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Abstract 

 

Upright Pedalling (UP) exercise offers opportunities for stroke survivors to participate in 

functional, repetitive lower limb activity with similarities to walking. Such functional activity 

is required to enhance the brain changes underlying recovery of motor function after stroke. 

UP might also offer opportunities for assessment and measurement of lower limb 

impairment during functionally-relevant activity. 

A systematic review using Cochrane methodology investigated effects of reciprocal 

pedalling (RP) on lower limb motor function after stroke. Despite some beneficial, though 

not definitive, effects, it was not possible to make clinical recommendations supporting or 

refuting RP after stroke, due to inter-study heterogeneity, wide confidence intervals around 

effect sizes and risks of potential biases.  

A feasibility study investigated participation in Upright Pedalling (UP) by people in the first 

month after stroke, with substantial weakness and not able to walk, and explored 

characterisation of lower limb movement during UP. 84.6 % (n=11) of people tested were 

able to participate in UP. Smooth, reciprocal pedalling was evident in stroke survivors with 

substantial weakness, using heterogeneous patterns. Though 84.2% (n=16) of those 

approached consented to participate, attrition was high due to service reorganisation, with 

2.2% (n=9 of 411) of those screened actually randomised. 

A prospective measurement study explored the reliability and discriminative ability of 

impairment measures derived during instrumented UP (smoothness of pedalling, muscle 

activation timing, reciprocity of muscle activity). Results indicated that instrumented UP 

could be used to discriminate between stroke survivors and healthy age-matched 

volunteers for timing of onset and offset muscle activation (multi-variate ANOVA, 

difference in activity according to wheel position, p=0.034) and reciprocal activation (two-

sample t-test, difference -0.249 (CI: -0.491, -0.010; p=0.044) for quadriceps.  It was not 

possible to establish definitive test-retest repeatability with sufficient precision to make 

clinical recommendations.  

UP is a new, promising technology for assessment, rehabilitation and measurement that is 

worthy of future investigation. 
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Chapter 1.0: Introduction and Background 

 

1.1 Introduction to the thesis 

 

Stroke is the single largest cause of adult disability worldwide. Each year, in England 

alone, 110,000 people suffer a stroke and approximate annual costs are:  £2.8 

billion in direct health and social care; £1.8 billion to the wider community in terms 

of lost  productivity and disability; and £2.4 billion in costs to informal carers.  The 

majority of these costs are the result of  rehabilitation and life after stroke. Stroke 

rehabilitation is a research priority for the United Kingdom National Health Service 

(NHS). 

 

Stroke survivors identify recovery of walking as a priority goal of rehabilitation. It is 

likely that the impact of improving recovery of walking after stroke is substantial 

and physiotherapy is key to enabling stroke survivors to achieve that goal. 

Physiotherapy can drive the brain recovery that is associated with better outcomes 

for stroke survivors, including those outcomes related to walking. For example, 

repetitive practice of goal-directed functional tasks has been shown to enhance the 

brain changes that underly recovery of motor function after stroke. 

 

However, for people with substantial weakness after their stroke, repeatedly 

practising the reciprocal lower limb movements associated with walking, or indeed 

practising walking itself, presents a challenge. People are often too weak to adopt 

an upright posture and practise leg movements without substantial help. These 

difficulties are particularly evident early after stroke, in the vital period in which the 

brain is at its most active and responsive to extrinsic therapies. 

 

A potential way forward is to provide static reciprocal pedalling exercise, as this is a 

repetitive, functional activity with similar reciprocal lower limb movement patterns 

to walking.  There is some evidence that pedalling may facilitate phasic, co-
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ordinated muscle activity even in patients with severe hemiparesis.  Reciprocal 

pedalling is therefore a rehabilitation tool that might promote functional activity 

early after stroke. 

 

In order to understand how pedalling might work, detailed assessment of how 

people move during the activity is required.  This is important because stroke does 

not have uniform effects on neural networks; consequently, different people use 

different movement strategies to achieve the same functional goal.  Although 

achieving a functional goal is good, abnormal movement patterns are less skilled 

and less energy efficient.  In addition, practice of abnormal movement patterns may 

drive maladaptive brain recovery.  Hence, a key aim of rehabilitation is to restore as 

normal a movement pattern as possible, as early as possible after stroke.  Attention 

is therefore required to assess whether a new pedalling exercise intervention 

produces normal movement patterns in all stroke survivors.  This cannot be 

achieved by just using established assessment tools that use clinical observation of 

movement.  Characterisation of movement patterns is also required.  

 

Furthermore, it is important that sensitive measures are used to assess whether 

rehabilitation interventions, such as pedalling exercise, are having an effect. It is 

essential to make rapid decisions about recovery potential and progress so that the 

important early period after stroke is not squandered. Additionally, therapists are 

under increasing pressure to make rapid decisions about progress, as resource-

limited services seek to target therapy at those who might best benefit. Commonly 

used existing measures of impairment, e.g. the Motricity Index, are not sufficiently 

sensitive to the physiological changes that might indicate improvement. There is a 

need to develop a sensitive clinical measure of lower limb impairment after stroke. 

 

Hence, this thesis presents three original studies that address the needs identified 

above, investigating reciprocal pedalling exercise after stroke. It begins with a 

systematic review exploring the effects of reciprocal pedalling on lower limb 

function after stroke. This is followed by two experimental studies that investigate 
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the potential of a new tool for the rehabilitation, assessment and measurement of 

lower limb function after stroke: Upright Pedalling.  

 

1.2 Background: Principles of stroke rehabilitation and research 

 

The purpose of this section is two-fold:  to elucidate the importance of research into 

rehabilitation interventions after stroke; and to identify and explore the principles 

that should be prerequisite to the planning and execution of rehabilitation and 

research programmes after stroke. It begins with an overview of stroke research 

and rehabilitation principles and is followed by specific discussion of key principles 

underpinning the work in this thesis. 

1.2.1 Overview: stroke rehabilitation and research 

A stroke is caused by the interruption of the blood supply to part of the brain, 

usually due to blockage by a clot or a burst blood vessel (World Health Organisation, 

2013). The supply of oxygen and nutrients to the brain is diminished or cut off; signs 

of cerebral dysfunction develop rapidly and last longer than 24 hours. It is known 

that 85% of strokes are due to cerebral infarction (the obstruction of blood supply 

to the brain and ensuing tissue death), 10% due to primary haemorrhage and 5% 

due to subarachnoid haemorrhage (Intercollegiate Stroke Working Party, Royal 

College of Physicians, 2012).Depending on the site of the stroke in the brain and 

how severely that area is affected, symptoms of stroke can include sudden 

weakness of the face arm and leg, most commonly on one side of the body 

(hemiparesis), difficulty in speaking and comprehending language, and problems 

with balance and coordination.  

The impact of stroke is considerable: stroke is one of the top three causes of death 

and the largest cause of disability in the United Kingdom (Intercollegiate Stroke 

Working Party, Royal College of Physicians, 2012). There are 152,000 strokes in the 

UK each year, causing a greater range of disabilities than any other condition 

(Stroke Association: Stroke Statistics, 2013). Direct costs to the NHS are over £3 
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billion annually within a wider economic impact of up to £8 billion (Department of 

Health, National Audit Office, 2010). 

Over 1.1 million people currently living in the UK have had a stroke and many live 

with persistent consequences. Of those that survive the initial stroke, 58% will have 

some form of disability, with 36% having disability categorised as moderate, severe, 

or very severe (Stroke Association: Stroke Statistics, 2013). In England alone, over 

300,000 people are currently living with moderate to severe disabilities as a result 

of stroke (Department of Health, National Audit Office, 2010), including deficits of 

motor function. Indeed, restrictions in muscle activity and mobility are the most 

widely recognised deficits caused by stroke (Langhorne et al. 2009a).Hence, stroke 

survivors can have on-going health and social care needs across a spectrum of 

requirement, from daily intensive nursing and medical care and therapy, to home-

based rehabilitation programmes and support with return to work and leisure 

activities. It is clear that this potentially life-altering condition can have devastating 

sequelae, for the individual, those involved in their care and for wider society. 

This recognition of its far-reaching impact has driven extensive research into stroke 

recovery in the last thirty years. Whilst there is little doubt that research into the 

medical management of stroke is of importance, it is research into rehabilitation 

after stroke that has been at the forefront of recent developments, with recognition 

that interventions that do not rely on costly scanning and drugs are likely to be 

most beneficial (Langhorne et al. 2009b). Investment in rehabilitation research is 

justified: the majority of patients with stroke will survive the initial event and it is 

the ensuing consequences that have the greatest impact on stroke survivors, their 

families and society (Langhorne et al. 2011). After initial medical input, 

rehabilitation is the primary treatment option available for stroke survivors with on-

going deficits. Stroke rehabilitation is the process by which people are enabled to 

reach their optimal level of function and independence, involving both restorative 

and adaptive strategies (Cramer, 2008; Cumberland Consensus Working Group, 

2009). It is often regarded as cyclical, involving assessment, goal setting, 
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intervention and reassessment (Langhorne et al. 2011); with members of a skilled 

multi-disciplinary team working alongside patients and their families and carers.   

Physiotherapists are an integral part of this stroke rehabilitation team 

(Intercollegiate Stroke Working Party, Royal College of Physicians, 2012). 

Physiotherapy is a health care profession concerned with human function and 

movement and maximising potential, key aspects of rehabilitation (Chartered 

Society of Physiotherapy, 2002).  Hence, physiotherapists are healthcare providers 

with an important role in addressing the rehabilitation needs of stroke survivors; 

specifically, it is the re-education of motor function via movement experience that 

is central to the physiotherapist’s role in stroke rehabilitation. Current evidence 

suggests that such behavioural experience is a driver for functional reorganisation 

of the brain after injury such as stroke (Nudo, 2006). Therapy after stroke aims to 

exploit such neural plasticity, by providing afferent stimulation with a variety of 

interventions (Pomeroy and Tallis, 2002). Indeed, beneficial cortical reorganisation 

has been demonstrated following just such therapeutic activity (e.g. Askim et al. 

2009). Therefore, it is unsurprising that physical therapy approaches and 

interventions are on-going priorities in stroke research (Pollock et al. 2012). 

The recent growth and advances in stroke rehabilitation research have enabled 

some key neuroscience principles about exogenous means of driving recovery to 

emerge.  For example, it is known that the repetition of motor activity can produce 

changes in brain representation maps (Karni et al. 1995; Plautz et al. 2000) and 

opportunities therefore exist to drive functional reorganisation by including 

repetition in rehabilitation programmes. Furthermore, motor skill acquisition, or 

motor learning, has been demonstrated to play a central role (Buonomano and 

Merzenich, 1998; Perez et al. 2004), suggesting rehabilitation programmes should 

involve increasing levels of motor skill (Nudo, 2006).  It has also been suggested that 

functional benefit may be gained from goal-directed activity, with the salience of a 

task considered an important element in rehabilitation programmes (Kleim and 

Jones, 2008). Finally, ensuring interventions are timely is important.  The period 

early after stroke, from a few days to a few weeks since onset, provides an 
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important window for initiating restorative therapies (Cramer, 2008, 2011) and very 

early mobilisation has been shown to increase speed of recovery of functional 

activity (Cumming et al. 2011). 

These principles underpin the understanding of how to drive recovery after stroke. 

Consequently, they should inform the planning and execution of rehabilitation 

research programmes, in order that current knowledge is best used to inform 

investigation of existing, and development of potential new, rehabilitation 

interventions.  Other principles also underpin the development stage of potential 

new interventions. For example, as the feasibility of new interventions is 

investigated, it is essential to consider which population of stroke survivors might 

best be able to take part in any new therapy, and also, how progress might best be 

measured. 

The research and rehabilitation principles identified in this overview have been 

central to the development of the studies presented in this thesis; hence each of 

these principles will be explored in detail in the next sections. 

1.2.2 Principles informing stroke rehabilitation and research: 

rehabilitation early after stroke onset 

This section will explore the existing evidence on rehabilitation early after stroke 

onset. For the purposes of this thesis, “early after onset” will refer to the period up 

to 31 days from the occurrence of stroke. Evidence from neurophysiology studies 

and then animal model research will be followed by a critique of clinical studies. 

It is well-established that, after injury, the brain reorganises connectivity through 

neuroplastic changes and that there is potential for such changes to be influenced 

by sensorimotor therapies. It is known that mechanisms of plasticity are particularly 

active early after cortical damage (Kleim et al. 2003). It is also known that most 

spontaneous recovery tends to occur in the first three months after onset (Cramer, 

2008; Carraugh and Summers, 2005), with significant spontaneous recovery of some 

motor functions within 30 days (Nudo, 1999).    
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However, whilst early rehabilitation intervention is currently encouraged after 

stroke (Intercollegiate Stroke Working Party, Royal College of Physicians, 2012), the 

optimal time window for provision of rehabilitation therapies to exploit the 

potential for behaviourally driven brain changes is still uncertain. Hence, research 

into the most appropriate time to initiate rehabilitation activity after stroke is 

gaining momentum.  Indeed, Cramer (2008) describes a ‘golden period’ for initiating 

restorative therapies, starting in the first days after onset and continuing for several 

weeks, as repair-related events within the brain are at peak levels. Such molecular 

and cellular events include, for example, an increase in growth associated proteins 

and increased neuronal sprouting and dendritic branching; all of which are 

important biological targets for promoting repair after stroke (Nudo, 1999). The 

prominence of these events at this time might suggest that they could best be 

shaped to enhance recovery by the behavioural experiences offered by physical 

therapy, implemented in the first days to weeks after stroke.  

 

Studies using animal models have sought to explore the impact of such early 

rehabilitation training on both brain changes and ensuing functional outcomes. 

Kozlowski et al. (1996) immobilised the impaired forelimb, the unimpaired forelimb 

(hence forcing use of the impaired limb) or neither forelimb of rats, from day one to 

day fifteen after an induced unilateral brain lesion. All groups were similarly housed, 

and a series of behavioural tests and limb-use observations made. Chronic, 

persistent behavioural deficits were found in rats that had their unimpaired 

forelimb immobilised, with an underlying dramatic exaggeration of lesion size. This 

suggested that excessive use of an impaired limb, during the early post lesion 

period, might damage compromised brain tissue surrounding injury and, on balance, 

the authors proposed a “use it but don’t overuse it” strategy for early intervention.   

However, it should be noted that the experimental conditions meant that the 

impaired limb was used excessively considering the weakness- for example, the rats 

had to feed and move around throughout the long periods of immobilisation of the 

unimpaired limb.  
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There are inherent difficulties in translating animal model findings to humans.  The 

level of use in Kozlowski et al.’s (1996) study is neither seen nor possible in human 

stroke rehabilitation- rats had the unimpaired forelimb constrained continually for 

15 days, far exceeding the likely nature and intensity of clinical rehabilitation 

activity in people who have sustained a stroke. In fact, Schallert et al. (2003) 

suggested that the increased lesion size in the earlier study was a direct result of 

the intense forced use activity and that long durations of constraint should be 

avoided until later post-lesion periods. They proposed that including the non-

impaired forelimb, hence encouraging inter-limb coordination early after injury, 

might optimise a therapeutic opportunity to shape synaptic plasticity for functional 

benefit.   

 

Another interesting finding emanates from a randomised, controlled study of rats 

given enriched rehabilitation training, not involving limb constraint, at different 

time points after an induced lesion. Biernaskie et al. (2004) found that  those 

beginning enriched training from day five demonstrated an increase in dendritic 

growth in a brain region previously established to be associated with recovery 

(Biernaskie and Corbett, 2001). This early enriched training group achieved a 

markedly enhanced functional outcome in comparison to those given similar 

training beginning at day 30, who improved no more than controls given social 

housing with no rehabilitation activity. The authors proposed that the post stroke 

brain is sensitive to rehabilitation activity early, in this case five weeks of ongoing 

rehabilitation initiated at day five after stroke, but that this sensitivity declines with 

time, and so delaying commencement of rehabilitation may reduce treatment 

efficacy and limit functional recovery.  However, caution must again be observed in 

translating findings from animal models to humans. In particular, it could be 

questioned whether five days after stroke in an animal with a much shorter lifespan 

than a human should be considered “early” after a lesion. Indeed, one 

interpretation might be that initiating rehabilitation five days after the stroke was 

delayed treatment onset, not early rehabilitation experience.  
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Animal studies, therefore, suggest that whilst very intensive forced use of the 

impaired forelimb immediately after injury may have detrimental effects, enriched 

rehabilitation therapy without limb constraint, delivered within the first week, is 

associated with improved recovery. These animal studies justify further 

investigation of the possible benefits of early rehabilitation intervention after stroke 

in clinical populations.   

One such study attempted to evaluate the effects of providing ten hours of 

additional upper limb therapy to stroke patients recruited one to five weeks after 

stroke (Lincoln et al. 1999). Participants were randomised to routine therapy, 

additional treatment by a qualified physiotherapist or additional treatment by a 

physiotherapy assistant and evaluated immediately after the intervention and at 

three and six months follow up, on a wide range of outcome measures. No 

additional benefits in motor function or activities of daily living were detected from 

the early, more intensive intervention. However, the authors noted the 

heterogeneity of the participants in this study with many severely impaired at study 

entry. Importantly, only around half in each intervention group were able to 

tolerate the additional treatment.  

In contrast, Feys et al. (2004) found immediate and persisting improvements in 

upper limb function following intensive upper limb training early after stroke. A 

randomised controlled trial examined the effect of repetitive upper limb training, 

initiated between two and five weeks after stroke, in addition to conventional 

therapy. Outcomes were measured immediately after the intervention, at six and 

twelve months and at five years after stroke. Adding the specific upper limb training 

intervention in the early phase after stroke resulted in a clinically meaningful effect 

on motor function in the upper limb. The effects here were evident immediately 

after the intervention and at the six month follow up, and, notably, upper limb 

outcomes demonstrated significant differences between control and intervention 

groups at the five year follow-up. A clinically important long term effect was 

demonstrated from this intensive rehabilitation protocol initiated early after stroke. 
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Other studies have examined the effects of early versus late onset of general 

rehabilitation programmes.  A large, multi-centre observational study of 1023 

stroke patients found significant association between gains in functional 

independence, as measured by the Barthel Index, and rehabilitation onset, within 

14 days of stroke (Massucci et al. 2006). Similarly, Paolucci et al. (2000) found 

earlier rehabilitation onset to be associated with favourable outcomes. This study 

recruited 145 patients consecutively admitted to a rehabilitation unit, who were 

then matched for age and Barthel score on admission to create homogenous sub 

groups. Participant data was then evaluated according to time from stroke onset to 

beginning rehabilitation.  Early onset of rehabilitation was associated with 

significantly improved functional outcome according to the Barthel Index, and with 

a significantly higher probability of excellent therapeutic response. However, early 

rehabilitation in this case  was considered to be within 20 days of stroke onset and 

no further stratified analysis was performed to examine effects of earlier 

rehabilitation onset.  

Such an analysis was, however, carried out by Musicco et al. (2003), who examined 

the effect of time of initiation of rehabilitation activity as part of a large cohort 

study exploring the early and long-term outcomes of rehabilitation after stroke. 

Participants (n=1716) were recruited from consecutive admissions to 20 Italian 

rehabilitation hospitals, and time from stroke to initiation of rehabilitation was one 

of many sociodemographic, clinical and rehabilitation characteristics recorded. Risk 

analyses accounted for differences in age and disability scores at baseline for the 

comparisons. Patients who began rehabilitation within seven days had better long 

term outcomes in terms of residual disability and quality of life than those 

beginning at either 15 to 30 days or at greater than one month after onset. 

However, it is noteworthy that this study also found a borderline significant 

decrease in mortality in those with treatment initiated at 15 to 30 days compared to 

those treated within seven days (RR=0.61; 95%CI 0.37 to 1.00; p=0.06). The authors 

raise concern that, due to political and economic constraints, patients might have 

been transferred too early from acute services to the hospital rehabilitation unit. 

These findings, when considered alongside those of Kozlowski et al. (1996), suggest 
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that further clinical research into the effects of very early rehabilitation input is 

indicated.  

Indeed, an international team is currently evaluating the effects of very early 

rehabilitation after stroke. The AVERT II study (Bernhardt et al. 2008) hypothesised 

that very early rehabilitation, emphasising mobilisation, may contribute to 

improved outcomes. An initial study explored the safety and feasibility of the 

intervention, recruiting 71 stroke patients less than 24 hours since stroke onset, 

randomised to standard care or very early mobilisation plus standard care.  Primary 

and secondary safety outcomes, including number of deaths, were similar across 

groups with successful delivery of the intervention protocol (Bernhardt et al.2008).  

Efficacy of the intervention is currently under evaluation. Interim findings of this 

multi-centre, randomised controlled trial, suggest that mobilisation within 24 hours 

of stroke and regularly thereafter, is associated with faster return to walking and 

good functional outcome at three and 12 months, in comparison to standard stroke 

care controls (Cumming et al. 2011).  

In conclusion, therefore, both animal and clinical studies suggest that earlier 

rehabilitation intervention, which might exploit the time window in which 

neuroplastic mechanisms are at their most active, may be beneficial in terms of 

functional outcomes after stroke. This interpretation is supported by the narrative 

critical review papers by both Cifu and Stewart (1999) and Teasell et al. (2005). 

Concern has also been expressed that delaying rehabilitation onset might lead to 

established compensatory behaviours that could impair future recovery (Levin et al. 

2009), and immobility might also prevent the brain from making the 

neurophysiological changes required to reacquire movement.  Additionally, 

National Clinical Guidelines for Stroke (Intercollegiate Stroke Working Party, Royal 

College of Physicians, 2012) advise that people with acute stroke be mobilised as 

early as possible. 

On balance, therefore, initiating therapies in the early period after stroke is logical.  

However, current clinical evidence is from either studies assessing specific upper 

limb rehabilitation programmes (e.g. Feys et al. 2004), large cohort studies 
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examining onset of general rehabilitation (e.g. Massucci et al. 2006), or recent work 

exploring general mobilisation very early after stroke (e.g. Cumming et al.2011).  

A gap exists, therefore, in research examining specific lower limb activity early after 

stroke. This is despite knowledge that training-induced cortical changes, similar to 

those observed in the upper limb, can occur with motor skill training of the lower 

limb (Perez et al. 2004).  Additionally, there is considerable potential for improved 

lower limb activity to impact on important functional outcomes such as transferring 

and walking. Stroke survivors consider their principal goal to be regaining 

independence in walking (Dickstein, 2008), and evaluating interventions addressing 

mobility deficits has been identified as a stroke research priority (Pollock et al. 

2012).  

This section has therefore identified a need to explore specific therapeutic 

modalities targeting lower limb activity early after stroke. 

1.2.3 Principles informing stroke rehabilitation and research: repetitive, 

task-specific activity after stroke 

Scientific debate about the optimal intensity of therapy required to maximise 

neuroplastic change, and the consequences in terms of functional recovery, is on-

going (e.g. Kwakkel et al. 2006). However, it is beyond the scope of this thesis to 

engage specifically in these discussions. To clarify, repetition here simply refers to 

the repeating of a movement or movement pattern a number of times. Clinically, 

this repetitive practice of movement might occur many times in a single therapy 

session or over a number of therapy sessions.  

It is known that the repetition of skilled motor activity can produce changes in brain 

representation maps. Animal studies have established a relationship between 

repeated behavioural experiences e.g. practice of a skilled upper limb task to 

retrieve food, and beneficial alterations in cortical representation maps (e.g. Kleim 

et al. 2002; Plautz et al. 2000; Nudo et al. 1996). Furthermore, animal model 

research found that up to 400 repetitions were required in a 30 minute session to 

induce changes in cortical representations (Kleim et al. 1998). 
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Such animal models have provided a basis for further research in human subjects. 

Karni et al. (1995) trained healthy young adults to perform a series of repetitive 

finger-tapping sequences with their non-dominant hand for 10 to 20 minutes a day 

over a five-week period. A control group performed the same movement only at 

baseline and outcome. At outcome, functional MRI was recorded whilst the tapping 

sequence was carried out.  Unsurprisingly, daily, repetitive practice of the 

movement increased the speed and accuracy of the movement. These 

improvements were accompanied by specific changes in the primary motor cortex 

(M1), with an initial small area of activation on first performing the task, followed 

by a consistently larger area of activation after three weeks of daily practice. The 

authors suggested that the repetitive training led to a gradually evolving improved 

cortical representation of the skilled movement over time, supporting the concept 

of repetitive practice of a motor skill to enhance beneficial functional brain changes. 

However, in this observational study, conclusions were drawn from just six healthy 

volunteers performing simple hand and finger activity only. Small group studies 

exploring brain changes in healthy volunteers might provide a foundation for 

generating hypotheses; but the results cannot necessarily be generalised to stroke 

survivors with altered neural networks. 

Work with stroke survivors has been carried out. Johansen-Berg et al. (2002) 

explored the effects of repetitive practice on brain activity in a small group of stroke 

survivors (n=7). Stroke patients with mild to moderate impairment six months or 

more after first stroke took part in a home-based, clearly defined graded exercise 

programme adopting the principles of constraint induced movement therapy. 

Functional MRI scanning was carried out before and after the therapy whilst 

performing a fast hand tapping task. Increased fMRI activity was detected in the 

premotor cortex and sensorimotor cortex contralateral to the affected hand and 

bilaterally in the cerebellum, after the therapy programme. This activity correlated 

with therapy-associated improvements in motor function, suggesting that the 

repetitive, graded therapeutic activity was having a beneficial effect on brain 

activity after stroke.  
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For pragmatic reasons, studies utilising brain scanning whilst participants carry out 

activity commonly use upper limb movement tasks, leading to difficulties in 

considering possible cortical effects of training lower limb activity. Perez et al. (2004) 

therefore attempted to evaluate cortical change following skilled movement 

training in the lower limb. The task of monitoring brain activity during lower limb 

movements is challenging using fMRI equipment. Hence, the authors used paired 

pulse transcranial magnetic stimulation techniques (TMS) to demonstrate cortical 

excitability following training of ankle muscles in healthy volunteers. The study 

recruited 25 young healthy volunteers who underwent 32 minutes of passive, non-

skilled or skilled training of the lower leg. TMS was carried out before and after each 

training session to examine cortical excitability via short latency intra-cortical 

inhibition and facilitation of the motor evoked potential in the area controlling the 

primary muscle of dorsiflexion, tibialis anterior. Amplitudes of motor evoked 

potentials were significantly increased after skilled motor training but not after non-

skilled nor passive training, suggesting that beneficial neuroplastic brain changes, 

more specifically in the primary motor area, M1, occurs when skilled activity is 

practised. These findings are similar to observations in the upper limb studies 

discussed and further support the contention that beneficial effects are noted 

following skilled, repetitive activity.  

It has also been suggested that functional benefit may be gained from goal-directed 

activity; hence the salience of a task is considered an important element in 

rehabilitation programmes (Kleim and Jones, 2008). Indeed, findings from a 

systematic review of fourteen trials of specific, goal-directed, repetitive activity 

reported moderate improvements in lower limb function, particularly on walking 

outcomes (French et al. 2009). This review provides some support for developing 

task specific lower limb training programmes after stroke in addition to usual care; 

though it should be noted that there was no evidence of sustained training effects 

from any included programme.    

The need for salient lower limb rehabilitation interventions is further reinforced by 

knowledge that stroke survivors themselves cite recovery of walking as a primary 

goal (Dickstein, 2008). Hence, they wish to engage in therapeutic activity 
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contributing to this aim. However, practising relevant walking activities to improve 

walking after stroke can be challenging for patients and therapists- stroke survivors 

often have substantial weakness and require considerable support to take just a few 

steps. Whilst patients may be able to practise component parts of the activity, 

opportunities for repetitive practise of complete, reciprocal, antagonistic lower limb 

activity in walking-like postures can be limited, particularly early after onset. 

Section 1.2.2 identified a need to explore specific therapeutic interventions 

targeting lower limb activity early after stroke; this section has identified that such 

rehabilitation interventions should incorporate opportunities for repetitive practice 

of functional activity. 

1.2.4 Principles informing stroke rehabilitation and research:  prognostic 

indicators for participation in interventions after stroke 

When developing potential rehabilitation interventions, it is important to identify 

which stroke survivors might be able to participate in those interventions, 

particularly early after stroke. This is because, as already noted, the first few weeks 

after stroke are when the brain is most likely to show the greatest amount of 

beneficial reorganisation in response to therapy (Cramer, 2008).  Consequently, 

providing the most appropriate therapy in this time window could be crucial.  

Additionally, as resource limited stroke services are increasingly asked to make 

rapid decisions about prognosis it is essential that specific therapies are targeted at 

those stroke survivors who will actually be able to participate. 

However, whilst therapists have a wide range of clinical interventions in their 

repertoire, as identified in the development of a lower limb treatment schedule 

(Pomeroy et al. 2005), there is a paucity of research evidence to guide clinical 

decisions on which patients are likely to be able to take part in which therapies.   

Clinical observations suggest that the ability to take part in therapy can be 

influenced by pathophysiological factors such as the area of brain affected, as well 

as clinical features including degree of hemiparesis and ability to take part in active 

repetitive training in the early stages after onset.  Identifying prognostic indicators 

for probable ability to take part in specific therapies could be a useful part of early 
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phase research trials in order that subsequent trials can target therapies at those 

participants most likely to be able to participate, and clinicians can be informed in 

refining their range of interventions according to clinical presentation.   

This section has identified, therefore, that it is important to record possible 

prognostic indicators for the ability to take part in therapies, as part of early phase 

trials of new interventions. 

1.2.5 Principles informing stroke rehabilitation and research: measuring 

outcomes of interventions after stroke 

A further important principle in the development of rehabilitation interventions is 

the selection of a range of valid and reliable outcome measures in order to 

accurately assess change (Medical Research Council, MRC, 2008). Current 

healthcare priorities demand that therapists demonstrate the effectiveness or 

otherwise of interventions and make rapid decisions about treatment programmes, 

patients’ progress and their potential for recovery. It is known that measures of 

impairment can provide useful markers of progress and have the greatest capacity 

to differentiate between treatment groups (Barack and Duncan, 2006). 

However, the appropriate measurement of outcomes, in both clinical practice and 

research, can present a number of challenges to therapists. Whilst it is clear that 

properly constructed, valid, reliable, specific and user-friendly measures are 

required for evaluating the effects of interventions (Barack and Duncan, 2006; 

Lennon and Johnson, 2000), published measurement tools do not always meet 

these key criteria for routine use in clinical settings. This is despite knowledge that 

therapists are more likely to choose measures that have demonstrable validity and 

reliability (Jette et al. 2009). Furthermore, determinants of outcomes in stroke 

survivors, particularly in terms of impairments, remain poorly defined and their 

complexities have contributed to difficulties in translation of rehabilitation science 

into clinical rehabilitation practice (Cumberland Consensus Working Group, 2009).  

Additionally, therapists have expressed difficulties in assessing and monitoring 

treatment effects: tools do not measure performance in functional activities 

relevant to therapeutic aims (Lennon and Johnson, 2000).  For example, therapeutic 
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goals after stroke often relate to rehabilitation of walking, but measures of 

impairment frequently use specific static positions and postures for testing rather 

than measuring during more relevant functional movement.  Laboratory-based 

motion analysis systems are available e.g. Vicon (Vicon Motion Systems Ltd, Oxford, 

UK), but this equipment is expensive, requires considerable expertise and technical 

support and is therefore inaccessible to the majority of clinical therapists (Pomeroy 

et al. 2006). Such equipment also requires stroke survivors to have achieved some 

independent mobility in order for the data to be recorded during the activity. 

Consequently, there is a need to measure motor impairment reliably outside the 

laboratory, in functional activities that relate to walking. However, detailed analysis 

of physiological function in the clinical setting is currently unattainable and 

therapists commonly use simple “hands-on” measures, such as the Motricity Index, 

to assess and monitor impairment (Turner-Stokes and Turner-Stokes, 1997).  Such 

measures do not enable therapists to accurately characterise the activity 

contributing to functional movement. For example, two individuals adopting two 

very different movement strategies might achieve the same score when assessing 

simple movement against gravity, as stroke does not have uniform effects on neural 

networks. Tools to accurately characterise movement patterns, particularly during 

development of potential new interventions, are therefore required. However, such 

tools should not be used in stroke research unless their psychometric properties 

have been assessed in a stroke population (Oremus et al. 2012). 

This section has therefore identified a need to develop a valid and reliable 

movement-based measure of impairment that can accurately characterise 

movement, hence measuring the physiological change that might underpin future 

functional change.  

1.2.6 Principles informing stroke rehabilitation and research: conclusions 

This section of the background review firstly established the importance of 

rehabilitation research after stroke. It then identified that current evidence 

supports the use of early, task specific, repetitive activity to maximise potential for 

recovery of lower limb motor function after stroke.  Additionally, it established that 
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it is important to understand which stroke survivors might be able to take part in 

such activity and how their progress might be sensitively measured.  

However, whilst these essential underlying principles of rehabilitation have been 

accepted, it remains unclear a) which specific therapeutic modalities might be used 

to provide the repetitive, skilled activity necessary to facilitate functional brain 

changes early after stroke and b) how progress during participation such functional 

activity early after stroke might most sensitively be measured. 

There is therefore an opportunity to explore a lower limb rehabilitation tool that 

enables repetitive, functional movement early after stroke and which can be 

instrumented to enable measures of impairment to be recorded during the activity.  

 

1.3 Background: reciprocal pedalling exercise as a potential tool for 

assessment, measurement and rehabilitation after stroke 

 

Reciprocal pedalling of the lower limbs is a repetitive, functional activity that, whilst 

familiar to many stroke survivors, is likely to require re-acquisition of motor skill 

following the onset of hemiparesis. Pedalling is characterised by an automated, 

rhythmic movement pattern of the lower limbs in a similar manner to walking. 

Indeed, there are a number of components of pedalling that are analogous to 

walking and have led to the suggestion that pedalling might provide both a walking-

like rehabilitation intervention and a method of characterising and measuring 

motor impairment during a walking-like activity after stroke (Brown et al. 1997). 

Additionally, due to the constrained nature of the task, it is possible that pedalling 

could be used early after stroke for people with substantial weakness. As such, 

pedalling is a tool that incorporates the principles of rehabilitation identified in 

section 1.2 

The purpose of this section, therefore, is to explore the potential of reciprocal 

pedalling exercise, both as a stroke rehabilitation tool as a possible measure of 

motor impairment after stroke. This part of the review will provide interpretation 

and synthesis of relevant published work in the form of a narrative literature review. 
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A systematic review addressing a specific research question, carried out in response 

to part of the findings of this background chapter, is presented in Chapter 3.0. 

1.3.1 Reciprocal pedalling and walking: biomechanical and 

neurophysiological similarities 

This section will explore the emerging body of research that has explored both 

biomechanical and neurophysiological evidence of similarities between pedalling 

activity and walking. 

Both pedalling and walking require that agonist and antagonist lower limb muscles 

are contracted reciprocally i.e. in alternating pairs of muscle groups. Raasch and 

Zajac (1999) used a complex computer simulation of the musculoskeletal system to 

model such grouped muscle control during pedalling under different conditions, 

varying cadence, load and direction. Whilst it is important to recognise that this 

work was carried out using simulations, the detailed modelling and analysis 

provided key insights into pedalling activity. The authors suggested a number of 

ways in which pedalling might be likened to human locomotion from their findings: 

muscles were organised into functional groups and demonstrated both phase and 

amplitude control; afferent regulation of timed muscle activity was similar to 

ambulation, in that peripheral proprioceptive information was found to be crucial to 

execution of movement; and transitions between phases of muscle activity in 

response to changes in, for example, direction, were similar. Indications that 

sensorimotor control mechanisms for walking and pedalling are analogous might 

provide a basis for pedalling as a potential tool for the rehabilitation of walking.  

Furthermore, in a study attempting to establish a link between hemiparetic severity 

and weaker leg contributions to walking, Bowden et al. (2006) used a pedalling 

protocol to examine anterior-posterior ground reaction forces (work production) in 

a small group (n=16) of chronic stroke survivors. Spatio-temporal gait characteristics 

were measured at self-selected walking speeds; then positive work, negative work 

and total work for each lower extremity were measured during pedalling. Measures 

of work production during pedalling were significantly positively correlated with 

propulsive impulses recorded during walking (r=0.588 p=0.017), suggesting 
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similarities between components of pedalling and walking, in this small group of 

stroke survivors. 

Such work suggesting commonality of fundamental aspects of pedalling and walking 

has led to further research exploring the mechanisms involved in the production 

and control of pedalling movement. The underlying assumption here is that because 

of similarities in control mechanisms between pedalling and walking, pedalling 

could be a task-specific training tool for walking activity. 

It is known that during simple human locomotor activity, descending corticospinal 

drive interplays with spinal mechanisms (e.g. Petersen et al. 2001). An emerging 

body of research has therefore begun to investigate whether similar mechanisms 

are used to generate and control the motor task of pedalling.  

