous JAG expression
domain and function.

Interestingly, there was only limited overlap between the lists of significantly
differentially expressed genes obtained from the 35S:JAG-GR (DEX versus mock
treatment) experiment and the wild type versus jag-1 mutant comparison, with 39 genes
being repressed upon ectopic JAG-GR activation and being ectopically expressed in the

jag-1 loss of function mutant and 23 genes being activated upon ectopic JAG activation
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and having lower expression levels in the jag-1 mutant compared to wild type. In
particular, this set of genes responded to changes in JAG function in two independent
experiments, strongly suggesting that these genes are regulated by JAG. Among them, the
meristem maintenance genes SHOOTMERISTEMLESS (STM) and BREVIPEDICELLUS (BP),
and the boundary specifying gene PETAL LOSS (PTL) were found, which | subsequently
used as test candidates to establish and optimise the chromatin immunoprecipitation
(ChlIP) protocol.

In this context, the cycloheximide treatment provided a first overview of potential
direct downstream targets of JAG. For example, the TALE proteins BELL-domain 1 (BEL1)
and BP were found to be repressed upon ectopic JAG-GR activation in the presence and
absence of cycloheximide, suggesting that they are direct transcriptional targets of JAG.
BEL1 was later found to be a direct target of JAG by ChiP-Seq, while BP was found to have
no DNA binding sites in close vicinity of its gene locus at all. PTL, for which | found two
significantly enriched DNA binding sites in the ChIP-Seq experiment, was not identified as
a direct target in the cycloheximide experiment. This suggests that the cycloheximide
treatment is prone to false positives and false negatives, which was further supported by
the fact that the number of differentially expressed genes was significantly increased in
the presence of cycloheximide compared to when cycloheximide was absent. In this
regard, it is known that cycloheximide can affect mRNA stability (e.g. Sablowski and
Meyerowitz, 1998). Furthermore, indirect repression of a gene via activation of a miRNA
does not require de novo protein syntyhesis and would not be expected to be inhibited by
cycloheximide. Therefore, cycloheximide treatment should only be considered as a rough
guide in the search for direct downstream candidates of transcription factors.

A considerable number of genes, 88 in total, showed an inconsistent transcriptional
response in the comparison between ectopic JAG activation and loss of JAG function,
suggesting that comparing tissues of different morphologies (jag-1 versus wild-type
inflorescence apices see Figure 2.1.A,C) detected a broad range of indirect downstream
consequences caused by the developmental changes of the loss of JAG function. For
example, the petal specific MYB-related transcription factor MYB16 promotes conical cell
differentiation in the distal lobe of the petal (Baumann et al., 2007) and is repressed upon
JAG-GR activation. However, MYB16 is also down-regulated in the absence of JAG

function, most likely because the distal petal lobe is poorly developed in the jag loss of
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function mutant. However, the jag-1 versus wild type comparison provided us with a
global overview and served as a general confirmation of the processes targeted by JAG.

Gene ontology analysis revealed that JAG predominantly regulates transcription
factors and kinases, providing evidence for the hypothesis that JAG functions as an early
upstream regulator in the gene regulatory network of floral organogenesis. Furthermore,
the enriched GO terms provided support for the functions of JAG obtained from the
quantitative 3D imaging approach (Schiessl et al., 2012). Firstly, JAG represses genes
involved in meristem development and meristem maintenance, suggesting that the
transition from meristematic growth behaviour to primordium growth behaviour requires
the repression of meristem maintenance genes. Secondly, JAG regulates genes with
hydrolase, transferase, and transporter activities which function at the interface between
plasma membrane and cell wall, suggesting that JAG promotes growth by regulating
genes involved in growth-related cell wall processes. In the context of cell growth related
processes, JAG also regulated genes involved in response to gibberellin stimulus and
auxin biosynthesis processes. Auxin and gibberellin have been reported to promote cell
growth and cell expansion during organ development (Reinhardt et al., 2003; reviewed by
Perrot-Rechenmann et al., 2013; Leyser 2010; Ljung 2013; peAchard and Genschik, 2009).

In summary, the expression array analysis revealed a list of putative downstream
candidates of JAG and provided support for the JAG functions we have observed from the
guantitative 3D imaging approach. It provided a starting point to further confirm and
investigate candidates that were related to the processes of transition from meristematic
to primoridium cell behaviour and cell growth. Furthermore, it provided putative direct
downstream targets that served as test candidates for establishing and optimising the
ChiP protocol which allowed me to identify DNA binding sites of JAG to further confirm
direct transcriptional targets of JAG in the gene regulatory network of floral

organogenesis.
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Figure 2.1. 355:JAG-GR construct in wild type L-er background (A-B, E-H) and in jag-2 L-
er mutant background (C-D). Scale bars: 1 mm (A-D), not available (E-H).

(A) 355:JAG-GR in wild-type L-er inflorescence 10 days after mock-treatment showing a
wild-type phenotype; (B) 355:JAG-GR in wild-type L-er inflorescence 10 days after DEX-
treatment with ectopic JAG phenotype of elongated, twisted sepals and petals; (C)
35S5:JAG-GR in jag-2 L-er inflorescence 10 days after mock-treatment with jag-2
phenotype with reduced outgrowth of sepals and petals; (D) 355:JAG-GR in jag-2 L-er
inflorescence 10 days after DEX-treatment with rescued sepal and petal outgrowth; (E)
355:JAG-GR in wild-type L-er 7 days after germination on germination medium
supplemented with 0.1% EtOH (mock) developing wild type cotyledons; (F) 355:JAG-GR in
wild-type L-er 7 days after germination on germination medium supplemented with 10
UM DEX developing fused cup-shaped cotyledons. (G) 355:JAG-GR in wild-type L-er grown
on germination medium supplemented with 0.1% EtOH (mock) with wild-type
inflorescence; (H) 355:JAG-GR in wild-type L-er grown on germination medium
supplemented with 10 uM DEX with increased numbers of leaves but not flowering,
leaves were elongated and appeared to predominantly consist of blade tissue with no

clear separation between blade and petiole.
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263 JAG-GR down

\ 32 (p=2.28 x 10-3)

39 (p=1.20 x 10-4)

1289 jag up

1158 jag down

56 (p=3.08 x 10 -14)

23 (p=7.07 x 10-1)
232 JAG-GR up

Figure 2.2. Overview of the expression profiling experiment.

Overlap between gene sets that were differentially expressed in response to ectopic JAG-
GR activation (blue: repressed, red: activated) or in the comparison between jag-1 and
wild-type buds (yellow: up-regulated in the mutant, green: down-regulated in the
mutant); when calculating p-values for the overlaps (Fisher’s exact test), only genes
present on the Affymetrix ATH1 oligonucleotide array that were also expressed above
detection threshold level in at least one replicate of our experiment using inflorescence
apices were considered as the total number of genes (16164 genes) to avoid detecting
correlations that are merely based on tissue-specific differences; (graph produced with

bioinformatics support from Jose Muifio).
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DEX/CHX B Dpex DEX/CHX

up upon JAG-GR activation down upon JAG-GR activation

Figure 2.3. Differentially expressed genes upon ectopic JAG activation in the absence
and presence of the protein inhibitor cycloheximide.

(A) Overlap between gene sets that were up-regulated in response to ectopic JAG-GR
activation (blue: DEX-treatment, no cycloheximide (CHX), red: DEX-treatment combined
with cycloheximide (CHX); (B) Overlap between gene sets that were down-regulated in
response to ectopic JAG-GR activation (blue: DEX-treatment, no cycloheximide (CHX);

(graph produced with bioinformatics support from Jose Muifio).
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A

Enrichment of GO terms (biological processes) in the set of 495 genes responsive to JAG-GR activation

GO-ID p-value x n X N Description

9908 3.30E-02 13 198 403 15988 flower development

48509 465E-02 6 56 403 15988 regulation of meristem development
9739 3.22E-04 13 104 403 15988 response to gibberellin stimulus

10476 24702 5 30 403 15988 gibberellin mediated signaling pathway
9684 247802 3 7 403 15988 indoleacetic acid biosynthetic process
6569 247E-02 2 2 403 15988 tryptophan catabolic process

9737 4,70E-02 14 239 403 15988 response to abscisic acid stimulus
42545 2.47E-02 10 119 403 15988 cell wall modification

71554 2.77E-02 15 238 403 15988 cell wall organization or biogenesis
0831 3.67E-02 4 22 403 15988 plant-type cell wall modification involved in multidimensional cell growth
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Figure 2.4. Enrichment for Gene Ontology (GO) terms within the sets of genes that were
differentially expressed upon ectopic JAG-GR activation.

(A) GO terms (biological process) enriched within the set of genes that were differentially
expressed upon ectopic JAG-GR activation; p-values are the corrected p-values calculated

by BINGO (Maere et al., 2005) using a Hypergeometric Test and p-value correction
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according to Benjamini and Hochberg (1995), with x being the number of genes belonging
to the specific GO-ID found in the total number our gene set (X), while n is the number of
genes identified for the specific GO-ID and N is the total number of annotated genes
considered in the BINGO analysis. (B) Graphical representation of the enriched GO terms
(biological process) within the set of genes described in (A); enrichment map representing
the hierarchy of the network of biological processes; produced within the Cytoscape
environment (Saito et al., 2012); GO terms that were found significantly enriched
including all parental categories are represented in the map as nodes; the size of the node
is proportional to the number of differentially expressed genes represented in the GO
term, node colour corresponds with the significance based on the BINGO analysis
described in (A) with white (insignificant), from yellow p=0.01 to dark orange p=0.01 10>;
nodes were automatically arranged so that highly similar gene sets are placed together,
as a result highly redundant gene sets cluster; edges between nodes represent weighted
links between the nodes according to the number of overlapping genes; (graphs produced

with bioinformatics support from Jose Muifo)
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Chapter 3 - Combined analysis of ChiP-Seq and global expression

array

3.1. Introduction

Recent advances in genome-wide mapping of DNA binding sites and next generation
sequencing techniques, for example Chromatin Immunoprecipitation followed by Illumina
Deep Sequencing (ChiP-Seq), have generated data on DNA binding affinities, cis-binding
motifs and regulatory functions of transcription factors with high spatial and temporal
resolution. In particular, the function of the floral meristem identity gene LEAFY (LFY) and
the combinatorial functions of the MADS-domain transcription factors in the gene
regulatory network of floral organ identity have been elucidated by these methods in
great detail (Winter et al., 2011; Kaufmann et al., 2010; Wuest et al., 2012). To further
investigate how JAG is interconnected with the gene regulatory network of early floral
organogenesis, we aimed to identify direct transcriptional targets bound in vivo by JAG by
ChIP-Seq. Furthermore, we combined the data obtained from ChIP-Seq and global
transcription profiling by expression array (Chapter 2). Using this combined approach |
aimed to identify direct downstream targets bound by JAG that are also under
transcriptional regulation by JAG. Moreover, | aimed to separate the targets and
processes that are under direct immediate regulatory control of JAG from the processes

further downstream.
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3.2. Chromatin Immunoprecipitation (ChiP)

To further confirm direct transcriptional downstream targets of JAG | aimed to find the
DNA binding sites bound by JAG in planta in the context of early floral organogenesis. In
particular, | aimed to identify DNA binding sites of JAG in floral organ tissue bound by JAG
in its endogenous wild-type expression domain and function. | pursued two approaches in
parallel: | cloned the coding sequence of JAG under its endogenous promoter to generate
GFP-tagged fusion lines. In addition, | aimed to produce anti-JAG antibodies to be able to

pull down native JAG protein.

3.2.1. ChIP using the 355:JAG-GR construct in combination with anti-GR antibodies

In order to test the ChIP protocol and to identify DNA binding sites that can serve as
positive controls for the global ChIP-Seq approach, | performed preliminary ChIP
experiments with the DEX-inducible 355:JAG-GR construct in wild-type background
(Chapter 2, Figure 2.1.A-B). For the first ChIP experiments, the DEX inducible 35S::JAG:GR
line combined with anti-GR antibodies was used to compare inflorescence apices treated
with 10 uM dexamethasone and 0.1 % ethanol or 0.1% ethanol (mock) that had been
incubated for four hours. In order to identify enriched DNA binding regions in the
precipitated DNA of DEX-induced compared with mock-induced inflorescence apices,
gPCR was performed with oligo pairs mapping the promoter regions upstream of the
transcriptional start of BP and BEL1 in 300 to 600 bp intervals, in accordance with the
average fragment size of 500 bp after sonication. For BEL1 | identified an enriched DNA
binding site 1.77 kb upstream of the start codon (Figure 3.1. ). For BP, | identified an
enriched DNA binding site 2.6 kb upstream of the start codon (Figure 3.2.). These two
enriched binding sites for BEL1 and BP were used as internal positive controls to test for

reproducibility and sensitivity in the subsequent ChIP-Seq experiments.
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3.2.2. Producing anti-JAG antibodies

To complement the ChIP strategy using commercially available anti-GR antibodies to
immunoprecipitate ectopic JAG-GR, | aimed to raise antibodies against recombinant JAG
protein, which would allow me to pull down native JAG protein from any Arabidopsis line
without the need for protein tags. Two strategies were pursued to produce recombinant
JAG protein in amounts sufficient to raise polyclonal anti-JAG antibodies: Firstly, it was
aimed to express recombinant JAG protein in the prokaryotic host E. coli. Secondly, the
transient expression system pEAQ specialK (Sainsbury et al., 2009) in the eukaryotic host
Nicotiana bentamiana was used as an alternative strategy to produce recombinant JAG
protein. The binary vector pEAQspecialK that combines a modified Cowpea mosaic virus
(CPMV-HT) sequence with the viral suppressor of silencing 355-P19 cassette was
specifically tailored for high level transient protein expression in plants (Sainsbury et al.,
2009). In order to express recombinant JAG protein, | inserted JAG cDNA into the binary
vector pEAQspecialK generating an N-terminal histidine (His) tagged JAG fusion protein.
Subsequently, | transformed the binary vector into the Agrobacterium strain L (Sainsbury
et al., 2009) and infiltrated young leaves of Nicotiana bentamiana with the aim to harvest
mg-amounts of recombinant JAG protein. However, agro-infiltration of six Nicotiana
bentamiana plants resulted in hypersensitive response in all infiltrated leaves after five
days (Figure 3.3.A). By contrast, plants either infiltrated with the pEAQspecial-GFP-HT
(positive control) (Figure 3.3.B) or with empty pEAQspecial-HT (negative control) did not
show signs of hypersensistive response. The positive control plants expressed GFP
(personal communication Pooja Saxena) seven days after infiltration. From this
experiment, we concluded that transient over-expression of JAG was lethal for the
Nicotiana bentamiana cells, and thus, no leaf material and recombinant JAG protein could
be harvested.

In a second strategy to produce recombinant JAG protein, | aimed to over-express JAG
in E.coli strain BL21. For this, JAG cDNA was cloned into the expression vector system
PRSETA which harbours a polylinker for restriction digestion cloning downstream the
viral, IPGT inducible T7 promoter and the sequence encoding a poly-His tag. Directional
cloning resulted in an N-terminal poly-His tag fusion of the expressed protein for later
purification of the protein by immobilized metal affinity chromatography. Expression of

the protein at the estimated size range of 30 kDa was confirmed by SDS-PAGE gel
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electrophoresis (Figure 3.4.). For large-scale production, BL21 harbouring the construct
was grown in 500 ml liquid cultures to an OD of 0.5-0.7 and induced with IPGT (100 uM)
and grown for four hours. Protein purification was performed under native conditions as
the protein was found to be soluble after sonication. For purification of the JAG poly-His
tag protein TALON metal affinity resin beads (TAKARA Clontech) in combination with
imidazole elution were used (Figure 3.5.A) followed by several concentration steps to a
final concentration of 70 ug/ml (Figure 3.5.B). In total, about 40 litre of bacterial culture
were purified and concentrated to produce 600 pg of recombinant JAG protein at a final
concentration of 70 ug/ml. The protein was used to immunise two rats in a 28-day
immunisation program conducted by EUROGENTEC (Seraing, Belgium).

In order to test the specificity and sensitivity of the anti-JAG rat antibodies, |
performed Western blots with 1:500 diluted rat serum. In the first step, | confirmed that
the antibodies raised against recombinant JAG protein could detect recombinant JAG
protein. Western Blots loaded with 7 ng to 350 ng of the recombinant protein showed a
detection limit at 70 ng of total recombinant protein split in three bands (Figure 3.6.A) as
previously observed in the SDS-PAGE gels.

In a second step | confirmed that the anti-JAG antibodies could detect plant JAG protein
from crude plant protein extracts. Western blots were performed with five pl of crude
plant extracts boiled in 2X Laemmli Buffer, prepared from inflorescences of wild type L-er,
DEX-induced 35S:JAG-GR in L-er background, and jag-1. In the DEX-induced WT-35S:JAG-
GR samples, anti-JAG antibodies detected 1-2 bands at a size of 58 kDa, which is in
accordance with the in silico size prediction for the JAG-GR fusion protein (57 kDa).
However, no endogenous JAG protein was detected in any of the WT samples using this
method. However, most importantly, the Western Blots loaded with crude plant protein
extracts did not show any unspecific bands implying that the anti-JAG antibodies are

specific to the JAG protein (Figure 3.6.B).
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3.2.3. ChIP using pJAG:JAG-GFP combined with anti-GFP antibodies

In parallel to producing anti-JAG antibodies, | generated a 10.4 kb pJAG:JAG-GFP
construct harbouring a 6.5 kb upstream promoter fragment, 1.6 kb coding sequence
translationally fused to GFP cDNA (0.7 kb), and a 1.6 kb 3’ fragment downstream of the
stop codon. The pJAG:JAG-GFP construct complemented the flower phenotype in the jag-
2 L-er loss of function mutant background (Figure 3.7.) and showed JAG-GFP expression in
early sepal primordia (Figure 3.8.). For chromatin immunoprecipitation, inflorescence
apices with flowers of stage <10 were used. Commercial monoclonal anti-GFP antibodies
bound to microbeads (Milteyi Biotec) were used for precipitation and purification of the
formaldehyde fixed JAG-GFP protein-DNA complexes in the pJAG:JAG-GFP complemented
jag-2 line and in WT L-er plants serving as a negative control. To test for enrichment of
JAG DNA binding sites in the precipitated DNA derived from pJAG:JAG-GFP jag-2 samples
compared with the WT L-er control samples, qPCR was performed with primers covering
the previously identified JAG binding site in the BEL1 promoter region and primers
covering regions of the Mu-like transposon as a negative control (Figure 3.9.A). ChiP using
pJAG:JAG-GFP in combination with the anti GFP-antibody coated microbeads provided
consistent enrichments over several test experiments and was therefore the method of

choice to perform the final ChIP-Seq experiment.

3.3. lllumina deep sequencing and ChIP-Seq data analysis

Immunoprecipitated DNA samples of three biological replicates for JAG-GFP and wild
type with good enrichment were used to generate Tru-Seq libraries of a fragment size
between 200 bp and 500 bp. Subsequently, Illumina deep sequencing was performed
using 50 bp rapid runs. Deep sequencing resulted in average 20,000,000 reads per library.
Subsequently, the sequence reads obtained for each library (in FASTQ format) were

mapped to the unmasked Arabidopsis genome (TAIR10; ftp://ftp.arabidopsis.org/ ) using

the SOAPaligner (v2) (Li et al., 2008). On average 3,000,000 reads per library could be
mapped to regions in the Arabidopsis genome and a high percentage of reads was
identified as unique positional reads, suggesting that only few duplication artefacts were

generated during library preparation, thus, supporting good quality of the data.
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To test for enrichment of DNA binding sites, the reads of each of the three JAG-GFP
biological replicates were individually compared to the pooled reads of all three biological
replicates of WT L-er (WT L-er all) using CSAR (Muifio et al., 2011a). All three biological
replicates had comparable significance threshold values for the maximum peak scores
between 1.85 and 1.88 at a false discovery rate (FDR) 0.01. BELL-domain 1 (BEL1) that had
been previously identified as a direct JAG target (Schiessl et al., 2012) was used as one of
the internal controls and showed reproducible significant JAG binding in all ChIP-Seq
replicates (Figure 3.9.B), reconfirming the choice of FDR <0.01 and the corresponding
ChlP score threshold values (Figure 3.9.B). Comparisons of the three JAG-GFP samples
and the pooled WT L-er sample resulted in 12606 significantly enriched DNA binding sites
for all three biological replicates in total that mapped within 3 kb upstream and 1.5 kb
downstream of coding sequences in the Arabidopsis genome (Figure 3.10.A) (analysis
performed with bioinformatics support from Jose Muifno).

In a first step, | aimed to see how the 12606 significant DNA binding sites were
distributed on the genome in relation to the start and end of coding sequences (Figure
3.10.A). Therefore, the maximum peak scores that mapped within 3 kb upstream and 1.5
kb downstream of a coding sequence were categorised according to their distance to the
start codon and stop codon of the nearest genes. This categorisation showed that JAG
DNA binding sites showed a binding pattern typical for transcription factors (Kaufmann et
al., 2010; Wuest et al., 2012) with 59% of all DNA binding sites mapping upstream of start
codons. Furthermore, 13 % of the DNA binding sites were found within gene regions and
28% of the JAG DNA binding sites mapped within a distance of up to 1.5 kb downstream
of the stop codon (Figure 3.10.B). In a next step, target genes were assigned to the
binding sites that mapped within the distance of 3 kb upstream and 1.5 kb downstream of
the coding sequence on the same strand or on the opposite strand. Accordingly, a total
number of 11336 unique genes summed up from three biological replicates were
assigned to 12606 significant peaks in all three replicates, whereby a single DNA binding
site could be assigned to several genes, and on the other hand, a gene could be assigned
to more than one DNA binding site.

In summary, replicates JAG-GFP 1, JAG-GFP 2 and JAG-GFP 3 had 4235, 3449 and 3652
genes assigned, respectively. In an overlap of the target genes identified in each of three

biological replicates, 1634 genes were represented with significantly enriched peaks in all
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three experiments and were therefore considered as a consistent core set of genes

targeted by JAG (Figure 3.10.A; full analysis shown in Appendices Tables C-F).

3.4. Identification of DNA binding sequence motifs for JAG

DREME (Bailey, 2011) was used to search for sequence motifs associated with the top
1000 binding sites identified from the ChIP-Seq analysis of all 3 replicates. Four motifs
were detected by DREME within a window of 100 bp centered on the binding peaks
(Figure 3.11.A). In particular, the proportion of binding sites with the A(ATC)AGAGA motif,
showed a strong enrichment with increasing ChlP-Seq score values, suggesting that this
motif is recognised by JAG and potential JAG co-factors. The A(ATC)AGAGA motif is similar
to the sequence bound by the Drosophila GAGA factor, which like JAG contains a single
C2H2 zinc finger. By contrast, the (AC)CAAAA motif did not show an enrichment for the
whole range of ChIP-Seq score values (Figure 3.11.B) (analysis performed with

bioinformatics support from Jose Muifo).

3.5. Functional characterisation of direct targets of JAG

To gain an overview of the biological processes the 1634 direct JAG targets are
involved in, we used the gene ontology (GO) analysis tool BINGO (Maere et al., 2005). In
the BINGO analysis for 1634 direct ChIP targets, 153 GO terms were significantly enriched
(corrected p-value < 0.01), thereof 18 GO terms were specifically involved in flower
development, in particular, “reproductive developmental process”, reflecting that the
ChIP experiment was performed with inflorescence apices. The GO term “regulation of
transcription” showed strong enrichment, suggesting that JAG interacts with a large
number of other regulatory genes and that JAG as a direct target of floral organ identity
genes acts upstream in the gene regulatory network of organogenesis (Figure 3.12.).
Furthermore, when correlating the proportion of JAG target genes with their ChIP-Seq
score values, genes grouped in the GO terms “regulation in gene expression” and
“reproductive developmental process” showed an increase with increasing ChlP-Seq

score values (Figure 3.13.).
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In addition, the GO terms “meristem maintenance” and “meristem development”, and
several GO terms related to the plant hormones auxin and gibberellins were significantly
enriched, suggesting that one of the key functions of JAG as a growth promoting factor is
to orchestrate hormone-mediated cell communication in tissue and organ growth. In
addition, the GO terms “response to abscisic acid” and “response to water stress” were
enriched, suggesting that JAG targets genes involved in osmotic processes. Furthermore,
several GO terms related to growth axis specification, such as “specification of axis
polarity”, “abaxial/adaxial axis specification” and “abaxial/adaxial pattern formation”
were enriched in the 1634 direct ChIP targets (Figure 3.12.; full analysis shown in
Appendices Tables C-F) (analysis performed with bioinformatics support from Jose

Muifo).

3.6. Identifying targets that are in vivo bound by JAG and under transcriptional control
of JAG

Using the region between 3 kb upstream of the start codon and 1.5 kb downstream of
the stop codon to associate DNA binding sites to gene models, we assigned several DNA
binding sites to more than one gene. To resolve which of these genes are targeted by JAG,
it can be assumed that the target genes are more likely to change expression in response
to changes in JAG function. Therefore, we overlapped the total number of 2447
differentially expressed genes including genes responsive to JAG-GR activation and to
steady state changes in the jag-1 mutant with the 1634 high-confidence ChlIP-Seq targets
(Figure 3.14.). In addition, this allowed us to select direct JAG targets that are functionally
relevant in the context of floral organ development.

The set of JAG-GR responsive genes was strongly enriched in the ChIP-Seq targets with
94 genes out of 495 genes being also directly bound by JAG. This enrichment was more
pronounced for genes repressed by JAG-GR (p = 1.16 x 10>, Fisher’s exact test) than for
activated genes (p = 1.22 x 10?). Specifically, the proportion of genes repressed by JAG-
GR rose with increasing ChIP-Seq peak scores while the up-regulated genes did not
(Figure 3.15.). In comparison, 164 genes out of 2447 genes differentially expressed
between jag-1 and the wild type were found among the direct ChIP-Seq targets. Thereof,

11 genes showed a consistent response to JAG-GR activation and in the jag-1 wild-type
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comparison, among them for example, the organ boundary specifying gene PETAL LOSS
(PTL) and the meristem regulatory gene CLAVATA1 (CLV1) (Brewer et al., 2004; Clark et al.
1997). ChIP-Seq targets that are differentially expressed in the mutant versus wild-type
comparison but did not respond to ectopic JAG-GR activation may correspond to genes
that are regulated by JAG in combination with cell type-specific co-factors or their
transcriptional response may have been diluted by the cellular response to ectopic JAG-
GR activation, therefore, the overlap with these differentially expressed genes was
included in the list of functional relevant in vivo bound JAG target genes. In total, 235
genes overlapped between the ChIP-Seq analysis (FDR < 0.01) and the expression array
experiment (log, ratio > 0.5, FDR < 0.01) (full analysis shown in Appendices Tables C and
D) and are hence in vivo bound and transcriptionally regulated by JAG. On the other hand,
1007 direct ChIP target genes that were represented on the Affymetrix ATH1
oligonucleotide array did not show significant differences in gene expression (log, ratio >
0.5, FDR <0.01) (full analysis shown in Appendices Table E). Since we only used very young
unopened flower buds from dissected inflorescences, and JAG has been shown to be
expressed until flower stage 8-10 (Dinneny et. al., 2004; Ohno et al., 2004; Dinneny et al.,
2006; Sauret et al., 2013, Smyth et al., 1990) the non-responsive genes could be relevant
in later stages of floral organ development or in another developmental context, for
example, leaf development. Furthermore, 392 genes that are direct in vivo bound targets
of JAG were not represented on the Affymetrix ATH1 oligonucleotide array and therefore
no information about expression is available for these direct targets (full analysis shown
in Appendices Table F). However, the annotated genes of this group match the GO terms
previously identified for JAG-GR responsive and ChlIP-Seq targets, such as response to
hormones and cell wall related processes. Furthermore, several of these targets belong to
protein families that are directly regulated by JAG, for example members of the GROWTH
REGULATING FACTOR (GRF) family, or protein families that are closely functionally
associated to direct targets of JAG, for example, members of the OVATE family which are
functionally associated with TALE proteins. In addition, JAG binds to several members of
microRNA families involved in plant development, for example microRNA 396 that
regulates members of the GRF family (Rodriguez et al., 2010).

In addition to identifying functionally relevant direct JAG targets, the overlap also

filtered for indirect JAG targets, with 399 genes responding to ectopic JAG-GR activation
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but not being directly bound by JAG. The vast majority of differentially expressed genes
between the jag-1 mutant and the wild type were not bound by JAG and are therefore

considered as indirect further down-stream targets.

3.6.1. Functional categorisation of directly regulated JAG targets

Compared to the GO analyses for the 1634 ChlIP targets and the 495 differentially
expressed genes upon ectopic JAG activation, the GO analysis for the 235 directly
regulated genes showed fewer GO terms and less specific biological processes, because
the reduced number of genes included into the analysis weakened statistical power.
However, several GO terms related to floral organ development, regulation of
transcription, abscisic acid and auxin related processes were significantly enriched. In line
with the functions of JAG in promoting cell proliferation and cell growth, the directly
regulated JAG targets showed enrichment for the GO terms “negative regulation of cell
size” and “negative regulation of cell growth”, which includes the two trihelix
transcription factors PTL and GTL1 (Brewer et al., 2004, and Breuer et al., 2009) and
ATHB16 involved in cell expansion (Wang et al., 2003), all repressed by JAG. In addition,
the GO term “negative regulation of cyclin-dependent protein kinase activity” was
significantly enriched, with two members of the Kip-related proteins, KRP2 and KRP4 (De

Veylder et al., 2001) being directly repressed by JAG (Figure 3.16.).

3.7. Discussion

3.7.1. Summary and limitations of the combined ChIP-Seq and expression analysis
Combining data of genome-wide DNA binding sites with global transcriptome analysis
has been shown to be a useful tool to investigate the function of transcription factors in
developmental gene regulatory networks (Kaufmann et al., 2010; Wuest et al., 2012).
Here we identified the genome-wide DNA binding sites of JAG expressed under its
endogenous promoter, which were associated with 1634 direct target genes. The overlap
of the ChIP-Seq targets with the genes differentially expressed upon changes in JAG
function identified 235 genes that are directly bound and transcriptionally regulated by
JAG. Combining the ChIP-Seq with the global expression analysis generated a framework

for the hierarchy of the gene regulatory network directing the process of early
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organogenesis. Furthermore, the overlap provided a way to filter for genes that are
specifically relevant in floral organogenesis, particularly in the cases when DNA binding
sites were assigned to more than one gene in close vicinity. The overlap of 235 directly
bound and transcriptionally regulated genes is comparable in size with previously
published overlaps of ChIP-Seq and transcriptome data: For example, Kaufmann et al.
(2010) who performed a ChIP-Seq on the MADS domain transcription factor SEP3 and
overlapped it with corresponding transcriptome data, identified a core set of 249 direct
target genes, while Wuest et al. (2012) performed a ChlIP-Seq on the Class B MADS
domain transcription factor AP3/PI and identified 1500 direct ChlIP targets, with 469
genes of them being differentially expressed upon changes in AP3/PI function.

The fact that the majority of genes bound by JAG did not seem to change in expression
in response to JAG could suggest that a large number of JAG binding sites are functionally
irrelevant. However, it must be kept in mind that the extent of the overlap between ChIP-
Seq and expression data depends on the context in which the expression data are
collected. The experiments reported here used dissected inflorescence apices containing
young floral buds, so genes that have been excluded from the set of direct,
transcriptionally responsive JAG targets may still be functionally relevant in other
contexts where JAG is relevant, such as leaf development.

The degree of overlap between the ChIP-Seq and expression data also depends on the
statistical thresholds used. My set of 235 gene candidates was generated by using
stringent significant threshold values of FDR <0.01 for the ChIP-Seq and the microarray
analysis. In the case of the ChIP-Seq | additionally only considered target genes that
showed enriched DNA binding sites in all three biological replicates independently. At
this level of stringency, all 1634 direct target genes can be considered as interesting
candidates even if they did not show a differential response in the expression array. For
example, increasing the significance threshold value in the expression array analysis from
FDR < 0.01 to FDR< 0.05 identified 66 additional genes to be directly differentially
expressed upon changes in JAG function. A further caveat in my approach was that almost
25% (392 out of 1634) of all genes identified as direct targets in the ChIP-Seq were not
represented on the Affymetrix ATH1 oligonucleotide array. In particular, we were not able
to assess the expression profiles of microRNA targets. In the future, RNA-Seq could be

used to improve detection of differentially expressed transcripts.
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Collecting expression data for a wider range of developmental stages and tissues could
reveal additional direct and transcriptionally responsive JAG targets, but the overlap
between multiple developmental programs in different tissues and cell types can make it
difficult to interpret the functional significance of the regulatory interations. To minimise
this problem, Kaufmann et al. (2010) and Wuest et al. (2012) used the ap1 cal mutant,
which produces inflorescence meristem tissue but is defective in floral primordia
initiation, as the genetic background for the DEX-inducible 355:AP1-GR. This resulted in
synchronised induction of floral primordia and floral organs, producing large quantities of
floral tissue of the same developmental stage and allowing the analysis of stage-specific
expression profiles and DNA binding dynamics over the time-course of flower
development (Gomez et al., 2005; Wellmer et al., 2006; Kaufmann et al., 2010; Wuest et
al., 2012). | attempted to use this system to focus on genes controlled by JAG at early
stages of organ development, but my preliminary experiments using the DEX-inducible
apl cal 355:AP1-GR system in combination with the anti-JAG antibodies did not provide
consistent results. The experiments were hampered by premature induction of floral
primordia in the absence of dexamethasone, accompanied by an increased number of
floral bracts. Ectopic floral bract formation in Arabidopsis has been associated with loss of
LEAFY (LFY) and LATE MERISTEM IDENTITY1 (LMI1) function, and also with ectopic JAG
expression. The ChIP-Seq data provided evidence that JAG regulates several of the floral
meristem identity genes, among them LEAFY (LFY), and LATE MERISTEM IDENTITY1
(LMI1), which are early floral meristem identity genes but also suppress ectopic bract
formation. Together, these results suggest that JAG may be ectopically expressed in the
apl cal AP1-GR system, precluding its use to analyse specifically the early roles of JAG.

To increase the resolution of my analysis of the downstream functions of JAG, the list
of candidate genes can be further investigated in a stage-specific manner by RNA in situ
hybridisation, marker lines and reverse genetics. Alternatively, laser capture
microdissection and fluorescence activated cell sorting of JAG-GFP cells would provide a

domain- and developmental stage-specific transcriptome profile.
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3.7.2. The transcription factor JAG predominantly acts as a transcriptional repressor

The original gene annotation revealed that JAG harbours a repressive N-terminal EAR
(ethylene-responsive amphiphilic repressor) motif, suggesting that it functions as a
transcriptional repressor (Ohno et al., 2004). Combining ChIP-Seq data with transcriptome
analysis data allowed me to further investigate the repressor function of JAG. While
there is a significant correlation between genes down-regulated upon ectopic JAG
activation and genes up-regulated in jag-1 compared to wild type (mock-treated 35S:JAG-
GR), there is no significant overlap between genes up-regulated upon ectopic JAG
activation and genes down-regulated in the jag-1 mutant (Chapter 2). Furthermore, in the
group of the 235 genes that are directly regulated by JAG, significantly more genes were
repressed upon JAG activation than up-regulated. Moreover, among the 1,634 ChlIP-Seq
core target genes, the proportion of genes repressed by JAG-GR rose with increasing
ChIP-Seq peak scores, while this was not the case for genes activated by JAG-GR. In this
respect, our combined approach provided further evidence that JAG preferentially
functions as a transcriptional repressor.

Further analysis of the role of JAG in transcriptional control would be facilitated by
identifying the DNA sequences bound by JAG. In this respect, three significantly enriched
DNA binding motifs were found in the vicinity of ChIP-Seq peaks, in particular the
A(ATC)AGAGA motif showed similarity to a sequence bound by the Drosophila GAGA
factor which also contains a single zinc finger domain (van Steensel et al., 2003).
However, no obvious similarities to other DNA binding motifs of plant transcription
factors have been found yet. For example, the three significantly enriched DNA binding
motifs found for JAG did not include the core AGT binding motif identified for the single
C,H, zinc finger transcription factor SUPERMAN (SUP) (Dathan et al., 2002). This is in line
with findings by Ohno et al. (2004), who have shown that SUP, JAG and NUB share high
sequence similarity in the C,H, zinc finger sequence, but that the sequence conferring
DNA binding specificity differed significantly among them, suggesting that SUP and JAG
have different downstream targets (Ohno et al., 2004).

The enriched DNA binding motifs identified in the ChIP-Seq analysis could be further
confirmed by electrophoretic mobility shift assays (EMSA) or Surface Plasmon Resonance
(SPR) as described by Stevenson et al. (2013). In this regard, the already produced

recombinant JAG protein as well as the established protocol for recombinant JAG protein
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expression and purification will prove useful. In addition, the rat anti-JAG antibodies
generated for this project will provide an alternative to commercially available antibodies
and can be used to pull down native JAG protein in vitro and in different genetic

backgrounds, independently from tagged JAG fusion proteins.

3.7.3. Functional characterisation of JAG targets

The combined approach described in this chapter provided an overview of direct and
indirect functions in biological processes and molecular mechanisms targeted by the
growth regulatory gene JAG. The GO analyses of biological processes for the 1634 ChlIP
target genes and for the 495 genes differentially expressed showed a significant
enrichment for the GO term regulation of transcription factor activity, suggesting that
JAG, as a direct target of floral organ identity genes, acts upstream in the gene regulatory
network of floral organogenesis once organ identity has been defined.

Furthermore, there was an overlap in the GO terms related to floral organ
development, meristem maintenance and meristem development, suggesting that JAG
directly targets these processes in order to promote the transition from meristem to
primordium growth behaviour, but also promotes organ outgrowth and organ patterning.
This is further supported by the enrichment of GO terms involved in axis specification
found for the 1634 ChIP targets, suggesting that JAG directly targets genes involved in
specifying the growth axis of organs, a key process in organ outgrowth and tissue
patterning. Tissue patterning requires cell to cell communication, and in this context the
GO terms response to auxin stimulus and response to gibberellin stimulus, and several
auxin-and gibberellin-related GO terms were significantly enriched in both GO analyses.
Both hormones have been reported to have key functions in promoting cell growth and
tissue growth, suggesting that JAG promotes growth and possibly growth anisotropy by
directly modulating hormone-mediated cell communication processes related to auxin
and gibberellins (reviewed by Achard and Genschik, 2009; reviewed by Leyser, 2010 and
Ljung, 2013). In addition, also response to abscisic acid was found among the enriched GO
terms in both analyses. Abscisic acid has been reported to negatively regulate leaf growth
in response to osmotic stress by the regulation of osmotic processes at the
plasmamembrane, which are also crucial for turgor pressure driven cell expansion (Bacon

et al., 1998, Parent et al., 2009), suggesting that JAG mediates its growth-promoting
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effects using a similar pathway associated with osmotic processes in the
plasmamembrane. Together, these enriched GO terms suggest that the growth regulator
JAG links tissue patterning with tissue growth.

In addition, negative regulation of cell size and cell growth and negative regulation of
cyclin-dependent protein kinase activity were among the enriched GO terms for the
overlap between transcriptome and ChlIP-Seq candidates, supporting the observations
from the quatitative 3D live-imaging approach (Schiessl et al., 2012) that JAG promotes
not only cell growth but also cell proliferation. In respect of the latter, the combined
approach revealed that JAG directly represses the CDK inhibitors KRP2 and KRP4 which
are members of the Kip-related proteins (De Veylder et al., 2001). This appeared
particularly exciting, because quantitative 3D imaging using the S-phase marker EdU (also
see Chapter 7) revealed that JAG modulates cell size homeostasis at the G1-/S-phase
transition (Schiessl et al., 2012), therefore KRP2 and KRP4 were considered as promising
candidates to further investigate how JAG uncouples entry into S-phase from cell size in
sepal primordia. Moreover, the interaction of JAG with KRP2 and KRP4 provided the first
evidence that JAG can directly interact with the core regulatory network of the cell cycle.
Interestingly, no significant enrichment for cell wall related processes was found among
the GO terms for the 1634 direct ChlP targets, suggesting that cell wall processes are
predominantly indirectly regulated by JAG to promote cell growth and cell expansion.
Furthermore, GO terms related to nutrients were not significantly enriched in the direct
targets of JAG compared with the genes responsive to ectopic JAG activation, suggesting
that modulation of nutrient levels are downstream of the immediate growth promoting
effects of JAG.

In summary, combining the ChIP-Seq data with the global transcriptome provided a
global view of the hierarchy of gene expression downstream of JAG. | identified a core set
of target genes that are directly in vivo bound and transcriptionally regulated by JAG in
the context of floral organogenesis. Furthermore, | could separate this core set of direct
targets from indirectly regulated genes and processes. For example, the processes of
meristem maintenance and response to auxin were directly targeted by JAG, whereas
processes related to the cell wall appeared to be mostly indirectly regulated by JAG.
Together, the direct and indirect candidate genes provided a platform to elucidate the

molecular mechanisms of organogenesis and laid the foundation for further
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understanding the role of growth regulators in the gene regulatory network of floral
organogenesis. In the following chapters (Chapter 4-7), the interaction of JAG with target
genes involved in floral patterning, meristem maintenance and cell cycle regulation is
analysed in detail, while Chapter 8 discusses in more depth genes and functions that

provide novel and unexpected leads to understand JAG function.
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Figure 3.1. Ectopic JAG-GR binds to the promoter region of BEL1.

Chromatin immunoprecipitation (ChIP) using anti-GR antibodies and inflorescence apices

of 355::JAG-GR plants 4 h after mock treatment (light blue) or treatment with

dexamethasone 10 uM (red); target sequences 1.9 or 0.3 Kb upstream of the BEL1

transcriptional start; bars show the average and standard deviation of three biological

replicates; numbers below the bars indicate the left border of the g-PCR amplicon relative

to the coding sequence; asterisks indicate significant difference to the mock control (p <

0.05, Student’s t-test).
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Figure 3.2. Ectopic JAG-GR binds in the promoter region of BP.

Chromatin immunoprecipitation (ChIP) using anti-GR antibodies and inflorescence apices
of 355::JAG-GR plants 4 h after mock treatment (light blue) or treatment with
dexamethasone 10 uM (red); target sequences 2.6 and 1.1 Kb of upstream of the BP
transcriptional start; bars show the average and standard deviation of three biological
replicates; numbers below the bars indicate the left border of the g-PCR amplicon relative
to the coding sequence; asterisks indicate significant difference to the mock control (p <

0.05, Student’s t-test).

Figure 3.3. Transient expression of recombinant JAG poly-His tag protein in Nicotiana
bentamiana leaves. (A) Leaf infiltrated with pEAQspecial harbouring the JAG cDNA
(hypersensitive response) 5 days after infiltration; (B) Leave infiltrated with pEAQspecial-

GFP-HT (positive control) 5 days after infiltration.
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Figure 3.4. Expression of recombinant JAG poly-His tag protein in E.coli strain BL21.
SDS-PAGE gel loaded with recombinant JAG poly-His tag protein sampled at different
time-points after induction with 100 uM IPGT (time-point Oh), from time-point 1h
onwards three bands at 30 kDa (predicted size of JAG poly-His tag), slightly above 30 kDa,

and around 20 kDa were induced (indicated by red asterisks).
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Figure 3.5. Purified and concentrated recombinant JAG poly-His tag protein on SDS-
PAGE gels. (A) SDS-PAGE gel of column-purified and imidazole eluted samples: 1-4 are
sequential samples of 1.5 ml eluted fractions, with the last fraction (4) showing an
increase for the 30 kDa band. (B) Samples of several elution fractions were combined and
concentrated to a final concentration of 70 ng/ml; samples 1-5 show gradual enrichment

of the 30 kDa band over 5 concentration steps.
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Figure 3.6. Testing of the rat anti-JAG antibodies against JAG protein in Western Blots.
(A) Detection test for anti-JAG antibodies using different concentrations of recombinant
JAG poly His-tag protein showed a detection limit at 70 ng with a 1:500 anti-JAG antibody
dilution. (B) Detection test for anti-JAG antibodies using crude plant protein extracts of
inflorescences of different genotypes:(1) jag-2 L-er, (2-3) 355:JAG-GR in wild-type L-er,(4-
5) wild-type L-er.
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Figure 3.7. Complementation of the jag-2 mutant with pJAG:JAG-GFP.

Scale bars: 1mm; (A) wild-type L-er inflorescence; (B) jag-2 L-er inflorescence: sepals and
petals with reduced distal growth, carpels protruding from the unopened younger flower
buds, and petals with translucent appearance; (C) pJAG:JAG-GFP in jag-2 L-er with fully
complemented distal outgrowth of sepals and petals, petals regaining white appearance,
and sepals completely enclosing the organs of the inner whorls in unopened younger

flower buds.
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Figure 3.8. JAG-GFP expression in the pJAG:JAG-GFP jag-2 L-er.

Scalebar (A-C): 50 um; (A-C) Confocal image of a stage 3 floral bud with the first pair of
sepal primordia emerging; JAG-GFP showed a nuclear-localised expression pattern
throughout the emerging primordia, but was not expressed in the floral meristem; (A)
cross section from a confocal stack; (B-C) 3D projections of the confocal stack generated

in Fiji (Schmid et al., 2010).
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Figure 3.9. Testing the sensitivity and reproducibility of the ChIP with endogenous JAG-

GFP in combination with anti-GFP antibodies. (A) Binding of JAG-GFP to the upstream

region of BEL1 confirmed by ChIP-qPCR; target sequence 1.9 upstream of the BEL1

transcriptional start was significantly enriched (as previously identified as a positive

control, see Figure 3.2.) in comparison to the Mu-like gene that served as a negative

control and did not show a significant enrichment in the JAG-GFP precipitated DNA; bars
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show the average and standard deviation of three biological replicates; numbers below
the bars indicate the left border of the g-PCR amplicon relative to the coding sequence;
asterisks indicate significant difference to the negative WT control (p < 0.01, Student’s t-
test). (B) Visualisation of read enriched regions mapping to the TAIR10 Arabidopsis
reference genome (x-axis) using the Integrated Genome Browser (Nicol et al., 2009), ChIP-
Seq peak score values (y-axis) based on the ratios of normalised reads between JAG-GFP
and control samples were calculated for every single nucleotide position using CSAR
software (Muifio et al., 2011a), the maximum score value within the candidate peaks was
used to test for significance of the enrichment; enrichments detected in each of the three
replicates within 3 kb upstream and 1.5 kb downstream of the coding sequences for the
BEL1 locus on chromosome 5 confirm that BEL1 is one of the 1634 highly reproducible

target genes.
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A
DNA binding sites and ChIP target genes at FDR < 0.01

number of enriched DNA binding sites number of target genes
-3kb to -1.5 kb -1.5 kb to 0 kb within cds 0 kb to +1.5 kb

Replicate GFP-1 1107 1635 632 1384 4235
Replicate GFP-2 863 1395 500 1054 3449
Replicate GFP-3 976 1442 521 1097 3652
total 2946 4472 1653 3535 12606 11336
percentage 0.23 0.35 0.13 0.28

number of reproducible genes 1634

B
Spatial distribution of DNA binding sites relative to cds

& -3kb to -1.5 kb

“-1.5kbto0kb

within cds

13.11%

L 0kbto+1.5kb

Figure 3.10. Analysis of the ChIP-Seq data. (A) Number of the significantly enriched DNA
binding sites and associated target genes with binding sites in -3kb and +1.5 kb vicinity of
their coding sequence for each of the three biological replicates and in total. (B) Pie chart
of the spatial distribution of DNA binding sites relative to the coding sequences in close
vicinity, numbers are the percentage for each distance category (-3kb to -1.5 kb, -1.5 kb
to transcriptional start, within CDS, 0 kb to 1.5 kb downstream of the stop codon) relative
to the total number of 12606 significantly enriched DNA binding sites identified within -
3kb and +1.5 kb vicinity of coding sequences in the three biological replicates (graphs

produced with bioinformatics support from Jose Muifio).
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Figure 3.11. Enriched DNA binding motifs of JAG. (A) Affinity logos for motifs enriched
within 100 bp of JAG DNA binding peaks; (B) Enrichment for the motifs shown in (A) as a
function of ChIP-Seq scores, the horizontal axis shows the ChIP-Seq score values above
the threshold; the single ChIP-Seq score attributed to each gene was from the replicate
with the lowest value; proportion of genes were only displayed, when the total number of
genes above a given ChIP-Seq score was 3 or higher (graphs produced with bioinformatics

support from Jose Muifio).
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A

Enrichment of GO terms (biological processes) in the set of 1634 ChIP-Seq target genes

GO-ID p-value x n X N Description

10468 1.23E-20 193 1641 1274 22278regulation of gene expression

48507 5.06E-03 15 95 1274 22278 meristem development

10073 1.48E-02 10 56 1274 22278 meristem maintenance
9908 4.05E-07 37 228 1274 22278 flower development
3006 1.01E-03 75 828 1274 22278 reproductive developmental process
9733 6.40E-09 46 282 1274 22278 response to auxin stimulus
9850 4.49E-02 7 37 1274 22278 auxin metabolic process
9737 6.67E-05 36 272 1274 22278 response to abscisic acid stimulus
9788  2.39E-02 5 17 1274 22278 negative regulation of abscisic acid mediated signaling pathway
9414 1.48E-02 22 188 1274 22278 response to water deprivation

10476 4.61E-03 8 31 1274 22278 gibberellin mediated signaling pathway
9739 6.87E-04 18 107 1274 22278 response to gibberellin stimulus
9798 3.52E-05 10 27 1274 22278 axis specification
9955 6.70E-05 9 23 1274 22278 adaxial/abaxial pattern formation
9944  3.19E-04 7 16 1274 22278 polarity specification of adaxial/abaxial axis
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Figure 3.12. Enrichment for Gene Ontology associated with the direct 1634 reproducible
target genes in vivo bound by JAG. (A) GO terms (biological process) enriched within the
set of ChlP target genes. The p-values are the corrected p-values calculated by BINGO,
with x being the number of genes belonging to the specific GO-ID found in the total
number our gene set (X), while n is the number of genes identified for the specific GO-ID
and N is the total number of annotated genes considered in the BINGO analysis. (B and C)
Graphical representation of the enriched GO terms (biological process) within the set of
genes described in (A); enrichment map representing the hierarchy of the network of
biological processes; produced within the Cytoscape environment (Saito et al., 2012); GO
terms that were found significantly enriched including all parental categories are
represented in the map as nodes; the size of the node is proportional to the number of
ChlIP targets represented in the GO term, node colour corresponds with the significance
based on the BINGO analysis described in (A) with white (insignificant), from yellow
p=0.01 to dark orange p= 0.01 10”*; nodes were automatically arranged so that highly

similar gene sets are placed together, as a result highly redundant gene sets cluster;
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edges between nodes represent weighted links between the nodes according to the
number of overlapping genes; (B) enrichment map with a focus on developmental
processes and morphogenesis and (C) with a focus on hormone stimulus; (graphs

produced with bioinformatics support from Jose Muifio) .
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Figure 3.13. Enrichment for Gene Ontology terms associated with differentially
expressed, direct JAG target genes with ChIP-Seq scores above the threshold shown in
the horizontal axis. The single ChIP-Seq score attributed to each gene was from the
replicate with the lowest value; proportion of genes were only displayed, when the total
number of genes above a given ChlIP-Seq score was 3 or higher; (graph produced with

bioinformatics support from Jose Muifio).
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Figure 3.14. Overlap of ChIP-Seq targets with genes differentially expressed upon
changes in JAG function. Overlap between the sets of differentially expressed genes
shown in Chapter 2, Figure 2.2. and the combined set of 1634 reproducible ChIP-Seq
targets shown in Figure 3.9.A; when calculating p-values for the overlaps (Fisher’s exact
test), only genes that were present in both the ChIP-Seq and expression array lists were

considered; (graph produced with bioinformatics support from Jose Muifo).
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Figure 3.15. Enrichment of ChiP-Seq scores for differentially expressed (repressed and
activated) genes. Enrichment for repressed and activated genes with ChIP-Seq scores
above the threshold shown in the horizontal axis, within the set of 495 genes that were
differentially expressed upon ectopic JAG-GR activation; the single ChIP-Seq score
attributed to each differentially expressed gene was from the replicate with the lowest
value; proportion of genes were only displayed, when the total number of genes above a
given ChIP-Seq score was 3 or higher; (graph produced with bioinformatics support from

Jose Muifno).

Enrichment of GO terms (biological processes) in the set of 235 differentially expressed ChiP-Seq targets

GO-ID p-value x n X N Description

9908 8.31E-05 13 198 201 15988 flower development

145449 1.156-04 34 1160 201 15988 regulation of transcription

9733 3.89e-02 9 234 201 15988 response to auxin stimulus

9737 4.24E-02 9 239 201 15988 response to abscisic acid stimulus

45736 4.14E-02 2 7 201 15988 negative regulation of cyclin-dependent protein kinase activity
145926 2.19e-03 3 8 201 15988 negative regulation of growth

45792 2.20E-02 2 5 201 15988 negative regulation of cell size

Figure 3.16. Enrichment for Gene Ontology terms associated with the 235 differentially
expressed, direct JAG target genes. The p-values are the corrected p-values calculated
by BINGO, with x being the number of genes belonging to the specific GO-ID found in the
total number our gene set (X), while n is the number of genes identified for the specific
GO-ID and N is the total number of annotated genes considered in the BINGO analysis;

(graph produced with bioinformatics support from Jose Muifio).
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Chapter 4 - JAG directly represses genes involved in meristem

maintenance and organisation

4.1. Introduction

Results obtained from quantitative 3D imaging identified JAG as a regulator in the
transition from meristematic to primordia cell behaviour in early stages of organ growth.
The transition involves decreased coordination of cell size and DNA synthesis, an increase
in the rates of cell growth and division, and a shift from isotropic to anisotropic growth.
Consequently, cells in the sepal primordium of jag loss of function mutants fail to make
this transition and behave like meristem cells (Schiessl et al., 2012; note that the imaging
data presented in the paper were not obtained by me, therefore | cited the paper
whenever imaging results were concerned; also note that the imaging protocol presented
in the paper differed from the imaging protocol used in Chapter 7). It has been shown
that organ identity genes such as ASYMMETRIC LEAVES1/2 (AS1/2) and their interactors,
for example, BLADE ON PETIOLE1/2 (BOP1/2), but also auxin maxima generated at the
site of incipient organ primordia, repress meristem maintenance genes (Ori et al., 2000;
Jun et al.,, 2010; Hay et al., 2006), showing that establishing primordia identity requires
down-regulation of meristem maintenance genes. In this context, | hypothesised that JAG
would also antagonise meristem development genes.