For example, Zehr et al. (2007), in a small study of ten healthy subjects, found that 

neural regulation of rhythmic lower limb movement was similar across locomotor 

tasks. Subjects performed three rhythmic tasks: treadmill walking, upper limb-

assisted recumbent stepping and pedalling on a coupled leg and arm ergometer. 

Cutaneous reflexes were evoked during the activities, activity was recorded from 

five lower limb muscles using electromyography (EMG) and recordings were made 

of kinematic data using goniometry and force sensors located in the subjects’ shoes. 

Using principal components analysis, reasonable correlations were demonstrated 

for background EMG and reflex amplitudes in the superficial peroneal nerve for 

walking and cycling (r=0.57 for background EMG; r=0.43 for reflex amplitude), and 

cycling and stepping (r=0.48 for background EMG; r=0.49 for reflex amplitude). It is 

proposed in this work that the correlations of reflex activity and muscle activity 

across tasks suggest commonality of control. However, it should be noted that the 

authors use a correlation of r=0.40 and above to draw a conclusion of good 

correlation and no correlation across any of the relevant components was above 

r=0.57.The sample size here was small, and neither p-values nor confidence 

intervals around the correlation statistics were expressed. It should also be noted 

that the stepping activity was in a non-functional recumbent posture. The 

comparisons between stepping and cycling might be considered less relevant than 



   

30 

 

those between walking and cycling when considering cycling activity as a possible 

rehabilitation tool for walking.  

Direct cortical contributions to lower limb muscle activation during pedalling, in a 

similar manner to the cortical contributions previously observed during human 

locomotion, have recently been observed in small studies of healthy volunteers 

performing static ergometer pedalling (Sidhu et al. 2012; Jain et al. 2012). Jain et al. 

(2012) noted that cortical involvement could be involved in the more challenging 

phases of pedalling. This was demonstrated by particularly strong associations 

between cortical activity recorded using electroencephalography (EEG) and lower 

limb EMG activity during the transition phases between flexion and extension 

compared to other aspects of the pedalling cycle. It could be inferred that these 

associations during more challenging aspects of the movement suggest not only 

cortical involvement in the control of the activity, but that pedalling is a suitably 

challenging activity to beneficially influence cortical changes. Indeed, Yamaguchi et 

al. (2012) have recently explored the hypothesis that pedalling exercise might have 

a beneficial effect on the cortical leg area. This work had some similarities to that of 

Perez et al. (2004) (section 2.3.2): the study of ten healthy volunteers compared 

active and passive activity, in this case pedalling, and its effects on intracortical 

inhibition as measured by sub-threshold, paired pulse TMS.  Whilst no changes were 

observed after the passive activity, intracortical inhibition of the cortical leg area 

was decreased after active pedalling, suggesting beneficial cortical reorganisation 

that might influence ambulation. Though the study only used a small group of 

healthy volunteers, it demonstrated the potential of active pedalling as a sufficiently 

skilled activity to induce beneficial cortical changes in the short term.  

This section has therefore demonstrated an emerging evidence base in support of 

biomechanical and neural similarities between pedalling and walking, which have 

led to the suggestion that pedalling might be used as a tool for the rehabilitation of 

walking activity.  

Nonetheless, it is prudent to recognise the differences between the activities when 

considering the possibilities of pedalling for rehabilitation of walking. Pedalling tasks 
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provide, via the crank-based system, inter-limb coupling that does not occur during 

walking; pedalling is a much more constrained, predictable task. During pedalling on 

an ergometer device, adjustments in muscle activity to account for challenges to 

balance are less likely than when walking. Pedalling is most frequently carried out 

on static bicycles and ergometers in seated and recumbent postures, unlike walking.  

Additionally, pedalling does not require use of the upper limbs to assist the 

rhythmic movement as during normal walking.  

However, some of these differences might further support its possible use as a 

rehabilitation tool for walking rather than detract from them: stroke survivors often 

have substantial weakness, particularly early after onset but often persisting, that 

makes repetitive practise of walking tasks challenging, if not impossible. Hence, 

using a constrained ergometer pedalling device could provide important 

opportunities for practising repetitive, phasic lower limb movement similar to 

walking that might otherwise not be available. 

1.3.2 Reciprocal Pedalling: a potential rehabilitation activity after stroke 

The evidence of similarities to walking, potential for facilitating beneficial cortical 

changes, familiarity and accessibility of the task, and availability of equipment have 

all contributed to the investigation of pedalling as a potential stroke rehabilitation 

tool. This section will explore this evidence. 

Over 25 years ago, Brown and DeBacher (1987) suggested that patients with spastic 

hemiparesis might benefit from independently practising repetitive movement on a 

bicycle ergometer. They began to define equipment requirements and suggested 

that feedback using electromyography might usefully be incorporated to re-educate 

lower limb muscle activity. An illustrative case of one young male stroke survivor 

was used to demonstrate positive changes in gait and lower limb muscle activity 

after ergometer training with EMG feedback. Though no detail was given of the 

specific pedalling protocol, the authors reported an observed increase in hamstring 

activity and reduction in abnormal gait parameters such as hip circumduction and 

trunk flexion, after training. This single case was the first report of an attempt to 
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quantify the possible beneficial effects of pedalling activity after stroke and work 

has continued to explore its possibilities for rehabilitation. 

For pedalling exercise to be considered as a possible tool for the rehabilitation of 

walking, particularly for those stroke survivors who are too weak to walk, it is 

important that pedalling movement provides opportunities for practising phasic, 

coordinated muscle activity. Evidence from a small exploratory study of 17 non-

ambulatory stroke survivors, who were later than three months since onset, 

suggested that pedalling could indeed facilitate such activity in patients with severe 

hemiparesis (Fujiwara et al. 2003). Lower limb muscle activity was recorded via 

surface EMG from four muscles during and after a one-off pedalling task, consisting 

of pedalling a seated ergometer for five minutes at the participant’s comfortable 

speed.  Visual inspection of EMG traces for quadriceps and hamstrings muscles 

suggested a phasic pattern of activity, though there was no statistical analysis of 

reciprocity. Whilst this small developmental study did not provide definitive 

evidence, there were indications that phasic activity occurred during seated 

pedalling activity even in people with severe hemiparesis. 

In addition to the production of phasic lower limb movement, it has also been 

suggested that pedalling activity after stroke can have beneficial effects on lower 

limb muscle strength, balance and some walking outcomes. 

For example, a small group study of eight chronic (median time since stroke onset= 

two years) male stroke survivors found significant effects on concentric knee 

extensor strength on the affected side, after 12 sessions of recumbent pedalling 

over four weeks (Perell et al. 2001). In the same participants after this pedalling 

intervention, additional observations, though not statistical comparisons, of 

improved ankle control (measured by direction of pedalling force) were made 

(Perell et al. 2000).  

Additionally, a preliminary, small group (n=24) randomised controlled trial of early 

cycling training  after stroke examined possible effects on balance, as measured by 

the Postural Assessment Scale for Stroke (PASS), and lower limb motor function, as 

measured by the Fugl-Meyer Assessment (FMA) (Katz-Leurer et al. 2006). In-patient 
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stroke survivors were randomised to a cycling exercise intervention daily for three 

weeks or to usual rehabilitation care control group, and were followed up for six 

weeks. Both groups improved on the PASS and FMA at the six week assessment. 

The exercise group demonstrated a significantly better performance on the PASS 

and FMA relative to controls at six weeks (PASS mean scores: exercise group 31.1, 

control group 26.4, P=0.004; FMA mean scores: exercise group 29.1, control group 

22.1, P=<0.001). It should be noted that this was assessed using a group-time 

interaction effect and not a between groups significance test and that no 

confidence intervals were given to enable interpretation of possible clinical 

significance of findings. Additionally, the pedalling programmes in this study were 

individualised to each participant and not standardised, and usual rehabilitation 

care details were not given. Furthermore, whilst the study recruited people within 

one month of admission to a rehabilitation unit, exact time since stroke onset was 

not specified. However, this pilot work indicated possible beneficial effects on 

balance and lower limb motor function after stroke. 

Contrasting findings on the possible effects of pedalling exercise on walking 

outcomes have been found.  A small randomised controlled study examined the 

effects of an eight week aerobic pedalling programme in comparison to a home 

based stretching programme (Quaney et al. 2009) in 38 chronic stroke survivors 

(mean time since stroke onset= 4.9 years).  A significant decrease in time taken to 

rise from a chair, walk three metres, and return (the “Get Up and Go”, GUG, test), 

was found in the pedalling exercise group when compared to the stretching group 

immediately after the intervention (GUG mean scores: pedalling group 15.26, 

control group 29.11, p=0.038). The effect did not, however, persist to eight week 

outcomes.  

Tang et al. (2009) also explored an aerobic pedalling programme, in this case early 

after stroke, in order to determine the feasibility of adding such a programme to 

conventional rehabilitation and to explore possible effects on aerobic capacity and 

walking outcomes. ‘Early after stroke’ here referred to a wide range of time since 

onset, from six to 62 days (mean 17.5 days), as inclusion criteria enabled 

recruitment of stroke survivors up to three months from stroke onset. This 
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developmental study used a matched control design, with an exercise group taking 

part in 30 minutes of graded pedalling activity in addition to usual therapy, three 

times per week. Eighteen pairs of exercise and control group participants, matched 

on the basis of age and sex, were compared on a range of outcomes. Findings here 

contrasted to those in the study of chronic stroke survivors (Quaney et al. 2009); 

whilst there were improvements in all scores in both groups, there were no 

significant between group differences on any walking outcomes, including preferred 

and fast-paced gait speeds. It should be noted that four individuals in each study 

group were non-ambulatory and therefore unable to take part in the tests of 

walking ability. 

Whilst interpretation of developmental work must necessarily be cautious, this 

section has identified an emerging body of evidence that pedalling could be a 

potential rehabilitation intervention to enhance motor function, including walking 

recovery, after stroke. However, whilst there are some suggestions of benefit, the 

current evidence on pedalling exercise after stroke has not been synthesised 

systematically in order to inform clinical practice and future research.   

1.3.3 An alternative potential tool for rehabilitation of walking after 

stroke 

The background to the thesis thus far has used existing evidence to demonstrate 

that reciprocal pedalling is a possible tool for improving motor function, including 

walking, after stroke. It has also suggested that the “usual” methods of assisting 

people to repetitively practise walking, such as hands-on therapeutic approaches, 

are very challenging for therapists and people with stroke, particularly those with 

substantial weakness early after onset. Another method of potentially meeting 

these challenges has emerged in rehabilitation research in recent years: body 

weight-supported treadmill training, in which people with walking impairments can 

practise walking on a treadmill with their weight partially supported by a suspended 

harness. As a possible alternative to the new rehabilitation tool proposed in this 

thesis, it is important that this intervention is discussed; hence recent evidence on 

treadmill training after stroke will be critiqued in this subsection. 
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Body weight-supported treadmill training (BWSTT) is a tool that could meet some of 

the principles known to underpin successful rehabilitation after stroke: the concept 

here is that BWSTT offers opportunities for task-orientated, repetitive, progressive 

practise of walking and hence might facilitate activity-dependent neuroplasticity 

(Dobkin and Duncan, 2012). Due to the use of a patient harness, adjustable to 

enable graded body weight-support, it has been proposed that BWSTT might offer 

opportunities for rehabilitation of walking before over-ground walking can be 

achieved (Franceschini et al. 2009; McCain et al. 2008).Indeed, the feasibility of use 

of BWSTT in stroke survivors within six weeks of stroke onset, has been 

demonstrated (Franceschini et al. 2009). It is therefore unsurprising that BWSTT has 

become increasingly popular and the subject of a number of research studies and 

reviews in the past two decades (Moseley et al. 2005). 

However, results of the effectiveness of BWSTT on walking outcomes after stroke 

have been disappointing, despite a number of well-designed randomised controlled 

trials (Dobkin and Duncan, 2012). A Cochrane systematic review and meta-analysis 

of 15 trials, including over 600 participants, found that there were no significant 

differences between treadmill training, either with or without body weight support 

and any other interventions for the continuous variable of walking speed or the 

dichotomous variable of walking dependence (Moseley et al. 2005). For those 

participants who could walk at the start of intervention, BWSTT did produce some 

trends to increased walking speed but this was a non-statistically significant effect 

(0.09 metres per second, [95% CI: -0.02 to 0.20]). For the only trial investigating 

people who were dependent walkers at the start of the intervention and that 

reported follow-up data (Nilsson et al. 2001), there was no evidence of an effect on 

walking speed when comparing BWSTT to usual over-ground walking training with a 

physiotherapist (-0.12 metres per second, [95% CI:-0.37 to 0.13]). 

A more recent systematic review (Charalambous et al. 2013) further supported the 

contention that BWSTT interventions do not demonstrate superiority over control 

group therapies for walking speed outcomes after stroke. This review included 15 

randomised controlled trials evaluating effects of treadmill training and/or BWSTT 

on final walking speed, change in walking speed and retention of any changes in 
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walking speed, published up to May 2012. A qualitative synthesis was reported, 

with calculation of within-group and between-group effect sizes. The synthesis 

found that, whilst treadmill training without body weight support did demonstrate 

some superiority over control interventions in both final walking speed and change 

in walking speed, no study examining BWSTT found a superior response over 

control group therapies on any walking speed outcome. However, limitations of this 

study, noted by the authors, included that both the tests used to determine walking 

speed and the training intensities varied across studies. Meta-analysis was not 

carried out and no justification was given for this decision. It is also of note that this 

review did not include the work of Franceschini et al. (2009), who conducted a 

moderately sized single-blind randomised controlled trial examining BWSTT versus 

over-ground walking training in early stroke survivors, including effects on walking 

speed. This study randomised 97 people, who were unable to walk at inclusion, to 

either BWSTT or conventional over-ground walking training within 45 days of stroke 

onset. Intervention group participants underwent 20 minutes of BWSTT followed by 

40 minutes of conventional training, 5 days per week for an overall number of 20 

sessions; control group participants underwent 20 sessions of conventional over-

ground gait training for 60 minutes per session. Feasibility of use of BWSTT was 

demonstrated and participants in both groups demonstrated improvements in 

functional ambulation, muscle strength and walking speed, but no significant 

differences between groups were found. Hence, whilst Charalambous et al. (2013) 

did not include this paper, it would not have changed the conclusions of their 

review. 

Moseley et al. (2005) and Franceschini et al. (2009) both concluded a need for well-

designed further studies of treadmill based interventions. However, more recently, 

this suggestion of a need for further investigation of BWSTT has been challenged, 

with Dobkin and Duncan (2012) suggesting that it may be time to stop promoting 

and investigating the effectiveness of this intervention and encourage patients to 

participate in other activities that improve motor control, balance, strength and 

endurance. Dobkin and Duncan (2012) make this recommendation in the light of 

recent trials finding no evidence of benefit of BWSTT (e.g. Franceschini et al. 2009), 
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concurring with systematic review findings (Moseley et al. 2005). Additionally, 

treadmill training uses large-scale equipment that is unlikely to be transferable to a 

home setting and requires the expertise of physiotherapists to assist with 

positioning in the device and foot placement to ensure walking quality. Its 

possibilities as a task-orientated tool have also been challenged due to the nature of 

the walking activity involved, with the stroke survivor suspended by a harness, 

reacting to the ground moving beneath their feet, unable to self-adjust their speed 

or take visual cues from the passing environment (Dobkin and Duncan, 2012). 

Consequently, current clinical guidelines for stroke do not recommend BWSTT for 

retraining of gait after stroke (Intercollegiate Stroke Working Party, Royal College of 

Physicians, 2012) as there is insufficient evidence of it improving walking more than 

conventional physiotherapy for recommendations of clinical use to be made.  

Hence, there remains an opportunity to develop another tool to promote motor 

function, including walking, early after stroke; reciprocal pedalling is an alternative 

to BWSTT. Reciprocal pedalling does not provide actual stepping movement in the 

manner of treadmill training, and some of the previously mentioned criticisms of 

treadmill training, including a lack of visual cues from the passing environment, 

might equally be levelled at static pedalling, but important similarities to walking 

have been established (section 1.3.1). Additionally, pedalling equipment is more 

accessible than large-scale treadmill devices and, once pedalling is underway, 

minimal intervention from the therapist is required.  Existing evidence on BWSTT 

has not, therefore, precluded further investigation of reciprocal pedalling as a 

possible rehabilitation tool after stroke. 

1.3.4 Reciprocal Pedalling: a potential tool for the measurement of motor 

impairment after stroke 

The principles underlying the need to establish sensitive measures of motor 

impairment in stroke survivors were identified in section 1.2.5. This section will 

explore the possibility, emerging from current research that measures of muscle 

activity recorded during reciprocal pedalling might provide a sensitive method of 

quantifying lower limb motor impairment. 
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After stroke, many patients cannot ambulate effectively enough to perform a 

rhythmic test while walking, but they might be able to take part in reciprocal 

pedalling activity. Pedalling therefore has the potential to provide measurable 

walking like activity in both those with compromised walking ability and those able 

to ambulate after stroke. 

It is well known that muscle activation during rhythmic human movement such as 

pedalling can be analysed in terms of muscle activity level and/ or muscle activation 

timing with portable EMG systems (Hug and Dorel, 2009).  Surface EMG, using 

adhesive electrodes on the skin, provides relevant information from a larger mass 

of muscle tissue than with invasive wire electrodes and is usable in clinical settings 

(Hug and Dorel, 2009).   Such tools are well-accepted by the biomechanics research 

community and their use is diversifying to include assessment in, for example, 

sports medicine centres (Dorel et al. 2008).  

It is known that measures derived from EMG can be used to quantify muscle 

patterns during pedalling, not only in healthy volunteers, (e.g. Savelberg et al. 2003; 

Dorel et al. 2008) but also in stroke survivors. Indeed, a small body of studies has 

suggested that such pedalling measures can successfully characterise motor 

impairment after stroke. In particular, Brown et al. (1997) were able to characterise 

the lower limb motor performance of stroke survivors during pedalling in different 

positions, by successfully depicting changes in muscle activation timing via surface 

EMG, along with pedal reaction forces and pedal kinematics. Following this, the 

same team quantified the effects of increasing workload on muscle activity of 

stroke survivors during pedalling, using EMG. Again, measures recorded during 

pedalling were adopted to characterise patterns of movement, this time at different 

speed and workload contributions. Furthermore, Kautz et al. (2005), used EMG 

recording of lower limb muscle activity during pedalling to quantify motor co-

ordination as an outcome measure in a trial investigating the effects of a combined 

exercise programme after stroke. 

However, such detailed characterisation remains unexplored in early stroke 

survivors taking part in pedalling. It is particularly important that activity is recorded 
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in detail as this stage to establish the movement patterns being adopted to achieve 

the functional goal- abnormal movement patterns might be less skilled, use 

compensatory strategies and hence drive maladaptive brain recovery. Hence, it is 

important to establish whether measures that characterise movement during 

reciprocal pedalling can be derived early after stroke via the instrumentation of a 

pedalling device, and to explore whether those measures might be valid and 

reliable for clinical use and use in future studies.  

Indeed, despite the adoption of EMG derived measures to characterise impairment 

after stroke (e.g. Brown et al. 1997; Kautz et al. 2005) the reliability and validity of 

such measures when used with stroke survivors, has not been investigated. Such 

assessment is important to reliably determine a) change over time in the same 

participant, which is highly relevant for monitoring responses to stroke physical 

therapy over a number of treatment sessions; b) whether there is any association 

with existing clinical measures; and, c) whether the measures are sufficiently 

discriminatory to be reliably used in clinical practice.  

A small body of work has examined the reliability of such measures in healthy active 

adults. Dorel et al. (2008) examined the repeatability of ten lower limb muscle 

activation patterns in eleven tri-athletes during pedalling performed before and 

after a training session. Patterns were defined according to onset and offset of 

bursts of activity (timing parameters) and root mean squared muscle activity level. 

No significant differences were found between test and retest for any of the test 

muscles’ activity levels. Vastus medialis (VM), soleus (SOL) and tibialis anterior (TA) 

demonstrated significant differences in timing parameters using the intra-class 

correlation coefficient, but on further analysis, these muscles demonstrated high 

repeatability of patterns using cross-correlation coefficients. Challenges to assessing 

repeatability of pattern using onset and offset might be apparent due to difficulties 

in deciding when a muscle is truly on and off and these are further reflected upon in 

Chapter 6.0.  

More recently, Jobson et al. (2012) examined muscle activity levels and patterns in 

male cyclists and non-cyclists in eight muscles, on three separate occasions, using 
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surface EMG. Onset and offset for all muscles demonstrated no significant 

difference between visits in either cyclists or non-cyclists, though intra-session 

repeatability for tibialis anterior and rectus femoris onset was lower than for the 

other muscles in both groups. The results for rectus femoris were similar to that 

achieved by Dorel et al. (2008). 

Whilst this work has begun to explore the components of EMG derived pedalling 

measures in unimpaired individuals, where movement patterns might be expected 

to be largely homogenous, no such work has been done elucidating the 

psychometric properties of these measures in stroke survivors. It is essential that 

testing is carried out in a group of stroke survivors with a broad range of clinical 

characteristics, as movement patterns here might demonstrate heterogeneity due 

to different effects of the condition on neural networks. In addition to the 

possibility of exploring the reliability of such measures in people after stroke, these 

physiological measures might present an opportunity to more generally quantify 

motor impairment. Testing their discriminatory ability between stroke survivors and 

healthy volunteers is therefore indicated.  

Finally, the detailed characterisation of movement that might be offered by the 

EMG derived pedalling measures could provide physiological insights into the 

interpretation of findings of a reliability study. 

This section has identified that instrumented reciprocal pedalling has the potential 

to be used as a measure of motor impairment after stroke in the clinical 

rehabilitation setting.  The development phase of such a clinical measure 

necessitates investigation of its psychometric properties before recommendations 

to the rehabilitation community can be made.  

It is currently unknown whether the measure of motor impairment by instrumented 

reciprocal pedalling is able to discriminate between muscle activity in stroke 

survivors and healthy comparison subjects; is repeatable (i.e. could be reliably 

repeated across therapy sessions) in stroke survivors; is congruent with existing 

clinical measures of impairments of motor function; and is representative of current 

ambulatory ability. 
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1.3.5 Conclusions: reciprocal pedalling as a potential tool for assessment, 

measurement and rehabilitation after stroke 

This section of the background review has established that a) reciprocal pedalling 

exercise is a potential rehabilitation tool that incorporates the identified principles 

of rehabilitation identified in section 1.2; b) there are indications from current 

evidence that reciprocal pedalling has biomechanical and neurophysiological 

similarities to walking and that it might have beneficial effects on motor function 

after stroke and c) there are indications that measures recorded during reciprocal 

pedalling might be useful in sensitively characterising and measuring lower limb 

motor impairment after stroke. 

However, to date there has been no systematic synthesis of the current research 

evidence on reciprocal pedalling after stroke. It also remains unclear if it is feasible 

for people to participate in reciprocal pedalling interventions early after stroke 

when the brain is at its most responsive to extrinsic therapies. Additionally, it 

remains unclear if measures recorded during reciprocal pedalling after stroke are 

valid and reliable.  

There are, therefore, opportunities to systematically retrieve and synthesise current 

research on reciprocal pedalling after stroke, to explore the feasibility of reciprocal 

pedalling exercise early after stroke and to explore the reliability and validity of 

measures recorded during the activity.  

 

------------------------------------------------- 
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Chapter 2.0: Statement of Aims 

2.1 Introduction 

 

The background chapters of the thesis have established that: 

• current evidence supports the use of early, task specific, repetitive activity to 

maximise potential for recovery of lower limb motor function after stroke; 

reciprocal pedalling exercise is one such potential rehabilitation activity. 

 

• there are indications from current evidence that reciprocal pedalling has 

biomechanical and neurophysiological similarities to walking and that it 

might have beneficial effects on motor function after stroke. 

 

• it is important to understand which stroke survivors might be able to take 

part in such activity. 

 

• it is important to understand how stroke survivors move during reciprocal 

pedalling and how their progress might be sensitively measured. 

 

• there are indications that measures recorded during reciprocal pedalling 

might be useful in sensitively characterising and measuring lower limb motor 

impairment after stroke.  

 

However, to date there has been no systematic synthesis of the current research 

evidence on reciprocal pedalling after stroke. It also remains unclear if it is feasible 

for people to participate in reciprocal pedalling interventions early after stroke 

when the brain is at its most responsive to extrinsic therapies. Additionally, it 

remains unclear if measures recorded during reciprocal pedalling after stroke are 

valid and reliable.  

There are, therefore, opportunities to: 
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• systematically synthesise the current evidence on the effects of reciprocal 

pedalling exercise on motor function after stroke 

 

• explore the validity and reliability of measures of lower limb motor 

impairment made during reciprocal pedalling 

 

• explore the feasibility of participation in reciprocal pedalling early after 

stroke 

Hence, the following research questions and ensuing aims for the investigations 

were developed: 

 

2.2 The Research Questions: 

 

Question One: 

1. Does reciprocal pedalling exercise enhance motor function after stroke? 

 

This question was informed by the need to systematically synthesise and 

understand the implications of the existing evidence on the effects of reciprocal 

pedalling on motor function after stroke. The driver for the question was the 

hypothesis that reciprocal pedalling exercise has beneficial effects on motor 

function after stroke. 

 

The question gives rise to the following aims: 

Aim 1a 

To systematically retrieve and assess the robustness of the current research on the 

effects of lower limb reciprocal pedalling exercise on motor function after stroke. 
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Aim 1b 

To consider the implications of current research findings on reciprocal pedalling 

exercise for future research and rehabilitation practice.  

Aims 1a and 1bwill be investigated using a systematic review (Chapter 5.0) 

 

Question Two: 

2. Are measures of lower limb motor impairment which are made during 

RP valid and reliable? 

 

This question was informed by the identified need to develop sensitive measures of 

impairment that might identify physiological changes underpinning clinical changes 

after stroke. Such measures have potential importance for use in both clinical 

practice and research. 

The driver for this question was the hypothesis that reciprocal pedalling is a reliable 

and valid method of measuring lower limb motor impairment after stroke. This has 

not been tested to date. 

This question gives rise to the following aims: 

Aim 2a 

To instrument the RP device to enable recording of measures of lower limb motor 

impairment during the reciprocal pedalling activity. 

Aim 2b 

To determine whether the measurement of motor impairment by UP, as expressed 

by a) changes in muscle activity timing and reciprocal activation measured by EMG 

and b) smoothness of pedalling activity, is repeatable across measurement sessions 

in stroke survivors with a variety of clinical characteristics. 
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Aim 2c 

To determine whether the measurement of motor impairment by UP, as expressed 

by a) changes in muscle activity timing and reciprocal activation measured by 

electromyography (EMG) and b) smoothness of pedalling activity, has discriminative 

ability between stroke survivors and healthy volunteers and between different 

levels of function in stroke survivors. 

Aim 2d 

To determine whether the  measurement of motor impairment by UP as expressed 

by a) changes in muscle activity timing and reciprocal activation measured by EMG 

and b) smoothness of pedalling activity, has any association with a commonly used 

existing clinical measure of impairment, Motricity Index; and of current ambulatory 

capacity as measured by the Functional Ambulatory Categories. 

 

Aim 2a will be investigated as part of a feasibility study exploring reciprocal 

pedalling early after stroke (Chapter 5.0); Aims 2b, 2c and 2d will be investigated 

using a clinical measurement study (Chapter 6.0) 

 

Question Three: 

3. Is participation in reciprocal pedalling (RP) in the first 31 days after 

stroke feasible?  

 

Throughout this thesis, reciprocal pedalling is considered to be a complex 

rehabilitation intervention; that is, an intervention with a number of interacting 

components, as defined in the Medical Research Council Guidance for Developing 

Complex Intervention (Medical Research Council, 2008). 
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The final question was informed by the need to promote and achieve functional 

activity after stroke in a manner incorporating the identified underlying principles of 

rehabilitation. 

The driver for the question was the hypothesis that reciprocal pedalling, used as an 

adjunct to conventional therapy, might enhance recovery of lower limb motor 

function in stroke survivors with substantial paresis early after stroke. This has not 

been tested to date in early stroke survivors. 

However, before the hypothesis can be definitively tested in a Phase III clinical trial, 

and in accordance with Medical Research Council Guidance, it was essential that 

feasibility and pilot work be carefully planned and carried out (Craig et al. 2008). 

Whilst this development work might add to the time taken to develop an original 

rehabilitation intervention in this participant group, it is a crucial step to ensure that 

the eventual intervention is able to be accurately implemented, evaluated and 

replicated both in further research and practice (Craig et al. 2008). This stage in the 

development of a complex intervention can provide vital information on:   

• feasibility of use of the intervention with the intended participants including 

recording of any adverse effects 

 

• feasibility of implementation in the chosen setting including recruitment and 

retention to the study 

 

• potential sample size required for a later phase study  

 

• outcome measures required to accurately assess potential clinical efficacy- a 

range of measures is likely to be needed to make best use of the data at this 

stage including picking up any unintended consequences; and, finally, 

 

•  whether there is sufficient evidence of benefit to justify proceeding to 

subsequent larger trials 
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Hence, due consideration was given to these factors in development of an early 

phase study protocol and the following aims were established:  

Aim 3a 

To estimate the proportion of stroke survivors in an acute in-patient stroke unit 

who are able to participate in RP, within 31 days of stroke onset. 

Aim 3b 

To explore whether stroke survivors who are within 31 days of stroke onset can 

perform RP on a daily basis. 

Aim 3c 

To investigate whether there are any indications of which individuals may be able to 

take part in RP in the first 31 days after stroke, according to their clinical 

characteristics 

Aim 3d 

To explore the mechanisms that might be responsible for any future clinical change 

by the detailed characterisation of lower limb muscle activity patterns during RP in 

the first 31 days after stroke.  

Aim 3e 

To determine whether there is sufficient evidence of efficacy for RP to justify 

proceeding to subsequent clinical trials.  

Aim 3f 

To record and report any adverse effects occurring as a result of participating in RP 

in the first 31 days after stroke. 

 

Aims 3a to 3f will be investigated using a feasibility study to explore reciprocal 

pedalling exercise early after stroke (Chapter 5.0). 
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Chapter 3.0: A Systematic Review of the Effects of Reciprocal 

Pedalling Exercise on Motor Function after Stroke 

 

3.1 Introduction 

 

It has been established that pedalling is an activity incorporating some of the 

underlying principles of rehabilitation that drive functional brain changes after 

stroke (Chapter 1.0).  Hence there is a developing body of research exploring its 

potential as a rehabilitation tool (e.g. Katz-Leurer et al. 2006; Fujiwara et al. 2003; 

Perell et al. 2001, 2000). Chapter 1.0 demonstrated evidence from exploratory 

studies that pedalling activity may have a positive effect on strength, reciprocal 

activation of antagonistic muscle groups, balance and some walking outcomes in 

stroke survivors (Perell et al. 2001; Fujiwara et al. 2003; Katz-Leurer et al. 2006; 

Quaney et al. 2009).   

This existing research evidence has not been synthesised nor its robustness 

evaluated. Hence, the purpose of this chapter is to investigate aims 1a and 1b using 

systematic review methodology. 

 

3.2 Research question 

 

This study addressed question one:  

Does reciprocal pedalling exercise enhance motor function after stroke? 

 

3.3 Aims 

 

The aims of this study were to assess the quality of the current evidence on the 

effects of lower limb reciprocal pedalling exercise on motor function after stroke; 
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and then consider the implications for both future research and rehabilitation 

practice (aims 1a and 1b).  

 

3.4 Methods 

 

It is widely accepted that the most rigorous method for evaluating the possible 

effects of an intervention is to synthesise and assess the available literature via a 

systematic review. Systematic reviewing is a scientific technique that 

comprehensively integrates existing evidence, using a repeatable methodology that 

limits bias (Mulrow, 1994). Reliable assessments of available evidence are 

increasingly important in changing healthcare settings and rehabilitation 

professionals must be aware of the breadth and depth of research evidence 

available on the interventions they employ (Greener and Langhorne, 2002). 

However, despite the emerging research into pedalling interventions identified in 

the background review, and clinical observations suggesting that many stroke unit 

therapy departments have exercise bikes available for stroke rehabilitation 

programmes, there has been no systematic review published on evidence on 

potential effects of pedalling exercise after stroke.    

This research question was therefore addressed using systematic review 

methodology. 

The design of the review followed recommendations of the Cochrane Collaboration, 

the established international body providing methodological recommendations for, 

and publication of, systematic reviews of health care.  

The review was carried out by the lead author (NH) and an independent reviewer, 

Will Winterbotham (WW), Senior Physiotherapist, Addenbrooke’s Hospital, 

Cambridge, UK. 
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3.4.1 Searching for studies 

3.4.1i Electronic search strategy 

The search was developed in liaison with a medical librarian and terms were 

adapted according to the specific requirements of each database. No funding was 

available for translation and hence the search was limited to English language 

papers only. 

Search strategy used: 

1.exp Cerebrovascular Disorders/ 

2.exp Stroke/ 

3.(cerebral or cerebellar or brainstem or vertebrobasilar or brain).mp.  

4.(infarct* or isch?emia or thrombo* or embol*).mp.  

5. 4 and 3 

6. (cerebral or brain or subarachnoid or intracerebral or intracranial or 

cerebellar).mp.  

7. (h?emorrhage or h?ematoma or bleed*).mp.  

8. 6 and 7 

9. (hemipleg* or hemipar*).m_titl. 

10.8 or 1 or 9 or 2 or 5 

11. limit 10 to (english language and humans and "all adult (19 plus years)") 

12. (bicycl* or bike or pedal* or ergomet* or cycle or cycling or cyclical).mp.  

13. (cycle* adjmenstrua*).mp. [mp=title, original title, abstract, name of substance 

word, subject heading word] 

14. 12 not 13 



   

51 

 

15. limit 14 to (english language and humans and "all adult (19 plus years)") 

16. 11 and 15 

3.4.1ii Databases 

The following databases were searched electronically: 

• COCHRANE:  Database of systematic reviews, database of abstracts of 

reviews of effects, Cochrane central register of controlled trials, Cochrane 

methodology register, Cochrane stroke group 

• MEDLINE 

• EMBASE 

• CINAHL  

• AMED 

• PEDro 

• PsycINFO 

The initial search period was conducted to cover the period from the induction of 

the databases to March 2009 and this was updated in a subsequent search to 

March 2010, prior to submission for publication of the review (Hancock et al. 2012). 

3.4.1iii Searching other resources 

Reference lists of full text papers retrieved were hand searched by the lead author. 

Personal contact was made with key authors in the field.  These were identified as 

those publishing three or more papers in the area of study following the initial title 

scan. Three authors were contacted, Professor D. Brown, Professor T. Fujiwara and 

Dr K. Perell. Responses were received from Professor Brown and Professor Fujiwara. 
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3.4.2 Identification of Studies 

3.4.2i Types of Studies 

All study designs, including randomised studies (RS) and non-randomised studies 

(NRS).  The initial scoping exercise revealed a limited number of randomised 

controlled trials of the intervention, a common finding in research into 

physiotherapy interventions. Restricting too stringently by design may have led to a 

number of studies of interest being excluded from the review. 

3.4.2ii Types of Participants 

• Adults (›18 years) 

• Clinical diagnosis of stroke,  in any brain area 

• Stroke caused by ischaemia/infarct or haemorrhage 

• Any time after stroke 

• Paretic lower limb contralateral to stroke lesion 

• With/without sensory loss 

• With/without unilateral neglect 

 

3.4.2iii Types of Interventions 

No methodological restrictions on dose, frequency, intensity or duration of 

intervention were applied. 

The following interventions were included: 

• Reciprocal pedalling exercise designed to enhance motor recovery in the 

paretic lower limb. 

• Reciprocal lower limb pedalling exercise as part of an aerobic exercise 

programme, where outcomes include evaluation of effect on motor function. 
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• Reciprocal lower limb pedalling exercise in any body position. 

• Reciprocal lower limb pedalling exercise as a one-off intervention or series 

of interventions over time.  

 

The following interventions were excluded: 

• Pedalling exercise where used solely to achieve a maximal exercise stress 

test for the evaluation of aerobic capacity.  

• Pedalling exercise where used as an adjunct to other therapeutic 

interventions e.g. with functional electrical stimulation; or as part of a 

combined therapeutic exercise programme. 

3.4.2iv Types of Outcomes: 

• All outcomes of motor function after stroke used in the included studies 

(excluding upper limb outcomes).  “Motor function” here encompasses a 

spectrum- from the physiological functioning of body systems and structure, 

through to the execution of specific tasks by an individual.  Outcomes 

included, for example, timing of onset and offset of muscle activity, 

reciprocity of muscle activity, muscle strength, balance and walking and stair 

climbing ability.  Examples of measures by which such outcomes were 

obtained included EMG activity, the Motricity Index, the Functional 

Ambulatory Categories, timed walking and stepping tests and measures of 

functional independence. For this original systematic review of the 

intervention, and in accordance with recognised guidance (Higgins and 

Green, 2008) it was decided that using a wide range motor function 

outcomes would optimise information available for synthesis and 

interpretation.  

• Measures of side effects and adverse effects were included if/where 

reported.  
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3.4.3 Data collection and analysis 

3.4.3i Retrieving Studies 

References retrieved from the electronic searches were collated using EndNote 

X2.0.1 software and duplicates removed. References were also stored and given 

reference numbers in Microsoft Excel 2007 for sharing with the independent 

reviewer. 

3.4.3ii Selection of studies 

In order to ensure consistency of understanding of the review’s aims before the 

formal scan of titles for inclusion, 50 titles were initially randomly selected from the 

total pool, using a computerised random number system. These were sent to the 

second reviewer for his identification of potential studies.  A preliminary meeting 

was then held, where compatibility of response was evaluated and any 

disagreements discussed.  

The formal review then proceeded, with two reviewers working independently to 

identify eligible studies. The reviewers considered each reference independently via 

a title scan, followed by an abstract scan and full paper screen where necessary, 

deciding on inclusion according to the pre-defined criteria. Disagreements were 

resolved in one-one discussion. Any persistent disagreements were referred to a 

third party and were resolved by discussion and re-referral to the original paper. 

A standardised proforma for identifying eligible papers according to the pre-set 

criteria was employed (Appendix I).  

3.4.4 Data extraction and management 

Data extraction was enabled by tabulation of key aspects of each study, including 

design, participants, type, dose and duration of intervention, equipment and setting.  

Data were extracted from included studies using a standardised proforma 

(Appendix I).  The lead researcher carried out data extraction and consulted the 

independent reviewer for clarifying specific queries raised during the process. 

3.4.4i Assessment of potential risk of bias 
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Criteria for assessing risk of bias in the randomised studies were derived from the 

Cochrane Collaboration tool (Higgins and Green 2008) (Appendix I). Each study was 

individually evaluated and tabulated according to the criteria by the lead author, in 

consultation with the review team. The same tool was used for the risk of bias 

assessment for the non-randomised studies.  Whilst it was not developed with such 

studies in mind, the general structure is suggested as useful where studies are 

heterogeneous and no quantitative synthesis is planned.  The use of this tool for the 

NRS allowed for heterogeneity to be clearly demonstrated. The assessment of risk 

of biases for all studies informed the interpretation of review findings and 

recommendations. 

3.4.5 Measures of treatment effect 

Where calculable, Cohen’s effect sizes with 95% confidence intervals were 

calculated for continuous outcomes in the randomised controlled studies to 

demonstrate the magnitude of any effects and enhance the interpretation of review 

findings. Differences in the direction of measures were corrected for i.e 

multiplication by -1 for those scales where an increase in the measure indicates 

worsening motor function. 

3.4.6 Data synthesis and interpretation 

Though effect sizes have been stated where calculable, meta-analysis was not 

indicated due to heterogeneity across domains including design, participants, 

methods and outcomes. Combining such clinically diverse studies statistically would 

be meaningless and possibly misleading, thus it was decided that a narrative 

synthesis was most appropriate.  Qualitative data synthesis was enabled by 

tabulation, with motor function outcomes classified according to the International 

Classification of Functioning (ICF; World Health Organisation, WHO, 2001). The use 

of the ICF is widely recognised to provide a conceptual basis and common language 

for understanding patients’ health status.  It was therefore anticipated that, by 

using this format, an interpretation relevant to health providers could be made, 

with information across the broad spectrum of motor function outcomes. 
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Interpretation was informed by the assessment of potential biases within the 

included studies. 

 

3.5 Results 

 

3.5.1 Summary of search results 

The literature search identified 1628 bibliographic references from the electronic 

database searches. Contacts with lead authors produced 23 items and 4 were 

identified via the hand-search.  After removal of duplicates, 1345 items progressed 

to filtering.  Via title screening, 90 items were considered potentially relevant for 

abstract review, at which stage 52 were eliminated and 38 progressed to detailed 

filtering by full text review. Twelve papers (Appendix I) were finally selected for 

inclusion in this review (figure 1). 

Figure 1:  Flow diagram of results of search strategy 

  

 

 

 

 

 

 

 

 

Records identified through electronic 

database searching 

n= 1628 

Additional records identified through 

other sources including hand search, 

contact with authors n= 27 

Records after duplicates removed n= 

1345 

Records screened n=1345 titles, 

n=90 abstracts 

Full text papers assessed for 

eligibility n=38 

Papers included in final 

synthesis n=12 

Records excluded 

n=1307 

Full text papers excluded 

n=26 

(not efficacy study n=13, 

combined rehab 

programme n=5, 

pedalling adjunct to 

another intervention 

n=3, pedalling as max 

aerobic test n=2, other 

n=3 ) 



   

57 

 

3.5.2 Included studies: 

3.5.2i Design 

The included studies demonstrated heterogeneity of design.  Five of the 12 were 

described as randomised controlled, or randomised clinical, trials (Katz-Leurer et al. 

2006; Katz-Leurer et al. 2003; Lee et al. 2008; Potempa et al. 1995; Quaney et al. 

2009).  Tang et al. (2009) used a prospective matched control design.  Three studies 

used a ‘before and after’ design with a single group of participants (Fujiwara et al. 

2003; Perell et al. 2000; Perell et al. 2001). Two of these used the same cohort of 

participants; the earlier paper reporting data on pedal forces (Perell et al. 2000), the 

second paper reporting functional outcomes after the pedalling intervention (Perell 

et al. 2001). Seki et al. (2009) was considered a ‘before and after’ study for the 

purposes of this review, as the only extractable data relevant to this review were 

from the single group of stroke survivors in their report. 

Two case reports were presented in the paper by Brown et al. (2005).  Holt et al. 

(2001) reported a single case study.   

3.5.2ii Sample Size 

Altogether there were 351 participants included in the 12 studies (range 1-92). Of 

these, data were extractable on 288 (1-90). No study used more than 92 

participants, and four used less than ten (table 1). 

3.5.2iii Setting 

 Of those papers reporting settings: six were based on in-patient rehabilitation units 

(Seki et al. 2009; Tang et al. 2009; Katz-Leurer et al. 2006; Brown et al. 2005; 

Fujiwara et al. 2003; Katz-Leurer et al. 2003);  two were carried out in university 

exercise laboratories (Lee et al. 2008; Potempa et al. 1995); four papers did not 

make the setting explicit, but exercise protocols for three of these studies suggested 

use of out-patient rehabilitation facilities (Perell et al. 2000; Perell et al. 2001; Holt 

et al. 2001); and one paper suggested use of an exercise laboratory (Quaney et al. 

2009).  
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Table 1: Participant Characteristics 

Study  Study design N Side  stroke lesion 

(n) 

 Type of stroke (n)  Time since stroke onset  [mean(s.d where 

given) unless stated] 

Age [mean years(s.d) unless 

stated] 

   Left Right Ischaemia/ infarct Haemorrhage   

Brown et al. (2005) Case series 2 1 1 1, I not stated - 10 days; 7.5 weeks 77 years, 68 years 

Fujiwara et al. (2003) Before-and-after 17 9 8 5 12 158.8(57.9)days 55.1(10.9)  

Holt et al. (2001) SCS 1 1 0 0 1 18 months 55  

Katz-Leurer et al. (2003) RCT 92 Not stated Not stated 80 12 Not specifically stated but excluded those 

admitted to study rehabilitation unit >30 days 

since acute hospitalisation 

63(11)  

Katz-Leurer et al. (2006) RCT 24 14 10 24 0 Not specifically stated but excluded those 

admitted to study rehabilitation unit >30 days 

since acute hospitalisation 

63(9)  

Lee et al. (2008) RCT 52* 21 27 33 9 57(54) months 63.2(9) 

Perell et al. (2000,2001) Before-and-after 8 6 2 Not stated Not stated 2 years (median) 64.5 (median) 

Potempa et al. (1995) RCT 42 19 23 Not stated Not stated >6 months Range 21-77 years 

Quaney et al. (2009) RCT 38 Not stated Not stated Not stated Not stated 4.9+/-3.3 years Control group 58.96(14.7); Ex 

group 64.10(12.3) 

Seki et al. (2009) Before-and-after 10 5 5 6 4 68.7 days 69 (range 55-81) 

Tang et al. (2009) Matched controls 57† 11 12 17 5 (1 unknown) 17.8 days (range 6-62) 64.7 (range 19-90) 

 

*4 par[cipants discon[nued a\er baseline, data stated in paper only for 48 par[cipants; †complete par[cipant characteristic data only stated for 23 participants originally allocated to the exercise group.                                                    

Abbreviations: RCT=randomised controlled trial; SCS= single case study 
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3.5.2iv Participants (table 1) 

• Mean age:  

 In nine studies, participants’ mean age was between 55 and 65 years (Fujiwara et al. 

2003; Holt et al. 2001; Katz-Leurer et al. 2003; Katz-Leurer et al. 2006; Lee et al. 

2008; Perell et al. 2000; Perell et al. 2001; Tang et al. 2009 and Quaney et al. 2009). 

One used participants with a mean age of 69 (Seki et al. 2009).  In the case reports, 

participants were 77 and 68 years (Brown et al. 2005). One study gave an age range 

with no individual figures from which to extrapolate a mean (43 to 72 years, 

Potempa et al. 1995). Excluding Potempa et al. (1995), mean age across studies was 

63 years. 

• Time since stroke: 

The majority of trials recruited participants who were more than three months 

since stroke onset (table 1).  Katz-Leurer et al. (2003) and Katz-Leurer et al. (2006) 

allude to recruiting participants early after stroke but times since onset are not 

stated in the reports. 

• Type and site of stroke: 

Reporting of the exact site of stroke was sparse, only Brown et al. (2005) detailed 

the brain area affected, with one participant in the case series having a right 

parietal lobe stroke and the other a left frontal lobe stroke.  Four studies did not 

give any information on type of stroke (Katz-Leurer et al. 2006; Perell et al. 2000, 

2001;Potempaet al.1995) and one did not report the side of stroke (Katz-Leurer et 

al. 2003).  One study gave no information on side, site or type of stroke lesion 

(Quaney et al. 2009). 

3.5.2v Comparison Groups 

Of the five randomised trials, two had control groups undergoing routine therapy 

only (Katz-Leurer et al. 2003; Katz-Leurer et al. 2006). The control group in Potempa 

et al. (1995) underwent a passive exercise regime carried out for the same time per 
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session as the intervention.  Lee et al. (2008) used a sham-exercise control to 

compare to aerobic cycling exercise.  Control participants in the study by Quaney et 

al. (2009) underwent a home-based program of stretching exercise at the same 

weekly frequency as the pedalling intervention group, with telephone contact by a 

physical therapist once each week. 

3.5.2vi Primary purpose, dose of intervention and type of exercise 

equipment used (table 2) 

The primary purpose of the studies fell into two clear categories: those which aimed 

to investigate the effects of pedalling exercise on motor function after stroke and 

those investigating the effects of aerobic programmes, where pedalling exercise 

was used as the primary tool.  These studies met the review criteria as they also 

included evaluation of motor function outcomes after the pedalling interventions. 

There was heterogeneity of dose and duration of pedalling exercise and a variety of 

cycling equipment was used across the studies. Detailed information about 

equipment was limited across studies, except for Brown et al. (2005) and Seki et al. 

(2009) where descriptions were thorough. Despite differences in specific types of 

equipment, devices that allowed pedalling activity to occur in seated postures, such 

as leg cycle ergometers and static bicycles, predominated. 

3.5.2vii Outcome measures and effect sizes: summary of findings 

The 12 included papers evaluated effects using a wide range of outcome measures, 

time intervals for measurement points and types of analyses. Outcomes are 

classified and presented according to the International Classification of Functioning 

(WHO 2001) (tables 3 to 7).  Due to the heterogeneity already demonstrated across 

study domains, meta-analysis was not indicated.  However, where appropriate data 

were available, Cohen’s effect sizes (defined as the difference in means divided by 

the pooled within group standard deviation) were calculated to enable presentation 

of the magnitude of any effects (table 3). An approximate 95% confidence interval 

for this effect size was calculated based on the method described by Reiser and 

Guttman (1986). 
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Table 2: Primary purpose of study, intervention, dose and equipment used 

Study Primary purpose of pedalling exercise (MF: motor function; AE: 

aerobic exercise) 

Dose/duration of pedalling exercise Type of exercise equipment used 

Brown et al. (2005) MF: Feasibility of limb-loaded cycling as exercise intervention for stroke 10 sets of 20 repetitions in each session. Patient 1- 13 sessions completed; Patient 2- 

5 sessions of hybrid programme developed as unable to complete initial programme. 

Recumbent seated limb-loaded cycling device 

Fujiwara et al. (2003) MF: Assessment of effects of pedalling exercise on lower limb muscle activity Single session, pedalling for five minutes Servo-dynamically controlled ergometer with 

trunk support 

Holt et al. (2001) AE: Effects of an aerobic programme on participant’s functional mobility 8 weeks of 2 and 3 sessions per week on alternate weeks, 20 sessions total. 12 

minutes pedalling incrementally increased by 2 minutes on alternate sessions to 

maximum of 30 minutes 

Static bicycle 

Katz-Leurer et al. (2003) AE: Effects of early aerobic training on independence and activity at six 

months 

Part 1: 10 sessions over 2 weeks, 2 minutes per session increasing within tolerance 

to 20 minutes per session 

Part 2: 9 sessions over 3 weeks, 30 minutes per session 

Leg cycle ergometer 

Katz-Leurer et al. (2006) MF:  Effects of early cycling training on balance  5 sessions per week for 3 weeks, individualised programme  Leg cycle ergometer 

Lee et al. (2008) AE: Effects of aerobic cycling programme on walking ability 30 sessions over 10 to 12 weeks, each session 30 minutes of cycling with resistance 

adjusted to achieve a target heart rate. After each session, underwent “sham” leg 

resistance training. 

Semi-recumbent motorized isokinetic cycle 

ergometer 

Perell et al. (2000, 2001) MF: evaluation of pedal reaction forces following bicycle training 3 sessions per week for 4 weeks, each session consisted of 12 one-minute cycling 

trials with one-minute rests in between.  

Recumbent bicycle with adapted pedals to allow 

for force measurements 

Potempa et al. (1995) AE: evaluation of response of stroke patients to aerobic training 3 sessions per week for 10 weeks, 30 minutes per session. For first 4 weeks, training 

load gradually increased, for final 6 weeks, highest training load maintained for each 

participant 

Adapted cycle ergometer 

Quaney et al. (2009) AE: Effect of aerobic cycling programme on executive function and mobility 3 sessions per week for 8 weeks, progressing aerobic intensity from week 2 Stationary bicycle 

Seki et al. (2009) MF: Assessment of effects of pedalling exercise on lower limb muscle activity Single session, pedalling for 8 wheel revolutions Cycling wheelchair 

Tang et al. (2009) AE: feasibility of adding aerobic cycle ergometry to standard rehabilitation 

early after stroke 

3 sessions per week, up to 30 minutes a session, individualise programme for each 

participant 

Semi-recumbent cycle ergometer 
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3.5.2viii Risks of bias in included studies 

Randomised and case-controlled studies were assessed for potential biases 

according to Cochrane methodology, considering six key features: sequence 

generation, allocation sequence concealment, blinding, incomplete outcome data, 

selective reporting and other potential sources of bias (table 8).  Non-randomised 

studies (NRS) were included in the assessment according to the same criteria.  

Higgins and Green (2008) suggest the same domains are still relevant for NRS, 

particularly when quantitative synthesis is not proposed, in order to illustrate 

heterogeneity and inform the interpretation of review findings (table 8). 

3.5.2ix Adverse events 

None of the included studies reported any adverse events 

3.5.3 Excluded studies 

Of the 38 studies, 26 were excluded at the full text review stage (table 9).  The main 

reasons for exclusion were: 

• Pedalling used as a paradigm for analysing and evaluating movement after 

stroke, not designed to enhance motor recovery. 

• Pedalling used as an adjunct to another intervention e.g. Functional 

Electrical Stimulation, FES. 

• Pedalling used as part of a combined therapy programme where it was 

impossible to extract data from the pedalling intervention alone. 

• Pedalling used solely as a maximal exercise stress test.
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Table 3: Summary of Findings, Randomised Controlled Trials 

Author & Date N Outcome Measurement 

Time Points 

Outcome Measures Means (s.d)  Outcomes categorised according to ICF Cohen’s Effect Size 95% CI’s 

    Control Intervention BS/F A P   

Katz-Leurer et al. 

2003 

92 Immediately post-

intervention 

FIM score 101.4(16.0) 105.8(12.5)  X  0.31 -0.10, 0.72 

   Walking distance (m) 94.8(107.6) 122.8(143.0)  X  0.22 -0.19, 0.63 

   Walking speed (m/s) 0.45(0.1) 0.51(0.1)  X  0.60 0.18, 1.02 

   Stair climbing (no. stairs) 18.1(14.4) 25.4(14.1)  X  0.51 0.10,  0.93 

Katz-Leurer et al. 

2006 

24 Immediately post-

intervention 

PASS total 23.0(4.3) 28.7(3.1)  X  1.50 0.61,  2.43 

   PASS static 7.2(1.8) 9.3(1.5)  X  1.25 0.38, 2.15 

   PASS dynamic 15.8(2.8) 19.4(1.7)  X  1.54 0.64, 2.47 

   FMA score 19.3(7.1) 26.3(5.8)  X  1.07 0.22, 1.94 

   FIM total 73.1(22.8) 77.5(21.8)  X X 0.20 -0.61, 1.00 

   FIM motor 9.2(3.0) 13.6(2.4)  X  1.60 0.69, 2.55 

 23   6 weeks post-intervention PASS total 26.4(3.8) 31.1(2.2)  X  1.50 0.60, 2.42 

   PASS static 9.0(1.8) 10.7(1.7)  X  0.97 0.11, 1.83 

   PASS dynamic 17.4(2.3) 20.3(0.7)  X  1.78 0.74, 2.67 

   FMA score 22.1(6.8) 29.1(5.9)  X  1.09 0.23, 1.96 

   FIM total 79.2(21.4) 87.8(23.5)  X X 0.39 0.44, 1.20 

   FIM motor 12.1(3.2) 16.1(2.0)  X  1.47 0.59, 2.41 

Abbreviations: ICF=International Classification Functioning, BS/F=body structure/function, A=activity, P=participation; CES=Cohen’s Effect Size; FIM=functional independence measure, PASS=postural assessment scale for stroke; FMA= Fugl 

Meyer assessment 
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Table 3 (contd.): Summary of Findings, Randomised Controlled Trials 

Author & Date N Outcome Measurement 

Time Points 

Outcome Measures Means (s.d)  Outcomes categorised according to ICF Cohen’s Effect Size 95% CI’s 

    Control Intervention BS/F A P   

Lee et al. 2008 26 Within 1 week final 

intervention 

6-minute walk (m) 278.1(162.1) 261.5(162.7)  X  -0.10 -0.87, 0.70 

   Habitual gait velocity (m/s) 0.78(0.43) 0.74(0.41)  X  0.09 -0.68, 0.87 

   Fast gait velocity (m/s) 0.93(0.54) 0.94(0.55)  X  -0.02 -0.79, 0.75 

   Stair climb power (W) 116.5(67.8) 121.3(80.9)  X  0.06 -0.70, 0.83 

   Max strength affected leg (N) 714.1(225.9) 768.0(352.7) X   0.18 -0.57, 0.94 

   Peak power affected leg (W) 269.8(140.2) 229.1(140.2) X   -0.27 -1.07,  0.49 

   Endurance affected leg (mean no. 

reps) 

5.1(3.2) 5.7(4.0) X   0.16 -0.60, 0.93 

Potempa et al. 1995 42 Immediately post-

intervention 

FMI score 183 (7.9) 173 (10.4)  X  -1.11 -1.75, -0.42 

Quaney et al. 2009 38 Immediately post-

intervention 

FMA score 81.42(36.80) 77.84(34.85)  X  -0.10 -0.73, 0.54 

   Berg Balance score 39.05(14.27) 41.68(9.62)  X  0.22 -0.42, 0.85 

   Get Up and Go fast speed (s) 29.11(45.26) 15.26(14.82)  X  0.46 -0.23, 1.06 

  8 weeks post-intervention FMA score 80.52(35.72) 76.39(33.93)  X  -0.19 -0.75,  0.51 

   Berg Balance score 38.79(14.11) 42.06(9.87)  X  0.27 -0.37, 0.91 

   Get Up and Go fast speed (s) 25.74(35.84) 16.78(18.32)  X  0.33 -0.33, 0.95 

Abbreviations: ICF=International Classification Functioning, BS/F=body structure/function, A=activity, P=participation; CES=Cohen’s Effect Size; FIM=functional independence measure, PASS=postural assessment scale for stroke; FMA= Fugl 

Meyer assessment 
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Table 4: Summary of Findings, Matched Control Study 

Author & Date N Outcome Measurement 

Time Points 

Outcome Measures Means (S.E)  Outcomes according to ICF 

    Control Intervention BS/F A P 

Tang et al. 2009 36 (18 matched pairs; Gait 

measures: 4 in each group 

unable to undertake  as non-

ambulatory and further 4 not 

assessed at discharge due to 

equipment failure) 

Immediately prior to discharge, 

exact times not stated 

Preferred pace gait speed (m/s) 0.82(0.08) 0.84(0.08)  X  

   Preferred pace gait symmetry (ratio, 

n=20 symmetrical at study entry) 

1.15(0.02) 1.28(0.07) X   

   Preferred pace gait symmetry(ratio, 

n=11 asymmetrical at study entry) 

1.17(0.02) 1.29(0.04) X   

   Fast paced gait speed (m/s) 1.19(0.1) 1.06(0.11)  X  

   Fast pace gait symmetry (ratio, n=20 

symmetrical at study entry) 

1.11(0.01) 1.28(0.07) X   

   Fast pace gait symmetry (ratio, n=11 

asymmetrical at study entry) 

1.14(0) 1.28(0.05) X   

   Six-minute walking test distance (m) 288.4(38.9) 334.2(33.1)  X  

   SIS QOL subscale 67.1 (4.6) 72.4(3.8)   X 

   Findings: No significant between group differences (at p<0.05). Trends to improvement in gait 

speed and symmetry across both control and intervention groups. 
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Table 5: Summary of Findings, Before and After Studies 

Author & Date N Outcome 

Measurement Time 

Points 

Outcome Measures Findings Outcomes according to ICF 

     BS A P 

Fujiwara et al. 2003 17 Immediately after 

intervention, 30 minutes 

after intervention 

Muscle activity during knee 

extension (integrated EMG 

quadriceps femoris, medial 

hamstrings, tibialis anterior, 

medial gastrocnemius) 

Increased activity in quadriceps and tibialis anterior 

immediately after pedalling and continuing for 30 

minutes. Medial hamstrings and medial gastrocnemius 

activities reduced after pedalling and reduction 

continued for 30 minutes 

X   

Perell et al. 2000 4 2 days after intervention 

completed 

Pedal reaction forces (N) Tangential pedal reaction forces directed more 

posteriorly after pedalling training authors suggest this 

has implications for ankle control during pedalling 

X   

Perell et al. 2001 8 2 days after intervention 

completed 

Muscle strength (N): knee 

flexors and extensors 

Eccentric muscle strength in knee extensors increased 

bilaterally; concentric muscle strength in knee extensors 

increased in involved limb (p<0.05) 

X   

   50-foot walking speed (m/s) Non-significant trend to improved pace of walking 

following intervention 

 X  

Seki et al. 2009 10 Immediately after 

intervention 

Muscle activity during 

pedalling (EMG gluteus 

maximus, rectus femoris, 

hamstrings,tibialis anterior, 

soleus) 

Significant increases in rectus femoris, tibialis anterior 

and soleus muscle activity of affected leg during 

pedalling in comparison with a baseline isometric 

contraction 

 

X 
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Table 6: Summary of Findings, Single Case Study 

Author and Date N Outcome Measures Measurement Time Points with Outcomes Outcomes according to ICF 
   Baseline 1 Baseline 2 (within 19 

days of baseline 1) 

Post-training (20 

sessions) 

BS A P 

Holt et al. 2001 1 10m timed walk (sec) 36.50 35.00 24.00  X  

  Speed gait during 10m(ms) 0.27 0.29 0.42  X  

  Steps during 10m walk 37.00 40.00 32.00  X  

  6-min walking distance 99.00 107.00 145.00  X  

  Speed gait during 6min walk (ms) 0.27 0.30 0.40  X  

  Motricity Leg Score 65.00 65.00 76.00 X   

  Ashworth Knee Score 2.00 2.00 1.00 X   

  Ashworth Ankle Score 4.00 4.00 2.00 X   

   Findings: Statistical analysis not carried out but progression demonstrated in walking speed, distance and muscle strength 

according to the Motricity index with no adverse effects on spasticity in the lower limb    

   

 

Table 7: Summary of Findings, Case Series 

Author and Date N Measurement Time Points Outcome Measures Outcomes according to ICF 

    BS A P 

Brown et al. 2005 2 Varies across 2 participants as pedalling 

regimes varied according to ability 

Dynamic Load Index (load x reps) X   

  Three times during 10-13 pedalling sessions Functional  Independence Measure  X  

  Three times during 10-13 pedalling sessions Ambulatory Statues (description)  X  

   Findings: Statistical analysis not carried out. For each participant, measures used to demonstrate progression in 

ability. Progression in FIM score, walking status and Dynamic Load Index demonstrated for both over the 

intervention period. 
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Table 8: Potential Risk of Biases across Studies (*= non-randomised studies) 

 

Study  

Sequence Generation Blinding Incomplete Outcome data Selective result 

reporting 

Other potential 

biases 

Allocation 

concealment? 

Adequate 

sequence 

generation? 

Blinding 

participants? 

Blinding 

providers? 

Blinding 

Assessors? 

Where relevant, incomplete 

outcome data addressed? 

Free of selective 

reporting? 

Free of other 

bias? 

Katz-Leurer 

et al. 2003 

UNCLEAR YES UNABLE UNABLE UNCLEAR YES NO YES 

Katz-Leurer 

et al. 2006 

UNCLEAR YES UNABLE UNABLE UNCLEAR UNCLEAR YES YES 

Lee et al. 

2008 

YES YES UNCLEAR UNABLE YES-primary 

NO-secondary 

YES YES UNCLEAR 

Potempa et 

al. 1995 

UNCLEAR UNCLEAR UNABLE UNABLE UNCLEAR YES YES UNCLEAR 

Quaney et 

al. 2009 

UNCLEAR UNCLEAR UNABLE UNABLE YES YES YES YES 

Tang et al. 

2009* 

UNCLEAR UNCLEAR UNABLE UNABLE NO UNCLEAR YES UNCLEAR 

Brown et al. 

2005* 

NO NO UNABLE UNABLE NO N/A YES NO 

Fujiwara et 

al. 2003* 

NO NO UNABLE UNABLE NO N/A YES NO 

Holt et al. 

2001* 

N/A N/A UNABLE UNABLE UNCLEAR N/A YES YES 

Seki et al. 

2009* 

NO NO UNABLE UNABLE NO N/A UNCLEAR NO 

Perell et al. 

2000* 

NO NO UNABLE UNABLE UNCLEAR N/A YES YES 

Perell et al. 

2001* 

NO NO UNABLE UNABLE UNCLEAR N/A YES YES 

YES: LOW risk of bias; NO: HIGH risk of bias; UNCLEAR: unclear; UNABLE: not possible e.g participant blinding in trial where pedalling was the key intervention 
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Table 9: List of Excluded Studies 

  

Author & Year Reason for exclusion at full text review stage 

Bowden et al. 2006 

 

Not an efficacy study 

Brown & DeBacher 1987 

 

Not an efficacy study 

Brown & Kautz 1998 

 

Not an efficacy study 

Brown & Kautz 1999 

 

 

Not an efficacy study 

Brown et al. 1997 

 

Not an efficacy study 

Chen et al. 2005 

 

Not an efficacy study 

Dawes et al. 2000 

 

Not an efficacy study 

Ferrante et al. 2008 

 

Pedalling as an adjunct to another intervention (FES) 

Janssen et al. 2008  

 

Pedalling as an adjunct to another intervention (ES) 

Katz-Leurer & Shochina 2005 Not an efficacy study, examined pedalling patterns as predictor of 

activity at six months: other 

Kautz & Brown 1998 

 

Not an efficacy study 

Kautz et al. 2006 

 

Unilateral pedalling: other 

Kautz et al. 2005 

 

Pedalling as part of a combined exercise programme 

Kautz & Patten 2005 

 

Not an efficacy study 

Kelly et al. 2003 

 

Not an efficacy study 

Lennon et al. 2008 

 

Pedalling as maximum aerobic test and upper limb pedalling involved 

Makino et al. 2005 Physiological costs of pedalling activity & not a true efficacy study: 

other 

Marklund & Klassbo 2006 

 

Pedalling as part of combined programme 

Perell et al. 1998 

 

Not an efficacy study 

Rosecrance & Guiliani 1991 

 

Not an efficacy study 

Rogers et al. 2004 

 

Not an efficacy study 

Sibley et al. 2008a 

 

Pedalling as maximum aerobic test 

Sibley et al. 2008b 

 

Pedalling as an adjunct within a combined programme 

Sullivan et al. 2006 

 

Pedalling as part of a combined programme 

Sullivan et al. 2007 

 

Pedalling as part of a combined programme 

Szecsi et al. 2008 Pedalling as an adjunct to another intervention (FES) 
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3.6 Interpretation 

 

The effects of cycling exercise on motor function after stroke had not previously 

been comprehensively evaluated.  This review was the first to adopt a systematic 

methodology to evaluate the current evidence on the effects of lower limb 

reciprocal pedalling exercise on motor function after stroke. Twelve studies were 

included and a narrative synthesis carried out.  

Meta-analysis was not indicated due to heterogeneity across domains.  However, 

some consistent themes emerged from the synthesis. These have contributed to 

the assessment of the robustness of the current evidence and hence the concluding 

recommendations.  A discussion of key themes is presented first in this section, 

followed by an appraisal of specific studies according to design, potential risks of 

bias and outcomes within the ICF framework. Conclusions are drawn according to 

clinical implications and indications for future research, as per Cochrane 

recommendations (Higgins and Green, 2008). Further interpretation of this work is 

made in Chapter 7.0. 

3.6.1 Key themes  

The mean age of 63 (range 55-77) was non-representative of the UK stroke 

population, where 75% of first strokes occur in those aged 65 and over (British 

Heart Foundation, Coronary Heart Disease Statistics 2010).  Generalisability to the 

majority of stroke survivors is therefore uncertain. This is important as older stroke 

survivors may present different rehabilitation challenges to younger survivors. For 

example, the likelihood of multiple pathologies alongside the stroke may be higher, 

leading to extraneous reasons why participation in rehabilitation activities might be 

limited.  Further research into pedalling exercise in an older participant group is 

indicated.  

As inclusion criteria for the present systematic review did not restrict by study 

design, sample size varied greatly, from n=1 to n=92 (median: n=24).   Small, 

exploratory studies may be important in establishing feasibility and developing 
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protocols for larger studies, but caution must be used in interpreting results in 

relation to clinical practice as generalisability to the wider stroke population has not 

been tested.  

Only three studies stated that they had recruited participants earlier than three 

months since stroke onset. The majority had sustained stroke more than three 

months before participation. It is possible that such patients are easier to recruit to 

exercise trials, as they tend to be more medically stable and with less fluctuation in 

their abilities.  However, current evidence suggests that early therapeutic 

intervention might optimise potential for recovery.  Clinical studies support the 

concept that early rehabilitation is important for improving outcomes (Cumming et 

al. 2011; Feys et al. 2004). Indeed, Cramer (2008) describes a ‘golden period’ for 

initiating restorative therapies, when the brain is galvanised to begin repair, starting 

in the first days after onset and continuing for several weeks.  This review has 

identified that current research into pedalling as a potential therapeutic 

intervention has not utilised this important window and thus results cannot be 

generalised to early stroke survivors. Opportunities therefore exist for further 

exploration of the effects of pedalling exercise in stroke survivors early after onset.  

Baseline characteristics of participants were predominantly well reported.  However, 

studies demonstrated little information about the exact site of stroke lesion, though 

general information e.g. side of brain affected, type of stroke, was commonly 

reported.  Stroke lesion location and size are probably important predictors of 

functional outcome (e.g. Pan et al. 2006; Chen et al. 2000) though there is little 

evidence about how these baseline characteristics might be linked to the ability to 

take part in specific rehabilitation interventions. Clearer reporting of potential 

prognostic factors in future is recommended in future trials to allow better 

informed decisions on which patients might be best suited to particular pedalling 

therapies.   

Heterogeneity of type of equipment used was not unexpected due to the generally 

exploratory nature of the included studies.  Whilst the inclusion criteria ensured 

that all studies involved reciprocal lower limb pedalling, there were 10 different 
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devices in operation across the 12 studies.  Detailed descriptions of the equipment 

were largely inadequate, limiting replicability for future research and interpretation 

of potential use in clinical settings.  However, it was clear that recumbent or semi-

recumbent postures with standard leg cycle ergometers were favoured for the 

pedalling devices. Ease of use of such equipment is clear; patients may be seated or 

reclining in a chair or wheelchair and carry out cyclical lower limb activity. Seated 

pedalling negates the need for the substantial concentration and physical effort 

required to stay upright. However, this concentration and effort are components 

inherent in learning to walk early after a stroke; and upright pedalling postures are 

more likely to replicate walking-like activity necessary to ensure that a pedalling 

task offers opportunities for functional movement. Hence, an upright pedalling 

device might more appropriately replicate walking-like activity. 

Dose of pedalling was also variable, from only 8 wheel revolutions in a single session 

(Seki et al. 2009) to 30 minutes of pedalling in each of 30 sessions over 12 weeks 

(Lee et al. 2008). Although the number of repetitions of an activity needed to 

facilitate brain reorganisation has not been established in human studies, animal 

model studies suggest that 300-400 repetitions in a 30 minute session might be 

needed. Pedalling exercise has the potential to provide high numbers of repetitions 

of lower limb flexion and extension but this review has revealed that further work is 

needed to explore optimal doses. 

3.6.2 Study design, methodological quality and outcomes 

Study design was varied as predicted in the scoping exercise for the review.   Whilst 

the review included outcomes from five randomised controlled trials, only one of 

these was specifically designed to evaluate the effects of the intervention on motor 

function (MF) (Katz-Leurer et al. 2006).  Whilst the potential risks of bias in this 

study were predominantly low, there was a lack of clarity of reporting on key 

elements, including blinding of assessors and concealment of allocation. Effect sizes 

were large for measures of balance (Postural Assessment Scale for Stroke) and the 

motor section of the Functional Independence Measure, immediately and six weeks 

after the intervention. However, the large effect sizes should be interpreted with 
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caution as sample size for this pilot study was small, with ten participants in the 

intervention arm and fourteen in the control.  Definitive, generalisable conclusions 

cannot thus be drawn about effects on balance and motor ability before 

appropriately powered studies of the intervention are undertaken. 

The other RCTs used pedalling exercise to evaluate the effects of aerobic exercise 

(AE) but included some motor function outcomes as secondary measures.  Bias 

across these studies was again predominantly low, but a lack of clarity of reporting 

on allocation concealment was evident for Katz-Leurer et al. (2003), Potempa et 

al.(1995) and Quaney et al.(2009), and, additionally, on sequence generation for 

Potempa et al.(1995) and Quaney et al. (2009). Moderate positive, significant effect 

sizes for both walking speed and stair climbing were demonstrated by Katz-Leurer 

et al. (2003).  Whilst Lee et al. (2008) had the least potential risk of bias of any of 

the RCTs, along with a moderate sample size, only small positive but non-significant 

effect sizes were demonstrated for outcomes including maximum strength and 

endurance in the affected leg. Potempa et al. (1995) demonstrated no effect on the 

Fugl-Meyer Index following an aerobic pedalling programme.  Quaney et al. (2009) 

demonstrated some positive effects on balance, though effect sizes were small and 

non-significant.  This study also demonstrated moderate, though non-significant 

effects on “get up and go” then ambulation, and though clarity of reporting was not 

ideal, the risk of bias for this study was low.  These studies suggest that pedalling 

exercise might improve walking speed and stair climbing, with potential 

improvements in balance, muscle strength, and ability to transfer and ambulate in 

survivors greater than six months post-stroke, but none were sufficiently powered 

or sufficiently free of potential bias for clinical recommendations to be made. 

Potential risk of bias in the non-randomised studies was high, largely related to 

design, which ranged from “before and after” studies to case reports. Reporting 

according to the design adopted was generally clear.  Again, sample sizes for these 

studies were low, from n=17 to n=1. They, do, however, give some indications of 

positive effects of pedalling exercise on: muscle activity during pedalling (Seki et al. 

2009), reciprocal muscle activity immediately after pedalling (Fujiwara et al. 2003), 

knee extensor strength (Perell et al. 2001), and walking speed (Holt et al. 2001).  
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Due to the high risk of potential biases and small sample sizes, results should be 

interpreted with caution and clinical recommendations cannot be made in the light 

of these studies.  