A particularly important group of meristem regulatory genes are the TALE proteins,
which are highly conserved developmental regulators also present in animals and fungi. In
plants, they form a tightly interconnected regulatory network to co-ordinate meristem
establishment and maintenance throughout post-embryogenic development (reviewed
by Hay and Tsiantis 2010). TALE proteins share a homeodomain (HD) that allows them to
bind to DNA and to act as transcription factors. Additionally, (BLH) proteins such as BEL1
and SAW2 have a BELL domain that facilitates protein-protein interactions, and class |
KNOX-type homeodomain proteins such as BP and STM have a MEINOX domain that
allows interaction with other TALE proteins to control transcription. Members of the class
| KNOX and BLH protein families heterodimerise in multiple combinations and form a
closely linked transcriptional and post-translational regulatory network that controls

maintenance and organisation of meristems and organ development during all stages of
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post-embryonic plant development. One of their main functions is to keep stem cell
populations in a pluripotent state and to prevent them from differentiation.

Heterodimerisation is crucial for the function of TALE proteins to determine subcellular
localisation, target specificity and affinity, as shown for the interaction of STM with BLH
proteins. STM has no nuclear localisation signal and relies on the interaction with BLH
proteins harbouring a nuclear localisation signal to be localised in the nucleus (Cole et al.,
2006). In addition, BLH proteins harbour nuclear export signal sequences within their BELL
domain, which are recognised by nuclear export receptors. Co-localisation experiments
suggested that the interaction of STM-BLH masks the nuclear export signal and localises
the heterodimers to the nucleus where they can function as transcription factors (Cole et
al., 2006). For example, in the inflorescence meristem, the interaction of STM with three
BLH proteins, namely ATH1, REPLUMLESS (RPL), and POUNDFQOULISH (PNF) has been
studied in detail (Rutjens et al., 2009). The triple ath1 rpl pnf loss of function mutant, but
none of the single or double loss of function mutants showed the stm loss of function
phenotype of a depleted, prematurely determinate meristem, suggesting that STM
function relies on the interaction with these BLH proteins that act redundantly. In
addition, it has been shown that BP and RPL heterodimers function in internode
patterning (Kanrar et al., 2006).

Far less is known about the protein-protein interactions of BEL1 and SAW2. Yeast two-
hybrid assays have shown that BEL1 and SAW2 can form heterodimers with BP and STM
(Reiser et al., 1995; Kumar et al., 2007) in vivo. Interaction of BEL1 with BP and STM was
confirmed in planta by BIFC. Overlap between the expression patterns of BEL1 and STM in
the central zone of the inflorescence meristem and between BEL1 and BP at the base of
early floral meristems suggested that these TALE proteins can function together (Bellaoui
et al., 2001). In particular, this has been supported by the bel mutant phenotype that
showed a determinate inflorescence meristem, suggesting that the STM-BEL1
heterodimer contributes to the indeterminacy of wild-type inflorescence meristems
(Bellaoui et al., 2001). However, this phenotype is variable and appears to depend on the
bel allele (personal communication, Stefano Bencivenga).

STM has a broad function in establishing and maintaining stem cell populations. It is
required for the establishment of the shoot meristem during embryogenesis and

subsequent maintenance of all apical meristems (Long et al., 1996). Accordingly, stm loss
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of function mutants fail to establish a pool of pluripotent stem cells in the early shoot
apical meristem and consequently cannot develop beyond the seedling stage. BP is a
close STM homolog and is expressed in the basal region of the vegetative shoot meristem
and in the boundaries of the inflorescence meristems were it regulates initiation of floral
meristems and the development of the stems and flower pedicels (Venglat et al., 2002).
BP can also assume the role of STM in meristem and boundary maintenance (Byrne et al.,
2002; Belles-Boix et al., 2006).

Functional analysis has shown that both STM and BP modulate hormone homeostasis
in the meristem in order to maintain pluripotent stem cell populations. STM and BP
promote high cytokinin levels and low gibberellic acid (GA) levels, which promote cell
division and prevent cell elongation and differentiation, respectively. The cytokinin
biosynthesis gene IPT7 has been identified as a major target of STM and BP, and
expression of the IPT7 gene under the STM promoter partially rescued the stm loss of
function phenotype (Yanai et al., 2005; Jasinski et al., 2005). Furthermore, ectopic
expression of STM and BP resulted in ectopic expression of the cytokinin response factor
ARR5:GUS reporter in lateral organ primordia, suggesting that ectopic KNOX gene
expression leads to increased levels of cytokinin in organ primordia (Yanai et al., 2005).
Conversely, it has been shown in several species that KNOX genes can repress the GA
biosynthesis gene GA 20-oxidase (GA200x1) (Sakamoto et al., 2001; Hay et al., 2002;
Cheng et al., 2004). Activation of 355:STM-GR resulted in increased GA2ox2 and GA2ox4
expression levels, two genes involved in deactivation of GA, and in maize it has been
shown that the KN1 (KNOTTED1) protein can directly bind to a cis-regulatory element of
the GA20x1 promoter to promote deactivation of GA (Bolduc et al., 2009). In Arabidopsis
wild-type plants, GA2ox genes were found to be expressed at the base of meristems at
the boundary to organ primordia, suggesting that the expression of GA-deactivating
GA20x2 and GA20x4 protects the meristem from GA influx from developing organ
primordia (Yasinski et al., 2005). Expression of both BP and STM is excluded from founder
cells and their absence in founder cells has been considered as the earliest marker for
organ primordia formation in contrast to meristem cell identity (Smith et al., 1992; Long
et al., 1996). As expected, overexpression of BP using the 35S promoter had severe
effects on lateral organ development: simple leaves were overall smaller in size and

formed lobes in the basal serrations due to a lack of growth in the sinus. Flowers were
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smaller with thinner sepals and narrow greenish translucent elongated petals (Chuck et
al., 1996). More interestingly, fully functional inflorescence meristems formed from veins
leading to the first basal lobe of cauline leaves that gave rise to wild-type flowers. In these
ectopic meristems, STM was expressed once the meristem dome had been established,
suggesting that ectopic BP expression is sufficient to initiate meristems in lateral organs
(Chuck et al., 1996).

In summary, TALE proteins form a complex network promoting pluripotent,
indeterminate meristematic cell behaviour. However, for organ development cells need
to change their growth pattern and fate. Therefore, TALE proteins need to be tightly
controlled during floral organogenesis. Accordingly, my initial expression array analysis
revealed that BEL1, BP and, STM were repressed by JAG. Therefore, | characterised in
detail the interaction between JAG and BEL1, BP, and STM, using qRT-PCR, RNA in situ
hybridisation, reporter lines and reverse genetics. | also aimed to identify DNA binding
sites of JAG in close vicinity to the BEL1, BP and STM loci. Subsequently, combined
analysis of expression array and ChlIP-Seq data confirmed that JAG directly repressed not
only BEL1, but also further BELL1-like homeodomain (BLH) genes, including SAWTHOOTH?2
(SAW2/BLH4) (Kumar et al., 2007), ATH1 and REPLUMLESS (RPL) (Gomez et al., 2005;
Rutjens et al., 2009), in addition to the class Il KNOX gene KNAT4. Furthermore, the
combined ChIP-Seq and arrays data revealed that the regulation of BREVIPEDICELLUS (BP)
and SHOOTMERISTEMLESS (STM) was indirect, and extended the interactions with JAG to

a wider range of meristem regulatory genes apart from the TALE family.

4.2. Results

4.2.1. JAG represses BEL1 and BP

Global expression profiling showed that BP and its interactor BEL1 are both
significantly (FDR<0.01) repressed by ectopic JAG activation. Because the ChIP-Seq data
was not available at that point, | relied on the ectopic activation experiment using DEX
treatment in the presence and absence of the protein synthesis inhibitor cycloheximide to
filter for putative direct targets. Both BP and BEL1 were also significantly repressed upon
ectopic JAG activation in the presence of cycloheximide, suggesting that they were

immediate transcriptional targets of JAG. Consistently, BP and BEL1 were down-regulated
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in the control treated 355:JAG-GR wild type L-er background compared with the control
treated jag-1 loss of function background, showing that both candidates are ectopically
expressed in jag-1.

To confirm the global expression profiling data, | performed qRT-PCR on inflorescence
apices tissue of wild-type plants harbouring the 355:JAG-GR construct. For ectopic JAG
activation, the plants were subjected to a DEX treatment and ethanol-control treatment
in the presence and absence of the protein synthesis inhibitor cycloheximide and
incubated for 4 hours. Transcript levels of BEL1, BP and STM were significantly reduced
upon ectopic JAG activation in the absence and presence of cycloheximide compared with
the ethanol-treated controls. In addition, qRT-PCR results confirmed that mRNA levels for
BEL1, BP, and STM were significantly increased in the jag-2 mutant flower apices
compared with the wild-type flower apices, suggesting ectopic expression of these genes

in the jag mutant (Figure 4.1.).

4.2.2. JAG restricts the expression domains of BEL1 and BP in early flower buds

To further verify that BEL1, BP, and STM were repressed and restricted to their wild-
type expression domains by endogenous JAG, | performed RNA in situ hybridization
comparing expression in wild-type and jag-2 sections of early floral buds. Expression of
BEL1 was observed in the sepal primordia of jag-2 buds, but not in the wild-type controls
(Figure 4.2.A-B). In additon, | observed strong expression in developing ovules in wild-
type and in jag-2 buds, which served as a control for the known expression pattern of
BEL1 (Reiser et al., 1995) (Figure 4.2.C-D). For BP, the known expression pattern in flower
pedicels and stems (Lincoln et al., 1994; Kumar et al., 2007) was comparable in wild-type
and jag-2 plants (Figure 4.2.E, F). In addition, jag-2 buds showed ectopic expression at
the base of organ primordia, which was particularly obvious in the emerging carpel
primordia of stage 6 buds (Figure 4.2.E, F). For STM, | observed expression in the
inflorescence and floral meristems of wild type and jag-2 plants as previously reported
(Long et al., 1996; Kumar et al., 2007). However, | did not observe consistent differences
in expression domains between jag-2 and wild type in early sepal primordia (data not
shown).

Further evidence for ectopic expression of BP in the jag-1 single mutant background

was provided by a pBP:GUS reporter construct that was crossed into the jag-1 Col

81



background. A significantly stronger GUS signal was observed in young floral buds with
the pBP:GUS reporter construct in the jag-1 single mutant compared with the wild-type

background (Figure 4.3.).

4.2.3. Effects of ectopic BP in the jag-1 loss of function mutant flower

In the next step, | asked whether the ectopic BP expression observed in the early
flower buds of the jag loss of function mutants had an effect on the flower phenotype. To
investigate this, | generated a bp jag-1 double loss of function mutant in Col background.
In the bp mutant, internodes are compact and pedicels are shorter because of fewer cell
divisions and the downwards-pointing flowers are generated by an asymmetric effect in
the abaxial side compared to the adaxial side (Venglat et al., 2002). The bp jag-1 double
loss of function mutant showed an additive phenotype, with downwards-pointing
pedicels (as typically observed in bp single mutants) and narrow and reduced sepals and
petals (as observed in jag single mutants). No macroscopic rescue of the jag-1 floral
phenotype was observed at any developmental stage, suggesting that ectopic expression
of BP is not the predominant cause for the defective organ outgrowth phenotype in the

jag-1 mutant (Figure 4.4.).

4.2.4. Endogenous JAG binds to promoter regions of BEL1 but not BP

Results from expression arrays, qRT-PCR and RNA in situ hybridisation provided
independent evidence that BP and BEL1 were repressed by JAG. In the next step, | aimed
to identify in vivo binding sites of JAG in the promoter regions of BP and BEL1 by ChIP.

Previously, | identified a DNA binding site 1.877 kb upstream of the BEL1 start codon
using 355:JAG-GR line combined with anti GR-antibodies (Figure 4.5.).This binding site
coincided with one of the peaks produced in the ChIP-Seq analysis (Figure 4.6.A) and was
confirmed by an independent ChIP g-PCR experiment using pJAG:JAG-GFP apices (Figure
4.6.B). In addition, JAG bound to the second intron of the BEL1 gene (Figure 4.6.A). By
contrast, | did not observe any enriched DNA-binding sites within the 3 kb upstream and
1.5 kb downstream region of BP for JAG-GFP under its endogenous promoter, suggesting
that although BP may be a direct target of ectopically expressed JAG (Figure 4.7.), it
rather appears to be an indirect target of the endogenous JAG in its normal expression
domain. For example, JAG may indirectly regulate BP by the TALE protein SAWTOOTH?2

(SAW2) that has been reported to repress the meristem identity gene BP in organ
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primordia (Kumar et al., 2007) and was identified as a directly activated ChIP target by
JAG (Chapter 3). For STM, a similar indirect transcriptional effect of JAG, possibly via TALE

proteins, can be hypothesised.

4.2.5. ChIP-Seq revealed that JAG directly targeted additional genes involved in
meristem organisation

The combined expression array and ChIP-Seq analysis described in Chapters 2 and 3
revealed that JAG repressed several additional genes involved in meristem development.
For example, JAG directly represses the floral meristem regulator LEAFY (LFY) (Weigel et
al., 1992; William et al., 2004) and its direct targets LATE MERISTEM IDENTITY 1 (LMI1)
(Saddic et al., 2006) and LATE MERISTEM IDENTITY 2 (LMI2) (Pastore et al., 2011) (Figure
4.8.A-D). Both LMI1 and LMI2 have been shown to interact with LFY to promote
expression of downstream floral meristem identity regulators. While LMI1 has been
shown to be able to directly bind and activate CAULIFLOWER (CAL) but not APETALA1
(AP1) in a ChIP experiment, LMI2 specifically promotes AP1 expression (Saddic et al.,
2006; Pastore et al., 2011).

Interestingly, loss of LMI1 function in a weak Ify allele background also increases the
numbers of floral bracts, suggesting a role for LMI1 in suppression of bract formation
(Saddic et al., 2006). Ectopic bract formation has also been observed in the JAG gain-of-
function allele jag-5D (Dinneny et al., 2004), suggesting that ectopic repression of LMI1 by
ectopically expressed JAG could at least in part be the cause for ectopic bract formation.
Apart from floral meristems and early floral primordia, LMI1 is also expressed in the
margins of sepals, petals and leaves. Leaves of the Imil mutant have deep lobes, a
phenotype that is reminiscent of the ectopic expression of the Class | KNOX gene BP.
Consistently, Imi1 leaves were reported to ectopically express BP (Saddic et al., 2006),
suggesting that LMI/1 is involved in the regulation of the meristem identity gene BP in
leaves. In my experiments, repression of LMI1 by ectopic JAG-GR activation in
inflorescences was further confirmed by gRT-PCR. Additionally LM/1 showed ectopic
expression in jag-1 mutant compared to wild-type inflorescences (Figure 4.8.D).

JAG also directly repressed another floral meristem identity regulator downstream of
LFY, the MADS BOX transcription factor SHORT VEGETATIVE PERIOD (SVP) (Gregis et al.,
2008 and 2009). SVP functions together with AGAMOUS-LIKE 24 (AGL24) to act
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redundantly with AP1 and CAL in floral meristem formation, for example the ap1 svp
agl24 triple mutant mimics the apl cal mutant in the inability to form floral primordia,
consisting only of inflorescence meristems (Gregis et al., 2009). In this context, it was also
shown that the MADS box transcription factor SUPRESSOR of CO1 (SOC1), which is also
bound in vivo by JAG, can resume the function of SVP and AGL24 in floral meristems in
their absence (Gregis et al., 2009).

Furthermore, JAG directly repressed genes involved in the regulation of meristem
organisation and size. For example CLAVATA1 (CLV1) (Figure 4.8.E) (Clark et al., 1997;
Schoof et al., 2000), which acts in the CLAVATA-WUSCHEL pathway to control meristem
size, was directly repressed upon JAG-GR activation and ectopically expressed in the jag-1
mutant in the expression array and in the independent qRT-PCR experiment. Closely
related to CLV1, two members of BARELY ANY MERISTEM (BAM) receptor kinase-like
family BAM1 and BAM_2 are direct targets of JAG, and BAM3 is indirectly down-regulated.
BAM1 and BAM2 are expressed in the flanks of shoot and floral meristems and in
primordia of leaves, sepals, and petals (DeYoung et al., 2006). Loss of BAM1 and BAM?2
function caused a decrease in shoot and floral meristem sizes, suggesting that both genes
have opposite functions to CLV1 in meristem size regulation (DeYoung et al., 2006). In
addition, bam1 bam2 double loss of function mutants developed smaller asymmetric
leaves with defects in vein formation and curled margins, and floral organs showed
growth defects similar to the jag loss of function mutant with the gynoecia protruding
from unopened flower buds and reduced size of mature petals (DeYoung et al., 2006),
suggesting that BAM1/BAM2 play a role in promoting organ development.

In respect to the transition from meristem to founder cell identity, JAG directly
targeted the GRAS transcription factor LOST MERISTEMS 1 (LOM1) (Figure 4.8.F), which is
expressed at the meristem flanks specifically at the boundary to organ primordia. There,
it promotes the transition of cells from the peripheral meristem zone into organ
primordia. In the Jlom1 mutant the vegetative shoot and inflorescence meristems
increased in width, became flatter, produced significantly fewer primordia and
terminated earlier than in the wild type. In the lom1 mutant, the shoot apical meristem
develops several additional sub-epidermal layers due to changes in cell division patterns.
Using ANTEGUMENTA (ANT) expression as a marker for founder cell identity it was shown

that stem cells over-proliferate in the peripheral zones, acquire founder cell identity but
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fail to be recruited into initiating organ primordia, suggesting that LOM promotes cell
differentiation at the transition from founder cells to organ primordia identity (Schulze et

al., 2010).

4.3. Discussion

4.3.1. Wider implications of the interactions between JAG and members of the TALE
protein family

One of the key functions of JAG is to facilitate the transition from a meristem to a
primordium cell behaviour (Schiessl et al., 2012). As described above, TALE proteins form
a regulatory network that promotes meristem development and sustains a pluripotent
stem cell population. In this context, | showed that JAG indirectly represses the KNOX
genes BP and STM, while the BLH gene BEL1 is directly repressed by JAG. All three genes
were ectopically expressed in the inflorescences of the jag loss of function mutants. For
BP and BEL1 we could show ectopic expression specifically in floral primordia of the jag
mutant compared to wild type by in situ hybridisation and by using a BP:GUS reporter
construct. Because plants with ectopic BP expression (355:BP) showed a green
inflorescence phenotype and lobed serrated leaves (Chuck et al., 1996) | speculated that
ectopic BP expression would at least in part be the cause for the jag floral phenotype.
However, | did not observe rescue of the jag loss of function phenotype in the jag bp
double mutant. This suggested that BP is not the primary cause for the jag loss of function
phenotype and that there is possibly functional redundancy with other KNOX genes, for
example, its closest homolog STM.

A regulatory interaction similar to JAG and BP was observed between BP and the BLH
genes SAW1 and SAW2, which are the closest homologs to BEL1 and whose protein
products interact with the BP and STM proteins (Kumar et al., 2007). In contrast to BEL1,
which is expressed in meristems and is directly repressed by JAG, SAW2 is absent from
meristems but expressed in organ primordia and is directly activated by JAG. BP was
ectopically expressed in leaves and inflorescences of the saw1 saw2 double mutant,
which shows an increased number of leaf serrations. But as seen for bp jag-1, in the saw1
saw?2 bp triple loss of function mutant no rescue of the phenotype was observed,

suggesting that even if JAG repressed BP indirectly via direct activation of SAW2 there
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would still be redundancy due to mis-expression of other KNOX genes such as STM. In this
respect, ectopic expression of SAW1 caused the same floral phenotype as the mild stm
loss of function mutant of fused sepals and petals, suggesting that SAW1 and SAW?2 are
able to repress STM in lateral organs (Kumar et al., 2007). | have not tested the transcript
levels of STM and the other Class | KNOX genes such as KNAT2 and KNAT6 or Class 1l KNOX
genes in the bp jag double mutant. The Class Il KNOX gene KNAT4 is directly down-
regulated by JAG (see Chapter 3), although KNAT2 and KNAT6 do not appear to be
directly or indirectly targeted by JAG.

In addition, BP is under transcriptional regulation by several organ-specifying genes,
for example the Myb domain transcription factor AS1 and lateral organ boundaries
domain (LOB) protein AS2, which both are repressed by STM in the meristem (Byrne et
al., 2000; 2002). Consequently, repression of STM in the founder cells promotes AS1 and
AS2 expression in incipient leaf and floral primordia, where both genes act together to
repress BP (Ori et al., 2000; Byrne et al., 2002; Guo et al., 2008 and lkezaki et al., 2009).
Ori et al (2000) showed that as1 and as2 mutants show ectopic expression of BP but not
STM in primordia. In as1 and as2 flowers, buds opened prematurely, sepals and petals
were shorter and curved outwards (Ori et al., 2000). Interestingly, as1 as2 bp1 triple
mutants have additive phenotypes with reduced narrow sepals and petals, suggesting
that also in the as1 as2 mutant context ectopic BP expression is not the single cause for
the reduced defective flower phenotype. Furthermore, Xu et al. (2008) reported additive
and more severe phenotypes for asi jag and as2 jag double mutants compared to either
single mutant with severely reduced filamentous sepals and petals, suggesting that JAG
and AS1/AS2 act in parallel regulatory pathways to promote floral organ development. It
has also been shown that AS1/AS2 and SAW1/SAW?2 act in parallel pathways to repress
BP, because the double mutant appeared to have deeper lobes at the serrations,
suggesting an additive effect (Kumar et al., 2007).

In the case of the as1, there is evidence that BP, and the other Class | KNOX genes
KNAT2 and KNAT6 act redundantly in repressing GA biosynthesis. In as1 mutants, GA 20-
oxidasel (GA200x1) transcript levels were decreased to 50% of the wild-type expression,
while introducing loss of BP1, KNAT2 and KNAT6 together restored GA200x1 expression
to wild-type levels, suggesting that these three Class | KNOX genes act redundantly to

repress GA biosynthesis (Ikezaki et al., 2009). Furthermore, it has been shown that KNAT2
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and KNAT6 were ectopically expressed in the bp loss of function mutant (Ragni et al.,
2008), suggesting that there is regulatory interaction between BP, KNAT2 and KNATES.

The regulatory function of STM in repressing AS1 and AS2 in the meristem and its
repression in founder cells raises the question of what represses KNOX genes in the
founder cells at first place. In shoot apical meristems, organ primordia are positioned by
auxin maxima generated via local polar auxin transport in the peripheral zones of the
floral meristems, involving the activity of the polar efflux carrier PIN1 and its interacting
protein kinase PINOID (PID) (Benkova et al., 2003). Once the position of the incipient
organ is established, meristem cells need to terminate meristem cell identity and acquire
the identity of organ primordium cells. Evidence for an interaction between KNOX genes
and auxin patterning came from the phenotype of the pinl1 bp double mutant, where loss
of BP function in the pin1 mutant background partially rescued organ initiation at the
boundaries of the shoot apical meristem (SAM). Conversely, a decrease in PIN1
expression caused ectopic expression of KNOX genes (Hay et al., 2006), suggesting that
repression of KNOX genes in the founder cells could be directly caused by auxin maxima.

In line with this hypothesis, it has been shown that mutations in the AUXIN RESPONSE
FACTORS (ARF) ARF6 and ARF8 caused ectopic expression of KNOX genes and defects in
floral organogenesis (Tabata et al., 2010). In the arf6 arf8 double mutant, perianth organs
do not elongate, some floral buds arrest closed with immature reproductive organs and
with the stigma protruding. More interestingly, petals of the arf6 arf8 double mutant
show defects in vein formation and in the differentiation of the conical cells in the distal
petal region, petal phenotypes reminiscent of the jag loss of function mutant (Dinneny et
al., 2004; Ohno et al., 2004; Chapter 6) and of the 355:BP line (Chuck et al., 1996). Loss of
BP or STM function in the arf6 arf8 double mutant in part suppressed the double mutant
flower phenotype and, in particular, rescued the conical cells in the distal petal region
(Tabata et al., 2010). In this context, it would be very interesting to investigate to what
degree the regulatory effect of JAG in targeting genes involved in auxin biosynthesis
genes and auxin response (Chapters 3 and 8) serves the purpose of indirectly down-
regulating KNOX genes in early stages of organogenesis. Interestingly, JAG directly binds
to promoter region of miR167, which directly targets ARF6 and ARF8 (Chapter3).

In relation to hormone homeostasis, BEL1 has recently been linked to hormonal effects

in ovule development. In the ovule primordia, BEL1 is activated by WUSCHEL (WUS) and
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restricted to the central zone by endogenous cytokinin, where it has been shown to
restrict the expression of the auxin efflux carrier PIN1 (Bencivenga et al., 2012). BEL1
could have a similar function in the inflorescence and floral meristem and the early
depletion of the inflorescence meristems in the bel mutant (Bellaoui et al., 2001) could be
caused by ectopic PIN expression and down-regulation of KNOX genes. On the other
hand, ectopic expression of BEL1 in emerging floral organ primordia could influence PIN1
expression and polar auxin localisation. In particular, defects in vein formation, as
observed in the jag mutant, the arf6 arf8 double mutant and in the 355:BP line, have
been linked to defects in auxin dynamics (Tabata et al., 2010; Chuck et al., 1996).
Antagonistic interactions between cytokinin, auxin and GA in meristem development
have been reported: exogenous cytokinin application could partially rescue the stm
mutant phenotype, but this effect was diminished by co-application of GA and auxin
(Yanai et al., 2005).

As mentioned above, KNOX genes promote a low cytokinin to gibberellic acid ratio
allowing for cell elongation and cell differentiation. It is interesting to note that JAG
directly targets genes involved in cytokinin activation, for example several members of
the LONELY GUY family (Kuroha et al., 2009) and that JAG directly up-regulated the GA
deactivating enzyme GA2ox1. Another interesting group of genes closely related to the
functional network of TALE proteins and related to GA levels is the plant specific family of
OVATE proteins. JAG directly targets several members of the OVATE family, whose
protein products negatively regulate KNOX gene activity by relocating the complexes from
the nucleus to the cytoplasm (Hackbusch et al., 2005). In a large-scale yeast two-hybrid
and BIFC screen, BEL1 interacted with OPF1, OPF4 and OPF5, and in particular, BEL1,
SAW?2 (BLH4) and OPF5 were part of a highly interconnected group of TALE and OVATE
proteins (Hackbusch et al., 2005). OVATE proteins share an OVATE domain for protein-
protein interaction and a nuclear localisation signal. Co-localisation experiments with
BLH-RFP fusion proteins and OFP1-GFP in tobacco leaves showed that the otherwise
nuclear-localised BLH-RFP fusion proteins localised to the cytoskeleton in the cell
periphery in the presence of OFP1-GFP activity (Hackbusch et al., 2005). Providing further
support to the hypothesis of post-translational modification, the expression levels of TALE
proteins were not changed but the expression levels of Ga20o0x1 was severely decreased

in the plants over-expressing OPF1 (Hackbusch et al., 2005). Accordingly, OVATE proteins,
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in particular OFP1, have been identified as a transcriptional repressor and ChIP
experiments identified Ga20o0x1 as a direct target of OFP1 (Wang et al., 2007and 2011).
Ectopic expression of OPF1 (Hackbusch et al., 2005) and a dominant gain of function
mutant of OFP1 (Wang et al., 2007) showed similar phenotypes, with reduced length of
all aerial organs including floral organs with styles protruding from the closed young buds
and overall stunted plants with thick stems, due to reduced cell elongation. In the
dominant negative mutant, application of exogenous GA in part rescued the phenotypic
effects, suggesting that alterations in GA levels are, at least in part, the cause for the
ectopic OPF1 phenotype (Wang et al., 2007). Because no DNA binding domain was
identified in the OFP1 protein, it was further suggested that BP and OFP1 act as a complex
to directly bind to the promoter region and the second intron of Ga20ox1 (Wang et al.,

2011).

4.3.2. JAG directly targeted genes at the interface between meristem and organ identity

Floral organogenesis does not only require repression of meristem identity, cells also
need to acquire founder cell identity and subsequently primordia cell identity. In this
context, JAG directly targeted BAM1/BAM?2 that are involved in regulation of the
peripheral meristem zones and LOM, which is required for the transition from founder
cell to primordium cell identity. All three genes have been identified as direct ChIP-Seq
targets of JAG, however, in contrast to the TALE proteins, no significant changes in gene
expression were detected. Expression of these genes is restricted to only a few cells in the
very early stages of organ development and may therefore be diluted in a global
expression array using inflorescence apices. However, in order to study the early effects
of JAG at the interface of founder cell recruitment into incipient organ primordia, it would
be interesting to follow the expression patterns of LOM by RNA in situ hybridisation or in
vivo via a LOM:GFP reporter line.

Specific for floral organ development, JAG directly repressed the floral meristem
identity genes LFY, BOP1/2, LMI1, LMI2, and SVP (Weigel et al., 1992; Ha et al., 2003;
Saddic et al., 2006; Pastore et al., 2011; Gregis et al., 2008 and 2009) (Figure 4.8. A-D, F).
This is further supported by the fact that ectopic expression of JAG in the inflorescence
meristem can promote primordium cell behaviour over meristem cell behaviour which

leads to outgrowth of ectopic bracts at the expense of floral primordia. The fact that
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ectopic JAG can induce floral bracts at the expense of floral organ primordia could be
interpreted as further support for the hypothesis that JAG is required to promote
primordium cell behaviour over meristem cell behaviour, but that in the case of bracts,
JAG is not only required but even sufficient for organ outgrowth. It has been previously
shown that BOP1/2 repress JAG (Norberg et al., 2005), while JAG was not found among
the direct ChlIP targets of LEAFY by Winter et al. (2011), suggesting that BOP1/2 are the
predominant repressors of JAG in the inflorescence meristem to promote floral meristem
identity in the floral buds.

With these new candidates in mind, it would be interesting to investigate the effects of
organ primordia formation on the cellular behaviour of floral meristems in particular in
the peripheral zones. Therefore, the 3D imaging and analysis of cell geometry (as
described in Schiessl et al., 2012 and in the Chapters 6 and 7) could be extended to early
floral primordia (stage 1 and 2). Furthermore, it would be interesting to study the cellular
processes in the incipient floral organs as early as stage 2. However, future investigations
may be complicated by the fact that JAG and NUB have been shown to act redundantly in
the regulation of bract formation and repression of BOP1/2. In this context, Norberg et al.
(2005) showed that the bop1 bop2 jag triple mutant still produced floral bracts,
suggesting that JAG and NUB act redundantly in promoting floral bract formation.
Similarily, no significant differences in expression levels of BOP1 and BOP2 were found in
response to changes in JAG function, further suggesting that JAG and NUB function
redundantly to repress BOP1/2 (Norberg et al., 2005). While the question of redundancy
between JAG and NUB could easily be addressed in future work, this could not be
resolved by Norberg et al. in 2005, because no nub loss of function mutants had been

identified back then.

In summary, | confirmed that JAG represses several key regulators of meristem
organisation and meristem maintenance. Thus, JAG is one of the key regulators of this
complex regulatory framework that defines pluripotent stem cell identity and meristem
development. With this work | provided molecular evidence for the hypothesis, originally
derived from quantitative 3D imaging, that JAG is required for the transition from a
meristematic to primordium cell behaviour (Schiessl et al., 2012). It would be interesting

to clarify the exact timing and the exact number and position of cells expressing JAG in
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early primordia development by live 3D cell-tracking combined with reporter lines, to
obtain high resolution data that can place JAG function in the order of events of early
floral organogenesis. Furthermore, | also provided molecular support for previously
reported genetic interactions, for example, that JAG acts in a similar pathway as other
organ specifying genes such as AS1 and AS2 (Xu et al., 2008). In particular, considering
that TALE proteins have been shown to predominantly function via regulation of hormone
homeostasis, it will be interesting in the future to link direct and indirect targets of JAG
involved in the biosynthesis, degradation and perception of auxin, cytokinin and
gibberellins to the regulation of TALE proteins and the early transition from a

meristematic to a primordium cell behaviour.
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Figure 4.1. JAG represses BEL1, BP and STM. Expression levels (relative to the ACT2
constitutive control) of BEL1 (A), BP (B) and STM (C) mRNA measured by qRT-PCR in
inflorescence apices of 355::JAG-GR plants 4h after mock treatment (light blue) or
treatment with dexamethasone 10 uM (red); CHX indicates samples from plants that
were also treated with cycloheximide 10 uM or untreated wild-type (WT) and jag-1 plants
(dark blue); bars show the average and standard deviation of three biological replicates;
asterisks indicate statistically significant differences (unpaired two-sample Student’s t-
test, p < 0.05) between dexamethasone-treated samples and corresponding controls or

between the untreated wild type and jag-1 (dark blue bars).
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Figure 4.2. RNA in situ hybridization showing that BP and BEL1 are ectopically expressed
in jag-2. Floral meristem: fm; sepal primordium: sp; inflorescence meristem: im;
inflorescence stem: is; flower pedicel: fp; ovules: ov; Scale bars: 100 um.

(A-D) Sections through wild-type (A,C) and jag-2 (B,D) inflorescence apices hybridized
with BEL1 antisense probe; arrows indicate ectopic BEL1 expression in jag-2 sepal
primordia (B); arrows in sections through carpels indicate BEL1 expression in developing
ovules (as reported first by Reiser et al., 1995) (C-D).

(E,F) Sections through wild-type (E) and jag-2 (F) floral buds hybridized with BP antisense

probe; arrows indicate ectopic BP expression in sepal primordia and in carpel primordia

(F).
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WT pBP:GUS jag-1 pBP:GUS

Figure 4.3. Ectopic expression of BP in jag-1 loss of function mutant and wild-type.
Scale bars: 500 um; pBP::GUS in Col-0 wild-type background (A) and jag-1 Col-0 loss of
function background (B) In comparison wild-type where BP expression was restricted to
the pedicel and the base of young floral buds. (A), a stronger signal was observed at the

base of young jag-1 floral buds extending into the developing floral organs of (B).
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Figure 4.4. Additive phenotypes of the jag bp double mutant.

Scale bars: 1 cm (A-H); 1 mm (E-H), 100 um (I-L).

(A,E,I) Wild-type (Col); (B,F,)) jag-1; (C,G,K) bp; (D,H,L) jag-1 bp.

(A-D) Inflorescence apices; arrows indicate the downward-pointing pedicels typical of bp.
(E-H) Close-up of mature flowers; arrows indicate the defective perianth growth
characteristic of jag mutants, with narrow sepals and petals which show reduced distal
outgrowth.

(I-L) 3-D reconstruction of confocal images of young floral buds; arrows point at buds

with the defective sepal primordia characteristic of jag mutants.
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Figure 4.5. Ectopic JAG-GR binds to the promoter region of BEL1.

Chromatin immunoprecipitation (ChIP) using anti-GR antibodies and inflorescence apices

of 355::JAG-GR plants 4 h after mock treatment (light blue) or treatment with

dexamethasone 10 uM (red); target sequences 1.9 or 0.3 Kb upstream of the BEL1

transcriptional start; bars show the average and standard deviation of three biological

replicates; numbers below the bars indicate the left border of the g-PCR amplicon relative

to the coding sequence; asterisks indicate significant difference to the mock control (p <

0.05, Student’s t-test).
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Figure 4.6. Endogenous JAG-GFP directly binds within and upstream of the BEL1 gene

locus. (A) Visualisation of read enriched regions mapping to the TAIR10 Arabidopsis

reference genome (x-axis) using the Integrated Genome Browser (Nicol et al., 2009), ChIP-

Seq peak score values (y-axis) based on the ratios of normalised reads between JAG-GFP

and control samples were calculated for every single nucleotide position using CSAR

software (M

used to test

uifio et al., 2011a), the maximum score value within the candidate peaks was

for significance of the enrichment; ChIP-Seq peaks detected in each replicate

within 3 kb upstream and 1.5 kb downstream of the coding sequences for the BEL1 locus
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on chromosome 5. (B) Binding of JAG-GFP to the upstream region of BEL1 confirmed by
ChIP-qPCR; target sequences 1.9 or 0.3 Kb upstream of the BEL1 transcriptional start; bars
show the average and standard deviation of three biological replicates; numbers below
the bars indicate the left border of the g-PCR amplicon relative to the coding sequence;
asterisks indicate significant difference to the negative WT control (p < 0.01, Student’s t-

test).
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Figure 4.7. Ectopic JAG-GR binds in the promoter region of BP.

Chromatin immunoprecipitation (ChIP) using anti-GR antibodies and inflorescence apices
of 355::JAG-GR plants 4 h after mock treatment (light blue) or treatment with
dexamethasone 10 uM (red); target sequences 2.6 and 1.1 Kb of upstream of the BP
transcriptional start; bars show the average and standard deviation of three biological
replicates; numbers below the bars indicate the left border of the g-PCR amplicon relative
to the coding sequence; asterisks indicate significant difference to the mock control (p <

0.05, Student’s t-test).
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Figure 4.8. JAG directly represses genes involved in meristem organisation.
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(A-C, E-G) Visualisation of read enriched regions mapping to the TAIR10 Arabidopsis
reference genome (x-axis) using the Integrated Genome Browser (Nicol et al., 2009), ChIP-
Seq peak score values (y-axis) based on the ratios of normalised reads between JAG-GFP
and control samples were calculated for every single nucleotide position using CSAR
software (Muifio et al., 2011a), the maximum score value within the candidate peaks was
used to test for significance of the enrichment; ChiP-Seq peaks detected in each replicate
within 3 kb upstream and 1.5 kb downstream of the coding sequences for the loci of LFY
(A), LMI2 (B), LMI1 (C), CLV1 (E) LOM1 (F) and SAW2 (G); (D, H) Expression levels (relative
to the TUB4 constitutive control) of LMI1 (D) and SAW2 (H); mRNA measured by gRT-PCR
in inflorescence apices of 355::JAG-GR plants 4h after mock treatment (light blue) or
treatment with dexamethasone 10 uM (red); CHX indicates samples from plants that
were also treated with cycloheximide 10 uM or untreated wild-type (WT) and jag-2 plants
(dark blue); bars show the average and standard deviation of three biological replicates;
asterisks indicate statistically significant differences (unpaired two-sample Student’s t-
test, p < 0.05) between dexamethasone-treated samples and corresponding controls or

between the untreated wild type and jag-2 (dark blue bars).
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Chapter 5 - JAG directly targets boundary specifying genes and

organ growth regulatory genes

5.1. Introduction

JAG has been identified as a direct downstream target of the floral organ identity
genes SEPALATA3 (SEP3), APETALA3/PISTILATA (AP3/Pl), and AGAMOUS (AG) (Dinneny et
al., 2004; Ohno et al., 2004; Gomez et al., 2005; Kaufmann et al., 2010, Wuest et al., 2012)
and is strongly expressed in early organ primordia (Dinneny et al., 2004; Chapter 3, Figure
3.8.), suggesting that JAG acts as a growth promoting transcription factor during early
organogenesis, once organ identity has been established in the founder cells. In Chapter
4, | showed that JAG represses meristem organisation genes in order to promote the
transition from meristematic cell behaviour to primordium growth behaviour in early
organogenesis. Subsequently, organ boundaries, organ growth axes, local growth rates,
and cell identities have to be established in order to allow organs to develop to a final
specific size, shape and function. Because JAG is expressed throughout organ
development and acts as an upstream growth regulator, | expected that JAG would target
genes related to these functions. In this context, my initial global expression array analysis
(Chapter 2) identified the boundary specifying gene PETAL LOSS (PTL) as a high-
confidence directly repressed target of JAG.

The trihelix transcription factor PTL has been characterised to function as a boundary
specifying gene in early sepal and petal development, specifically repressing growth in the
boundaries between sepals (Griffith et al., 1999; Brewer et al., 2004). In detail, it has been
shown that in stage 4 buds of the pt/ loss of function mutants, the width of inter-sepal
zones is enlarged by almost 40% compared to the wild-type, while other parameters such
as overall bud diameter and meristem diameter were not significantly different. In
addition, it has been shown that the increase in radial intersepal zone width was due to
ectopic cell proliferation resulting in increased cell number rather than due to increase in
cell size (Lampugnani et al., 2012). Correspondingly, mature sepals were often wider and

fused. Unlike petals sepals initiated in the correct number of four. By contrast, pt/ loss of
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function mutants showed a decrease in petal number from wild-type 4 to 3 and 2 per
flower, and in later developing flowers, petals were often completely lost. The petals that
arose in ptl loss of function mutants are smaller, trumpet-shaped and oriented sideways
(Griffith et al., 1999; Brewer et al., 2004). During flower development, PTL expression
was first observed on the lateral sides of early stage 1 sepal primordia and between the
developing sepal primordia from stage 3 onwards. Interestingly, even though PTL
functions in the initiation and orientation of petals, no PTL expression was observed in
early petal primordia (Brewer et al., 2004; Lampugnani et al., 2012). Furthermore, PTL
was expressed around the sepal margins from stage 5 onwards, when the sepals enclose
the floral meristem. At later stages, PTL expression was also detected in the basal flanks
of petal primordia (Brewer et al., 2004; Lampugnani et al., 2012). Promoter deletion
experiments have identified a cis-regulatory element in the first intron that is accountable
for the expression pattern between early sepal primordia and at the basal margin of the
petals. By contrast, expression around the sepal margin was not dependent on the cis-
regulatory element in the first intron, but depended on the presence of the 1.3 kb region
upstream of the transcriptional start of PTL (Brewer et al., 2004).

Overexpression of PTL under the 35S promoter resulted in growth arrest immediately
after germination, demonstrating the severe growth inhibitory function of PTL. Similarly,
the semi-dominant gain of function mutant pt/-D derived from a screen of 355 enhancer
activation-tagging lines was severely dwarfed (Li et al., 2008). Ectopic expression of PTL
under the flower specific AP3 promoter (AP3>>PTL) using the two-component system
(Moore et al., 1998) resulted in severe inhibition of growth in flower primordia and
caused the development of filamentous floral structures (Brewer et al., 2004). A similar
phenotype of filamentous floral structures replacing sepals and petals was observed in
the as1-101 jag-2 double loss of function mutant. In this double mutant, ectopic PTL
expression was observed in sepal and petal primordia by RNA in situ hybridisation (Xu et
al., 2008). Furthermore, ectopic expression of PTL in its endogenous domain under
regulation of a driver line containing the PTL promoter including the first intron
(PTLi>>PTL) resulted in narrow sepals and petals that were fused at the base (Brewer et
al., 2004).

Narrow sepals and petals and organ fusions are also macroscopic features of the jag

loss of function mutants (Dinneny et al., 2004; Ohno et al., 2004). Previously, genetic
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interaction between PTL and JAG has been reported by Xu et al. (2008), who generated a
ptl jag double loss of function mutant. The pt/ jag double mutant showed partial rescue of
the wild-type petal phenotype compared with the single jag loss of function mutant,
suggesting that reduced distal outgrowth of sepals and petals in the jag loss of function
mutant is at least in part caused by ectopic expression of PTL.

In summary, the resemblance between the phenotypes caused by ectopic PTL
expression and the jag loss of function mutants, as well as ectopic expression of PTL in
as1 jag mutant background, provided strong evidence that PTL as a boundary specifying
gene is repressed by the organ growth-promoting gene JAG. This idea was also supported
by my initial array experiments (see Chapter 2). Here, | aimed to confirm that JAG directly
represses PTL in early floral organogenesis. | tested whether JAG transcriptionally
represses PTL in domains that are relevant for wild-type (normal) outgrowth of sepals and
petals. Using ChIP followed by g-PCR and lllumina deep-sequencing, | aimed to reveal
DNA binding sites of JAG in close vicinity to the PTL locus. The combined analysis of
expression array data and ChIP-Seq data (Chapter 3) not only confirmed that PTL is a
direct target of JAG, but also revealed additional, directly regulated targets of JAG related
to organ polarity, growth regulatory pathways and organ boundary specification, which

are also discussed in this chapter.

5.2. Results

5.2.1. JAG repressed PTL

Global expression profiling data showed that PTL is repressed by ectopic JAG activation
in the presence and absence of the protein synthesis inhibitor cycloheximide (Chapter 2).
Consistently, it was also shown that PTL is down-regulated in the mock treated 35S:JAG-
GR wild-type L-er background compared with the mock-treated jag-1 loss of function
background, showing that PTL is ectopically expressed in jag-1. To confirm the global
expression profiling data, | performed qRT-PCR on inflorescence apices tissue of wild-type
plants harbouring the 355:JAG-GR construct. For ectopic JAG activation, the plants were
treated with DEX and ethanol-mock in the presence and absence of the protein synthesis

inhibitor cycloheximide and incubated for 4 hours (as described in Chapter 2). Transcript
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levels of PTL were significantly reduced upon ectopic JAG activation in the absence and
presence of cycloheximide compared with the ethanol-treated controls (Figure 5.1.).

In addition, | tested PTL transcript levels in inflorescence apices of the two-component
line (Moore et al., 1998) AP1:LhG4 OP:JAG (AP1>>JAG) where JAG cDNA is ectopically
expressed under the flower-specific AP1 driver line promoter. From this line, plants with
mild and strong ectopic JAG phenotypes have been identified (Sauret et al., 2013). While
plants with mild ectopic JAG phenotypes had broader but unfused sepals and petals that
were wider at their base, strong ectopic JAG lines showed fused sepals and deformed and
reduced petals. Accordingly, qRT-PCR experiments showed that the JAG transcript levels
were significantly increased in inflorescence apices of the mild and strong AP1>>JAG lines
compared with the wild type (Figure 5.2.A), whereas PTL expression was significantly
reduced in the strong AP1>>JAG line compared to the corresponding wild type (Figure
5.2.B). In accordance with a role for JAG in repressing PTL, an increase in PTL expression
levels was observed in inflorescence apices of the jag-1 loss of function mutant compared
with wild type (Figures 5.1. and 5.2.B). To further investigate the expression domains of
PTL in the jag-2 loss of function mutant compared to wild type, | crossed the PTL:GUS
reporter construct in wild-type Col background (first described in Brewer et al., 2004) into
the jag-2 L-er mutant background and selected for Col looking plants. GUS staining
experiments showed an overall significantly stronger PTL:GUS signal in the inflorescence
apices of jag-2 mutant plants compared to the wild type. A strong signal persisted in older
jag-2 flowers while the signal faded in wild-type flowers (Figure 5.3.A-B). In the early buds
(stage 3-5), the GUS signal in the inter-sepal zone was stronger and extended into the
margins of early sepal primordia in jag-2, while in the wild type the GUS signal was
restricted to four clearly defined spots marking the intersepal zones (Figure 5.3.C-D). A
particularly strong GUS signal was observed all around the petal margins of jag-2 flowers
and at the proximal region of the developing stamen compared with the wild type, where
the signal in the petals was only observed in the margins close to the base and at the base
of the stamen (Figure 5.3.E-F). At later stages 8-10, the GUS signal was less pronounced in
the margins but extended through the medial petal area in the jag-2 mutant while in the

wild-type petals the signal was not detectable at this stage.
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5.2.2. JAG directly binds in close vicinity to the PTL locus

Using anti-GR antibodies to immuno-precipitate ectopic JAG-GR protein—DNA
complexes in wild-type plants harbouring the dexamethasone inducible 355:JAG-GR
construct that had been subjected to a 4 hour incubation after dexamethasone- or mock-
treatment, a significant enrichment for a region 0.5 kb upstream of the translational start
of PTL was confirmed (Figure 5.4.). Subsequently, ChIP-Seq data confirmed that JAG
directly targets PTL and the gene has been identified as one of the 235 putative core
targets of JAG in the overlap of the ChIP-Seq data and the global expression profiling data
(Chapter 3), showing that PTL is an in vivo binding target of JAG and transcriptionally
regulated by it. Two DNA binding sites with significant maximum ChlIP-Seq peak scores
were detected in close vicinity to the PTL locus (AT5G03680.1), one 0.5 kb upstream of
the transcriptional start and the other 1.3 kb downstream of the stop codon (Figure
5.5.A). Both DNA binding sites were confirmed in an independent ChIP experiment using
the same conditions as for the ChIP-Seq experiment (Chapter 3), followed by g-PCR. For
both peaks, the amplicons spanning a region close to the DNA binding site identified by
ChIP-Seq were significantly enriched compared to the amplicon spanning a region 1.5 kb

upstream of the transcriptional start of the PTL gene (negative control) (Figure 5.5.B).

5.2.3. JAG directly targets genes involved in growth regulatory pathways

More recently, combined analysis of ChiP-Seq and expression array data (Chapter 3)
revealed that JAG interacted with several growth regulators and genes that direct organ
outgrowth, establish organ growth axes, determine local growth rates and cell type
patterning. For example, BLADE ON PETIOLE 1 and 2 (BOP1, BOP2) were found to be
direct targets of JAG (Figure 5.6.A-B), with BOP2 being directly repressed by JAG. In
particular, BOP2 is expressed at the site of incipient floral primordia in the inflorescence
meristem and later at the adaxial base of sepals and petals, and at the base of the pedicel
(Ha et al., 2003; Norberg et al., 2005; Khan et al., 2012). BOP1/2 are members of the BTB
POZ ankyrin repeat protein family, which facilitate protein-protein interactions. Together
they can form heterodimers that function as transcriptional co-activators, for example the
BOP1/2 heterodimer has been shown to associate to the promoter region of the lateral
organ identity gene ASYMMETRIC LEAVES2 (AS2) (Jun et al., 2010). BOP1/ 2 are

expressed at the base of developing lateral organs. Thus, BOP1/2 act in cells adjacent to
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lateral organ boundaries where they negatively regulate meristem maintenance genes,
for example BP and STM, and promote genes that determine the adaxial/abaxial polarity
axis in leaves and the radial symmetric arrangement of floral organs in the Arabidopsis
flower (Norberg et al., 2005). It had been previously shown that BOP1/2 repressed JAG
and that in the bop1/2 double mutant expression levels of JAG and its close homolog NUB
were increased. Specifically, it has been shown by RNA in situ hybridisation that the JAG
antisense probe hybridised in the wild-type expression domain of BOP1/2 in the proximal
regions of lateral organs in the double loss of function mutant (Norberg et al., 2005).
Interestingly, bop1 bop2 double mutants produce leaves with enhanced proximal growth
leading to enlarged lobe areas at the expense of petiole area, and flowers which are
subtended by floral bracts. Both phenotypic features are reminiscent of the jag-5D gain-
of-function allele described by Dinneny et al. (2004). In addition, we also observed leaves
with enlarged lobes lacking a distinct petiole in wild-type plants harbouring the 35S:JAG-
GR construct when germinated and grown on media supplemented with 10 uM DEX.
These plants failed to flower, in contrast to wild-type plants grown under the same
conditions (Chapter 2, Figure 2.1.G-H). Taken together, this suggests that BOP1/2 and JAG
act antagonistically, with BOP1/2 being expressed in the proximal region and JAG being
expressed in the distal region of lateral organs, possibly establishing the proximal/distal

axis of lateral organs.

5.2.4. JAG directly targets genes in the TCP/GRF growth regulatory pathway

Relevant to organ growth, JAG directly targeted several genes in the TCP (TEOSINTE-
BRANCHED 1, CYCLOIDEA and PROLIFERATING CELL FACTORS 1 and 2)/GRF (Growth
Regulating Factors) organ growth pathway. For example, JAG was found to directly down-
regulate ANGUSTIFOLIA (AN3) (Figure 5.6.C-D). The an3 loss of function mutant was
characterised by its narrow leaf and petal phenotype that was attributed to a decrease in
cell number, but also to changes in polar expansion of epidermal and subepidermal cells.
In the an3 mutant, cells elongated parallel to the proximal/distal axis and did not expand
into the medial/lateral axis, giving cells a narrow appearance in leaf cross sections. In line
with this observation, microtubule arrangement in parallel to the medial/lateral axis was
increased in comparison to the wild type, a phenotype that was restored in a transgenic

an3 AN3 complemented line (Kim et al., 2002). Furthermore, epidermal cells in the an3
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mutant showed simple cell shapes instead of the of lobed pavement cells (Bai et al.,
2010). The an3 mutant also shows narrow petals due to a decrease in cell number along
the medial-lateral axis. In particular, the base of the petals is thin and elongated while the
distal lobe was less affected and only showed a slight decrease in max width (Kim et al.,
2003; Bai et al., 2010). AN3 belongs to the GRF-interacting factors and functions as a
transcriptional co-activator in the interaction with several members of the GRF family
that have been identified to act as transcriptional activators of cell proliferation (Kim and
Kende, 2004). For example, AN3, GRF5 and GRF9 have overlapping expression patterns in
young floral buds and leaf primordia (Horiguchi et al., 2005). The an3 grf5 double mutant
has narrower leaves than either of the single mutants due to a further decrease in cell
numbers along the medial/lateral axis.

Overexpression of AN3 and GRF5 resulted in similar phenotypes of enlarged leaves
that expanded along all axis and did not appear particularly wider, suggesting that AN3
and GRF5 can promote cell proliferation in all directions (Horiguchi et al., 2005).

JAG was also found to bind to GRF4, GRF5, GRF8, GRF9 in the ChIP-Seq analysis but these
genes were not differentially regulated in the expression array experiment, except GRF8
which was found to be down-regulated by JAG, a result that could not be confirmed by
gRT-PCR. However, gRT-PCR confirmed that GRF5 is significantly down-regulated upon
JAG-GR activation (Figures 5.6.E-F). In addition, JAG directly binds to the promoter region
of the micro RNA miR396, which targets seven of the nine GRF family members for
degradation, but interestingly does not affect GRF5 (Rodriguez et al., 2010). Although
GRF5 is not a target of miR396, it acts highly redundantly with the GRFs that are targeted
by miR396, because ectopic expression of miR396 had an enhanced phenotype in the grf5
mutant background than in wild type (Rodriguez et al., 2010). In young leaf primordia, cell
proliferation is tightly associated with high transcript levels of GRFs and AN3 and low
expression levels for miR396. Over time-course of development miR396 expression
increases in the distal area marking the front of cell cycle arrest and restricting GRF
expression to the still proliferating proximal regions of the leaf (Rodriguez et al., 2010).

Also relevant to the interaction with GRF genes, JAG directly activated TCP4 (Figure
5.7.A, C) a member of the CIN-like TCP family that activates miR396 but also represses
AN3 and GRF5 independently from miR396 (Rodriguez et al., 2010). Besides the function

of TCP4, CIN-like TCP transcription factors have been shown to play a major role in leaf

107



differentiation by promoting cell cycle arrest (Nath et al., 2003), and repression of TCP
function causes ectopic cell proliferation at the leaf margins and a lack of pavement cell
differentiation, both potentially resulting in the wavy and curly leaf phenotype observed
in tcp mutants. CIN-like TCP transcription factors promote cell differentiation by indirectly
repressing CUC genes, which promote KNOX genes and undifferentiated cell fate (Koyama
et al., 2010). For this reason, | tested several members of the CIN-like TCP transcription
factors by qRT-PCR, even though they appear not to be directly targeted by JAG, with the
exception of TCP4. For example, TCP3 and TCP10 were significantly up-regulated upon
JAG-GR activation and showed significantly lower expression levels in the jag-1 mutant
(Figure 5.7.B, D), while TCP13 was significantly repressed by JAG and showed significant
ectopic expression in jag-1 in the expression array, suggesting that TCPs are important
but indirect targets of JAG.

In addition, JAG also directly down-regulated two members of the POLTERGEIST (POL)
family POLTERGEIST-like 4 (PLL4) and POLTERGEIST-like 5 (PLL5), which encode protein
phosphatase 2C. While POL and PLL1 act as components in the CLV1 signalling pathway
(Yu et al., 2003), PLL4 and PLL5 have been shown to play a role in leaf growth and leaf
shape (Song and Clark, 2005). For example, pl/5 leaves were shorter, narrow and curled
and the pll4 leaves were longer and wider while the double mutant showed an
intermediate phenotype suggesting that these two genes act antagonistically in leaf
development. Conversely, it was shown that in the 355:PLL5 line leaves were rounder and
less curled, suggesting that also these genes have an effect on organ development (Song

and Clark, 2005).

5.2.5. JAG directly repressed organ boundary specifying genes

In addition to the boundary specifying gene PTL, the GATA3 transcription factor
HANABA TARANU (HAN) was directly repressed by JAG. HAN is expressed at the
boundaries between the floral meristem and organ primordia and plays a crucial role in
organ separation (Zhao et al., 2004). In addition, HAN also functions in restricting the
WUS expression domain. Also related to organ boundary formation, JAG directly targeted
miR164, which has been shown to target CUC1 and CUC2, but not CUC3 (Laufs et al.,
2004; Hasson et al., 2011). Overexpression of the miR164 caused fused sepals as

observed in the cucl cuc2 double mutant, while the a miR164-resistant CUC2 construct
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caused thin sepals with increased spacing between the sepals owing to the extended
expression of CUC2 between emerging sepals, suggesting that miR164 is important in
early floral organogenesis (Laufs et al., 2004; Hasson et al., 2011). Interestingly, CUC3 is
indirectly up-regulated upon JAG-GR activation. CUC3 is expressed at the boundaries
between the floral meristem and initiating sepals and functions together with CUC1 and

CUC2 in floral organ separation (Vroemen et al., 2003; Hibara et al., 2006).

5.3. Discussion

5.3.1. JAG interacts with pathways involved in organ primordium growth

Gobal expression array analysis and, more recently, ChIP-Seq have confirmed that the
regulatory function of JAG goes beyond the transition from meristem to primordium cell
behaviour and that JAG directly targets key regulators in overall organ development and
morphogenesis, which includes pathways to define organ boundaries, to establish growth
axes and overall organ morphogenesis. Here, | confirmed in detail that JAG directly
represses PTL. Furthermore, | confirmed several interesting candidates related to the
growth-regulatory network in an independent expression profiling experiment using qRT-

PCR.

5.3.2. JAG directly represses the boundary-specifying gene PTL

Firstly, | confirmed in detail that the growth regulatory gene JAG directly represses the
boundary specifiying gene PTL. ChIP-SEQ and ChiP-qPCR analysis have independently
confirmed that JAG binds in vivo to sites within 3 kb upstream and 1.5 kb downstream of
the PTL gene. Furthermore, qRT-PCR confirmed that this in vivo binding leads to negative
regulation of PTL expression. Consistently, | showed that PTL expression levels are higher
in the jag loss of function mutant compared to wild type. Moreover, the PTL:GUS reporter
was ectopically expressed in jag loss of function mutant background, particularly in the
distal margins of petals. PTL expression was extended from the margins to the centre of
sepals and petals, confirming an ectopic PTL expression pattern previously shown in the
as1-101 jag-2 double loss of function mutant by RNA in situ hybridisation (Xu et al., 2008).
Xu et al. (2008) also reported a partial rescue of petal outgrowth in the as1-101 jag2 ptl

triple mutant, suggesting that reduced distal outgrowth of sepals and petals in the jag
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loss of function mutant is at least in part caused by ectopic expression of PTL. Here |
provided further confirmation that JAG promotes growth and cell proliferation in organ
primordia by directly restricting PTL to the margins and boundaries of the developing
organs. In addition, | observed a strong ectopic GUS signal in the proximal region of the
developing anthers in the jag-2 mutant compared to wild type. In the jag-2 mutant,
anthers are spade shaped and partially sterile. In this respect, future work could
investigate whether ectopic expression of PTL in the anthers accounts for their aberrant
shape. Sauret et al. (2013) presented a mathematical model that described the outgrowth
of petals to final size and paddle-shape based on growth rates parallel and perpendicular
to a polarity field. Furthermore, they identified JAG as a potential key regulator and PTL
as a potential down-stream target in this process. In this context, it would be interesting

to expand the modelling approach to account for shape changes in anthers.

5.3.3. Could PTL repress cell proliferation in the inter-sepal zones by promoting KRP
function?

PTL has been described as an organ boundary gene, specifying the inter-sepal zones by
restricting cell proliferation in this region (Lampugnani et al., 2012). In order to inhibit cell
proliferation, PTL needs to be able to interact with the regulatory network of the core cell
cycle machinery. One way to inhibit cell division would be to activate cell cycle inhibitors.
The Kip-related protein family (KRP) has been described to inhibit cell proliferation in
plants. The KIP-related proteins interact with CDKA-CYCD complexes to inhibit the
transition from G1 to S-phase, the decisive step where cells commit to undergo another
round of DNA replication and mitotic division (De Veylder et al., 2001). Overexpression of
KRPs has been shown to severely inhibit cell proliferation resulting in organs with reduced
cell numbers and reduced organ size. For example, over-expression of KRP2 under the
35S promoter reduced leave size to 20% of the wild-type leave, caused leave serrations
and abnormal flower phenotypes (De Veylder et al., 2001; Zhou et al., 2002 ; Verkest et
al., 2005). A link between PTL and KRPs had been previously suggested by Brewer et al.
(2004), who described the ectopic PTL phenotype in AP3>>PTL lines as similar to the
ectopic KRP1 phenotype of AP3>>KRP1, reported in Brassica napus by Zhou et al. (2002).
Interestingly, confocal imaging and 3D reconstruction of early floral buds (stage 3-5)

revealed that the krp2 krp4 jag triple mutant shows enlarged inter-sepal zones (Chapter
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7, Figure 7.8.D), a phenotype similar to the pt/ loss of function mutant (Lampugnani et al.,
2012). It could therefore be speculated, that KRP2, KRP4 and PTL act in the same pathway
to restrict cell proliferation in the inter-sepal zones.

Moreover, | observed a significant rescue in sepal and petal outgrowth of mature
organs in the krp2-3 jag-1, krp4-1 jag-1 double mutants and in the krp2-3 krp4-1 jag-1
triple mutant compared with the jag-1 single mutant (Chapter 6, Figures 6.13., 6.14., and
6.17.). The observation that the pt/ mutation also partially rescued organ growth in jag
background raises the question whether loss of PTL could reduce expression of KRP2
and/or KRP4 in the jag mutant. In other words, presuming that all four mutants have
similar levels of ectopic PTL expression, ectopic PTL function could be dependent on KRP2
and KRP4 function. The hypothesis that PTL function is dependent on KRP function could
be tested, for example, by reassessing the phenotypes of the lines with ectopic PTL
expression (Brewer et al., 2004; Li et al., 2008) in the krp2 and krp4 loss of function
mutant backgrounds.

In addition, | observed that the KRP2-GFP expression pattern (Chapter 6, Figure 6.10.)
overlaps at least in part with the expression pattern observed with the pPTL(FI313):YFP
reporter by Lampugnani et al. (2012). The expression domains, in particular, overlap at
the boundary as early floral primordia initiate from the inflorescence meristem. At stage 3
to stage 4, expression overlaps between incipient lateral sepal primordia and in the
internal floral dome. Furthermore, | have observed KRP2 expression in sepal margins
(KRP2-GFP, Chapter 6, Figure 6.10.) and in developing petal margins (KRP2:GUS, Chapter
6, Figure 6.11.) in later stages of development. In order to test whether PTL activates
KRP2 expression, the pKRP2:KRP2-GFP reporter could be crossed to the pt/ mutant
background and to the lines with ectopic PTL expression (Brewer et al., 2004; Li et al.,
2008). ChIP and gRT-PCR experiments could further clarify whether the interaction
between the transcription factor PTL and the KRP genes is direct or involves other
downstream mediators. Future work on KRPs as potential targets of PTL would elucidate
the regulatory network downstream of JAG and its immediate target, PTL. In this respect,
it is noteworthy that KRP2 and KRP4 are directly down-regulated by JAG (see Chapters 2-
3, 6-7), suggesting that modulating KRP activity might be a common pathway to restrict

and to promote cell proliferation during organ development.
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5.3.4. Both JAG and PTL may indirectly promote petal initiation and outgrowth by
modulating auxin function

Another interesting connection between JAG and PTL arises from the fact that PTL has
been shown to influence auxin dynamics (Brewer et al., 2004; Li et al., 2008; Lampugnani
et al., 2012 and 2013). Initial evidence that auxin changes could be the cause of reduced
numbers of petals in the pt/ loss of function mutant was provided by the disrupted
expression of the auxin response marker DR5 in the petal founder cells. Petal initiation
could be rescued by biosynthesis of auxin in the intersepal zones using the bacterial auxin
biosynthesis gene iaaH under the PTL promoter (Lampugnani et al., 2013). Furthermore,
loss of function of the auxin influx carrier AUX1 was found to enhance the pt/ loss of
function phenotype, with petal initiation being completely abolished in the pt/ aux1
double mutant. Ectopic expression of AUX1 under control of the PTL promoter in the aux1
ptl double mutant resulted in a significant increase in the number of petals, showing that
both auxin biosynthesis and auxin influx in the inter-sepal zones could partly rescue petal
initiation in the pt/ mutant background (Lampugnani et al., 2013).
On the other hand, loss of function mutants of the efflux carrier PIN1 and its activating
kinase PINOID (PID) showed an increased number of petals. In the pin ptl and pid pt/
double mutants and in either triple mutant with auxi, the number of petals is reduced,
suggesting that the increase in petal number in the efflux carrier loss of function mutants
is dependent on PTL function (Lampugnani et al., 2013). In summary, these genetic
interactions provide evidence that PTL is required to modulate appropriate auxin levels in
the spatial and temporal context of petal initiation.
Furthermore, it was suggested by Brewer et al. (2004) that PTL expression in the margins
of the perianth organs functions to define final size and shape. In this context, Sauret et
al. (2013) presented a mathematical model that accounted for the broad distal outgrowth
of petals leading to their final paddle shape compared with the pointy shape of a leaf.
This model was based on an auxin-dependent distal-proximal polarity field that directed
local tissue growth perpendicular to it. While in a leaf the polarity field converged in the
distal tip, the polarity field diverged towards the distal margins in petals, allowing petals
to grow wide at the tip. JAG was suggested to be a key regulator in this organ patterning
process, because of its striking loss of function mutant phenotype with narrow petals

showing reduced distal outgrowth and serrated margins. Moreover, auxin response and
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auxin transport patterns were changed in the jag loss of function mutant. The auxin
response reporter DR5 as well as the influx carriers PIN1 and PIN3 had a weaker,
disrupted and narrower distribution in the distal petal margin of jag-1 compared to the
wild type. It was further suggested that changed auxin dynamics in the loss of function
mutant might be caused by ectopic expression of PTL in the distal margins. In this respect,
my results provided further confirmation that the growth promoting effects of JAG
involve auxin-dependent processes. The interaction with auxin responses is mediated at
least in part by directly repressing PTL in the petal margin. However, my ChIP-Seq and
expression profiling data revealed that JAG also directly targets genes involved in auxin

biosynthesis, transport and response, for example PID (Chapters 2-3, 8).

5.3.5. Mutual antagonism between JAG and BOP1/2 may establish the proximal/distal
axis

In addition, this work revealed the mutual antagonism between JAG and BOP1/2 and it
is tempting to speculate that this antagonism may establish the proximal/distal axis of
lateral organ outgrowth. While previous work has focussed on BOP1/2 repressing JAG
(Norberg et al., 2005), our data provides evidence that JAG directly represses BOP2 and
binds in vivo to BOP1. BOP1/2 and JAG expression domains exclude each other along the
proximal-distal axis, suggesting that antagonism between proximal BOP1/2 expression
and distal JAG expression could determine the proximal-distal polarity axis in leaves and
floral organs. In early sepal primordia, for example, BOP2 is specifically expressed in cells
at the adaxial base, while JAG is expressed throughout the emerging primordia. In later
stages, BOP1/2 is restricted to the basal region and JAG to the distal region. Both, JAG and
BOP1/2 have been shown to be involved in the repression of meristem maintenance
genes such as BP and STM, suggesting that BOP1/2 and JAG promote primordia cell
behaviour. Repression of meristem maintenance genes has been considered as the first
step to establish the proximal region of developing primordia; subsequent exclusion of
the growth promoting factor JAG from proximal regions might be sufficient to establish
the proximal/distal axis. In addition, it could be speculated that the JAG and BOP1/2

recruit different sets of growth promoting pathways (see below).
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5.3.6. JAG promotes organ growth independently of the GRF/TCP pathway

JAG controls several members in the AN3/GRF pathway, for example directly
repressing AN3 and GRF5 and directly activating TCP4. TCP4 represses AN3 and GRF5 and
promotes expression of miR396 that targets GRFs, but is also directly targeted by JAG.
This suggests that JAG generates a tightly interconnected network to repress this growth
regulatory pathway.

AN3 and GRF5 interact to maintain cell proliferation during leaf primordia
development and determine the size and shape of leaves and petals. Interestingly, petal
width of an3 and grf5 mutants has been shown to be more affected in the proximal
regions than in the distal regions. This suggests that AN3 and GRF5 play a less important
role to promote organ growth in the distal region and it can be speculated that this is
because they are repressed by JAG in the context of a wild-type petal. Interestingly, in the
leaf, AN3 and GRF5 are expressed in the basal regions independently from the region of
proliferating cells further distally located. Therefore, in floral organ primordia a similar
pattern could restrict AN3 and GRF5 to certain regions of the growing organ. Reporter
genes as described in Horiguchi et al. (2005) would shed light on the interaction of AN3,
GRF5 and JAG.

In relation to the interaction with the GRF growth pathway, it could be further
speculated that JAG and BOP deploy different sets of downstream growth promoting
pathways and thereby establish different growth behaviours and organ patterns, a
narrow organ growth pattern at the base and an organ pattern of increased width in the
distal area. In this context, Sauret et al. (2013) used clonal analysis to follow the rates of
growth and cell division parallel and perpendicular to the proximal/distal axis over time-
course of petal development in the wild type. This analysis revealed that already in early
primordium development clones in the proximal region have a higher length to width
ratio than in the distal region and that at petal maturity clones in the distal region are
seven-fold longer than wide while in the proximal region they are eleven-fold longer than
wide, showing that growth rates perpendicular to the distal-proximal polarity field are
increasing towards the distal end of the petal. Furthermore, Sauret et al. (2013) showed
that anisotropy of the clones early in primordia development is caused by an increased
number of cell divisions along the distal/proximal axis compared with the medial/lateral

axis. By contrast, the increase in clone anisotropy at the later stages of development is
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caused by increased elongation of the cells, which was particularly pronounced for clones
in the proximal regions resulting in a length/width ratio of 11. In addition, the clonal
analysis revealed that proximal clones have their main proximal/distal axis aligned with
the midline, while the main axis of the distal clones diverged towards the distal petal
margin. All in all, this clonal analysis confirmed that there are considerable differences in
growth behaviour between the proximal and distal regions of the petal.

In the future, it would be interesting to investigate whether these differences in
growth behaviour coincide with the expression domains of JAG and BOP. For example,
ectopic expression of JAG in the AP1>JAG line resulted in petals that were wider at the
base, whereas mature petals of the jag loss of function mutant showed a decreased
overall width/length ratio of 0.7 in mature petals in comparison to 0.8 in wild type petals
(Sauret et al., 2013; Robert Sablowski unpublished), providing evidence that changes in
JAG expression may cause changes in local growth behaviours. Extending the clonal
analysis from the jag single mutant to the bop1/2 double loss of function mutant and the
jag bop1 bop2 triple mutant would elucidate whether the antagonistic interaction
between JAG and BOP is required for different local growth rates parallel and
perpendicular to the proximal/distal axis. In addition, this data could be used to further
test the mathematical model generated by Sauret et al. (2013) and the model could be
extended by taking into account the antagonistic interaction of BOP and JAG as “proximal
and distal organisers”. Furthermore, it would be interesting to use reporter lines for AN3,
GRF5 and miR396 in jag and bop1/2 loss of function and gain of function mutant
backgrounds, in order to assess whether this growth regulatory pathway is targeted
differently by BOP1/2 and JAG. It would also be interesting to investigate the effect on
floral organ patterning by modulating JAG and BOP1/2 function in combination with AN3,
GRF5 gain and loss of function mutations. This would reveal whether recruiting or
suppressing the AN3/GRF pathway is one mechanism to maintain and establish different
tissue growth behaviours along the basal and distal axis that eventually leads to tissue
patterning. A detailed study of the downstream targets of GRF/AN3 would be required in
order to test the hypothesis whether JAG and GRF/AN3 may have different downstream
targets and or regulate them differently. Ultimately, reverse genetics would also shed
light on the rather crude hypothesis that the antagonistic function between BOP1/2 and

JAG could at least in part explain why we find elongated flat cells that are usually found at
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the base of wild-type petals in the distal lobe area of jag mutant petals instead of conical
cells with regular cuticular ridges (as reported by Dinneny et al., 2004; Ohno et al., 2004;
Chapter 6, Figure 6.19.).

Apart from JAG and AS2 (Ha et al., 2007; Jun et al., 2010), the global genome-wide
targets of the transcriptional co-activators BOP1/2 have not been identified yet, however,
comparison of the direct JAG targets with the direct BOP1/2 targets would provide
molecular evidence whether JAG and BOP deploy different sets of downstream target
genes that result in different local growth patterns and ultimately shape the organ. In
addition, JAG directly targeted several genes that have been reported to also have
functions in organ shape, for example PLL4, PLL5, BAM1 and BAM2 (Yu et al., 2003; Clark
and Song, 2005; DeYoung et al., 2006) and could therefore also be involved in regulating
local growth patterns in floral organs. BOP1/2 have been shown to act as transcriptional
co-activators of AS2 and therefore play a role in establishing the adaxial-abaxial polarity in
leaf primordia. In respect to adaxial/abaxial patterning, JAG activated the AGC protein
kinase UNICORN, which represses members of the KANADI/ protein family that are
involved in adaxial/abaxial patterning, to allow for planar symmetric tissue growth. Loss
of UNC function causes ectopic protrusions in petals (Enugutti et al., 2013). It would be
interesting to further investigate the expression pattern of UNC in relation to changes in
JAG and BOP1/2 function in order to address the question whether adaxial/abaxial
patterning and distal/proximal patterning are coordinated and converge at the boundary

of BOP1/2 and JAG expression.

5.3.7. Mutual antagonism between JAG and the boundary specifying gene HAN
Interestingly, both JAG and BOP1/2 are repressed upon ectopic activation of the
GATAS3 transcription factor HAN. Ectopic activation of DEX-inducible 35:HAN-GR
repressed JAG and BOP1/2, while activating the boundary specifiying genes RABBIT EARS
(RBE) and CUC3 (Krizek et al., 2006; Vroemen et al., 2003), suggesting that HAN as a
boundary specifiying gene needs to counteracts the growth promoting effects of JAG and
BOP1/2. Furthermore, HAN like JAG represses the TALE proteins BP and ATH1, suggesting
that specifying an organ boundary involves down-regulation of meristem maintenance
genes. In addition, HAN repressed genes involved in response to auxin, cytokinin and

gibberellins, cell wall related genes such as expansins, and the cell cycle gene CYCLIN
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D1;1. In summary, Zhang et al. (2013) showed that the growth inhibiting boundary
specifying gene HAN targets genes with similar functions as identified for the direct
transcriptional targets of JAG in this project. However, HAN appears to regulate them the
opposite way in order to inhibit cell proliferation and cell growth in the boundaries.
Because HAN has been identified as one of the directly repressed core targets of JAG in
our combined approach, this work revealed mutual antagonism between the growth
promoting gene JAG and the boundary specifying gene HAN.

In summary, my data suggest that JAG directs local tissue growth, establishment of
growth directions and growth axes and the generation of organ boundaries by interacting
with members of the major growth regulatory pathways and organ boundary specifying
genes. Therefore, JAG acts at the interface between organ identity, organ patterning, and

organ growth to produce organs of genetically specified final size and shape.
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Figure 5.1. JAG represses PTL. Expression levels (relative to the TUB4 constitutive control)
of PTL; mRNA measured by gRT-PCR in inflorescence apices of 355::JAG-GR plants 4h after
mock treatment (light blue) or treatment with dexamethasone 10 uM (red); CHX indicates
samples from plants that were also treated with cycloheximide 10 uM or untreated wild-
type (WT) and jag-1 plants (dark blue); bars show the average and standard deviation of
three biological replicates; asterisks indicate statistically significant differences (unpaired
two-sample Student’s t-test, p < 0.05) between dexamethasone-treated and mock-
treated samples and between the untreated wild type and jag-1 (dark blue bars)

(compared in a separate independent experiment).
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Figure 5.2. PTL transcript levels are correlated with JAG transcript levels.

(A) JAG transcript levels (relative to the TUB4 constitutive control) were increased in the
AP1>>JAG line with medium and strong ectopic JAG phenotype and not detectable (n.d.)
in the jag-1 mutant.

(B) Transcript levels (relative to the TUB4 constitutive control) of PTL were decreased in
the strong and medium AP1>>JAG lines and increased in the jag-1 mutant compared to
wild type; mRNA levels were measured by qRT-PCR in inflorescence apices; bars show the
average and standard deviation of three biological replicates; asterisks indicate
statistically significant differences to the wild type (unpaired two-sample Student’s t-test,

p <0.05).
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Figure 5.3. Ectopic PTL expression in jag-2 mutant background.

(A, C, E, G) pPTL:GUS expression in inflorescences of wild type, (B, D, F, H) pPTL:GUS
expression in inflorescences of jag-2. (A-D) inflorescence overviews; (E-F) single flowers of
comparable stages; Scale bars (A-H): 500 um; A stronger and extended GUS signal was
observed in early floral buds (stage 5-8) of jag-2 compared with wild type. The strong
signal persisted in older flower jag-2 flowers while the signal faded in wild-type flowers
(A-B). The GUS signal in the intersepal zone was stronger and extended into the margins
of early sepals in jag-2 compared with wild type where the GUS signal was restricted to
for spots marking the intersepal zones (C-D). From stage 5-8, a particularly strong GUS
signal was observed all around the petal margins of jag-2 flowers and at the proximal
region of the developing stamen compared with wild type where the signal in the petals
was only observed in the margins close to the base and at the base of the stamen,
indicated by arrows (E-F). At later stages 8-12, the GUS signal was less pronounced in the
margins but extended through the medial petal area (indicated by arrows), while in the

wild-type petals the signal was not detectable at these stages.
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Figure 5.4. Ectopic JAG-GR binds in the promoter region of PTL. Chromatin
immunoprecipitation (ChlIP) using anti-GR antibodies and inflorescence apices of
35S::JAG-GR plants 4 h after mock treatment (light blue) or treatment with
dexamethasone 10 uM (red); target sequences 1.05 Kb and 0.5 Kb of upstream of the PTL
transcriptional start; bars show the average and standard deviation of three biological
replicates; numbers below the bars indicate the left border of the g-PCR amplicon relative
to the coding sequence; asterisks indicate significant difference to the mock control (p <

0.05, Student’s t-test).
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Figure 5.5. Endogenous JAG-GFP directly binds upstream and downstream of the PTL
locus. (A) Visualisation of read enriched regions mapping to the TAIR10 Arabidopsis
reference genome (x-axis) using the Integrated Genome Browser (Nicol et al., 2009), ChIP-
Seq peak score values (y-axis) based on the ratios of normalised reads between JAG-GFP
and control samples were calculated for every single nucleotide position using CSAR
software (Muifio et al., 2011a), the maximum score value within the candidate peaks was

used to test for significance of the enrichment; ChIP-Seq peaks detected in each replicate
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within 3 Kb upstream and 1.5 Kb downstream of the coding sequences for the PTL locus
on chromosome 5.
(B) Binding of JAG-GFP to the upstream region of PTL confirmed by ChIP-qPCR; numbers
below the bars indicate the left border of the g-PCR amplicon relative to the coding
sequence; asterisks indicate significant difference to the negative wild-type control (p <
0.05, Student’s t-test).
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Figure 5.6. JAG directly regulates genes involved in growth regulatory pathways.

(A-C, E) Visualisation of read enriched regions mapping to the TAIR10 Arabidopsis
reference genome (x-axis) using the Integrated Genome Browser (Nicol et al., 2009), ChIP-
Seq peak score values (y-axis) based on the ratios of normalised reads between JAG-GFP

and control samples were calculated for every single nucleotide position using CSAR
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software (Muifio et al., 2011a), the maximum score value within the candidate peaks was
used to test for significance of the enrichment; ChIP-Seq peaks detected in each replicate
within 3kb upstream and 1.5 Kb downstream of the coding sequences for the BOP1,
BOP2, AN3, and GRF5 loci. (D, F) Expression levels (relative to the TUB4 constitutive
control) of AN3 (D) and GRF5 (F); mRNA measured by qRT-PCR in inflorescence apices of
35S::JAG-GR plants 4h after mock treatment (light blue) or treatment with
dexamethasone 10 uM (red); CHX indicates samples from plants that were also treated
with cycloheximide 10 uM or untreated wild-type (WT) and jag-1 plants (dark blue); bars
show the average and standard deviation of three biological replicates; asterisks indicate
statistically significant differences (unpaired two-sample Student’s t-test, p < 0.05)
between dexamethasone-treated and mock-treated samples and between the untreated

wild type and jag-2 (dark blue bars).
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Figure 5.7. JAG directly and indirectly regulates members of the TCP family.
(A) Visualisation of read enriched regions mapping to the TAIR10 Arabidopsis reference

genome (x-axis) using the Integrated Genome Browser (Nicol et al., 2009), ChIP-Seq peak
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score values (y-axis) based on the ratios of normalised reads between JAG-GFP and
control samples were calculated for every single nucleotide position using CSAR software
(Muifno et al., 2011a), the maximum score value within the candidate peaks was used to
test for significance of the enrichment; ChIP-Seq peaks detected in each replicate within 3
Kb upstream and 1.5 Kb downstream of the coding sequences for the TCP4 locus on
chromosome 3. (B-D) Expression levels (relative to the TUB4 constitutive control) of TCP3
(B), TCP4 (C), TCP10 (D); mRNA measured by qRT-PCR in inflorescence apices of 35S::JAG-
GR plants 4h after mock treatment (light blue) or treatment with dexamethasone 10 uM
(red); CHX indicates samples from plants that were also treated with cycloheximide 10
UM or untreated wild-type (WT) and jag-1 plants (dark blue); bars show the average and
standard deviation of three biological replicates; asterisks indicate statistically significant
differences (unpaired two-sample Student’s t-test, p < 0.05) between dexamethasone-
treated and mock-treated samples and between the untreated wild type and jag-2 (dark

blue bars).
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Chapter 6 - JAG interacts with regulators of the core cell cycle

machinery

6.1. Introduction

Live-imaging of wild-type and jag-1 floral buds over a time-course of 48 hours revealed
that the increase in cell proliferation rate and cell growth rates observed in cells of wild-
type sepal primordia in comparison to cells in the floral meristem is dependent on JAG. In
this respect, cells in jag-1 sepal primordia behave similarly to cells in the wild-type
meristem, suggesting that JAG is required for accelerated growth at the onset of
primordia differentiation. In addition, combining an S-phase marker with quantitative 3D
analysis of cell geometry revealed that JAG modulates the way cell cycle and cell size are
coordinated at the transition from G1 to S-phase (Schiessl et al., 2012; note that imaging
data presented in the paper were not obtained by me, therefore | cited the paper
whenever imaging results were concerned; also note that the imaging protocol presented

in the paper differed from the imaging protocol used in Chapter 7).

As a first step to investigate how JAG modulates the coordination of cell volume and
cell proliferation, | aimed to investigate how JAG is linked to the core cell cycle machinery.
ChIP-Seq and global expression analysis revealed that JAG directly targeted several key
regulators of the core cell cycle machinery, which are all interactors of the cyclin-
dependent kinase A (CDKA). Specifically, JAG directly repressed two members of the of
the CYCLIN D family, two members of the CYCLIN P family and two members of the Kip-

related protein (KRP) family of cell cycle inhibitors.

6.2. JAG directly targets several members of the CYCLIN D and CYCLIN P protein family

JAG directly targeted two members of the CYCLIN D3 subfamily, CYCD3;1 and CYCD3;3.
In particular, gRT-PCR showed that CYCD3;3 was activated upon ectopic JAG activation
but also in the jag-2 mutant (Figure 6.1.A-B). As regulatory subunits, D-type cyclins form

complexes with CDKA to promote the G1/S transition by phosphorylating RBR, which
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leads to a de-repression of E2Fa and its dimerisation partner (Dp), and consequently to
downstream activation of genes required for DNA replication in S-phase. Accordingly, all
three members of the cyclin subgroup CYCLIN D3 in Arabidopsis, CYCD3;1-3 are expressed
during early to late G1 phase (De Veylder et al., 2003 and 2007).

In floral organ primordia, all three members of the CYCD3 subfamily are expressed at
all stages of development until full anthesis (Dewitte et al., 2007). In petals of the triple
loss of function mutant, the total number of cells was reduced to 60% while average cell
size was almost doubled, resulting in final organ sizes comparable to wild type for the
cycd3;1-3 triple loss of function mutant. While mature wild type petals do not consist of
endoreduplicated cells, it has been shown by flow cytometry that in the cycd3;1-3 triple
mutant a significant number of cells had undergone one or two cycles of
endoreduplication leading to a peak at 4C and 8C (Dewitte et al., 2007). In addition, an
earlier onset of endoreduplication during leaf development was observed in the triple
loss of function mutant, which also lead to increased final ploidy levels in mature leaves.
Consistently, ectopic expression of CYCD3,1 led to increased cell proliferation, a decrease
in ploidy levels resulting in mature organs with an increased number but smaller cells
(Dewitte et al., 2007). Together, this suggested that CYCD3;3-1 are not essential for cell
cycle progression, but that CYCD3;1-3 modulate the contribution of cell division,
endoreduplication and cell expansion to organ growth and ultimately to final organ size.

It has been shown that cytokinin induces CYCD3 expression and that ectopic CYCD3
expression was able to regenerate shoots from callus in cell culture without addition of
exogenous cytokinin, suggesting that CYCD3 is a direct target of cytokinin and mediates
the cell proliferation promoting effects of cytokinin in the meristem (Dewitte et al., 2007).
Furthermore, cytokinin levels were unchanged in the cycd3;1-3 mutant, while cell
proliferation in the shoot meristem was defective resulting in reduced meristem size in
the cycd3;1-3 mutant that was reminiscent of the lonely guy (log) loss of function
phenotype in rice and the CKX overexpressor phenotype in Arabidopsis (Kurakawa et al.,
2007; Werner et al., 2003). In addition, CYCD3 is target of the growth promoting factor
ANTEGUMENTA (ANT) which is a direct target of the auxin-inducible gene ARGOS,
suggesting that CYCD3 not only promotes cell proliferation downstream of cytokinins, but

also downstream of auxin (Hu et al., 2003; Dewitte et al., 2007).
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Interestingly, expression array data and qRT-PCR results suggested that CYCD3;3 is
directly up-regulated upon ectopic JAG activation but also up-regulated in the jag-2 loss
of function mutant. One possible explanation for this expression pattern is provided by
the global ChIP-Seq and expression array: Among the core targets of JAG, several
members of the LONELY GUY (LOG) family, which increase the levels of bioactive
cytokinins (Kuroha et al., 2009), were found to be ectopically expressed in the jag-1 loss
of function mutant, while the cytokinin-degrading enzyme cytokinin
oxidase/dehydrogenase (CKX6) showed decreased expression levels in the jag-1 loss of
function mutant. Together these changes may lead to increased levels of bioactive
cytokinin in the jag loss of function mutant and consequently induce ectopic CYCD3
expression. Similarly, changes in auxin signaling (see Chapter 8) in the jag mutant could
change CYCD3 levels. Another explanation for the ectopic expression of CYCD3 in the jag
loss of function mutant could be a compensatory response to the ectopic expression of
KRPs observed in the jag loss of function mutant. In this respect, Cheng et al. (2013)
found that mRNA levels of CYCD3;2 and CYCD3;3 were down-regulated in the
krp1/2/4/5/7 quintuple mutant.

Furthermore, two members of the P-type cyclin family, (CYCP) CYCP 3;1 and CYCP 4;1
were identified as directly repressed upon JAG-GR activation in the expression array and
in an independent gRT-PCR experiment. In addition, CYCP 3,1 but not CYCP 4,1 showed
increased mRNA levels in the jag-2 mutant compared with the wild-type (Figure 6.1.C-F).
CYCPs are a highly conserved but only recently discovered group of cyclins in plants
(Torres Acosta et al., 2004). In Arabidopsis thaliana, seven CYCPs have been identified and
all have been shown to bind to CDKA;1 in a yeast two-hybrid assay. CYCPs have been
shown to be expressed in the shoot apex and early leaf primordia (Torres Acosta et al.,
2004). Motifs within the CYCP sequences share high similarity with PHO80 proteins in
budding yeast which are involved in phosphate signaling, but no evidence has been found
for this function in plants and their function remains unclear (Torres Acosta et al., 2004).

Because my expression profiling experiments suggested strong regulation of CYCP3;1
by JAG, | investigated the genetic interaction between these two genes by generating a
double loss of function mutant. However, the cycp3;1 jag double mutant did not show
any developmental or morphological changes compared to the jag-1 single mutant (data

not shown). | next aimed to investigate whether CYCP3;1 and CYCP4;1 have redundant
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functions, because both genes have similar expression domains and were directly
repressed by JAG. Therefore, | aimed to generate a triple cycp3;1, cycp4,;1 jag-1 mutant.
However, attempts to generate a triple mutant by crossing have been unsuccessful so far,
most likely because CYCP3;1(AT2G45080) and CYCP4;1(AT2G44740) are located in close
vicinity within a distance of 150 kb on chromosome 2 and may therefore be strongly
linked. It must also be noted that | have not yet investigated the mRNA levels of CYCP3;1
and CYCP4;1 in mutants to verify that they are indeed mRNA null.
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Figure 6.1. ChiP-Seq peaks detected in each replicate within 3 kb upstream and 1.5 kb

downstream of the coding sequences and qRT-PCR in inflorescence apices of 35S::JAG-

GR plants, wild-type, and jag-2 mutant plants.

(A, C, E) Visualisation of read enriched regions mapping to the TAIR10 Arabidopsis

reference genome (x-axis) using the Integrated Genome Browser (Nicol et al., 2009), ChIP-

Seq peak score values (y-axis) based on the ratios of normalised reads between JAG-GFP

and control samples were calculated for every single nucleotide position using CSAR

software (Muifio et al., 2011a), the maximum score value within the candidate peaks was

used to test for significance of the enrichment; ChIP-Seq peaks detected in each replicate

within 3 kb upstream and 1.5 kb downstream of the coding sequences for the CYCD3;3
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locus on chromosome 3, the CYCP3;1 locus and CYCP4;1 locus on chromosome 2. (B, D, F)
Expression levels (relative to the TUB4 constitutive control) of CYCD3;3, CYCP3;1 and
CYCP4;1; mRNA measured by gRT-PCR in inflorescence apices of 355::JAG-GR plants 4h
after mock treatment (light blue) or treatment with dexamethasone 10 uM (red); CHX
indicates samples from plants that were also treated with cycloheximide 10 uM or
untreated wild-type (WT) and jag-1 plants (dark blue); bars show the mean and standard
deviation of three biological replicates; asterisks indicate statistically significant
differences (unpaired two-sample Student’s t-test, p < 0.05) between dexamethasone-

treated samples and corresponding controls or between the wild type and jag-2.
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6.3. JAG directly represses KRP2 and KRP4

6.3.1. KRP genes are strong candidates to mediate the effects of JAG on cell cycle
progression

My ChIP-Seq and array experiments also revealed that JAG directly represses KRP2 and
KRP4, which are members of the plant-specific protein family of Kip-related proteins and
show sequence similarity to a conserved domain in the three KIP/CIP proteins CiP p21, KIP
p27 and p57 in mammals. The mammalian CIP/KIP family are cyclin-dependent kinases
inhibitors (CKI) that negatively regulate the G1 to S-phase transition and are involved in
checkpoint control during cell cycle progression and in exit from proliferation phase
preceding differentiation (reviewed by Denicourt and Dowdy, 2004; Besson et al., 2008).
In Arabidopsis, seven members of the KRP protein family have been characterized as low
molecular weight proteins of 24 kD and 31 kD for KRP2 and KRP4, respectively (De
Veylder et al., 2001). Similar to their mammalian counterparts, all seven members have
been shown to particularly bind CDKA;1 and members of the G1/S-phase specific D-type
cyclins in a yeast two-hybrid assay (de Veylder et al., 2001; Zhou et al., 2002a). All
members of the KRP protein family share a conserved CDK-interacting domain at the C-
terminus (Torres Acosta et al., 2011).

Association of KRPs with cyclin/CDKs complexes has been shown to destabilise the ATP
binding site in CDKA and consequently inhibit its dephosphorylation, which is required to
activate CDKA to phosphorylate RBR at the transition from G1 to S-phase. RBR is a
repressor of the E2F/DP transcription factor complex that promotes the transition from
G1 to S-phase by promoting the expression of genes required for S-phase entry and DNA
replication. Coexpression of a dominant positive allele of the plant CDKA;1 which caused
premature cell proliferation with decreased cell sizes in yeast, with KRP2 and KRP4
resulted in enlarged yeast cells owing to cell cycle arrest, providing evidence that KRPs
can inhibit CDKA activity and cell cycle progression in vivo (de Veylder et al., 2001). In
addition, it has been shown that CDKA activity was decreased in planta upon ectopic
expression of KRP1 (Wang et al., 2000). Consistently, CDKA activity measured in planta by
a histone H1 phosphorylation assay was gradually increased in krp double, quadruple and
quintuple mutants. By contrast, CDKA expression levels were only slightly increased in the

guintuple mutant, providing further evidence that KRPs inhibit CDKA activity at the level
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of phosphorylation rather than at transcriptional level (Cheng et al., 2013). In line with
the increase in CDKA phosphorylation activity, an increase of phosphorylated RBR1 levels
and an increase in expression levels of genes promoted by the E2F pathway were
observed in the quintuple mutant. In addition, five mitotic cyclins were upregulated in the
krp quintuple mutant while the G1 to S-phase associated CYCLIN D3,2-3 were down
regulated (Cheng et al., 2013).

Furthermore, it has been shown that all members of the Arabidopsis family including
KRP4 and KRP2 are under post-translational control and interacted with FBL17, a
mediator of proteosomal degradation, in a BiFC experiment in tobacco leaves (Zhao et al.,
2012). Zhou et al. (2003) showed that in /CK1 the N-terminal domain is needed for protein
instability. Co-expression assays performed in tobacco leaves showed that the presence
of FBL17 protein reduced the fluorescence signal, particularly of KRP4-GFP and KRP7-GFP
fusion proteins, and to a lesser degree of KRP2-GFP fusion protein (Zhao et al., 2012). It
has been shown that FBL17 is a direct transcriptional target of E2FA and is under direct
control of RBR1, suggesting that KRP degradation is under transcriptional control of E2F
and RBR1 and a key step at the G1 to S-phase transition.

In wild-type plants, KRP2 was most highly expressed in flowers, while KRP4 was
expressed in the mitotically active tissue of flowers and leaves (de Veylder et al., 2001;
Ormenese et al., 2004). Tissue-specific expression profiling confirmed that KRP2 and KRP4
are expressed in young flowers, particularly in petals, and that KRP2 is specifically
expressed in stems (Torres Acosta et al., 2011). While no clear morphological changes
were observed in single, double and triple mutants, the krp1/2/4/5/7 quintuple mutant
showed a significant size increase in seeds, cotyledons, leaves and petals, with reduced
cell sizes and higher cell density than in the wild type. Together, this suggested that KRPs
have a dosage-dependent effect on CDKA activity and act redundantly to repress cell
proliferation and to affect mature organ size and shape (Cheng et al., 2013).

Wang et al. (2000) were the first to report on the effects of ectopic expression of ICK1
(KRP1) under the 35S promoter on mature organ size and shape. Lateral organs such as
leaves and floral organs were reduced in size. Wang et al. (2000) described the floral
phenotype for the ICK1 overexpressor, “flowers stayed closer and were at the same level
or below the inflorescence apex” and “the flowers appeared like a compact cluster when

viewed from the top”, a description reminiscent of the jag loss of function mutant,
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particular in L-er background. Wang et al. (2000) further speculated that this close
appearance might be caused by reduced growth of the inflorescence stem and the
pedicels. In respect to the petal phenotype of the KRP1 overexpressor Wang et al. (2000)
reported that sepals, petals and stamen were shorter and reduced in overall size and
“petals were narrower with serrations along the top edge”. In addition, ectopic
expression of KRP2 under the 35S promoter resulted in smaller serrated leaves and
“sepals and petals modified in size” that appeared green (De Veylder et al., 2001).

In leaves of KRP2 overexpressing lines, kinematic analysis revealed that cell
proliferation rates were severely reduced and endoreduplication was inhibited resulting
in 10-fold fewer but larger cells with lower ploidy levels than in the wild type, while the
temporal pattern of organ development and onset of expansion and differentiation was
unchanged (de Veylder et al., 2001). In addition, Verkest et al. (2005) specified that weak
over-expression of KRP2 inhibited mitotic CDK-cyclin complexes while endoreduplication
was unaffected. Moreover, inhibition of the mitotic cell cycle in lines weakly over-
expressing KRP2 appeared to trigger onset of endoreduplication, increasing the number
of cells with higher ploidy levels compared to cells in wild-type leaves (Verkest et al.,
2005). In a similar way, KRP1 has been shown to bind to CYCD3 and overexpression of
KRP1 caused dwarfed plants with a reduced number but enlarged cells (Wang et al.,
2000). This observation was further corroborated by Roeder et al. (2010) who found that
mild overexpression of KRP1 under the epidermal ATML1 promoter in sepal primordia
resulted in an increased number of cells exiting mitotic cell proliferation earlier than in
the wild type, resulting in increased number of giant cells with increased ploidy levels
compared to wild-type sepals (Roeder et al., 2010).

While no lines with ectopic expression of KRP4 under the 35S promoter were
recovered (De Veylder et al., 2001), tissue-specific ectopic expression of KRP4 under the
ATLM1 promoter resulted in reduced numbers of cells with increased final cell sizes in the
epidermis of all lateral organs (Bemis and Torii, 2007). Interestingly, epidermis-specific
ectopic expression of KRP1 and KRP4 caused reduced organ sizes in all lateral organs. For
example, floral organs of the KRP1 and KRP4 showed prematurely opened floral buds
because of distorted sepals, a phenotypic feature reminiscent of the jag mutant. Petals
appeared slightly shorter and narrower but kept their white appearance in the lobe

region suggesting that there was no defect in conical cell type formation (Bemis and Torii,
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2007). In sepals, Bemis and Torii (2007) observed that non-giant cells increased to
abnormally large sizes upon epidermal specific ectopic expression of KRP1 and KRP4,
while Roeder et al. (2010), who investigated the effect of epidermal layer-specific ectopic
expression of KRP1 in a live-imaging approach, observed an increase in the number of
giant cells. In summary, work on KRPs has provided evidence that they are key cell cycle
inhibitors and that ectopic expression of KRP has an effect on final cell number, final cell
sizes and final organ sizes and shapes.

The observations described above indicated that the interaction between JAG and KRP
genes was likely to be functionally relevant. For this reason, | aimed to confirm that JAG
directly represses KRP2 and KRP4 in the context of floral organogenesis using ChIP
followed by g-PCR, qRT-PCR and RNA in situ hybridization. Furthermore, | aimed to
investigate the expression domains of KRP2 and KRP4 in vivo using GFP- and GUS-
reporter constructs in wild-type and jag loss of function mutant background. KRP2
overexpressing lines have narrower, serrated leaves and show defects in floral organ
development with partial male sterility (de Veylder et al., 2001 and Zhou et al., 2002),
similar to jag loss of function mutants. Therefore, | speculated that ectopic KRP2
expression in the jag mutants might be at least partially the cause for the similar growth
defective phenotypes. | further hypothesized that generating a double loss of function
mutant would rescue the wild-type phenotype in flowers. By generating krp2 jag and
krp4jag double and krp2 krp4 jag triple loss of function mutants, | aimed to investigate

whether repression of KRPs by JAG is required for wild-type floral organ development.

6.3.2. Results

6.3.2.1. KRP2 and KRP4 are direct targets of JAG

The cell cycle inhibitors KRP2 and KRP4 have been identified as directly down-
regulated targets of JAG in the overlap of the ChIP-Seq data and the global expression
profiling data (see Chapters 2 and 3). In the ChIP-Seq experiment, two DNA binding sites
with significant enrichment have been identified near the genomic region of KRP2, with
one maximum peak score located 1.4 kb upstream of the transcriptional start of KRP2 and
the other maximum peak score located 1.2 kb downstream of the stop codon (Figure
6.2.A). For KRP4, one significantly enriched DNA binding site was identified 0.3 kb

downstream of the stop codon (Figure 6.3.A).
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To further confirm the significantly enriched DNA binding sites for KRP2 and KRP4, |
performed an independent ChIP experiment using anti-GFP antibodies for
immunoprecipitation of the JAG-GFP protein — DNA complex in jag-2 plants
complemented with the pJAG:JAG-GFP construct and in L-er wild-type plants serving as a
negative control. ChiP was followed by qPCR using oligonucleotides designed in close
vicinity to the identified maximum peak scores (KRP2 -1616, KRP2 +1342, and KRP4 +295).
For both DNA binding sites near the genomic region of KRP2 and for the DNA binding site
0.3 kb downstream of the stop codon of KRP4 a significant enrichment was observed in
immuno-precipated DNA from pJAG:JAG-GFP jag-2 inflorescences in comparison to
immunoprecipitated DNA from wild-type inflorescences, when normalised to the input
DNA of the samples (Figure 6.2.B and 6.3.B).

As a further control of the DNA binding specificity of JAG, | performed qPCR using
oligonucleotides that amplified a region within 3 kb upstream of the start codon of KRP2
and KRP4, but were at least 0.5 kb distant from the peaks assigned by ChiP-Seq (KRP2 -
159 and KRP4 -1691). In addition, the DNA binding site 1.3 kb upstream of the
transcriptional start of KRP2 was confirmed using anti-GR antibodies for immuno-
precipitation of ectopic JAG-GR protein—DNA complexes in wild-type plants harbouring
the DEX-inducible 355:JAG-GR construct. In this experiment, ectopic JAG-GR was activated
by DEX treatment and control plants harboring the 355:JAG-GR were treated with
ethanol. To confirm the enrichments with g-PCR oligonucleotides KRP2 -1616 and KRP2 -

159 were used (Figure 6.4.).

6.3.2.2. JAG represses KRP2 and KRP4

To further confirm that JAG not only binds to the genomic regions near the KRP2 and
KRP4 loci, but also transcriptionally regulates them, | performed qRT-PCR and RNA in situ
hybridisation experiments. In the expression-array experiment, KRP2 and KRP4 were
found to be significantly repressed (FDR<0.01) upon ectopic JAG-GR activation with a log;
ratio of -1.44 and -0.84 respectively (see Chapter 2). To confirm the global expression
profiling data, | performed gRT-PCR on inflorescence apices tissue of wild-type plants
harbouring the 355:JAG-GR construct. For ectopic JAG activation, the plants were

subjected to a DEX treatment or ethanol-control treatment and incubated for 4 hours.
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Because the Kip-related protein family consists of seven members KRP1-KRP7 (De
Veylder et al., 2001), | compared the expression levels of all seven protein family
members in floral apices by qRT-PCR (Figure 6.5.A). Firstly, | found that KRP2 and KRP4
have significantly higher expression levels in floral apices compared with the other five
members of the KRP family (KRP1, KRP3 and KRP5-7). Furthermore, the qRT-PCR results
confirmed that KRP2 and KRP4 expression levels were decreased upon ectopic JAG-GR
activation. In addition, | observed significant up-regulation of KRP2 mRNA levels in the
jag-2 mutant compared with wild type (p-value <0.05). By contrast, up-regulation of KRP4
was not significant between the jag-2 loss of function mutant and the wild type (p-value
<0.05) (Figure 6.5.B). Interestingly, in the micro-array experiment, neither KRP2 nor KRP4
were found to be significantly differentially expressed between wild type and jag-1 loss of
function background. In addition to KRP2 and KRP4, KRP7 (At1g49620) was identified as a
direct target in the ChIP-Seq experiment (see Chapter 3). However, KRP7 did not show
any significant differences in the expression array experiments and could not be
confirmed by gRT-PCR, possibly because of very low expression levels in the inflorescence
apices.

In summary, these data further supported that KRP2 is directly repressed by JAG in
floral apices and that the repressor function of JAG is clearly reflected in ectopic
expression in the jag loss of function background. By contrast, KRP4 is directly repressed
by JAG but was not significantly differently expressed between wild type and jag loss of
function mutants. In this respect, JAG might repress KRP4 in a very specific temporal and
spatial context and therefore its repressor effect might be diluted when sampling whole
inflorescence apices. Or, KRP4 might be redundantly repressed by other genes controlling
organ growth in floral apices.

A good candidate to function redundantly with JAG is the single C,H, zinc finger
transcription factor NUBBIN/JAG-LIKE (NUB/JGL) (Ohno et al., 2004; Dinneny et al., 2004;
Norberg et al., 2005; Dinneny et al., 2006). NUB shares 34% sequence similarity with JAG
and has been characterised as the closest homolog to JAG (Dinneny et al., 2004). Double
homozygous jag nub mutants show severely reduced and serrated sepals and petals, and
are sterile. To investigate whether NUB acts redundantly with JAG to control KRP2 and
KRP4, | performed gRT-PCR on cDNA derived from inflorescence apices of jag-1 and nub

single mutants, the jag-1 nub double mutant (homozygous for both loss of function
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mutations) and wild type, all in Col-0 background. While mRNA levels of KRP2 were
further increased in the jag-1 nub double loss of function mutant compared to the jag-1
single mutant (Figure 6.6.A), no significant change was observed for KRP4 expression
levels in the jag-1 nub double mutant (Figure 6.6.B). This suggests that KRP2 but not KRP4
is at least in part under control of NUB. Therefore, JAG and NUB act redundantly to
repress KRP2 but not KRP4. In addition, no significant changes in mRNA levels were
observed between the nub single loss of function mutant and wild type, further
supporting the observation that particularly JAG acts as a strong repressor of KRP2.

To investigate whether loss of KRP2 function would rescue the severe phenotype of
the jag-1 nub double mutant, | generated the jag-1, nub, krp2-3 (the krp2-3 allele will be
introduced in more detail below) triple mutant in Col background. Similarly to the
phenotype of the jag-1 krp2-3 double mutant, discussed in more detail below, the jag-1
nub krp2-3 triple mutant showed a partial but significant rescue of distal petal width and
smoother petal margins in comparison with the jag-1 nub double mutant (Figure 6.7.A-F)
(no measurements taken). However, overall organ size was still significantly smaller in the
triple loss of function mutant compared to the jag single loss of function mutant and loss
of KRP2 function did not rescue the sterility in the double homozygous jag nub mutant.
Interestingly, krp2-3 jag-1 nub triple mutant showed significantly elongated pedicels and
thicker stems with increased internode length compared with the jag-1 nub double loss of
mutant (Figure 6.7.A-D), suggesting that KRP2 has a function in pedicel and inflorescence
stem development. This finding is supported by the expression of KRP2 in stem tissue
(Torres Acosta et al., 2011). In the same context, Bemis and Torii (2007) reported that
plants ectopically expressing KRP1 and KRP4 under the epidermis- specific ATML1
promoter produced inflorescences with short pedicels and shorter siliques due to
reduced cell numbers in these organs. However, | have not observed any obvious
differences in pedicel length and stem thickness in the krp2-3 jag mutant, suggesting that
this phenotype could be caused by the specific interaction between NUB and KRP2.
Measurements of pedicel length, internode length and stem thickness of the jag-1 nub,
krp2-3 jag-1, krp2-3 jag-1 nub double and triple mutants would shed further light into this
phenotype.
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6.3.2.3. Effects of JAG on the expression patterns of KRP2 and KRP4 during early
organogenesis
In summary, the combination of ChIP experiments and the expression array analysis,

both confirmed by independent gPCR experiments using L-er and Col ecotype
background, provided me with consistent evidence that JAG represses KRP2 and KRP4 in
inflorescence apices. However, the sampled inflorescence apices consisted of a mixture of
floral buds at different developmental stages with an array of different tissues
(meristems, perianth and reproductive organs). In the next step, | aimed to investigate
the spatial and temporal pattern of KRP2 and KRP4 expression in floral organogenesis in
wild-type background. Furthermore, | aimed to investigate the expression domains of
ectopic KRP2 and KRP4 expression in the jag mutant background.

| performed RNA in situ hybridisation using DIG-labeled probes for KRP2 and KRP4 on
jag-2 mutant and wild-type inflorescences. Both, the KRP2 probe (594 nt) and the KRP4
probe (553 nt) were designed to avoid the C-terminal region, which has been reported to
be highly conserved between the seven members of the Kip-related protein family (de
Veylder et al., 2001). For KRP2, a strong signal was observed in inner deeper layers of the
inflorescence meristem and the floral meristem for both jag-2 and wild-type flowers
(Figure 6.8.A-B). Furthermore, in some buds a signal was detected in early sepal primordia
emerging from the floral meristem particularly at the adaxial side in jag-2 mutant flowers
compared to wild-type buds of similar developmental stage. For KRP4, | detected a faint
spotty signal that was difficult to interpret and | did not observe any significantly obvious
differences in probe signal between flowers of the jag-2 loss of function mutant and the
wild type (Figure 6.8.C-D), which was consistent with the qRT-PCR results for KRP4.
Similar to my experiment, Bemis and Torii (2007) used RNA in situ hybridization with a
similar probe to detected expression of KRP4 in inflorescence tissue and observed a faint
signal throughout the shoot apical meristem, the inflorescence meristem, the floral
meristem, young floral organ primordia, suggesting very low abundance for the KRP4
mRNA. However, for my experiment that aimed to reveal differences in expression
pattern for KRP2 and KRP4 between the jag-1 mutant compared with wild type, | had to
conclude that RNA in situ hybridisation did not help to localise the expression domains of

KRP4, and only in part, helped to localise the expression domains of KRP2. Even though |
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observed ectopic KRP2 expression in the adaxial side of early sepal primordia, these
results were not clearly visible in all floral buds.