As might be expected from a rehabilitation intervention, outcome measures used 

were evenly spread across the body structure and function and activity levels of the 

ICF. Measures of muscle strength, balance and ambulation were most common.  

Two of the ‘before and after’ studies explored muscle activity via electromyography, 

providing physiological insights into activity during and after pedalling exercise. 

Only Tang et al. (2009) included a participation level measure (Health-related 

Quality of Life) but demonstrated no significant effects.  However, measurement 

was taken immediately after the exercise programme was completed, on discharge 

from hospital.  It would be difficult to establish changes in quality of life directly 

related to pedalling exercise at this time point. 

3.6.3 Limitations of the review 

The main limitation of the review was, due to resource constraints, a lack of 

completely independent data extraction by a second reviewer.  Extraction was 

carried out by the lead reviewer, leading to potential bias. However, the 

independent reviewer was consulted on any queries and monthly supervision of the 

review was undertaken by an experienced third party. 

It is also possible that there was some influence by a publication bias as the search 

was limited to studies written only in English. However, studies included were 

carried out across a variety of international centres.  

 

3.7 Conclusions 

 

This systematic review is the first to synthesise currently available evidence on the 

effects of reciprocal pedalling exercise on motor function after stroke and consider 

the robustness of research findings.  
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Heterogeneity was found across multiple domains in the included studies, including 

design, participants, equipment, methods and outcomes.  

Despite some beneficial, though not definitive, effects on balance, functional 

independence, muscle strength, sit-to-stand ability and gait speed, the review has 

found that is not possible to make clinical recommendations that support or refute 

the use of reciprocal pedalling exercise after stroke.  

However, the findings provide proof-of-concept for pedalling interventions and 

provide a foundation for subsequent research, suggesting a need for further 

standardised, controlled clinical trials of clearly described pedalling interventions, 

across a broad range of stroke survivors and with subsequent transparent reporting 

of findings. 

 

--------------------------------------------------- 
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Chapter 4.0: Methods and Equipment Common to the 

Experimental Studies (Chapters 5.0 and 6.0) 

 

4.1 Introduction 

 

The purpose of this chapter is to present and justify the equipment and procedures 

that were common to both experimental studies, chapters 5.0 and 6.0. Methods 

and procedures that were unique to each of the studies are presented in the 

relevant sections of chapters 5.0 and 6.0.  

 

4.2 Upright Pedalling: A potential tool for measurement and 

rehabilitation after stroke 
 

This section will justify the choice of pedalling equipment used in the experimental 

studies. It will then present the structure and instrumentation of the equipment. 

4.2.1 Upright Pedalling: background 

It is reasonable to propose that the ideal method for improving walking is the 

practice of specific walking tasks. However, it has been established that repetitive 

walking practice early after stroke presents a number of challenges and is not 

always possible (section 1.2.3). There is therefore an opportunity to develop and 

test a tool to be used to practise walking like movements in the important window 

early after stroke and beyond.  

Pedalling has been proposed as one possible intervention that might provide 

repetitive, skilled activity similar to normal walking (sections 1.3.2, 1.3.3). There are 

indications of similarities to gait in terms of both kinematics of lower limb activity 

and neural control. Despite this, existing work has not generally explored pedalling 

in walking like postures but has adopted recumbent seated pedalling as the 

intervention tool (e.g. Fujiwara et al. 2003; Katz-Leurer et al. 2003, 2006; Perell et al. 

2001; in Chapter 3.0). 
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The complexities of producing movement in a variety of postures after stroke and 

the challenge of adapting already impaired motor function to altered task 

mechanics, have been noted (Brown et al. 1997).  This study used a standing 

pedalling device on a tilting mechanism, enabling muscle activity to be measured via 

surface EMG recorded in various postures. The participants’ trunks were strapped 

to an extended backboard throughout the measures, enabling only leg movement 

and no trunk movement to occur. Whilst this device enabled safe explorations of 

muscle activity in an upright posture, it should be noted that the sensorimotor 

experience here would be very different to normal walking. In this study, muscle 

activity patterns were characterised in terms of EMG activity present in four 

position phases of the wheel. Results from Brown et al. (1997) suggested that 

muscle activity can alter according to verticality- participants with motor hemiplegia 

showed an overall increase in muscle activity to achieve the cyclical movement in 

the most vertical posture and these participants were able to increase net positive 

work output as a response to the altered posture when upright. This increased 

excitability might be used therapeutically- the authors postulate that to minimise 

muscle tone, less vertical positions be used and to increase force generation, a 

more vertical posture is indicated. Hence, to increase muscle activity in stroke 

survivors, an upright posture might be considered beneficial.  

Biomechanical explorations of cycling posture have been carried out, with emphasis 

on establishing the most efficient postures for normal cycling. In particular, 

Savelberg et al. (2003) carried out a small (n=8) study of young cyclists (mean age 

22.3 years), in which the effect of three different trunk angles on muscle 

recruitment was examined. In should be noted here that the trunk angle differences 

were small- upright, 18.6 degrees backwards flexion and 22.3 degrees forward 

flexion relative to upright, with the leg angle kept constant according to the seat 

tube. Muscle activity in eight leg muscles was recorded via EMG during a pedalling 

task. Trunk angle was found to alter the kinematics of leg movement and muscle 

activity, not just at the hip but throughout the lower limb. This further knowledge 

that such adjustments in posture can facilitate changes in kinematics and muscle 

activity might reinforce the need for pedalling to be in upright positions where task-
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specific re-education of walking is the goal. Additionally, Mazzocchio et al. (2008) 

suggested, in their review of the possibilities of cycling as a rehabilitation tool, that 

the range of movement in the hip is similar in upright pedalling and walking, being 

lower, and hence less normal, in recumbent pedalling. This adds further to the 

proposal that pedalling might best be provided in upright postures for the 

rehabilitation of walking. 

Furthermore, physiological evidence exists that might further support rehabilitation 

in upright postures.  It is known that regional cerebral blood flow, measured by 

Positron Emission Tomography (PET scanning), is different when standing compared 

to supine and sitting at a 75 degree incline; whilst arterial blood pressure, partial 

pressures of carbon dioxide (PaC0₂) and arterial pH does not change between 

postures (Ouchiet al. 1999, 2001).  Brain activity is also different depending on what 

standing posture is adopted and whether eyes are open or closed in the absence of 

changes in systemic blood pressure or pulse rate (Ouchi et al. 1999).  As changes in 

blood flow are used as an indicator of changes in brain activity, the inference here is 

that brain activity differs between quiet supine lying, sitting and standing postures 

(Ouchi et al. 2001). It could be further inferred that using an upright posture 

analogous to walking for rehabilitation activity is more likely to facilitate functional 

brain changes than more recumbent postures. Hence, re-educating the substrates 

for walking i.e. repetitive flexion and extension of the lower limb, in an upright 

posture, is indicated. 

There is evidence, therefore, to suggest that an upright posture improves cerebral 

blood flow and, whilst this might be largely as a result of cerebral autoregulation, 

improved flow in comparison to more recumbent postures might facilitate 

beneficial brain changes. Potentially advantageous muscle activity changes have 

been demonstrated in stroke survivors in a modified vertical pedalling task and their 

capacity to modify and alter activity according to postural challenge has been 

observed. Upright postures provide opportunities for greater task-specificity in 

relation to retraining walking and allow stroke survivors to experience movement in 

more normal, functional postures than activities in lying and sitting. An opportunity 

therefore exists for investigations of an upright rehabilitation tool for those who 
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would otherwise not be able to achieve this posture, to help to more appropriately 

replicate walking-like activity. The use of a modified upright pedalling device in the 

early stages after stroke has never been explored.  Hence, an upright pedalling 

device with adjustable trunk and lower limb support (U-PeD) was used for 

investigation in the experimental studies in this thesis. The details of the device are 

presented in the following section. 

4.2.2 The Upright Pedalling Device (U-PeD): structure 

The exercise bike used for the experimental studies was adapted so that postural 

support for the trunk was provided if needed (figure 2).  The support was adjustable 

and enabled the back rest to be positioned to maintain the upright posture required.  

Seat height was also adjustable to provide an upright pedalling posture. Upright 

here refers to the participant’s trunk being aligned with the seat tube and the angle 

between the seat tube and horizontal approximately 90 degrees, as Chen et al. 

(2001). 

 

 

 

 

 

 

 

 

 

 

                  

Figure 2: The Upright Pedalling Device (U-PeD)                     Figure 3: U-PeD, demonstrating Upright Pedalling              

      posture 
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4.2.3 Upright Pedalling equipment: instrumentation 

The bike wheel was demarcated into 45 degree segments using reflective tape, 

creating eight “wheel position bins” for analysis (figure 4).  A “bin” simply refers to a 

clearly defined segment of the wheel. In this case, each segment was 45 degrees, 

enabling each turn of the wheel to be divided into eight equally spaced segments.  

Hence, muscle activity during UP could be accurately mapped to each 45 degree 

segment. Previous studies have generally used four position bins (e.g. Fujiwara et al. 

2003; Brown and Kautz, 1998). During preparatory design work in the research 

laboratory, it was decided to extend this to eight position bins: muscle activation 

timing i.e. onset and offset of EMG activity was a measure chosen to assess 

characteristics of lower limb muscle activity during pedalling, and using an increased 

number of position bins enabled more accurate mapping of activity to crank angle.  

Hence, a more detailed assessment of timing and movement strategies used by 

people early after stroke could be made in this developmental work. 

As the participant pedalled, an LED sensor placed at a fixed point on the bike frame 

was triggered as each of the eight markers passed (figures 4 & 5) 

 This trigger created a drop in voltage, causing a spike in the software.  The spikes 

were recorded synchronously, via a digital channel on the EMG unit (4.3), with the 

EMG data. This system allowed for muscle activity to be related to the position of 

the pedal during the 360 degree turn. The crank angle was recorded between the 

right crank and the seat tube, where 0 degrees represents top dead centre (TDC) 

and 180 degrees represents bottom dead centre (BDC) of the wheel (figure 5).  
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Figure 4: Schematic representation of wheel position bins;  

TDC= top dead centre, BDC= bottom dead centre 

 

 

Figure 5: Schematic representation of crank angle sensor system 
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4.3 EMG collection and recording of muscle activity 

 

Muscle activity data was collected using the DatalinkEMG system (Biometrics, UK).  

Activity was recorded in quadriceps and hamstring muscles for each leg.  When 

seated on the bike, and with feet supported on blocks with the knee in 

approximately 15 degrees of flexion, participants had a small (37mm x 18mm) pre-

amplifier applied to the front and back of their thigh on both sides, following skin 

preparation with a recommended gel (NuPrep; Weaver & Co, Colorado) to minimise 

signal interference (Appendix III).  According to manufacturer’s advice, these 

sensors contained all necessary gain and filter circuits- high pass and low pass filters 

were included to minimise interference with a frequency range of interest of 15Hz 

to 450Hz, sufficient to represent the full energy spectrum of the muscles under 

investigation, as described by Cram et al. (1998). Further comment about 

interference to the EMG signal is made in section 4.4.  

Electrode position is known to be a vital factor in achieving accurate EMG 

information (Merletti et al. 2001). Hence, it was important to follow published 

guidelines for electrode placement and, for the studies reported herein, a single 

researcher placed the electrodes for each participant and for every session. It was 

not possible, with the equipment available, to record from numerous muscles, so it 

was decided to use general quadriceps femoris and hamstrings anatomical groups 

with corresponding electrode placement (Cram et al. 1998). For quadriceps, this 

electrode placement concurred with that in the most current guidelines for sensor 

placement (SENIAM, 2013); for hamstrings there was a very slight variation 

(Appendix III). 

A detailed description of the process for skin preparation, specific electrode 

placement and securing of electrodes is given in Appendix III, alongside the current 

European recommendations for surface electromyography (SENIAM, 2013). 

Whilst the participants were positioned comfortably on the bike, the leads from the 

preamplifiers were connected to 4 analogue channels of the Datalink subject unit, 
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which was connected to the base unit. Information from the base unit was collected 

on a lap top computer running the Datalink software system. Continuous EMG data 

were thus recorded during pedalling.  

Resting EMG activity was recorded as a voltage at 1,000Hz whilst the participant 

was sitting on the bike with their foot resting firmly on a box, with the leg still and 

supported with the knee in 5-15 degrees of flexion, for 30 seconds.  This was 

undertaken for each leg in turn.  EMG data (voltage) was collected continuously 

during pedalling for a minimum of 30 seconds.   

 

4.4 Processing & analysis of the EMG signal for measuring lower limb 

muscle activity during pedalling 
 

4.4.1 Introduction 

The realisation that a muscle’s function can be investigated via the electrical activity 

it generates has informed movement science since Galvani’s pivotal work with frogs’ 

legs in the 18
th

 century (Basmajian and DeLuca, 1985). From this emergence of the 

science of neurophysiology to today, systems to detect, process, analyse and 

interpret muscles’ electrical signal have been developed for both clinical and 

research applications.  

Electromyography (EMG) has been used for the assessment of muscle performance 

for over half a century (Basmajian and DeLuca, 1985). Equipment to both collect 

data and refine signal quality has developed to enable simple application of surface 

EMG systems in laboratory and clinical settings (Hug and Dorel, 2009). However, the 

possibilities offered by EMG to characterise muscle activity must be tempered by an 

awareness of its limitations (Merletti et al. 2001).Over 20 years ago, Ryan and 

Gregor (1992) expressed concern that interpretation of muscle activity recorded via 

EMG during pedalling might be influenced by electrode placement and 

experimental design. Furthermore, the debate about approaches to signal 

processing and ensuing analysis is on-going.  
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It is widely accepted that accurate processing is essential to enable rigorous analysis 

and useful interpretation of findings (Cram et al. 1998). However, this section 

presents a critique of literature that exposes inconsistencies of approach across 

studies and, in some cases, a lack of transparently described methods. This section 

is not intended to present a formal, systematic review of the literature on this area. 

Rather, it is intended as a critique of relevant methodological aspects of the current 

literature, which then leads to the justification of a rigorous and repeatable method 

for processing and analysing EMG data since applied in the experimental studies 

presented in this thesis (Chapters 5.0 and 6.0).  

4.4.2 Existing evidence 

Throughout the literature searches for both the background and systematic reviews, 

and in developing research questions for this thesis, a number of studies examining 

cycling activity using EMG methods were critiqued. In developing methods for the 

original studies presented here and during the early stages of working with the data 

collected for the first experimental study (Chapter 5.0), varied information on key 

aspects of processing and analysis of the EMG signal was evident.  

Table 10 summarises the key points of the critique of the existing evidence. A 

variety of papers from 1986 to 2012 were included, the consistent feature for 

selection being that all used EMG methodologies to characterise movement during 

pedalling activity and all used muscle activation timing parameters as an outcome. 

A synthesis of the observations made from the critique in table 10 follows. 

4.4.2i Use of filters 

The energy a muscle generates has a frequency spectrum and the prevalence of 

muscle energy at any given frequency can be plotted- as a power spectral density 

graph. Typically, a bandwidth of 20Hz to 300Hz represents nearly all the energy in 

the spectrum of a muscle (Cram et al. 1998). Filtering of the EMG signal is carried 

out in order to minimise the impact of external interference and noise, such as that 

experienced from a “power hum”. Such line interference, when examined as a 

power spectrum, can be typically seen as regular, pulsing elevations at 50 or 100Hz 
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intervals. Filtering is also useful to minimise the effects of factors such as movement 

artefacts or undue pressure on electrodes. 

Modern EMG systems contain built in filters. For example, the system used in the 

current studies (DataLink, Biometrics UK) includes a bandwidth filter of 15Hz to 

450Hz which should be sufficient to capture muscle energy in an appropriate range 

of frequencies (Cram et al. 1998).  However, table 10 demonstrates that a variety of 

filters have been used in previous work, most commonly the expected band width 

filter, though with a number of differing ranges (e.g. 30Hz to 300Hz, Ryan and 

Gregor, 1992; 20Hz to 4000Hz, Brown et al. 1996, Brown et al. 1997).  
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Table 10: EMG analysis of pedalling activity: differences in characteristics of signal processing and analysis described across studies using muscle activation timing 

parameters. Studies presented chronologically from oldest to most recent 

Paper  (Author & Date) Type of study and 

sample size 

Information about 

use of filters 

Information about 

smoothing & 

integration process 

Information about 

establishing resting 

baseline signal 

Information about 

establishing burst onset 

& offset 

Other relevant 

information 

Jorge & Hull (1986) Observational study 

 

EMG eight lower limb 

muscles during pedalling  

 

N=6 experienced cyclists 

None given Rectified and 

integrated over 75ms 

window 

Resting data not recorded 

but iEMG normalised 

according to each 

subject’s maximum and 

averaged over the 6 

subjects to allow 

comparative scaling of 

data  between subjects 

Simple visual inspection Only 4 data collection 

channels available on 

equipment used so data 

collected from 4 

muscles, then electrodes 

moved onto next four. 

Ryan & Gregor (1992) Observational study 

EMG ten lower limb 

muscles during pedalling 

N=18 experienced cyclists 

Band width filter 

30Hz to 300Hz. 

Further filtering with 

30Hz moving average 

filter for records 

demonstrating 

movement artefact. 

Rectified across 10 to 

15 pedalling cycles 

Resting data not recorded 

but data normalised to 

peak activity for each 

muscle and each subject, 

then averaged for each 

muscle across subjects 

Average muscle activity 

patterns analysed for 

burst duration and 

timing. SD from each 

average used to examine 

consistency between 

pedalling revolutions 

Not explicit how burst 

duration and timing 

were actually 

established, ?visual 

inspection 

Brown et al. (1996) Observational study 

EMG four lower limb 

muscles 

N= 11 healthy volunteers 

 

 

Band width filter 

20Hz to 4000Hz 

15s section of data 

rectified and 

integrated 

Exact procedure not 

described but clearly used 

resting data to establish 

bursts (see next column) 

Considered “on” using 

threshold of at least 3SD 

above resting for more 

than 30ms but less than 

1s. 

Not explicit how process 

of rectification and 

integration was carried 

out. Some visual 

inspection to identify 

spurious bursts/noise 
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Table 10 (contd.)       

Paper  (Author & Date) Type of study and 

sample size 

Information about 

use of filters 

Information about 

smoothing & 

integration process 

Information about 

establishing resting 

baseline signal 

Information about 

establishing burst onset 

& offset 

Other relevant 

information 

Brown et al. (1997) Observational study 

 

EMG four lower limb 

muscles at different body 

orientations 

N= 12 healthy elderly 

subjects; N=17 stroke 

survivors 

Band width filter 

20Hz to 4000Hz 

Rectified and 

integrated in each of 4 

wheel phases 

Not used, see next 

column 

Burst onset and offset not 

used: activity expressed 

as iEMG in each of 4 

wheel phases as 

percentage of total iEMG 

Authors recognise burst 

onset and offset difficult 

to establish in subjects 

with hemiplegia.  Not 

explicit how actual 

process of rectification 

and integration was 

carried out.   

Neptune et al. (1997) Observational study 

EMG eight lower limb 

muscles at different 

pedalling rates 

High pass filter with 

cut-off at 12hz 

RMS with 40ms 

moving average 

window 

Subject supine, data 

collected for 10s and 

averaged 

Considered “on” using 

threshold of 3SD above 

resting for more than 

50ms. Results then 

examined cycle-by-cycle 

and the threshold 

increased if necessary to 

identify bursts 

iEMG outside of the 

burst duration was not 

included in the analysis 

of muscle activity 

No explicit detail about 

the threshold increases 

given. 

Raasch et al. (1997) Observational study  

 

EMG five lower limb 

muscles 

 

N=9 healthy adult males 

Low pass filter 25Hz Rectified Baseline established from 

“relaxed portion of the 

trial” 

Considered “on” using 

threshold of at least 3SD 

above resting for more 

than 55ms. Manual 

checking and alteration of 

durations of up to 20ms 

carried out to best 

capture bursts 

Not clear whether 

“relaxed portion of the 

trial” refers to the 

participant resting prior 

to the pedalling or an 

inactive portion of the 

EMG data 
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Table 10 (contd.)       

Paper  (Author & Date) Type of study and 

sample size 

Information about 

use of filters 

Information about 

smoothing & 

integration process 

Information about 

establishing resting 

baseline signal 

Information about 

establishing burst onset 

& offset 

Other relevant 

information 

Kautz & Brown (1998) Observational study 

EMG seven lower limb 

muscles 

N=15 stroke survivors; 

N=12 age-matched 

controls 

Band width 20Hz to 

4000Hz 

Rectified and 

integrated. 

Not used Burst onset and offset not 

used: activity expressed 

as iEMG in each of 4 

wheel phases as 

percentage of total iEMG 

Detail of integration 

process e.g. time 

window not made 

explicit 

Baum & Li (2003) Observational study 

EMG seven lower limb 

muscles 

 

N=16 healthy volunteers 

See next column. 

Environment free of 

noise with low 

motion artefact so 

band pass filter not 

deemed necessary 

Rectified and 

smoothed using a low 

pass, fourth order, 

zero lag filter at 7Hz to 

create a linear 

envelope 

Resting signal not used Threshold value of 10% 

maximum value across all 

conditions chosen for 

onset. Where 10% 

considered inappropriate, 

20% was used. 

Explicit justification of 

lack of use of filter but 

less clear on how 

decisions were made 

regarding 

appropriateness of 10% 

threshold 

Fujiwara et al. (2003) Pre &Post test study 

EMG four lower limb 

muscles 

N=17 

 

 

 

Wide band pass filter 

30Hz to 2000Hz 

Rectified and 

integrated. 

Not used Burst onset and offset not 

used: activity expressed 

as iEMG in each of 4 

wheel phases as 

percentage of total iEMG 

 

 

Detail of integration 

process e.g. time 

window not made 

explicit 
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Abbreviations: RMS= root mean squared; ms= millisecond; iEMG= integrated EMG data; SD= standard deviation; VL= Vastuslateralis; Qds= Quadriceps muscles; TMS= transcranial magnetic 

stimulation

Table 10 (contd.)       

Paper  (Author & Date) Type of study and 

sample size 

Information about 

use of filters 

Information about 

smoothing & 

integration process 

Information about 

establishing resting 

baseline signal 

Information about 

establishing burst onset 

& offset 

Other relevant 

information 

Hakansson & Hull 

(2005) 

Observational study 

EMG ten lower limb 

muscles pedalling in 

upright and recumbent 

positions 

N=15  cyclists 

Zero phase digital 

filter with 12Hz cut-

off 

Rectified. Data 

“demeaned” and 

normalised to the 

highest value for each 

muscle; these data 

then analysed for 

activity and burst 

onset/offset 

Resting data collected at 

end of experimental 

procedure in supine 

position. Mean of 

rectified resting data used 

to establish bursts. 

Considered “on” using 

threshold of at least 3SD 

above resting for more 

than 50ms duration 

Not clear why resting 

data was recorded after 

the activity session. 

Process of “demeaning” 

and normalising data not 

explicit. 

Dorel et al. (2008) Intra-session repeatability 

study 

10 lower limb muscles 

during pedalling 

N=11 triathletes 

Anti-aliasing filter 

with dynamically 

computed cut-off at 

half mean frequency 

of pulses delivered 

every 2 degrees of 

the crank  

RMS with time average 

period of 25ms to 

produce linear 

envelope of activity. 

Values averaged per 

degree of rotation.   

Resting data not used 

(see two ensuing 

columns) 

Onset where signal was 

above threshold of 20% 

difference between peak 

and baseline EMG, offset 

when it was below this 

20% threshold 

Actual value of filter cut-

off not clear. Not explicit  

exactly how baseline was 

judged when examining 

20% of peak activity 

Sidhu et al. (2012) 2 studies reported,  

observation of:  1) TMS 

effects on EMG in VL 

during pedalling; N=19 

healthy volunteers; 2) 

how responses to TMS 

were modulated across 

the “locomotor cycle” 

(pedalling task); N=16 

healthy volunteers 

Band pass filter 30Hz 

to 1000Hz 

Rectified and averaged 

over 25 pedalling 

cycles. Average trace 

with cortical 

stimulation overlaid 

with average trace 

without TMS 

Not used (see previous 

column) 

Rectified data set 

examined for burst onset 

and offset during period 

of no cortical stimulation 

Not explicit exactly how 

bursts were defined in 

the part of the study 

examining activity during 

the pedalling cycle (study 

2) 
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Other types of filter have been used, including high pass filters that remove energy 

generated at lower frequencies (Neptune et al. 1997) and low pass filters that 

remove muscle energy generated at higher frequencies (Raasch et al. 1997). 

Significantly, information justifying the use or not of filters, whether built in or 

additional filtering, was lacking. Only one of the papers, Baum and Li (2003) 

described explicitly how decisions were made about filtering- they established that 

the data collection site was free from high frequency noise and any movement 

artefact was less than 2Hz, and hence deemed the use of any band pass filtering 

unnecessary.    

The concern here is that inappropriate filtering might culminate in actual muscle 

activity being removed from the signal before the next processing and analysis 

stage; and, conversely, energy that is unrelated to that generated by the muscle 

being recorded as muscle activity. Hence, decisions about the use of filters, 

particularly additional filtering to that built into the relevant EMG recording system, 

should be made clear.  

4.4.2ii Smoothing and integrating the EMG signal 

Whilst the raw EMG signal, representing the composite of a number of motor units 

firing in a random, staccotic manner, can provide a simple picture of the activity 

generated, it is widely accepted that the raw signal must be smoothed and 

integrated for it to be accurately quantified and for comparisons to be made across 

subjects.  

All studies outlined in table 10 stated that rectification had been carried out. This is 

the process of artificially placing all data points above zero to ensure that they are 

positive values and hence enable further integration. Smoothing ensures that signal 

variability is reduced, visually taking out the jagged “bumps”. In the studies 

reviewed, details of exact smoothing methods were scant but the most commonly 

described method was a “moving average” over a set time window (Jorge & Hull, 

1986; Neptune et al. 1997; Dorel et al. 2008; Sidhu et al. 2012). This is a frequently 

used, accepted processing method that simply averages the rectified signal over a 
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given period of time, “rolling” through the data set according to a pre-determined 

time window (Cram et al. 1998; Basmajian & DeLuca, 1985). 

Clarity of description of integration method is important in reporting EMG data 

outcomes- changes in, for example, the time window used, can result in differences 

in the smoothness of the pattern. Hence, if different methods are used across 

different studies, useful quantitative comparisons of muscle activity patterns cannot 

be made.  

4.4.2iii Establishing a resting baseline signal and quantifying activity 

bursts 

Even following rectification and integration of the EMG signal, random activity and a 

less than smooth curve can make it challenging to decide the exact time point when 

a muscle is “on” beyond baseline levels. For example, figure 6 illustrates a screen 

capture of around two seconds from a rectified and integrated EMG recorded 

during pedalling activity- examining the integrated signal might lead here to an 

interpretation of the muscle being “off” at any of wheel bins two through to seven. 

However, making transparent and replicable decisions here is essential when 

quantifying the signal to determine “ons and offs” according to time and crank 

angle.  

Previous work (table 10) has used a variety of methods, with some papers relying 

on visual inspection to determine bursts (e.g. Jorge and Hull, 1986; Brown et al. 

1996). Brown et al. (1997) emphasise the challenge in making such decisions in 

subjects with impaired muscle function due to hemiplegia and, instead of defining 

definite bursts according to crank angle, chose to average activity in each of four 

wheel phases as a percentage of activity over the full cycle. This method was 

repeated by Fujiwara et al. (2003).  

Dorel et al. (2008) established bursts by measuring peak to trough activity and 

considering the muscle on when activity was at 20% between trough and peak. 

However, their subjects were tri-athletes, likely to have repeatable regular muscle 

activity during the pedalling cycle; hence the trough to peak method might be more 
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reliably used than in subjects with impaired motor control and altered movement 

performance. 

 

 

Figure 6: Screen capture illustrating challenges in deciding absolute time points for onset & offset of EMG 

activity above resting baseline. On simple visual inspection of this integrated EMG trace, the muscle might be 

considered off during any of wheel bins two to seven; such subjective judgement increases opportunities for 

misinterpretation of muscle activation timing during pedalling. 

 

Table 10 illustrates that the most commonly used method for establishing bursts 

was to collect EMG data for a short period with the subject at rest and consider the 

muscle “on” if it was three standard deviations (SD) or more above this mean 

resting level for a pre-determined period of time (Brown et al. 1996; Neptune et al. 

1997; Raasch et al. 1997; Hakansson & Hull, 2005). Two critical points emerge here: 

firstly, the period of time above the threshold required for the muscle to be 

considered “on” was seemingly decided without justification (Brown et al. 1996, 

30ms; Neptune et al. 1997, 50ms; Raasch et al. 1997b, 55ms; Hakansson & Hull, 

2005, 50ms). Raasch et al. (1997) went on to further alter burst durations by up to 

20ms to best capture activity, though standardisation of this technique was not 

described. 
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 Secondly,  it was frequently unclear exactly how resting data was established, with 

Neptune et al. (1997) collecting with the subject supine and Raasch et al. (1997) 

describing a relaxed portion of the trial but without clarifying further detail. 

Hakansson & Hull (2005) established resting signal at the end of their experimental 

procedures with the subject supine; though, after pedalling activity in an 

experimental procedure, it might be questionable that this truly represented the 

muscle at rest. Indeed, the position alone used for collecting resting activity might 

impact on the amount of activity that is actually considered “resting.” 

Therefore, the current literature does not clearly delineate a set procedure for the 

processing and analysis of the EMG signal that could be used in the studies in this 

thesis. Hence, it was necessary to develop well-defined, replicable procedures 

appropriate to the participants and task under investigation. 

4.4.3 Developing methodologies for the current studies 

It is clear that many different methods of processing and analysis have been used in 

the current literature exploring pedalling exercise using EMG. It was considered 

essential that, as the work presented in this thesis is at a developmental level, 

clearly defined methods that could be used in these and future studies, were 

developed. Hence, concurrent to the progress of each of the experimental studies, 

methods were developed for the processing and analysis of the EMG signal.  

4.4.3i Use of filters: existing equipment and justification of additional 

filtering 

In both settings used for data collection in the studies here presented- a hospital 

therapy room and a university laboratory- external interference to the signal was 

detected on a number of occasions. The interference was unpredictable and had no 

consistent pattern of occurrence, happening at random times of day and with 

various participants. It was clear that additional filtering was indicated to minimise 

the effects of this signal noise. 

Furthermore, collecting EMG data from stroke survivors during pedalling activity is 

inevitably challenging (Brown et al. 1997), as motor control is impaired, leading to, 

for example, variations in muscle tone and altered patterns of activity. This might 
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include specific lower limb impairment and impairments in trunk control and 

balance, all of which might impact on activity. Hence, where the signal appeared 

“noisy” it was important to differentiate between altered activity and external noise 

from, for example, a power hum. This differentiation might then assist in making 

decisions about the use of additional filtering. 

To ensure that decisions about additional filtering were made explicit for each 

individual data set, an algorithm was designed (Figure 7). Each data set was 

processed according to the algorithm, and where indicated, power spectral analyses 

carried out and additional filtering applied, using a band stop filter to specifically 

reduce external noise, parameters according to Cram et al. (1998). Sections 5.11.5 

& 6.12 include reports of to which data sets filters were applied.  

Figures 8 and 9 illustrate two different examples of the result of carrying out the 

power spectral analysis indicated in Figure 7. Figure 8 is a screen capture of the 

result of a spectral analysis on a data set clearly affected by external noise and 

hence additional filtering was indicated. Here, it can be seen that regular pulses of 

line noise at 100Hz are occurring. Such a regular, repeating pattern at this 

frequency could not have been caused by the random, staccotic firing of 

accumulating motor units and is due to an external source. Figure 9 is an example 

where there was no external signal interference and no additional filtering was 

required; the majority of the muscle activity is generated at lower frequencies and 

tails off within higher frequencies, with no additional regular bursts. 
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Visual inspection of : 

1) raw data in SPIKE and                     

2) processed signal with marked ‘on/offs’ 

in Excel 

Is the data of sufficient quality that the ‘on/offs’ as 

marked in Excel match the pattern of the raw data 

as depicted in SPIKE? 

Carry out a power spectral analysis of each 

channel in each data set 

Does the spectral analysis demonstrate 

pulsing “noise” harmonics at regular 

frequencies? 

Proceed with processing and 

analysis  

Proceed with analysis 

without application of 

additional filtering 

Apply additional Band Stop 

filtering and save this filtered 

data as new memory channel in 

existing data set 

 YES 

YES 

NO 

NO 

 
Figure 7: Algorithm used to inform decisions about the application of filters during EMG data processing for the 

experimental studies  
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Figure 8: Screen capture of spectral analysis of data set where regular signal noise is demonstrated and 

additional filtering was indicated, according to the algorithm figure 7 

 

 

Figure 9: Screen capture of spectral analysis of data set where regular signal noise is not demonstrated and 

additional filtering was not indicated, according to the algorithm figure 7. 
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4.4.3ii Smoothing and Integration techniques 

All data were initially processed using custom-written scripts in Microsoft Excel 2007. 

Raw signal was rectified, placing all negative points recorded above zero. To reduce 

signal variability and present an accurate mean trend of signal development, 

mathematical smoothing of the signal was carried out, with a moving average of 

50ms, creating “linear envelopes” across each data set. These values thus represent 

the area under the curve for the selected epoch of 50ms.This method has been 

adopted in previous studies (table 10) and is an accepted method of smoothing 

(Hug and Dorel, 2009; Cram et al. 1998). 

Furthermore, data were imported to and visualised in the SPIKE 2 5.13 (Cambridge 

Instruments, Cambridge UK) package. This programme allows for very clear visual 

inspection of traces generated by the EMG signal and the addition of new channels 

alongside the original traces; this enabled the triggers defining wheel bins to be 

illustrated and mapped to the appropriate point of the signal. 

4.4.3iii Identification of resting activity and activity bursts during 

pedalling 

Following detailed examination of the literature in table 10, it was decided that the 

onset and offset of muscle activity would be determined using the commonly 

adopted method of establishing a threshold of three standard deviations (3SD) 

above a participant’s mean resting activity (Brown et al. 1996; Neptune et al. 

1997;Raasch et al. 1997; Hakansson and Hull, 2005). Baseline (threshold) EMG 

values were then calculated from the integrated signal as the mean ± 3 SD during 

the 30 seconds resting data collection period described in section 4.3.Where activity 

was above this threshold value, the muscle was considered “on” and where below 

this threshold value, the muscle was considered “off”.  

However, guidance on how resting activity was established was less clear so a 

justified and repeatable method was needed for the current studies.  
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• Determining resting activity 

The resting state of lower limb muscle following stroke is likely to be different to the 

resting state of a muscle in an individual without impairment, due to alterations in 

muscle tone, compensatory activity and challenges to balance. These differences 

might apply to both sides of the body. Hence, the “pre-pedalling” state of the 

muscle might mean it is not truly at rest, so defining activity recruited due to the 

pedalling activity itself presented a challenge.  It was considered that measuring 

resting activity in a simple sitting or lying posture might not give an accurate picture 

of the muscle “pre-pedalling.” Hence, it was decided that quiet, background activity 

would be recorded from each muscle in upright sitting on the bike with the feet 

supported on blocks, knee resting at approximately 15 degrees of flexion. Any 

additional activity above this baseline should then reflect activity required to pedal 

the crank in the same upright posture.  

• Establishing muscle activity bursts  

The use of eight 45 degree wheel bins, defined with the use of an LED sensor 

mounted on the bike frame as described in section 4.2.3enabled the bursts of 

activity to be mapped according to both the time of onset/offset and the crank 

angle. Within each bin, it was then possible to establish whether the muscle was 

“on” or “off”. Initially, an arbitrary figure of 20ms above the threshold was used to 

establish bursts. 

During initial processing according to this method, two further challenges arose 

which required additional clarification:  

Firstly, for some data sets, particularly where stroke survivors pedalled slowly, 

activity was above the threshold for only part of the position bin and not all, or 

there were periods of both “ons” and “offs” within a position bin. Hence, it was 

considered that simply making a binary decision of “on or off” did not accurately 

represent the complexities of the activity being performed.  This was a particular 

concern as this was original work with no other example data sets of stroke 

survivors taking part in UP. Therefore, a more detailed picture of activity within 
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position bins, and hence across each turn of the wheel within each pedalling session, 

was indicated. 

It was decided that the onset of activity would be described by the exact amount of 

time for which the activity was above the threshold, expressed as a percentage of 

total time for the relevant position bin. For example, if the muscle was continually 

above the threshold throughout a whole position bin, this would be 100% on, and if 

not above the threshold at all within a position bin, it would be 0% on, with any 

variations of percentage activity in between.  

This method removes the need to arbitrarily select a timeframe above which the 

muscle is considered active. It quantifies the activity occurring during pedalling and 

enables objective comparisons between pedalling sessions and individuals. 

Examples of the phase diagrams created from the data, are given in section 5.11.6. 