For this reason | aimed to observe KRP2 and KRP4 expression domains in vivo with
reporter lines. | generated fluorescent reporter lines for KRP2 and KRP4 . The
PKRP2:KRP2-GFP included the complete genomic sequences from 3.65 kb upstream of the
start codon to 1.33 kb 3’ of the stop codon, including all coding sequences and introns,
with the 700 bp GFP cDNA fragment inserted in frame at the end of the KRP coding
sequence. In contrast, the KRP4 reporter consisted of a 1.3 kb promoter region, a
truncated genomic region reduced to the first intron and exon, with the conserved C-
terminal CDK interacting domain deleted (De Veylder et al., 2001), fused to the CYPET
cyan fluorescent protein cDNA sequence (700 bp) and a 1.3 kb 3’ region. With this
construct | aimed to disrupt the CDK-binding function of the gene in order to exclude any
interference with the endogenous KRP4 function while retaining signals for protein-
protein interactions, nuclear localization, and degradation.

The pKRP2:KRP2-GFP reporter lines showed good expression levels in seedling roots,
with the GFP signal being clearly nuclear-localised (Figure 6.9.). In the inflorescence, a
strong nuclear GFP signal was observed in the deeper cell layers of inflorescence
meristems and floral meristems of jag-1 mutant (Figure 6.10.A) and wild-type plants
(Figure 6.10.B) harboring the pKRP2:KRP2-GFP construct, consistent with the signal
observed in the RNA in situ hybridization experiment. While, in early floral stages (until
stage 3-5, according to Smyth et al., 1990), KRP2-GFP was detected in the deeper layers of
the floral meristems, in later stages (from stage 6 onwards according to Smyth et al.,
1990) KRP2-GFP was detected in the sepal primordia in wild-type and jag-1 plants (Figure
6.10.C-H). In addition, KRP2-GFP was also observed in the apical region of the central
hollow tube forming the future gynoecium, which was prematurely exposed in jag-1
mutant flowers compared to the wild type flower where the sepals tightly enclose the
inner whorls and did therefore not allow access for confocal imaging.

As seen for pKRP2:KRP2-GFP, the pKRP4:KRP4x-CYPET also showed clear signal in
seedling roots (Figure 6.9.). By contrast, no KRP4x-CYPET signal was observed in the
inflorescence tissue of wild-type plants (data not shown). In this context, Jakoby et al.,
(2006) who investigated subcellular localization of the KRP1 protein, reported that KRP1

has several NLS signals, one of which is located within the CYCD and CDK binding domains
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at the C-terminus of the protein. Deletion of the C-terminal located nuclear localization
signal (NLS) excluded KRP1-YFP from the nucleus, suggesting that by deleting the
complete C-terminus | not only deleted the CDK interacting function but possibly also
deleted an important nuclear localization signal.

The expression patterns of KRP2 and KRP4 were further investigated by crossing GUS-
reporter lines for KRP2 and KRP4 (gifts from Lieven De Veylder) into the jag-1 mutant
background. The KRP2:GUS signal was consistent with the expression pattern observed in
the lines harboring the pKRP2:KRP2-GFP construct: KRP2-GUS appeared not to be
expressed in the youngest floral buds, but was detected in sepal and petal primordia at
later developmental stages (Figure 6.11.). In the jag-1 mutant background, the GUS signal
was stronger and appeared to extend into the basal regions of the petals, while in the
wild type it appeared to be restricted to the margins. In both backgrounds, the KRP2:GUS
signal was strong in the developing style and stigma and faded away before anthesis. In
addition, KRP2:GUS expression was detected in the pedicel, which was particularly strong
in the jag-1 background compared to the wild type (Figure 6.11.). No KRP4:GUS signal
could be detected in the inflorescence tissue even though presence of the construct was
confirmed by early GUS expression in seedling roots (data not shown), suggesting that

KRP4:GUS signal was too weak to be detected in floral organs.
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Figure 6.2. Endogenous JAG-GFP directly binds upstream and downstream of the KRP2
locus. (A) Visualisation of read enriched regions mapping to the TAIR10 Arabidopsis
reference genome (x-axis) using the Integrated Genome Browser (Nicol et al., 2009), ChIP-
Seq peak score values (y-axis) based on the ratios of normalised reads between JAG-GFP
and control samples were calculated for every single nucleotide position using CSAR
software (Muino et al., 2011a), the maximum score value within the candidate peaks was
used to test for significance of the enrichment; ChIP-Seq peaks detected in each replicate

within 3 kb upstream and 1.5 kb downstream of the coding sequence for the KRP2 locus
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on chromosome 3. (B) Binding of JAG-GFP to the upstream and downstream region of

KRP2 confirmed by ChIP-qPCR; target sequences 1.6 kb upstream of the transcriptional

start of KRP2 and 1.3 kb downstream of the stop codon, including a control region 0.16 kb

upstream of the KRP2 transcriptional start; bars show the mean and standard deviation of

three biological replicates; numbers below the bars indicate the left border of the g-PCR

amplicon relative to the coding sequence; asterisks indicate significant difference to the

negative WT control (p < 0.05, Student’s t-test).
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Figure 6.3. Endogenous JAG-GFP directly binds downstream of the KRP4 locus.

144



(A) Visualisation of read enriched regions mapping to the TAIR10 Arabidopsis reference
genome (x-axis) using the Integrated Genome Browser (Nicol et al., 2009), ChIP-Seq peak
score values (y-axis) based on the ratios of normalised reads between JAG-GFP and
control samples were calculated for every single nucleotide position using CSAR software
(Muifo et al., 2011a), the maximum score value within the candidate peaks was used to
test for significance of the enrichment; ChIP-Seq peaks detected in each replicate within 3
kb upstream and 1.5 kb downstream of the coding sequence for the KRP4 locus on
chromosome 2. (B) Binding of JAG-GFP to the downstream region of KRP4 confirmed by
ChIP-gPCR; target sequences 0.3 kb downstream of the KRP4 stop codon and a control
region 1.7 kb upstream of the KRP4 transcriptional start; bars show the mean and
standard deviation of three biological replicates; numbers below the bars indicate the left
border of the g-PCR amplicon relative to the coding sequence; asterisks indicate

significant difference to the negative WT control (p < 0.05, Student’s t-test).
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Figure 6.4. Ectopic JAG-GR binds to the promoter of KRP2. Chromatin
immunoprecipitation (ChIP) using anti-GR antibodies and inflorescence apices of
35S::JAG-GR plants 4 h after mock treatment (light blue) or treatment with

dexamethasone 10 uM (red); target sequences 1.6 kb and control sequence 0.16 kb
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upstream of the KRP2 transcriptional start; bars show the mean and standard deviation of
three biological replicates; numbers below the bars indicate the left border of the gq-PCR
amplicon relative to the coding sequence; asterisks indicate significant difference to the

mock control (p < 0.05, Student’s t-test).
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Figure 6.5. Expression analysis by qRT-PCR for the seven members of the KIP-related
protein family. JAG represses KRP2 and KRP4. Expression levels for KRP1-KRP7 (relative to
the TUB4 constitutive control); (A) in inflorescence apices of 355::JAG-GR plants 4h after
mock treatment (light blue) or treatment with dexamethasone 10 uM (red); mock
treatment in the presence of cycloheximide 10 uM (lilac), DEX-treatment in the presence

of cycloheximide (orange); (B) in inflorescence apices of wild-type (blue) and jag-2
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inflorescences (green); bars show the mean and standard deviation of three biological
replicates; asterisks indicate statistically significant differences (unpaired two-sample
Student’s t-test, p < 0.05) between dexamethasone-treated samples and corresponding

controls or between the wild type and jag-2.
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of function mutant background. Expression levels for (A) KRP2 and (B) KRP4 (relative to
the TUB4 constitutive control) in inflorescence apices of jag-1 and nub single mutants and
the jag-1 nub homozygous double mutant compared to wild type; bars show the mean
and standard deviation of three biological replicates; asterisks indicate statistically
significant differences (unpaired two-sample Student’s t-test, p < 0.05) between the

mutants and wild type.
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Figure 6.7. The krp2-3 jag-1 nub triple loss of function mutant shows in part rescue of
distal organ growth of floral organs, elongated pedicels and increase in pedicel and
inflorescence stem thickness. Scale bars: Ruler on the right applies for (A) and (B); (C-D) 1
mm, (E-F) 500 um;
Inflorescence phenotype of (A, C) the homozygous jag-1 nub double loss of function
mutant compared to the (B, D) homozygous jag-1 nub krp2-3 triple loss of function
mutant with elongated pedicels and increased stem width. (E-F) Petal of the homozygous
jag-1 nub double mutant (E) compared to the jag-1 nub krp2-3 triple mutant which shows
a broader distal lobe area with smoother distal margins. Petals were imaged using the
light microscope DM6000 with 10X magnification as described below.
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Figure 6.8. RNA in situ hybridization showing expression domains of KRP2 and KRP4 in
wild type and jag-2 inflorescences. Inflorescence meristem: im; floral meristem: fm;

sepal primordium: sp; Scale bars: 100 pum.

(A-B) Sections through wild-type (A) and jag-2 (B) inflorescence apices hybridised with
KRP2 antisense probe; arrows indicate KRP2 expression in deeper layers of the
inflorescence meristem and in the pedicel; in jag-2 sepal primordium arrow indicates

KRP2 signal in the adaxial side.

(C-D) Sections through wild-type (C) and jag-2 (D) inflorescence apices hybridized with
KRP4 antisense probe; arrows indicate KRP4 expression in the epidermal and

subepidermal layers of the inflorescence and floral meristem.
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Figure 6.9. Expression of KRP2-GFP and KRP4X-CYPET in wild-type seedlings harboring
the pKRP2:KRP2-GFP and pKRP4:KRP4X-CYPET constructs. Scale bars: 100 um; (A) KRP2-
GFP expression in the proliferation and elongation zone of roots of 10-day old seedlings;

(B) KRP4AX-CYPET expression in the differentiation zone of roots of 10-day old seedlings.
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Figure 6.10. KRP2-GFP expression in inflorescences of wild type and jag-1 harboring the
pKRP2:KRP2-GFP reporter construct. Inflorescence meristem: im; floral meristem: fm;
sepal primordium: sp; Scale bar (A, C-H): 100 um, (B): 50 um; 3D projections of confocal

stacks showing inflorescences of (A, C) jag-1 and (B, D) wild type with the inflorescence
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meristem (im) in the center, surrounded by developing floral buds; (A-B) arrows indicate
that KRP2-GFP is localized in the deeper layers of the inflorescence meristem and the
floral meristem; (C,D) arrows indicate that KRP2-GFP is localized in the sepals from stage
5 onwards; (E-G) KRP2-GFP is expressed in the floral buds of jag-1; (E) in floral meristem,
(F) in sepals, (G) in the distal region of the tube forming the gynoecium; (H) KRP2-GFP is
expressed in floral buds of wild type, however wild-type sepals cover the inner whorls
reducing the accessibility for confocal imaging; 3D projections of the confocal stack

generated in Fiji (Schmid et al., 2010).

A

Figure 6.11. Ectopic KRP2 expression in jag-1 inflorescences. Scale bars: 500 um; (A)
KRP2:GUS signal in wild type inflorescence; arrows indicate expression in the distal
margins of the petal primordia and in the gynoecium; (B) KRP2:GUS signal in jag-1
inflorescence; arrows indicate strong expression throughout petal primordia and strong

expression in the pedicel.
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6.3.2.4. krp2 and krp4 mutations partially restore mature organ growth and shape

In the next step, | aimed to investigate the functional relevance of the repression of
KRP2 and KRP4 by JAG. Lines ectopically expressing KRP2 under the 35S promoter have
narrower, serrated leaves and show defects in floral organ development with partial male
sterility (de Veylder et al., 2001 and Zhou et al., 2002), similar to jag loss of function
mutants. In addition, it has been shown that ectopic expression of KRP4 in the epidermal
layer caused similar growth defects in floral organs (Bemis and Torii, 2007). Therefore, |
hypothesised that ectopic KRP expression in the jag mutants might be the cause for
growth defects in the jag mutant background. In this case, loss of KRP2 and/or KRP4
function in the jag loss of function mutant background might at least in part rescue floral
organ outgrowth.

To test whether repression of KRP2 or KRP4 was required to promote floral organ
growth, | compared the shape and size of mature organs in plants with different
combinations of the jag-1, krp2-3 and krp4-1 mutations with the wild-type Col-0 control.
Therefore, | generated the double mutant lines krp2-3 jag-1 and krp4-1 jag-1 and the
krp2-3 krp4-1 jag-1 triple mutant, all in Col-0 background. Both, the krp2-3 and the krp4-1
single mutant are T-DNA insertion lines identified from the SALK T-DNA insertion mutant
collection. The loss of function allele krp2-3 (SALK 130744, first described by Sanz et al.,
2011) has an insertion in the first exon and the loss of function allele krp4-1 (SALK
102417) has an insertion in the second exon. The krp4-1 allele has recently been
described as a loss of function allele by Cheng et al. (2013). In addition, | confirmed by
gRT-PCR using oligos 537 bp downstream of the start codon with an amplicon spanning
exon 1 and exon 2, that krp4-1 is a loss of function allele (Figure 6.12.).

As reported by Cheng et al. (2013), both single krp loss of function mutants did not
show any obvious macroscopic differences in development, overall plant architecture, or
inflorescence phenotype compared to wild-type Col-0 (Figure 6.13.A-C). By contrast, in
the jag-1 mutant, reduced growth often results in exposed carpels and stamens in young
buds (Figures 6.13.D and 6.14.A, F), and mature sepals and petals are shorter and
narrower than in the wild type. In the jag-1 loss of function mutant background, loss of
KRP2 or KRP4 function caused a partial rescue of the inflorescence phenotype, in
particular, in respect to sepal and petal outgrowth. The developing floral buds in both

double mutants and in the triple mutant had a tightly closed appearance compared with
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the loosely open appearance of the developing floral buds in the jag-1 loss of function
mutant (Figures 6.13. and 6.14.). This suggested that there was rescue of sepal outgrowth
to a degree that enabled sepals to enclose the developing floral organs of the inner
whorls as observed in wild-type floral buds. In both krp2-3 jag-1 and krp4-1 jag-1 double
mutants and in the krp2-3 krp4-1 jag-1 triple mutant, sepal and petal outgrowth were in
part recovered, including the white appearance of wild-type petals (Figure 6.14.E,J).
However, full wild-type growth was clearly not recovered.

In order to quantify the partial recovery of sepal and petal outgrowth, | imaged petals
and sepals of flowers at full anthesis under 10X magnification. Flowers were fixed and
cleared in a 15-70% ethanol series and imaged using a 10X objective with bright field tiling
settings. | imaged open flowers that were at anthesis with the petals clearly visible, the
long anthers reaching the stigma that was fully covered with stigmatic papillae as
described by Smyth et al. (1990). | measured maximum length of sepals, maximum width
of petals, and total area of sepals and petals (Figure 6.15.). In a wild-type flower at full
anthesis, sepals are on average 1.98 mm long with an average total area of 1.02 mm?. In
comparison, jag-1 sepals are 1.33 mm long with an average total area of 0.45 mm?,
showing that jag-1 sepals are on average smaller than half the size of wild-type sepals.
The krp2-3 jag-1 and krp4-1 jag-1 double mutants showed a significant increase in
average sepal length of 1.50 mm and 1.60 mm and an average total sepal area of 0.63
mm? and 0.76 mm?, respectively. The increase in sepal size was even more pronounced in
the triple mutant where sepals were on average 1.71 mm long with an average total area
of 0.84 mm?.

| also observed significant differences in petal size. While wild-type petals are on
average 0.88 mm wide with an average total area of 1.67 mm?, jag petals are on average
0.462 mm wide with an average total area of 0.81 mm?, so jag-1 petals are about half the
size of wild-type petals. Petals of the krp2-3 jag-1 and the krp4-1 jag-1 double mutant
were on average 0.58 mm and 0.65 mm wide with an average total petal area of 1.02
mm?and 1.16 mm?, respectively. The krp2-3 krp4-1 jag-1 triple mutant showed a similar
increase in maximum petal width (0.71 mm) and average total petal area (1.25 mm?).
Apart from a significant increase in petal size, | observed a change in petal shape. While
wild-type petals fan out to form paddle shaped lobes, jag-1 petals have narrow pointy

distal tips (Dinneny et al., 2004; Ohno et al., 2004; Sauret et al., 2013). As a result, petals
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of jag-1 are often broader near the base than in the pointy distal region. In comparison,
petals of both double mutants krp2-3 jag-1 and krp4-1 jag-1, and the triple mutant krp2-3
krp4-1 jag-1 fanned out to a broader distal region (Figure 6.14. F-J).

In addition to the krp4-1 allele in Col background, | used the krp4-2 allele in L-er
background that was identified as GT1143 (gene trap line) by Sundaresan et al., (1995).

The krp4-2 allele has an insertion in the second exon and gRT-PCR using oligos 537 bp
and 1599 bp downstream of the KRP4 start codon confirmed that krp4-2 is a loss of
function allele (Figure 6.16.). The rescue in petal shape was particularly obvious in the
krp4-2 jag-2 double loss of function mutant compared to jag-2 single mutant (Figures
6.17. and 6.18.). While the jag loss of function mutation in L-er background causes strong
serrations in the distal petal tip, petals of the jag-2 krp4-2 double mutant had significantly

smoother margins in addition to a broadened distal region (Figure 6.18.).

6.3.2.5. Loss of KRP2 and KRP4 in jag mutants rescues conical cells in the lobes of petals

In wild-type petals, the adaxial epidermis of the lobe region is composed of uniform
conical cells with regular cuticular ridges. By contrast, the epidermal cells in the adaxial
distal tip of jag-1 petals are flat, elongated, and have irregular cuticular ridges, resembling
cells found near the base in wild-type petals (Dinneny et al., 2004; Ohno et al., 2004).
Because, the krp2-3 jag-1, the krp4-1 jag-1 double mutants and the krp2-3 krp4-1 jag-1
triple mutant showed a rescue in petal size and shape, particularly in the distal regions, |
further investigated whether the cell types in the adaxial epidermal layer were rescued in
comparison to the jag-1 single loss of function mutant.

To compare the cell types, | imaged petals of flowers at full anthesis using cryo-
scanning electron microscopy (Cryo-SEM). In comparison to the jag-1 single loss of
function mutant (Figure 6.19.B, | observed a rescue of the conical cells with regular
cuticular ridges in the distal lobe regions of the krp2-3 jag-1, krp4-1 jag-1 and in the krp2-
3 krp4-1 jag-1 triple mutant (Figure 6.19.C-E, I-K). In order to quantify the extent of
recovery, | measured the lobe area that was composed of conical cells in petals that were
cleared in ethanol. In this experiment, wild-type Col petals had a total area of 2.32 mm?2
and conical cells covered 1.33 mm?, which corresponded to 56% of the total petal area. In

the krp2-3 jag-1, the krp4-1 jag-1, and the krp2-3 krp4-1 jag-1 petals had total areas of
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1.32 mm?, 1.47 mm?, and 1.46 mm?, respectively. In the krp2-3 jag-1, the krp4-1 jag-1,
and the krp2-3 krp4-1 jag-1 conical cells covered on average 0.11 mm?, 0.29 mm?, and
0.26 mm? in the distal lobe area, which corresponded to 8.50%, 20%, 18% of the total
petal area, respectively (Figure 6.19.F). In comparison, conical cells were absent from the
pointy and narrow lobe region of jag-1 petals, an observation previously reported by
Dinneny et al. (2004) and Ohno et al. (2004). Thus, as previously observed for overall
petal growth, the area of the petal epidermis composed of conical cells showed a
statistically significant increase in the krp2/4 jag-1 double and triple loss of function
mutants compared to the jag-1 single mutant, but did not reach the area seen in the wild-
type controls in any of the double or triple mutant combinations.

In sepals, Roeder et al. (2010) showed that mild overexpression of KRP1 resulted in an
increase in giant cell formation in sepals. In my experiment, SEM images did not reveal
any obvious changes in final cell size distributions in the sepals of the single krp2-3 or
krp4-1 and the double krp2-3 krp4-1 double loss of function mutants compared to the
wild type (Figures 6.20.E-G and 6.21.E-G). Moreover, | did not observe an increase of
giant cell formation in the sepals of jag-1 loss of function mutant (Figures 6.20.A and
6.21.A). On the contrary, epidermal cells in the jag-1 sepals appeared to be more uniform
in size with fewer extreme cell size differences between neighbouring cells as observed in
the wild-type sepal (Figure 6.21.E; Roeder et al., 2010). In addition cells appeared less
bulgy and less lobed in the jag-1 single mutant. Interestingly, lobes of epidermal cells
have been described as a means to resist tension and rupture when neighboring cells
grow at different growth rates (Asl et al., 2011), which would be in line with the uniform
cell sizes observed in the jag sepals. No obvious changes in cell shape and cell sizes were
observed in the sepals between jag-1 and the krp2-3 jag-1, krp4-1 jag-1 and krp2-3 krp4-1
jag-1 double and triple mutants (Figures 6.20.A-D and 6.21.A-D).
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Figure 6.12. Transcript levels of KRP4 in the krp4-1 Col mutant shown by qRT-PCR.
Numbers on the horizontal axis below the bars correspond to the left border of the
amplified region relative to the coding sequence; bars indicate mean and standard

deviation of three biological replicates.
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Figure 6.13. Partial rescue of jag organ growth defects by krp2 and krp4 mutations.

Scale bars: 1 mm; (A-E) Top view of inflorescences of wild type (A), krp2-3 (B), krp4-1 (C),
jag-1 (D), krp2-3 jag-1 (E), krp4-1 jag-1 (F) and krp2-3 krp4-1 jag-1 (G); note that sepals
fail to completely enclose the buds in jag-1, but this defect is partially suppressed by the

krp2 and krp4 mutations.
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Figure 6.14. Partial rescue of flower phenotype by loss of KRP2 and KRP4 in jag-1
background. Scale bars: 1 mm; Representative early floral buds in the inflorescence
center of jag-1 (A), krp2-3 jag-1 (B), krp4-1 jag-1 (C), krp2-3 krp4-1 jag-1 (D) and wild-type
control (E); note the open floral buds with prematurely protruding gynoecium in jag-1
and its partial rescue in the double and triple mutants; Representative mature flowers of
jag-1 (F), krp2-3 jag-1 (G), krp4-1 jag-1 (H), krp2-3 krp4-1 jag-1 (1) and wild-type control
(J); note the defective sepal and petal growth in jag-1 and the partial recovery of growth
and the recovery of whitish petal appearance in the krp2-3 jag-1, krp4-1 jag-1 and in the

krp2-3 krp4-1 jag-1 mutant.
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Figure 6.15. Quantification of the rescue of sepal and petal outgrowth upon loss of KRP2

and KRP4 function in the jag-1 mutant background. (A-D) Distribution of sepal area (A),

sepal length (B), petal area (C) and maximum petal width (D) for the genotypes indicated;

box plots show median (thick line) second to third quartiles (box), minimum and

maximum range (dashed line) and outliers (single points). Asterisks for the double and

triple mutants indicate that the mean is significantly different from jag-1 (Student’s t-test,

p<0.05).
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Figure 6.16. Transcript levels of KRP4 in the krp4-2 L-er mutant shown by qRT-PCR.

Numbers on the horizontal axis below the bars correspond to the left border of the
amplified region relative to the coding sequence; bars indicate means and standard

deviations of three biological replicates.
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Figure 6.17. Rescue of the floral organ defects in the krp4-2 jag-2 double mutant.

(A-D) Top view of inflorescences of jag-2 (A), krp4-2 jag-2 (B), krp4-2 (C), and wild-type
control (D); bars: 1 mm. (E-H) Representative mature flowers of jag-2 (E), krp4-2 jag-2 (F),
krp4-2 (G), and wild-type control (H); note the severe defects in petal growth in jag-2 and

the partial recovery of growth in the jag-2 krp4-2 double mutant; bars: 1 mm.
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Figure 6.18. Rescue of floral organ defects in the krp4-2 jag-2 double mutant.

Scale bars: 500 um; Representative petal from mature flowers, cleared in 70% ethanol
and imaged with 10X magnification using the Leica DM6000; petals of jag-2 (A), krp4-2
jag-2 (B), krp4-2 (C) and wild type (D); note the severe serrations of the petal margins
which are specific for the jag loss of function mutation in L-er background; in the krp4-2

jag-2 double mutant petals have smoother margins.
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Figure 6.19. krp2 and krp4 mutations recover epidermal cell morphology in jag petals.
Scanning electron micrographs of mature petals (A-E) and conical cells in the distal petal
region (G-K) from wild-type Col (A, G), jag-1 (B, H), jag-1 krp2-3 (C, 1), jag-1 krp4-1 (D, G),
jag-1 krp2-3 krp4-1 (E, H); bars: 500 um (A-E); Scanning bars: 20 um (G-K); the black lines
across the distal region of the petals shows the boundary of the distal petal lobe, where
conical epidermal cells are seen; (F) Area of distal petal lobe for the genotypes indicated,;
box plots show median (thick line) second to third quartiles (box), minimum and
maximum range (dashed line) and outliers (single points). Asterisks for the double and
triple mutants indicate that the mean is significantly different from jag-1 (Student’s t-test,

p-value<0.05).
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Figure 6.20. krp2 and krp4 mutations do not recover epidermal cell morphology in jag
sepals. Scale bars: 100 um (A-H): Scanning electron micrographs of mature sepals from

jag-1 (A), krp2-3 jag-1 (B), krp4-1 jag (C), jag-1 krp2-3 krp4-1 (D), wild type (E), krp2-3 (F),

krp4-1 (G), krp4-1 krp2-3 (H);
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Figure 6.21. krp2 and krp4 mutations do not recover epidermal cell morphology in jag
sepals. Scale bars: 20 um (A-H): Scanning electron micrographs of mature sepals from jag-
1(A), krp2-3 jag-1 (B), krp4-1 jag (C), jag-1 krp2-3 krp4-1 (D), wild type (E), krp2-3 (F),
krp4-1 (G), krp4-1 krp2-3 (H);
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6.4. Discussion

Here | showed that JAG directly targeted several regulators of the core cell cycle at the
transition from G1 to S-phase. In particular, | confirmed that JAG directly represses KRP2
and KRP4, two members of the Kip-related protein family. Furthermore, | showed that
loss of KRP2 and KRP4 function independently caused significant morphological changes
in mature floral organs in the jag mutant background. Together, these findings reveal
novel functions for two members of the KRP family.

Until now, high functional redundancy has been reported for the seven members of
the KRP family, which complicated functional analysis based on loss of function mutants.
For example, all seven KRPs have overlapping expression domains in tissues competent to
undergo mitotic divisions (Menges et al., 2005, Verkest et al., 2005, Ormenese et al.,
2004). Moreover, it has been repeatedly confirmed in pairwise interaction assays but also
in a global screening approach using co-purification by tandem affinity purification
technique with KRP proteins as baits that all seven KRPs show the same protein binding
specificities for CDKA and D-type cyclins (De Veylder et al., 2001; Wang et al., 2000; Van
Leene et al., 2010). Consistently, single mutants have been reported to not show any
significant growth or morphological differences (Cheng et al., 2013), with the exception of
the krp2-1 and krp2-3 single mutants that showed an increase in lateral root initiation
(Sanz et al., 2011). However, it has been shown that the krp1/2/4/5/7 quintuple loss of
function mutant had an effect on final organ sizes and shapes (Cheng et al., 2013),
confirming that loss of the cell cycle inhibitory function of KRPs affects organogenesis in a
dosage-dependent manner.

In contrast to the effects of single loss of function mutants, several studies on ectopic
expression of single members of the KRP family have revealed clear morphological
effects. For example, ectopic expression of KRP1 (ICK1), KRP2, and KRP4 under different
promoters resulted in reduced, greenish floral organs with narrower and shorter sepals
and petals and carpels protruding prematurely from young floral buds (Wang et al., 2000;
Zhou et al., 2002; De Veylder et al., 2001; Verkest et al., 2005; Bemis and Torii et al., 2007,
Ferjani et al., 2013). Therefore, it has been well established that ectopic expression of
KRPs has an effect on final organ size and shape. My work puts these ectopic effects into

the regulatory context of floral organ development and relates it to the function of the
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growth promoting transcription factor JAG. Consistently, the floral phenotypes described
for the KRP overexpressors are reminiscent of the jag loss of function phenotype. |
showed that loss of KRP2 and KRP4 function in the jag mutant background at least in part
rescued overall organ outgrowth, suggesting that ectopic expression of KRPs are at least
in part the cause for the jag mutant phenotype of reduced sepal and petal outgrowth.

Interestingly, loss of function of either KRP2 or KRP4 caused partial rescue of organ
growth, but mutation of both KRP genes in the triple krp2 krp4 jag mutant did not show
any clear additive effects or significantly increased rescue. This suggests that KRP2 and
KRP4 do not play equivalent and dosage-dependent roles downstream of JAG, but instead
are required together to produce the inhibition of organ growth seen in the jag mutant.
In addition, the rescue of organ growth in the triple mutant was not complete. Since JAG
also directly targeted genes involved in cell expansion and cell growth, it could be that
once cell cycle progression is de-repressed other growth-related factors become limiting.
On the other hand, the limiting component could still lie within the regulatory network of
the core cell cycle machinery. For example, expression profiling experiments have
revealed that CYCD3;3 is ectopically expressed in the jag mutant background even though
CYCD3;3 is a directly up-regulated target of ectopically activated JAG, suggesting that
other factors may cause ectopic CYCD3;3 expression in the jag loss of function
background.

It could be speculated that ectopic expression of KRPs in the jag mutant background
are the cause for elevated CYCD3;3 levels as part of a regulatory feedback loop. In this
context, Cheng et al. (2013) observed that CYCD3 was down-regulated in the
krp1/2/4/5/7 quintuple mutant. It has previously been shown that KRP2 interacts with
CYCD?2 in the root and promotes the nuclear localization of CYD2-CDKA complexes
promoting lateral root initiation (Sanz et al., 2011). Therefore, it would be interesting to
investigate whether CYCD3;3 expression levels are responsive to loss of KRP function in
the jag mutant background. In addition, it would be interesting to test whether the in
part rescue of overall organ outgrowth is dependent on CYCD3;3 function by crossing the
cycD3;3 or cycD3;1-3 mutant into the krp2/krp4 jag loss of function mutant background.

The genetic interactions between jag and krp2/4 mutations, combined with the direct
repression of KRP2 and KRP4 shown by the combined ChIP-Seq and JAG-GR experiments,

predict that KRP2 and KRP4 should be ectopically expressed in the jag mutant. However, |
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could only show this conclusively for KRP2. By using the KRP2:KRP2-GFP and the
KRP2:GUS reporter lines, | observed that KRP2 appeared not to be expressed in early
floral organ primordia, but was expressed in the distal margins of sepals and petals of the
wild type from stage 5 onwards. In particular, the KRP2:GUS signal was stronger and
extended from the distal margins through the whole petal in the jag-1 mutant
background compared with wild-type. This expression pattern is in accordance with the
functional analysis of the KRP2 overexpressor by De Veylder et al. (2001) who followed
the development of a leaf primordium of the first two true leaves over time using
kinematic analysis (De Veylder et al., 2001; Asl et al., 2011). Interestingly, at day 5 after
organ initiation, total organ area, cell numbers and average cell sizes of leaf primordia
were comparable between the wild type and the KRP2 overexpressor. By contrast, at day
21 after organ initiation, leaves of the KRP2 overexpressor were only 25% of the total leaf
area of a wild type mature leaf and had ten times fewer but enlarged cells, suggesting
that in leaf primordia, KRP2 function restricts cell proliferation rate and/or the timing of
proliferation phase and exit from cell proliferation between day 5 and day 21 of
development. In respect to these two possible functions, kinematic analysis further
revealed that in both lines proliferation phase lasted until day 9 and was marked by a
severe decrease in cell division rates, suggesting that strong ectopic KRP2 expression does
not affect the timing of cell proliferation to expansion and differentiation phase. By
contrast, during cell proliferation phase, cell cycle duration calculated as the inverse of
the cell division rate (cells/cell/hour) was double as long in the KRP2 overexpressor line
with average 43 hours compared with the cell cycle duration of 20 hours in the wild type
leaf (De Veylder et al., 2001).

However, in weak overexpression lines of KRP2 it was shown that endoreduplication
was promoted over mitotic cell proliferation causing premature exit from mitotic cell
proliferation (Verkest et al., 2005). In this context, it was suggested that high CDKA and
CDKB levels are required for mitosis and that their regulation by KRP2 decides whether a
cell enters mitosis or endoreduplication. Verkest et al. (2005) found that KRP2 is targeted
for proteasomal degradation via CDKB, and KRP2 protein levels are stabilised in a
dominant negative cdkb1 line. It was shown that KRP2 only reduces the kinase activity of
CDKA, not of CDKB, suggesting that CDKB can control CDKA activity by fine tuning KRP2

levels. This interaction provided an explanation to the question why in plants with strong
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ectopic expression of KRP1 and KRP2 entry into S-phase and subsequent mitosis was
blocked, while upon milder ectopic expression entry into S-phase was possible but
subsequent mitosis was blocked leading to an increase in endoreduplication (Verkest et
al., 2005; Weinl et al., 2005). Verkest et al. (2005) suggested that CDKB promotes KRP2
degradation in order to maintain high CDKA levels that are required for mitotic cell
divisions. In the case of endoreduplication, CDKB levels drop leading to stabilized KRP2
that can inhibit CDKA levels to a degree where entry into S-phase is still promoted but
entry into M-phase is inhibited. Together, this suggested that KRP2 acts in a dosage-
dependent manner and may have a function in restricting proliferation rate but may also
regulate the timing of cell cycle exit and onset of endoreduplication. Premature exit from
cell proliferation would be in line with the reported premature decrease in the cell
proliferation marker histone H4 in petals of the jag-1 mutant (Dinneny et al., 2004).

In respect to these findings by De Veylder et al. (2001) and Verkest et al. (2005), the
recovery of the conical cells in the double and triple loss of function mutant could be
explained in two ways. On the one hand, it is possible that conical cell morphology is
affected by the rates and direction of tissue growth during the stage when conical cells
differentiate. In this case, rescue of conical cell morphology in jag-1 would be an indirect
consequence of the partial rescue of organ growth caused by the de-repression of cell
proliferation in krp2-3 and krp4-1 mutations. In line with this, it could be hypothesised
that the elongated cells in the distal lobe of jag loss of function petals compared to small
tightly packed conical cells could be the effect of ectopic KRP2 expression inhibiting cell
proliferation. On the other hand, the altered morphology of epidermal cells in jag-1
petals could result from a defect in cell differentiation, suggesting that KRP2 and KRP4
may also affect the balance between cell cycle progression and cell differentiation during
floral organ growth. In order to further investigate these hypotheses quantification of
final cell sizes in sepals and petals would be needed in addition to the qualitative
information about shapes and final cell sizes already provided by the bright field
microscopy and SEM images. In addition, flow cytometry and clonal analysis could be
used in order to further investigate the effects of KRP2 in respect to changes in the timing
of onset of differentiation and cell cycle exit.

In summary, this work revealed that JAG directly represses the cell cycle inhibitors

KRP2 and KRP4 and therefore directly controls entry into S-phase and cell cycle
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progression. Because loss of KRP2 and KRP4 function caused a partial but significant
rescue of floral organ outgrowth in the jag loss of function mutant, it can be concluded
that de-repression of cell cycle inhibition during early organogenesis is required for floral
organ outgrowth according to the developmentally programmed size and shape. These
results are also consistent with the idea that the growth of plant tissues is actively
restrained below the levels that would be physiologically possible. This idea was initially
proposed as an adaptive response, during which growth is restrained by members of the
DELLA family which act as transcriptional repressors of gibberellin-mediated signalling in
response to environmental stress (Achard et al., 2006). In this respect, it is interesting
that DELLA proteins have also been shown to regulate KRP2 expression (Achard et al.,
2009). In relation to the role of KRPs in floral organogenesis, it can be hypothesised that
in addition to a potential role in modulating growth in response to environmental
conditions, localised release of a growth restraint imposed by the KRP CDK inhibitors may

be used to generate the differential tissue growth required for morphogenesis.
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Chapter 7 - JAG regulates cell size homeostasis by repressing Kip-

related cell cycle inhibitors

7.1. Introduction

Based on the significant rescue of organ outgrowth observed in the mature floral
organs of the krp2/4 jag double and triple loss of function mutants, | further investigated
whether loss of KRP2 and/or KRP4 function could also rescue the jag loss of function
phenotype in early emerging primordia as observed in Schiessl et al. (2012; note that
imaging data presented in the paper were not obtained by me, therefore | cited the paper
whenever imaging results were concerned; also note that the imaging protocol presented
in the paper differed from the imaging protocol used in this chapter). Previous work has
shown that JAG modulates the coordination of cell volume and entry into S-phase at early
stages of sepal outgrowth and KRPs have been reported to control the cell cycle at the G1
to S-phase transition. Therefore, | investigated whether the effect of JAG on cell size
homeostasis could be mediated by repressing KRP2 and/or KRP4 and whether loss of KRP
function in the wild-type and jag mutant background has an effect on cell size
homeostasis.

In order to test this hypothesis, a previously adapted imaging protocol was used that
combined the DNA synthesis marker 5-ethynyl-2'-deoxyuridine (EdU) with the cell wall
marker propidium iodide (PI) (Salic and Mitchison et al., 2008; Truernit et al., 2008;
Schiessl et al., 2012). While incubation with the DNA synthesis marker allowed me to
monitor cells that had been in S-phase during the three-hour incubation with EdU, the cell
wall marker propidium iodide was used for high resolution imaging in deep tissues to
analyse the geometry of cells after 3D cell segmentation (see details in Materials and
Methods).

In preparation for this protocol, | dissected inflorescence apices and removed floral
buds older than stage 5, cut the stem and let the apices recover for 48 hours on
germination medium. For the last three hours of recovery, | transferred the dissected
inflorescence apices to germination medium supplemented with 10 um EdU (Figure 7.1.A-
C). Because EdU is an analogue of the nucleotide thymidine, all cells that underwent DNA

replication during the three-hour incubation, incorporated EdU into the freshly
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synthesized DNA strands. Then, the incorporated EdU was labeled with the fluorophore
ALEXA 488 by click chemistry, which involves a cycloaddition catalysed by copper in the
presence of the reducing agent ascorbic acid (Salic and Mitchison et al., 2008).
Subsequently, | performed a modified pseudo-Schiff-propidium iodide (mPS-Pl) reaction
(Truernit et al., 2008) to stain the cell walls with propidium iodide, followed by a clearing
of the floral apices with chloral hydrate, which allowed high-resolution imaging of the cell
walls in the floral buds. In detail, | imaged the emerging sepal primordia in stage 3 buds,
which are readily accessible for imaging. Both signals were detected using a Zeiss 510
Meta confocal microscope with excitation laser light at 488 nm and emission filters set to
572-625 nm to detect the propidium iodide signal (false color red in the images) and 505-
600 nm to detect the nuclear localised EdU signal (false color green in the images) (Figure
7.1.D). | used Fiji to display images and to generate 3D projections and orthogonal views,
and BIOIMAGE XD (Kankaanpaa et al., 2012) for 3D cell segmentation (Figure 7.1.E).
Furthermore, custom scripts were developed to automatically determine cell volumes
and cell positions relative to the meristem summit and to primordium boundaries in
order to locate cells in the meristem or primordium, to attribute cell layers, to detect
artifacts of under and over-segmentation, and to select cells with EdU labeling from non-
EdU labeled cells.

Combining the cell volume data with the EdU labeling results allowed a comparison of
cell size distributions for the cells that had or had not undergone S-phase in different
tissues, for example the floral meristem and sepal primordia of wild type and jag mutant

background (Figure 7.1.F).

7.2. Results

7.2.1. JAG modulates cell size homeostasis in sepal primordia

In the floral meristem of wild-type and jag mutant plants, where JAG is not expressed,
the median size of cells that had undergone S-phase (EdU-positive cells) during a three-
hour incubation with the cell cycle marker EdU was significantly larger than that of cells
that had not undergone S-phase (EdU-negative cells) (p-value < 0.05 unpaired Wilcoxon

signed rank tests), with a clear divide in size between these two cell populations. This
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confirmed previous observations based on a smaller number of cells selected manually,
instead of using the automated script employed here (Schiessl et al., 2012).

In addition, | observed that cells that had not undergone S-phase were significantly
smaller in the floral meristems of the jag-2 loss of function mutant compared to the EdU-
negative cells in the wild-type control, while there was no significant cell size difference
between the EdU-positive cells in the floral meristem of jag-2 and wild type (Figures 7.2.
A-B and 7.3. A-B (red boxplots); 7.6.) This was also observed when comparing the jag-1
allele and the corresponding wild-type control in L-er background (Schiessl et al., 2012). In
contrast, however, the size of EdU-negative cells was not significantly different between
jag-1 and wild type in Col background (Figure 7.4.A-D (red boxplots)). Considering that
JAG is specifically expressed in the emerging primordia and absent from floral meristems,
these results suggest that JAG had a non-cell autonomous effect on cell growth in the
meristem specifically for cells that have not undergone S-phase without altering the size
at which meristem cells entered S-phase. This effect required modifier genes present in
the L-er accession, but not in Col background.

In wild-type sepal primordia, the median cell size did not differ significantly between
the EdU-positive and EdU-negative cells (p-value <0.05 unpaired Wilcoxon signed rank
test), suggesting that entry into S-phase and cell volume were uncoupled. In addition,
cells of wild-type sepal primordia showed an increase in heterogeneity of cell volumes
(Figures 7.2.A (blue boxplots) and 7.3. A-B; Schiessl et al., 2012). In contrast, the median
cell size of EdU-positive cells was significantly larger than that of EdU-negative cells in jag
mutant sepal primordia. While the cell sizes of EdU-positive cells were comparable
between jag-2 and wild-type primordia cells, jag-2 primordia had smaller EdU-negative
cells than the wild type, resulting in the significant difference in cell volumes between
cells having and not having undergone S-phase in the jag-2 mutant (Figures 7.2.B; 7.3.A-B
(blue boxplots); Schiessl et al., 2012). This difference was further enhanced by the fact
that cell sizes remained uniform in jag sepal primordia compared to the more
heterogeneous cell sizes in wild-type primordia. This suggested that entry into S-phase
and cell volume remained coupled in the cells of jag mutant sepal primordia. In this
respect, these cells behaved similarly to cells in the meristems of wild type and jag
mutant, where JAG is not expressed. Together these results provided evidence that JAG is

required for the transition from a meristematic to primordium growth in emerging sepals
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and that JAG changes the way cell growth and cell cycle are coordinated during this

transition.

7.2.2. Ectopic JAG caused cells to enter S-phase at smaller cell sizes in the meristem

To further investigate the function of JAG in modulating the coordination of entry into
S-phase and cell volume, | tested whether ectopic expression of JAG in the meristem is
sufficient to cause the loss of coordination observed in the wild type sepal primordium in
the presence of JAG. For this, | used wild-type plants harboring the 355:JAG-GR construct
(as described in Chapter 2) and activated ectopic JAG-GR by incubating the dissected
floral buds in germination medium supplemented with 10 uM DEX for 45h prior to the
incubation with 10 uM EdU and 10 uM DEX for 3h.

Activation of ectopic JAG-GR in the floral meristem caused cells to enter S-phase at an
inappropriately small median cell volume of 136 um® compared to the meristem cells in
the mock-treated plants that entered S-phase at a median cell volume of 174 um3. By
contrast, median cell volumes of the EdU-negative cells only decreased slightly in the
meristem cells of DEX-treated 355:JAG-GR plants compared with the EdU-negative cells in
the meristem of the mock-treated plants with 133 um?® and 146 um?3, respectively (Figure
7.7.; Schiessl et al., 2012). These results showed that cells in the meristem are
physiologically capable of entering S-phase at smaller cell sizes than they actually do in
the context of the wild-type meristem and that ectopically activated JAG pushed cells into
S-phase at smaller cell sizes, suggesting that a factor that acts similarly to a cell size
threshold restricts cells to enter S-phase at abnormally small cell sizes in the meristem
and that ectopic JAG can override this mechanism until an appropriate cell size is

achieved.

7.2.3. Loss of KRP4 in jag mutants affects coordination of cell size and entry into S-
phase
To test whether repression of KRP genes mediates the effect of JAG on S-phase entry, |
analysed how the loss of KRP2 and KRP4 function affected the relation between cell
volume and DNA synthesis, both in wild-type and in jag mutant backgrounds.
In comparison to their wild-type controls, both krp4 single mutants krp4-2 L-er (Figure

7.2.C, red boxplots) and krp4-1 Col (Figure 7.4C, red boxplots) showed a significant
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decrease in meristem cell volumes for both EdU-positive and EdU-negative cells. For
example, in the krp4-2 single mutant the median cell volume for EdU-positive and EdU-
negative cells was 139.60 um3 and 113.09 um?, respectively. By contrast, in the wild-type
L-er control the median cell volume for EdU-positive and EdU-negative cells was 172.3
um?3 and 136.88 um?3, respectively. Because the cell volumes were uniformly reduced in
the meristems of the krp4 single mutants, the difference between cells having undergone
S-phase and cells not having undergone S-phase remained comparable between the krp4
mutants and their corresponding wild-type controls. In the sepal primordia the reduction
in cell volumes was not significant between both krp4 single mutants and the
corresponding wild-type controls (Figures 7.2. A, C (blue boxplots); 7.3.A-B; 7.4.A, C (blue
boxplots), 7.5.), consistent with the idea that KRP4 function is repressed by JAG in
emerging primordia (see Chapter 6). In conclusion, KRP4 appeared to modulate cell size
specifically in the meristem, but krp4 mutant meristems retained coordination between
cell size and entry into S-phase as observed in the wild-type meristems, showing that
KRP4 is not essential to couple cell cycle with cell size.

Combining the loss of JAG and KRP4 function in the jag-2 krp4-2 L-er and in the jag-1
krp4-1 Col double loss of function mutants caused a similar reduction in the volumes of
the EdU-positive and EdU-negative meristem cells as observed in the krp4-2 L-er single
mutant, with a median cell volume of 144.42 um3 and 125.06 um? (Figures 7.2.A-D (red
boxplots); 7.3.A-B; 7.4.A, C, D, G (red boxplots); 7.5.).

In sepal primordia, the loss of JAG and KRP4 function in the krp4-2 jag-2 L-er and in the
krp4-1 jag-1 Col caused an increase in the volume of EdU-negative cells while EdU-
positive cells remained at similar small cell volumes as observed in the meristem of the
krp4 single and krp4 jag double mutants. As a result of the increased size of EdU-negative
cells in sepal primordia of the jag-2 krp4-2 double mutant, the difference in cell volumes
between EdU-positive and EdU-negative cells reverted to levels comparable to the wild-
type primordia. That loss of KRP4 function in the jag-1 mutant background changed the
sizes specifically of cells not undergoing S-phase in the sepal primordia was an
unexpected result, because KRPs have been characterized to interact with CDKA/CYCLIN
D complexes to control the G1/S phase transition (Figures 7.2. A-D (blue boxplots); 7.3. A-
B; 7.4. A,C,D,G (blue boxplots); 7.5.).
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Using bootstrapping, the 95% confidence intervals for the differences in cell sizes
between EdU-positive and EdU-negative cells (Figure 7.6.) were calculated, which
confirmed that the difference between median cell volumes of EdU-positive and EdU-
negative cells is significantly diminished in the sepal primordia of the krp4-1 jag-1 double
mutant compared to the jag-1 single mutant. This suggested that the loss of KRP4
function rescued the uncoupling of entry into S-phase and cell volume in the jag mutant
background.

In contrast to the krp4 mutants, | did not observe any significant changes in cell
volumes of meristem and primordia cells or differences between volumes of cells having
and not having undergone S-phase for the krp2-3 loss of function allele in wild-type or
jag-1 background (Figure 7.4.B, E). The result that KRP2 did not have a significant effect
on the coordination between cell volume and cell cycle in the epidermal layer of the
meristem of early stage 3 sepal primordia is in line with the observation that KRP2 is not
expressed in these tissues (Chapter 6, Figures 6.10. and 6.11.). In conclusion, analysis of
the single loss of function mutants suggested that KRP4, but not KRP2, plays a role in the

regulation of cell size homeostasis, particularly in the epidermal layer of the meristem.

7.2.4. Loss of KRP2/KRP4 did not visibly rescue the growth defects in early sepal
primordia

In respect to the question whether changes in cell size homeostasis have an effect on
overall rescue of bud morphology, | did not observe any rescue of organ outgrowth in
early sepal primordia of the krp2/4 jag double and triple mutants. This suggests that the
changes in cell size homeostasis do not affect organ growth, or that the short time
between primordium emergence and the stages analysed here (stage 3) may not be
sufficient for changes in organ growth to unfold (Figure 7.8.). Interestingly, the only
obvious morphological change observed between the jag-1 single mutant and particularly
the jag-1 krp2-3 krp4-1 triple loss of function mutant was an increase of the intersepal
zones appearing as gaps between emerging sepal primordia (arrow, Figure 7.8.D).

In summary, my experiments showed that KRP4, but not KRP2, is involved in the
modulation of cell size homeostasis in the floral meristem and during early sepal

organogenesis. In addition, the loss of KRP4 function in the jag loss of function mutant

177



background rescued the uncoupling of S-phase entry and cell volume as observed in the
wild-type primordium, suggesting that ectopic KRP4 may be the cause for the meristem-
like co-ordination between cell size and entry into S-phase observed in jag mutant sepal
primordia. Therefore, it can be speculated that JAG directly represses KRP4 in order to
mediate the changes in cell size homeostasis that are required when sepal primordia

emerge from the floral meristem in the wild type.

7.3. Discussion - KRP4 mediates the role of JAG on the coordination between cell

growth and cell cycle

Using a quantitative 3D imaging approach, | found that the effects of JAG on
modulating cell size homeostasis during the transition from meristem to primordium
growth behavior are mediated by repression of KRP4, but not KRP2. Therefore, this work
provided insight into how cell size homeostasis is directed by a growth regulator during
early organogenesis. My results are consistent with the idea that KRP4 is involved in a

mechanism that links cell cycle progression to a critical minimum cell size threshold.

7.3.1. KRP4 modulates cell size homeostasis

Several live-imaging studies and kinematic analyses have estimated that in leaves and
floral organs, wild type primordium cells divide on average every 20 hours (De Veylder et
al., 2001; Roeder et al., 2010; Asl et al., 2011; Schiessl et al., 2012). Induction of
synchronised cell cycle re-entry in root pericycle cells that were arrested in G1-phase
showed that it took no longer than 4 hours until the late S-phase markers and markers for
S-phase to G2-phase were expressed, and no longer than 6 to 12 hours until the G2 to M
phase marker CYCB1;1 was fully expressed, and the first cells had undergone cytokinesis
(Himanen et al., 2002). According to these observations, it can be estimated that cells
progress through S-phase within about 3-4 hours and that cells progress through G2 and
cytokinesis within 6 hours. Although progression through the cell cycle is likely to vary
between cell types, the available data suggest that plant cells in growing tissues spend
almost half the time of cell cycle duration in G1-phase. In respect to the quantitative 3D
imaging experiment, these findings suggested that cells that were labelled with the DNA

synthesis marker EdU (EdU-positive cells) after a 3-hour incubation period were
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predominantly in S-phase or G2 phase, with exception of some cells that had been
labelled during late S-phase and may already have undergone cytokinesis and thus
represented newly divided daughter cells. Cells that had not been labelled with EAU may
have spent the three-hour incubation period entirely in G1-phase, or G2-phase or may
have undergone cytokinesis and therefore represent newly born daughter cells in G1-
phase.

In respect to cell growth during cell proliferation, work in budding yeast has provided
evidence that proliferating cells predominantly grow in G1-phase. It was hypothesised
that during S-phase and M-phase resources need to be focussed on DNA replication and
rearrangement of cellular components, to finally separate the new daughter cells
(Goranov et al., 2009). This is in line with my observations in the wild-type floral
meristem, where EdU-negative cells were significantly smaller than cells that had entered
S-phase, suggesting that most EdU-negative cells represented newly divided daughter
cells that had to increase considerably in size before entering S-phase. In addition, both
groups of cells, the EdU-negative cells and the EdU-positive cells were very uniform in
size. Together, this suggested that cell size and cell proliferation are tightly coordinated
and that there is a strong dependency of cell size on entry into S-phase in the meristem.

Strong dependency of entry into S-phase on cell size has previously been observed in
budding yeast, where it has been identified as a mechanism to maintain cell size
homeostasis and to generate uniform cell sizes over several generations (reviewed by
Jorgensen and Tyers, 2004). Provided that growth predominantly happens in G1-phase
(Goranov et al., 2009) and cell divisions are symmetric, a newly divided yeast daughter
cell has to double in size before undergoing S-phase, in order to maintain cell size
homeostasis. In budding yeast, the mechanism to maintain cell size homeostasis has been
characterised as a critical size threshold involving a rate-limiting and unstable activator
that activates a series of events that lead to DNA replication, also refered as “Start”, as
soon as a certain minimum size threshold is achieved. Several candidates, for example the
G1 cyclin CLN3, have been suggested to represent such a rate-limiting unstable activator
that accumulates in G1 phase and is involved in a signalling cascade that triggers “Start”,
depending on a minimum cell size (reviewed by Jorgensen and Tyers, 2004; Figure 7.9.A).

Coordination between cell cycle progression and cell size has also been established in

multicellular organisms, for example, a cell sizing mechanism operating at G1-S phase has
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been reported in mammalian cell culture cells, although the molecular mechanism
remains unknown (Tzur et al., 2009). In the Arabidopsis meristem, it has been shown that
the application of aphidicolin and hydroxyurea, two compounds that block DNA synthesis,
resulted in inhibition of growth, while inhibition of mitosis by application of the
microtubule-depolymerising compound oryzalin did not inhibit cell growth and led to
endoreduplication and increased cell sizes (Grandjean et al., 2004). This suggested that
there is a dependency of cell growth on DNA synthesis, whereas cell growth is not
dependent on mitotic division. However, it has been speculated that in multicellular
organisms these basic cell-autonomous dependencies between cell cycle progression and
cell growth may be modulated or overridden in a temporal and spatial context by
developmental regulators, in order to allow organ patterning by differences in local tissue
growth and cell proliferation rates (reviewed by Jorgensen and Tyers, 2004; Marshall et
al., 2012).

Specifically in plants, critical cell size thresholds have not been identified yet. However,
it can be hypothesised that in the meristems, where cell proliferation serves the purpose
of giving rise to a population of stem cells with uniform cell sizes, a critical size threshold
would be useful as a mechanism to maintain cell size homeostasis (Figure 7.9.B).

Furthermore, it could be speculated that in order to accommodate the growth
behaviour observed in organ primordia with increased in cell proliferation rates and cell
growth rates, and an increase in cell size heterogeneity (Roeder et al., 2010; Schiessl et
al., 2012), a cell size threshold would need to be altered or even removed (Figure 7.9.C).

In the work presented here, it appeared as there was a critical size threshold in place in
the wild-type meristem that prevented smaller cells from entering S-phase. Because EdU-
positive cells were only found in a very narrow size range, it appeared that all cells that
reached this critical size uniformly entered S-phase and progressed through the cell cycle.
Interestingly, when JAG was ectopically activated in the meristem by using the DEX-
inducible 355:JAG-GR line, cells entered S-phase at signficantly smaller cell sizes, while the
EdU-negative cells decreased in size only slightly, suggesting that cell size homeostasis
was maintained but entry into S-phase was shifted to smaller cell sizes. Therefore, if there
was a critical size threshold in place in the meristem, ectopic JAG would be able to
modulate or even override the mechanism that delays entry into S-phase until a certain

cell volume is achieved.