Secondly, there were occasional data sets where the mean resting signal was 

particularly low and the muscle presented as continually “on” according to the 

calculations of activity above threshold; though when the integrated trace was 

visualised, definite bursts were distinguishable. The type of presentation might have 

underpinned decisions in previous work to alter thresholds after visualising the 

trace (e.g. Raasch et al. 1997; Brown et al. 1996). Altering the threshold following 

simple visual inspection was not considered rigorous enough for the current studies, 

as rigour and reproducibility of the developed methods were considered essential. 

Accordingly, a second algorithm (figure 10) was developed and applied across all 

data sets. This describes a formal pathway by which the threshold was raised by 

further SD’s if specific conditions were met. Reports of to which data sets the 

algorithm was applied are in 5.11.6 & 6.13. 
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Visual inspection of: 

1)raw data in SPIKE and 

2) marked signal with ‘on/offs’ in Excel 

Proceed with processing/analysis 

according the first method: using the 

mean of the resting signal data plus 3 

standard deviations as the threshold 

for ‘on’ 

Is the baseline threshold sufficiently high that 

the on/offs calculated in Excel match the 

bursts apparent when the raw signal is 

visualised in SPIKE? 

Recheck: marked ‘on/offs’ in Excel reflect 

visual inspection of bursts in SPIKE 

Apply second method: raise threshold by 

using mean resting signal data plus >3 

standard deviations as threshold for ‘on’ 

 YES 

NO: bursts                

apparent in                

SPIKE; Excel 

depicting as            

always “on” 

Figure 10: Algorithm used to inform decisions about altering the pre-determined resting threshold during EMG data 

processing, studies two and three 
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4.4.4 Conclusions: EMG data processing  

It is clear that whilst there are general rules, there is not one simply described 

method for processing the EMG signal recorded during pedalling.  

This section has identified that there are some methodological inconsistencies in 

current published work, suggesting that no one existing method could be adopted 

for the studies in the thesis. Hence there was a need to establish a transparent, 

replicable methodology for use in the studies here presented and for future work 

investigating pedalling activity for stroke survivors. The processing methods 

adopted for the clinical studies in this thesis have therefore been described. 

Decisions about filtering, smoothing, establishing resting signal and determining 

activity bursts were all made following a comprehensive review of existing evidence. 

 

4.5 Measures derived from EMG 

 

This section presents the measures derived from the EMG data, processed as in 

section 4.4, common to both experimental studies.  

In all cases where the measures described were used, data from the central 10 

wheel turns of the completed data set were used to provide a representative 

sample of steady pedalling activity for each individual and each pedalling trial. 

4.5.1 Onset and offset of activity of antagonistic muscle groups during 

pedalling 

EMG recordings during pedalling activity have the potential to provide information 

about amount of muscle activity and muscle activation timing (Hug and Dorel, 2009). 

Incorporating a mechanical measure of crank position that can be used 

synchronously as EMG data is collected further allows for these patterns of muscle 

activity to be related to the position of the wheel. This “mapping” of lower limb 

muscle activity during a constrained kinematic task provides opportunity for 

assessment of impairment in people with abnormalities of function.   
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However, in stroke survivors who demonstrate variable muscle activity, particularly 

early after the onset of central nervous system damage, comparisons of actual 

amounts of activity might be less useful than patterns of activation timing according 

to the wheel position. Measuring amount of activity does not necessarily establish 

type of activity and the activity generated after stroke might be influenced by, for 

example, compensatory activity, raised tone or simply by being in the appropriate 

position to attempt the pedalling activity. Moreover, temporal components of 

muscle activity during pedalling, derived from EMG, have recently been 

demonstrated to be more reliable for measurement of adaptations in muscle 

activity over time than magnitude components (Jobson et al. 2012). Hence, for 

these studies, a decision was taken to determine the timing of activity via its onset 

and offset during pedalling as an important impairment level outcome.  

4.5.2 Reciprocal activation of antagonistic muscle groups (muscle activity) 

during pedalling  

Rectified, processed EMG data for each antagonistic muscle group were quantified 

using Jaccard’s Coefficient (J). This statistic quantifies; of the time during which 

there is any activity above baseline in either muscle, how much of that time the 

muscles are active together i.e. not acting reciprocally.  

The J-value was derived from the spread sheets used to determine whether a 

muscle was on or off according to a pre-determined threshold (section 4.4.3iii). 

Each data point, representative of one millisecond, was marked as on (1) or off (0) 

according to the threshold, in quadriceps and hamstrings for each data set.  These 

values were then analysed using a cross tabulation in SPSS (version 18):  

� =
a

a + b + c
 

where a= muscles active together, b=quadriceps active, hamstrings inactive 

and c= hamstrings active, quadriceps inactive 

Hence, a J-value of 1.0 indicates perfect positive correlation, and therefore 

complete co-contraction, or no reciprocal activation, of an antagonistic muscle pair.  

A J-value of 0 indicates a perfect negative correlation, with no co-contraction 
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between the two muscles at all, and therefore complete reciprocal activation of 

antagonistic muscle groups. It should be noted that a J-value of 0 might also 

represent a situation where a muscle was not active at all about baseline; it has 

been made clear in the relevant results sections where this was the case. 

4.5.3 Smoothness of pedalling movement (S-Ped) 

Smoothness of pedalling movement (S-Ped) was quantified from the standard 

deviation of mean time spent in each of the eight position bins for each turn, over 

ten complete turns of the wheel.  Hence, a high standard deviation represented less 

smooth pedalling than a low standard deviation.  

 

4.6 Other measures common to both studies 

 

In order to meet study aims, particularly 2d (exploring the association of UP 

measures and current clinical measures of lower limb impairment and walking 

ability), 3c, 3d and 3e (exploring participation in, and potential efficacy of, UP) it 

was important that commonly used measures of lower limb impairment and 

walking ability were included, in addition to the biological measures listed above.  

 Selection of these measures was guided by recommendations from the British 

Society of Rehabilitation “Basket of measures” of outcomes in rehabilitation (British 

Society of Rehabilitation, BSRM, 2005). In order to be included in the “basket”, 

measures have to be scientifically evaluated and in common use in the UK (by at 

least ten units). These guidelines were therefore considered appropriate for 

assisting with the selection of measures for the studies presented herein. 

The recommended and most widely used measure of motor impairment is the 

Motricity Index (MI), with the Motor Assessment Scale proposed as the possible 

alternative option (BSRM, 2005). The Motricity Index is considered as a simple, 

short measure of motor loss for use after stroke (Wade, 1992), whereas the Motor 

Assessment Scale is a much longer, hierarchal score, including focus on disability 

(BSRM, 2005). Therefore, considering the requirements of the measure to assess 
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impairment specifically, and to be pragmatic for timely use with early stroke 

survivors in a clinical setting, the Motricity index was selected for use in the current 

studies (4.6.1; 5.8.2i) 

The recommended and most widely used measure of mobility is the 10-metre timed 

walk, with the Functional Ambulatory Categories (FAC) proposed as a possible 

alternative option (BSRM, 2005). The 10-metre timed walk is considered to be very 

simple to use, valid, reliable and sensitive (Wade, 1992). However, in order to 

participate, stroke survivors need to have some ability to walk and therefore this 

was not a usable tool for the feasibility study here, which purposefully sampled 

those early stroke survivors with substantially impaired mobility. The FAC, 

conversely, enables categorisation of all levels of ambulatory ability, from complete 

dependence to independent walking function. It is also a scale which has been 

demonstrated to be simple to use and sensitive to change during the transition 

from immobility to walking (Merholz et al. 2007; Wade, 1992). Hence, this scale was 

considered the most useful for capturing the ambulatory ability of the stroke 

survivors included in these studies (4.6.2; 5.8.2iii). 

4.6.1 Measurement of lower limb motor impairment: The Motricity Index 

(MI) 

The Motricity Index (lower limb section) (Demeurisse et al. 1980) is a measure that 

can be used easily in the clinical setting to assess the severity of motor impairment. 

It is one of the most common measures of lower limb motor impairment used by 

physiotherapists after stroke. 

It is an ordinal weighted scale with six measurement levels within each of three 

categories for the lower limb. The three categories are: ankle dorsiflexion, knee 

extension, and hip flexion.  For each movement, a score of 0, 9, 14, 19, 25, or 33 is 

given, where 0 is no movement, 19 is full range movement against gravity not 

against resistance and 33 is normal power.   

4.6.2 Measurement of walking function: The Functional Ambulatory 

Categories (FAC) 

Measurement of walking ability was carried out using the Functional Ambulation 

Categories (FAC) (Holden et al. 1984).This scale is designed to give detail on physical 
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support needed by patients for walking, so has clinical relevance, and is simple to 

use.  It has established validity and reliability for use after stroke (Merholz et al. 

2007). It is an ordinal scale, patients scoring from 0-5, where 0 indicates a patient 

who is not able to walk or needs help of 2 therapists, and 5 indicates a patient who 

is independent in ambulation even on stairs. The Functional Ambulatory Categories 

(FAC) has demonstrated sensitivity in stroke survivors who cannot walk at the 

beginning of their rehabilitation period (Merholz et al. 2007); relevant to 

participants in this trial, who are not mobile at inclusion.   

 

4.7 Procedures common to both studies 

 

4.7.1 Overview of research procedures 

At the beginning of each initial measurement session, participants were shown the 

research equipment and procedure explained again in full.   

The researcher then measured the participant’s heart rate and blood pressure to 

ensure that they were within the safe limits set for the study on the measurement 

day (see individual study criteria, 5.4.2, 6.3.1, 6.3.2) 

Participant characteristics were recorded by the researcher. 

Participants then changed, or were assisted in changing, into a pair of shorts and 

their skin prepared for EMG placement, using Nuprep (Weaver & Company, 

Colorado, USA) gentle skin abrasive and an alcohol wipe. They were then 

hoisted/transferred to the bike and positioned comfortably.  

Surface EMG electrodes were then applied to the front and back of the thigh in the 

recommended position for recording from quadriceps and hamstrings. Electrodes 

were placed according to published guidelines (Cram et al. 1998; see also Appendix 

III)) and secured to minimise movement artefacts and hence interference. Resting 

EMG data was collected from each leg with the participant’s foot resting 

comfortably on a block in 5-15 degrees of knee flexion, whilst seated on the bike.  
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Participants were then asked to pedal at their comfortable speed, for one minute, 

to familiarise themselves with the equipment and testing procedure. They then 

stopped pedalling and the researcher ensured that the participant was in a 

comfortable position to begin the recorded pedalling session. They were then asked 

to pedal for a further minute in the same manner, during which EMG data was 

recorded. The central ten turns were later selected from the complete data set 

(section 4.5), to ensure that the steady pedalling phase, and not the acceleration 

and deceleration phases, were included in the analysis. 

During pedalling, heart rate was monitored to ensure it did not exceed 85% age 

predicted maximum (220-age x 0.85) at any point.   

The decision to hoist or transfer the participant onto the bike depended on 

ambulatory capacity.  This decision was made by a researcher with considerable 

expertise in the handling of stroke survivors working in conjunction with the 

participant.  Two staff were present throughout each measurement session and the 

research area was situated alongside an acute stroke unit for the hospital based 

experimental study (Chapter 5.0) and a Clinical Research Trials unit for the 

laboratory based study (Chapter 6.0); both with stringent procedures in place for 

action in the event of an emergency. 

 

---------------------------------------------------- 
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Chapter 5.0: Upright Pedalling (UP) Exercise Early after Stroke: 

A Feasibility Study 

 

5.1 Introduction 

 

The purpose of this chapter is to describe the methods and results of an 

experimental study exploring the feasibility of Upright Pedalling (UP) early after 

stroke. Methods common to both this study and the development of measures of 

lower limb motor impairment have been presented in Chapter 4.0. 

The study presented here addresses aims 2a, 3a, 3b, 3c, 3d, 3e and 3f 

Presentation of this chapter has been guided by the CONSORT guidelines for non-

pharmacologic treatment interventions (Boutron et al. 2008).   

Findings from the systematic review (Chapter 3.0) described a lack of transparency 

in reporting of studies investigating pedalling after stroke; hence, in accordance 

with CONSORT guidelines for transparent reporting of research trials (CONSORT, 

2010) this study was registered on a clinical trials database (ISRCTN 45392701) and 

the protocol has been published in a peer-reviewed, open-access journal, Trials 

(Hancock et al. 2011; Appendix IV).   

 

5.2 Design: 

 

The study was a single centre, early phase randomised controlled trial (RCT) with 

observer blinding. This design is illustrated in figure 11. 

The study design was used in order to enable data collected from a single cohort of 

early stroke survivors to be used to address all study aims.  All participants recruited 

and undergoing baseline measures set one were given the opportunity to take part 

in a session of UP.  Therefore, even those who were eventually randomised to the 

control group after baseline measures set two had active involvement in this study 

by participating in one trial pedalling session.  
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The challenge of carrying out in-patient neurological rehabilitation research has 

been documented (Cumberland Consensus Working Group, 2009), and it was 

intended that this pilot RCT also provide information on the feasibility of running 

such a trial in an acute stroke unit setting.  

5.2.1 Randomisation 

To examine the potential clinical efficacy of UP in this participant group,  

randomisation was considered essential-  spontaneous behavioural recovery has 

been noted in the first weeks after stroke onset, though with considerable 

heterogeneity in natural recovery across stroke survivors (Cramer, 2008). Hence, a 

non-randomised, “before-and-after” type design risked erroneously ascribing 

benefit to the intervention when other mechanisms may have been responsible in 

this changeable phase of recovery.  Therefore, to limit confounding influences and 

minimise allocation bias, a randomly allocated control group of participants, 

meeting the same study inclusion criteria as the experimental group, was required.  

Control group participants would not miss out on therapy at this crucial stage after 

stroke, as all trial participants would continue to receive usual therapy with the 

clinical team.   

Randomisation order was generated before the trial began by a medical statistician, 

in blocks of four.  Block randomisation was used to ensure equal numbers in each 

trial arm.  Group allocation was concealed in sequentially numbered opaque sealed 

envelopes held by an independent administrator, who was not involved in the study 

and had no contact with study participants.   The next highest number envelope was 

opened by the independent administrator in response to a telephone request from 

the research therapist. After opening, the envelopes were stored securely with the 

participants’ study data.  Randomisation was concealed from the independent 

outcome assessor and participants were asked not to discuss group allocation with 

the outcome assessor.  
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Figure 11: Flowchart illustrating study design 
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5.2.2 Blinding:  

Blinding of research therapists in a therapy intervention study is not always feasible 

and patients are clearly aware that they are undergoing exercise-based 

interventions.   Consequently, for this exploration of therapeutic pedalling exercise, 

blinding of therapists providing the intervention and of participants was not 

possible.  The independent assessor of clinical outcome measures was a trained 

therapist blinded to group allocation. 

5.2.3 Overview of Study Procedure 

All participants underwent baseline measurement set one.  

The common procedures described in section 4.7.1 for positioning participants on 

the bike were adopted. 

Participants were then assessed for their ability to perform UP.   

They were asked to pedal slowly for one minute to familiarise themselves with the 

equipment.  They were then asked to pedal for one further minute and a visual 

observation of whether they could pedal or not was made and recorded.   

Those who were unable to pedal and were 31 days or more after stroke onset were 

excluded from the randomised part of this trial.  It was intended that those 

participants unable to pedal and who were 30 days or less after stroke onset be 

offered further pedalling assessments approximately every three days.  The 

rationale for further pedalling assessments was that during the first 30 days after 

stroke people may have experienced fear of movement, lack of confidence in 

moving or emotional difficulties and therefore may have needed more than one 

experience of attempting pedalling within a therapeutic environment.  Without 

repeated opportunities for pedalling assessment some participants may have been 

excluded unfairly from the opportunity to participate in UP.  Additionally, more than 

one attempt at an activity more closely reflects the pragmatics of clinical practice. 

Those participants able to pedal for one minute and who were 30 days or less after 

stroke onset, then undertook baseline measures set two. Participants were then 
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allocated randomly to either routine conventional physical therapy (CPT; control 

group) or to CPT plus UP (experimental group).    

Participants were to receive their allocated intervention for up to ten minutes a day, 

for up to ten working days or until discharge from acute stroke care, whichever 

occurs first.    On completion of the intervention phase participants undertook 

clinical efficacy outcome measures.  Every attempt was made to undertake clinical 

efficacy outcome measures even if participants were discharged before the 

intervention phase was completed, in accordance with the “intention to treat” 

principle.   

 

5.3 Setting 

 

The study was carried out in the acute Stroke Unit at the Norfolk and Norwich 

University Hospital Trust (NNUH). The equipment was situated in the therapy room 

alongside the Stroke Unit. Prior to proceeding with screening for the study, and 

after ethical approval had been received, the lead researcher introduced the project 

as part of the clinical team training on the unit and spent some weeks familiarising 

all members of the clinical team with study criteria and all procedures. Consultant 

and therapy teams agreed to support this trial.  

 

5.4 Participants 

 

5.4.1 Recruitment process  

Participants were recruited from the acute stroke unit, according to the following 

process: 

Clinical team members, and in particular, physiotherapy staff, were familiarised 

with study criteria (5.4.2).  
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Stroke survivors were initially approached by a clinical team member responsible 

for their care, to briefly explain that the study was currently underway on the stroke 

unit and ask whether they would be happy to speak to the researcher.  If they 

agreed, the researcher provided potential participants with verbal and written 

printed information (Appendix II) about the trial. A video of the procedure for 

getting on and off the upright bike was also available and potential participants 

invited to view it if they wished; though during recruitment to this study, no 

participants requested information in this way.  

A minimum of twenty four hours later, written informed consent was sought. Those 

providing written informed consent were recruited as participants in this trial.  All 

participants were then screened to check that they meet the study criteria (5.4.2) 

5.4.2 Inclusion Criteria  

Inclusion criteria were carefully considered in the development stages of the 

protocol. To meet study aims, it was essential to recruit participants with 

substantial weakness, early after stroke, but who were also considered fit enough to 

participate by the medical team. Hence, to be included in this study, all participants 

were: 

• adults aged 18+.  

The aetiology of paediatric stroke in the developing brain is a complex 

and entirely separate clinical field to adult stroke. The research aims here 

apply only to the adult stroke population and the research was based in a 

unit for adult stroke survivors only. 

• three to thirty  days following a unilateral stroke resulting in unilateral 

muscle weakness with or without sensory deficit;  

The essential early period for instituting rehabilitation therapies after 

stroke has been discussed in Chapter 1.0. In recruiting stroke survivors 

within 30 days of onset, this research aimed to evaluate the possible 

efficacy of the intervention used during this important time window. 
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• fit to participate as assessed by a consultant-led medical team with 

resting oxygen saturations 95% or above, resting heart rate 90 beats per 

minute or less and systolic blood pressure of 100-160 mmHg 

These criteria were set in close conjunction with the trial clinical 

collaborator, Dr Phyo. K. Myint and Principal Investigator, Professor 

Valerie Pomeroy 

• Not independently mobile, assessed by a score 0, 1 or 2 on the Functional 

Ambulation Categories (Holden et al. 1984).   

Clinically, this meant that participants were unable to walk; or needed 

the help of two or more people; or required firm continuous or 

intermittent support of one person assisting with weight and balance 

whilst they walked. 

The need to develop rehabilitation interventions for stroke survivors 

with substantial weakness, who might otherwise have little opportunity 

to take part in the repetitive, skilled activity required to promote 

recovery of motor function, has been discussed in Chapter 2.0. The use 

of the FAC, to assess ambulatory capacity, ensured that a standardised 

tool was employed to ensure participants met this criterion. 

• able to sit unsupported for 30-seconds on the edge of a bed with feet on 

the floor. 

• able to have sat out of bed in a chair or wheelchair at least once for a 

continual period of 15-minutes  

These safety criteria ensured that participants were able to a) sit forward 

for hoisting and transferring to the bike, and b) tolerate sitting out of bed 

for an appropriate time to take part in the cycling intervention. 

•  able to follow a one-stage command 

This ensured that participants had sufficient communication and 

orientation to participate in this particular cycling intervention without 

excluding those with aphasia; it is important that participants with a 

wide range of communication strategies are included in research, to 

more accurately reflect clinical practice. 
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• be independently mobile with or without an aid prior to the index stroke;  

 

5.4.3 Exclusion Criteria 

People with the following were excluded from this study: 

• those having co-existing pathology contributing to observed impairment 

in the paretic lower limb e.g. osteoarthritis with associated knee 

deformity.  

This criterion excluded those with pre-existing mobility difficulties, 

unrelated to their current stroke, which might have a) affected their 

ability to be positioned on the bike and/or take part in the pedalling 

activity and b) adversely influenced the muscle activity data to be 

recorded. 

 

5.5 Sample Size 

 

This early phase trial was the first to explore Upright Pedalling with early stroke 

survivors. As the study was not designed to definitely demonstrate efficacy, it was 

not appropriate to base a sample size calculation on clinical efficacy.  Sample size 

was therefore based on practical considerations, using estimates of the number of 

participants the researcher could expect to recruit within a 12 month time period; a 

pragmatic time period for PhD studies. Using data from previous trials of 

rehabilitation earIy after stroke led by the Principal Investigator for this study 

(Donaldson et al. 2009) and taking into account admission numbers to the acute 

stroke unit a recruitment rate of two participants per month was estimated.  

Therefore, the sample size was set at 24 participants. It was anticipated that data 

from this pilot work might inform sample size calculations for subsequent trials. 
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5.6 R&D Governance 

 

The research study received the approval of the Essex 1 Research Ethics Committee, 

UK (09/H0301/52; Appendix II) 

 

5.7 Intervention 

 

It was proposed that all participants would receive routine conventional physical 

therapy (CPT) as deemed appropriate by the clinical team.  A previously validated 

standardised schedule was used to record content and dose (minutes) of CPT 

(Pomeroy et al. 2005). Once a participant had been randomised, clinical 

physiotherapy team members were asked to complete a record for each CPT 

session and these were transferred to the research laboratory and stored with 

participant data. This could then provide information for replication of therapy dose 

in potential future studies. 

5.7.1 Control intervention 

Participants allocated to the control group received CPT only as described above. 

5.7.2 Experimental Intervention 

Participants allocated to the experimental group received UP in addition to CPT.  All 

experimental participants were asked to pedal comfortably at up to 50 revolutions 

per minute (50 rpm).  

Participants were monitored throughout to ensure that they maintained a heart 

rate of 85% or below their age-predicted maximum (i.e. less than (220-age) x 0.85 

beats per minute).  

 If participants could not achieve 50 rpm, the research therapist was guided by their 

response in setting the maximum rpm.  The approximate mean rpm achieved was 

recorded for each participant for each intervention session according to the visual 

display on the bike, and accurately verified at the data analysis stage using the 
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wheel sensor data. It was anticipated that few patients early after stroke would 

immediately manage ten minutes of pedalling, so the number of minutes pedalled, 

up to ten minutes, was recorded.  Ten minutes was set as the upper limit, as, even 

at a slower pace of 30 rpm, this provides the 300 repetitions of lower limb cyclical 

activity in a single treatment session suggested as necessary by animal model 

studies (Kleim et al. 1998). 

Each intervention session also involved recording the measures described in 4.5 & 

4.6 

 

5.8 Measurement battery 

 

5.8.1 Participant characteristics  

For all participants, characteristics recorded were: 

• gender 

• age (years) 

• type and site of the stroke lesion (via liaison with medical team from 

scanning/clinical findings) and, 

• time since stroke onset at entry to the trial and at each set of study 

measures (days). 

5.8.2 Clinical efficacy measures 

5.8.2i Primary outcome 

• Ability to voluntarily contract paretic muscle, measured by the Motricity 

Index 

 A key aim of this pedalling intervention was to enhance the ability to 

 voluntarily contract paretic muscle, hence the primary measure was 

 intended to capture this change.  The Motricity Index (MI) (lower limb 

 section) (Demeurisse et al. 1980) is a measure that can be used easily in the 

 clinical setting to assess the severity of motor impairment. The MI is 

 described in section 4.6.1. 
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5.8.2ii Secondary outcomes 

• Ability to walk independently 

 Regaining walking ability is a key goal for stroke survivors and independent 

 mobility enables independence in other activities of daily living. Pedalling 

 exercise after stroke might have a positive effect on ambulatory function. 

 Hence walking ability was considered as a secondary outcome, as measured 

 by the Functional Ambulation Categories (FAC) (Holden et al. 1984). The FAC 

 is described in section 4.6.2. 

Secondary measures derived from EMG 

Therapists in the clinical setting frequently observe and record alterations in, for 

example, muscle strength and walking ability, but cannot accurately measure the 

specific underlying changes in muscle activity that might contribute to changes in 

movement and functional performance.   In recording, processing and analysing 

EMG data, this research aimed to evaluate physiological change alongside 

frequently used clinical measures of paresis and detect changes in motor activity 

earlier than if using clinical measures of movement performance alone.  Emphasis 

on such biological measures is considered important in the development phases of 

an intervention (Cumberland Consensus Working Group, 2009). 

 

• Onset and offset of activity of antagonistic muscle groups during pedalling, 

derived from EMG recording 

 This measure enabled the timing of muscle activation throughout the 

 pedalling cycle to be quantified, as described in section 4.5.1.  

• Reciprocal activation of antagonistic muscle group activity during pedalling 

 Coordinated, phasic activity is a prerequisite for normal locomotor function. 

 This measure, as described in section 4.5.2, was used to determine to what 

 degree the quadriceps and hamstring muscles in both the affected and  
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 unaffected lower limbs were working reciprocally in participants early after 

 stroke. 

• Smoothness of pedalling movement (S-Ped) 

 Motor hemiplegia following stroke inevitably leads to asymmetrical lower 

 limb function and performing smooth, reciprocal movement such as 

 pedalling can be challenging. Smoothness has previously been proposed as a 

 kinematic measure of asymmetry during reciprocal pedalling (Chen et al.

 2005). It is reasonable to assume, therefore, that increased smoothness of 

 pedalling represents more symmetrical, efficient movement patterns, such 

 as those required to perform walking. Smoothness of movement was 

 quantified as described in section 4.5.3 

5.8.2iii Prognostic indicator measures 

• Site of stroke lesion  

 The location and size of stroke lesion have been demonstrated to be a 

 prognostic factor for functional outcomes after stroke (Pan et al. 2006, Chen 

 et al. 2000). It is possible, therefore, that this clinical factor might be linked 

 to the ability to take part in and respond to rehabilitation interventions.  

 Where possible, brain lesion location was therefore recorded from the 

 clinical scan in liaison with the collaborating stroke physician.  

• Severity of muscle weakness as measured by the Motricity Index  

 As described in section 5.8.2i 

• Ambulatory Capacity as measured by the Functional Ambulatory Categories 

(see clinical efficacy measures section 5.8.2ii) 

 The FAC has been found to have good predictive validity for community 

 ambulation after stroke (e.g. FAC ≥ 4, sensitivity 100%, specificity 78%) 

 (Merholz et al. 2007). It was proposed that pedalling exercise might have a 

 positive effect on walking and thus postulated that the ability to walk might 

 influence the ability to pedal and respond to pedalling intervention.  
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• Ability to control the trunk 

 As measured by the Trunk Control Test (Collin and Wade, 1990).  This is a 

 short, simple measure of motor loss developed for use after stroke. Patients 

 are asked to do four movements- rolling to their weak side, rolling to their 

 strong side, sitting up from lying down and balancing in a sitting position.  

 Each movement is scored according to ability, either 0, 12 or 25, leading to a 

 total score out of 100. Validity (comparison with Rivermead Motor 

 Assessment at six, twelve and eighteen weeks post-stroke- Spearman’s rho, 

 r= 0.70, 0.72 and 0.79 respectively; inter-rater reliability, Spearman’s rho, r= 

 0.76, p<0.001) have been established (Collin and Wade, 1990).  

 Balance (trunk) control is highly specific to ambulatory control, and makes a 

 crucial contribution to the ability to perform activities of daily living (Hsieh et

 al.2002). The Trunk Control Test has been found to be a predictor of 

 functional outcomes after stroke, including discharge Functional 

 Independence Measure (Pearson’s r=0.738), gait velocity (Pearson’s r=0.654) 

 (Duarte et al. 2002); and discharge walking ability (Spearman’s rho r=0.71) 

 (Masiero et al. 2007).  It is possible, therefore, that trunk control early after 

 stroke might influence the ability to perform rehabilitation activities and 

 thus it was assessed as a potential prognostic indicator for pedalling exercise 

 after stroke.   

 

5.9 Analysis 

 

The aim of the analysis was not to definitively demonstrate efficacy in this early 

phase trial.  However, assuming a normal distribution, it was anticipated that 

independent t- tests would be used to compare groups between trial arms for non-

EMG derived follow-up measures, together with 95% confidence intervals to inform 

potential conclusions on clinical benefit.  It was planned that within-group analysis 

be assessed using paired t-tests.  A resultant non-normal distribution would indicate 

the use of analogous non-parametric methods. 
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It was planned that associations between potential prognostic indicators and the 

ability to pedal be tested using Fishers Exact test.    

Analysis of the EMG signal is described in depth in Chapter 4.0 

 

5.10 Adverse Reactions 

 

There was a small risk that for some people, UP might lead to an “overuse” 

syndrome, as expressed through an increase in pain or fatigue.   Participant reports 

of lower limb pain, either verbal or behavioural, were monitored during pedalling.  

Before the trial began, criteria for cessation of the intervention due to an adverse 

event were set as: intervention would cease and an adverse event recorded if a 

participant demonstrated a decrease of 2 or more minutes’ ability to pedal on 2 

consecutive treatment days, or a 25% reduction in mean rpm on 2 consecutive 

treatment days. 

 

5.11 Results 

 

The purpose of this section is to present exactly what data were collected; to what 

extent analysis of those data enabled the aims of the study to be met; and the 

findings relevant to the study aims.  

5.11.1 Screening, recruitment and attrition (aim 3a) 

5.11.1i Screening and recruitment 

Figure 12 describes screening and recruitment to, and participation in, the study, 

according to CONSORT guidelines (Boutron et al. 2008). 

Liaison with the stroke unit’s inter-disciplinary team enabled screening of 411 

potential participants during a twelve month period (Figure 12), of whom392 did 

not meet study criteria.   142 (34.5%) were too unwell to participate and, in contrast, 
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111 (27.0%) were independently mobile. Other reasons are cited in figure 1 and 

included previous immobility, no unilateral weakness and other lower limb 

pathology. Hence, 4.6% of those initially screened were eligible. 

Of the eligible participants given information about the study, 16 (84.2%) provided 

informed consent, with only 3 (15.8%) of those approached by the researcher 

declining consent.  

Of the 16 participants recruited, one did not meet study criteria for blood pressure 

and/or heart rate following provision of informed consent; and one declined the 

pedalling attempt following the provision of informed consent due to feeling 

fatigued.  One became unwell on the day of intended baseline measures and did 

not recover sufficiently to be included any further; hence 13 progressed to baseline 

measurement set one and the trial of UP. 

5.11.1ii Attrition pre-randomisation 

Immediately following a successful pedalling attempt, one participant was 

withdrawn due to technical reasons with the research space on the stroke unit and 

was transferred to an off-site rehabilitation unit before the research space issues 

were resolved. 

Two (15.4%) participants were unable to complete the initial one-minute pedalling 

trial, with eleven (84.6%) successfully completing the task. According to the study 

protocol, those unable to pedal were to be approached at two to three day intervals 

to have a further attempt. Both participants concerned agreed to a further trial. 

However, both were transferred from the acute stroke unit before a second 

attempt at pedalling could be made.  

Ten participants therefore reached baseline measures set two, with one transferred 

to another unit immediately following measures and prior to randomisation.  

Hence, nine were randomised, five to the intervention group and four to the control 

group. 
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Screened n=411 

Outcome data: clinical 

measures only n=2;   Clinical & 

EMG derived measures n=2; 

no outcome data n=0 

Randomised to 

intervention group; 

UP + CPT 

n=5 

Transferred elsewhere 

prior to randomisation 

n=1 

Randomised to control 

group;      

CPT only 

n=4 

Baseline measures one: 

TCT, MI, FAC 

n=13 

Withdrew, technical reasons with 

research space on stroke unit then 

participant transferred off ward n=1 

Unable to pedal n=2 

Did not meet criteria for BP on 

measurement days, n=1; declined due 

to fatigue n=1; unwell & unable to 

participate after provision of consent 

n=1 

Ineligible n=392      

Not medically fit n=142; 

Independently mobile n=111; 

Previous immobility n=44;      

No unilateral weakness n=34;   

Severe cognition or communication 

deficit n=25;      

Other lower limb pathology n=15; 

More than 30 days since onset n=14; 

Other n=7 

Baseline measures two: 

Reciprocity of muscle activity, 

muscle activation timing, 

smoothness of movement; n=10 

Declined 

consent n=3 

Consented n=16 

Randomised n=9 

Eligible n=19 

Trial of UP n=13 

Outcome data: clinical 

measures only n=0; Clinical 

& EMG derived measures 

n=2; no outcome data n=3 

Figure 12: CONSORT diagram depicting screening, recruitment and attrition
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5.11.1iii Attrition post-randomisation 

Table 11 summarises the nature of the data collected during the trial.  

No participants in the intervention arm of the trial underwent intervention on the 

maximum ten consecutive days proposed in the protocol. Two participants were 

moved from the acute unit after baseline measures two and randomisation, but 

before intervention began. Two participants had two days of intervention before 

transferring from the acute unit. One participant had four days of intervention but 

then became unwell with a serious unrelated event. 

Clinical outcome measures (FAC, MI) were obtained for two participants in the 

intervention group and four in the control group. EMG data at outcome were 

recorded for only four participants, two in the intervention group and two in the 

control group. Two sets of these data were available for processing and analysis due 

to overwhelming electrical noise affecting two participants’ data early in the study.  

The research was carried out during a period of reorganisation of stroke services in 

Norfolk to ensure faster admission to, and transfer from, the stroke unit. The 

rehabilitation unit to which many patients were transferred was at another site 

across the city and was part of another NHS Trust. With only one prototype static 

upright bike, movement of equipment to and from the alternative site proved 

impossible. Movement of participants between units for intervention and outcomes 

was not considered appropriate in this early stage after stroke and, furthermore, 

funds were not available for transport. Intervention and collection of EMG outcome 

data according to the intention-to-treat principle was therefore impossible for 

participants who were moved off site. 

Where possible, the blinded assessor undertook scoring of the FAC and MI lower 

limb for those participants transferred to the off-site rehabilitation unit, as she was 

part of a therapy research trial being undertaken on the unit.  

Despite the challenges faced in relation to attrition during this clinical research, 

sufficient data were collected during the study to address aims2a.,3a., 3b., and 3d; 

insufficient data were available to address aims 3c.and3e. 
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5.11.2 Participant characteristics at baseline 

Table 12 presents the baseline characteristics of all participants who reached 

baseline measures set one and the trial of UP. 

Nine participants undergoing the trial of UP were male (69%). Mean age of 

participants was 70.8 years (range 48 to 87 years), with a mean number of days 

since stroke onset of 12.5 (range 4 to 26 days). Seven participants (54%) had right 

sided weakness. All had a Functional Ambulatory Category (FAC) score of zero. 

Mean Motricity Index (MI) score was 43.6 (range 10 to 78) and mean Trunk Control 

Test (TCT) score was 42.6 (12 to 100)   

Table 13 separately presents the baseline characteristics for the two participants 

unable to pedal. Both participants were greater than two weeks from stroke onset 

(18 and 24 days), being too unwell to participate up to this point. Both had low 

scores on both the MI and TCT (Ped 10, MI 38 and TCT 24; Ped 11, MI 10 and TCT 

12).  

5.11.3 Establishing whether early stroke survivors are able to take part in 

Upright Pedalling in an acute hospital setting (aim 3b.) 

Eleven (84.6%) participants successfully completed the initial one-minute pedalling 

trial; two (15.4%) participants were unable to do so.  

Whilst the protocol planned for those unable to pedal to be approached at two to 

three day intervals to have a further attempt, both participants were transferred 

from the acute stroke unit before a second attempt at pedalling could be made. 

Both participants had expressed a wish to try again after the initial attempt.  
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Table 11: Data Collected 

Participant Able to 

complete initial 

pedalling trial 

(Yes/No) 

Data collected Notes 

  Motricity Index Functional Ambulatory 

Categories 

EMG data Sensor data  

  Baseline Outcome Baseline Outcome Baseline Intervention days Outcome Baseline Intervention 

days 

Outcome  

PED 01 Yes √ X √ X x  n/a: not 

randomised 

X X n/a: not 

randomised 

x Withdrew after 

trial pedal 

PED 02 Yes √ X √ X X n/a: not 

randomised 

X X n/a: not 

randomised 

X Transferred 

after trial pedal 

PED 03 Yes √ √ √ √ √ n/a: control √ √ n/a: control √ Electrical noise 

EMG 

PED 04 

 

Yes √ √ √ √ √ √ √ √ Baseline & day 2 

only 

√ Electrical noise 

EMG 

PED 05 Yes √ √ √ √ √ n/a: control X √ n/a: control x Transferred 

PED 06 Yes √ X √ X √ √ days 1,2,3,4 X √ √ days 1,2,3,4 x Withdrew 

unrelated event 

PED 07 Yes √ X √ X √ X  X √ X x Randomised to 

intervention 

then transferred  

PED 08 Yes √ √ √ √ X n/a control √ √ n/a control √ EMG tech fault 

at baseline 

PED 09 Yes √ √ √ √ √ √ days 1,2 √ √ √ days 1,2 √  

PED 10 No X X X X X X X X X       x One attempt 

then transferred 

PED 11 No X X X X X X X X X x One attempt 

then transferred 

PED 12 No attempt           Unwell after 

consenting 

PED 13 Yes √ √ √ √ √ n/a control X √ n/a control x Transferred 

PED 14 Yes √ X √ X √ x  X √ X X Randomised to 

intervention. BP 

raised, then 

transferred 



   

126 

 

Table 12: Baseline Characteristics, all participants undergoing the trial of UP 

Participant Gender Age  

(years) 

Days since stroke  Side of 

weakness 

 Description Stroke lesion 

From scan/liaison with 

medical team 

FAC  

(0-5) 

MI lower limb  

(/100) 

TCT  

(/100) 

PED 01 

 

F 87 23 R Left infarct; no further detail 

available 

0 33 24 

PED 02 M 66 26 L Left pons infarct, right 

ischaemia anterior horn right 

lateral ventricle 

0 48 24 

PED 03 

 

M 45 7 R Left internal capsule infarct 0 29 74 

PED 04 

 

M 80 8 L Right posterior lentiform 

infarct 

0 59 37 

PED 05 

 

F 74 9 L Right Posterior cerebral 

artery infarct 

0 38 24 

PED 06 

 

M 81 6 R Bilateral periventricular and 

pons ischaemia 

0 78 50 

PED 07 

 

M 48 9 R Ischaemia lentiform nucleus 

& internal capsule 

0 33 74 

PED 08 

 

M 60 9 R Left middle cerebral artery 

infarct 

0 38 37 

PED 09 

 

M 67 4 L Right frontal ischaemia 0 70 100 

PED 10 

 

M 62 24 L Right middle cerebral artery 

infarct 

0 38 24 

PED 11 

 

F 85 18 R White matter ischameia, 

clinically left PACS 

0 10 12 

PED 13 

 

F 79 11 L Old Right lacunar infarct, 

clinically right PACS 

0 29 37 

PED 14 M 86 8 R Small left corona radiata 

haemorrhage 

0 64 37 

 

Summary 

69% male Mean (range)  

70.8 (48 to 87) 

Mean (range)  

12.5 (4 to 26) 

54% right  Mean (range)  

0 (0 to 0) 

Mean (range) 

43.6 (10 to 78) 

Mean (range) 

42.6 (12to100) 

Note: Ped 12 and Ped 15 did not reach baseline, Ped 12 became unwell, Ped 15 declined due to fatigue.  One further recruited not allocated study number as did not ever meet criteria for blood pressure before 

transfer from the acute unit 

Abbreviations: M=male, F=female, R=right, L=left, FAC=Functional Ambulatory Categories, MI=Motricity Index, TCT= Trunk Control Test 
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Table 13: Baseline Characteristics, participants unable to pedal 

Participant Gender Age  

(years) 

Days since stroke 

onset  

Side of weakness Description 

stroke lesion 

FAC  

(0-5) 

MI lower limb 

(/100) 

TCT  

(/100) 

PED 10 M 62 24 L Right MCA infarct 0 38 24 

PED 11 F 85 18 R White matter 

ischaemia, clinically 

left PACS 

0 10 12 

 

Abbreviations: M=male, F=female, R=right, L=left, FAC=Functional Ambulatory Categories, MI=Motricity Index, TCT= Trunk Control Test
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All participants who were able to perform UP for the one minute trial were able to 

do so despite severe mobility limitations (FAC 0) and were, on average, within only 

11 days of stroke onset (mean 10.9; range 4 days to 26 days).  Most had substantial 

weakness of the lower limb (Mean MI 47/100; range 29/100 to 78/100).  

Two participants were unable to pedal; one male and one female. Both were longer 

after stroke onset than the mean (24 days and 18 days respectively). Neither had 

been well enough to participate earlier after stroke.  

5.11.4 Establishing whether it is possible to provide UP daily, on 10 

consecutive days in an acute stroke unit setting (aim 3b.) 

No participants in this trial took part in UP on ten consecutive days in the acute 

stroke unit setting. 

Of the five participants randomised to receive daily UP in addition to conventional 

physiotherapy, one participant was transferred from the unit before intervention 

could begin, two had the intervention for two consecutive days and one had four 

days of intervention. 

Both participants who pedalled for two consecutive days were then transferred to 

home or another rehabilitation unit and therefore unable to continue. 

The participant having four days of intervention had a serious unrelated event 

hence it was impossible to proceed with the intervention. 

Hence, outcome data that included both clinical and EMG derived measures were 

only available for two intervention group participants (section 5.11.1iii). 

Of the four participants randomised to the control group, one remained in the study 

for seven days, two for six days and one for three days. Outcome data that included 

both clinical and EMG derived measures were only available for two control group 

participants (section 5.11.1iii). 

As a consequence of these results, the collection of information via the 

standardised conventional physiotherapy (CPT) schedules was limited.  Table 14 

presents the amount of CPT for each of the randomised participants. 
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Table 14: Number of days in study with minutes of conventional physiotherapy recorded 

Participant Randomised Days in studyinc 

baseline 

Sessions/minutes of CPT 

recorded 

PED 03 

 

Control 7 1 session/15 minutes;& 

1 session/20 minutes 

PED 04 

 

Intervention 4 None 

PED 05 

 

Control 6 1 session/40 minutes 

PED 06 

 

Intervention 5 1 session/20 minutes 

PED 07 

 

Intervention 1 None 

PED 08 

 

Control 6 1 session/45 minutes 

PED 09 

 

Intervention 5 1 session/25 minutes 

PED 13 

 

Control 3 None 

PED 14 Intervention 1 None 

 

 

Only one participant had more than one session of CPT and the maximum length of 

conventional therapeutic intervention in any session was 45 minutes. 

5.11.5 Instrumentation of the U-PeD equipment and deriving possible 

measures for use in subsequent research (aim 2a.) 

This aim investigated the possibilities of the instrumentation of U-PeD using EMG 

recording of major muscle groups alongside measurement of wheel crank angle to 

derive measures of lower limb impairment in early stroke survivors taking part in UP.  

This data might then inform choice of measures for subsequent research. Measures 

were derived by quantifying muscle activity in each of eight wheel bins, determining 

reciprocity of activity between antagonistic muscle groups and determining 

smoothness of pedalling.  

Though some challenges were met both in terms of quality of EMG data collected at 

the site and study attrition detailed, it was possible to instrument the device and 

hence derive and record measures of lower limb motor impairment during UP.  

All available results of the measures are presented in tables 15& 16 and described 

in section 5.11.7, examining the potential evidence for UP to inform future trials. 
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Additionally, the measures were used to provide detailed characterisation of 

movement during UP (section 5.11.6) 

5.11.6 Using measures identified to characterising lower limb muscle 

activity in early stroke survivors (aim3d.) 

EMG data was processed and analysed according to section 6.4.3. Additional filters 

were applied to four data sets and the resting threshold was raised for two data 

sets; as per the algorithms presented in 4.4.3i & 4.4.3iii. 

Using these methods, and where these data were available, it was possible to depict 

the muscle activation timing during the pedalling cycle and hence characterise the 

activity for individual participants. 

A variety of patterns of muscle activity during pedalling were observed. Three 

illustrative cases of phase diagrams characterising muscle activity in the affected 

and unaffected legs are given in figures 13 to 15. These are followed by composite 

graphs of the activity in both quadriceps and hamstrings at baseline, across the 8 

wheel bins for all participants for which this data was available (figures 16 & 17). 

Original data for figures 13 to 17 can be found in Appendix III. 

Figures 13a and 13b depict movement patterns from a participant with an MI score 

of 64 and a FAC score of 0. Despite impaired lower limb control and an inability to 

walk, it can be seen that during UP, phasic activity is being generated in quadriceps 

and hamstrings in the affected limb.  

In the affected limb, quadriceps activity is generated towards the top of the wheel 

and hamstrings activity is generated later in the cycle in a moderately reciprocal 

pattern (J=0.053). In the unaffected limb, however, hamstrings are active 

throughout the cycle, with quadriceps here contributing to the upstroke and the 

reciprocity of the unaffected limb is compromised as it assists pedalling                      

(J=0.245). Whilst reasonable reciprocity was achieved in the affected limb, pedalling 

was only moderately smooth (S-Ped=0.065). 
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Figure 13a: Phase diagram:  PED14, baseline affected leg (right), demonstrating onset/offset of quadriceps 

and hamstrings muscle activity according to angle. Participant scores: Days=8, FAC=0/5, MI=64/100,                 

S-Ped=0.065, J (aff leg)=0.053, J (unaff leg)=0.245 

 

 

Figure 13b: Phase diagram; PED14, baseline unaffected leg (left), demonstrating onset/offset of quadriceps 

and hamstrings muscle activity according to angle. 

Key: Outer circle= hamstrings, Inner circle= Quadriceps; Dark= Muscle “on”, Pale= Muscle “off”, Mixed shade= partially on/off 

graded shading; TDC= top dead centre, BDC= bottom dead centre. Abbreviations: Days=days since stroke onset, 

FAC=Functional Ambulatory Categories MI=Motricity Index lower limb, S-Ped=smoothness J aff=reciprocity affected leg, J 

unaff=reciprocity unaffected leg 
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Figure 14a:  Phase diagram; PED07, baseline affected leg (right), demonstrating no activity in quadriceps or 

hamstrings above resting baseline. 

Participant scores: Days=9, FAC=0/5, MI=33/100, S-Ped=0.012, J (aff leg)=no activity above baseline, J (unaff 

leg)=0.038 

 

Figure 14b: Phase diagram; PED07, baseline unaffected leg (left), demonstrating onset/offset of quadriceps 

and hamstrings muscle activity according to angle. 

Key: Outer circle= hamstrings, Inner circle= Quadriceps; Dark= Muscle on, Pale= Muscle off, Mixed shade= partially on/off 

graded shading; TDC= top dead centre, BDC= bottom dead centre. Abbreviations: Days=days since stroke onset, 

FAC=Functional Ambulatory Categories MI=Motricity Index lower limb, S-Ped=smoothness J aff=reciprocity affected leg, J 

unaff=reciprocity unaffected leg 
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Figures 14a and 14b depict very different movement strategies that led to very 

smooth pedalling. A high level of smoothness was achieved (S-Ped=0.012) but with 

no activity above baseline in either muscle group for the affected limb. However, 

quadriceps and hamstrings in the unaffected limb worked reciprocally throughout 

the pedalling cycle to achieve the movement (J=0.038). Due to the coupled crank, 

the affected leg was being moved cyclically and smoothly but without measurable 

muscle activity. 

Figures 15a and 15b provide clear depiction of less smooth pedalling (S-Ped=0.068), 

but where muscles were active in both the unaffected and affected limbs. Here, a 

degree of co-contraction is evident throughout the pedalling cycle in both limbs. 

Figures 16 and 17 are scatter plots of the activity for each wheel position bin for 

those participants where baseline data were available (n=6). Heterogeneity of 

activity patterns is demonstrated in quadriceps, there is no clearly defined phase in 

which the muscle is either fully active or off for all participants (figure 16).  

In hamstrings (figure 17), whilst the data are largely scattered, some patterning is 

evident contrary to that which might be expected during pedalling- higher activity 

levels are demonstrated in the earlier i.e. extensor phases of the wheel, with less 

activity in the later phases. 
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Figure 15a: Phase diagram; PED09, baseline affected leg (left), demonstrating onset/offset of quadriceps and 

hamstrings muscle activity according to angle. 

Participant scores: Days=4, FAC=0/5, MI=70/100, S-Ped=0.068, J (aff leg)=0.288, J (unaff leg)=0.531 

 

 

Figure 15b: Phase diagram; PED09, baseline unaffected leg (right), demonstrating onset/offset of quadriceps 

and hamstrings muscle activity according to angle. 

Key: Outer circle= hamstrings, Inner circle= Quadriceps; Dark= Muscle on, Pale= Muscle off, Mixed shade= partially on/off 

graded shading; TDC= top dead centre, BDC= bottom dead centre. Abbreviations: Days=days since stroke onset, 

FAC=Functional Ambulatory Categories MI=Motricity Index lower limb, S-Ped=smoothness J aff=reciprocity affected leg, J 

unaff=reciprocity unaffected leg 
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Figure 16: Scatter plot (n=6 participants) demonstrating percentage activity at baseline for affected limb 

quadriceps muscles according to wheel position bin 

 

 

Figure 17: Scatter plot (n=6 participants) demonstrating percentage activity at baseline for affected limb 

hamstring muscles according to wheel position bin 
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5.11.7 Determining whether there is sufficient evidence for UP to justify 

proceeding to a larger clinical trial; including investigation of potential 

clinical efficacy, potential prognostic indicators and adverse events for 

early stroke survivors using UP (aims 3c, 3e, 3f.) 

In this feasibility study, 4.6 % (n=19) of those early stroke survivors screened were 

eligible to participate. Only 2.2 % (n=9) were randomised with no participants taking 

part in UP on ten consecutive days in the acute stroke unit setting. No adverse 

events were recorded in the group of early stroke survivors participating in this 

study. 

There was, therefore, insufficient data available from the study to address aims 3c 

and 3e, either to examine potential prognostic indicators or potential efficacy. 

Clinical measures scores and measures of muscle onset/offset, reciprocity of muscle 

activity and smoothness were available for a small number of participants in both 

control and intervention groups at a variety of time points (tables 15a and 15b, 16a 

and 16b, 17a and 17b)  

For smoothness of pedalling (S-Ped), baseline and outcome data were available for 

only one intervention group participant (PED 09: baseline S-Ped=0.068, outcome S-

Ped=0.052) and one control participant (PED 03: baseline S-Ped=0.016, outcome S-

Ped=0.018) (table 15b).  

Some patterns do emerge from the data in tables 15a and 15b. For example, 

smoothness scores were higher at higher pedalling cadences. For sessions where 

cadences were above 40rpm, mean smoothness scores were higher (n=8 pedalling 

sessions; S-Ped= 0.028), than sessions where cadences were below 40rpm (n=10 

pedalling sessions; S-Ped=0.058). The lowest smoothness score was achieved at the 

lowest cadence (PED13; S-Ped 0.164, rpm=18.0). 

For reciprocity of muscle activity, quantified using Jaccard’s correlation, these data 

were available at baseline and outcome for only one participant (PED 09: baseline J 

affected leg=0.288, J unaffected leg =0.531; outcome J affected leg=0, J unaffected 

leg=0.074) (table 16b). The affected leg demonstrated an improvement following 

the intervention. At both measurement points here the unaffected leg 
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demonstrated less reciprocal activity than the affected leg. Indeed, for the only 

three baseline data sets for which J was calculable, this was the case (PED 09: J 

unaffected leg=0.531, J affected leg=0.288; PED 13: J unaffected leg=0.608, J 

affected leg=0.468; PED 14: J unaffected leg=0.245, J affected leg=0.053) (tables 16a 

and 16b) 

Clinical measures were recorded at outcome for four control and two intervention 

participants (tables 17a and 17b). This amount of data is insufficient to contribute 

to evaluations of potential efficacy. 

5.11.8 Summary 

In summary of this section of the research, despite the challenges faced in relation 

to attrition during this clinical research, sufficient data were collected during the 

study to address aims 2a, 3a, 3b and 3d and hence to establish that:  

• 4.6% (n=19) of those early stroke survivors screened were eligible to 

participate in the study.  

• 84.6% (n=11) of early stroke survivors that made an initial attempt (n=13) 

could take part in Upright Pedalling (aims 3a and 3b)  

• 2.2 % (n=9) of those early stroke survivors screened were randomised, with 

no participants taking part in UP on ten consecutive days in the acute stroke 

unit setting. 

• U-PeD could be instrumented to enable derivation of measures during 

reciprocal pedalling early after stroke (aim 2a) 

• lower limb movement could be characterised during UP and provide 

physiological insights into the movement strategies adopted by early stroke 

survivors during pedalling (aim 3d) 

• it was not possible to provide the intervention for ten days on the acute unit 

where this research was sited (aim 3b) 

• It was not possible to establish whether there were any clinical 

characteristics that indicated which individuals were able to take part in UP 

nor whether there was sufficient evidence of efficacy to justify proceeding 

to subsequent trials at this stage (aims 3c and 3e). 



   

138 

 

• No adverse events were recorded in this group of early stroke survivors (aim 

3f) 

 

----------------------------------------------------------
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Table 15a: Baseline and Outcome smoothness scores and pedalling cadence, where available, for participants randomised to control group. 

Participant Randomised Baseline  Day 1  Day2  Day3  Day4  Outcome  

  Smoothness Rpm Smoothness Rpm Smoothness Rpm Smoothness Rpm Smoothness Rpm Smoothness Rpm 

Ped 03 

 

Control 0.016 41.5 n/a 

 

 

n/a n/a n/a n/a n/a n/a n/a 0.018 41.5 

Ped 05 

 

Control 0.136 20.0 n/a 

 

 

n/a n/a n/a n/a n/a n/a n/a Not 

available 

Not 

available 

Ped 08 Control Not  

available 

Not  

Available 

n/a 

 

 

n/a n/a n/a n/a n/a n/a n/a 0.007 66.0 

Ped 13 

 

Control 0.164 18.0 n/a 

 

 

n/a n/a n/a n/a n/a n/a n/a Not 

available 

Not 

available 

 

Table 15b: Baseline and Outcome smoothness scores and pedalling cadence, where available, for participants randomised to intervention group. 

Participant Randomised Baseline  Day 1  Day2  Day3  Day4  Outcome  

  Smoothness Rpm Smoothness Rpm Smoothness Rpm Smoothness Rpm Smoothness Rpm Smoothness Rpm 

Ped 04 Intervention 0.047 39.5 Not  

Available 

 

Not 

available 

0.014 38.04 2 days  

Only 

2 days 

only 

2 days only 2 days 

only 

Not 

available 

Not 

available 

Ped 06 

 

Intervention 0.012 53.2 0.028 

 

 

36.7 0.035 36.4 0.033 36.7 0.018 30.8 Not 

available 

Not 

available 

Ped 07 Intervention 0.012 43.1 No 

intervention 

 

No 

intervention 

      Not 

available 

Not 

available 

Ped 09 Intervention 0.068 37.5 0.051 

 

 

47.1 0.055 43.3 2 days 

Only 

2 days 

Only 

2 days 

 only 

2 days 

 only 

0.052 44.6 

Ped 14 Intervention 0.065 28.1 No 

intervention 

 

No 

intervention 

 

      Not 

available 

Not 

available 

Abbreviations: n/a: not appropriate as control group participant.   Not available: data not available, see table 11. Ped 10 and 11 unable to pedal; Ped 12 no attempt as unwell 
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Table 16a: Baseline and Outcome reciprocity scores, expressed as J- values, where available, for participants randomised to control group  

J value score 

 Baseline Day1 Day2 Day3 Day4 Outcome 

Participant 

 

Randomised Aff leg Unaff leg Aff leg Unaff leg Aff leg Unaff 

leg 

Aff leg Unaff leg Aff leg Unaff leg Aff leg Unaff leg 

Ped 05 

 

 

Control No qds 

activity  

0.005 n/a n/a n/a n/a n/a n/a n/a n/a Not 

available 

Not 

available 

Ped 08 Control Not 

available 

Not 

available 

n/a n/a n/a n/a n/a n/a n/a n/a No quads 

activity  

0.034 

Ped 13 

 

 

Control 0.468 0.608 n/a n/a n/a n/a n/a n/a n/a n/a Not 

available 

Not 

available 

 

Table 16b: Baseline and Outcome reciprocity scores, expressed as J- values, where available, for participants randomised to intervention.  

J value score 

 Baseline Day1 Day2 Day3 Day4 Outcome 

Participant 

 

Randomised Aff leg Unaff leg Aff leg Unaff leg Aff leg Unaff 

leg 

Aff leg Unaff leg Aff leg Unaff leg Aff leg Unaff leg 

Ped 04 

 

 

Intervention Not 

available 

Not 

available 

Not 

available 

Not 

available 

No qds 

activity  

0.039 2 days 

only 

2 days only 2 days 

only 

2 days only Not 

available 

Not 

available 

Ped 06 

 

 

Intervention No muscle 

activity  

No hams 

activity  

No quads 

activity  

No hams 

activity  

No quads 

activity  

0.0004 1.0 0.595 1.0 1.0 Not 

available 

Not 

available 

Ped 07 Intervention No muscle 

activity  

0.038 No 

intervent 

No 

intervent. 

No 

intervent 

No 

intervent

. 

No 

intervent. 

No  

intervent. 

No 

intervent. 

No  

intervent. 

Not 

available 

Not 

available 

Ped 09 

 

 

Intervention 0.288 0.531 0 0.118 No hams 

activity  

0.0008 2 days 

only 

2 days only 2 days 

only 

2 days only 0 0.074 

Ped 14 Intervention 0.053 0.245 No 

intervent. 

No 

intervent. 

No 

intervent 

No 

intervent

. 

No 

intervent. 

No  

intervent. 

No 

intervent. 

No  

intervent. 

Not 

available 

Not 

available 

Abbreviations: where table states no muscle activity, this is no recorded muscle activity above baseline; No intervent= no intervention, reasons as per table 11; n/a= not appropriate as control group participant 
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Table 17a: Baseline and Outcome Motricity Index and Functional Ambulatory Categories scores, where available, for participants able to pedal; control group 

Participant Randomised MI (/100) FAC (/5) 

Baseline 

 

Outcome Baseline Outcome 

Ped 03 

 

Control 29 39 0 1 

Ped 05 

 

Control 38 70 0 0 

Ped 08 

 

Control 38 48 0 0 

Ped 13 

 

Control 29 39 0 0 

 

 

Table 17b: Baseline and Outcome Motricity Index and Functional Ambulatory Categories scores, where available, for participants able to pedal; intervention group 

Participant Randomised MI (/100) FAC (/5) 

Baseline 

 

Outcome Baseline Outcome 

Ped 04 

 

Intervention 59 76 0 0 

Ped 06 

 

Intervention 78 Unwell 0 Unwell 

Ped 07 

 

Intervention 33 Transferred 0 Transferred 

Ped 09 

 

Intervention 70 76 0 2 

Ped 14 

 

Intervention 64 Transferred 0 Transferred 
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Chapter 6.0: Reliability, Validity and Discriminative Ability of 

Measures derived during Instrumented Upright Pedalling 
 

6.1 Introduction 

 

Results of the clinical pedalling study (Chapter 5.0) demonstrated that it was 

possible to derive measures of lower limb motor impairment during instrumented 

UP activity; and to use these measures to assess and characterise lower limb 

movement early after stroke. Therefore, the measures under investigation in this 

section of the thesis were those derived for, and first used in, the earlier feasibility 

study. Indeed, the development and testing of measures for subsequent trials 

evaluating complex interventions is one recognised objective of such feasibility 

work (Craig et al. 2008).  

The reliability, validity and discriminative ability of these measures between stroke 

survivors and older adults without brain lesions, have not been explored to date. 

The purpose of this chapter is, therefore, to investigate the test-retest repeatability, 

concurrent validity and discriminatory ability of the pedalling measures. This 

chapter presents the methods and results of the investigation of aims 2b, 2c, and 2d. 

 

6.2 Design and Setting 

 

This was a clinical observational measurement study in a university laboratory. It 

was not considered necessary to move the equipment to a clinical setting for this 

development stage of the potential measure; the feasibility of the use of this 

equipment for data collection in an acute clinical setting was explored in Chapter 

5.0. 
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6.3 Participant inclusion criteria 

 

6.3.1 Stroke survivor volunteers 

To be included in the study, all participants were required to: 

• be adults aged 18+ 

 

• have sustained a unilateral stroke resulting in a motor hemiplegia 

 

• have a resting heart rate of 90 beats per minute or less and systolic blood 

pressure of 100-160 mmHg.  This was set according to the safe limits decided 

upon for the previous clinical study in liaison with a stroke physician and the 

Principal Investigator 

 

• Score 1, 2, 3, 4 or 5 on the Functional Ambulation Categories (Holden et al. 

1984).  Clinically, this means participants might require firm continuous or 

intermittent support of one person assisting with weight and balance;  can 

ambulate on a level surface with standby assistance; can ambulate 

independently on a level surface but need assistance with non-level surfaces 

or can ambulate independently including on stairs and inclines. A wide range 

of ambulatory function was purposefully chosen in order that the reliability 

and validity of the measures be explored across as broad a range of stroke 

survivors as possible to enhance generalisability of findings 

 

• be able to sit unsupported for 30-seconds on the edge of a bed with feet on 

the floor. This enabled safe transfer on and off the bike 

 

• be able to follow a one-stage command i.e. sufficient communication, 

orientation and memory to participate in the measurement sessions. This 

ensured that participants had sufficient communication to participate in this 

cycling measures sessions without  excluding those with aphasia 
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Participants were excluded if: 

• their GP indicated that participation is not appropriate  

• they had co-existing pathology contributing to substantial impairment in the 

paretic lower limb e.g. osteoarthritis leading to deformity in the lower limb 

6.3.2 Healthy Volunteers  

To be included in the study, all participants were required to: 

• be adults 50 years of age or over 

The majority of strokes continue to occur in the older population (British 

Heart Foundation Coronary Heart Disease Statistics 2010), therefore this 

criterion optimised comparisons made with stroke survivors 

 

• be independent in community ambulation 

This ensured that those volunteering did not have any obvious mobility 

limitation that might influence data collected 

 

• have a resting heart rate of 90 beats per minute or less and systolic blood 

pressure of 100-160 mmHg 

 

• Have no underlying condition that might limit participation in the 

measurement session 

 

Participants were excluded if: 

• they had pathology contributing to substantial impairment in the paretic 

lower limb e.g. osteoarthritis leading to deformity in the lower limb 
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6.4 Recruitment process 

 

6.4.1 Recruitment process: stroke survivor volunteers  

To ensure that the potential new measure was relevant across the stroke 

population, it was important that reliability and validity of the proposed tool was 

explored in a group of stroke survivors who were clinically stable and with a broad 

range of clinical characteristics.  Stroke survivors were therefore recruited from 

across the local community.  

6.4.1i Strategy One 

A number of stroke survivor support groups exist in Norfolk. The Chief Investigator 

(the author of the thesis) contacted the administrators of the groups, and, with 

their consent, presented study information at their meetings.  Participant 

information sheets (Appendix II) were left with the administrator and those stroke 

survivors who expressed an interest after the presentation of information. 

Telephone contact was then made with them no less than seven days later.  If they 

were still interested in participating, either a) a home visit was arranged to discuss 

the study further and seek informed consent; or, b) the researcher returned to the 

next stroke group meeting to answer any questions and seek informed consent; 

according to the potential participant’s choice.  At this point, the screening 

characteristic of Functional Ambulation was also assessed to avoid an unnecessary 

visit to the laboratory.  However, it was anticipated that the majority of participants 

would meet this criterion as the category was purposefully broad (see inclusion 

criteria section 6.3.1).   

Immediately following provision of informed consent, an information letter and 

study summary (Appendix II) was sent to the participant’s GP.  Seven days were 

allowed for the GP to express any medical concerns about participation.  

Participants were then given an appointment to attend the laboratory. A wide range 

of measurement session days were available to ensure that participants could 

attend at their convenience as far as was possible. 
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6.4.1ii Strategy Two 

In addition to the above procedure, recruitment posters were designed in 

collaboration with the UEA Faculty of Medicine and Health Enterprise and 

Engagement team (Appendix II). These posters were placed in public areas of the 

local community including libraries and religious institutions, in order to broaden 

opportunities for participation. Potential participants were invited to contact a 

member of the research team to express interest in the study.  

6.4.1iii Strategy Three 

Approximately half way through the study period, it was recognised that most local 

stroke groups had been spoken to and posters were not yielding new participants.  

A minor amendment was submitted to Norfolk REC requesting permission to 

contact stroke survivors who had completed another rehabilitation trial being 

undertaken by the Restorative Neurology Group at UEA, the FesTivaLS trial 

(09/H0308/147). The amendment was approved and involved the research assistant 

on the FesTivaLS trial making initial contact with potential participants. Those 

expressing interest were then sent information sheets and telephone contact was 

made with them seven days afterwards by the Chief Investigator of the 

measurement study. Questions were answered and, if definite interest was 

expressed, consent forms were posted out to this set of participants. On receipt of 

the completed consent forms, contact was made with the participant’s GP and the 

process continued exactly as 6.4.1i 

6.4.2 Recruitment process: Healthy Volunteers 

Posters (Appendix II) were placed around the University of East Anglia (UEA) site, as 

well as the venues in 6.4.1ii, inviting expressions of interest in the study. Potential 

volunteers were then sent information sheets and the researcher contacted them 

one week later.  If they remained interested in participating, the researcher offered 

to visit them at a location on the UEA site convenient to them in order to seek 

informed consent.  Some volunteers expressed a wish to sign consent on their visit 

to the laboratory for the measurement session and this was accepted.  
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Again, a wide range of measurement session days were available to ensure that 

participants could attend at their convenience as far as is possible. 

 

6.5 Sample size 

 

Previous work on the reliability of pedalling derived measures, that might have 

informed a sample size estimate, is extremely limited. At the outset of the study 

design, only Dorel et al. (2008) and Laplaud et al. (2006) had explored repeatability 

of EMG pedalling measures; Dorel et al. (2008) recruited eleven tri-athletes and 

Laplaud et al. (2006) recruited eight young cyclists. Whilst these were clearly small 

observational measurement studies, neither study made any attempt to justify 

sample size or to use the data collected to suggest sample sizes for other studies.     

In determining sample size for this study, the pragmatics of time constraints were 

balanced with statistical requirements i.e. the need for a sufficient sample size to 

yield a precise estimate of the reliability coefficient, with sufficiently narrow 

confidence intervals, in a reasonably short data collection period. In consultation 

with a Professor of Medical Statistics, it was estimated that 30 participants would 

be the minimum number required to meet statistical requirements. This closely 

concurs with the view of Eilasziw et al. (1994) on appropriate methodology for 

assessing reliability of rehabilitation instruments. The sample size for the stroke 

survivors group was therefore set at 30 over a data collection period of three to six 

months. It was anticipated that the sample would be divided into three groups of 

ambulatory ability for data analysis- those with an FAC of 1 and 2, those with an FAC 

of 3 and 4 and the most mobile with an FAC of 5.  

Ten age-matched (>50 years) healthy volunteers were recruited for the comparison 

group.  
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6.6 Overview of Procedure 

 

6.6.1 Procedure for stroke survivors  

Common procedures for the measurement sessions were described in section 6.7. 

On arrival, participants were shown the research equipment and the procedure 

explained in full again.   

The researcher then measured the participant’s heart rate and blood pressure to 

ensure that they were within the safe limits set for the study on the measurement 

day. 

Participants were helped to position themselves comfortably on the bike and EMG 

electrodes attached. Following recording of resting data, they were asked to pedal 

for one minute to familiarise themselves with the equipment. They were then asked 

to pedal for a further minute whilst EMG data was recorded. 

It was anticipated that stroke survivors with a variety of clinical characteristics 

would demonstrate various comfortable pedalling speeds and therefore a fixed 

pedalling cadence was not set for this study with participants who were later after 

stroke.  However, participants were asked to replicate the comfortable speed 

achieved in the initial measurement session during the second measurement 

session as closely as possible. 

Following an initial minute of pedalling, and allowed to rest comfortably in the lab 

for 30 minutes to an hour. 

They were then helped back onto the bike and the measurement session above 

repeated exactly.  A single rater was responsible for placing the electrodes and 

recording both measurement sessions. 

6.6.2 Procedure for healthy volunteers  

On arrival, and following provision of informed consent, participants were shown 

the research equipment and the procedure explained in full.   
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The researcher then measured the participant’s heart rate and blood pressure to 

ensure that they were within the safe limits set for the study on the measurement 

day. 

Participants were positioned comfortably on the bike, electrodes placed and resting 

data collected.   

Participants were then asked to pedal at their comfortable speed, for one minute, 

to familiarise themselves with the equipment and testing procedure.  They were 

then asked to pedal for one minute at each of five different speeds from 10-50 rpm, 

with a short rest in between each minute.  EMG data was recorded for each 

pedalling speed.  

A range of different cadences was chosen for the healthy volunteer group in order 

that comparisons might be made with possible cadences used by stroke survivors. 

In the experimental study 2 presented in Chapter 7.0, participants were asked to 

pedal at up to 50rpm; at baseline, cadences were demonstrated from 18 to 54rpm 

and so a range of 10rpm to 50rpm was adopted for the current study. It was 

anticipated that a range of cadences in older healthy adults might better inform the 

interpretation of possible movement strategies adopted by stroke survivors during 

UP; and, a more accurate interpretation of discriminative ability could be made by 

assessing at different speeds. Furthermore, it is noteworthy that the only previous 

studies examining reliability of EMG measures during pedalling used young adults 

and tri-athletes at high cadences, challenging generalisability to an older participant 

group.  

Heart rate was monitored to ensure it did not exceed 85% age predicted maximum 

((220-age) x 0.85).   

Participants were then asked to rest for 30 minutes to an hour, and the pedalling 

session at the five speeds above repeated exactly. 
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6.7Measurement battery 

 

6.7.1 Stroke survivor participant characteristics 

• age,  

• gender, 

• time since stroke onset, 

• ambulatory ability, as measured by the FAC; degree of motor impairment of 

the hemiplegic lower limb, as measured by the Motricity Index.  

6.7.2 Healthy volunteer participant characteristics 

• age  

• gender 

6.7.3 Clinical measures:  

6.7.3i The Motricity Index was selected as the commonly used clinical measure 

for examination of concurrent validity. Evidence for it being a commonly adopted 

clinical measure has been published (Turner-Stokes and Turner-Stokes, 1997). 

6.7.3ii The Functional Ambulation Categories (Holden et al. 1984) were used 

to assess walking ability.  It is not currently known whether upright pedalling 

measures might reflect a stroke survivor’s current ambulatory status. 

Lower limb motor impairment during upright pedalling was characterised using 

surface EMG of quadriceps and hamstring muscles in the following manner: 

6.7.3iii Onset and offset of EMG activity of antagonistic muscle groups 

during pedalling: this measure, and the processing carried out to derive of the 

calculations of onset and offset of activity were as described in detail in sections 

6.4.3iii 6.5.1.  

6.7.3iv Reciprocal activation of antagonistic muscle groups during 

pedalling: this measure and the statistic used to quantify reciprocity were as 

described in detail in section 4.5.2. 
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6.7.3v Smoothness of pedalling (S-Ped): this measure and the processing 

carried out to quantify S-Ped were as described in detail in section 4.5.3 

Outcomes for this study were therefore: degree of discriminatory ability for UP 

measures between stroke survivors and healthy volunteers; test/retest repeatability 

of UP as a measure of motor impairment after stroke; degree of agreement 

between the Motricity Index and UP as a measurement of motor impairment after 

stroke (concurrent validity); degree of agreement between upright pedalling after 

stroke and current ambulatory status.  

 

6.8 Analysis 

 

Intra-class Correlation Coefficients plus 95% confidence intervals together with 

limits of agreement were used for end analysis of test-retest repeatability. This is an 

accepted method for evaluating measurement repeatability (Bland et al. 1990).  

Two-sample t-tests with 95% confidence intervals (or analogous non-parametric 

methods) were used for discriminating differences between stroke survivors and 

healthy volunteers, for the measures of reciprocity and smoothness; and for the 

measures of muscle activation according to wheel position bin, a repeated 

measures ANOVA was initially used, followed by a Principal Components Analysis 

(PCA). The use of the PCA is described more fully in the study results.   

Spearman’s rank correlation coefficient was used to quantify association between 

each UP measure and the Motricity Index and Functional Ambulatory Categories. 

 

6.9 R&D governance 

 

The research study received the approval of the Norfolk Research Ethics Committee, 

UK (11/EE/0002; Appendix II) 
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6.10 Financial Implications for participants 

 

Participants were reimbursed for travel costs to and from the laboratory.   

Taxis were booked and funded for those participants who are unable to travel by 

other means.  

Funding was available through a small amount of general research monies 

previously allocated to the Restorative Neurology Group at UEA. 

 

6.11 Adverse Reactions 

 

Adverse reactions were considered highly unlikely in this study, but there was the 

possibility that participants might experience an adverse reaction of 

aching/discomfort in the lower limb during pedalling- this was monitored for 

throughout each test session and it was planned that testing would cease 

immediately if the participant and/or researcher made such an observation and 

deemed it necessary to stop.  