180



A similar cell size distribution for EdU-positive and EdU-negative cells with cells
entering S-phase at smaller cell sizes than in wild-type meristems was also observed in
the meristem of the krp4 single mutant (and also in the krp4 jag double mutant),
suggesting that ectopic JAG in the meristem may have repressed KRP4 and therefore have
caused a similar cell behaviour as in the krp4 loss of function mutants. Together, this
suggested that changes in KRP4 expression levels can shift the cell size at which cells
enter S-phase. Furthermore, KRP4 function was required for the meristem-like
coordination between cell size and cell cycle as observed in jag mutant primordia. In
comparison, the krp4 jag double mutant showed a loss of coordination between these
two processes similar to wild-type sepal primordia. Together, this supported the idea that
KRP4 may be involved in setting or responding to a critical cell size threshold in the
meristem and jag sepal primordia. In the meristem context, it would be interesting to
further investigated whether shifting cell size homeostasis by ectopic JAG expression has
an effect on overall inflorescence meristem and floral meristem size and shape, and on
the number of flowers and floral organs initiated.

With the recently gained knowledge that JAG directly represses KRPs and directly
activates CYCD3;3, one could speculate that ectopic expression of JAG, on the one hand
promoted CYCD3 and on the other hand repressed KRP4, generating a situation favorable
for cells entering S-phase in the meristem of DEX-treated 355:JAG-GR plants. Both genes,
KRP4 and CYCD3 would be good candidates to be part of a critical size threshold
mechanism in plant meristems. Protein levels of KRPs and D-type cyclin have been shown
to be under post-translational control via the proteasomal degradation pathway, (Verkest
et al., 2005; Ren et al., 2008; Zhao et al., 2012), suggesting that their protein levels can be
reset in newly divided daughter cells, a prequisite for a critical size thresholds as
described by Jorgensen and Tyers (2004).

Repression of KRP4 by JAG-GR (see Chapter 6) would be expected to promote CYCD
function and consequently facilitate entry into S-phase in the meristem of DEX-treated
355:JAG-GR plants. However, it has previously been shown that KRPs not only interact
with CYCD/CDK complexes to inhibit them, but also to promote the complex formation
between D-type cyclins and CDKA and to promote nuclear localisation of these complexes
(Sanz et al., 2011). This suggested that KRPs have a dual function: On the one hand KRPs

play a crucial role in preparing for G1/S-phase entry by promoting nuclear localisation of

181



CYC-D/CDKA complexes, but on the other hand, KRPs are also able to tightly inhibit the
G1/S-phase transition. This dual role where KRP4 tightly inhibited entry into S-phase but
at the same time promoted the preparation for entry into S-phase would be one way to
explain the cell size distributions | have observed in the sepal primordia of the krp4 jag2
and krp4 jagl double mutants in comparison to the corresponding jag single mutants. In
the double loss of function mutants, loss of coordination between cell volume and entry
into S-phase appeared to be restored, similar to wild-type sepal primordia, with no
significant difference in cell sizes of EdU-positive and EdU-negative cells, predominantly
because EdU-negative cells increased in size concomitant with an increase in cell size
heterogeneity. But how would the loss of a cell cycle inhibitor cause a cell size increase in
cells that have not undergone S-phase? One explanation would be that KRP4 promotes
the activity of a factor that promotes entry into S-phase. Therefore, at high KRP4 levels
entry into S-phase would be tightly controlled but also highly promoted once the tight
control is released, leading to narrow size ranges for EdU-positive and EdU-negative cells
as observed in the wild-type meristem and in the sepal primordia of the jag loss of
function mutant (Figure 7.10.A). By contrast, in the primordium of the double loss of
function mutant, loss of KRP4 would loosen the tight control on S-phase entry but at the
same time attenuate the activity of the factor that promotes entry into S-phase. As a
result, cells would be able to enter S-phase at smaller but also larger cell sizes and cells
would not appear to be uniformly pushed into S-phase as soon as they reach the critical
size threshold (Figure 7.10.B). Consequently, EdU-negative cells, provided they are
predominantly in G1 phase, would be allowed to grow larger before entering S-phase,
which would explain the concomitant increase in cell size and cell size heterogeneity
(Figure 7.8.B). In line with this hypothesis, Cheng et al. (2013) found that mRNA levels of
CYCD3;2 and CYCD3;3 were down-regulated in the krp1/2/4/5/7 quintuple mutant.
Another explanation for the cell size increase of EdU-negative cells could arise from
the fact that loss of KRP4 function could promote premature entry into S-phase, but not
the subsequent progression from G2-M phase. It has been shown by Dewitte et al. (2003)
that ectopic expression of CYCD3 in cell culture cells leads to accumulation of cells in G2-
phase, because the transition of cells entering from G1 to S-phase is accelerated but
progression from G2 to M-phase is an independent and separable step. It could be

hypothesised that loss of krp4 function has a similar effect on cell cycle progression,
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where an increased number of cells enters S-phase at smaller cell sizes, but G2 to M
phase transition remains unaffected and is the limiting factor. With the imaging approach
used in this project these cells would be detected as larger EdU-negative cells together
with the smaller EdU-negative cells in G1-phase, resulting in an increase in median cell
volumes and cell size heterogeneity for the EdU-negative cells. Thus it could be
speculated that in a wild-type primordium, JAG moderately represses KRP4 to a level that
allows uncoupling of cell size and entry into S-phase, resulting in an increase of cell size
heterogeneity in the pool of EdU-negative cells comprising of cells in G2-phase, M-phase
and newly divided daughter cells in G1-phase.

It is also worth noting that my g-RT PCR results have shown that CYCD3;3 is up-
regulated in the jag loss of function mutant. Consequently, loss of KRP4, which
antagonises the G1/S phase promoting function of CYCD3, would even have accelerated
entry into S-phase in the sepal primordia of the krp4 jag double loss of function mutant,
unless the ectopic expression of CYCD3 was caused by ectopic KRP4 expression.
Interestingly, Bemis and Torii (2007) reported that ectopic expression of KRP4 under the
epidermis-specific promoter AtML1 did not have an effect on cell proliferation rate or
final cell size in the meristem, while it caused severe reduction in cell number and
signficant cell enlargment in primordium cells. On the one hand, the effects of ectopic
KRP4 expression may be diminished as a net effect of the meristem-specific cell behavior,
with undifferentiated cells of the stem cell pool exhibiting slow growth rates, slow
proliferation rates and not undergoing post-mitotic cell expansion compared to cells in
lateral organs, which exit cell proliferation phase, expand and differentiate. On the other
hand, Bemis and Torii (2007) suggested that in the meristem, ectopic KRP expression
might be counteracted by the CLV-WUS and cytokinin signaling pathway, which tightly
regulates maintenance of stem cell homeostasis and meristem size. In this context,
Dewitte et al. (2007) have shown that CYCD3;1-3 play a major role in regulating the size of
the shoot apical meristem. Meristems of the cycd3;1-3 triple mutant consisted of fewer
cells and were reduced in size. Furthermore, it was shown that CYCD3 acts downstream
of cytokinins to promote cell proliferation in the meristem.

Against this background, my experiments provided evidence that there is a strict cell
size threshold in place for meristem cells entering S-phase, and that KRP4 plays a key role

in maintaining this cell size threshold. Therefore, it could be speculated that ectopic KRP4
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expression adds KRP4 to an already highly saturated system with high CYCD3 levels
promoting entry into S-phase and high KRP4 levels counteracting premature entry into S-
phase as part of a size threshold mechanism. This could be further amplified if KRP4
promoted CYCD3 activity. However, | have not investigated the transcript levels of CYCD3
in the krp4 jag double loss of function mutant, which would provide a preliminary insight
into whether KRP4 can promote CYCD3 expression at transcript level.

In summary, even though the two hypotheses for the function of KRP4 appear to
oppose each other, they can be considered as variations of the same regulatory
mechanism involving the dosage-dependent balance between S-phase promoting factors,
most likely D-type cyclins in complex with CDKA, and KRPs as their inhibitors. In this
respect, mathematical models have been developed that proposed that in the plant cell
cycle, negative regulatory feedback loops involving CYCD/CDKA complexes and KRPs
could be sufficient to ensure stable and unidirectional progression through the cell cycle.
For example, Dissmeyer et al., (2010) proposed a mathematical model in which cell cycle
progression has been described as a function of CDKA activity, with cyclins being the
activating components and KRPs being the key inhibitors in a system that acts like a
bistable switch, giving rise to two steady states of CDKA activity. For example, in G1-phase
CDKA activity is maintained at a low steady state due to high KRP levels; with increasing
activation of CYCD/CDKA;1 complexes, the system becomes unstable and switches to the
G1 to S-phase transition. Intermediate levels of CDKA activity are rapidly overcome by a
double feedback loop, where CDKA;1 in complex with D-type cyclins promotes the
degradation of its KRP inhibitors, resulting in a steady state with low KRP levels and high
CDKA-CYCLIN D levels in S-phase (Dissmeyer et al., 2010).

Recently, the model described above has been extended to include post-translational
degradation of KRPs via the FBL17- mediated proteasomal pathway. Zhao et al. (2012)
who, in particular, studied entry into S-phase in the context of cell divisions during male
and female gametogenesis and suggested that entry into S-phase is predominantly
regulated by a module comprising CYCD/CDKA; 1, RBR, E2F, FBL17 and KRPs. RBR1
represses FBL17, which targets KRP proteins for proteasomal degradation, but also
represses E2FA, which promotes FBL17. To promote the transition from G1 to S-phase,
CDKA;1 phosphorylates RBR1, in order to release E2FA from RBR1 repression and to

promote FBL17 expression via E2F activation and direct de-repression by RBR1. In the
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case of high KRP activity causing reduced CYCD/CDKA;1 activity, entry into S-phase might
not only be impaired because of reduced RBR1 phosphorylation (and thus persisting
repression of E2F), but also because of enhanced direct repression of FBL17 by RBR1,
which would be needed to target KRPs for proteasomal degradation.

In this context, it would be interesting to include the regulatory effects of
developmental regulators such as JAG and ANT, which have been shown to directly
regulate several key components of this negative regulatory feedback loop at
transcriptional level, in order to model the impact of these regulators on cell cycle
progression. In addition, data on cell behavior in regard to S-phase entry and cell volume
could be integrated into already existing models of cell cycle regulation, which would
provide further explanations for the data arising from my imaging experiments and
improve or extend existing models. Furthermore, it would be interesting to investigate
whether the effects of loss of KRP4 are functionally linked to CYCD3 function. It would be
of particular interest to test whether the function of KRP4 in cell size homeostasis is
dependent on CYCD3 by repeating the quantitative 3D imaging experiment using
combined EdU/PI staining in krp4 jag cycd3 mutants. In order to confirm the function of
KRP4 in regulating cell size homeostasis in the meristem and in early organogenesis, it
would be interesting to complement the krp4 single mutant with a fully functional
PKRP4:KRP4 construct including the 3 kb promoter region and the 1.45 kb 3’ region
downstream of the stop codon. In addition, inducible ectopic KRP4 expression or tissue-
specific ectopic KRP4 expression, for example under the strong floral promoter AP1 or the
lateral organ specific promoter ANT, would allow us to further investigate the effects of
KRP4 function on cell size homeostasis during cell proliferation in the meristems and
lateral organ primordia.

In addition to the static data obtained from the pseudo-Schiff propidium iodide
staining combined with EdU labeling, dynamic data on cell size and entry into the
different phases of the cell cycle would also help to reveal the effects of KRP4 on the cell
cycle regulation and cell size homeostasis with high resolution. In order to investigate
whether entry into S-phase is accelerated in the krp4 loss of function mutants and if so,
whether this has an effect on G2/M-phase transition, a CYCB1;1-GFP reporter construct
could be introduced into the jag and jag krp4 loss of function mutant background to mark

cells undergoing G2/M-phase. Furthermore, it would be of particular interest to be able
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to follow KRP4 expression in vivo, even though this has been proven difficult during this
project. This difficulty is in line with the observations of several authors attempting to
detect KRPs at transcript or protein level by in situ hybridisation or Western Blotting
(Jakoby et al., 2006; Bemis and Torii, 2007; Torres Acosta et al., 2011) and confirms that
some KRP transcripts and proteins have low endogenous abundance. For example, Wang
et al., (2000) could not detect /CK1 in Western Blots in the wild type, although blocking
the 26S proteasome pathway with the drug MG132 resulted in an increased signal.
Therefore, future efforts to detect KRP4 expression could focus on generating a reporter
line with multimeric 3X-GFP to increase signal brightness. Considering post-translational
modifications and fast proteasomal degradation of KRPs (Zhao et al., 2012), a fully
functional pKRP4:KRP4-mCherry reporter line could be generated, with m-Cherry having
been reported to have faster protein folding properties compared to GFP (reviewed by

Schmid and Neumeier, 2005).

7.3.2. Does KRP2 have a function in cell size homeostasis?

In krp2 mutants, quantitative 3D imaging, combining the cell wall marker Pl with the
DNA synthesis marker EdU, did not reveal any significant effects on cell size homeostasis
in the epidermal cells of the floral meristem and in early sepal primordia. This observation
is in line with the expression pattern | observed for KRP2 using a pKRP2:KRP2-GFP fusion
line: KRP2-GFP was expressed in the deeper layers of the inflorescence meristem, close to
the site of emerging floral primordia, and in the central deeper layers of the floral
primordia, but was not found in the epidermal layers of meristems. Although KRP2-GFP is
eventually expressed in the epidermal layer of sepal primordia, this only occurs from
stage 5 onwards (Chapter 6). Therefore, KRP2 expression did not coincide with the
developmental stage and tissues imaged in this experiment.

However, two independent experiments following leaf primordia development by De
Veylder et al., (2001) and by Ferjani et al., (2013) provided strong evidence that KRP2
does have a function in modulating cell size homeostasis, when studied in the context of
KRP2 overexpression and in slightly later stages of organogenesis compared with my
experiment. De Veylder et al., (2001) observed that in the wildtype the average cell size of

proliferating cells remained constant between day 5 to day 9 of leaf primordia
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development, suggesting that cell division and cell growth were balanced and cell size
homeostasis was maintained during the cell proliferation phase of wild-type leaf
primordia formation. By contrast, in the KRP2 overexpressor line, cell sizes had already
increased during the proliferation phase, indicating that cell division was slower than the
expansion rate. These findings have recently been supported by Ferjani et al. (2013) who
used a kinematic analysis of cotyledons and first leaves of KRP2 overexpressing lines to
show that cell sizes increased by two-fold, compared to cell sizes in the wild type during
proliferation phase. This result implies that KRP2 has at least an effect, if not a direct
function, in the coordination of cell proliferation and cell size in proliferating cells.

In this context, it has to be noted that several other mutants impaired in cell
proliferation, for example the an3 mutant, responded with an increase in cell expansion
during post-mitotic cell expansion, but not during the proliferation phase (Ferjani et al.,
2013). Interestingly, in the KRP2 overexpressing lines, the increase in cell size during
proliferation phase was linked to increased activity of vacuolar-type H+ ATPases. It has
been shown that ectopic expression of KRP2 in the det3-1 mutant background with
reduced V-ATPase activity (see also Chapter 8) resulted in a reduction in cell number, but
in cell sizes similar to the wild type, suggesting that the increase in cell size observed in
the KRP2 overexpressor is dependent on the activity of vacuolar-type ATPases. In
contrast, this dependency on DET3 function has not been observed in the an3-4 and fugu
loss of function mutant backgrounds (Ferjani et al., 2013). This work revealed that KRPs
and V-ATPases are key players in the coordination of cell volume and cell proliferation
during early organogenesis. In line with the work by Ferjani et al. (2013), JAG not only
directly targeted KRP2 and DET3 but also several additional genes associated with V-
ATPases and plasma membrane-located ATPases (Chapter 8), suggesting that modulating
the activity of ATPases could be a common regulatory pathway to coordinate cell volume
in relation to cell proliferation during the early mitotic phase of organ development.

In conclusion, to further investigate the function of KRP2 on cell size homeostasis and
the link to vacuolar ATPases, the effects of KRP2 on 3D cell geometry would have to be
followed at the site of expression, either in the deeper layers of the floral buds or in sepal
primordia later in development, which is very challenging with the imaging and 3D

segmentation techniques currently used. In the future, flow cytometry and detection of
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fluorescent cells could also be used to determine the nuclear content of cells that express

KRP2-GFP under its endogenous promoter.

7.3.3. Does JAG have a non-cell autonomous effect on cell sizes in the meristem?

Using quantitative 3D imaging, | observed that EdU-negative cells were significantly
smaller in the sepal organ primordia but also in the floral meristem of the jag single
mutant in comparison to EdU-negative cells in the wild-type. Because JAG is not
expressed in floral meristems, this suggested that JAG has a non-cell autonomous effect
on growth of cells in G1-phase in the meristem but without altering the size at which
meristem cells entered S-phase. Provided that most EdU-negative cells are in G1-phase,
reduced cell sizes would suggest that jag mutant cells grow slower. Because the sizes of
EdU-positive cells appeared to be comparable to the EdU-positive cells in the wild type
meristem, a decrease of cell proliferation rate in the meristem of the jag single mutant
may be expected — live imaging would help to address this question. It could also be
speculated that the cell non-autonomous effect of loss of JAG function could be caused
by the fact that primordia cells still behave like meristem cells and therefore may
interfere with the signaling pathway that determines the size of the stem cell population,
namely the WUSCHEL/CLAVATA signaling pathway which could result in reduced growth
and proliferation rates of meristem cells.

Another possibility is that elevated cytokinin levels in the organ primordia of the jag
single mutant could be the signal that mediates the non-cell autonomous effect of JAG on
meristem cell growth. Global expression profiling combined with ChIP-Seq revealed that
JAG directly represses several members of the LONELY GUY (LOG) family (see Chapter 2
and 3), which increase the levels of bioactive cytokinin (Kurakawa et al., 2007). In
particular, LOG1 has been shown to be ectopically expressed in the jag loss of function
mutant in an independent gRT-PCR experiment (Chapter 8). In addition, JAG directly
activates CKX6, a member of the cytokinin degrading protein family (Werner et al., 2003).
Together, this would result in high cytokinin levels in the primordia of the jag loss of
function mutant compared to wild-type primordia, which could act as a non-cell
autonomous signal.

The fact that the effects of JAG in the meristem were only significant in the L-er

background provides additional, indirect support for the involvement of cytokinin. It has
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been shown that mutating all three members of the ERECTA (ER) family changed the way
the shoot apical meristem responded to increased cytokinin levels (Uchida et al., 2013).
Exogenous cytokinin application did not cause any obvious changes in meristem size or
shape in the wild type. By contrast, it caused severe changes in meristem size and shape
in the er erl1 erl2 triple mutant: The meristem expanded in size, formed ectopic
structures and consisted of an increased number of smaller cells. In addition,
organogenesis was impaired, with an increase in leaf primordia developing into leaves of
aberrant shapes. In summary, it was suggested that members of the ER family buffer the
response to cytokinin in respect to the WUS/CLV3 regulatory feedback loop to maintain
stem cell homeostasis (Uchida et al., 2013). To further investigate the effect of the er loss
of function mutation on the cell non- autonomous effect of JAG in the meristem, the first
step would be to cross the jag-1 allele in Col to the erecta mutation in Col background and
to confirm whether this causes changes in the cell sizes of EdU-negative cells compared to

meristem cells in the jag mutant in Col background.

7.3.4. Does modulating cell size homeostasis have an effect on overall organ growth?

Results from this work suggest that KRP4 links cell cycle to cell growth at the cellular
level. The roles of KRP genes in both cell size homeostasis and in overall organ growth
(Chapter 6) raised the question whether both processes are causally linked or separable
processes. No obvious rescue in overall primordium development was observed in 3D
projections of early floral buds of the krp4 jag double mutants compared with the jag
single mutants. Therefore, my current data do not support a causal link between changes
in cell size homeostasis and overall organ size. One explanation could be that the short
time between primordium emergence and the stages analysed here (1-2 days) may be
insufficient for changes in organ growth to unfold. It should also be considered that
suppression of the jag growth defects by the krp mutations was not complete, therefore
additional targets of JAG are likely required for full organ growth. It is possible that when
cell cycle progression is accelerated by loss of KRP function, other cellular processes
remain limiting for early primordium growth in the jag mutant.

Considering that KRP4 and KRP2 interact with CDKA and D-type cyclins, which primarily
control entry into S-phase, both KRPs could affect cell growth and cell size through the

length of G1 or by tuning the threshold volume at which S-phase can be initiated.
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Assuming that proliferating cells increase in size predominantly in G1 (Goranov et al.,
2009), reducing the proportion of time spent in G1 could influence overall cellular growth,
and consequently tissue growth during cell proliferation phase. In the jag loss of function
mutant, decreased growth rates have been observed (Schiessl et al., 2012), which may
increase the significance of the time spent in G1 and of a minimum cell size checkpoint, in
comparison to wild-type primordia, which show accelerated growth.

Furthermore, whether modulating cell size homeostasis in early stages of
organogenesis has an effect on mature organ size and shape may depend on how long
cells stay in proliferation phase and on the ability to expand post-mitotically, both of
which vary between different tissues and organs. In this context, KRP2 has been
suggested to play a role in exit from cell proliferation and onset of endoreduplication, two
key processes that have been suggested to be key drivers of final organ size and shape
and final number of cells and final cell size, in particular, in leaves and sepals (De Veylder
et al., 2001; Verkest et al., 2005; Roeder et al., 2010; Asl et al., 2011). In the case of KRP2,
which has been shown to have an effect on cell size homeostasis (Ferjani et al., 2013), it
would be interesting to further investigate whether significant differences in overall organ
outgrowth become apparent at the onset of KRP2 expression in stage 5 sepal primordia.

To uncover the mechanisms by which KRPs could affect organ growth, it is also
important to consider roles other than entry into S-phase. For mammalian CKls, it has
been shown that they have diverse functions essential for cell and tissue homeostasis.
Mammalian CKls have been shown to affect transcriptional regulation, cell fate
determination, cell migration and cytoskeleton rearrangements. It has been suggested
that these multiple functions of mammalian CKls could be achieved by phosphorylation
events and protein-protein interactions that would lead to conformational changes in the
CKls and affect their subcellular localisation, affinities and protein stability (reviewed by
Besson et al., 2008). It has been shown that CIP/KIP participate in the assembly of active
cyclin/CDK complexes and may therefore also be able to promote cyclin/cyclin-dependent
kinase complexes, suggesting that promoting or inhibitory effects of CIP/KIP on the cell
cycle might be dependent on the cellular context and cofactors (reviewed by Besson et
al., 2008). Furthermore, it has been shown that all three members of the CIP/KIP family
are able to interact with the Rho signaling pathway, suggesting that CIP/KIP play a role in

the cytoskeletal rearrangements during cell divisions (reviewed by Besson et al., 2008).
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In plants, there has not been evidence for similar additional functions of the KRPs yet.
KRPs phosphorylation sites have also been identified (De Veylder et al., 2001; Torres
Acosta et al., 2011) and suggest unknown regulatory inputs, as seen for animal CIP/KIP.
However, it has recently been proposed that KRP5 binds to DNA and that the punctuated
nuclear expression pattern of KRP5 is related to its association with heterochromatin
(Jegu et al., 2013). Using ChlIP-Seq, Jegu et al. (2013) showed that DNA pull-downs with
KRP5 predominantly consisted of transposable elements and about 25% protein coding
reads, suggesting that KRP5 can bind to heterochromatin and euchromatin. GO analysis
on the enriched DNA binding sites close to protein coding regions revealed enrichment
for cell wall modifiying genes such as extensins. It was hypothesized that binding to
heterochromatin may facilitate chromatin decondensation and promote
endoreduplication, further suggesting that KRP5 may connect endoreduplication with cell
elongation. Future investigations will shed light on possible additional functions of KRPs in
modulating cell cycle progression, the endocycle and cell expansion.

In summary, quantitative, 3D analysis of cell geometry and DNA synthesis revealed
that repression of KRP4 was the main cause of changes in cell size homeostasis induced
by JAG during organ primordium emergence. Therefore, this work provided insight into
the mechanisms by which a growth regulator modulates cell size homeostasis during

development of a multicellular organism.
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Figure 7.1. Quantitative 3D imaging of floral buds combining the S-phase marker EdU
with the cell wall marker propidium iodide. (A) Dissection of inflorescence apices,
recovery on germination medium for 45 h, transfer to germination medium
supplemented with 10 um EdU for 3 h; (B) 3D projection of a z-stack where the red
channel (cell wall image) and the green channel (nuclear-localised EdU signal) are merged
generated in Fiji; (C) 3D projection of the 3D segmented cell wall image generated using
BIOIMAGE XD software (Kankaanpaa et al., 2012), (D) for quantitative image analysis
custom scripts were developed to automatically determine cell volumes and cell positions
relative to the meristem summit and to primordium boundaries in order to locate cells in
the meristem or primordium in the L1 cell layer and to select cells with EdU labelling from
non-EdU labelled cells; this resulted in tissue specific cell size distributions for EdU-

labelled (EdU-positive) and non-EdU labelled (EdU-negative) cells.
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Figure 7.2. KRP4 is required for the defective coordination between cell volume and S-
phase entry in the jag mutant.(A-D) representative floral buds from wild-type (A), jag-2
(B), krp4-2 (C), and jag-2 krp4-2 (D) plants with the corresponding cell size distribution
boxplots below; Scalebars: 50 um; the images are 3D reconstructions from stacks of
confocal images of pseudo-Schiff propidium iodide (mPS-PI) stained buds (Truernit et al.,
2008) overlapped with images produced by 3D segmentation, selection of correctly
segmented meristem (red) and primordium (blue) cells, and detection of EdU-labelled
nuclei (green); Box plots represent combined cell volumes from at least three
independent buds each from wild-type (A), jag-2 (B) krp4-2 (C),and jag-2 krp4-2 (D)
plants; the boxplots show median (thick line) second to third quartiles (box), minimum
and maximum range (dashed line) and outliers (single points) for meristem (red) and
primordium (blue) cells marked with EdU (green) or not (white); black asterisks indicate
that the median cell volumes of EdU-positive and EdU-negative cells are significantly
different (with p-values calculated for the null hypotheses that median volumes are equal

for EdU-positive and EdU-negative using the Wilcoxon two-tailed signed-rank test).
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A

Differences between EdU-positive and EdU-negative cells in L-er background

tissue meristem meristem primordium  primordium
EdU/no EdU labelling EdU no EdU EdU no EdU
WT L-er median 175.692 139.392 200.7632 183.7264
p-value EdU x no EdU 0.00007792 0.129
krp4-2 L-er median 153.16 114.7262 154.148 161.7044
p-value EdU x no EdU 0.0002092 0.759
jag-2 L-er median 174.82 120.03 200.375 135.713
p-value EdU x no EdU 3.014E-09 7.169E-07
krp4-2 jag-2 L-er median 147.036 119.6405 189.2435 164.2395
p-value EdU x no EdU 0.0001091 0.04686

B
Differences between genotypes in L-er background
tissue meristem meristem primordium  primordium
EdU/no EdU labelling EdU no EdU EdU no EdU
p-values WT x jag-2 0.152 0.00000243 0.84 0.000386
p-values WT x krp4-2 0.00111 0.0000019 0.0976 0.0578
p-values jag-2 x jag-2 krp4-2 0.00227 0.553 0.428 0.00476

Figure 7.3. Summary of cell size distributions for EdU-positive and EdU-negative cells in

floral meristems and sepal primordia of wild type, krp4-2, jag-2, and krp4-2 jag-2 in L-er

background. (A) Summary of median cell sizes in um3; p-values were calculated for the

null hypotheses that median volumes are equal for the EdU-positive cells and EdU-

negative cells, Wilcoxon two-tailed signed-rank test); (B) Summary of p-values for the null

hypotheses that median volumes are equal in the pair-wise comparison of genotypes

(wild type x jag-2, wild type x krp4-2, and jag-2 x jag-2 krp4-2) for meristem or

primordium cells, EdU-negative or EdU-positive cells using the Wilcoxon two-tailed

signed-rank test).
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Figure 7.4. Cell size distributions for EdU-positive and EdU-negative cells in the floral

meristem and early sepal primordia for combinations of the jag-1, krp2-3, krp4-1 loss of

function genotypes in Col background. Combined cell volumes from at least three
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independent buds each from wild-type (A), krp2-3 (B), krp4-1 (C), jag-1 (D) krp2-3 jag-1

(E), krp4-1 jag (F), and krp3-2 krp4-1 jag (G) plants; the box plots show median (thick line)

second to third quartiles (box), minimum and maximum range (dashed line) and outliers

(single points).

Differences between EdU-positive and EdU-negative cells in Col background

tissue meristem meristem primordium  primordium
EdU/no EdU labelling EdU no EdU EdU no EdU
WT Col median 176.127 128.01 181.306 161.946
p-value EdU x no EdU 0.003819 0.2888
krp4-1 Col median 155.751 106.189 173.0295 175.1105
p-value EdU x no EdU 0.0002096 0.8687

jag-1 Col median 170.464 138.13 176.85 126.517
p-value EdU x no EdU 0.00000265 0.000000141
krp4-1 jag Col median 134.26 104.689 159.86 130.58
p-value EdU x no EdU 0.000002112 0.004657

Figure 7.5. Summary of cell size distributions for EdU-positive and EdU-negative cells in

floral meristems and sepal primordia of wild type, krp4-1, jag-1, and krp4-1 jag-1 in Col

background. (A) Summary of median cell sizes in um?3; p-values were calculated for the

null hypotheses that median volumes are equal for the EdU-positive cells and EdU-

negative cells, Wilcoxon two-tailed signed-rank test.

95% confidence intervals for the difference in cell volumes between EdU-labeled and non EdU-labeled cells

wt wit
L-er Col

krp4-1

Col

jag-2 jag-1
L-er Col

Jjag-2
krp4-2
L-er

Jag-1 Jag-1
krp4-1 krp2-3
Col Col

Figure 7.6. 95% confidence intervals for the differences in cell volumes between EdU-

labeled and non-EdU labeled cells. 95% confidence intervals calculated by bootstrapping,

ordinary bootstrap with 999 replicates, non-parametric, for the difference in volumes (in
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um?3) between EdU-positive and EdU-negative cells in the meristem (red bars) or

primordia (blue bars) of buds with the genotypes indicated.
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Figure 7.7. Cell size distribution for EdU-positive and EdU-negative cells in the floral
meristem of DEX-treated (dark red) and mock-treated (light blue) plants. Boxplots show
median (thick line), second to third quartiles (box), minimum and maximum range
(dashed line) and outliers (single points); black asterisks indicate that the median cell

volumes between EdU-positive and EdU-negative cells are significantly.
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Figure 7.8. Loss of KRP2 or KRP4 function did not rescue the morphology of the jag-1
sepal primordia. Scalebars: 50 um; (A-D) images are 3D reconstructions from stacks of
confocal images of pseudo-Schiff propidium iodide (pS-PI) stained inflorescence apices
(Truernit et al., 2008); jag-1 (A), wild type (B), krp4-1 jag-1 (C), krp2-3 krp4-1 jag-1 (D),

arrow indicates the increased intersepal zone.
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Figure 7.9. Coordination of S-phase entry and cell growth.

(A) Dependency of S-phase entry on cell size in Saccharomyces cerevisiae (budding yeast)

with a minimum cell size threshold in place at the transition from G1 to S-phase that
ensures cell size homeostasis over generations, in addition a cell cycle progression

checkpoint at the transition from G2 to M-phase has been identified for

Schizosaccharomyces pombe (fission yeast), reviewed by Jorgensen and Tyers (2004); (B)

hypothesis that a minimum cell size threshold could be in place in plant meristems to
regulate the uniform cell sizes in the stem cell pool; (C) hypothesis that a minimum cell
size threshold would need to be repressed in order to accommodate the changes in
growth behavior during the transition from meristem to primordium growth behavior

with increased cell proliferation rates, cell growth rates and increase of cell size
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heterogeneity (Schiessl et al., 2012); increase in cell size heterogeneity could, for
example, be generated by local variations in growth rates and in cell proliferation rates,

asymmetric divisions, and anisotropic cell expansion.

A
wild type
KRP4

critical cell size threshold (holding back)
push into S-phase

OO~

B
loss of KRP4 function

saun

Figure 7.10. Putative dual function of KRP4 promoting and promoting preparation for

entry into S-phase.

(A) In the wild type meristem, high KRP4 levels could have a dual function during cell
proliferation, where KRP4 inhibits entry into S-phase until a certain minimum cell size
threshold is reached but concomitantly promotes entry into S-phase once the certain cell
size threshold is reached, this would explain the very narrow cell size distribution pattern
observed in the wild type meristem, where cells as soon as they reach a certain cell size
appear to be pushed into S-phase. (B) Accordingly, loss of KRP4 function would allow cells
to enter S-phase at smaller and larger cell sizes and hence coordination between entry
into S-phase and cell size would be decreased and allow for increase in cell size

heterogeneity of cells undergoing and not undergoing S-phase.
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Chapter 8 - Novel direct candidates of JAG obtained from

combined analysis of ChIP-Seq and global transcriptome data

8.1. Introduction

In the previous chapters, | have shown that JAG as a transcriptional growth regulator
targets several processes during organ primordia formation: At organ level, JAG mediates
the transition from a meristematic to a primordium cell behaviour, it restricts boundary-
specifying genes and is involved in organ patterning along the proximal-distal axis. At
cellular level, JAG promotes cell growth, growth anisotropy and cell proliferation. To
promote organ outgrowth and organ patterning, these processes have to be coordinated
in a spatial and temporal context. In this respect, gene ontology (GO) analyses for the
1,634 ChlIP-Seq target genes and for the 495 genes that were directly targeted and
differentially expressed upon ectopic JAG activation (Chapters 2 and 3) revealed
enrichments for hormone-related processes and growth-related processes in the cell wall
and at the cell wall - plasmamembrane interface.

Here, | introduce and discuss novel interesting candidate genes that are directly and
indirectly regulated by JAG, which | did not have the opportunity to investigate further
during this project, but which will provide future leads to answer key questions of plant
morphogenesis, for example, how anisotropic growth and differences in local tissue
growth rates are regulated by transcriptional growth regulators such as JAG and how local
tissue growth rates are coordinated within a developing organ by cell-cell communication

and non-autonomous intercellular signals.

8.2. JAG directly targets genes involved in cell expansion-related processes

8.2.1. JAG directly targets regulators of cell turgor pressure during cell expansion

During cell expansion, the balance of turgor pressure and cell wall extensibility controls
the increase in cell volume (Schopfer, 2006). At the core of these processes are plasma
membrane located ATPases that actively translocate protons from the cytosol to the
apoplast by hydrolising ATP. Thereby, ATPases generate a gradient in H+ concentration

across the plasma membrane, resulting in a pH gradient and a charge gradient which
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leads to apoplast acidification of up to 2 pH value units and a negative membrane
potential of -120 to -160 mV in the cytosol compared to the apoplast (reviewed by Sze et
al., 1999). On the return of protons into the cytoplasm, ions and metabolites such as
sucrose and amino acids can be actively transported in and out of the cytoplasm against
their concentration gradients and electrochemical gradients via symporters and
antiporters.

The proton gradient also generates the force for the uptake of calcium and potassium
via channels specific to these cations (reviewed by Sze et al., 1999). In particular, during
cell expansion, high turgor pressures are achieved by influx of potassium and calcium
cations leading to osmotic uptake of water into the cytosol (Rodriguez-Navarro et al.,
2000). The higher the membrane potential, the higher is the driving force for cation
uptake into the cytosol and subsequently the generated turgor pressure. At the same
time, ion influx into the cytosol causes a decrease in membrane potential and a
depolarisation of the membrane, which needs to be counteracted by increased
translocation of protons. In this process, plasma membrane-located ATPases are the only
means to maintain and to regulate the negative electrochemical potential inside the
cytosol compared to the apoplast and therefore, turgor pressure and cell expansion are
highly dependent on the activity of plasma membrane ATPases. In addition, these
ATPases cause the acidification of the apoplast and hyperpolarisation of the plasma
membrane that is associated with cell wall swelling and cell wall relaxation during cell
expansion (reviewed by Wolf et al., 2012).

In Arabidopsis, a gene family of eleven members encodes plasma membrane ATPases
(AHAs). AHA1 and AHAZ2 have been reported to function as the predominant and most
ubiquitous ATPases in Arabidopsis (Haruta et al., 2010). In my experiments, | found that
JAG directly down-regulated AHA2 (Figure 8.1.A-B) and directly bound to AHA1. Both
single mutants were more sensitive to external conditions that require enhanced proton
transport in order maintain the electrochemical potential. For example, aha2 seedlings
showed reduced hypocotyl elongation in the presence of high external potassium and
high external pH values compared to the wild type (Haruta and Sussman, 2012). Under
optimal growth conditions, no differences in growth and development were observed
between the aha2 single mutant and wild type, suggesting that ahal and aha2 act

redundantly to maintain proton homeostasis.
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Interestingly, AHA1 transcript levels were not increased in the aha2 single mutant and
the compensation was rather due to increased activity of the remaining ATPases (Haruta
et al., 2010; Haruta and Sussman, 2012), providing evidence that post-translational
modifications play a major role in regulating ATPase activity (reviewed by Sze et al., 1999;
Haruta et al., 2010; Haruta and Sussman, 2012). For example, plasma membrane ATPases
contain an autoinhibitory domain at their C-terminus with several phosphorylation and
dephosphorylation sites for activation and deactivation by kinases and phosphatases. In
response to phosphorylation and dephosphorylation, a 14-3-3 protein associates with the
C-terminal region of ATPases and promotes ATPase activity (reviewed by Sze et al. 1999;
Haruta and Sussman, 2012). In this context, JAG also directly down-regulated the calcium-
responsive serine-threonine kinase PKS5/CIPK11 (Figure 8.1.D) which is a member of the
calcium signalling network of calcineurin B-like (CBL) and CBL interacting kinases (CIPK)
that read out local calcium concentration signatures at the plasma membrane and at the
tonoplast (reviewed by Weinl and Kudla, 2009). PKS5/CIPK11 negatively regulates AHA2
activity by phosphorylating the binding site of 14-3-3 protein in the C-terminal region of
the AHA2 protein. In line with these findings, loss of function pks5 seedlings are more
tolerant to high external pH values compared to wild type because of increased ATPase
activity leading to increased proton extrusion (Fuglsang et al., 2007).

Furthermore, a reduction of proton pumps in the ahal and aha2 mutants was
compensated by up-regulation of K+ transporters, suggesting that a decrease in
membrane potential can be compensated by increasing the density of potassium ion
transporters (Fuglsang et al., 2007). In this respect, JAG directly up-regulated the K*
transporter AKT2 (Figure 8.1.C), which has been reported to function in potassium uptake
in the plasma membrane of leave mesophyll cells and in guard cells (Dennison et al.,
2001; Szyroki et al., 2001). However, the potassium transporter AKT2 is not only
expressed in mesophyll leaf cells but also in flower stems and sepals, and has been shown
to act as a phloem potassium channel. Sucrose is loaded into the sieve
element/companion cell complex via proton/sucrose symporters and ATK2 maintains the
K* dependent membrane potential in the phloem and prevents membrane depolarisation
in response to sucrose loading. By using **C-labelled CO,, it was shown that in the akt2
mutant, the loading of sucrose into the phloem and the subsequent transport to sink

tissues such as the flower was impaired. Accordingly, the akt2 loss of function mutant
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produced fewer leaves and fewer and shorter inflorescence stalks as the wild type
(Deeken et al., 2000; Deeken et al., 2002). Also connected to the control of potassium
transporters, JAG directly up-regulated CBL9 (FDR 0.05), which interacts with CIPK23 to
promote the activity of the potassium transporter AKT1. It has been shown that the cb/9
cbl1 double mutant is as sensitive to low potassium availability as the akt1 mutant
(Cheong et al., 2007; Xu et al., 2006).

Another gene family targeted by JAG and implicated in Ca** and proton transport are
the RAPID ALKALINISATION FACTORS-LIKE genes (RALFLs) RALFL4 and RALFL21, which
encode small polypeptide signalling molecules (Pearce et al., 2001). In particular, RALFL4
was up-regulated upon JAG-GR activation and down-regulated in the jag-2 mutant in the
gRT-PCR experiment (Figure 8.1.E, F). The RALFL family in Arabidopsis consists of 34
members (Olsen et al., 2002) and it has been shown that they locate to the apoplast once
they have been proteolytically processed by subtilases (Escobara et al., 2003; Srivastava
et al., 2009). Little is known about the signalling mechanism of RALFL polypeptides,
however, Scheer et al. (2005) provided evidence that RALFLs can bind to proteins located
in the plasma membrane. Ectopic expression of AtRALFL1 was found to trigger a fast
increase in cytosolic calcium concentration in an aequorin bioluminescence assay (Haruta
et al., 2008) and it was suggested to mediate the response of proton ATPases.
Furthermore, AtRALFL23 has been shown to be repressed upon brassinolide treatment
and ectopic expression of ATRALFL23 diminishes the growth promoting effects of
brassinosteroids and impairs elongation of the hypocotyls. Plants ectopically expressing
AtRALFL23 showed reduced acidification of the rhizosphere compared to wild-type
seedlings when grown on medium supplemented with a pH indicator, suggesting that
AtRALFL23 represses extracellular acidification (Srivastava et al., 2009). In addition,
ectopic expression of AtRALFL23 resulted in overall shorter and bushier plants, suggesting
that AtRALFL23 is a growth inhibitor (Srivastava et al., 2009). These findings supported
previous results obtained from exogenous application of tomato RALF polypeptide.

Exogenous application of tomato RALF to tobacco cell suspension culture caused rapid
alkalisation of the medium and applied to Arabidopsis seedlings it caused growth arrest in
the root meristem and elongation zone (Pearce et al., 2001). By contrast, silencing of
NaRALF expression in tobacco by an inverted repeat construct inhibited the outgrowth of

root hairs owing to an increase in apoplastic pH, slowed down apoplastic pH oscillation
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and reduced ROS accumulation in the apoplast. The root hair phenotype was in part
restored when the plants were grown on low pH medium and reproduced when wild-type
plants were grown on medium with high pH (Wu et al., 2007), suggesting a role for
NaRALF in maintaining apoplast acidification rather than alkalinisation. Most recently, it
has been shown that ectopic expression of RALF1 resulted in reduced cell sizes while
silencing of RALF1 resulted in increased cell sizes in the root. Furthermore, an
antagonistic interaction between RALF1 and the brassinosteroid signalling pathway has
been proposed (Bergonci et al., 2014). In all cases, RALFs and RALFLs had strong effects
on cell growth by mediating the pH in the apoplast and therefore might play a crucial role
in mediating cell wall related growth processes. Also in respect to the processing of
RALFLs, JAG directly targeted a subtilase (At5g59130) which is strongly expressed in
sepals and floral tissue and is predicted to be located in the apoplast according to the BAR

eFP browser (http://bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi). At5g59130 was strongly

repressed upon ectopic JAG expression.

In addition to plasma membrane located ATPases, V-ATPases are located in the
vacuole membrane and in the endomembrane system. V-ATPases translocate protons
from the cytosol to vacuoles and into the inside of the endomembrane vesicles, leading to
acidification of these subcellular compartments and regulation of ion and solute fluxes.
Furthermore, acidification of endomembrane vesicles influences protein-protein
interactions, receptor-ligand binding properties, and catalyse biosynthesis processes.
While plasma membrane ATPases are single polypeptides of 100 kD, V-ATPAses are 650
kD protein complexes consisting of multiple subunits and interacting molecules (reviewed
by Sze et al., 1999). JAG directly targets several genes encoding subunits of V-ATPases,
for example isoform3 of the subunit VHA-a, the 16 KDA PROTEOLIPID SUBUNIT 4 (AVA-
P4), and DET3 which encodes a VACUOLAR ATP SYNTHASE SUBUNIT C (VHA-C) that
promotes hormone-induced cell elongation in hypocotyls (Schumacher et al., 1999).
Furthermore, the det3-1 loss of function mutant which shows a decrease in V-ATPase
activity by 50% was dwarfed and the cell sizes of mesophyll cells in det3-1 cotyledons and
first leaves were reduced to about 50% of the wild type (Fukao and Ferjani, 2011).
Interestingly, Ferjani et al. (2013) have recently shown that V-ATPase activity is needed to
mediate the increased cell sizes caused by ectopic expression of the cell cycle inhibitor

KRP2 (first described by De Veylder et al. (2001) and shown here to be a key JAG target
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gene; see Chapters 6 and 7). In the det3-1 mutant background ectopic expression of the
cell cycle inhibitor KRP2 resulted in reduced cell numbers but cell sizes similar to wild
type. However, none of the V-ATPase genes mentioned above showed significant
differences in gene expression in response to changes in JAG function in the expression
array experiment.

Still in respect to VHA-C that functions in the assembly and disassembly of functional
V-ATPases (Hong-Hermesdorf et al., 2006), JAG directly down-regulated WITH NO LYSINE
K3 (WNK3/zIK3), a member of the serine-threonine kinase family WITH NO LYSINE K
(WNK). While no information is available about the biological function of WNK3, WNK8
has been shown to directly bind and phosphorylate VHA-C in in vitro assays (Hong-
Hermesdorf et al., 2006). However, WNK3 did not interact with VHA-C in the yeast two-
hybrid assay (Hong-Hermesdorf et al., 2006) and its function remains elusive.

While up-take of calcium via antiporter to the endomembrane compartments is mediated
by the proton gradients generated by V-ATPases, release of calcium from endomembrane
compartments is mediated by calcium channels, which are sensitive to the signalling
molecule myoinositol 1,4,5-triphoshpate. Interestingly, JAG directly down-regulates
INOSITOL(1,4,5)P3 5-PHOSPHATASE Il, which dephosphorylates myoinositol 1,4,5-
triphoshpate (Figure 8.1.G). Loss of function mutant plants have increased levels of
myoinositol 1,4,5-triphoshpate and cytosolic calcium, which for example, leads to
premature pollen germination (Wang et al., 2012), hypersensitivity to ABA in seed
germination (Gunesekera et al., 2007) and decreased GA signalling (Fleet et al., 2009),
suggesting an important role in calcium and hormone regulated developmental
processes. In addition, JAG directly targeted the tonoplast located calcium/proton
exchanger CAX3 which has been shown to regulate apoplast acidification and auxin influx
by promoting plasma membrane located proton ATPases, suggesting that extracellular
and intracellular ion and proton homeostasis are regulated by the coordinated function of
proton ATPases and transporters located at the vacuole and in the plasma membrane
(Cho et al., 2012). Furthermore, JAG directly targeted a type IIA (SERCA-type) Ca™* ATPase
and indirectly activated ACA4, a tonoplast located Ca™"-ATPase involved in the

accumulation of calcium in the vacuole (Geisler et al., 2000).
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In the context of the vacuole, JAG directly down-regulated the vacuole-located
GLYCINE RICH PROTEIN 5 (GRP5) (Figure 8.1.H) which has been shown to promote cell
elongation in root cells and dark grown hypocotyls. GRP5 over-expressing lines have
longer roots, larger leaves and elongated inflorescence stems while loss of function
mutants have shorter roots, smaller leaves and reduced stem heights compared to the
wild type. However, the biological function of this gene remains to be elucidated. Using a
GUS reporter line driving several minimal promoter constructs, Mangeon et al. (2010)
mapped the promoter region that is responsible for expression of GRP5 in leave
epidermis, inflorescence stems and reproductive organs to between 164 and 288 bp
upstream of the transcriptional start of GRP5. Interestingly, JAG binds to the GRP5
promoter 140-170 bp (max peak score in all three replicates) upstream of the
transcriptional start, suggesting that GRP5 expression in the leaf and inflorescence are
under direct transcriptional control by JAG, possibly via the previously described

promoter region.

8.2.2. JAG directly targets genes involved in cell wall relaxation and cell wall loosening
Cell wall acidification to pH 4.5-6 activates members of the expansin family, which play
a major role in cell wall relaxation and subsequent wall extension. It has been suggested
that expansins weaken non-covalent hydrogen bonds between cellulose microfibrils and
the hemicellulose matrix and allow matrix polymers and cellulose microfibrils to slide
apart. This dissociation of wall polymers generates space and increases the surface area
within the wall, paving the way for cell wall degrading enzymes such as glycosylases,
galactosidases, pectin lyases, and galacturonases. Expansins mediate a fast wall relaxation
response that does not weaken the mechanical strength of the cell wall. In early
experiments, exogenous expansin application to tomato shoot meristems caused ectopic
organ primordia formation (Fleming et al., 1997). Loss of function and ectopic expression
of expansins have been shown to have very immediate effects on cell size and organ size,
suggesting that expansins may be a good targets to exert growth regulatory functions
(Cho and Cosgrove, 2000). In petunia, ectopic expression of the petunia EXPANSIN1
(PhEXPA1) gene caused an increase in leaf and petal area due to increase in cell sizes and
premature branching from axillary meristems (Zenoni et al., 2011). In my experiments,

JAG regulated several members of the aEXPANSIN protein family. For example EXPANSIN
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A15 is a direct target of JAG while EXPANSIN A3, A4 and A5 are indirectly down-regulated
upon ectopic JAG activation and EXPANSIN A9 is indirectly up-regulated upon JAG
activation.

In addition to expansins that target the non-covalent links between hemicelluloses and
cellulose microfibrils, modifications of pectins play a crucial role in cell wall hydration.
Pectin homogalacturonan polymers are synthesised in the endomembrane system and
excreted to the cell wall as highly methylated compounds. Pectin demethylesterases
(PMEs) remove methyl groups from the homogalacturonan polymers, leave a free
carboxyl group and release methanol and a proton (Wolf et al., 2009). Subsequently, the
removal of the methyl group can lead to association of water molecules that facilitates
hydration of the cell wall, cell wall loosening and degradation of pectins. Pectin
methylesterases are inhibited by pectin methylesterase inhibitors (PMlIs). Using
monoclonal antibodies that specifically detect demethylesterified pectins, Peaucelle et al.
(2008) showed that demethylesterified pectins were predominantly observed in incipient
and early flower primordia in contrast to the central dome of the meristem where
predominantly methylesterified pectins were found. Ectopic expression of a pectin
methylesterase inhibitor (PMI) resulted in a decrease of demethylesterification at the site
of incipient floral primordia in the inflorescence meristem and at incipient organ
primordia in floral meristems. In addition, primoridia formation was inhibited, which
resulted in a pin-like inflorescence meristem in the PMI over-expressor line (Peaucelle et
al., 2008). In addition, site specific exogenous application of pectin demethylesterases
caused bulging and ectopic development of floral primordia at the site of application,
suggesting that demethylesterification is not only essential, but also sufficient for de novo
primordia formation and outgrowth, and similar results were obtained when over-
expressing PME5 (Peaucelle et al., 2008). Using atomic force microscopy Peaucelle et al.
(2011) confirmed that the degree of pectin demethylesterification correlated with the
increased elastic response of cell walls observed at the sites of incipient organ primordia
and in emerging primordia compared to the central meristem dome. Furthermore,
meristem cells of the PME5 over-expressor showed the same elasticity profile as wild type
primordia cells and in the PMEI over-expressor primordia cells had the same elasticity
profile as wild type meristem cells (Peaucelle et al., 2011), suggesting that cell wall

elasticity mediated by pectin demethylesterification marks the transition from meristem
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to primordia cell behaviour. JAG weakly bound to and activated pectin methylesterase
(At5g62360) and indirectly activated four members of the pectin methylesterase inhibitor
family (PMI). In addition, JAG directly bound to QUASIMODO (Figure 8.2.A) which is a
pectin methyltransferase located in the Golgi Apparatus, and pectin methylesterase PCRA
was indirectly repressed by JAG.

Both pectin methylesterases and expansins have been suggested to change the
physical and chemical properties of cell wall polymers and render them more accessible
for cell wall degrading enzymes such as polygalacturonases and members of the
XYLOGLUCAN ENDOTRANSGLUCOSYLASE /HYDROLASE (XTH) protein family. XTHs can
cleave and re-ligate glycosidic bonds in the backbone of xyloglucan hemicelluloses. Owing
to their function they are involved in cell wall loosening, integration of new cell wall
material and cell wall stiffening. It has been shown that the effect of XTHs depends on the
length of the xyloglucan chains that are ligated into the cell wall matrix. While
incorporation of long xyloglucan chains had a growth inhibitory effect, incorporation of
small oligosaccharides promoted cell expansion in pea stems (Takeda et al., 2002). JAG
directly repressed XYLOGLUCAN ENDOTRANSGLUCOSYLASE/HYDROLASE 28 (XTH28
(Figure 8.2.B), which has been reported to have a specific function in the elongation of
cells in the stamen filament. In the xth28 loss of function mutant, filaments failed to
elongate to the length of the stigma impairing self-fertilisation (Kurasawa et al., 2009).
Furthermore, XTH6, XTH7 and XTH9 were identified as direct targets by ChIP-Seq but
showed only weak peaks. In addition, two xylosidases were among the direct targets of
JAG, which showed only weak peaks in the ChIP-Seq and no differential expression in the
array experiment.