 

6.12 Potential risks and benefits 

 

Potential risks for participants and researchers in this study were considered very 

small.  

All staff were trained in the appropriate manual handling procedures required for 

the study and a current risk assessment and appropriate insurances were in place 

for the use of the exercise bike in the measurement laboratory.  The bike had been 

used safely with early stroke survivors in two previous feasibility studies 

(unpublished, Wandsworth local REC, UK, 03.0102 and Essex 1 REC, UK, 

09/H0301/52; Hancock et al. 2011).  
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There were no specific benefits for participants excepting their inclusion in a novel 

research trial that might influence future stroke rehabilitation research and practice. 

 

6.13 Results 

 

The purpose of this section is to present the results of the experimental 

measurement study.  

The measurement of motor impairment by UP was expressed by reciprocal 

activation of antagonistic muscle pairs, muscle activation timing (onset and offset of 

activity) and smoothness of pedalling. The derivation of these measures from EMG 

data and kinematic data recorded during UP is described fully in Chapter 4.0. 

Where comparisons have been made between data sets for healthy volunteers and 

stroke survivors, data collected at 40rpm for the healthy volunteers was used as this 

most closely reflected the mean pedalling cadence of the stroke survivors (41.4 rpm) 

Data collected from the right leg of the healthy volunteers was used in the analysis 

except for one session in which external noise affected the right leg channels during 

data collection and hence the data from the participant’s left leg were used (HV08). 

Data collected from both the affected and unaffected legs was used for the stroke 

survivors. 

According to the algorithms presented in sections 4.4.3i & 4.4.3iii, for the stroke 

survivor group, one data set required additional filters to be applied and one data 

set required the resting threshold to be raised. For the healthy volunteer group, one 

data set required additional filtering and two required the resting threshold to be 

raised. 

Analyses were carried out in Statistical Analysis System (SAS) version 9.2. 
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6.13.1Participant Characteristics 

It was intended that 30 stroke survivors be recruited to the study; 26 were actually 

recruited during the study period. Ten healthy older adults were recruited as 

planned.  

Participant characteristics are as detailed in Tables 18 and 19. 

One stroke survivor participant did not attend their appointment as arranged; the 

final number attending was therefore 25.  

Following initial measurement of blood pressure and heart rate as per inclusion 

criteria, six (24%) were unable to take part due to blood pressure recorded as above 

study limits.  

One participant felt unwell at the beginning of a session and measures were not 

pursued. 

Ten male and eight female stroke survivors were measured in the study, with a 

mean age of 60.78 years (range 41.25 to 75.83) (table 18). The Motricity Index 

lower limb scores ranged from 38 up to 92 and Functional Ambulatory Categories 

ranged from 1 to 5.  

All eighteen participants who were eventually included successfully pedalled the 

upright bike for at least one minute during each of two measurement sessions. No 

adverse reactions were recorded. 

Six (60%) of the healthy volunteer group were male and the mean age of 

participants was 58 years (table 19). Data were successfully recorded for all ten 

participants. For one participant (HV03), data were re-recorded at a later date due 

to excessive external noise displayed on all channels of the EMG recording 

equipment during the first session. 
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Table 18: Baseline Characteristics Stroke survivors  Abbreviations: M= male, F=female,R=right, L=left, BP= blood pressure, ASL= above study limits 

Participant  Age (years) Time since 

stroke onset 

(years) 

Gender  Weaker side MI Score (lower 

limb  /100) 

FAC Score(/5) Measurements completed (Y or N; 

if N reason stated) 

RePed, STK 01 58 1.5 M Right 92 5 Y 

RePed, STK 02 70 3.0 F Left 84 4 Y 

RePed, STK 03 58 4.3 M Right 48 1 Y 

RePed, STK04 63 - F - - - N: BP ASL 

RePed, STK 05 70 1.2 M Left 84 4 Y 

RePed, STK 06 71 12.7 F Left 78 4 Y 

RePed, STK 07 66 22.6 F - - - N: Felt unwell  

RePed, STK 08 66 17.6 M - - - N: BP ASL 

RePed, STK 09 41 19.8 F Left 65 4 Y 

RePed, STK 10 57 5.8 M Right 49 2 Y 

RePed, STK 11 75 10 M Right 38 1 Y 

RePed, STK 12 69 3.5 M Right 53 5 Y 

RePed, STK 13 58 5.8 M Right 43 2 Y 

RePed, STK 14 47 9.3 F Right 65 4 Y 

RePed, STK 15 51 10.7 F Left 76 4 Y 

RePed, STK 16 53 6.0 F Right 51 1 Y 

RePed, STK 17 79 14.3 M - - - N: BP ASL 

RePed, STK 18 82 2.1 F -  - - N: BP ASL 

RePed, STK 19 62 4.6 M Right 92 3 Y 

RePed, STK 20 - - - - - - N: Did not attend  appointment 

RePed, STK 21 85 2.1 M - - - N: BP ASL 

RePed, STK 22 51 1.7 M Right 60 2 Y 

RePed, STK 23 71 5.2 M Left 65 4 Y 

RePed, STK 24 47 2.8 F Right 73 5 Y 

RePed, STK 25 75 6.1 F Left 76 2 Y 

RePed, STK26 62 1.8 M - - - N: BP ASL 

Mean (range) 61 (41 to 75) 6.3 (1.2 to 19.8) 10/18 M 11/18 R 66.2 (38 to 92) 3 (1 to 5) 18 completed session 
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Table 19: Baseline Characteristics, Healthy volunteers 

 

 

 

 

 

 

 

 

 

 

 

*During first attempted measurement session date, excessive external noise on the EMG signal was detected across all 

channels; hence the participant re-attended at a later date to repeat the measures, successfully 

 

6.13.2 Discriminative ability between stroke survivors and healthy 

volunteers (aim 2c.) 

Table 20 presents the results of the test for discriminatory ability of the measures of 

reciprocity and smoothness of pedalling, between healthy volunteers and stroke 

survivors. Where data was normally distributed, a two-sample t-test was used, 

otherwise a two-sample Wilcoxon test was used. 

Whilst 18 data sets were recorded from the stroke survivors, for the reciprocity 

measure, 15 sets were available after processing for the affected limb and 17 for 

the unaffected limb. This was due to marked external noise during one 

measurement session, and in two cases for the affected limb, there was no muscle 

activity above baseline from which to calculate the J-value. 

 

 

 

Participant Age (years) Gender  

(M=male, 

F=female) 

Measurements 

completed (Y or N; if N 

reason stated) 

RePed, HV01 56 M Y 

RePed, HV02 52 F Y 

RePed, HV03 54 M Y* 

RePed, HV04 59 F Y 

RePed, HV05 62 F Y 

RePed, HV06 56 M Y 

RePed, HV07 53 M Y 

RePed, HV08 64 M Y 

RePed, HV09 68 F Y 

RePed, HV10  51 M Y 

Summary Mean 58 

(range 51 to 68) 

4/10 F 10 completed 
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Table 20: Results of analysis of discriminatory ability between stroke survivors and healthy volunteers for the 

measurement of lower limb motor impairment by UP: reciprocity and smoothness 

Measurement 

expressed by: 

 Healthy Volunteers Stroke survivors Difference  

(95%C.I)  

p-value 

Reciprocity 

(affected limb) 

 

 

N 

Mean 

StdDev 

10 

0.248 

0.081 

15 

0.500 

0.305 

-0.249 

(-0.491 to -0.010) 

P=0.044¹ 

Reciprocity 

(unaffected limb) 

 

 

N 

Mean 

StdDev 

10 

0.248 

0.081 

17 

0.393 

0.298 

-0.146 

(-0.379 to 0.087) 

P=0.208¹ 

Smoothness 

 

 

 

N 

Median 

Semi IQR 

10 

0.014 

0.0015 

18 

0.017 

0.0050 

-0.003 

P=0.367² 

1: two-sample t-test 2: two-sample Wilcoxon test 

The only measure that was significantly different between the healthy volunteers 

and the stroke survivors was reciprocity of movement in the affected limb of the 

stroke survivors (p=0.044). Muscle activity in the affected limb of the stroke 

survivors was significantly less reciprocal than in the measured limb of the healthy 

volunteers. 

There were no significant differences between reciprocal activity in the unaffected 

limb of the stroke survivors and the measured limb of the healthy volunteers 

(p=0.208).  

There were no significant differences between stroke survivors and healthy older 

adults in terms of smoothness of activity (p=0.367); in fact, mean smoothness 

values in each group were very similar, though standard deviations around the 

mean in the stroke survivors were wider. 

Table 21 presents the results of the test for discriminatory ability for the measure of 

muscle activation timing.  

From analysis with repeated measures ANOVA, using mean percentage of activity 

across wheel bins for both healthy volunteers and stroke survivors, no difference 

was demonstrated  for either quadriceps (p= 0.111) or hamstrings  (p= 0.347). 
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Table 21: Results of analysis of discriminatory ability between stroke survivors and healthy volunteers for the 

measurement of lower limb motor impairment by UP: muscle activation timing 

Muscle Wheel Bins Percentage activity on p-value
1
 

Healthy volunteers 

N=10 

 

Stroke Patients 

N=17 

Quadriceps  1 

 

84.3 71.7  

 

 

 

Group: p = 0.111 

Bins: p = 0.034 

Bin*Group:  p = 0.084 

 2 

 

74.7 68.3 

 3 

 

58.8 69.4 

 4 

 

27.7 76.4 

 5 

 

37.2 77.7 

 6 

 

62.2 82.2 

 7 

 

89.4 83.0 

 8 

 

98.5 79.6 

Hamstrings 1 

 

32.3 56.8  

 

 

 

Group: p = 0.347 

Bins: p = 0.202 

Bin*Group:  p = 0.240 

 2 

 

36.8 60.8 

 3 

 

47.9 68.3 

 4 

 

58.5 70.3 

 5 

 

63.6 68.9 

 6 

 

44.0 68.5 

 7 

 

35.5 51.4 

 8 

 

34.0 50.9 

1
 Based on Wilk’s Lambda from a Multivariate Analysis of Variance; Group=between-groups comparison of 

mean activity across each turn, Bins=difference between percentage activity ‘on’ between bins. i.e. comparison 

of activity in each position bin; Bin*Group=significance of pattern of activity, between groups. 

 

However, for differences expressed over the eight different wheel bins across the 

two groups, a significant difference was found for quadriceps muscle (p= 0.034). 

This demonstrates that the percentage of muscle activity ‘on’ was dependent on 

the wheel position bin. Hence, across the two groups of participants, there was 

heterogeneity when examining quadriceps activity per wheel bin. 

Analysing the interaction between wheel bin and group i.e. the pattern of activity 

over specific wheel bins between groups, a non-significant, though borderline, 

difference was found between the pattern of quadriceps activity for stroke 

survivors and healthy volunteers (p=0.084). 
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Due to this suggestion of discriminatory ability according to the ANOVA, an 

additional analysis was carried out using Principal Components Analysis (PCA) to 

further explore these data. PCA seeks patterns in correlated data sets using 

orthogonal transformations. It attempts to reduce the data to a smaller number of 

variables accounting for as much of the variation as possible. These results are 

presented in table22. 

For both quadriceps and hamstrings, 81.4% of the variance in the data was 

accounted for in principal components one and two (table 22). Adding a third 

component accounted for only another 10.8% of the variance (92.2% total). 

Interpretation of component one of the analysis, which represents the general level 

of activity during pedalling, demonstrates that there was no significant between 

groups difference, suggesting similarity of activity level between the groups for both 

quadriceps (p=0.493) and hamstrings (p=0.178).  

Interpretation of principal component two for quadriceps muscle demonstrates a 

contrast between bins. There are definite positive and negative loadings for the 

healthy volunteers, suggested by the positive mean component score when this 

component is applied across all healthy volunteers (mean component score 1.112). 

There is a pattern of positive loading, muscle activity, in bins 1, 2, 7 and 8 and 

negative loading, or little activity in bins 3, 4, 5, and 6. This pattern is illustrated in 

figure 18, demonstrating a pattern of activity across the wheel bins for quadriceps 

indicating increased activity at the end of the flexor phase of the movement and 

into the early extensor phase. 

For the stroke survivors’ data in this component, the mean component score is 

negative (-0.654), suggesting that the level of activity for bins 1,2,7 and 8 are 

relatively higher than for bins 3,4,5, and 6 in stroke survivors compared to healthy 

volunteers. This difference is highly significant (p=0.001).  This significant difference 

is consistent with the analysis using repeated measures ANOVA (table 21), 

confirming indications of discriminatory ability between healthy volunteers and 

stroke survivors for the measure of muscle activation timing during UP for 

quadriceps muscles. 
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Table 22: Results of PCA analysis of discriminatory ability between stroke survivors and healthy volunteers for 

the measurement of lower limb motor impairment by UP: muscle activation timing, demonstrating 

components one and two. 

 Position Bin Component 1 Component 2 

Quadriceps  1 

 

0.362  0.358 

 2 

 

0.407  0.173 

 3 

 

0.416 -0.140 

 4 

 

0.281 -0.517 

 5 

 

0.345 -0.434  

 6 

 

0.393 -0.166 

 7 

 

0.332  0.256  

 8 

 

0.260  0.520 

Variance (%) 

 

54.6% 26.8% 

Healthy volunteers mean component 

score when column component applied to 

data (SD) 

-0.368 

(2.12) 

1.112 

(0.918) 

Stroke survivors mean component score 

when column component applied to data 

(SD) 

0.217 

(2.11) 

-0.654 

(1.334) 

p-value(between groups comparison of 

mean component score) 

 

p=0.493 p=0.001 

Hamstrings 1 

 

0.351 -0.433 

 2 

 

0.380 -0.266 

 3 

 

0.385  0.058 

 4 

 

0.347  0.404 

 5 

 

0.312  0.520 

 6 

 

0.373  0.300 

 7 

 

0.351 -0.126 

 8 

 

0.323 -0.456 

Variance (%) 

 

63.5% 19.3% 

Healthy Volunteers mean component 

score when column component applied to 

data (SD) 

-0.771 

(1.902) 

0.143 

(1.411) 

Stroke survivors mean component score 

when column component applied to data 

(SD) 

0.453 

(2.372) 

-0.084 

(1.167) 

p-value(between groups comparison of 

mean component score) 
p=0.178 p=0.656 

 

 

 



   

161 

 

 

Figure 18: Plot illustrating principal component 2 for quadriceps (combined data), demonstrating contrast in 

activity levels between wheel position bins 

           

6.13.3 Test-retest repeatability of the measurement of motor impairment 

by UP (aim 2b.) 

Interpretation of the ICC values was guided by methods employed by Eilasziw et al. 

(1994); 0.0-0.20=slight, 0.21-0.40=fair, 0.41-0.60=moderate, 0.61-0.80=substantial, 

0.81-1.00=almost perfect. The lower limit of the 95% confidence interval was used 

to delineate the category. 

6.13.3i Test-retest repeatability of measurement of muscle activation 

timing 

Table 23: Results of analysis of test-retest repeatability for muscle activation timing 

 N (bins) 

 

ICC 95% C.I. 

Healthy Volunteers 

 

   

Quadriceps 10 (80) 

 

0.76 (0.65, 0.84) 

Hamstrings 10 (80) 

 

0.56 (0.39, 0.69) 

Stroke Patients 

 

   

Unaffected Quadriceps 17 (136) 

 

0.67 (0.56, 0.75) 

Unaffected Hamstrings 17 (136) 

 

0.21 (0.05, 0.37) 

Affected Quadriceps 17 (136) 

 

0.46 (0.32, 0.58) 

Affected Hamstrings 

 

17 (136) 0.43 (0.28, 0.56) 
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Table 23 presents the results of the analysis of test-retest repeatability for the 

measure of muscle activation timing using intra-class correlation coefficients (ICC) 

with 95% confidence intervals.  

Some agreement between measurement sessions was demonstrated for stroke 

survivors and healthy volunteers in both quadriceps and hamstrings. Unaffected 

quadriceps in the stroke survivors demonstrated moderate correlation between 

sessions (ICC=0.67; 95% CI: 0.56, 0.75) and for quadriceps in the healthy volunteers, 

the correlation was substantial (ICC=0.76; 95% CI: 0.65, 0.84). Fair correlations were 

observed between test sessions for both affected quadriceps (ICC=0.46; 95% CI: 

0.32, 0.58) and affected hamstrings in the stroke survivors (ICC= 0.43; 95% CI: 028, 

0.56). The lowest value was for unaffected hamstrings in the stroke survivors, with 

only a slight correlation and wide confidence intervals in this muscle group between 

measurement sessions (ICC=0.21; 95% CI: 0.05, 0.37). 

6.13.3ii Test-retest repeatability of measurement of reciprocal activation 

Table 24 presents the results of the analysis of test-retest repeatability for the 

measure of reciprocal activation. 

Table 24: Results of analysis of test-retest repeatability for reciprocal activation 

 N ICC 95% C.I. 

 

Healthy Volunteers  

 

  

               Cadence 10rpm 10 0.28 

 

(0, 0.75) 

Cadence 20rpm  9 

 

0.18 (0,0.73) 

Cadence 30rpm 9 

 

0 (0, 0.63) 

Cadence 40rpm 9 

 

0.61 (0.10, 0.90) 

Cadence 50rpm 9 

 

0.72 (0, 0.85) 

Stroke Patients 

 

 

 

  

Unaffected Limb 10 0.38 (0, 0.80) 

 

Affected Limb 17 0.35 (0, 0.70) 
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The confidence intervals for all results of the analysis of test-retest repeatability of 

the measure of reciprocal activation were very wide. Despite ICC point estimates 

taken alone suggesting fair correlations for both the unaffected and affected limb of 

stroke survivors, and substantial correlations at faster speeds for the healthy 

volunteers, the wide confidence intervals illustrate imprecision in the ICC’s, with 

lower limits of agreement at zero. This reflects the relatively low sample size and 

leads to an inability to reliably determine test-retest repeatability of this measure 

for this sample. 

6.13.3iii Test-retest repeatability of measurement of smoothness of 

pedalling activity 

Table 25 presents the results of the analysis of test-retest repeatability of the 

measure of smoothness of pedalling activity 

Table 25: Results of analysis of test-retest repeatability for smoothness of pedalling activity 

 N 

 

ICC 95% C.I. 

Healthy Volunteers 

 

   

Cadence 10rpm 

 

10 0.46 (0, 0.83) 

Cadence 20rpm 

 

10 0.59 (0.01, 0.88) 

Cadence 30rpm 

 

10 0.12 (0, 0.67) 

Cadence 40rpm 

 

10 0.64 (0.10, 0.90) 

Cadence 50rpm 

 

10 0.52 (0, 0.85) 

Stroke Patients 

 

18 0.28 (0, 0.65) 

 

The confidence intervals for all results of the analysis of test-retest repeatability of 

the measure of smoothness were very wide. ICC point estimate values taken alone 

suggest generally moderate correlations for healthy volunteers, except for 30rpm 

which, similarly to the measurement of reciprocity of activity, was low; and for 

stroke survivors, the ICCs suggest fair repeatability.  However, the wide confidence 

intervals with the lower limits close to or equalling zero, illustrate imprecision in the 

ICCs; again, this reflects the relatively low sample size and leads to an inability to 

reliably determine test-retest repeatability of this measure for this sample. 
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6.13.4 Association between of the measurement of motor impairment by 

UP and the Motricity Index and Functional Ambulatory Categories 

(FAC)(aim2d) 

Tables 26a and 26b present the results of the analysis of correlation between the 

pedalling measures and existing clinical measures of motor impairment and current 

walking ability for the stroke survivors. 

Table 26a: Results of analysis of association with the Motricity Index and with current walking ability as 

measured by the FAC, for smoothness and reciprocity 

Measure Smoothness Reciprocity affected 

limb 

 

Reciprocity unaffected 

limb 

Motricity Index r=-0.375 

p=0.130 

N=18 

 

r=0.278 

p=0.316 

N=15 

r=0.075 

p=0.775 

N=17 

FAC r =-0.165 

p=0.513 

N=18 

 

r=0.030 

p=0.916 

N=15 

r=-0.136 

p=0.604 

N=17 

 

Table 26b: Results of analysis of association with the Motricity index and with current walking ability as 

measured by muscle activation timing (% activity “on”) 

Measure Affected 

quadriceps %on 

Affected  

hamstrings %on 

Unaffected  

quadriceps %on 

Unaffected 

hamstrings  %on 

Motricity Index r=-0.153 

p=0.06 

N=17 

 

r=0.033 

p=0.899 

N=17 

r=0.156 

p=0.549 

N=17 

r= -0.03 

p=0.922 

N=17 

FAC r =-0.223 

p=0.390 

N=17 

 

r= -0.180 

p=0.490 

N=17 

r=-0.117 

p=0.656 

N=17 

r= 0.266 

p=0.302 

N=17 

 

Using Spearman’s rank correlation coefficient, no significant associations were 

demonstrated between any UP measures and existing measures of impairment or 

walking function (tables 26a and 26b). Hence, there was no significant correlation 

between the EMG derived measures nor the smoothness measure and a commonly 

used measure of impairment, the Motricity Index. However, for the measurement 

of muscle activation timing (percentage of activity “on” within each position bin) in 

the affected quadriceps, the correlation approached statistical significance (p=0.06).  
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There was no significant association between the EMG derived measures nor the 

smoothness measure and the participants’ current ambulatory status as measured 

by the FAC. 

6.13.5 Summary of findings 

In addressing aims 2b, 2c, and 2d, this study found that: 

• There are indications that the measurement of lower limb motor 

impairment as expressed by changes in muscle activation timing has a) some 

discriminatory ability between stroke survivors and healthy volunteers for 

the quadriceps muscle; b) fair test-retest repeatability for affected side 

quadriceps and hamstrings in stroke survivors; c) substantial test-retest 

repeatability in quadriceps and fair test-retest repeatability in hamstrings in 

healthy older adults; and d) demonstrates a borderline significant 

association with a commonly used clinical measure of lower limb motor 

impairment, the Motricity Index 

• There are indications that the measurement of lower limb motor 

impairment as expressed by reciprocity of muscle activity has discriminatory 

ability between stroke survivors (for the affected limb) and healthy 

volunteers 

• It was not possible to make reliable estimates of the magnitude of the test-

retest repeatability of the measurement of lower limb motor impairment as 

expressed by changes in reciprocal activation and smoothness of pedalling in 

this sample of stroke survivors 

• There was no relationship between the measurement of lower limb motor 

impairment as expressed by changes in reciprocal activation and 

smoothness of pedalling and commonly used measures of motor 

impairment and walking ability. 
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Chapter 7.0: Discussion 

 

7.1 Introduction 

 

This chapter will present a critical interpretation of the findings of the studies 

presented in this thesis and will conclude with recommendations for future work. 

The discussion will be framed around the statement of aims (Chapter 2.0) and will, 

where appropriate, provide commentary on how the findings relate to existing 

published work. 

 

7.2 Assessing the current state of the evidence about pedalling 

exercise after stroke 

 

7.2.1 Summary of findings 

This study investigated aims 1a and 1b, which were derived from question one, 

“Does reciprocal pedalling exercise enhance motor function after stroke?” 

The synthesis indicated that there was some, but limited, support for pedalling 

exercise benefiting muscle activity, muscle strength, balance, and functional 

independence after stroke, from early phase studies. However, inter-study 

heterogeneity, small sample sizes, wide confidence intervals for effect sizes, and the 

risks of potential biases suggested that the evidence was not sufficiently robust to 

support or refute the use of reciprocal pedalling exercise to enhance recovery of 

motor function after stroke. These findings support the conclusion of a narrative 

review by Fujiwara et al. (2005), that while pedalling might have potential to 

enhance motor function in people with central nervous system disorders, further 

research is needed before use in clinical practice. 
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7.2.2 Discussion of findings 

The smaller, exploratory studies included in this review showed the feasibility of 

using pedalling interventions after stroke (e.g. Brown et al. 2005; Perell et al. 2001, 

2000). These studies also found some trends towards benefit from pedalling on 

measures of motor impairment, including lower limb muscle activity and muscle 

strength. These findings provide proof-of-concept, but insufficient evidence to 

support or refute the clinical use of pedalling. Risks of potential biases were high for 

these studies, often as a direct reflection of study design, though reports of results 

according to design were generally clear. However, it was this set of studies, plus 

one small randomised pilot study (Katz-Leurer et al. 2006) that specifically aimed to 

examine the effects of pedalling activity on motor function. All of the larger studies 

included in the review used pedalling as a form of aerobic exercise, though did 

include some secondary outcomes of motor function, evaluated generally using 

activity level measures. No large-scale study specifically designed to evaluate the 

effects of pedalling activity on motor function after stroke was found in this review 

process. Hence, evidence from the smaller studies in this review might provide 

precursors for later phase studies of clinical efficacy, incorporating measures of 

both impairment and activity. 

 

While meta-analysis was not indicated for the RCTs, single study examination 

revealed large effect sizes for beneficial effects of a pedalling intervention on 

balance and functional independence, immediately (PASS total, effect size 1.50 

[0.61, 2.43]; FIM motor, effect size 1.60 [0.69, 2.55])and six-weeks after the 

intervention(PASS total, effect size 1.50 [0.60, 2.42]; FIM motor, effect size 

1.47[0.59, 2.41]; Katz-Leurer et al. 2006).However, the large effect sizes should be 

interpreted with caution as the sample size for this pilot study was small with 10 

participants in the intervention arm and 14 in the control, confidence intervals were 

wide and a moderate risk of bias was evident. A small beneficial effect on balance 

was also demonstrated in a study of aerobic pedalling exercise immediately (Berg 

Balance Score, effect size 0.22 [-0.42, 0.85]) and eight weeks after the intervention 

(Berg Balance Score, effect size0.27 [-0.37, 0.91] (Quaney et al. 2009), but again, 
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sample sizes were small with 19 in each trial arm with very wide confidence 

intervals that crossed zero. This study also demonstrated a lack of clarity of 

reporting on key elements(e.g. sequence generation). Therefore, despite these 

trends towards benefits, definitive, generalisable conclusions cannot be drawn 

about effects of pedalling on balance and functional independence. 

 

It is noteworthy that one of the larger studies with the lowest risk of bias 

demonstrated small, positive, but non-significant, effects on lower limb muscle 

strength, (effect size 0.18 [-0.57, 0.94]) and endurance (effect size 0.16 [-0.60, 0.93] 

from a pedalling intervention in 54- to 72-year olds with chronic stroke (Lee et al. 

2008). A small positive effect for lower limb muscle strength possibly supported 

observations in the smaller studies (e.g. Perell et al. 2001, 2000). However, again, 

the wide confidence intervals suggest imprecision and hence a lack of 

generalisability for these findings. Findings of small, beneficial though non-

significant, effects of pedalling exercise on muscle strength after stroke were 

therefore in no way definitive. 

 

It is of interest that the mean participant age of 63 years was non-representative of 

the UK stroke population, where 75% of first strokes occur in those aged 65 and 

over (British Heart Foundation Coronary Heart Disease Statistics, 2010). Older 

stroke survivors may present different research and rehabilitation challenges than 

younger survivors. For example, the likelihood of multiple pathologies alongside the 

stroke may be higher, leading to extraneous reasons why participation in 

rehabilitation activities and research trials might be limited. Further research into 

pedalling exercise in an older participant group is indicated to ensure 

generalisability of findings to the stroke survivor population. 

 

Over half of the included studies recruited participants greater than three months 

since stroke onset. It is possible that such patients are easier to recruit to exercise 

trials, as they are likely to be more medically stable and with less fluctuation in their 

abilities. However, current evidence suggests that early therapeutic intervention 

might optimise potential for recovery. As identified in Chapter 1.0, clinical studies 
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support the concept that early rehabilitation is important for improving outcomes. 

This review has identified that current research into pedalling as a potential 

therapeutic intervention has not exploited this important window, and thus results 

cannot be generalised to early stroke survivors. Opportunities therefore exist for 

further exploration of the effects of pedalling exercise in stroke survivors early after 

onset. 

 

Studies included in this review used variable doses of pedalling interventions. 

Evidence on optimal dose of rehabilitation interventions after stroke remains 

equivocal (Cooke et al. 2010).Although the number of repetitions of an activity 

needed to facilitate brain reorganization has not been established in human studies, 

animal model studies suggest that 300–400 repetitions in a30minute session might 

be needed (Kleim et al. 1998).Pedalling exercise has the potential to provide high 

numbers of repetitions of lower limb flexion and extension in reasonable 

therapeutic time frames, and there are opportunities for future research to explore 

optimal, tolerable doses in stroke survivors. 

 

The equipment used in the studies was rarely described in detail, but in the majority 

of cases, a recumbent or semi-recumbent pedalling posture was adopted using leg 

cycle ergometers.  Ease of use of such equipment is clear: patients may be seated or 

reclining in a chair or wheelchair and carry out cyclical lower limb activity. Seated 

pedalling negates the need for the substantial concentration and physical effort 

required to stay upright. However, this concentration and effort are components 

inherent in learning to walk early after a stroke; and upright pedalling postures are 

more likely to replicate the walking-like activity necessary to ensure that a pedalling 

task offers opportunities for functional movement. This is important, as previous 

research has demonstrated that functionally related activity can strengthen 

generalisability to tasks such as walking (e.g. Salbach et al. 2004; Dean et al. 2000). 

Hence, an upright pedalling device, enabling activity in a walking-related posture, 

might more appropriately replicate functional walking-like activity. 
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More generally, the review findings are unsurprising in the light of the state of the 

current evidence on specific rehabilitation interventions after stroke. Studies 

assessing potential rehabilitation therapies can provide conflicting evidence and be 

poorly conducted and reported, with insufficient interpretation of clinical 

significance (Dobkin, 2007). Indeed, recently, Santaguida et al. (2012) carried out a 

‘review of (systematic) reviews’ of stroke rehabilitation therapy and exposed 

important methodological flaws, in categories including randomisation, allocation 

concealment and blinding, leading to conclusions that improvements in both 

research methods and reporting are required. A further review concluded that 

reporting of some key design features in stroke rehabilitation studies was lacking, 

particularly in areas such as timing of therapy and justification of outcome 

instruments used (Oremus et al. 2012). In congruence with these findings, the 

systematic review presented here described a lack of transparent reporting of key 

elements of studies. 

It is likely that these findings reflect that, whilst considerable advances have been 

made in the last half-century in understanding the potential for restoration of 

function after central nervous system damage, rehabilitation research is still in its 

infancy. Hence, as was found in the presented systematic review, studies tend to be 

developmental in nature, and large-scale controlled trials of robust quality remain 

less common (Pomeroy et al. 2011). 

Consequently, it was important that key messages from the systematic review 

presented here informed the development of the protocol for study two, 

investigating Upright Pedalling early after stroke. In particular, four findings helped 

to shape the research design: there was very limited investigation of pedalling early 

after stroke in acute settings, over half the studies were designed to assess aerobic 

capacity with motor function only as secondary outcomes, only one of the five 

randomised studies adopted impairment level outcome measures and the majority 

of equipment used in the studies enabled pedalling in recumbent or semi-

recumbent postures. 

A discussion of the ensuing feasibility study follows. 
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7.3 The feasibility of participating in reciprocal pedalling (Upright 

Pedalling) activity early after stroke 

7.3.1 Summary of findings 

This section of the work addressed study aims 2a and 3a, 3b, 3c, 3d, 3e and 3f. 

Sufficient data were collected during the study to address aims 2a, 3a, 3b and 3d 

and hence to establish that:  

• 4.6% (n=19) of those early stroke survivors screened were eligible to 

participate in the study.  

• 84.6% (n=11) of early stroke survivors that made an initial attempt (n=13) 

could take part in Upright Pedalling (aims 3a and 3b)  

• 2.2 % (n=9) of those early stroke survivors screened were randomised, with 

no participants taking part in UP on ten consecutive days in the acute stroke 

unit setting. 

• U-PeD, the upright pedalling device, could be instrumented to enable 

derivation of measures during reciprocal pedalling early after stroke (aim 2a) 

• lower limb movement could be characterised during UP (aim 3d) and 

provide a detailed physiological insight into the variety of movement 

strategies adopted by early stroke survivors during reciprocal pedalling 

• it was not possible to provide the intervention for ten days on the acute unit 

where this research was sited (aim 3b) 

• No adverse events were recorded in this group of early stroke survivors (aim 

3f) 

It was not possible to establish whether: 

• there were any clinical characteristics that indicated which individuals 

were able to take part in UP (aim 3c) 
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• there was sufficient evidence of efficacy to justify proceeding to 

subsequent trials at this stage (aim 3e) 

7.3.2 Discussion of findings 

This section of the discussion will be presented according to the study aims. 

7.3.2i Ability to take part in Upright Pedalling early after stroke (aims 3a 

and 3b) 

The majority of participants recruited to the study were able to take part 

successfully in UP. No adverse reactions were recorded. It was promising to find 

that eleven early stroke survivors, 84.6% of those who made an attempt, all with 

substantial weakness, and unable to walk, were able to take part in UP.  The 

feasibility of taking part in UP, early after stroke, was therefore demonstrated in 

this small sample of stroke survivors. This concurs with findings for the feasibility of 

use of BWSTT with early stroke survivors. Recent work reported positive findings for 

safety and feasibility of BWSTT for people within four weeks of stroke (Ada et al. 

2010) and within 45 days of stroke onset (Franseschini et al. 2009). However, 

challenges to the further pursuit of BWSTT as a possible intervention to improve 

walking early after stroke, have recently been made (e.g. Dobkin and Duncan, 2012) 

so the relevance of its feasibility early after stroke might reasonably be challenged.  

Whilst there is some evidence that successful pedalling can occur with profound 

deficit later after stroke (Kautz & Brown, 1998; Fujiwara et al. 2005), there has been 

no work to date demonstrating similar findings, in upright postures, early after 

onset.  As established in Chapter 3.0, there are scant opportunities for repetitive 

practice of functional, reciprocal movement of the lower limbs, in upright postures 

akin to walking, for those otherwise unable to mobilise early after stroke.  This 

study demonstrated the potential for early stroke survivors to take part in just such 

an activity. These data suggest that future pilot investigations of potential clinical 

efficacy of UP in this participant group are indicated.  

Only two participants were not able to pedal the bike. It is possible that those 

unable to pedal were generally de-conditioned, as both were longer since stroke 
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onset than the study mean and had faced multiple medical challenges with little 

therapeutic input up to being considered fit to participate. Field notes also indicated 

that one had severe sensory inattention and difficulty with forward propulsion of 

the pedal which was a likely contributory factor. Both were transferred prior to 

further pedalling attempts so no further assessment of their ability was possible. It 

is possible that familiarity with the task and general improvements in the 

participants’ conditions may have led to them being able to participate at a later 

date within the first 31 days after stroke and this element of the study design 

should be pursued in a future pilot study.  

Whilst numbers in the study assessing the ability to pedal were too small for 

definitive conclusions to be made, it is important to examine the participant 

characteristics in order to determine if they were representative of the stroke 

population. Such data is important to determine any indications for generalisability 

of findings and, perhaps more importantly in this very early phase work, to shape 

future protocols. 

Of those recruited to this study and proceeding to the baseline pedalling attempt, 

69% were male, broadly representative of the UK stroke population, as stroke 

incidence is currently 25% higher in men than women (Stroke Association: Stroke 

Statistics 2013). 

The age of participants (mean 70.8 years) was, however, slightly lower than in the 

general population (mean age 75 years; Stroke Association: Stroke Statistics 2013). 

It is possible that older stroke survivors were more unwell, as they are likely to have 

multiple pathologies; hence they were less likely to meet inclusion criteria for this 

pedalling study.  

The mean number of days from stroke onset was 12.5 at baseline, and the wide 

range of 4 days to 26 days for those able to pedal indicated  successful participation 

in UP at a broad number of time points within the bracket of “early after stroke.”  

This is particularly promising for planning a future pilot trial of the intervention in 

people early after stroke. 
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7.3.2ii Investigation of the possibility of taking part in UP daily on an acute 

stroke unit and determining prognostic indicators and efficacy (Aims 3a, 

3b, 3c and 3e) 

The primary finding from the study indicated that the majority of stroke survivors 

recruited early after stroke were able to participate in UP. However, challenges 

were faced in reaching this point and progressing onwards from it, in terms of both 

recruitment and attrition. These factors contributed to findings about the 

proportion of patients on this acute stroke unit able to take part in the activity and 

the number of days for which this was possible; hence must be discussed when 

considering aims 3a and 3b. Recruitment and attrition data also affected the 

possibility of investigating prognostic indicators for and clinical efficacy of the 

intervention (aims 3c and 3e). Understanding and interpreting these challenges is 

also an essential component in considering future research into the intervention. 

This developmental stage study, of a possible rehabilitation intervention for use 

early after stroke, necessitated recruitment of participants from an acute stroke 

unit. This proved to be challenging to the research team; indeed, it is more widely 

known that participant recruitment to stroke rehabilitation studies is one of the 

most difficult aspects of conducting the research (Lloyd et al. 2010; Blanton et 

al.2006). Potential participants for the feasibility study were screened by stroke unit 

staff and 4.6% of those admitted to the unit were considered eligible for potential 

participation and hence approached by the researcher.  