However, several xylosidases, glucosidases and galactosidases were found to be
indirectly up-regulated, suggesting that these genes encoding enzymes that can cleave
hemicelluloses are promoted by JAG. Furthermore, three pectin lyase-like genes, which
are predicted to have polygalacturonase activity, were directly and one indirectly down-
regulated by JAG, for example the expression of the direct target pectin lyase (At5g63180)

in response to gain and loss of JAG function was confirmed by qRT-PCR (Figure 8.2.C-D).
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8.2.3. JAG directly targets genes involved in the plant redox system

In respect to the redox state in the apoplast, JAG directly targeted the promoter region
of gene At5g21100 (Figure 8.2.E), which encodes one of the three putative apoplast-
located ascorbate oxidases identified in the Arabidopsis genome (Yamamoto et al., 2005).
Ascorbate oxidase (At5g21100) showed a strong decrease in expression levels upon
ectopic JAG activation in the expression array experiment and is highly expressed in
sepals and petals according to the BAR eFP browser (http://bar.utoronto.ca/efp/cgi-
bin/efpWeb.cgi). The single loss of function mutant showed reduced stem height and had
increased tolerance to salt owing to reduced ascorbate oxidase activity that resulted in
decreased hydrogen peroxide accumulation compared to wild type (Yamamoto et al.,
2005). Ascorbate functions as a soluble antioxidant and is the major component of the
redox buffering capacity in the apoplast. Therefore, the effect of reactive oxygen species
on downstream signalling cascades and cell wall cross-linking processes is dependent on
the pool of reduced ascorbate in the apoplast (Smirnoff et al., 2000). Ascorbate oxidases
oxidise ascorbate to mono-dehydroascorbate and reduce the antioxidant pool in the
apoplast. In this respect, it was shown that ectopic expression of ascorbate oxidase in
tobacco seedlings drastically decreased the pool of reduced ascorbate in the apoplast and
it was suggested that reducing the pool of ascorbate can have similar effects on the redox
state of the apoplast as the generation and release of reactive oxygen species (Pignocchi
et al., 2003). Pignocchi et al. (2003) showed that auxin promoted expression of ascorbate
oxidase, which led to a decrease in the redox buffering capacity of the apoplast. On the
other hand, Pignocchi et al. (2006) showed that ectopic expression of ascorbate oxidase
in tobacco seedlings caused a decreased response to auxin treatment and an increased
response to gibberellic acid treatment, suggesting that the effect of auxin on growth is
dependent on a pool of reduced ascorbate. Furthermore, it has been shown that an
increase in ascorbate oxidase expression repressed the expression of a calcium channel
(Pignocchi et al., 2006). Moreover, data obtained from synchronised cell suspension
culture suggested that ascorbate and its oxidised product mono-dehydroascorbate may
function in the control of cell cycle progression (Kato and Esaka, 1999). Together, these
observations suggest that ascorbate oxidase (At5g21100) could be a key target to

modulating cell growth-related processes in the apoplast.
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In addition, JAG directly targeted SKU5 and several members of the SKU5-SIMILAR
(SKS) family (SKS4, At4g22010; SKS5, At1g76160, (Figure 8.2.F); SKS17, At5g66920) and
directly activated SKS18 (At1g75790), which are multicopper oxidase-like proteins and are
related to ascorbate oxidases and ferroxidases (Sedbrook et al., 2002; Jacobs and Roe,
2005). SKUS is expressed in expanding young tissue of roots, leaves and flowers.
Biochemical assays revealed that the SKU5 protein is glycosylated, anchored to the
plasma membrane and associated with the cell wall. Using a SKU5-GFP fusion reporter
line, it was further confirmed that SKU5 associates with the plasma membrane and
surrounds the cell outlines (Sedbrook et al., 2002). Interestingly, in the elongation zone of
the root, brighter signals were observed along the longitudinal axis and at three-cell
junctions (Sedbrook et al., 2002), suggesting that SKU5 could play a role in longitudinal
cell expansion. However, no difference in cell length and width was observed between
root cells of the sku5 mutant and the wild type. In the sku loss of function mutant, the
roots and hypocotyls show axial rotation of cell files and the roots skew and coil to the
left when grown on the surface in tilted agar plates or when touching the bottom of a
plate but not when growing in media, suggesting that roots skew most likely in response
to touch. Another member of the SKS family, SKS6 has been shown to play a role in the
formation of leaf veination (Jacobs and Roe, 2005). However, the biological functions of
SKU5 and members of the SKS family remain to be elucidated.

Furthermore, JAG directly targets two members of the microRNA 398 family, miR398B
and miR398C, which target the mRNA transcripts of two copper/zinc dismutases (SOD),
the cytosolic CDS1 and the chloroplast located CDS2, which can detoxify superoxide
radicals to hydrogen peroxide and water (Sunkar et al., 2006), and a chaperone protein
required for copper delivery (CCS1) (Bouchg, 2010). Interestingly, miR398 is highly
expressed in roots, stem and cauline leaves, moderately expressed in adult rosette leaves
but not detectable in floral tissue with the exception of the anthers (Sunkar et al., 2006),
suggesting that there are tissue specific differences in miR398 expression that might
reflect developmental processes. Consequently, mRNA transcripts of the dismutases CDS1
and CDS2 were most abundant in floral tissue (Sunkar et al., 2006). From this expression
pattern it can be inferred that JAG rather down-regulates than up-regulates miR398 and
therefore may promote detoxification of superoxide radicals and attenuate the effects of

reactive oxygen species (ROS). Furthermore, it has been shown that miR398 was
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transcriptionally repressed in response to environmental oxidative stress while the
abundance of CDS1 and CDS2 mRNA transcripts increased specifically because of
repressed post-transcriptional silencing rather than induction of de novo transcription of
these genes (Sunkar et al., 2006). Furthermore, it was shown that plants harbouring a
CDS2 with a mutated miR398 recognition site and therefore increased CDS2 mRNA levels
showed lower rates of chlorophyll degradation and accumulated lower levels of
anthocyanin than the wild type when exposed to high light stress (Sunkar et al., 2006).
This suggested that miR398 negatively regulates the superoxide scavenging capacity by

targeting the copper/zinc dismutases CDS1 and CDS2.

8.2.4. JAG targets genes involved in biosynthesis and deposition of cell wall material

After cell wall extension, new material needs to be synthesised and deposited at the
extended wall. While the precursors of matrix polymers such as hemicelluloses and
pectins are synthesised in the Golgi apparatus and transported to the cell wall in vesicles,
cellulose synthase complexes migrate in the plasma membrane and cellulose microfibrils
are synthesised at the plasma membrane - cell wall interface. It has been suggested that
the cellulose synthase complex is guided by cortical microtubule arrangements, which
orchestrate location of insertion, orientation and density of cellulose microfibrils
(reviewed by Cosgrove, 2005; Wolf et al., 2012).

CELLULOSE SYNTHASE 3 (CESA3) and CESA6 are direct targets of JAG but show no
differences in expression, while CESA5 is indirectly down-regulated. CESA3 and CESA6
have been reported to form cellulose synthase complexes with CESA1 to synthesis the
primary cell wall. The cesa3 loss of function mutant showed pollen grain deformations
while the cesa6 mutant showed mild defects in cell elongation (Persson et al., 2007).

In addition, JAG directly and indirectly repressed ten out of thirty members of the
CELLULOSE SYNTHASE LIKE family (CSLs) (Richmond and Somerville, 2000), while none of
them was activated upon ectopic JAG-GR activation (Figure 8.3.A-D). CSLs function as
glucomannan synthases and as xyloglucan synthases (Liepman et al., 2007; Goubet et al.,
2009). In particular, members of the CSLA group are involved in the biosynthesis of the
hemicellulose components mannan and glucomannan, which are found in primary cell
walls but are also a major component in secondary cell walls to reinforce stems.

Interestingly, CSLA genes are highly abundant in floral organs, for example CSLA1 and
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CSLA10 are most abundant in sepals and petals (Liepman et al., 2007). Interestingly, these
two genes were also found to be differentially expressed in response to changes in JAG
function (Figure 8.3.B-D). In addition, it was suggested that glucomannans might function
as developmental signals, for example, the c/lsa7 mutant is embryo-lethal but can be
rescued by ectopic expression of CSLA9 (Goubet et al., 2009).

In the context of cell wall polymer modifications, three members of the TRICHOME
BIREFRINGENCE-LIKE protein family (TBL) were directly target by JAG: TBL25, TBL37, and
TBL42. TBL37 was directly down-regulated by JAG (Figure 8.3.E-F) while TBL25 showed no
significant differences in expression and TBL42 was not present on the expression array
chip. The TBL family consists of 46 members in Arabidopsis and is named after the first
identified mutant tbr that showed defects in the crystallinity of the cellulose in trichomes
and linked the family to cellulose biosynthesis processes (Bischoff et al., 2010). In
addition, it has been shown that TBL proteins harbour a putative O-acetyl transferase
domain and are involved in O-acetylation of specific xyloglucan and pectin cell wall
polymers in the Golgi apparatus (Gille et al., 2011; reviewed by Gille and Pauly, 2012;
Bischoff et al., 2010a). For example, in the tb/3 loss of function mutant the amount of
pectin acetyl esterifcation was decreased while pectin methylesterifaction was increased,
suggesting that TBL3 may function in maintaining the acetyl esterification in pectins and
hemicelluloses (Bischoff et al., 2010a). In enzymatic assays, it has been shown that the
higher the degree of O-acetylation in cell wall polymers, the less accessible are they for
enzymatic degradation most likely because of conformational changes in the non-
covalent interactions of the cell wall polymers. The O-acetylation of cell wall polymers
mediated by TBL proteins is antagonised by acteylesterases that remove acetyl groups
from xyloglucan and pectins (reviewed by Gille and Pauly, 2012). Interestingly, JAG
directly activated pectinacetylesterase At3g05910 while pectinacetylesterase At2g46930

was indirectly activated.

213



8.2.5. Overview: what is the functional relevance of JAG targeting genes involved in cell
expansion?

Here, | introduced target genes of JAG that are involved in cell expansion and growth-
related cell wall processes. For example, JAG directly and indirectly targeted several genes
that have been reported to play a role in turgor-driven cell expansion and growth-related
cell wall modifications. These candidates provide further support for the results obtained
by the quantitative 3D live imaging approach which revealed that JAG mediates the
transition from meristem to primordium cell behaviour by promoting both an increase in
cell proliferation rates and cell growth rates in early organ primordia (Schiessl et al.,
2012). Using quantitative 3D analysis of cell geometry, we observed that proliferating
cells in early sepal primordia have a narrow size range between 100 - 350 um? (Schiessl| et
al., 2012; Chapters 7 and 8). In contrast, it has been shown that cells that have exited
proliferation expand in size up to 100- to 1000-fold and more, predominantly by vacuolar-
driven cell expansion (Marshall et al., 2012). Images obtained from electron transmission
electron microscopy showed that meristem cells and early primordia cells do not have
large central vacuoles neither in the jag loss of function mutant nor in the wild type
(Schiessl et al., 2012), further confirming that during cell proliferation phase, cytoplasmic
cell growth is the predominant process by which cells increase in size. Furthermore,
combining quantitative 3D analysis of cell geometry with an S-phase marker (see Chapter
7) revealed that JAG has an effect on the size at which cells enter S-phase and therefore
modulates cell size homoestasis during cell proliferation phase in developing organs.

Since JAG promotes growth and cell proliferation and regulates the coordination of
these two processes, it can be speculated that JAG promotes growth in a very tightly
controlled way that is advantageous for increased cell proliferation rates and overall
tissue growth rates, besides regulating cell proliferation at the entry into S-phase (see
Chapter 7). Conversely, JAG may suppress processes that result in massive cell expansion
and cell differentiation.

In this respect, it could be speculated that JAG promotes cell expansion but
concomitantly needs to tightly control processes that lead to high turgor pressure on the
one hand and extreme cell wall extensibility, on the other hand. This hypothesis is
supported by the fact that JAG down-regulates the plasmamembrane ATPase AHA2 and
directly repressed INOSITOL (1,4,5)P3 5-PHOSPHATASE Il which leads to enhanced levels
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of the signalling molecule myoinositol 1,4,5-triphosphate and possibly to enhanced
calcium signalling. Furthermore, JAG attenuates the effects of reactive oxygen species by
increasing the antioxidant pool in the apoplast and by promoting the ROS scavenging
mechanisms. For example, JAG directly repressed the apoplastic ascorbate oxidase that
promotes growth and is upregulated upon exogenous auxin treatment (Pignocchi et al.,
2003). In addition, JAG was found to directly and indirectly repress several members of
the expansins, xyloglucan endotransglucosylases, and pectin lyases. By contrast, JAG was
found to directly and indirectly activate pectin methylesterase inhibitors that promote
cell wall stiffening.

In addition, quantitative 3D live imaging revealed that JAG promotes a shift to
anisotropic growth. In this context, it can be speculated that JAG not only tightly controls
expansion rates but also promotes localised cell wall extensibility to facilitate oriented
growth. In this context, JAG directly and indirectly represses ten out of thirty CSLs genes,
which are involved in the biosynthesis of mannan and glucomannan which have been
shown to reinforce cell walls and thus counteract flexible and extensible cell walls.
Similarly, JAG directly repressed TBL37, which has been suggested to be involved in O-
acetylation of xyloglucans, a process that attenuates enzymatic degradation of cell wall
polymers and also results in reinforced cell walls. By contrast, TBL antagonising
acteylesterases were directly and indirectly up-regulated by JAG.

In summary, these candidates provide leads for future work on how JAG mediates the
transition from isotropic meristem-like cell expansion to anisotropic primordium-like cell
expansion with increased cell expansion rates. However, there are several challenges in
respect to studying cell wall-related proteins in more detail. Firstly, cell wall-related
proteins belong to large families, which appear to have redundant functions. Therefore,
only few single loss of function mutants with phenotypes have been identified for genes
belonging to these families, making reverse genetics approaches difficult. Secondly, cell-
wall related genes are ubiquitously expressed in all plant cells therefore specific spatial
and temporal expression differences may be diluted and are hence difficult to detect
using quantitative qRT-PCR and or RNA in situ hybridisation. Thirdly, in the case of cell
wall-related proteins, the transcriptome analysis will only be of limited use, because cell
wall-related proteins undergo complex post-translational modifications and it will

therefore be difficult to assess the activity of individual cell wall related proteins in vivo.
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For example, cell wall-related proteins such as the pectinmethylesterases and
pectinmethylesterase inhibitors are produced in the Golgi Apparatus, transported by
vesicles to the plasma membrane — cell wall interface and excreted into the cell wall
during this process they undergo several post-translational modifications. In addition, it
has been shown that the activity of many cell-wall related proteins is dependent on pH-
value and substrate affinities.

One initial approach to the role of cell wall modifying genes downstream of JAG would
be to generate fluorescent marker or GUS reporter lines. In particular, fluorescent
reporter lines would be useful to follow the subcellular localisation of cell wall proteins by
live-imaging comparing meristems and early organ primordia in wild-type and jag loss of
function mutants. Furthermore, it would also be interesting to find out whether these
genes play particular roles in proliferating cells compared to expanding and
differentiating cells. Pectin lyase At5g09730, the cellulose synthase-like CLSO1A, TBL37,
and the SKS5 gene that showed very high and consistent enrichments in the ChIP-Seq
experiment and showed differential expression in the array and in the gRT-PCR
experiments would be promising candidates for preliminary reporter line experiments.
Furthermore, it would be interesting to investigate whether the single loss or gain of
function mutants have effects in meristem organisation and early organogenesis using
quantitative 3D analysis of cell geometry. In this context, Peaucelle et al. (2008) found
that an increase in cell wall elasticity occurred first in subepidermal layers in incipient
organ primordia, only later when the bulge and crease had formed, elasticity increased in
the epidermal layer. This observation was consistent with their PME5 expression data,
suggesting that subepidermal layers contribute to final organ size and shape. For the
guantitative 3D imaging approach used in this project, | focussed on cells in the epidermal
layer. In future projects with a focus on cell growth, quantitative 3D analysis of cell
geometry should include subepidermal layers. In order to further investigate the effects
of JAG on cell wall acidification and calcium signalling, apoplast pH-sensitive biosensor
marker lines as described by Gjetting et al. (2012), calcium imaging techniques and ROS
guantification techniques could be used. Furthermore, in order to investigate the effects
of candidate genes on the mechanical properties of the cell wall, atomic force microscopy

as described by Peaucelle et al. (2008) could be used.
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8.3. JAG directly targets genes involved in hormonal pathways

8.3.1. Introduction

The GO terms “hormone synthesis” and “hormone responses” were also found to be
enriched in the combined ChIP-Seq and expression array analysis (Chapters 2 and 3),
suggesting that one of the key functions of JAG is to orchestrate hormone-mediated cell
communication that is required for both tissue patterning and tissue growth. Because
morphogenesis requires the coordinated behaviour of all cells within a growing organ but
gene regulatory networks act at cellular level, biochemical and biomechanical signalling
pathways are needed for cell-cell communication within tissues and between tissues of
an organ. Therefore, the interactions between developmental regulators and the plant
hormones, predominantly cytokinin, auxin, gibberellins, and brassinosteroids, but also
crosstalk between the plant hormone pathways, play a major role during floral
organogenesis in coordinating stem cell maintenance, organ initiation, and patterning and
outgrowth of organs (reviewed by Veit, 2009; Besnard et al., 2011; Depuydt and Hardtke,
2011).

In line with the crosstalk of these four plant hormones and their close interaction with
the gene regulatory network directing morphogenesis, JAG directly and indirectly
targeted genes involved in the biosynthesis, conversion, degradation, perception and
signal transduction of cytokinins, auxin and gibberellins, of which the most promising
candidates are described and discussed in more detail below. These candidates provide
evidence that JAG not only promotes growth at a cellular level but also regulates
coordination of growth within tissues and thus links organ growth with organ patterning
and therefore plays an integrative role in the gene regulatory network of floral organ

morphogenesis.
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8.3.2. JAG directly targets genes involved in the biosynthesis and degradation of
cytokinins

During plant development, cytokinins promote proliferation of undifferentiated cells in
the central zone of the shoot apical meristem and sustain the duration of cell
proliferation in early organ primordia, for example by promoting the activity of the D-type
cylcin CYCD3;1 (Holst et al., 2011; Dewitte et al., 2007). JAG directly targeted several
members of the LONELY GUY (LOG) family, which catalyse the last step in the biosynthesis
of bio-active cytokinin. There are nine members of the LOG family in Arabidopsis, which
have been shown to have overlapping functions. Therefore, functional analysis has mainly
been done in rice which has one LOG gene (Kuroha et al., 2009; Tokunaga et al., 2012). In
rice, LOG is expressed in the shoot apical meristems but absent from incipient leaf
primordia. The strongest expression has been observed in subepidermal layers of the
distal tip of floral meristems. In rice, loss of LOG function leads to early termination of the
inflorescence meristem and to flowers with reduced organ number, caused by a decrease
of cell proliferation in the meristems (Kurakawa et al., 2007).

In Arabidopsis, LOG4 has been shown to be expressed in the epidermal layer of the
meristem dome and has been suggested to function in the proximal/distal patterning of
the meristem where it acts in the WUS — CLV pathway to locate the WUS domain
(Chickarmane et al., 2012). Several members of the LOG family are expressed in
inflorescences. While LOG1 is expressed in early floral buds, LOG3 is expressed in the
developing style, LOG5 and LOG8 are broadly expressed in young floral buds and in
pedicels and sepals of mature flowers. LOG1, LOG5 and LOGS8 are also expressed in the
pro-vascular and vascular tissue of leaves and in the stem. Over-expression of LOG genes
resulted in increased cell proliferation and meristem activity in the leaf vascular tissue
(Kuroha et al., 2009). | found that JAG directly binds to LOG1, LOG3, LOG6 and LOGS8
(Figure 8.4.A, C). The direct targets LOG3 and LOG8 did not respond to ectopic JAG-GR
activation in the expression array and LOG6 was not present on the ATH1 array. Using
gRT-PCR, | confirmed that LOG1 and LOG5 are repressed upon ectopic JAG-GR activation
and both are ectopically expressed in the in the jag-1 mutant (Figure 8.4.B-C).

Another link to cytokinin was that JAG directly activated cytokinin
oxidase/dehydrogenase (CKX6) (Werner et al., 2003), which is involved in cytokinin

degradation. Ectopic expression of the CKX3 gene under the organ primordium-specific
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ANT promoter (ANT:CKX3) resulted in significantly smaller lateral organs with severely
reduced numbers of cells owing to premature cell cycle exit (Holst et al., 2011). This
suggested that cytokinins have a crucial role in sustaining the duration of cell proliferation
during early organogenesis. Interestingly, ectopic degradation of cytokinins in floral organ
primordia had an effect on the number of floral buds initiated at the flanks of the
inflorescence meristem, suggesting that ectopic degradation of cytokinins in the
primordia has a non-cell autonomous effect on meristem organisation (Holst et al., 2011).
In addition, CKX5 and the SOB five-like gene SOFL1 are direct targets of JAG but were
not represented on the ATH1 array. SOFL1 and SOFL2 have been shown to promote
catalysis of biosynthetic intermediates of bio-active cytokinin and are highly expressed in
vascular tissue of developing leaves and in flowers (Zhang et al., 2009). Together, these
expression patterns suggest that JAG functions to keep cytokinin levels low. In particular
in the context of the LONELY GUY family, it would be interesting to investigate whether
ectopic JAG expression results in premature termination of the inflorescence meristem by
assessing the number of floral organs produced in the milder and stronger AP1>JAG lines
and in repeatedly with DEX treated 355:JAG-GR plants. On the other hand, it would be
interesting to test whether ectopic cytokinin activity in the jag loss of mutant has a non-
cell autonomous effect on meristem organisation. This is of particular interest in respect
to my findings that meristem cell sizes are smaller in the jag loss of function mutant
compared with wild type meristem cells even though JAG is not expressed in the

meristem (Chapter 7)

8.3.3. JAG directly targets genes involved in biosynthesis, localisation and signalling of
auxin

Auxin plays a crucial role in organ initiation and promotes organ outgrowth and organ
patterning during organogenesis. In particular, establishment of polarised, oriented tissue
growth and organ patterning processes depend on local concentration gradients of auxin,
which require localised auxin distribution. In the acidic apoplast, auxin is present in its
protonated form IAAH and can passively pass the plasma membrane and enter the
cytosol. In addition, auxin is actively transported by influx carriers such as members of the
AUX1/LAX family. In the cytoplasm with a neutral pH-value, IAAH deprotonates to polar

IAA", which cannot passively exit the cytoplasm via the plasmamembrane. Therefore,
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transport of cytoplasmic auxin is dependent on efflux carriers of the PIN protein family,
which are the main components of polar auxin transport. In particular, in the shoot apical
meristem polarised PIN1 localisation is required to generate auxin maxima that position
the incipient primordia (Benkova et al., 2003; Reinhardt et al., 2003; reviewed by Besnard
et al., 2011; Ljung, 2013).

In this context, JAG directly repressed the protein-serine/threonine kinase PINOID
(PID), which functions in the dynamic subcellular localisation of PIN auxin efflux carriers
(Figure 8.5.A-D). For dynamic polarised subcellular PIN localisation, PIN proteins
continuously cycle between the plasmamembrane and endosomal membrane
compartments via endosomal vesicles along actin filaments (Geldner et al., 2001). In this
context, PID phosphorylates PIN proteins and promotes PIN sorting to a transport
pathway that promotes PIN localisation at the apical side of cells (Michniewicz et al.,
2007; Kleine-Vehn et al., 2009). Furthermore, PID interacts with the calcium-binding
calmodulin protein TOUCH3 (TCH3) that has been described to respond to mechanical
stimuli. PID and TCH3 are both responsive to auxin and have overlapping expression
patterns in floral buds. In vitro binding assays showed that the interaction between PID
and TCH3 is calcium-dependent. Auxin causes high levels of free calcium in the cytosol
and calcium has been shown to negatively regulate PID activity in vivo. For example,
phopshorylation activity of PID was enhanced in the presence of calmodulin and calcium
influx inhibtors, suggesting that TCH3 fine-tunes the auxin response by repressing PID
activity in a calcium-dependent manner (Kleine-Vehn et al., 2009). In this context, it has
been suggested that auxin and the signals derived from mechanical forces in the cell wall
during organ growth could be coordinated via PID and its interaction with the
mechanosensitive TCH3 protein (Besnard et al., 2011). Interestingly, the
plasmamembrane located SKU5 protein has been described to be touch-sensitive and
may be involved in oriented growth. In this context, it would be interesting to investigate
any functional links between these genes.

In the inflorescence meristem below the tip of the dome, PIN1 is localised apically in
the epidermal cells in the wild type, while in the pid mutant PIN1 is located to the basal
plasma membrane (Friml et al., 2004). PID is most abundantly expressed in flowers,
suggesting that PID-mediated PIN localisation plays a major role in floral organ

development. PID is expressed in defined groups of cells in the periphery of the
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inflorescence meristem that mark the incipient floral primordia. In stage 3 flowers and in
stage 5 flowers PID is expressed at the adaxial flanks of the floral meristem and
transiently expressed in developing floral organ primordia. Furthermore, PID is expressed
in the vasculature of the flower stalk and the pedicels, and in the vasculature of the style
(Christensen et al., 2000; Benjamins et al., 2001). The pid loss of function mutant has a
pin-like inflorescence, only a few aberrant flowers develop with reduced number of
sepals, no stamen and a trumpet shaped pistil, but increased number of petals that are
enlarged (Christensen et al., 2000; Figure 8.5.C).

Loss of function pid mutant seedlings frequently have three cotelydons, while the pini
pid double mutant seedlings fail to produce cotyledons and have a radial symmetric
appearance. In the pid pin mutant the boundary specifying genes CUC1 and CUC2, and the
meristem maintenance gene STM are ectopically expressed preventing organ primordia
formation. Loss of either STM or CUC1 and CUC2 in the pin1 pid double mutant restored
outgrowth of the two cotyledons, suggesting that PIN1 and PID generate an auxin maxima
that restricts CUC1, CUC2 and STM to the organ boundaries (Furutani et al., 2004).
Together, the ChIP-Seq, expression array and qRT-PCR results showed that PID is down-
regulated upon ectopic JAG expression (Chapters 2 and 3). The pid jag-2 double loss of
function mutant in L-er background showed additive effects with jag-like petals in an
otherwise pid-like inflorescence (Figure 8.5.C). However, the numbers of petals appeared
to be reduced and the petals appeared to be less serrated in the pid jag-2 double mutant
(reduction in petal number and changes in petal shape and size have not been quantified
yet).

Regarding the localisation of PIN efflux carrier proteins in petals, Sauret et al., (2013)
showed that in early petal primordia the DR5 marker is expressed in the distal tip and
extends to a broader distal domain, where it is maintained over time-course of petal
development, to only narrow down and disappear when petals reach maturity.
Correspondingly, the auxin efflux carrier PIN1 localises to the distal side of epidermal cells
along the midline of the proximal/distal axis. However, fairly early in petal primordia
development, PIN1 proteins started to point divergently towards the distal petal margins.
At later stages in petal development PIN1 shows strong expression near the petal
margins, with no particular polar localisation, and is strongly expressed in the pro-

vascular tissue. Towards petal maturity, PIN1 expression faded and PIN3 expression
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became stronger in the epidermis of the distal margin, with PIN3 molecules pointing away
from the margins. By contrast, in the jag mutant petal the DR5 marker could not be
detected in early primordia and at later stages DR5-GFP was only detected in
discontinuous patches along the distal margin. In addition, the PINI-GFP and PIN3-GFP
signals were both reduced in the jag mutant at all developmental stages and showed a
narrow localisation pattern in the distal tip. Consistent with the PIN3-GFP results, my
expression array analysis showed that PIN3, but not PIN1, showed significantly lower
expression levels in the jag-1 mutant compared with wild type, suggesting that PIN3 is
indirectly transcriptionally activated by JAG.

In contrast to the jag mutant, in the AP1>JAG line with ectopic JAG expression the DR5
marker was extended downwards along the lateral margins of the petals almost to the
transition to the petiole (Sauret et al., 2013). Based on this observation combined with
the PIN localisation and DR5:GUS activity in the jag mutant, it can be hypothesised that
JAG is required to repress PID expression in order to allow PIN orientation divergent from
the strict apical orientation promoted by PID. It would be interesting to investigate
whether there are differences in the orientation of PIN1 proteins in the jag-1 mutant
compared to wild type, however PIN1-GFP and PIN3-GFP proteins were only weakly
expressed in jag-1 and could therefore not be detected at this early stages of
development in the imaging experiment of Sauret et al. (2013). It could also be
hypothesised that ectopic expression of PID prevents the PIN proteins from basal
orientation in the inner provascular and vascular tissue and therefore causes defects in
vascular tissue formation, as observed in the jag loss of function mutant sepals and
petals, where the vasculature is often reduced to the midvein and vascular strands fail to
form loops (Dinneny et al., 2004; Ohno et al., 2004; Chapter 6). However, apart from an
increase in secondary inflorescences, no particular flower phenotype has been described
for the 35S:PID yet (Benjamins et al., 2001; Christensen et al., 2000).

It has been previously shown that PTL influences the dynamics of auxin distribution in
the incipient petal primordia with the DR5 marker being disrupted in the petal founder
cells of the pt/ mutant. In the pin pt/ and pid pt/ double mutants the number of petals is
reduced compared to the single auxin efflux carrier mutants, suggesting that the increase
in petal number in the efflux carrier loss of function mutants is dependent on PTL

function. PTL also had an effect on PIN1 and the influx carrier AUX1. However, the effect

222



of ectopic expression of PTL on auxin dynamics and the dependency of PTL on PID
function has not been investigated yet. Here, it could be hypothesised that the reduction
in the number of petals | have observed in the pid jag2 double mutant could be the
consequence of changed auxin dynamics owing to ectopic expression of PTL in the jag
loss of function mutant (Chapter 5). In a first step to test this hypothesis, PIN1 and PID
expression, and in particular PIN1 localisation would have to be investigated during petal
initiation in stage 3 to stage 5 buds in the context of ectopic PTL expression and
compared to the localisation in the jag loss of function and gain of function mutant. In
addition, this approach would also further elucidate whether ectopic PTL expression in
the petal margins is the cause for disrupted auxin dynamics in later stages of petal
development as proposed by Sauret et al., (2013).

In addition to the connections to auxin transport discussed above, JAG appears to
regulate auxin metabolism and responses. For example, JAG directly up-regulated
CYTOCHROME P450 79B3 (CYP79B3) which catalyses the conversion of tryptophan to
indole-3-acetaldoxime, one of the first steps in auxin biosynthesis (Zhao, 2010).
Furthermore, several members of the AUXIN-INDUCED PROTEIN family (IAA) such as
IAA13, IAA18 and IAA26, which repress transcription of auxin responsive genes, and
members of the AUXIN RESPONSIVE family (ARF), such as ARF18 and ARF8, were directly
targeted by JAG. Additionally, several members of the SMALL AUXIN UP RNA (SAUR)
family such as SAUR15, SAUR27 and SAUR28 were directly and SAUR68 was indirectly
repressed by JAG. Members of the SAUR family rapidly respond to auxin and several
members have been associated with cell expansion (SAUR19, SAUR63) (Spartz et al.,
2012; Chae et al., 2012).

In some cases, JAG appeared to regulate auxin responses indirectly, through
microRNAs. For example, JAG targeted miR167, which controls ARF6 and ARFS8, both of
which play a role in floral organ development (Chapter 4). Also related to the control of
miRNA functions, JAG directly repressed AGONAUTE 7 (AGO7), which specifically forms
complexes with miR390 that guide the cleavage of TAS3 precursor tasiRNAs (Hunter et al.,
2003). In a further link to auxin-related miRNA function, JAG directly targeted mir393B,
which in turn targets all members of the TAAR clade auxin receptors (T/IR1, AFB1, AFB2
and AFB3) (Si-Ammour et al., 2011). The TAAR clade is a component of the SKP/CULLIN/F-

BOX ubiquitin ligase complex that targets IAA proteins for proteasome-dependent
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degradation (Kepinski and Leyser, 2005; Mockaitis and Estelle, 2008). Mutant seedlings of
mir393b show elongated hyponastic leaves, a phenotype that was also observed in the
ago7 mutant and is shared by mutants with auxin hypersensitivity (Si-Ammour et al.,
2011).

The TAS3-derived tasiRNAs mentioned above have been reported to target ARF3
(ETTIN) and ARF4, which play a major role in the adaxial/abaxial patterning in leaf
development (Fahlgren et al., 2006; Hunter et al., 2006). In this context, JAG also directly
represses the auxin-responsive homeodomain leucin zipper (HD-Zip) Class Il gene HAT2
(Figure 8.5.D-E) which has been identified as a direct target of REVOLUTA and KANADI,
the two key players of adaxial/abaxial patterning in early organ primoridia (Reinhart et al.,
2013). HAT2 was directly activated by the adaxial patterning gene REV and down-
regulated upon ectopic expression of KAN (Reinhart et al., 2013), suggesting that HAT2 is
involved in promoting adaxial patterning. Ectopic expression of HAT2 under the 35S
promoter resulted in seedlings with elongated hypocotyls, which was attributed to
increase of cell elongation rather than cell proliferation, and smaller leaves with
elongated petioles (Sawa et al., 2002).

In summary, JAG targeted multiple genes involved in auxin transport, signalling and
response pathways, suggesting that JAG could promote organ growth, in particular
oriented growth and local tissue growth rates required for organ patterning, through

auxin mediated growth pathways.

8.3.4. JAG directly targeted genes involved in gibberellin biosynthesis and signalling

Gibberellins play a major role in promoting plant growth and development, for
example, they promote seed germination, vegetative plant growth, stem elongation,
floral development and fruit patterning. Mutants deficient in GA biosynthesis or signalling
are in general dwarfed and late flowering. Gibberellins function as inhibitors of the DELLA
proteins, which are growth-inhibitor proteins that can bind to transcription factors and
DNA. The relief of the DELLA repression by gibberellins is mediated by the GA-GID-DELLA
complex, which targets DELLA proteins for proteasome-dependent degradation and thus
promotes growth (reviewed by Achard et al., 2009; Daviere and Achard, 2013).

My ChIP-seq and array data revealed multiple links between JAG and gibberellin
metabolism. For example, JAG directly down-regulated GIBBERELLIN 20-OXIDASE 2
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(GA200x2) (Figure 8.6.C) (FDR <0.05) and indirectly down-regulated GA20ox1, two genes
that play a key role in the biosynthesis of bioactive gibberellins, generating C19
gibberellins, which are further converted to bioactive gibberellins by GA3ox1 (Rieu et al.,
2008). In addition, JAG indirectly down-regulated GA3ox1, which catalyses the final step
in the conversion to bioactive gibberellins and has been shown to be expressed at the
base of developing floral buds, in elongating stamen and in the distal tip of developing
sepals (Mitchum et al., 2006). Furthermore, JAG directly up-regulated GIBBERELLIN 2-
OXIDASE 1 (GA20x1) that is involved in the degradation of bioactive gibberellins and is
most abundantly expressed in flowers (Figure 8.6.A- B). The five GA2ox genes identified in
Arabidopsis negatively regulate shoot elongation and inflorescence length and in the
ga2ox quintuple mutant an increase in the number of stem and inflorescence internodes
and flowers was observed (Rieu et al., 2008a). In addition, JAG also targeted GA20x8,
which was not represented on the expression array chip. In contrast to GA2ox1-5, which
cleaves C19 gibberellins, GA20x7 and GA20x8 cleave C20 gibberellins and have therefore
been suggested to negatively regulate the abundance of C20 precursors for the
biosynthesis of bioactive gibberellins.

Furthermore, the ga20x7/8 double mutant shows elongated hypocotyls, suggesting
that GA20x7 and GA20x8 negatively regulated the levels of bioactive gibberellins. In this
context, it has been suggested that GA homeostasis is maintained by feedback and feed
forward regulation at different levels of GA biosynthesis and degradation (Nemhauser et
al., 2006; Rieu et al., 2008 and 2008a). For example, the ga2ox quintuple mutant that has
increased levels of GA showed reduced levels of genes involved in GA biosynthesis, for
example GA200x1 and GA3ox1 (Rieu et al.,2008 and 2008a). Furthermore, GA20x8 has
been shown to be up-regulated upon exogenous GA application, while GA20x1 has been
shown to be down-regulated (Schomburg et al., 2003). In summary, my data suggest that
JAG represses the biosynthesis of bioactive GA while promoting degradation of bioactive
GA.

In addition, JAG also targeted several genes involved in gibberellin signalling pathways:
JAG directly up-regulated GID1b and indirectly up-regulated GIDIc, two of the three GA
receptor homologs of GA INSENSITIVE DWARF 1 (GID1 a-c). The triple mutant gid1a-c has

been shown to be insensitive to exogenous application of GA, while the wild type showed
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enhanced growth in response to exogenous GA application. The gidla-c triple mutant
fails to elongate the stem and showed reduced cell expansion in leaves and roots.

Furthermore, the gid1 a-c was delayed in flowering under long-day conditions and
showed growth defects in floral organs: pedicels failed to elongate and petals and stamen
arrested in stage 10 of development. In addition, stamen filaments failed to elongate and
less pollen could reach the stigma, a phenotype similar to the xth28 mutant (Kurasawa et
al., 2009). In the gidla-c triple mutant, GA levels were significantly higher than in the wild
type and the GA biosynthesis gene GA3-ox1 was upregulated. Furthermore, application of
GA to wild-type seedlings reduced the transcript levels of GA3ox1 but not in the gidla-c
triple mutant. Together, this suggests that defective GA signalling is compensated by an
increase in GA biosynthesis, in line with the observations that GA homeostasis is
maintained by an auto-regulatory feedback loop involving genes that function in
biosynthesis and degradation of GA (Nemhauser et al., 2006; Rieu et al., 2008 and 2008a).
The fact that the gidla-c triple mutant was still viable and produced seeds suggested that
there are additional receptors mediating response to GA. For example, the members of
the GAMYB family have been identified to mediate GA responses in particular in pollen
development and seed germination, a role in floral transition and direct binding to the
LFY promoter was suggested (Achard et al., 2004).

Furthermore, JAG directly targeted BRG1 and directly repressed BRG2, two out of four
members of the BOTRYTIS SUSCEPTIBLE 1 INTERACTOR (BOI) and BOI-RELATED GENE
(BRG) family (Figure 8.6.D-F). BOIs are RING domain proteins, which can function as E3
ligases in the ubiquitination process that leads to proteasomal degradation. ChIP
experiments showed that BOI can directly bind to promoter regions of known direct
targets of DELLA proteins, suggesting that BOIs and DELLAs interact to transcriptionally
repress a specific subset of GA-responsive genes (Park et al., 2013). In the boi quadruple
mutant, responses to GA signalling were enhanced, resulting in early flowering and
decreased chlorophyll content, while 355:B0/ lines showed repressed GA signalling with
delayed flowering and increased chlorophyll content in leaves, suggesting that BOIs
function similar to DELLAs in repressing GA responses. GA promotes early flowering, in
particular under short-day conditions, by promoting LFY expression. In the boi quadruple
mutant, LFY expression was increased, as observed in the della mutant. Conversely, in

the BO! overexpressor LFY was repressed, suggesting that DELLAs and BOIs act
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redundantly to regulate LFY. By contrast, SOC1 did respond to changes in BOI expression
but not DELLAs, suggesting that DELLAs and BOlIs act redundantly to regulate LFY but
independently to regulate SOC1 (Park et al., 2013). However, the boi quadruple mutant
showed hypocotyl length similar to wild type and the gai-1 boi quatruple mutant showed
same hypocotyl length as the single gai-1 mutant suggesting that BOIs are not required
for hypocotyl elongation.

Finally, as described above for auxin responses, JAG also appeared to target gibberellin
responses indirectly through miRNAs. JAG directly targeted miR159A (At1g73687) and
miR159B (At1g18075) two related micro RNAs that are cleaved to 21 nucleotide long
micro RNAs, in contrast to miRJAW (At4g23710), which is cleaved to 20 nucleotide long
micro RNAs and targets CIN-like TCP genes but also targets MYB domain transcription
factors (Palatnik et al., 2003). It has been shown that miR159A and miR159B specifically
target MYB33 and MYB65, which are members of the GAMYB-like R2R3 MYB domain
transcription factor family (Allen et al., 2007). MYB33 and MYB65 play a specific role in
anther development and formation of the aleurone tissue in seed germination, and are
completely repressed by miR159A/B in vegetative tissue. In the mir159ab double mutant,
MYB33 and MYB65 were up-regulated in vegetative tissue. Leaves of the mir159ab were
smaller and consisted of mesophyll cells double the size compared to wild-type with cell
number per area unit reduced to 50%, suggesting that ectopic expression of MYB33 and
MYB65 inhibited cell proliferation in leaves. Because this phenotype was also observed in
the KRP2 over-expressor by de Veylder et al. (2001), Alonso-Peral et al. (2012), tested the
expression levels of all seven members of the KRP family and revealed that KRP7 was up-
regulated in the mir159ab mutant, however, loss of KRP7 function did not rescue the
mir159ab mutant phenotype in the triple loss of function mutant (Alonso-Peral et al.,
2012).

An additional layer of regulation is added to the gibberellin signalling pathway by close
functional and molecular interation with the brassinosteroid signalling pathway, as
observed during hypocotyls elongation in particular in response to light (Tanaka et al.,
2003; Gallego-Bartolome et al., 2012). Transcriptional regulation in response to
brassinosteroids is mediated by the transcription factor family of BRASSINAZOLE
RESISTANT1 (BZR1) and its homologs (Ryu et al., 2007). It has recently been shown that

the DELLA protein GAl interacts with BZR1 and interferes with its promoter binding
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activities using yeast-two hybrid and BiFC assays. Furthermore, using a heat shock-
inducible construct of the negative dominant gai-1 mutation, Gallego-Bartolome et al.
(2012) showed that ectopic induction of the DELLA protein GAl interfered with BRZ1-
mediated gene expression, suggesting that DELLA proteins act via the BRZ1 pathway,
which was also further confirmed by reverse genetics. In this context, JAG directly up-
regulated BRZ1-homolog3 (BEH3) (Figure 8.6.G-H).

In conclusion, JAG directly targeted multiple genes involved in gibberellin biosynthesis,
degradation and signalling. | found that JAG activates the GA receptors GID1b and GID1c
and GA2ox1, which degrade bioactive GA, while JAG negatively regulated the GA
biosynthesis genes GA200x1 and GA200x2 and GA3ox1 and two members of the BRG
genes that repress GA responsive genes similar to DELLA genes. This would suggest that
JAG promotes GA signalling by increasing the receptors and repressing the repressors of
GA-responsive genes. From these regulatory functions, one could hypothesise that in the
jag loss of function mutant GA signalling is decreased and repression of GA-responsive
genes is increased, at least for the subset of BRG target genes. Consequently, this could
be compensated by an increase in GA levels which could be the outcome of increased GA
biosynthesis and a decrease of GA degradation owing to auto-regulatory feedback
mechanisms, but also owing to the direct regulatory effects of JAG on genes involved in
GA biosynthesis and degradation. Ultimately, this could lead to increased GA levels in the
jag loss of function mutant, in line with my observations that loss of jag mutants show
similar phenotypes as mutants with increased in GA levels: leaves and stems are pale
green in colour, suggesting a decrease in chlorophyll content. Furthermore, jag loss of
function mutant plants flowered at least 7-10 days earlier with fewer leaves compared to

wild type plants, although the statistical significance has not been tested yet.
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Figure 8.1. JAG directly and indirectly regulates genes involved in cell expansion.
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(A, C-E, G-H) Visualisation of read enriched regions mapping to the TAIR10 Arabidopsis
reference genome (x-axis) using the Integrated Genome Browser (Nicol et al., 2009), ChIP-
Seq peak score values (y-axis) based on the ratios of normalised reads between JAG-GFP
and control samples were calculated for every single nucleotide position using CSAR
software (Muifio et al., 2011a), the maximum score value within the candidate peaks was
used to test for significance of the enrichment; ChiP-Seq peaks detected in each replicate
within 3 Kb upstream and 1.5 Kb downstream of the coding sequences for the AHA2,
AKT2, PKS5, RALFL4. AT5PTASE2, and GRP5. (B, F) Expression levels (relative to the TUB4
constitutive control) of AHA2 (B) and RALFL4 (F); mRNA measured by qRT-PCR in
inflorescence apices of 355::JAG-GR plants 4h after mock treatment (light blue) or
treatment with dexamethasone 10 uM (red); CHX indicates samples from plants that
were also treated with cycloheximide 10 uM; or untreated wild-type (WT) and jag-2
plants (dark blue); bars show the average and standard deviation of three biological
replicates; asterisks indicate statistically significant differences (unpaired two-sample
Student’s t-test, p < 0.05) between dexamethasone-treated and mock-treated samples
and between the untreated wild type and jag-2 (dark blue bars) (compared in a separate

independent experiment).
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Figure 8.2. JAG directly and indirectly regulates genes involved in cell wall-related and

apoplast processes.

(A-C, E-F) Visualisation of read enriched regions mapping to the TAIR10 Arabidopsis

reference genome (x-axis) using the Integrated Genome Browser (Nicol et al., 2009), ChIP-

Seq peak score values (y-axis) based on the ratios of normalised reads between JAG-GFP

and control samples were calculated for every single nucleotide position using CSAR

software (Muifio et al., 2011a), the maximum score value within the candidate peaks was

used to test for significance of the enrichment; ChIP-Seq peaks detected in each replicate

within 3 Kb upstream and 1.5 Kb downstream of the coding sequences of AT4G00740
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(QUASIMODO3), XTH28, pectinlyase (AT5G63180), L-ASCORBATE OXIDASE AT5G21100,
and SKS5 (AT1G76160). (D) Expression levels (relative to the TUB4 constitutive control) of
pectinlyase (AT5G63180); mRNA measured by qRT-PCR in inflorescence apices of
35S::JAG-GR plants 4h after mock treatment (light blue) or treatment with
dexamethasone 10 uM (red); CHX indicates samples from plants that were also treated
with cycloheximide 10 uM; or untreated wild-type (WT) and jag-2 plants (dark blue); bars
show the average and standard deviation of three biological replicates; asterisks indicate
statistically significant differences (unpaired two-sample Student’s t-test, p < 0.05)
between dexamethasone-treated and mock-treated samples and between the untreated

wild type and jag-2 (dark blue bars).
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Figure 8.3. JAG directly and indirectly regulates cell wall-related genes.

(A) Overview of directly and indirectly repressed members of the CELLULOSE SYNTHASE-
LIKE family. (B-D) Expression levels (relative to the TUB4 constitutive control) of CSLA10
(B) and CSLAO1 (D); mRNA measured by gRT-PCR in inflorescence apices of 35S::JAG-GR
plants 4h after mock treatment (light blue) or treatment with dexamethasone 10 uM
(red); CHX indicates samples from plants that were also treated with cycloheximide 10

UM; or untreated wild-type (WT) and jag-2 plants (dark blue); bars show the average and
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standard deviation of three biological replicates; asterisks indicate statistically significant
differences (unpaired two-sample Student’s t-test, p < 0.05) between dexamethasone-
treated and mock-treated samples and between the untreated wild type and jag-2 (dark
blue bars); (C) Visualisation of read enriched regions mapping to the TAIR10 Arabidopsis
reference genome (x-axis) using the Integrated Genome Browser (Nicol et al., 2009), ChIP-
Seq peak score values (y-axis) based on the ratios of normalised reads between JAG-GFP
and control samples were calculated for every single nucleotide position using CSAR
software (Muifio et al., 2011a), the maximum score value within the candidate peaks was
used to test for significance of the enrichment; ChIP-Seq peaks detected in each replicate
within 3 Kb upstream and 1.5 Kb downstream of the coding sequences of CSLAO1; (E-F)
ChiP-Seq peaks and expression levels (as described above) detected for TBL37, a member

of the the TRICHOME BIREFRIGENCE-LIKE family.
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Figure 8.4. JAG directly targeted several members of the cytokinin activating LONELY
GUY family. (A, D) Visualisation of read enriched regions mapping to the TAIR10
Arabidopsis reference genome (x-axis) using the Integrated Genome Browser (Nicol et al.,
2009), ChIP-Seq peak score values (y-axis) based on the ratios of normalised reads
between JAG-GFP and control samples were calculated for every single nucleotide
position using CSAR software (Muifio et al., 2011a), the maximum score value within the
candidate peaks was used to test for significance of the enrichment; ChIP-Seq peaks
detected in each replicate within 3 Kb upstream and 1.5 Kb downstream of the coding
sequences of LOG1 and LOG8. AT5PTASE2, and GRP5. (B, C) Expression levels (relative to
the TUB4 constitutive control) of LOG1 (B) and LOG5 (C); mRNA measured by qRT-PCR in
inflorescence apices of 35S::JAG-GR plants 4h after mock treatment (light blue) or
treatment with dexamethasone 10 uM (red); CHX indicates samples from plants that
were also treated with cycloheximide 10 uM; or untreated wild-type (WT) and jag-2
plants (dark blue); bars show the average and standard deviation of three biological
replicates; asterisks indicate statistically significant differences (unpaired two-sample
Student’s t-test, p < 0.05) between dexamethasone-treated and mock-treated samples

and between the untreated wild type and jag-2 (dark blue bars).
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Figure 8.5. JAG directly targeted PINOID, a gene involved in polar auxin transport, and
the auxin-responsive gene HAT2. (A, D) Visualisation of read enriched regions mapping to
the TAIR10 Arabidopsis reference genome (x-axis) using the Integrated Genome Browser
(Nicol et al., 2009), ChIP-Seq peak score values (y-axis) based on the ratios of normalised
reads between JAG-GFP and control samples were calculated for every single nucleotide
position using CSAR software (Muifio et al., 2011a), the maximum score value within the
candidate peaks was used to test for significance of the enrichment; ChIP-Seq peaks

detected in each replicate within 3 kb upstream and 1.5 kb downstream of the coding
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sequences of PID and HAT2. (B, E) Expression levels (relative to the TUB4 constitutive
control) of PID (B) and HAT2 (C); mRNA measured by gRT-PCR in inflorescence apices of
35S8::JAG-GR plants 4h after mock treatment (light blue) or treatment with
dexamethasone 10 uM (red); CHX indicates samples from plants that were also treated
with cycloheximide 10 uM; or untreated wild-type (WT) and jag-2 plants (dark blue); bars
show the average and standard deviation of three biological replicates; asterisks indicate
statistically significant differences (unpaired two-sample Student’s t-test, p < 0.05)
between dexamethasone-treated and mock-treated samples and between the untreated
wild type and jag-2 (dark blue bars). (C) Inflorescences of the pid single loss of function
mutant (right) and the pid jag2 double loss of function mutant (left) with additive effects

of narrower, smaller petals, both in L-er background.
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Figure 8.6. JAG directly targeted genes involved in gibberellins biosynthesis and

degradation and brassinosteroid signalling. (A, C-E, G) Visualisation of read enriched
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regions mapping to the TAIR10 Arabidopsis reference genome (x-axis) using the
Integrated Genome Browser (Nicol et al., 2009), ChIP-Seq peak score values (y-axis) based
on the ratios of normalised reads between JAG-GFP and control samples were calculated
for every single nucleotide position using CSAR software (Muifio et al., 2011a), the
maximum score value within the candidate peaks was used to test for significance of the
enrichment; ChIP-Seq peaks detected in each replicate within 3 kb upstream and 1.5 kb
downstream of the coding sequences of GA20X1, GA200X2, BRG1, BRG2, BEH3. (B, F, H)
Expression levels (relative to the TUB4 constitutive control) of GA20X1 (B), BRG2 (F) and
BEH3 (H); mRNA measured by gRT-PCR in inflorescence apices of 35S::JAG-GR plants 4h
after mock treatment (light blue) or treatment with dexamethasone 10 uM (red); CHX
indicates samples from plants that were also treated with cycloheximide 10 uM; or
untreated wild-type (WT) and jag-2 plants (dark blue); bars show the average and
standard deviation of three biological replicates; asterisks indicate statistically significant
differences (unpaired two-sample Student’s t-test, p < 0.05) between dexamethasone-
treated and mock-treated samples and between the untreated wild type and jag-2 (dark

blue bars).
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Chapter 9 - General Discussion

9.1. JAG is required to produce fully functional organs

How organs develop to species-specific size, shape and function during postembryonic
development in plants still harbours many unsolved questions. In plants, morphogenesis
is based on the processes of cell proliferation and cell growth, which have to be
coordinated within tissues and at organ level. However, it remains unclear how these
processes are coordinated, whether developmental regulators target both processes in
parallel or whether they regulate them singly and generate dependencies between them.
Moreover, only few developmental regulators within the gene regulatory network of
organ growth and morphogenesis have been functionally characterised in detail.

The single C,H, zinc finger transcription factor JAG has been identified to play a key
role in organogenesis, based on the severe phenotype in the loss of function mutants.
Floral organs are narrower, shorter and have serrated margins, therefore they fail to
reach the final species-specific size and shape. In addition, in the jag loss of function
mutant sepals fail to enclose the inner developing whorls and defects in pollen
development result in partial male sterility in jag mutants. From this it can be concluded
that JAG plays a key role during organ initiation and subsequent distal growth to produce
fully functional flowers. Here, | aimed to reveal the molecular mechanisms and genetic
interactions by which JAG mediates its growth promoting functions.

During this project, | used quantitative 3D imaging to investigate JAG-dependent
changes in cell behaviour and | used global expression analysis and genome-wide analysis
of JAG DNA-binding sites to find downstream targets of JAG. Reverse genetics and
reporter lines were used to confirm that the identified molecular interactions were
genetically and functionally relevant. The global expression profiling, analysis of genome-
wide DNA binding sites and quantitative 3D analysis of cell geometry combined with the
S-phase marker EdU enabled me to identify downstream targets of JAG and to explore
the cellular effects of these interactions on cell size homeostasis. This resulted in a step
by step discovery of functionally relevant direct interactions between JAG and its target

genes, in particular the cell cycle inhibitors of the KRP family. Furthermore, data obtained
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during this project has been used to validate a mathematical model explaining polarity

during petal growth (Sauret et al., 2013).

9.2. JAG provides a molecular link between organ patterning and tissue growth

Data obtained during this project revealed that the transcription factor JAG directly
links the genetic pathways of organ patterning, tissue growth and morphogenesis. JAG
directly repressed genes involved in meristem development, such as CLV1 and the TALE
proteins BEL1 and SAW2, and the floral primordium identity gene LFY. These interactions
are is in line with the findings from the quantitative 3D imaging approach, which showed
that JAG is required for the transition from meristematic to primordium behaviour. The
fact that sepal primordia still emerged and were physically distinguishable from the
meristem in the jag mutant revealed that the changes in cell behavior that underpin
primordium growth are genetically separable from those required for primordium
emergence (Schiessl et al., 2012). Furthermore, JAG directly repressed several organ
boundary specifying genes such as PTL and HAN, suggesting that growth-restricting
boundary genes need to be repressed in order to promote tissue growth.

In respect to organ patterning and organ polarity, JAG directly repressed BOP2 and
directly bound to BOP1. BOP1/2 are expressed in the basal region of lateral organs, where
they are involved in the regulation of organ growth and morphogenesis along the adaxial-
abaxial and proximo-distal axes and antagonise JAG (Norberg et al., 2005; Jun et al.,
2010). In the leaf it has been shown that ectopic expression of JAG and loss of BOP
function result in the same phenotype of ectopic leaf blade growth in the petiole region,
suggesting that BOP1/2 promote petiole growth behaviour and JAG promotes leaf blade
growth, both acting as cell autonomous transcriptional regulators within exclusive
domains. By contrast, JAG did not appear to interact with FILAMENTOUS FLOWER (FIL) a
member of the YABBY transcription factor family that functions redundantly in
adaxial/abaxial organ patterning, with the fil jag double mutant showing additive effects
(Ohno et al., 2004).

Mutual antagonism between cell autonomous transcriptional regulators has been
shown to be a common mechanism to link organ patterning and tissue growth. For

example, the role of antagonising cell autonomous acting transcription factors linking
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distal-proximal organ patterning and growth has been well established in the context of
Arabidopsis ovule development. The antagonistic and in part synergistic interactions
between NOZZLE (NZZ) and BEL1, ANT and INNER OUTER (INO) downstream of floral
organ identity genes has been shown to determine the distal nucellus region bearing the
megaspore, the central chalaza region, and the basal funiculus (Balasubramanian and
Schneitz, 2000 and 2002). In the nzz mutant, the distal and central regions of the ovule
are missing or reduced, similar to the jag loss of function mutant phenotype in leaves and
perianth organs. Because the ovule consists of very distinctive regions along the proximal-
distal axis, it was possible to precisely characterise the growth defects in the nzz mutant
with the basal funiculus region being extended by increased cell proliferation at the
expense of a missing or reduced central chalaza region and distal nucellus region
(Balasubramanian and Schneitz, 2000 and 2002). Similarly, basal elongated cells
appeared to replace the typical conical cells in the reduced distal lobe region of jag loss of
function petals, possibly as a result of ectopic BOP1/2 expression.

Similarly to BOP1/2, NZZ has been shown to be involved in establishing the
abaxial/adaxial axis by repressing INO, suggesting that patterning of abaxial/adaxial and
proximal/distal polarity are interconnected processes and under the control of the same
transcriptional regulators. Based on its function linking patterning and growth,
Balasubramanian and Schneitz (2000) referred to NZZ as a "floral organ-building" gene
acting downstream of floral organ identity genes. In this context, Bencivenga et al. (2012)
showed that NZZ and BEL1 are required for auxin and cytokinin signalling during ovule
development, showing that cell autonomously acting transcriptional regulators are
interconnected with non cell autonomously acting plant hormones during organ
patterning and organ growth (Bencivenga et al., 2012).

Another example of proximal-distal patterning mediated by the antagonistic
interaction of transcription factors associated with auxin signalling is found during early
embryogenesis. The earliest event of proximal-distal patterning is the asymmetric division
of the zygote into an apical cell that gives rise to the pro-embryo and the larger basal cell
the suspensor. After three to four rounds of cell divisons, the pro-embryo reaches the 8-
cell/16-cell globular stage of the pro-embryo during which a basal and apical domain (a
root pole and a shoot pole) are established that later give rise to the shoot and the root

meristems. The pro-embryo is pre-patterned by a polar apical to basal auxin flux
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mediated by the basal orientation of PIN auxin efflux carriers. While PLETHORA (PLT)
transcription factors determine root fate, members of the CLASS I/l HOMEODOMAIN-
LEUCINE ZIPPER 11l (HD-ZIP Ill) family (REVOLUTA, PHABULOSA, PHAVOLUTA and
INCURVATA) are expressed in the central apical domain and have been shown to promote
apical shoot fate during early embryogenesis. It has been shown that the PLT
transcription factors are actively repressed in the apical domain by the transcriptional co-
repressor TOPLESS (TPL) to allow the development of a shoot pole. On the other hand,
expression of mutated HD-ZIP /Il genes that are resistant to miR165/166 converted root
poles into shoot poles in p/t mutant background (Smith and Long, 2010). In addition to
proximal/distal patterning, HD-ZIPIII transcription factors have a role in abaxial/adaxial
patterning. When shoots are converted to roots the established abaxial/adaxial
orientation in the apical domain is lost. Taken together, this further supports the idea that
proximal/distal and abaxial/adaxial patterning converge in the embryo and during post-
embryonic lateral organ development, and that transcriptional regulators such as NZZ and
members of the HD-ZIP Il are involved in both adaxial/abaxial and proximal/distal
patterning, as suggested for BOP1/2.

Interestingly, the boundary specifying gene HANABA TARANU (HAN), which also
interacts with JAG in a mutually antagonistic way (Zhang et al., 2013), has been shown to
play an important role in establishing the boundary between the basal region of pro-
embryo and the suspensor, the region where the root meristem initiates from (Nawy et
al., 2010). In the han loss of function mutant the expression domain of PLT1 shifted from
the basal pro-embryo domain into the apical domain and several suspensor-specific genes
were found in the basal region of the pro-embryo, suggesting that HAN as a boundary-
specifying gene facilitates the apical/basal patterning by establishing a boundary between
domains of different specification (Nawy et al., 2010). This further provides evidence for
the importance of boundary specifying genes not only for organ separation, but also for

establishing distinct domains during axial patterning.

Mutual antagonism of cell autonomous transcriptional regulators is also a well-
established mechanism in animal development. For example in Drosophila limb
development, the proximal/distal-distal axis is established by the non cell autonomously

acting secreted signalling proteins Dpp and Wingless, which promote the cell-
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autonomous homeodomain transcription factors Distal-less in the distal imb domain and
Homothorax in the proximal body wall domain. It has been shown that these two
domains exclude each other. Because animal cells can migrate, it has been shown that
chimeric cells expressing Distal less in the proximal Homothorax expression domain
migrate back to the distal domain and the other way around, thereby generating a
boundary between the proximal Homothorax domain and the Distal less limb domain.
Loss of Distal less function caused expansion of proximal structures at the expense of
distal structures, which led to the hypothesis that basal proximal structures could be a
default developmental pattern which requires distal regulators that superimpose distal
organ patterns on top of a default basal organ pattern (Cohen and Jiirgens, 1989; Wu and
Cohen, 1999).

In animals, appendages such as wings and legs are patterned by gradients of secreted
signalling molecules (morphogens) such as Dpp (Decapentaplegic) and Wingless. Several
models have been proposed for how morphogen gradients can be translated into growth
and morphogenesis. A key component of these models is the Hippo pathway, which
transduces signals between receptors in the plasmamembrane and the nucleus to
integrate cell division and growth with environmental and developmental cues. The Hippo
pathway restricts cell proliferation, promotes apoptosis of excess cells and integrates the
growth controlling Myc pathway to determine final organ sizes (Pan, 2010; Halder and
Johnson, 2011; Neto-Silva et al., 2009). In plants, no comparable central pathway has
been discovered yet that integrates and translates developmental and environmental
cues into regulation of cell proliferation and cell growth. However, the signalling molecule
auxin is a good candidate to link organ patterning and organ growth processes in plants.
Auxin has been shown to regulate both cell cycle progression and cell expansion
(reviewed by Perrot-Rechenmann, 2010). During early plant embryogenesis, inductive
signalling in discrete domains of the developing pro-embryo has been shown to be
dependent on local auxin gradients (Nawy et al., 2010). The mechanism to generate
localised auxin maxima during organ initiation and subsequent organogenesis by polarly
oriented PIN auxin efflux carriers has been well established (Benkova et al, 2003; Heisler
et al., 2005; Sauret et al., 2013). In this context, my results showed that JAG directly
repressed the PIN associated kinase PINOID (PID). PID functions in the apical localisation

of PIN efflux carriers and therefore promotes a basal-apical auxin flux, which results in
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auxin maxima in the distal area of developing leaves and petals (Friml et al., 2004; Kleine-
Vehn et al., 2009; Sauret et al., 2013). Therefore JAG might function in apical-distal organ
patterning by directly targeting oriented, polar auxin transport. In addition, JAG indirectly
influenced auxin dynamics by repressing PTL (Sauret et al., 2013).

The interaction between JAG and PID could also be functionally relevant in anisotropic
growth processes, as live imaging suggested that JAG promotes a shift from isotropic to
anisotropic growth (Schiessl et al., 2012). In respect to anisotropic growth, several factors
modifying the behaviour of microtubules and microfibrils have been identified, for
example CLASP proteins and the WAVE protein complex (reviewed by Ivakov and Persson,
2013). However, except for the GRF-interacting factor AN3, which has been described to
play a role in microtubule arrangement and specifically targets the cell wall protein MERI5
(Kim et al., 2002), JAG did not appear to directly target genes involved in oriented
microtubule arrangement and cellulose microfibril alignment. It is also possible that the
main contributors for the shift from isotropic growth to anisotropic growth are found
within the growth-related cell wall targets of JAG. For example, JAG controlled genes that
are likely to participate at different stages of oriented cell wall extension, including
apoplast acidification (AHA2, PKS5, RALFL4), apoplast redox system (Ascorbate oxidase)
and putative cell wall modifying enzymes (pectin lyases, pectin acetylesterase, cellulose
synthase-like). Several gene candidates with unknown or vague functions showed very
strong enrichments of DNA binding sites and significant differences in expression levels.
For example, AT3G50650, a member of the GRAS transcription factor with unknown
function, AT4G18010 a member of the INOSITOL(1,4,5)P3 5-PHOSPHATASE Il family and
GLYCINE RICH PROTEIN 5 (AT3G20470) with functions in the vacuole, were all significantly
down-regulated upon ectopic JAG activation and ectopically expressed in the jag mutant.
In the future, exploring the function of these candidates may reveal new players in
particular in the field of oriented cell wall extension during cell growth but also cell wall-
related processes during cytokinesis.

Potentially related to cell-cell communication during developmental processes, JAG
also directly targeted several micro RNAs that targeted genes involved in development.
As mobile factors, microRNAs have been shown to move between cells within a tissue and
between tissues to facilitate the coordination of processes within an organ. For example,

miR164 and miR396 that target CUC genes and members of the GRF family, respectively,
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mediate growth and cell differentiation in the developing leaf primordia (Hasson et al.,

2011; Rodriguez et al., 2010; reviewed by Powell and Lenhard, 2012).

9.3. JAG modulates cell size homeostasis by directly repressing KRP4

Quantitative 3D analysis of cell geometry combined with the S-phase marker EdU
revealed that JAG is required to uncouple entry into S-phase and cell size in the
primordium (Schiessl et al., 2012). By contrast, in the jag mutant primordia, S-phase entry
and cell size appear to be coupled, with cells entering S-phase at uniform cell sizes around
150 um3. Because a similar cell behaviour was observed in wild-type and jag meristems it
was concluded that JAG is required for the shift from meristem to primordium cell
behaviour (Schiessl et al., 2012). In this context, it was speculated that JAG modulates
cell size homeostasis to allow increased cell proliferation, cell growth rates and an
increase in cell size heterogeneity during primordium emergence.

In addition, data obtained from this project revealed that ectopic activation of JAG in
the meristem caused cells to enter S-phase at smaller cell sizes than 150 um?3. This
suggested that JAG was able to override an S-phase constraint mechanism that might
impose a minimum cell size threshold, preventing cells from entering S-phase at cell sizes
below 150 um? but pushing cells into S-phase as soon as they reach the minimum
threshold level. Similarly, loss of KRP4 function in the wild-type and jag loss of function
mutant background caused cells to enter S-phase at smaller cell sizes in the meristem.
Because ectopic activation of JAG and loss of KRP4 had similar effects on meristem cell
behaviour, | hypothesised that KRP4 plays a major role in the minimum cell size threshold
mechanism observed in meristem cells and that ectopic JAG activation repressed KRP4 in
this context. Ectopic expression of JAG and loss of KRP4 show that cells are physiologically
capable to divide at smaller cell sizes than they do in the developmental context of the
wild-type meristem, suggesting that constraint of S-phase entry is a mechanism to
regulate cell division and cell growth in specific tissues.

In the sepal primordia of the jag loss of function mutant, loss of KRP4 function caused
uncoupling of S-phase and cell size similar to the uncoupling observed in wild-type
primordia. This suggested that ectopic KRP4 expression could be the main cause for the

coupling of S-phase entry and cell size in the jag mutant primordia compared to wild-type
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primordia. Or in other words, in order to uncouple entry into S-phase from cell size in the
wild-type primordium, JAG is required to repress KRP4. In this respect, it can be
speculated that it is predominantly the repression of KRP4 mediated by JAG that is
required to allow an increase in cell proliferation rates but also for the increase in cell
growth rates and the increase in cell size heterogeneity observed in sepal primordia in
comparison to the growth behaviour in the meristem. In this context, Grandjean et al.
(2004) showed that meristem growth stopped specifically upon inhibition of entry into S-
phase while cells continued to grow when mitosis was blocked. Furthermore, several
experiments showed that constraining S-phase entry by ectopic expression of KRPs
inhibits cell growth and leads to a dramatic decrease in final organ sizes (De Veylder et al.,
2001; Verkest et al., 2005; Bemis and Torii, 2007; Roeder et al., 2010). Expression of KRP2
and members of the SIAMESE family has also been shown to be promoted by the DELLA
proteins, which have been suggested to actively restrain plant growth below the
physiological maximum capacity in response to environmental cues (Achard et al., 2009).

Regulators of S-phase entry also play important roles in animal development. In mice,
growth and tumor development is restrained by the KIP protein p27. Loss of p27 in mice
resulted in an overall increase in body size and p27 mice were more susceptible to
develop tumors owing to increased cell proliferation. Interestingly, loss of p27 rendered
the mice more responsive to growth hormones, suggesting that releasing a cell cycle
constraint also promotes growth in animals (Teixeira et al., 2000). Kip 27 has been shown
to be directly targeted by FoxO, a Forkhead transcription factor that acts downstream of
the TOR signalling pathway and promotes cell cycle arrest in response to stress,
suggesting that p27 is also regulated in response to developmental and environmental
cues (Schmidt et al., 2002).

At the whole-organ scale, loss of KRP function in the jag loss of function background
caused a partial but significant rescue of growth. These findings suggested that the
growth defects in the jag mutant are at least in part caused by ectopic expression of KRPs,
but that additional targets of JAG are required for full organ growth. For example, JAG
targeted genes involved in growth-related cell wall modification, which | did not have the
opportunity to investigate during this project, but are promising candidates to be studied

in the future.
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It has been a strongly debated question, what effects the coordination of cell
proliferation and cell growth have on final organ size (reviewed by John and Qi, 2008;
Marshall et al., 2012). In this context, the roles of KRP genes in both cell size homeostasis
and in overall organ growth raise the question of whether both processes are causally
linked. We could not detect any significant changes in the morphology or size of
primordia in krp4 mutants, although the short time between primordium emergence and
the stages analyzed here (1-2 days) may be insufficient for changes in organ growth to
unfold. Because | did not observe any significant rescue during early stages of
organogenesis, it remains an unanswered question whether the significant changes in cell
size homeostasis caused by the interaction between JAG and KRP4 during organ initiation
have an effect on final organ size and morphology. In this respect, Roeder et al. (2010),
who followed development of the sepal primordium during later stages of development,
showed that variation in cell cycle duration, which is comparable to cell size variation at
entry into S-phase provided that cells spend variable times predominantly growing in G1
phase, plays a major role in cell type specification and morphogenesis. Moreover, Roeder
et al. (2010) showed that ectopic expression of KRP1 and loss of SMR1 in the loss of giant
cells from organs (Igo) mutant had an effect on final cell size distribution, besides the
effects caused by shifts in endoreduplication rates. Apart from underpinning tissue
growth and overall organ growth, cell size variation determines the mechanical and
physiological properties of cells (diffusion, volume to surface area ratio) and has been
suggested to influence metabolism, gene expression and intercellular communication
(reviewed by Marshall et al., 2012; Laskowski et al., 2008; Wu et al., 2010).

Previously, KRPs have been identified as putative targets of floral organ identity genes
(Kaufmann et al., 2009; Wuest et al., 2012). However, no genetic and functional
interactions between KRPs and developmental regulators have been established yet,
apart from the direct molecular interaction between JAG and KRPs revealed here. For
example, do meristem maintenance genes directly or indirectly promote KRP4 expression
together with CYCD3 expression to tightly coordinate S-phase entry with cell size, as
observed in the quantitative 3D imaging experiments? The antagonistic interaction
between KRPs and D-type cyclins in fine tuning CDKA activity has recently been described
as a double negative feedback loop in mathematical models that aimed to explain the

regulation of cell cycle progression in plants (Dissmeyer et al., 2010; Zhao et al., 2012). In
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this respect, it could be speculated that because of their crucial functions they could also
be key targets of other developmental regulators to inhibit or to promote entry into S-
phase and concomitant cell growth. Future global transcriptome analysis and analysis of
genome-wide DNA binding sites of key meristem regulators and growth regulators will
provide answers to this question.

Taken together, could KRPs and D-type cyclins, as core cell cycle regulators, be central
integrators of environmental and developmental cues? For example, it has been shown
that cytokinin signalling and the transcription factor ANT modulates CYCD3 function
(Mizukami and Fischer, 2000; Dewitte et al., 2007). Moreover, data obtained during this
project revealed that JAG directly promotes CYCD3 expression. It would be interesting to
find out whether ANT directly targets KRPs to exert its cell proliferation and growth
promoting functions. KRPs and cyclins have been shown to be regulated post-
translationally by targeted ubiquitin-dependent proteasomal protein degradation
(reviewed by Blomme et al., 2013). Hence, it could be speculated that some of the growth
regulators identified to function in the degradation pathway such as B/IG BROTHER, DA1
and DA2 may target CYCD3 for degradation or indirectly promote protein stability of
KRPs.

9.4. Coordinating cell division and cell size

It has been suggested that in order to coordinate cell division and cell size, the two
processes would either have to be dependent on each other or be regulated in parallel
(reviewed by Jorgensen and Tyers, 2004; reviewed by John and Qj, 2008; reviewed by
Wartlick and Gonzalez-Gaitan, 2011; reviewed by Sablowski and Carnier Dornelas, 2013).
In unicellular budding yeast and fission yeast, minimum cell size thresholds at the G1/S-
phase transition have been described to generate such a dependency between cell size
and entry into S-phase (Jorgensen and Tyers, 2004). Several experiments with mammalian
cell culture cells have shown that cells double in size before they undergo division,
suggesting that there is an intrinsic dependency of entry into S-phase on cell size in cells
of multicellular organisms (reviewed by Grewal and Edgar, 2003). Similarly, entry into S-

phase was blocked when cell growth was inhibited while cells continued to grow when
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mitosis was inhibited (Grandjean et al., 2004), suggesting that there is an intrinsic
dependency between entry into S-phase and cell growth in plants.

Even though components such as the G1/S phase cyclins of the Cln family have been
identified to act downstream of a minimum cell size threshold in yeast, it still remains an
unsolved question how cells measure their size. It has been suggested that parameters of
cytoplasmic growth, most importantly rates of ribosome biogenesis and protein
translation, would provide information about the cells’ growth rates and nutrient states.
In addition, it has been suggested that cell size sensing may directly rely on parameters of
cell geometry. In fission yeast, it was proposed that the protein kinase Pom1 located at
the cell poles would inhibit the mitotic apparatus in the centre of the cells, thereby
overcoming the inhibitory influence of signals from the cell poles (Moseley et al., 2009),
but the putative function of Pom1 in cell size sensing could not be confirmed in the loss of
function mutants (Wood and Nurse, 2013). More recently, Rho1l signalling has been
suggested to link membrane trafficking and membrane growth to progression into mitosis
in fission yeast. Moreover, it has been shown that blocking membrane trafficking
inhibited ribosome biogenesis, suggesting that this hypothesis would be in agreement
with the proposed role of ribosome biogenesis in cell size thresholds (Anastasia et al.,
2013). In this context, it was speculated that in plants, protein synthesis and cell wall
integrity pathways could be linked and provide parameters for a cell size sensing
mechanism (Sablowski and Carnier Dornelas, 2013).

In the meristem context, where cells enter S-phase at very narrow sizes, data obtained
during this project suggested that the core cell cycle regulator KRP4 is involved in a
minimum cell size threshold. As soon as cells reach a certain cell size, they pass the
checkpoint, and enter S-phase which results in a population of cells with uniform sizes
over several rounds of divisions, similar to what has been reported for fission yeast and
budding yeast. This was further supported by Grandjean et al. (2004), who observed that
meristem cell sizes are very uniform in spite of heterogeneity in cell cycle length. It has
been suggested by Jorgensen and Tyers (2004) that during organ growth and
morphogenesis, the minimum cell size threshold would be modulated and overridden by
developmental regulators to allow for local variations in cell size distributions that are

required for final size, shape and function of organs. In this context, my data suggests that
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JAG, by repressing KRP4, is one of these developmental regulators that are able to
modulate and loosen a minimum cell size threshold.

On the other hand, it has been doubted whether individual cells in tissues of
multicellular organisms have the need for intrinsic cell size monitoring at all. Unicellular
yeast cells grow exponentially and in this context a minimum cell size threshold at the
G1/S phase entry ensures uniformity in cell sizes over generations. By contrast, it has
been shown that mammalian cells show linear growth behaviour with smaller and larger
cells increasing in size at the same rate (reviewed by Grewal and Edgar, 2003; Conlon and
Raff, 2003). It is not clear whether cell growth in plants is linear or exponential. If growth
were linear, the relative increase in cell size decreases for larger cells and sizes would
converge even if initial size of sister cells were different, therefore a size checkpoint
would not be required to maintain uniform cell sizes. If growth were exponential,
differences in the size of sister cells after division would be amplified and the
maintenance of uniform cell sizes would require a cell size checkpoint, in particular in
tissues with uniform cell sizes such as the meristem. By contrast, exponential growth in
the organ primordia could be one explanation for the increase in cell size heterogeneity
and overall increase in cell growth rates. It would take live imaging combined with 3D
analysis of cell geometry with high temporal resolution to distinguish between linear and
exponential cell growth.

In contrary to unicellular cells, cells of multicellular organisms have to coordinate their
growth and division rates with neighbouring cells to ensure integrity and functionality of
the tissue they are part of, which would require a continuous coordinated adjustment
and modulation of minimum cell size thresholds or a complete release from them.
Therefore it has been suggested that cell size homeostasis in multicellular organisms may
be the balanced net effect of cell cycle inhibiting/promoting factors and growth
promoting/inhibiting factors rather than the effect of cell size thresholds. In this way, cell
size homeostasis could be modulated by several synergistically and antagonistically acting
non-cell autonomous factors and cell-autonomously acting regulators with high local and
spatial resolution. In respect to this hypothesis, KRP4 as a regulator of the core cell cycle
machinery could be one of the key targets of developmental regulators that would
regulate growth and cell division in parallel to modulating cell size homeostasis. What

appears like a minimum cell size threshold in the meristem could be the net effect of
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different meristem-specific regulators that restrict entry into S-phase by targeting KRP4,
while at the same time activating factors such as CYCD3, which promote entry into S-
phase. It has been suggested by Sanz et al. (2011), that KRP2 may combine these
regulatory mechanisms in a dual function, by promoting the formation and nuclear-
localisation of D-type cyclin/CDKA complexes on the one hand and by inhibiting the same
complexes on the other hand. In this context, JAG may not only be able to override a cell
size threshold but actually be an active modulator of cell size homeostasis by repressing
KRP4. Further work on KRP4 and JAG as an endogenous developmental repressor of KRP4
will shed light on the mechanisms KRP4 and JAG are involved in to modulate cell size
homeostasis.

It has been a long-standing question whether promoting cell proliferation can drive
growth and which of the two processes is directly targeted by developmental regulators.
In relation to this question, it has previously been reported that constraining S-phase is a
regulatory mechanism to restrict growth (Achard et al., 2009). Results from this project
showed that the direct repression of KRP4 by JAG promoted overall organ growth by
releasing the constraint on S-phase. Moreover, the interaction between JAG and KRP4
reveals a molecular link between the control of the G1-S transition and developmental
regulation of cell size homeostasis and cell growth, suggesting that localized release of a
growth restraint imposed by the KRP CDK inhibitors can be used to modulate cell size
homeostasis required for differential tissue growth behaviour during morphogenesis.
Even though this result does not provide an answer to the question of whether cell
division is a driver of growth, it provides evidence that restricting S-phase and thus cell
proliferation is used to modulate growth during plant development.

In summary, this work contributed to answering the question of how growth
regulatory genes coordinate cell growth and cell proliferation to produce organs of
defined shapes and sizes. The direct links between JAG and organ patterning genes and
cellular effectors of growth and cell proliferation give insight into the cellular processes
targeted by regulatory genes to sculpt plant organs. Finally, the results of this project
place JAG at the interface between gene regulatory networks that control organ identity
and patterning, and core cellular functions required for growth and morphogenesis

(Figure 10.1.).
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Figure 10.1 Overview of the gene candidates and functions that are targeted by JAG to
promote tissue growth. This includes the repression of meristem organisation genes and
boundary specifying genes, and the interaction with organ patterning genes and growth
regulatory pathways. At cellular level, JAG promotes cell proliferation and cell growth and
modulates the coordination of both processes by directly repressing KRP2 and KRP4, two
regulators of the core cell cycle machinery and by directly targeting genes involved in cell
wall-related growth processes.
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Chapter 10 - Material and Methods

10.1. Plant material

10.1.1. Plant lines

Arabidopsis thaliana Landsberg-erecta (L-er) was used as wild type for the expression
profiling, ChiP experiments and quantitative 3D imaging experiments. Arabidopsis
thaliana Columbia (Col) was used as the wild type for imaging experiments.
The T-DNA insertion line jag-1 was originally used in Col (Dinneny et al., 2004), and
backcrossed three times into L-er. The EMS mutant jag-2 in L-er background (Ohno et al.,
2004) was identified to have a single nucleotide change (C/T) in the second exon that
introduced a stop codon. The T-DNA insertion lines krp2-3 and the krp4-1 were identified
from the SALK T-DNA insertion mutant collection and were used in Col background. The
loss of function allele krp2-3 (SALK_110338) has an insertion in the first exon and the loss
of function allele krp4-1 (SALK 102417) has an insertion in the second exon. The krp4-2
allele (GT1143) was identified in L-er background from a transposable element gene trap

mutant screen (Sundaresan et al., 1995).

10.1.2. Growth conditions

Fume sterilised seeds were germinated on growth medium (GM) (1 litre containing 1%
glucose, 4.4 g Murashige and Skoog salts and vitamins (Duchefa), 3 ml of 0.85 M 4-
morhpolineethanesulfonic acid (MES) buffer pH 5.7, adjusted to pH 5.7 with 1 M KOH,
0.9% agar added) and stratified for 48 h at 4 °C in the dark. Seeds were germinated under
long day conditions (16 h light and 8 h dark) at 21° C. For seedlings grown on selection
medium, 50 pg/ml Kanamycin, 100 pg/ml Gentamycin or 10 pug/ml Basta were added to
the liquid but cooled down GM, according to the resistance. For JAG-GR activation in
seedlings, seeds of plant lines harbouring the 355:JAG-GR construct were germinated on
GM supplemented with 10 uM DEX and 0.01% ethanol.
Seedlings were transferred to JIC Arabidopsis Soil Mix Levington F2 compost with
Intercept and grit at a 6:1 ratio. For all experiments, except quantitative 3D imaging
experiments, plants were grown under long day conditions (16 h light and 8 h dark) at 18

°C day temperature and at 20 °C night temperature at 80% humidity. For quantitative 3D
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imaging, plants were grown on JIC Arabidopsis Soil Mix at 16 °C under continuous light

until flowering.

10.1.3. Seed sterilisation

10.1.3.1. Fume sterilisation of Seeds

Seeds (up to 500 ul) were filled into Eppendorf tubes and placed into an air-tight
container with a beacon filled with 100 ml sodium hypochlorite (Sigma) in a flow hood. In
order to produce chlorine fume 3 ml of hydrochloric acid 36% were added to the sodium

hypochlorite and the desicator lid swiftly closed. Seeds were fume sterilised for 3 to 4 h.

10.1.3.2. Sterilisation of TO transgenic seeds after floral dip transformation

Seeds harvested from floral dip transformation (Clough and Bent, 1998) were
sterilised using Dichloroisocyanuric Acid Sodium Salt. Seeds (up to 500 ul) were filled into
2 ml Eppendorf tubes and 1 ml of Dichloroisocyanuric sterilisation solution was added.
The Dichloroisocyanuric sterilisation solution was prepared in a volume of 20 ml
containing 2.5 ml Dichloroisocyanuric stock solution 5% (1 g of salt dissolved in 20 ml of
aqua dest), 10 ml ethanol 100% and 7.5 ml aqua dest). Seeds were incubated in the
Dichloroisocyanuric sterilisation solution by gentle inversion for not longer than 12 min.
Seeds were left to settle at the bottom of the Eppendorf tube for 1 min. Then, the
solution was removed under the fumehood and seeds were washed twice with 1 ml

ethanol 100%. After the last wash, seeds were left to dry under a sterile flow hood.

10.1.4. CTAB genomic DNA extraction

CTAB DNA extraction was used for genotyping and to obtain template DNA for cloning
purposes. Plant tissue from young rosette leaves was collected in 1.5 ml Eppendorf tubes
and snap-frozen in liquid nitrogen. Leave tissue was ground to fine powder in the 1.5 ml
Eppendorf tubes using plastic pestles. Subsequently, 500 ul of CTAB-extraction buffer
containing 100 mM Tris pH 8, 1.4M NaCl, 20 mM EDTA pH 8, 20 mg
Hexadecyltrimethylammoniumbromide (CTAB)/ml buffer and 2 pl R-mercaptoethanol/ml
buffer were added to the ground frozen powder and homogenised briefly. Samples were
incubated at 65 °C for 45 min. Samples were centrifuged at full speed for 10 min. The

supernatant was transferred to a fresh tube, 500 pl of Chloroform:Isoamyl Alcohol 24:1
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were added and the tubes inverted several times. Samples were centrifuged at full speed
for 10 min and 500 pl of the supernatant were transferred into a fresh Eppendorf tube
with 50 pl (1/10 of the supernatant volume) of 3M sodium acetate pH 5.6, 1 ul of
glycogen and 500 ul (equal amount of the supernatant volume) of isopropyl alcohol
added. For precipitation, samples were left at -20 °C for 20 min and subsequently
centrifuged at full speed for 20 min. The DNA pellet was washed with 500 ul of 70% EtOH
in a six-min centrifugation step and subsequently left to air-dry. The DNA pellet was re-

suspended in 100 pl of water or TE buffer and stored at -20 °C for further use.

10.1.5. Genotyping

10.1.5.1. PCR genotyping

Genomic DNA obtained from CTAB DNA extraction was used as template to genotype
plant lines by PCR. PCRs were performed in 50 pl-reactions (34.5 pl aqua dest, 2 pl
genomic DNA, 5 pl 10x Taq Buffer (Roche), 1 pl 10 mM dNTPs, 0.5 pl Tag (home-made), 1
pl reverse oligo 10 uM diluted in water, 1 pl forward oligo 10 uM diluted in water. For
genotyping a touch-down PCR programme was used with the following PCR programme
parameters: 94 °C for 3 min as an initial denaturation step, followed by a denaturation
step at 94 °C for 30 sec, annealing step for 30 sec starting from 65 °C in the first cycle,
reduced by 1 °Cin each following cycle down to 55 °C, followed by an extension step at 72
°C for 1 min, after the touchdown 25 cycles with annealing temperature 55 °C followed
and a final elongation step at 72 °C for 10 min. The oligonucleotide combinations used for
genotyping are summarised in the list below. In order to genotype SALK and SAIL T-DNA
insertion lines, the primer design software tool from the SALK institute

http://signal.salk.edu/tdnaprimers.2.html was used. To genotype the EMS mutant jag-2

the primer design software tool dCAPS Finder 2.0 (Neff et al., 2002) was used.
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10.1.5.2. Genotyping Oligonucleotides
T-DNA insertion line jag-1

jag-1 mutant allele

JL202 CATTTTATAATAACGCTGCGGACA

N0681 GGATCCAACTCAGAGCGAGTGATGATCTTG
Product size: estimated 1200 bp

JAG wild type

0JD126 TTAGTTTCCACACGCAGAGAGAG

0JD127 TCATGTGGCCACCAAGAGCTTG

Product size: estimated 500 bp

EMS mutant line jag-2

dCAPS (derived cleaved amplified polymorphic sequence) marker
jag2EMS-F CAGAACTTGAGTGAACAAAGTC,

jag2EMS-R AGCCCTCGAGGAAGGTTCT,

Product size 279 bp, when digested with Sall, WT digested — 30 bp,

mutant remained undigested

GABI-Kat line NUBBIN

nub (GK-244A08-014390)

T-DNA pAC161 CCCATTTGGACGTGAATGTAGACAC
GABI-Kat(OJD 153-R) AAGACAGCGGAGGATAAAGATATG
Product size: 500 bp

NUB wild type

ZINF3-F (OJD 154-L) GAGGGTTTAGAGAGAAGCAAAC
GABI-KAT(OJD 153-R) AAGACAGCGGAGGATAAAGATATG
Product size: 763 bp

SALK lines (WT=LP+RP, mutant=SALK_LB1+RP)
SALK_LB1 GCGTGGACCGCTTGCTGCAACT
KRP2, ICK2 (AT3G50630) SALK 130744
krp2-1_LP ACGCGAGCTAGAGACTCTCTAGTAGA

257



krp2-1_RP TGGATTCAATTTAACCCACTCG

Product size: 1106 bp (wild type), 545-845 bp (krp2-1 mutant)
KRP2, ICK2 (AT3G50630) SALK_110338

krp2-3_LP CGGTTAGGAGAAGAGAACGAG

krp2-3_RP TCGAAGTTGTACTTCTCCATGA

Product size: 1096 bp (wild type), 432-732 bp (krp2-3 mutant)

KRP4, ICK7 (AT2G32710) SALK_102417
krp4-1_LP TGGTTAAAATTGAAACTGGCG
krp4-1_RP CCTGGTAGTGGTTGTTCGTTC
Product size: 1087 bp (wild type), 464-764 bp (krp4-1 mutant)

CYC-P4;1(AT2G44740) SALK_118728

cycpd;1_LP TCACTAGTGTCATGGTCGCTG

cycpd;1_RP TGCTCTGCACATGTTCTTTTG

Product size: 1201 bp (wild type), 592-892 bp (mutant)

SAIL lines (WT=LP+RP, mutant=SAIL_LB1+RP)
SAIL_LB1 GCCTTTTCAGAAATGGATAAATAGCCTTGCTTCC
CYCLIN P3;1 (AT2G45080) SAIL_764 C11

cycp3;1_LP  5'CTTTCGAAACTCACAACGCTC3
cycp3;1 RP 5’AAATCGCTAGGGAATCCATTG3’
Product size: 1199 bp (wild type), 537-837 bp (mutant)

KRP4, ICK7 (AT2G32710) GT1143 (insertion in first intron)

Gene trap transposable element with GUS-reporter (Sundaresan et al. 1995)
GT1143_ F  TGGAGGTGAATCCTCTATTGC (ATG+74 bp)

GT1143 R ATCAAACTGCATGGTGTGGA (ATG+612 bp )

Ds5I_R GGTAGTCGACGAAAACGGAACG

Product size: 546 bp (wild type), estimated 900-1000 bp (mutant)
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10.2. Generating transgenic lines

10.2.1. Cloning of constructs

All cloning strategies were based on classic restriction digest and ligation cloning.
Inserts were amplified using Phusion DNA polymerase, HF buffer supplemented by MgCl,
using a touchdown PCR protocol (initial denaturation step for 98 °C for 5 min, followed by
a denaturation step at 98 °C for 30 sec, annealing step for 30 sec starting from 65 °Cin
the first cycle, reduced by 1 °C in each following cycle down to 55 °C, followed by an
extension step at 72 °C for 30 sec — 3 min according to amplicon length, after the
touchdown 20-25 cycles with annealing temperature 55 °C followed and a final
elongation step at 72 °C for 10 min. Amplicons were purified with Qiagen PCR purification
kit according to the manufacturer’s instructions and eluted in 25 ul elution buffer. For all
restriction digests in all cloning steps restriction enzymes from Roche and New England
Biolabs with incubation conditions according to the manufacturers’ instructions were
used. After restriction digest, inserts and plasmids were purified either by phenol
purification and ethanol precipitation or separated on a 1% agarose gel, excised and
purified using the QIAQUICK GEL EXTRACTION KIT (Qiagen). For phenol purification of
restriction and ligation reactions, reactions were brought to a volume of 100 pl with aqua
dest and 100 pl Phenol:Chloroform:lsoamyl Alcohol 25:24:1, saturated with 10 mM Tris
pH 8.0, 1 mM EDTA (P2069, Sigma) were added and gently inverted. After a 10-min
centrifugation step, the supernatant was transferred to a new Eppendorf tube for ethanol
precipitation. For ethanol precipitation, reactions were supplemented with 1/10 of
reaction volume 3M sodium acetate pH 5.6, 1 pl of glycogen and 2.5 of reaction volume
of 100% ethanol. DNA was precipitated at -20C for 20 min and centrifuged at max speed
for 20 min. The supernatant was discarded and the DNA pellet was washed with 300 pl
ethanol 70% by centrifuging at max speed for 7 min. Subsequently, the DNA pellet was
left to dry and re-suspended in 20-25 ul water. In order to calculate the amount of vector
and insert for the ligations, amount and quality of insert and vector DNA was measured
using a NanoDrop (Thermofisher). Ligations were performed using T4 Ligase (Roche)
either overnight at 4 °C or for 8 h at 16 °C. Ligations were phenol-chloroform purified and

ethanol precipitated and resuspended in 20 pl of water.

259



Vectors were dephosphorylated by shrimp alkaline phosphatase (Roche) following the
manufacturers instructions. For initial cloning and subcloning steps, Bluescript KS
conferring resistance to ampilicin/carbenicilin (100 pg/ml) was used. For plant
transformation, final constructs were inserted into the binary vector pPZP222 conferring
resistance to Spectinomycin (100 pg/ml) in bacteria and Gentamycin (100 ug/ml)
resistance in plants or into the binary vector pCGN1547 conferring resistance in
gentamycin (25 pg/ml) resistance bacteria and Kanamycin (50 pg/ml) resistance in plants.
For all plant transformations the Agrobacterium strain ASE conferring resistance to

Kanamycin (50 pg/ml) and Chloramphenicol (30 ug/ml) was used.

10.2.2. Electroporation of E. coli and Agrobacterium

Plasmid DNA was transformed into Escherichia coli strain DH5a for cloning purposes
and into Agrobacterium tumefaciens strain ASE for stable plant transformation purposes
using electro-competent cells. For transformation 50 ul of electro-competent cells were
thawed on ice and between 2 pl and 5 pl of plasmid DNA derived from purified ligation
reactions or mini-preps were added. The bacterial suspension was transferred to a pre-
cooled transformation cuvette and placed into a Biorad Genepulser. For electro-
transformation the following settings were applied using the Biorad Genepulser:
Capacitance extender 250 uFD, Capacitance 25 uFD, Voltage 2.5 KV and Pulse Controller
for E.coli at 200 Q resistance and for Agrobacterium 400 Q resistance with variable time
constants. After electroporation, 900 pl of ice-cold SOC medium (10 ml LB medium
supplemented with 200 pl 1M magnesium chloride, 200 pl 1M magnesium sulphate and
400 pl 20% glucose) were added to the cuvette and the bacteria suspension was
transferred to a 1.5 ml Eppendorf tube. Subsequently, transformed E. coli were incubated
at 37 °Cfor 1 h and transformed Agrobacteria were incubated at 28 °C for 1.5 h. Bacterial
suspension (800 ul) were divided into 100 ul and 700 ul aliquot and spread on plates
containing LB medium supplemented with antibiotics for selection. Plates were incubated
at 37 °C overnight for E.coli and at 30 °C for 2 days for Agrobacterium. Single colonies
were picked and transferred to 10 ml of liquid LB medium supplemented with antibiotics
for selection. Liquid cultures were incubated in a shaker (200 rpm speed) at 37 °C and 28

°C for E. coli and Agrobacterium, respectively until liquid cultures reached log-phase.
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Plasmid DNA was purified from E.coli cultures using Qiagen Miniprep Kit following the

manufacturers’ instructions.

10.2.3. Plant transformation

For plant transformation the floral dipping method (Clough and Bent, 1998) was used.
Prior to transformation, presence of the binary vector was confirmed by colony PCR. 1 pl
of liquid culture in 50 ul of water heat at 98 °C for 10 min. 1 ul of denatured diluted
culture was used as a template in a 50 pl PCR reaction (1 pl of 10 uM dNTP mix, 1 ul of 10
UM oligo forward/reverse, 10X PCR-buffer and 0.5 pul home-made Tag-polymerase).
To grow Agrobacterium for transformation, 400 ml LB were inoculated with a 10 ml liquid
culture in log-phase and incubated in a shaker at 28 °C to log-phase. To harvest the
Agrobacterium cells, the liquid culture was centrifuged in a pre-cooled centrifuge at 3000
rpm for 20 min at 4 °C with centrifuge brakes blocked. The supernatant was discarded
and the bacterial pellet was resuspended in 500 ml of ice-cold transformation media
containing 25 g sucrose, 2.15 g MS salts plus vitamins adjusted to pH 5.8 with KOH
suplemented with 150 ul Silwet L-77. For floral dip transformation, flowers (with siliques
removed) were submerged into the bacterial suspension for 45 sec and subsequently
transferred into plastic bags for 24 h and left in the dark. For seed collection, plants were
grown in a containment glasshouse for 2 weeks. After 2 weeks plant were bagged and

watering reduced.

10.3. Generating constructs

10.3.1. Construction of p35S:JAG-GR

JAG cDNA derived from wild type Ler flowers was amplified from plasmid pRS338 with
primers 220901-F and 220902-R introducing a BamH] site at the start codon and a Bglll
site replacing the stop codon. The p35S::JAG:GR construct was generated following the
cloning strategy described in Gallois et al. (2002) resulting in the Asp718-35S5-BamHI-JAG
cDNA-GR-nos-terminator-Xbal construct. The construct was transformed into L-er wild-
type plants using the binary vector pCGN1547 and Agrobacterium strain ASE by floral dip
transformation (Clough and Bent, 1998). Plant line 22.11.3.27 was identified being

homozygous with a single insertion for p35S:JAG-GR and showed ectopic expression
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phenotype upon treatment of inflorescences with 10 uM dexamethasone (D1756, Sigma)
in 0.1% EtOH. To confirm that the construct can complement the mutant phenotype, line

22.11.3.27 was crossed to jag-2.

10.3.2. Construction of pJAG:JAG-GFP

A 9.7 kb genomic fragment of JAG (location 25682925 — 25692696 antisense) was
amplified from the transformation-competent artificial chromosome (TAC) clone
JATY67024 (Genome Enterprise Ltd) in two separate fragments. The fragment spanning
the region 1.618 bp downstream of the stop codon was amplified using the primers
221001F and 221002R introducing a Kpnl site at the 5’end and replacing the endogenous
stop codon by an Ncol site and a stop codon 3 nucleotides downstream of the Ncol site. In
a second PCR, a Pst/ site was introduced using primers 221001-F and 221003-R in order to
clone the fragment into pBluescript KS (-) as a Kpnl and Pstl insertion.

For amplification of the fragment comprising the full-length genomic fragment of
1.623 bp and the regulatory sequence spanning 6.531 bp upstream the 5" UTR, primers
221004-F and 221005-R were used to introduce an Ncol site at the 5" end and a BamH|
site at the 3’end. For in frame fusion of the two fragments via the Ncol site, the
pBluescript KS (-) vector harbouring the 1.618 bp fragment was digested with Ncol and
BamHI in order to take up the 5’fragment (8.141 bp). Subsequently, the joined fragment
with final size of 9.7 kb was cloned into the binary vector pPZP222. The pJAG::JAG:GFP
translational fusion was generated by insertion of the sGFP S65T fragment that was
amplified with primers 221006F and 221007R introducing an Ncol site at both ends. The
PJAG::JAG:GFP construct was transformed into jag-2 using Agrobacterium strain ASE by

floral dip transformation (Clough and Bent, 1998).

10.3.3. Construction of KRP2:KRP2-GFP

The construct for the KRP2::KRP2-GFP protein fusion was cloned and transformed into
wildtype and jag-1 loss of function background. The genomic fragment of KRP2
(Chr3:18796861-18802701) including the promoter region (3647 bp), the genomic region
(859 bp) were amplified as a single fragment from wild-type L-er genomic DNA
introducing a BamH]/ at the 5’ and an Ncol site at the 3’ end replacing the stop-codon. The
3’end (1334 bp) was amplified introducing an Xhol followed by an Ncol site at the 5’ end

and a Knpl site at the 3’end. Both fragments were fused at the Ncol site in pBluescript KS
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(-). In a second step, the sGFP S65T (Chiu et al., 1996) coding sequence was amplified
introducing Ncol sites at both ends allowing in frame insertion into the Ncol site
generated at the C-terminal end of the coding sequence of KRP2. In a third step, the
PKRP2::KRP2-GFP construct was cloned into the binary vector pCGN1547 conferring
kanamycine resistance in plants. Wildtype and jag-1 plants of L-er and Col-0 background

were transformed.

10.3.4. Construction of KRP4:KRP4x-CYPET reporter construct

KRP4:KRP4x-CYPET line with the cyan fluorescent protein CYPET replacing the last
intron and exon of KRP4 genomic fragment at the C-terminus but retaining the 1.35 kb 3’
end. The genomic fragment of KRP4 (Chr2:13873436-13875831) including the promoter
region (1338 bp), the genomic region including the first exon (578 bp), the first intron
(871 bp), and 32 bp from the second intron were amplified as a single fragment of 2.819
bp total length from wild-type L-er genomic DNA. In this fragment restriction sites were
introduced on either side, an Xbal site at the 5’end and a BamHi| site at the 3’, which
allowed for subcloning into pBluescript KS (-) and final cloning into the binary vector
pPCGN1547. In order to join the 5’ fragment with the 3’ fragment and to allow for
subsequent insertion of the CYPET construct, an Ncol site was introduced in frame in the
second exon upstream of the BamH/ site. The 3’ fragment (1334 bp) starting 8 bp
downstream of the genomic stop codon was amplified introducing an Ncol site at the
5’end and a BamHI site at the 3’end. In the next step, the 5’ fragment was cloned into
pBluescript KS (-) using the generated Xbal and BamHI restriction sites. Subsequently, the
3’ fragment was inserted using the Ncol and BamH] sites. For the CYPET cyan fluorescent
reporter protein, the CYPET (Genbank: AEH43768) coding sequence was amplified from
the cloning vector pBOB (GenBank: JF927991.1 by Wachsman et al. (2011)), excluding the
C-terminal ER localisation signal by introducing a stop codon at 783 bp. At both ends, Ncol
sites were introduced, allowing for in frame insertion into the Ncol sites of the KRP4
construct. In afinal step, the pKRP4::KRP4x-CYPET construct was cloned into the binary
vector pCGN1547 conferring kanamycin resistance in plants. Wild-type and jag-1 plants of

L-er and Col-0 background were transformed.
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10.3.5. Cloning probes for RNA in situ hybridisation

To generate the templates for probe synthesis, BEL-1 cDNA (1635 bp) was amplified
from reverse transcribed RNA of L-er wild type inflorescence using primers BELBamHI-F
and BELXbal-R. The generated BEL-1 cDNA and BP cDNA (995 bp) from glycerolstock 641
were cloned into pBluescript KS(—) as BamHI-Xba and BamHI-EcoRI insertions,
respectively. For STM, the cDNA construct previously cloned into pBluescript KS (-) as
BamHI-Xbal insertion by Gallois et al. (2002) was used.

To generate templates for probe synthesis, KRP2 and KRP4 cDNA was amplified from
reverse transcribed RNA of L-er wild-type inflorescence using primers KRP2BamHI-F and
KRP2Xbal-R, and KRP4BamHI-F and KRP4EcoRI-R, respectively. Both, the KRP2 fragment
(594 bp) and the KRP4 fragment (553 bp) were designed to avoid the C-terminal region,
which has been reported to be highly conserved between the seven members of the Kip-

related protein family (de Veylder et al., 2001).

10.3.6. JAG cDNA with C-terminal poly-His tag fusion in pEAQ-specialK

In order to transiently express JAG in Nicotiana benthamiana, JAG cDNA was cloned
into the pEAQspecialK vector (kindly provided by the lab of George Lomonossoff, JIC). The
PEAQ-specialK vector system allowed for a poly-His tag fusion to the JAG protein on
either terminus. To generate a C-terminal poly-His tag fusion, JAG cDNA was amplified
from plasmid pRS338 using primers P19CtNrul-F and P19CtXma-R that introduced Nrul
site at the 5’ end and a Xmal site at the 3’ end substituting the stopcodon. The fragment
was cloned into pEAQ-specialK (Sainsbury et. al., 2009) as an Nrul-Xmal insertion
generating JAG cDNA fused to a C-terminal poly-His tag. Subsequently, the pEAQ-specialK
vector containing the C-terminal poly-His tag sequence fused to the JAG cDNA was

transformed into the Agrobacterium strain LBA4404 (Sainsbury et al., 2009).

10.3.7. JAG cDNA with N-terminal poly-His tag fusion in pRSETA

In order to ectopically express JAG in the E.coli strain BL21 and to purify the JAG
protein by immobilised metal affinity chromatography, JAG cDNA was fused to an N-
terminal poly-His tag downstream of the viral, IPGT inducible T7 promoter using the
vector system pRSETA (Invitrogen). For directional cloning, JAG cDNA was amplified from
plasmid pRS338 using primers pRSETABamHI-F and pRSETAHindllI-R which introduced a

BamH/I and a Hindlll restriction site at the 5’ end and the 3’ end, respectively.
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Subsequently, the fragment was cloned into pRSETA plasmid as a BamHI-Hindlll insertion
resulting in JAG full-length cDNA with an N-terminal poly-His tag fusion. The plasmid was
transformed into the E.coli strain BL21 conferring resistance to chloramphenicol (35

ug/ml) and carbenicilin (50 ug/ml).

10.3.8. Cloning oligonucleotides

Construction of p35S:JAG:GR

220901-F CTGCGGATCCATGAGGCATGAGGAG
220902-R GGATAGATCTAGCGAGTGATGATCTTGAAAC
Construction of pJAG::JAG:GFP

221001-F TAGAGATTCGGGTACCTCACATAGTC

221002-R GCCCAT GGTTTAATAG

221003-R AGATCATCTGCAGCCCATGGTTTA

221004-F AACCATGGGCGAGTGATGATCTTG

221005-R GACTCTAATGGATCCG AGTTTATGCT

221006-F AAAACCATGGTTACTTGTACAGCTCGTCCAT
221007-R AAAACCATGGTGAGCAAGGGCGAGGAGCTG
Construction of KRP2:KRP2-GFP

5’KRP2BamHI-L AAAAGGATCCACTTGAGAAAGTGATCTGC
5’KRP2Ncol-R CATCGTCTTCACCATGGATTCAA
3’KRP2XhoNcol-L TTAACTCGAGTCCATGGTGAAGACGATG
3’ KRP2KpnI-R TTTTGGTACCTTCTCGCATCTTTGTGTTG
KRP2GFPNcol-L AAAACCATGGGTGAGCAAGGGCGAGGA
KRP2GFPNcol-R AAAACCATGGCTTGTACAGCTCGTCC
Construction of KRP4:KRP4x-CYPET reporter construct
5’Xba-F AAAAACCATGGGAGCAAGGGAGAGGAAC
5’NcoBamHI-R AAAAACCATGGTTAGTACAGTTCGTCCATG
3’Nco-F AAAACCATGGGGGGTTAATAGTTAAT

3’BamHI-R CCAAGGATCCATCAAAACAAGGCCATG
CYPETNcol-F  AAAACCATGGAAGACTAATCTTTTTCTC
CYPETNcol-R AAAACCATGGTTAGTACAGTTCGTCCATG

Cloning probes for RNA in situ hybridisation

265



BELBamHI-F GATTAATCgGATCCAAGGGTT

BELXbal-R CCTTGAGCCGTCtCTaGAGAC

KRP4BamHI-F TGGAGGTGGATCCTCTATTGC (=KRP4_cDNAENTRY-F)
KRP4EcoRI-R GTGTGAATTCCCTTGTGGTCCT (=KRP4_cDNAENTRY-R)
KRP2Xbal-R ATGGatcCGGTTAGGAGAAGAGAA

KRP2BamHI-F ACCAAGTGGCTCATCTTTCTaGAAA

Construction of JAG cDNA with C-terminal poly-His tag fusion in pEAQ-specialK
P19CtNrul-F TACCCTGCTCGCGAATGAG

P19CtXma-R GGACCCGGGGAGCGAGTGAT

JAG cDNA with N-terminal poly-His tag fusion in pRSETA

pRSETABamHI-F CTGCGGATCCAAGAGGCATG

pRSETAHindIll-R CACGCTCGAGTCAGAGCGA

10.4. Dexamethasone treatment for expression profiling

For JAG-GR activation, a 0.015% Silwet L-77 (De Sangosse) solution supplemented with
0.1% ethanol (control treatment), 10 uM dexamethasone (D4902, Sigma) with 0.1%
ethanol, 10 uM dexamethasone, 0.1% ethanol and 10 uM cycloheximide (C7698, Sigma)
or 10 uM cycloheximide, 0.1% ethanol (control treatment in the presence of
cycloheximide) was pipetted into the centre of inflorescences of wild-type L-er plants
harbouring the 355:JAG-GR construct in two rounds of applications with about 250 pl of
solution each. In addition, for the jag loss of function mutant versus wild-type comparison
in the expression array experiment, inflorescences of jag-1 L-er plants were mock treated
with a 0.015% Silwet L-77 (De Sangosse), 0.1% ethanol solution. After 5 h (for the
expression array experiment) and 4 h (for gRT-PCR experiments) in daylight conditions,
inflorescence apices (only unopened flower buds) of 12 plants were collected per sample

in three biological replicates per treatment and snap-frozen in liquid nitrogen.
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10.5. Global expression profiling using the Affymetrix gene chip ATH1

RNA extraction was performed using RNEasy plant mini kit (74904 QIAGEN) according
to the manufacturer’s instructions and eluted in 30 pl of RNAse free water. Amount and
quality of the RNA were measured using a Nanodrop to ensure that the 260/280 ratio was
above the minimum of 2 and not lower than 1.80 and the 260/230 ratio was between
2.00 and 2.20, according to the manufacturer’s instructions (Thermo Fisher Scientific).
Concentrations were adjusted if necessary to achieve the required aliquots of 100 ng/ul
(1 pg of total RNA in 10 ul aliquots per sample), as recommended for chip hybridisation by
the Nottingham Arabidopsis Stock Centre, UK. The RNA was reverse transcribed and cDNA
was hybridized on the Arabidopsis thaliana Affymetrix gene chip ATH1 at the Nottingham
Arabidopsis Stock Centre, UK; the raw data and experiment metadata are available at

http://affymetrix.arabidopsis.info/, experiment ID: NASCARRAYS-605. To select genes

with significant differential expression, raw expression values obtained from each
hybridized chip were imported in an R session (http://www.r-project.org/). The probe-set
to gene annotation ath1121501cdf was downloaded from Bioconductor

(http://www.bioconductor.org/). Data was normalized using the package GCRMA

(Gharaibeh et al., 2008) and differential expression was tested using a t-test statistic.
False Discovery Rate (FDR) was controlled by the method described by Benjamini and
Hochberg (1995) and implemented in the bioconductor package multtest. Probe-sets
targeting more than one TAIR10 gene and genes associated with multiple probe sets were
discarded from the analysis at this point. A gene was considered differentially expressed

when FDR<0.01 and the absolute value of the log2 ratio was larger than 0.5.

10.6. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR)

10.6.1. RNA extraction and DNAse treatment

RNA was extracted using the RNEASY PLANT MINI KIT (74904 QIAGEN) according to the
manufacturer’s instructions and total RNA was eluted in 50 pl of RNAse free water. Total
RNA was DNasel treated with AMBION DNA free (AM1906, Invitrogen). In order to obtain
2 ug of total RNA after DNAse treatment with DNA-free from AMBION, 5 ug of eluted
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RNA/DNA elute were DNAse treated in a total volume of 30 pl with 3 ul of 10X buffer and
2 ul of DNAsel for 1 h at 37° C according to the manufacturer’s instruction. After DNAse
treatment samples were measured and checked for good quality using the Nanodrop with

RNA settings, resulting in average RNA concentrations of 80-150 ng/pl.

10.6.2. Reverse Transcription using DNAse treated RNA

Subsequently, reverse transcription (cDNA synthesis) was performed using 2 ug of
DNAse treated RNA resulting in a final volume of 80 ul of final cDNA template. For this, 2
ug of RNA were incubated with 3 pul of Oligo dT (12-18) with a concentration of 0.5 pg/ul
(18418-012I, Invitrogen) and 3 ul of dNTP mix (A, T, G, C) 10 uM each (Roche), (RNAse
free water was used to add up to a total volume of 50 pl) for 5 min at 65° C to anneal the
oligos and placed on ice for 1 min. Subsequently, 12 ul of 5X First Strand Buffer (supplied
with the Superscript Ill enzyme), 3 pl of RNasin RNAse inhibitor (N2111, Promega), 3 pl of
0.1 M DTT (supplied with the Superscript lll enzyme), 10 pl of RNAse free water, and
finally 3 ul of SuperScript Il Reverse Transcriptase (Invitrogen 18080-044) were added to
result in a total volume of 80 pl. For reverse transcription the reactions were incubated at
50° C for 50 min in a PCR machine with heated lid, followed by 15 min at 70° C for

deactivation of the reverse transcriptase.

10.6.3. qRT-PCR using the LightCycler LC480 system

For quantification of transcript levels, gRT-PCR was performed in technical triplicates in
the LightCycler 480 System using LIGHTCYCLER 480 SYBR GREEN | MASTER (04707516001,
Roche) in a total reaction volume of 10 pl, containing 5 ul of LIGHTCYCLER 480 SYBR
GREEN | MASTER, 2 pl of the forward and reverse oligo mix (5 uM), 1 pl of cDNA template,
and 2 pl of PCR-grade water (Roche). The reaction was performed in an LC 480 gPCR-
cycler (Roche) using a standard programme with 5 min at 95° C, 40 cycles of 10 sec at 95°
C, 15 sec at annealing temperature (usually 60 °C) and 15 sec at 72 °C. After each cycle,
the SYBR GREEN signal was measured. The 40 cycles were followed by a melting curve

starting from 65 °C to 98 °C. Data was saved as .ixo file format and analysed using the

LC480 software and Excel (Microsoft). Data were analysed by applying 2-ACt method (ACt
= Ct gene of interest — Ct ref gene), using ACTIN2 (ACT2-F, ACT2-R) or TUBULIN alpha 4
chain expression (TUB4-RT_1-F, TUB4-RT_1-R) for normalisation (Livak and Schmittgen,
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2001). Unpaired two-sample Student’s t test was used to test for significant differences in

expression levels.

10.6.4. Designing and testing oligos for qRT-PCR
For designing oligos for expression analysis, the primer design tool “quantprime”

http://quantprime.mpimp-golm.mpg.de/ was used. Oligos were diluted in PCR-grade

water to 100 uM stock solutions as recommended by the supplier (Sigma). Working
dilutions were prepared to contain the forward and reverse oligo in a concentration of 2.5
UM each. The amplification efficiency of gRT-PCR oligos was tested using a dilution series
of the dilution factors 1, 0.5, 0.2, 0.1 and 0.06 of mixed cDNA templates of the cDNA
templates to be tested, including a water/non-template control in three technical
replicates. The amplification efficiency of qRT-PCR oligo pairs was generally tested at an
annealing temperature of 60 °C. The LC480 software was used to generate standard
curves and to calculate the slope (optimum -3.3), the oligo amplification efficiency
(amplification factors between 1.85 and 2 (=100%) were considered as acceptable). In
addition, it was checked that the melting curve gave one single clear peak and that the

non-template controls did not give any signal.

10.6.5 List of qRT-PCR oligonucleotides (5’ —3’)

ACT2-RT_F ATGGAAGCTGCTGGAATCCAC
ACT2-RT_R TTGCTCATACGGTCAGCGATG
TUB4-RT_F CTGTTTCCGTACCCTCAAGC
TUB4-RT_R AGGGAAACGAAGACAGCAAG
BEL1-RT_F AGTGACAAACCCTACATCCA
BEL1-RT_R CGTATGTCACAGCTTGGTTA
BP-RT_F CATGTCTTCAGATGGTTTCC
BP-RT_R AGTCAGAGAAGGTAGCGTTG
STM-RT_F ACCTTCCTCTTTCTCCGGTTATGG
STM-RT_R GCGCAAGAGCTGTCCTTTAAGC
CLV1-RT_L AGCTTCCACGGCTACTCTAT
CLV1-RT_R AGTACATGCCTAATGGAAGC
LMI1-RT_L CGATGAGGTGAAGAAGCTGAGAGC
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LMI1-RT_R
SAW2-RT_L
SAW2-RT_R
JAG-RT_F
JAG-RT_R
PTL-RT_F
PTL-RT_R
TCP4-RT_L
TCP4-RT_R
TCP3-RT_L
TCP3-RT_R
TCP10-RT_L
TCP10-RT_R
GRF5-RT_L
GRF5-RT_R
AN3-RT_L
AN3-RT_R

CYCD3;3-RT_L
CYCD3;3-RT_R
CYCP3;1-RT_L
CYCP3;1-RT_R
CYCP4;1-RT_L
CYCP4;1-RT_R

KRP1-RT_L
KRP1-RT_R
KRP2-RT_L
KRP2-RT_R
KRP3-RT_L
KRP3-RT_R
KRP4-RT_L
KRP4-RT_R
KRP5-RT_L

TGATGGTCCCGGCAGAGATTTG
GCCTGAACGCTCCGTTAATATCC
TATCAGCATCGCTTGGGTACGG
ACATGAATCGCCACCGACAAGAG
CGTTACGGTAGACCAATTGACGAG
GAAGGAAAAAGAGGAGTTGG
GTCAACTTCTCAAGCCAAAC
GCCGTCCTCTGCTTCCTCTATTTC
TGGAAGCTAGACAAGCCCTGAAAC
ACAAGCCGTCCTCTGCTTCATC
CATTCGAAGCGCCCTGGAATATG
ACACAGTCGTAGTTCCCGAGAC
TCCCGAACGTGTCGAAATGAGTC
CACTCAAGACTCGACAACTGGTAGC
GTTGTGTGTGTTGGTGCAGATCC
CTTAGCGAATGCGCCGAGAATC
ACCATCAACTCTCAAGGCAACCG
TGTCTGCTTCTGCTTCAGTGTCG
TGCTGCTCTTGCACTCTTCTCC
TGCGAAAGTAGGAGGATTAG
ACACACTCACATTCACATGC
GTGATGAGAAGACGATGGAC
CTTCTTGCTTCGTCGTTG
CCGCTACAACAACAATCTAA
AATCTGAGAGAGGAGGAGAAA
GACGATCGTGAAACAGAAAC
GGCGAGACTCTACATCTTCA
CGTTATCTTGTTCCCTTGTG
GCCTTGTAACTTTGTTGAGG
AAGCTTCAACAGGACCACAAGGG
GGGTTGTCATGATTTCAGGCCTTC
GTGTCAATCAATGTCAAACG
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KRP5-RT_R
KRP6-RT_L
KRP6-RT_R
KRP7-RT_L
KRP7-RT_R
AHA2-RT_L
AHA2-RT_R
RALFL4-RT_L
RALFL4-RT_R
PL63180-RT_L
PL63180-RT_R
CSLA10-RT_L
CSLA10-RT_R
CSLAO1-RT L
CSLAO1-RT_R
TBL37-RT_L
TBL37-RT_R
LOG1-RT_L
LOG1-RT_R
LOG5-RT_L
LOG5-RT_R
PID-RT_L
PID-RT_R
HAT2-RT_1L
HAT2-RT_1R
GA20XI-RT_L
GA20XI-RT_R
BRG2-RT_L
BRG2-RT_R
BEH3-RT_L
BEH3-RT_R

TATCACCACAAGCTTCTTCC
CTCTCTAGCTCCGAGAACAA
ACGACAACAGAAATGGAATC
GATCTGAAAATGGAAGACGA
CGCGTTATCTGAAGAAGAAG
ACATTGACGGCAGTGGTAACTGG
TTTGGCAAGTTCGAGGATCTGC
AAATCCGTCAATGCAACCTACCC
GATGCAACCTTGCCCGTTGATG
ACCATCAACTCTCAAGGCAACCG
CGCATCCTCGTGCTTTGTTACCTC
GGACAGAGTGTTGGAGGTAA
TGAAGCACAACTACGTGAAG
TACTCTCTCGGGTAGTCCAA
CCATAGATCAGGCCATAGAG
GCATTTCTCCCACTCACTACATGG
ACCACCTGGGTATGTTGATCCG
ATGTACCAAGGCATGAGAAG
GAGATTTCACAAGTGGGACT
TAGCAGCAGCGGAAAGAGAGAG
TCAATCTCCTCGTCACCAGCTC
AAGCCTCACATTTCTCTTGCATCG

ATCTGGCGGAAGAGAGGGAGAATC

AACGTCGAGGAAGAAGCTCAGG
AGCTAGCTTCTGTTTGGGATTGAG
AACGTTGGTGACTCTCTCCAGGTG
AACCCTATGCCTCACGCTCTTG
ACCTTGCTCAGACGAACGAAGC
CTTAACCTGCGCCAGAACATGC
AGCTGGTTGGACTGTAGAAGACG
TCCATTGGTTTGCATCCCTTGC
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10.7. RNA in situ hybridisation

For probe synthesis, BEL-1 cDNA (nt 442-2077) was amplified from reverse transcribed
RNA of L-er wild type inflorescence using primers BELBamHI-F and BELXbal-R. BEL-1 and
BP cDNA (from glycerolstock) was cloned into pBluescript KS(—) as BamHI-Xba and
BamHI-EcoRI insertions, respectively. For STM, the construct previously generated by
Gallois et al. (2002) was used. For digoxigenin labelling, the probes were in vitro
transcribed from linearised plasmid using the DIG RNA Labelling KIT (11277073910,
Roche) and T7 RNA Polymerase (881767, Roche). In situ hybridisation was performed as
described in Fobert et al., (1996) and Gomez et al., (2005). For staining and signal
detection, Anti-Digoxigenin-AP Fab fragments (11093274910, Roche) in combination with
NBT/BCIP (11681451001 Roche) were used according to the manufacturer’s instructions.
As a mounting solution a drop of VectaMount AQ, H5501 (VECTOR LABORATORIES) was
used. Images were obtained using the Leica DM 6000 microscope with bright field

settings. Images were analysed in Fiji (http://fiji.sc).

10.8. GUS staining

Plant tissue (seedlings, leaves or inflorescences) was fixed in ice-cold 90% acetone on
ice for 20 min. Subsequently, the acetone was replaced by a wash solution containing 50
mM phosphate buffer pH 7.2, 0.5 mM K3Fe(CN)6 (potassium ferricyanide) and 0.5 mM
K4Fe(CN)6 (potassium ferrocyanide) to equilibrate the tissue. The wash buffer was
replaced by staining buffer which contained 50 mM phosphate buffer pH 7.2, 0.5 mM
K3Fe(CN)6 (potassium ferricyanide), 0.5 mM K4Fe(CN)6 (potassium ferrocyanide) and 2
mM X-Gluc (5-bromo-4-chloro-3-indolyl-beta-D-glucuronide) from a 100 mM stock
solution dissolved in Dimethylformamide. For staining, the tissue was vacuum infiltrated,
wrapped in tin foil to protect from light and incubated at 37 °C for 4 h — overnight,
depending on the tissue and expression levels of the GUS reporter. To clear the tissue
from chlorophyll, the tissue was washed in an ethanol series up to 70% EtOH and left
overnight to clear at 4 °C.

Images were obtained using in a Leica 205A stereo microscope using reflective light

mode (LED settings) or transmission light (with bright field - BF settings).
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10.9. Infiltration of tobacco leaves with Agrobacterium for transient expression of JAG

protein

Infiltration of tobacco leaves with Agrobacterium solution was performed following
the standard operating procedure BC-GL-001-version 002 from 2010-09-21. As the first
step, the pEAQ-specialK plasmid harbouring JAG cDNA with a C-terminal poly-His tag
fusion was transformed into the electro-competent cells of the Agrobacterium strain
LBA4404 using electro-transformation and plated on LB plates supplemented with
Rifampilicin (50 pg/ml) and Kanamycin (50 pug/ml). In preparation for the infiltration, 100
ml of MMA buffer were prepared with 8.9 ml aqua dest, 10 ml of 0.1 M MES pH 5.6, 1 ml
of 1 M MgCl, and 100 ul of 0.1 M Acetosyringonge. Single colonies of the Agrobacterium
strain LBA4404 harbouring the pEAQ-specialK with JAG cDNA fused to C-terminal poly-His
tag were picked to inoculate 10 ml of LB medium supplemented with Rifampilicin (50
ug/ml) and Kanamycin (50 pg/ml). The culture was incubated overnight at 28 °C in the
shaker. The overnight cultures were centrifuged for 7 min at 4000 x g at room
temperature and the supernatant was discarded. The pellets were gently resuspended in
10 ml MMA buffer and incubated for 1 h. To adjust the concentration of bacteria in the
final infiltration solution to 0D600=0.4, the OD600 in the 10 ml culture was measured in a
photospectrometer and additional MMA buffer was added accordingly. With an average
0D600=2, the 10 ml cultures were diluted 1:4 to 50 ml of infiltration solution. For
infiltration, fully expanded young leaves with a diameter of 6-7 cm of 4-week old tobacco
plants (in vegetative phase with 2-3 fully expanded leaves) were pierced with a sterile
syringe needle on either side. Subsequently, a sterile plastic syringe was used to infiltrate
the leaves with Agrobacterium solution at the wounded sites. In total, 10 tobacco plants
were infiltrated in this experiment, 6 plants with the Agrobacterium harbouring the JAG
cDNA construct, 2 plants harbouring the HT-GFP control plasmid as a positive control, and

3 plants harbouring the empty HT plasmid as a negative control.
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10.10. Expression of recombinant JAG poly His tag protein in E.coli

10.10.1. Protein expression and Purification

For protein expression in E.coli strain BL21, bacteria were grown in freshly prepared
SOB medium. The SOB medium was prepared in one litre volumes and contained 20 g
tryptone/casein, 5 g yeast extract, 0.5 g NaCl and 186 mg KCI with pH 7 (measured but no
adjustments needed). After autoclaving, 1 | of SOB was supplemented with 10 ml of
sterile 1 M MgCl,. To start a culture, single colonies of E.coli strain BL21 harbouring
PRSETA with JAG cDNA (glycerolstock 708) were used to inoculate 10 ml of SOB media
supplemented with Chloramphenicol (35 pg/ml) and Carbenicilin (50 pg/ml). The liquid
cultures were grown overnight at 37° Cin a thermoshaker incubator. The 10 ml overnight
cultures were transferred to flasks containing 500 ml of SOB medium supplemented with
Chloramphenicol (35 pg/ml) and Carbenicilin (50 pg/ml).
The 500 ml cultures were incubated in the thermoshaker at 37° C for 2-3 h to reach
approximately OD600=0.6. For induction of JAG expression, 5 ml of 100 mM Isopropyl B-
D-1-thiogalactopyranoside (IPTG) (Sigma) stock solution (filter sterilised) were added to
500 ml liquid culture to reach a final concentration of 1 mM IPTG. After induction, the
culture was grown for 4 h (4 h showed strongest protein band at 30 kDa in a preliminary
time course experiment). The cells were harvested in a centrifugation step at 4.500 rpm
for 20 min at 4° C. The pellet was resuspended in 25 ml of pre-cooled lysis buffer
containing 20 mM Tris and 0.5 M NaCl supplemented with proteinase inhibitor mini
complete EDTA free tablet (1 tablet/25 ml) (Roche). The suspension was transferred into
25 ml tubes Sorvall centrifugation tubes. For sonication, the 25 ml tubes were placed in
an ice bucket and placed under a probe sonicator. Sonication was performed 3x for 20 sec
at medium power level with 2 min intervals on ice. Subsequently, the sonicated
suspension was centrifuged in the SORVALL centrifuge at 10.000 rpm for 20 min at 4° C.
TALON metal affinity resin beads (900 ul/25 ml suspension) were pre-equilibrated by a 3-
min centrifugation step at 2,400 rpm at room temperature, the supernatant was
discarded and the beads were resuspended in 5 ml lysis buffer. The equilibration step was
repeated once and beads were resuspended in 900 ul lysis buffer. After centrifugation,
the supernatant (about 20 ml) was incubated with 900 pl pre-equilibrated TALON metal

affinity resin beads on a wheel for 4 h at room temperature to bind the JAG poly-His tag
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protein. Subsequently, the beads were washed with washing buffer (20 mM Tris, 0.5 M
NaCl supplemented with 15 mM imidazole). For the initial washing step, beads were
incubated with 10 ml washing buffer on a wheel for 10 min at room temperature,
centrifuged for 5 min at 700 x g, and the supernatant discarded. The washing step was
repeated once. Then, the supernatant was discarded and beads were resuspended in 5 ml
washing buffer and 2 samples were fused to be loaded on a 2 ml gravity column (TAKARA,
Clontech). The settled beads were washed with a minimum of 20 ml of washing buffer
before applying one ml of elution buffer (washing buffer supplemented with 250 mM
imidazole) for the final washing step. For elution, 10 ml of elution buffer were pipetted in
1 ml aliquots into the columns and the eluted protein was collected in 1.5 ml fractions
into Eppendorf tubes, with the first fraction showing high background and additional
bands and the later fractions showing low background. After elution, 30 pl aliquots of the
crude protein fractions and 30 pl of un-induced bacterial culture (negative control) were
supplemented with 4x NUPAGE LDS Sample Buffer (Invitrogen) and denatured by boiling
for 5 min in order to be loaded on an SDS-PAGE gel for quality check. The fractions
showing a clear band at 30 kDa were combined and concentrated 150-200 fold to a
concentration of 70 pg/ml using Pierce Protein concentrators columns (Thermo Fisher
Scientific) with 9 kDa and 20 kDa molecular weight cut off (MWCO) excluding low
molecular weight proteins as an additional clean up step resulting in increased amounts
of protein of the expected size of about 30 kDa. Using the concentrator columns, all
centrifugation steps were performed at 3,000-4,000 x g at 4° C. Bradford reagent (Sigma)
was used according to the manufacturer’s instructions to determine the final protein

concentrations against a dilution series of BSA protein.

10.11. SDS-PAGE Gel electrophoresis

For SDS-PAGE (Sodium dodecyl-sulfate polyacrylamide gel electrophoresis) gel
electrophoresis, denaturing 10% polyacrylamide gels were used. For the separation gel
(10%), 25 ml (2 gels using the BIORAD equipment) containing 11.25 ml aqua dest, 6.25 ml
Tris 1M pH 8.8, 8 ml 30% acrylamide w/v ratio 29:1 (SEVERN BIOTECH LIMITED), 125 pl
SDS 20%, 250 pl (APS (ammonium persulfate) 10% freshly prepared), 25 pl TEMED

(Tetramethylethylenediamine) were prepared. The separation gel was poured and
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covered with a 1 cm layer of butanol and left to polymerise. After polymerisation (45
min), the butanol layer was removed and the gel surface was rinsed with water. For the
stacking gel, 7.5 ml (2 gels using the BIORAD equipment) containing 4.9 ml aqua dest, 1.9
ml Tris 1M pH 6.8, 1 ml acrylamide 30%, 37.5 pl SDS 20%, 75 pl APS (10% freshly made),
and 15 pl TEMED were prepared. The stacking gel was poured, so that the combs could be
set and left to polymerise. Gels were run in 1X running buffer with 0.1% SDS. Running
buffer was prepared as a 10x stock solution containing 0.25 M Tris base (30.28 g), 14.4%
w/v Glycine (144 g). To 1 litre of 1X running buffer, 5 ml of 20% SDS were added. To load
the protein samples (25-35 ul), 7-9 pl of 4x NUPAGE LDS Sample Buffer (Invitrogen) were
added and the samples were subsequently denatured at 95° C for 5 min and centrifuged
for 1-2 min at max speed. As a sizemarker, 10 ul of Page Ruler Prestained Protein ladder
(Thermo Fisher Scientific) were diluted to 30 pl and loaded with the denatured samples.
Electrophoresis for 10% SDS-PAGE gels was performed at 100 Volt and 30 mA for 2 gels
and 20 mA for a single gel for up to 3 h. For developing the protein bands the gels were
removed from the glass plates and incubated in 10-15 ml of InstantBlue solution
(Expedeon) on a shaker for 15-20 min at room temperature. Gels were scanned on a

standard office scanner.

10.12. Protein extraction from plant material using Laemmlibuffer

For protein extraction from fresh plant material, Laemmlibuffer was prepared 4X and
kept at -20 °C (10 ml containing 2 ml 1M Tris-HCl pH 6.8, 1 mI 0.5 M EDTA pH 8, 800 mg
SDS, 4 ml 10% glycerol, 400 pl beta mercaptoethanol, 8 mg Bromophenol BLUE). Before
use, the 4X Laemmlibuffer was diluted 1:1 with aqua dest. To obtain crude protein
extracts from Arabidopsis flowers, 1-3 inflorescences were harvested into Eppendorf
tubes and snap-frozen in liquid nitrogen. Frozen plant tissue was ground and 100 pul of 2X
Laemmlibuffer were added per 1-3 inflorescences. Subsequently, the samples were boiled
for 10 min, centrifuged for 2 min and the supernatant recovered. For Western Blots 5 ul

of crude denatured plant extract were loaded per lane.
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10.13. Western Blotting using anti-6xHis and anti-JAG antibodies

Western Blotting was performed in order to test the expression of recombinant JAG
poly-His tag protein in E. coli prior to the protein purification experiment. For this
experiment, anti-6X His tag antibodies raised in rabbit (Rb pAG to 6X His tag; ab9108,
Abcam) were used as the primary antibody in a 1:1000 dilution in combination with a
goat anti-IgG rabbit HRP (goat pAb to Rb IgG HRP; ab6721) antibody diluted 1:5000. In
order to test the rat anti-JAG antibodies, dilutions of the recombinant JAG protein and
crude plant extracts boiled in Laemmli-Buffer were used. For this experiment, the rat
anti-JAG antibodies (raised by Eurogentec) were used as the primary antibody diluted
1:500 in combination with the secondary rabbit anti-Rat IgG HRP antibody (A5795, Sigma)
diluted 1:5000. Both secondary antibodies were conjugated to the horse radish
peroxidase in order to allow quantification based on chemiluminescence.

For Western Blotting, SDS-PAGE electrophoresis was performed as described above. Prior
to the electrophoretic transfer, the separation of the proteins was briefly checked by
applying Ponceau Red. For the electrophoretic transfer of the proteins from the gel to the
Hybond C Extra Nitrocellulose membrane - 45 micron (GE HEALTHCARE LIFE SCIENCES),
the gel was submerged in transfer buffer (1X running buffer without SDS) and a stack of
sponges, filter paper, the membrane and gel was produced in the correct orientation with
the transfer equipment to allow for blotting of the negatively charged proteins onto the
membrane. The transfer stack was placed into the BIORAD gel tank and placed onto a
magnetic stirrer. The transfer was performed with 100 Volt for about 3 h at 4° C.
Subsequently, the membrane was briefly equilibrated in buffer solution containing 1X TBS
pH 7.4 (with 10X TBS buffer containing 12.1 g Tris base, 81.80 g NaCl). For blocking, the
membrane was incubated in 1X TBS supplemented with 0.1% TWEEN and 5% milkpowder
(10 g in 200 ml) for 1 h on a slow shaker at room temperature. For incubation with the
primary antibody, the membrane was transferred to 10 ml of blocking solution (1X TBS pH
7.4, 0.1% TWEEN, 5% milkpowder) supplemented 10 ul of 6X His tag antibody or 20 pl of
the primary rat anti-JAG antibody to achieve a 1:1000 or 1:500 dilution of the primary
antibody, respectively, and incubated overnight at 4° C on a slow shaker. The incubation
was followed by several quick washes and 3 washes of 10 min each at the slow shaker at

room temperature with 1X TBS, 0.1% TWEEN solution. Subsequently, the membrane was
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incubated with the corresponding secondary antibody diluted 1:5000 (2 plin 10 ml) in
blocking buffer and the membrane incubated for 1 h on the slow shaker at room
temperature. This incubation step was followed by several quick washes and 3 washes of
10 min each at the slow shaker at room temperature with 1X TBS, 0.1%. Subsequently,
the membrane was briefly dried on filter paper and to detect the horseradish peroxidase
signal of the HRP-conjugated secondary antibody, the chemiluminescent substrate
SuperSignal West Pico (Thermo Scientific) was used according to the manufacturer’s

instructions. Subsequently, the membrane was used to expose an X-ray film.

10.14. Chromatin Immunoprecipitation using dexamethasone inducible p355:JAG-GR in

WT L-er background, anti-GR antibodies and DYNABEADS protein A beads

10.14.1. Dexamethasone treatment, harvest of the plant material and fixation

For the chromatin immunoprecipitation 300-500 mg (fresh weight) of inflorescence
apices (inflorescence meristem, unopened flower buds up to stage 12) tissue was used
per sample. In order to obtain this amount of tissue per sample, between 70 and 80 main
inflorescences (with 0-3 siliques developed) of the DEX- inducible p355:JAG-GR line were
induced with 10 uM DEX with 0.1% EtOH and 0.1% EtOH as control treatment in three
biological replicates as described in detail for expression profiling. Four hours after
treatment, 70-80 inflorescence apices were harvested into a 50 ml falcon tube with wet
filter paper and kept at room temperature for the time of harvest (1 h). Samples were
fixed in 30 ml fixation buffer (0.4 M sucrose, 10 mM TRIS pH 8, 1 mM EDTA pH 8.5, 1%
formaldehyde, 100 uM PMSF) by vacuum infiltration for 20 min on ice. Cross-linking was
stopped by adding 0.1 M glycine to the fixation buffer and incubation for 10 min on ice.
After two washes with sterile water the plant tissue was dry blotted, weighed, packed

into tin foil envelopes and frozen in liquid nitrogen for grinding.
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10.14.2. Lysis and Sonciation

Chromatin immunoprecipitation was performed according to a modified protocol by
Morohashi et al., (2007). Tissue (300 mg — 500 mg fresh weight) was ground with mortar
and pestle in liquid nitrogen at 4 °C and re-suspended in 700 pul of lysis buffer (50 mM
HEPES, pH 7.5, 150 mM NaCl, 1 mM EDTA, 1% Triton X-100, 0.1% deoxycholate, 0.1% SDS,
100 uM PMSF, 10 mM sodium butyrate and 2 tablets (per 50 ml of buffer) protease
inhibitor cocktail complete Mini, EDTA-free (11836170001, Roche). The re-suspended
samples were sonicated to average 500 bp fragment size in a Bioruptur waterbath
sonicator located at 4 °C (3 x 5 min medium power level with 30 sec on/30sec off cycles).
After sonication, samples were centrifuged for 10 min full speed at 4 °C. The supernatant

was transferred to a fresh tube for the immunoprecipitation steps.

10.14.3. Chromatin Immunoprecipitation

For preparation of the the Dynabeads Protein A beads, the beads were washed twice
in 750 ul lysis buffer using a Dyna magnetic rack for separation of the beads from the lysis
buffer. Subsequently, the beads were equilibrated in lysis buffer supplemented with 1
mg/ml BSA (Sigma) and 20 pg/ml sonicated salmon sperm (Sigma) for 2 h at room
temperature on a rotating wheel. For pre-clearing of the lysate, 25 pl of equilibrated
Dynabeads Protein A beads (100.02 D, Invitrogen) were added to the 600-700 pul of
supernatant and incubated for 2 h at 4 °C on the rotating wheel. After incubation, the
beads were separated from the lysate using the magnetic rack and discarded. To sample
the input DNA, 1/10 of the pre-cleared lysate was retained and frozen for the de-cross-
linking step. The cleared lysate was incubated with 2 pul anti-GR antibodies (AB3580,
Abcam) per 100 pl lysate at 4 °C overnight on a rotating wheel. After overnight
incubation, 15 pl of equilibrated Dynabeads Protein A beads were added per 100 pl lysate
and incubated at 4 °C for 4 h on a rotating wheel. After incubation, the beads were
washed with 700 ul lysis buffer, 700 ul lithium chloride buffer (1 mM EDTA pH 8, 0.25M
LiCl, 1% sodium deoxycholate (Sigma) and 1% NP40 IGEPAL (Sigma)), and 700 pl TE-buffer
(10 mM Tris pH 8, 1 mM EDTA pH 8). For each buffer a short wash (1 min on the rotating
wheel) and a long wash (5 min on the rotating wheel) were performed using the
Dynabead magnetic rack for separation of the wash from the beads. For elution of the

cross-linked immunoprecipitate from the beads, 40 pl of freshly prepared elution buffer
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(1% SDS, 0.1 M sodium carbonate NaHCO3, 0.25 mg/ml proteinase K were added to the

beads after the last wash with TE-buffer.

10.14.4. Elution, De-crosslinking and DNA purification

The beads were subsequently incubated at 65 °C for 10 min. Beads were separated
using the DYNABEADS magnetic rack and 40 pl of elute were collected in a 200 pl PCR
tube. The elution step was repeated once to result in a total volume of 80 pl of elute. At
this step the input samples were thawed and transferred to 200 pl PCR-tubes and
supplemented with 50 ul of elution buffer to a total volume of 80 pl. For de-cross linking
the samples were incubated at 65 °C overnight in a thermo-cycler with the lid-heat
swiched on. Input DNA and immunoprecipitated DNA were extracted using PCR
purification Kit (28104, Qiagen) following the manufacturer’s instructions. Purified DNA

was eluted in 50 ul Qiagen elution buffer and stored at -80 °C.

10.14.5. Quantification of enrichments

For quantification of the enrichment, 1 ul of the purified immunoprecipiated DNA and
of the purified input samples was used per 10 pl PCR-reaction to perform g-PCR in
technical triplicates using the LightCycler System LC480 (Roche) as described above.

Enrichment of promoter regions was calculated from ACt values (Ct immunoprecipitated

DNA — Ct input DNA) using 2-8ACt method (Livak and Schmittgen, 2001). Unpaired two-
sample Student’s t test was used to test for significant differences between DEX induced

and EtOH control treated samples.

10.15. Chromatin Immunoprecipitation using pJAG:JAG-GFP complementing jag-2
mutant background and anti-GFP pMACS MicroBeads

10.15.1. Harvest of the plant material and fixation

For the chromatin immunoprecipitation with pJAG:JAG-GFP jag-2 L-er plants and wild-
type L-er plants 1300-1500 mg (fresh weight) of inflorescence apices were used per
sample. In order to obtain this amount of tissue per sample, between 160 and 180 main
inflorescences (at the developmental stage of 0-3 siliques developed) were harvested per

sample. In order to keep the harvesting time to less than an hour, 60 to 80 plants per
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biological replicate were harvested into a 50 ml falcon tube with wet filter paper in three
independent harvests. After each of the three harvests, samples were immediately fixed
in 35 ml fixation buffer (0.4 M sucrose, 10 mM TRIS pH 8, 1 mM EDTA pH 8.5, 1%
formaldehyde, 100 uM PMSF) by vacuum infiltration for 20 min on ice. Cross-linking was
stopped by adding 0.1 M glycine to the fixation buffer and incubation for 10 min on ice.
After two washes with sterile water the plant tissue was dry blotted, weighed, packed
into tin foil envelopes and frozen in liquid nitrogen for grinding. The tissue of the three

independent harvests was later pooled to 1 biological replicate at the grinding step.

10.15.2. Lysis and Sonication

Chromatin immunoprecipitation was performed according to a modified protocol by
Kaufmann et al. (2009). Per sample, tissue of the three harvests (1300 mg — 1500 mg
fresh weight in total) was pooled in a mortar ground with a pestle in liquid nitrogen at 4
°C. The ground tissue was resuspended in 25 ml of lysis buffer (M1) containing 10 mM
sodium phosphate pH 7, 0.1 M NaCl, 1 M 2-methyl 2,4-pentanediol, 10 mM R-
mercaptoethanol, 1 tablet (per 50 ml of buffer) of protease inhibitor cocktail complete
Mini, EDTA-free (11836170001, Roche). The resuspended lysate was filtered through 2
layers of miracloth into a new 50 ml falcon tube on ice. The filtrate about 25 ml was
centrifuged at 1000 x g for 20 min at 4 °C with centrifuge brakes switched off. The
supernatant was discarded and the pellet was gently washed and re-suspended in 15 ml
of wash buffer M2 containing 10 mM sodium phosphate pH 7, 0.1 M NaCl, 1 M 2-methyl
2,4-pentanediol, 10 mM R-mercaptoethanol, 1 tablet (per 50 ml of buffer) of protease
inhibitor cocktail complete Mini, EDTA-free (11836170001, Roche), 10 mM magnesium
chloride and 0.5% Triton X-100 (Sigma) and centrifuged at 1000 x g for 10 min at 4 °C with
centrifuge brakes switched off. After centrifugation, the supernatant was discarded and
the pellet was gently washed and partially resuspended in 7.5 ml wash buffer M3
containing 10 mM sodium phosphate pH 7, 0.1 M NaCl, 10 mM R-mercaptoethanol, 1
tablet (per 50 ml of buffer) of The re-suspended samples were centrifuged at 1000 x g for
10 min at 4 °C with centrifuge brakes switched off. The supernatant was discarded and
the clean nuclei pellet of creamy colour was gently resusupended in 1 ml of sonication
buffer containing 0.5 M Hepes, 150 mM NaCl, 5 mM magnesium chloride and 10%
TRITON X-100 and ¥ a tablet buffer of protease inhibitor cocktail complete Mini, EDTA-
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free (11836170001, Roche). In order to optimise the sonication in the water bath
sonicator, the 1 ml of nuclei suspension were divided into two 1.5 ml Eppendorf tubes
with corresponding a) and b) labels in order to be fused again at the column purification
step. Sonication was performed in Bioruptur waterbath sonicator with cooling unit at 4 °C
(2 x 5 min high power level with 30 sec on/30 sec off cycles) resulting in an average
fragment size of 500 bp. After sonication, samples were centrifuged for 15 min full speed
at 4 °C. The supernatant was transferred to a new 1.5 ml Eppendorf tube and the
centrifugation step repeated. The supernatant was transferred to fresh tube and the

pellet was discarded.

10.15.3. Chromatin immunoprecipitation, elution and cross-linking reversal

Before continuing with the immunoprecipitation, 1/10 of the supernatant (50 pl of a)
and b) samples) was transferred to a tube as DNA input sample and kept on ice. To the
remaining supernatant, 500 pl of immunoprecipitation buffer containing 0.5 M Hepes,
150 mM NaCl, 5 mM magnesium chloride and 10% TRITON X-100 (Sigma) and 1 mg/ml
BSA (Sigma) and 25 ul of anti-GFP uMACS Microbeads (Milteyi Biotec) were added. The
tubes were gently inverted and transferred to ice for 30 min incubation. Samples were
gently inverted once after 20 min. After incubation the a) and b) samples of every
biological replicate were loaded on a u Column (Milteyi Biotec) that had been placed into
the magnetic UMACS separator (Milteyi Biotec) and equilibrated with 200 pl
immunoprecipitation buffer. Once the total samples volume of 1 ml had passed the
column, the beads were washed with 2x 400 pl and 2x 200 ul of immunoprecipitation
buffer and 2x 200 pl TE buffer (100 mM Tris pH 8, 10 mM EDTA pH 8). For elution, elution
buffer containing 50 mM Tris pH8, 10 mM EDTA, 50 mM DTT (freshly added) and 1% SDS
was preheated to 96 °C and a set of 1.5 ml low binding tubes were place under the u
columns for collection of the elute. In a first step, 20 ul of hot elution buffer were applied
to the column and incubated for 5 min, followed by 2 x 50 ul of hot elution buffer for final
elution. After elution of a total volume of 100 pl, 100 pl of TE-buffer and 9 pul of 25 mg/ml
Proteinase K were added to the samples. Similarily, 100 ul of TE-buffer and 9 pl of 25
mg/ml Proteinase K were added to the input samples. Elution and input DNA samples
were incubated at 37 °C overnight. The next day, 9 ul of 25 mg/ml Proteinase K were

added to the samples and the samples were incubated at 65 °C in a heatblock for 8 hours.

282



10.15.4. DNA purification

Subsequently, 250 pl of Phenol:Chloroform:lsoamyl Alcohol 25:24:1, saturated with 10
mM Tris pH 8.0, 1 mM EDTA (P2069, Sigma) was added to the samples followed by a 10
min centrifugation step at full speed. The supernatant was transferred to a 1.5 ml
Eppendorf tube and supplemented with 25 pl of 3 M sodium acetate, 1 ul of glycogen and
750 pl of EtOH. DNA was precipitated at -20 °C overnight. The pellet was precipitated by a
centrifuge step at full speed for 30 min at 4 °C and the pellet was washed in 300 pl of 70%
EtOH with a centrifugation step at full speed for 5 min at 4 °C. The pellet was air-dried for
20 min under the fumehood and resuspended in 100 ul PCR-grade water (Lightcyclerkit).
Subsequently, the input DNA and immunoprecipitated DNA were extracted using PCR
purification Kit (28104, Qiagen) following the manufacturer’s instructions. Purified DNA

was eluted in 30 ul Qiagen elution buffer and stored at -80 °C.

10.15.5. Quantification of enrichments

For quantification of the enrichment, 1 pl of the purified immune-precipiated DNA and
of the purified input samples was used per 10 pl PCR-reaction to perform Q-PCR in
technical triplicates using the LightCycler System (Roche) as described above. Enrichment

of promoter regions was calculated from ACt values (Ct immunoprecipitated DNA — Ct

input DNA) using 2-DACt method (Livak and Schmittgen, 2001). Unpaired two-sample
Student’s t test was used to test for significant differences in enrichment between

PJAG:JAG-GFP jag-2 and wild-type L-er samples.

10.16. ChIP-oligonucleotides

For promoter analysis and oligos amplifying specific regions, the primer design tool

“PRIMER3” http://frodo.wi.mit.edu/primer3/ was used. The efficiency of ChiP-oligos was

tested using a dilution series of the same dilution factors as described above of mixed
ChIP-Input DNA. Because, ChlIP-oligos were predominantly designed to bind to A/T-rich
promoter regions, ChiP-oligos were tested at different annealing temperatures starting
from 61° Cto 57° Cin order to find the optimum annealing temperature for individual

oligo pairs. The LC480 software was used to generate standard curves and to calculate
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the slope (optimum -3.3), the oligo amplification efficiency (amplification factors between

1.85 and 2 (=100%) were considered as acceptable). In addition, it was checked that the

melting curve gave one single clear peak and that the non-template controls did not give

any signal. The following oligos were used to confirm DNA binding sites of JAG:

BEL-1877-F TCTGAGAAAAGCCTGAACTC
BEL-1877-R GTTGGTGTATAGATGGAGAGGT
BEL-288-F CTTCTCTCTCCCTCTTCACC
BEL-288-R AGCTCCTAAAACCCTACAAGA
BP-2609-F GGCAGTGCAATGAAGTGAAA
BP-2609-R CCCGAAACATAAAACCTACACG
BP-1064-F GCAAGACTTGGATGTTTTTGG
BP-1064-R TCGGATAGTGTGATCTCTCCAC
PTL-1056-F CACACATGCCTCTGGAGTTT
PTL-1056-R TCCATTAGAGGTTAACCGAGTCA
PTL-476-F CAAAGACGAGTGCCTCCATCTA3’
PTL-476-R TGTTTTGCAACATGTGTCTAGC3’
PTL+1322-F GCTCTGGTCGATTCAGTGTG
PTL+1322-R GGGAATAGGGACAAAAGGAGA
KRP2-1616-F TGATTGAGTATGCAGCTCGTG
KRP2-1616-R AATGCCGTCGTTCTGTATCG
KRP2-159-F CAAAACGAAGATCGTCACCA
KRP2-159-R TCACTCGTTATGTGTGCGTGT
KRP2+1342-F CCCACGAGGCAAAGATTTTA
KRP2+1342-R GTGGAGAAAAAGACTCCAGCTC
KRP4-1691-F GTCTGCAAGTCATGACAAATCC
KRP4-1691-R CCTGAGCTCTCTGCTATTTCTTCT
KRP4+295-F GGGTTTAGCGTTTAGGGTTTAGAG
KRP4+295-R GAATGCAGAGTCCCCCTGTA
Mu-like-F GATTTACAAGGAATCTGTTGGTGGT
Mu-like-R CATAACATAGGTTTAGAGCATCTGC
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10.17. ChIP-lllumina Deep Sequencing: library preparation, deep sequencing, and data
analysis

The six Illumina TruSeq ChIP-Seq libraries (three pJAG: JAG-GFP replicates and three
wild-type controls) were produced with library insert sizes of 250-500 bp in collaboration
with TGAC and subsequent quality checks and sequencing was performed by TGAC.
Library insert sizes were verified using an Agilent Technologies 2100 Bioanalyzer and a
High Sensitivity DNA chip. The concentration was measured using a High Sensitivity Qubit
assay (Invitrogen) and normalised to 10 nM. Subsequent processing for lllumina HiSeq
2500 (Rapid-Run mode) clustering and sequencing using 50 bp single-end reads was
performed as described by the manufacturer (lllumina).

For quality control: reads that failed the CASAVA filter were eliminated. Sequence
reads in FASTQ format were mapped to the unmasked Arabidopsis genome (TAIR10;

ftp://ftp.arabidopsis.org/ ) using the SOAPaligner (v2) program (Li et al., 2008). A

maximum of two mismatches and no gaps were allowed. Reads mapping in multiple
genomic location, to the chloroplast or mitochondrial genome were discarded.
ChIP-Seq peaks were first detected using the online software tool PRI-CAT

http://www.ab.wur.nl/pricat/ (Muifio et al., 2011) and subsequently analysed by Jose

Muifio using CSAR (Muifio et al., 2011a) with default parameter values except for “backg”,
which was set to 20. Sequences from each JAG-GFP library were analyzed independently
in comparison with a single negative control with all three wild-type libraries combined.
Mapped reads were extended directionally to 300 bp and the distribution of the number
of extended mapped reads overlapping each nucleotide in the JAG-GFP library and in the
negative control were normalized to have the same mean and variance. Enrichment
relative to control was calculated as the ratio of normalized extended reads between JAG-
GFP and control sample. Regions having less than 20 reads mapped in the control were
set to 20 (parameter “backg”=20 in CSAR) to avoid false positives due the low coverage of
the control in some regions. False discovery rate (FDR) thresholds were estimated by
permutation of reads between sample and control using CSAR for each biological
replicate independently. Candidate JAG target genes were defined as genes containing a
significant (FDR<0.01) binding event in all three replicates, in the region between 3 kb

upstream of the start codon and 1.5 kb downstream of the stop codon.
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For de novo motif finding, DREME (Bailey, 2011) was used with default parameters on
the set of sequences within 50 bp of a peak (101 bp region in total) for the top 1000
binding events located in the region 3 kb upstream and 1.5 kb downstream among the
three replicates. Once the motifs were identified by DREME, and to validate their
relationship with the ChIP-Seq scores, the proportion of binding sites associated with the

motif for each ChIP-Seq score threshold value was plotted.

10.18. Gene ontology analysis

Gene ontology term enrichment analysis was performed with the module BINGO
(Maere et al., 2005) from Cytoscape (Saito et al., 2012). Plots of gene ontology term
enrichment versus ChIP-Seq score threshold were produced in R. The gene ontology
database (GO.db v2.9.0) and the mapping of Arabidopsis genes to gene ontology terms
(org.At.tair.db v2.9.0) were downloaded from Bioconductor

(http://www.bioconductor.org/). The ChIP-Seq score attributed to each gene was the

minimum value for the ChIP-Seq score of each of the three biological replicates. The
proportion of genes associated with a particular gene ontology term was then plotted for

each ChIP-Seq threshold.

10.19. Combined modified pseudo-Schiff-propidium iodide and EdU imaging

In preparation for combined modified pseudo-Schiff-propidium iodide (mPS-PI)
staining modified after Truernit et al. (2008) and EdU (5-ethynyl-2-deoxyuridine) labelling
modified after Salic and Mitchison et al. (2008), buds larger than 0.5 mm were removed
from inflorescences and the inflorescence stem cut in 10 mm distance. For further
dissection under the stereomicroscope with about 4-8X magnification, the floral apices
were inserted into a solidified 1% agarose block placed in a box and flooded with aqua
dest. Additional buds were removed following the phyllotactic spiral using a syringe
needle until the inflorescence meristem surrounded by the 15-20 youngest buds was
clearly visible. Then, the stem of the dissected apices was cut in a 45° angle at a distance

of 6-8 mm from the base of the apices. Dissected apices were placed in sterile GM boxes
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sealed with micropore surgical tape and grown for 45 h at 16° C under continuous light;
for JAG-GR activation, the media also contained 10 uM dexamethasone (from 10 mM
stock in ethanol), or 0.1% ethanol for mock-treatment. Apices were then transferred to
boxes with the same medium supplemented with 10 uM EdU (Invitrogen), sealed with
micropore surgical tape and incubated in the same conditions for another 3 h.
Subsequently, the apices were removed from the media, place into Eppendorf tubes
and subjected to incubation in 15%, 30%, 50%, 70%, 85%, 95% and 100% ethanol for 15
min each at room temperature and protected from light. Subsequently, the floral apices
were inserted into a solidified 1% agarose block placed in a box and flooded with 100%
ethanol for further dissection, leaving only the inflorescence meristem and the youngest
surrounding buds up to position 15-17. Then, the apices were removed from the agarose
block in order to cut the stem as parallel as possible in order to make the apices sit facing
straight upwards. Subsequently, the samples were placed into a 24-multi-well plate (up to
4-5 samples/well) filled with 100% ethanol and incubated at -20 °C overnight. Then, the
samples were rehydrated through the same ethanol series, washed in water and
incubated at 37 °C overnight in alpha-amylase solution containing 0.3 mg/mL alpha-
amylase (A4551, Sigma) in 20 mM phosphate buffer pH 7.0, 2 mM NacCl, 0.25 mM CaCl,.
All subsequent steps were performed at room temperature with gentle rocking on a
shaker protected from light: the apices were rinsed in water three times and once in TBS
pH 7.4 (1 | containing 8 g NaCl, 0.2 g KCI, 3 g Tris base and the pH adjusted with HCI)
before being incubated in Alexa prestaining solution containing 10 uM Alexa488-azide
(A10266, Invitrogen, prepared as a 10 mM stock solution with 0.5 mg dissolved in 58 ul of
DMSO) in 100 mM Tris pH 8.5 for 1 hour followed by incubation in Alexa staining solution
containing 10 uM Alexa488-azide, 100 mM Tris pH 8.5, 1 mM CuSO,4 and 100 mM ascorbic
acid (freshly dissolved and last added) for 30 min. For both the prestaining and the
staining solution vacuum-degassed water was used. Subsequently, samples were washed
three times in water and incubated in 1% periodic acid (freshly dissolved in aqua dest) for
1 hour, followed by two washes in water. Then, the samples were incubated in Schiff-PI
reagent for 2 h. For this, 625 pl HCI 12 N were added to 49 ml aqua dest, then 0.95 g
sodium bisulfite were dissolved in the solution. An aliquot of this solution was used to
prepare the PS-PI solution with a final propidium iodide concentration of 20 pug/ml (from

a stock solution of 1mg/ml propidium iodide (81845, Sigma) dissolved in water, kept
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frozen at -20 °C protected from light) after Truernit et al. (2008), followed by two washes
in water. Subsequently, the samples were individually placed on single cavity depression
slides (76 x 25 x 1.25 mm) (AGL4090, Agar Scientific) and immediately covered with a
drop of chloral hydrate solution (40 g chloral hydrate dissolved in 10 ml aqua dest and 5
ml glycerol) for final clearing and left protected from light for about 20 min. Then, the
excess chloral hydrate surrounding the samples was removed with a filter paper without
touching the sample and replaced by a drop (about 100 — 150 pl) of Hoyer’s Medium (40 g
chloral hydrate dissolved in 10 ml aqua dest, 5 ml glycerol, 6 g gum Arabic (G9752,
Sigma)) after Truernit et al. (2008) that had been kept protected from light and was
centrifuged for 30 min prior to use. The samples were arranged in the center of the
depression with the apices facing upwards as straight as possible before being covered
with a 22 x 22 mm glass cover slip thickness No 0 (VWR International). Prepared slides
were left to dry overnight protected from light and imaged within the following two days.
For imaging a Zeiss 510 Meta confocal microscope with a 25X water immersion
objective was used with laser excitation at 488 nm and emission filters set to 572-625 nm
for the Pl signal (false color red in the images) and 505-600 nm for the EdU signal (false
colour green in the images). Images were obtained by 512x512 pixel size using 4X mean
averaging. For z-stacks, the image thickness was set to 0.5 um and the pinhole to an
optical thickness of airy 1. The detector gain was adjusted according to the signal
intensity for both channels independently. Images were saved in .Ism file format and

displayed in Fiji.

10.20. Quantitative 3D image analysis

Image processing was performed with Fiji, BiolmageXD, custom Fiji macros and custom
python scripts. Using Fiji and the macro “TIF_for_inr_import”, confocal image stacks were
opened, cropped, despeckled and saved as separate TIFF stacks for the PS-Pl and EdU
channels. The python script “TIF_import” was used to convert the TIFF stacks into
compressed image files in inr.gz format and to subtract from the PS-Pl image any
background signal arising from EdU fluorescence. After converting the subtracted image
back to a TIFF stack with the Fiji macro “TIF_S_fom_inr”, the image was opened in

BiolmageXD (Kaankaanpaa et al., 2012), cells were segmented in 3D using a
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morphological watershed algorithm, and the segmented image was converted to inr.gz
format using the python script “inr”. The Fiji macro “select_landmarks” in combination
with the Fiji plugins 3D Viewer (Schmid et al., 2010) and Point Picker

(http://bigwww.epfl.ch/thevenaz/pointpicker/) was used to select landmarks on the

summit of meristem and primordium and on primordium boundaries. Furthermore,
custom scripts were developed to automatically determine the center of mass and
volume of each individual cell (“cell_data_table”) and cell positions relative to the
meristem summit and to primordium boundaries in order to locate cells in the meristem
or primordium and to attribute cell layers (“select_meristem_primordia”), to detect
artifacts of under and over-segmentation (“segmentation_quality”), and to select cells
with EdU labeling from non-EdU labeled cells (“score_EdU”). Fiji macros were used to
display the images and manually re-check the EdU scoring (“EdU_check”), segmentation
guality and location of selected cells (“segmentation_selection”). At last, remaining errors
were corrected manually in both the images and final cell data tables using the python
script “delete_cells”. All macros and annotated python scripts along with instructions for

installation and use are available from Robert Sablowski.

10.21. Live-Imaging of single flowers

Flowers at full anthesis (bud open, petals fully visible, elongated stamen level with
stigma, described as stage 13 in Smyth et al. (1990) were used for live-imaging of single
flowers. Inflorescence overview images and single flower images were taken in a Leica
205A stereomicroscope using 12X and 30X magnification, respectively, with reflective

light mode (LED settings).

10.22. Sepal and Petal imaging for size measurements

Flowers at full anthesis (as described above) from the inflorescences that had
developed between three and five siliques were detached and dehydrated in a 15%, 30%,
50% and 70% EtOH series and stored at 70% EtOH at 4 °C. For imaging, sepals and petals

of single flowers were dissected in 70% EtOH and mounted on a slide. Images were
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obtained using Leica DM6000 microscope equipped with an automatic stage for tiling
mode with bright field settings using 10X magnification. Sepal and petal measurements

were obtained using Fiji (http://fiji.sc).

10.23. Confocal live imaging

For live imaging of pJAG::JAG:GFP jag-2, KRP2:KRP2-GFP in jag-1 and wild type Col,
floral apices were dissected under water and imaged in boxes halfway filled with 1%
agarose (as described above). Floral apices were recovered for 24 h on germination
medium in boxes sealed with micropore surgical tape under normal growth conditions.
Before imaging, a drop of 50 ug/ml N-(4-triethylammoniumpropyl)-r-(p-
dietheylaminophenylhexatrienyl pyridium dibromide) (FM4-64) (Invitrogen) was applied
to the apices still kept in the medium in the sealed box to retain the humidity and
incubated for 10 min. Alternatively, the apices were removed from the medium and
placed into 0.2 ml PCR-tubes containing 40 pl of 50 ug/ml FM4-64 solution and incubated
for 10 min with the lid of the tube closed. Subsequently, the apices were placed in boxes
with 1% agarose and covered with water. For confocal imaging a Zeiss 510 Meta confocal
microscope equipped with a 20X water dipping lense was used with laser excitation at
488 nm. Samples were imaged with the confocal microscope Zeiss 510 Meta detecting
FM4-64 emission signal at 571.8-625 nm and GFP emission signal at 505-600 nm. To
screen for expression of GFP in KRP2:KRP2-GFP lines and to screen for CYPET expression
in KRP4:KRP4-CYPET lines, in the root and shoot of young seedlings, young seedlings were
placed on a slide submerged in water under a coverslip and imaged using same settings as
described above for GFP and for CyPet (excitation at 435 nm/emission at 477 nm). 3D
reconstructions and virtual sections of whole inflorescences and single floral buds based
on the cell wall images were generated using 3D Viewer and Orthogonal Views plugins of

Fiji (Schmid et al., 2000). Photoshop CS6 (Adobe Inc.) was used for final editing of images.
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10.24. Scanning electron microscopy

For scanning electron microscopy, petals and sepals of flowers at full anthesis were
mounted on the surface of an aluminium stub with optimal cutting temperature
compound (Miles Scientific), plunged into liquid nitrogen slush at approximately -210 °C
to cryo-preserve the tissue, and transferred to the cryo-stage of an Alto 2500 cryotransfer
system (Gatan, Oxford) attached to a Zeiss Supra 55 VP field emission gun scanning
electron microscope (Zeiss SMT, Germany). The surface frost was sublimed at -95 °C for 3
min before the samples were sputter coated with platinum for 2 min at 10 mA at below -
110 °C. The samples were imaged on a cryostage at -130 °C and viewed at 1.2 to 5.0 kV.
Overview images of petals and close-ups of the distal lobe region were taken at 40X and
1000X magnification, repectively. Sepal images were taken at 200X. All images were

saved as TIF graphic files.

10.25. Statistical analysis

Statistical analysis of cell volume data was performed in R (http://www.r-project.org/).

The RCommander package was used for box plots and unpaired Wilcoxon signed rank
tests. The “boot’” package was used to calculate confidence intervals for the difference in
volumes between EdU-positive and EdU-negative cells (nonparametric, ordinary
bootstrap with 999 replicates, 95% confidence level).

For statistical analysis of petal and sepal measurements the RCommander package was
used for box plots and to test for normal distribution using the “Shapiro-Wilk” test for
normality. Subsequently, One-Way ANOVA with “pairwise comparisons of means” using
“Tuckey Contrasts” was used.

For analysis of the global expression array and ChlP-seq data, the Fisher’s exact test
was used to test the significance of specific groups of genes within the total number of

genes analysed.
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