Finding that 95.4% of potential participants were screened as ineligible was initially 

surprising in the light of data from a recent early intervention lower limb 

rehabilitation trial, where 16% of people screened were found to be eligible (Cooke 

et al. 2010). However, this phase I study considered that the period “early after 

stroke” extended up to three months after onset, where the current study included 

participants only in the first month after stroke. Limiting the current study to 

including only stroke survivors in the first month after onset was important to meet 

one of the scientific challenges identified in Chapter 2.0; that of investigating 

possible interventions for use in the important early period after stroke. But, it is 

likely that, in this very early phase after onset, it was more challenging to find 
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participants who were considered medically appropriate to participate. Indeed, in 

the current study, over 35% of those screened were too unwell to be considered for 

participation; conversely, over 27% were independently mobile and thus 

insufficiently impaired to take part. These findings are not dissimilar to Ada et al. 

(2010), who investigated BWSTT in the first four weeks after stroke and recruited 

only 7.7% of those screened, with over 50% of exclusions due to medical instability, 

or conversely, participants being too mobile. It is inevitable that, immediately 

following onset of stroke, patients present with a wide range of needs. One fifth of 

strokes are fatal (Stroke Association: Stroke Statistics, 2013). Of those surviving, 

some people remain very unwell and in need of ongoing medical support whilst 

others make rapid recoveries to independent function, with a broad range of 

deficits in between.  

Additionally, inclusion criteria for the current study were necessarily tightly 

controlled, to ensure that participants were early after stroke and with substantial 

weakness, but well enough to attempt pedalling. Stringent criteria are important, to 

improve scientific rigour and to ensure study aims are addressed safely; but are 

known to influence the number of participants potentially available for involvement 

in rehabilitation trials (Blanton et al. 2006). Indeed, Blanton et al.’s (2006) review of 

recruitment to a major, funded phase III study of an upper limb intervention after 

stroke (the EXCITE trial, results reported in Wolf et al. 2010), returned an average of 

only 6.1% recruitment following initial screening across multiple centres. This low 

“enrolment ratio” (Blanton et al. 2006) was considered to be due partly to the 

stringent inclusion criteria, the intensive nature of the upper limb intervention and 

to the multiple measurement points required. Though ratios were low, it is of note 

that the criteria on time since stroke onset was, at three to nine months, relatively 

wide ranging in comparison to the current study. 

Meeting such challenges to recruitment during this feasibility study should not, 

however, deter further attempts at recruitment of early stroke survivors to 

rehabilitation studies from acute centres. Though initial screening may mean that 

the majority cannot be engaged in rehabilitation research at this stage, such centres 

do provide a one-location bank of potential participants in the crucial period early 
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after stroke when the brain is most responsive to extrinsic therapies. They offer 

possible research locations that avoid the potential cost of moving participants and 

researchers. Furthermore, they provide a potential interface for rehabilitation 

research and clinical practice, where therapists and researchers can work in tandem. 

Clinical site research offers the potential for an ‘osmosis of understanding’ between 

clinicians and researchers; such integration between practice and research is 

recognised as essential in improving the “translational research pipeline” of 

research findings into practice (Cumberland Consensus Working Group, 2009).  

Numbers providing informed consent after initial screening provide important 

additional information for planning future studies, and in this case were promising. 

Once approached as potential participants and having received detailed study 

information, 84.2% (n=16) provided informed consent. Of those attempting to pedal 

the upright bike (n=13), all wished to remain involved in the study and those unable 

to pedal (n=2) both expressed a wish to return and try again. These findings suggest 

both positive engagement in the research in this participant group and that the 

practical procedures involved in using the bike were acceptable to those 

participating. The findings make an encouraging contribution to the foundations for 

a future pilot trial of the intervention. They also suggest that formal assessment of 

participant acceptance and opinion of the intervention might make a useful 

contribution to future protocols. 

At the outset of the study, it was intended that the second part of the design would 

yield results determining whether a further, larger clinical trial was indicated. The 

study was developed in close collaboration with a consultant stroke physician and it 

was considered possible to involve the planned numbers of stroke survivors for up 

to the intended ten days of the study period. However, following the initial 

pedalling trial, attrition rates were high and insufficient data was collected to 

address this aim. The high rates of attrition were due to unforeseen changes in local 

systems of stroke care that had a considerable impact during the year of 

recruitment. The rapid development of both a new hyper-acute stroke service at 

the hospital site and an off-site early rehabilitation unit resulted in a dramatic 

reduction in length of stay on the acute stroke unit and patients were largely 
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transferred or discharged as soon as they were medically stable. Hence, those 

eligible for, or just enrolled in, the study were frequently transferred off site. Nine 

participants reached randomisation with none remaining in the study for the 

proposed ten days.  

Half way through the recruitment period, and as the difficulties became apparent, 

consideration was given to moving the only available prototype pedalling device to 

the off-site rehabilitation unit. However, a number of factors led to a decision to 

pursue the study at the initial site: as this was a transitional period for the service, 

there were no data available regarding possible numbers of early stroke survivors to 

be transferred; a large rehabilitation study was already recruiting participants 

within six weeks of stroke at the new site; and the current study had no additional 

funding beyond the PhD studentship so extending the recruitment period was not 

possible.  

It was not possible, therefore, to collect sufficient data to address aims 3c and 3e. 

However, whilst it was not possible to pilot the study in its entirety in this acute 

hospital setting, there is no evidence that such a design might not be successfully 

run in an alternative setting, or across different settings, as participants move on 

throughout the rehabilitation process.  Piloting the study in an early rehabilitation 

unit might offer the potential for assessing the intervention with those stroke 

survivors who have remained in-patients because they have the substantial deficit 

required by the inclusion criteria. There is some, therefore, justification for a further 

pilot study of the new intervention early after stroke in different settings.  

Assessment of average length of stay data would be required prior to implementing 

a study in alternative locations and ideally, more than one U-PeD would be required 

to address these aims. 

The challenges faced in addressing these aims also made it difficult to compare and 

contrast findings from this work with other possible rehabilitation tools for use early 

after stroke, such as body weight-supported treadmill training, BWSTT. Some 

comparison in terms of feasibility of use early after stroke has been noted in section 

7.3.2i. However, insufficient data on efficacy of UP was collected to enable useful 
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comparisons to be made to the existing body of work on BWSTT, which is largely 

centred on efficacy and does not include the biological measures presented here. 

Important findings from this developmental work on UP enabled assessment and 

description of movement during UP and this is not directly comparable to the 

existing work on BWSTT.  

Findings on characterisation of movement are discussed in the next section. 

7.3.2iii Assessment and characterisation of lower limb movement during 

Upright Pedalling early after stroke (aims 2a and 3d) 

It has been demonstrated that stroke survivors can take part in this upright 

pedalling activity early after onset (section 7.3.2i). Furthermore, the U-PeD was 

successfully instrumented to enable derivation of measures that were then used to 

characterise lower limb movement during UP.  

Despite some of the challenges discussed in 7.3.2ii, data collected provided a 

detailed foundation for considering how the pedalling movement might be assessed 

and described. This section will discuss and interpret these data.  

Two of the measures used to assess the pattern of lower limb activity during UP 

were derived from EMG data. Such data is collected as raw output of muscle energy 

and as such, is open to various methods of processing and interpretation. As a result 

of careful analysis of previous published work in this area, rigorous, clearly 

described methods were elucidated for the current studies. This enabled maximum 

confidence in the data presented; and clearly defined methods that might be used 

to assess muscle onset and offset and the phasic nature of muscle activity in future 

studies, allowing for possible comparisons across both participants and studies.  

Data from the feasibility study demonstrated that eleven of the thirteen early 

stroke survivors tested could pedal. Where measurable, smooth pedalling was 

frequently observed; particularly in those participants pedalling at cadences of 

above 40rpm. However, patterns of muscle activity underlying the functional 

movement varied between participants, both in terms of activity according to wheel 

position and the reciprocity between muscle groups in both the affected and 

unaffected limbs.  
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Implications from data suggesting that early stroke survivors can generate steady 

pedalling for a short time are considerable. The ability of stroke survivors to 

generate constant, rhythmic pedalling activity early after stroke has been 

demonstrated to predict their capability to be community walkers at three months 

after onset (Katz-Leurer and Shochina, 2005). However, this study used only 

observation of the ability to pedal only rhythmically and constantly for one minute, 

it did not examine any kinematics or physiological measures of the muscle activity 

contributing to the movement. Hence, unlike the current study, the manner in 

which the activity was achieved was not assessed.  

Recorded patterns of muscle activity during UP early after stroke were 

heterogeneous across participants. This finding was unsurprising, as stroke does not 

have uniform effects on neural networks. Indeed, high inter-participant variability 

of muscle activity patterns during pedalling has been previously demonstrated in 

stroke survivors during investigation of impaired muscle activation timing, using 

adapted ergometer pedalling in upright postures (Kautz and Brown, 1998); though 

in this study participants were more than six months from stroke onset. These 

findings contrast to published data for older adults without stroke, where 

consistent patterns of activity through four wheel position bins were demonstrated 

across participants (Kautz and Brown, 1998; Brown and Kautz, 1998). Whilst 

variability was high in stroke survivors, these authors noted that a later and 

prolonged onset of quadriceps muscles frequently occurred. A similar pattern of 

muscle activity was observed in the first illustrative case in the study presented here: 

reciprocity of activity was reasonable, as areas of higher percentage onset in 

quadriceps and hamstring muscles were in opposition; however, affected 

quadriceps demonstrated activity prolonged throughout the pedalling cycle to some 

extent, with no “off” periods. This might indicate a prolonged “extensor thrust” to 

propel the crank through the complete turn with reduced ability to selectively 

deactivate extensor activity. 

In contrast, in the second illustrative case, the participant achieved smooth 

pedalling activity despite there being no measurable activity above baseline in 

either muscle group in the affected leg. This indicates pedalling by the unaffected 
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limb alone and only passive movement of the affected limb. The importance of 

characterising activity in both limbs early after stroke is demonstrated here as the 

unaffected limb clearly makes a contribution to the complete coupled cyclical 

movement. These findings, however, are not necessarily detrimental to the 

suggestion of UP for rehabilitation of bilateral lower limb movement. In an 

investigation of unilateral pedalling, Kautz et al. (2006) discovered that 

sensorimotor activity in one leg activated rhythmic motor activity in the other leg in 

stroke survivors, but this did not occur in a control group without neurological 

impairment. Furthermore, the effects were more marked in those most severely 

impaired after stroke and in bi-articular muscles such as rectus femoris and biceps 

femoris. The authors suggest that there might be some up-regulation of ipsilateral 

excitatory pathways assisting the hemiplegic leg as the unaffected leg pedals.  The 

functional implication here is that, even single limb pedalling, as recorded in one of 

the illustrative examples in the feasibility study, might make beneficial contributions 

to bilateral motor patterns post-hemiplegia. 

It was of interest that, where data were available at baseline, scatter plots of 

percentage activity for each wheel phase demonstrated heterogeneity of pattern 

for quadriceps, but a pattern of increased activity in the extensor phase of the 

wheel in hamstrings. These findings concur with those of Brown et al. (1997) in their 

assessment of pedalling patterns in healthy elderly volunteers and stroke survivors. 

They noted that activity in biceps femoris in the stroke survivors predominated in 

wheel phases equivalent to bins three and four in the study presented here; not in 

the early phases of the upstroke extensor phases (bins five and six) as 

demonstrated in their healthy volunteers. However, whilst the observations were 

similar, these data were reported for a single muscle not the generic group from 

which recordings were made in the current study, and were recorded during 

horizontal pedalling, not pedalling in vertical postures.  

It is possible that the U-PeD pedal design may have contributed here- foot straps 

were used to ensure safe placement of the foot to the pedal; this enabled 

participants to “pull” up on the straps to assist the wheel in the transition from the 

flexor to extensor phases of the wheel, thus generating hamstrings activity towards 
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the top of the wheel which may have persisted in the early wheel phases to grade 

the descent. In generating such a “thrust” at the top of the wheel, it was 

conceivable that momentum was then used in the later phases to finish the cycle 

and thus less hamstrings activity was needed to complete the flexor phase. It was 

not possible, using surface EMG used here, to determine whether muscle activity 

generated was concentric or eccentric and, therefore, difficult to determine 

whether these major muscle groups were being used for propulsion or were 

providing a “braking” effect. Surprisingly, few studies have investigated the effects 

of the foot and pedal interface during cycling (Hug and Dorel, 2009). It is likely that 

any such equipment used in the rehabilitation of stroke survivors will require some 

manner of stabilising the foot in the pedal to ensure safe pedalling. Future research 

grant applications being explored to develop the current work, including seeking 

monies for a redesign of the cycling equipment and testing of various pedal designs.  

The broader implications of heterogeneous muscle activity patterns must be 

considered when proposing UP as a possible tool for rehabilitative training of 

functional activity. Using different underlying movement strategies to achieve the 

same goal might be considered detrimental, as abnormal patterns might drive 

abnormal, maladaptive brain activity. Conversely, however, data demonstrating 

that early stroke survivors can adopt different movement strategies in order to 

achieve the smooth, coupled movement might be seen as beneficial, in the light of 

the identified need for rehabilitation interventions to include repetition of 

functional activity. Indeed, it might not be reasonable to assume homogeneity of 

activity this early after the onset of stroke; stroke survivors might need to adopt a 

variety of strategies to achieve functional movement that can then be refined with 

on-going therapy support. This suggests that setting parameters for responses to 

lower limb rehabilitation and recovery for groups of early stroke survivors might be 

challenging; particularly as current clinical measurement systems do not give 

therapists sufficient information to make those judgments. It is known that 

commonly used clinical assessments are unlikely to quantify impairment at such a 

detailed level as the assessment presented here; for example, it is possible that an 

individual stroke survivor who demonstrates no change on the Motricity Index, 
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therefore classified clinically as making no progress, could be demonstrating 

changes in underlying muscle activity which might contribute to future functional 

change. The practice of making early clinical decisions on currently available clinical 

tools, that do not include a detailed understanding of movement after stroke, might 

reasonably be challenged.  

It is also reasonable to propose that the practice of rhythmic pedalling movement, 

by whatever strategies are available to the individual, might contribute to more 

normal underlying patterns at a later stage, after regular practice. Data from this 

study was insufficient to carry out measurement of muscle activity during and after 

ten days of pedalling intervention as planned, but there is scope for the measures 

here to be extended over further intervention days in the next phase study. This 

would then enable definitive decisions about correlations between improvement in 

underlying muscle activity patterns and clinical change during a programme of UP, 

to be made. 

It is unremarkable that smoothness of movement in the current study was observed 

to be lowest at lower pedalling cadences (below 40rpm). Ansley and Cangley (2009) 

examined the determinants of optimal cadence in a review of sports medicine 

literature, and concluded that there is not a single recommended optimal pedalling 

cadence. Considerations of what is optimal vary according to multiple factors, both 

internal and external to the individual, including demands such as crank resistance 

and fatigue and muscular effort. Demands on stroke survivors pedalling early after 

onset are likely to be considerable as they attempt to re-establish coordinated 

movement patterns following damage to motor control systems. If able to achieve 

higher cadences, motor units are required that can rapidly activate and deactivate 

to meet the increasing frequency of the task (Ansley and Cangley, 2009) but at 

slower speeds it is possible that agonist/antagonist co-contraction, with its 

associated negative work, contributes to less smooth movement. This is reflected in 

the patterns observed in the third illustrative case from the feasibility study, where 

co-contraction is evident in both affected and unaffected legs and one of the least 

smooth pedalling sessions was observed, at a speed of less than 40rpm. Indeed, 

here and in the two other cases for which reciprocity was calculable for both legs, 
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increased co-contraction was evident in the unaffected limb. It is possible here that, 

as observed in previously published data, the affected limb might be increasing 

negative work done throughout the cycle which in turn puts increased work on the 

unaffected limb of stroke survivors (Kautz and Brown, 1998). Again, measurement 

over a number of days of intervention is further indicated in order to establish if 

there was any improvement in reciprocity of the unaffected leg correlating with 

improvements in the affected leg.  

7.3.3 The feasibility of participating in reciprocal pedalling (Upright 

Pedalling) activity early after stroke: limitations 

The small numbers of stroke survivors included in the feasibility study necessitated 

cautious interpretation of all data. Numbers were insufficient to inform decisions 

about potential prognostic indicators or clinical efficacy of the newly developed 

intervention. Observations relating to characterising movement related largely to 

single participants pedalling during single sessions. Additionally, though EMG 

methods were the same for each participant for whom movement characteristics 

were reported, for hamstrings, the use of the technique with very early stroke 

survivors necessitated a slight adaptation to published guidelines which may have 

led to less reproducible methodology (Appendix III). However, the interpretation to 

this point has not suggested definitive answers, but, it is hoped, has made 

reasonable, justified proposals for moving forward with this programme of research 

in the future.  

7.3.4 The feasibility of participating in reciprocal pedalling (Upright 

Pedalling) activity early after stroke: conclusions and recommendations 

Results discussed to this point indicate that it is feasible for people early after stroke, 

with considerable weakness and unable to walk, to take part in Upright Pedalling.  

The current study was not able to determine potential clinical efficacy of the 

intervention due to high attrition but was able to indicate that it would be possible 

to carry out a pilot randomised controlled trial of the intervention in alternative 

settings early after stroke. 
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Additionally, these data have demonstrated the importance of assessing muscle 

performance at a detailed physiological level in order to understand the movement 

patterns underlying functional activity. This study, incorporating the methods 

developed for processing and analysing EMG data in Chapter 6.0, has elucidated 

scientific methodology for assessing movement during functional activity after 

stroke, advancing methods of analysing human movement after stroke in 

functionally relevant postures.  The foundations for future study investigating 

potential benefits have been laid down and work is currently underway to pursue 

further research funding.  

 

7.4 Investigating measures of lower limb impairment after stroke 

made during Upright Pedalling 
 

7.4.1 Summary of findings 

This section of the work addressed study aims 2b, 2c and 2d by using a clinical 

measurement study. 

The study found that: 

• There are indications that the measurement of lower limb motor 

impairment as expressed by changes in muscle activation timing: 

a) has some discriminatory ability between stroke survivors and healthy 

volunteers for the quadriceps muscle (aim 2c);  

b) has fair test-retest repeatability  for affected side quadriceps and 

hamstrings in stroke survivors (aim 2b);  

c) has substantial test-retest repeatability in quadriceps and fair test-retest 

repeatability in hamstrings in healthy older adults (aim 2b);  

 d) demonstrates a borderline significant relationship with a commonly used 

clinical measure of lower limb motor impairment, the Motricity Index (aim 

2d) 
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• There are indications that the measurement of lower limb motor 

impairment as expressed by reciprocity of muscle activity has some 

discriminatory ability between stroke survivors and healthy volunteers (aim 

2c) 

• It was not possible to make reliable estimates of the magnitude of the test-

retest repeatability of the measurement of lower limb motor impairment as 

expressed by changes in reciprocal activation and smoothness of pedalling in 

this sample of stroke survivors (aim 2b) 

• There was no relationship between the measurement of lower limb motor 

impairment as expressed by changes in reciprocal activation and 

smoothness of pedalling and commonly used measures of motor 

impairment and walking ability (aim 2d) 

A simple summary of key findings from the investigation of psychometric properties 

according to each measure is presented in table 27, with reference to the original 

data table in each column heading. 

7.4.2 Discussion of findings 

It is important that measurement studies are carefully designed to ensure that 

interpretations can be made with confidence. For example, it is essential that the 

psychometric properties of measures are investigated in a suitable number of 

participants with a wide range of deficits to improve generalisability of findings 

(Barack and Duncan, 2006). Hence, before discussing the findings directly related to 

the study aims, consideration will be given to the recruitment and characteristics of 

the study sample. 
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Table 27: Summary of key findings from investigation of psychometric properties of Upright Pedalling derived 

measures (chapter 6.0) 

 Psychometric properties  

Measurement 

expressed by: 

Discriminatory 

ability: HV and StrS 

(tables 20  & 22) 

Test-retest 

repeatability⃰ 

(tables 23, 24 & 25) 

Association:  

FAC (StrS only) 

(tables 26a & 

26b) 

Association:    

MI (StrS 

only)(tables 

26a & 26b) 

 

Muscle 

activation 

timing 

PCA demonstrated 

significant difference 

in component 2 

scores- quadriceps 

activity pattern 

according to wheel 

bin: evidence of 

discriminatory ability. 

Non-significant 

difference in 

hamstrings activity: 

no evidence of 

discriminatory ability 

StrS: Fair for affected 

quadriceps [ICC=0.46 

(0.32, 0.58)] and 

affected hamstrings 

[ICC=0.43 (0.28, 

0.56)] 

HV: substantial for 

quadriceps [0.76 

(0.65, 0.84)], fair for 

hamstrings [0.56, 

(0.39, 0.69). 

No association No association 

any 

parameter, 

though 

borderline 

significant 

relationship 

with affected 

quadriceps 

Reciprocity 

(affected limb) 

Significant 

difference: 

evidence of 

discriminatory 

ability  

Unable to reliably 

determine for either 

group, very wide 

confidence intervals 

around ICC point 

estimates 

No association No association 

Reciprocity 

(unaffected limb) 

Non-significant 

difference, no 

evidence of 

discriminatory 

ability 

 

Unable to reliably 

determine for either 

group, very wide 

confidence intervals 

around ICC point 

estimates 

No association No association 

Smoothness Non-significant 

difference, no 

evidence of 

discriminatory 

ability 

 

Unable to reliably 

determine for either 

group, very wide 

confidence intervals 

around ICC point 

estimates 

No association No association 

Abbreviations: FAC: Functional Ambulatory Categories; MI: Motricity Index; StrS: stroke survivors; HV: healthy 

older adult volunteers. ⃰ Repeatability: fair when the ICC lower limit 95% CI= 0.21 to 0.40, substantial when ICC 

lower limit 95% CI= 0.61 to 0.80 

The main recruitment strategy adopted, which involved presentation of study 

information at local stroke groups, proved largely successful, with 26 out of the 

intended sample size of 30 stroke survivors providing informed consent. It was not 

possible, within the study timeframe, to recruit the final four participants. 

Recruitment of healthy older adults from the local community was successful with 

ten participants providing informed consent as per the protocol. 
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Numbers of stroke survivors actually measured were reduced as six participants had 

blood pressure above study limits on the day of measurement. These data should 

be considered when planning further pedalling studies recruiting community 

dwelling stroke survivors. Blood pressure limits to participation are necessarily 

cautious for activity based studies; but, as demonstrated in the current study, such 

limits might reduce the sample size by over 20%. Hence, intended samples for 

future studies might need to be larger than sample size calculations from 

measurement effects alone would suggest. In the current study, data according to 

study aims (sections 7.4.2i-iv) have been interpreted and recommendations made 

with due caution as the number of participants eventually taking part in the 

measurement sessions was less than the intended sample size. 

However, two key elements of the study design were met by those eighteen 

participants successfully taking part in the measurement sessions: 

Firstly, stroke survivors had a broad range of walking ability and lower limb activity 

(FAC range 1 to 5; Motricity Index mean score 66.2, range 38 to 92). This enabled 

the reliability and validity to be explored in a representative sample of stroke 

survivors, who commonly demonstrate a wide range of motor and ambulatory 

abilities. It is important when examining the results of evaluations of rehabilitation 

measurement tools that the performance of the measure is interpreted with 

reference to the population sample used for its assessment (Salter et al. 2005). 

Reliability, for example, is only an indicator of how reliably a measurement tool 

functioned within the sample on whom it was tested; hence an investigation of the 

psychometric properties of a measure in a sample with varied characteristics, such 

as was illustrated in the study here, might improve clinical applicability.  

Secondly, whilst at 60.1 years (range 41.25 to 75.83 years), the mean age of the 

stroke survivors was below the mean age of stroke onset in the UK (75 years), age-

matching to the healthy volunteers (mean 58 years, range 51.92 to 68.67 years) was 

broadly successful. It would, therefore, have been unlikely that any non-stroke 

related effects of ageing on muscle function during pedalling would have had an 

impact on activity recorded. It was unsurprising that the range of ages of healthy 
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volunteers was narrower than that of the stroke survivors, as the majority of the 

healthy volunteers were staff working at UEA and hence had not reached 

retirement age.  

Therefore, recruitment to and participation in the study had mixed success- whilst 

initial numbers providing informed consent were good, some did not meet inclusion 

criteria and hence numbers actually participating were reduced by 20%. 

Additionally, the intended strategy of recruiting participants with a broad range of 

characteristics, and age-matched to the healthy older adults, was successful, 

increasing the possible clinical relevance and generalisability of findings. 

A discussion of results according to specific study aims now follows. 

7.4.2i Discriminatory ability of UP measures after stroke (aim 2c): 

measurement of reciprocal activity 

Differences between measures of reciprocal activity recorded for stroke survivors 

and healthy volunteers pedalling at 40rpm, the closest pedalling cadence to that 

adopted by the stroke survivors, were quantified using two-sample t tests.  

A significant difference was found for reciprocity of the affected limb of the stroke 

survivors as compared to the test limb of the healthy volunteers (p=0.044) but the 

difference was non-significant for the unaffected limb (p=0.208). The significant 

difference is suggestive of discriminatory ability for the measure of affected limb 

reciprocity in comparison with lower limb activity of healthy older adults.  

The non-significant difference between the unaffected limb of the stroke survivors 

and the test limb of the healthy volunteers is a finding with potential clinical 

interest.  It is possible that this is indicative of a lack of altered, compensatory 

activity in these later stage stroke survivors’ unaffected limbs during pedalling. This 

is in contrast to the findings from a small number of earlier stroke survivors 

(discussed in 7.3.2ii&7.3.2iii) where considerably altered reciprocal activity in the 

unaffected limb was demonstrated. However, it is likely that in the very early stroke 

survivors, none of whom could walk, recruitment strategies for muscle activity were 

variable due to the early stages of neural recovery, whereas in the later participants 

muscle activity patterns were established. The later stage participants had 
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repeatedly practised reciprocal bilateral lower limb activity as a result of being 

mobile to some extent, with or without assistance. They were able to demonstrate 

phasic activity in their unaffected limb which was not significantly different to the 

test limb of healthy volunteers.  

With reference to the aims of the current study, there is therefore some evidence 

that measuring reciprocity in the affected limb of stroke survivors has 

discriminatory ability in comparison to the same measure in healthy older adults. 

Additionally, there may be wider implications here for the possible use of UP as a 

clinical rehabilitation tool- if later stage stroke survivors are able to generate phasic 

activity in the unaffected limb similar to that observed in healthy volunteers during 

pedalling, despite weakness in the affected limb, then UP might provide a targeted 

therapy for the affected limb without non-phasic, compensatory activity in the 

unaffected limb.  

Therefore, alongside findings of possible discriminatory ability for this measure, it is 

possible that, as proposed early in this thesis, more normal movement patterns 

might be facilitated using UP.  

7.4.2ii Discriminatory ability of UP measures after stroke (aim 2c): 

measurement of smoothness of pedalling 

Differences between measures of smoothness of movement in stroke survivors and 

healthy volunteers were quantified using a two-sample Wilcoxon test.  

There was no significant difference observed between groups; mean smoothness 

measures were similar, with healthy volunteers pedalling only slightly more 

smoothly than the stroke survivors (S-Ped stroke survivors =0.017 [SD 0.005]; S-Ped 

healthy volunteers=0.014 [SD 0.0015]). Standard deviations for the stroke survivor 

group were wide, suggesting heterogeneity in the stroke survivor group possibly 

reflective of their broad range of abilities. Indeed, it is possible that the reason that 

there were no clear differences between the healthy volunteers and the stroke 

survivors is that the spectrum of ability across the stroke survivors was broad. 

However, whilst this finding suggests that the measurement of smoothness might 

not be discriminatory between the two groups, it is another finding with 
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implications for UP as a potential clinical rehabilitation tool. The observation that 

stroke survivors can pedal in a similarly smooth manner to healthy older adults, 

suggests that UP might be providing, in terms of smoothness, a repetitive 

movement experience that is close to normal for the stroke survivors, at cadences 

of 40rpm and above. Similarly to 7.4.3i, the implication here is that the movement 

experience is more normal and hence provides an opportunity for the targeted 

behavioural activity required to drive beneficial brain change after stroke, identified 

as a principal underpinning stroke rehabilitation in the background to this thesis 

(Chapter 1.0).  

Such an interpretation is, however, made with caution. Due to the coupled nature 

of the activity, it is of course possible that the unaffected limb is responsible for 

much of the smoothness of the movement. This might be reinforced by the findings 

discussed in section 7.4.2i; that the unaffected limb of later stage stroke survivors 

moves in a similar reciprocal manner to the test limb of healthy volunteers. 

However, this is not necessarily detrimental, as the end result of this coupled 

activity is the repetitive practice of a smooth, bilateral movement, using skilled and 

not compensatory movement in the unaffected limb.  

Findings of similarities of smoothness of pedalling in stroke survivors and healthy 

volunteers contrast to the only other data available for such a measure (Chen et al. 

2005). This small study found that smoothness was significantly lower in subjects 

with hemiplegia (n=13) than those without (n=8). However, closer inspection of 

Chen et al.’s (2005) analysis revealed that smoothness was calculated in a different 

way to the current study, using instantaneous velocity over four simple wheel 

phases, making direct comparisons with the current study difficult. Additionally, 

data were collected during semi-recumbent cycling; it may be that the upright 

posture used in the current study enabled stroke survivors to achieve more normal 

movement and hence similar smoothness to healthy older adults. Finally, the 

subjects without hemiplegia in Chen et al.’s (2005) study were considerably younger 

than those in the stroke survivor group; hence, unlike the current study, 

comparisons of performance did not consider age-related contributory factors. 
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In the current study, whilst smoothness of pedalling did not demonstrate 

discriminatory ability between stroke survivors and healthy volunteers, 

measurement of this parameter across the two groups illustrates possibly clinically 

important similarity of movement performance which might support the further 

development of UP as a potentially beneficial rehabilitation tool. 

7.4.2iii Discriminatory ability of UP measures after stroke (aim 2c): 

measurement of muscle activation timing 

Differences between stroke survivors and healthy volunteers for the measurement 

of muscle activation timing required careful analysis as these data were expressed 

over multiple wheel phases during pedalling. The studies presented here used a 

very detailed system of analysing activity using percentage “on” within each of eight 

wheel bins (section 4.5.3iii). Previous studies, whilst emphasising the importance of 

activation timing over muscle activity levels for evaluating movement patterns, 

have only used four wheel phases and have generally decided “muscle on” or 

“muscle off” within each phase (e.g. Brown et al. 1997; Brown and Kautz, 1999). It 

was appropriate to design and adopt such a more comprehensive system in this 

developmental work, to ensure that movement was characterised in the most detail 

possible to capitalise on knowledge acquired for future studies. A multivariate 

Analysis of Variance was used to quantify any differences here between stroke 

survivors and healthy volunteers. 

A significant difference was observed for the activation pattern for quadriceps over 

the eight wheel bins, but not for hamstrings. Hence, this was suggestive of 

discriminatory ability of muscle activation timing measures between stroke 

survivors and healthy volunteers for quadriceps muscles. An additional Principal 

Components Analysis confirmed this suggestion, with a significant difference 

between loadings for each wheel bin for stroke survivors and healthy volunteers, in 

the second component.  

The possibility of the measurement of quadriceps activation timing being a useful, 

discriminatory impairment measure after stroke is particularly pertinent, as 

quadriceps is a primary producer of the extensor forces required during recovery of 
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walking function. Hence a measure that might be sensitive to underlying changes in 

quadriceps muscle activation during a walking-like activity has potential clinical, as 

well as physiological, importance. 

7.4.2iv Repeatability of UP measures after stroke (aim 2b) 

It was essential to quantify the test-retest repeatability of the pedalling measures, 

as, in clinical practice, such measures are used across multiple treatment visits and 

thus need to accurately measure change over time in the same participant. 

Furthermore, it is well known that variability in EMG derived measures can originate 

during measurement (Hug and Dorel, 2009) and that measurement can be affected 

by factors such as skin impedance and electrode placement. Natural variability in 

muscle is likely to be higher in stroke survivors. The current study was designed to 

minimise these effects as far as was possible- skin preparation and electrode 

placement were done by the same therapist, and the testing sessions were carried 

out on the same day with a rest period in between, avoiding day to day variability in 

muscle performance and allowing for a more confident interpretation of findings. 

An adaptation from published guidelines to participant positioning for electrode 

placement and placement of electrodes for hamstrings was necessitated when 

working with stroke survivors taking part in U-PeD (Appendix III) but this was a 

consistent adjustment across all participants. 

7.4.2v Test-retest repeatability of UP measures in healthy volunteers and 

stroke survivors (aim 2b): reciprocal activation and smoothness 

It is important to note here that 95% confidence intervals around the intra-class 

correlation coefficient (ICC) values were very wide for both measures in both the 

healthy volunteers and the stroke survivors, at times crossing zero. This is likely to 

be a result of the small sample size here (n=17) but it is also possible that there was 

considerable heterogeneity within the populations tested. Hence, any observations 

of agreement or otherwise between sessions from the calculations of intra-class 

correlation coefficients cannot be substantiated with any precision, and remain, 

from this data set, simply observations.  Had the predicted sample size of 30 been 

achieved, more precise results and hence more meaningful conclusions might have 

been attained. These data are insufficient to recommend or reject the clinical use of 
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the measure but might enable sample size calculations for future studies aiming to 

definitively quantify the magnitude of any test-retest variance. 

The observation of possibly improved test-retest repeatability at higher pedalling 

cadences in healthy volunteers is of note, though the interpretation is made with 

caution in the light of the wide confidence intervals already noted.  It is likely that 

the higher pedalling cadences were more comfortable for this group of older adults. 

Optimal cadence pedalling cadence is known to be affected by both individual and 

external factors and is very challenging to determine, though 50 to 70 rpm is 

considered metabolically optimal (Ansley and Cangley, 2009); hence the higher 

cadences in this study may have been more naturally achievable for this group. A 

cadence of 50rpm, the cadence at which the point estimate for the ICC suggested 

substantial repeatability of reciprocal activation for the healthy volunteers, is 

analogous to normal walking pace (100 steps per minute; Katz-Leurer and Shochina, 

2005); suggesting that these measures might be more repeatable at cadences 

similar to walking pace. However, this is an observation which cannot be fully 

substantiated from the current data due to the wide confidence intervals. 

At lower cadences, it was likely that some “grading” of activity to control the 

momentum of the crank was occurring and healthy older adult participants had to 

constantly moderate their muscle activity to meet the challenge of keeping to the 

target speed. Such constant fluctuation possibly led to less phasic and smooth 

movement patterns, which may have been difficult to repeat between sessions.  

Stroke survivors certainly found a higher cadence easier to achieve- they adopted 

close to 40rpm as their comfortable pedalling speed. ICCs for this group were 

observed to be lower than for the healthy older adults for measures of both 

reciprocity and smoothness, an interpretation again made with necessary caution 

due to the wide confidence intervals. This potentially reduced repeatability is 

possibly related to the fact that the stroke survivors were participating in an activity 

that was challenging to them and a degree of acquisition of motor skill was required 

across sessions, which may have made phasic activity and smooth pedalling less 

repeatable. 
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Further work is indicated to determine the magnitude of any test-retest variability 

with improved precision. 

7.4.2vi Test-retest repeatability of UP measures in healthy volunteers and 

stroke survivors (aim 2b): muscle activation timing 

Repeatability for the measurement of muscle activation timing was substantial in 

quadriceps of healthy volunteers and moderate in the unaffected quadriceps of 

stroke survivors. In the affected leg of stroke survivors, only fair correlations were 

observed. These data were supported with more precise 95% confidence intervals 

than those of the preceding two measures. Whilst they are insufficient to 

recommend the clinical use of the measure from this small sample size, they might 

enable sample size calculations for future studies aiming to definitively quantify the 

magnitude of any intersession variance. 

Measurement of muscle activation timing parameters are particularly relevant 

when studying impairments, as they provide indications of the underlying strategies 

adopted to achieve a movement. It is therefore surprising to find that little work has 

been done to explore the psychometric properties of these measures in healthy 

volunteers, and to the best knowledge of the author here, there has been no work 

quantifying their repeatability in stroke survivors. Dorel et al. (2008) examined 

repeatability of muscle activation patterns in 10 lower limb muscles of eleven tri-

athletes, before and after a 53 minute training session. In general, muscle activation 

timing parameters were found to have good repeatability before and after the 

session, though repeatability for Vastus Medialis was weak in terms of onset of 

activity. These authors used a simple burst onset and offset point to define 

activation timing.  In contrast, the repeatability work reported in this thesis used 

actual percentages of activity above a pre-determined baseline within each wheel 

bin to define activation; hence quantifying the activation in considerable detail, 

which may have also increased the likelihood of variability over and above that  

likely to occur with simple “on/off” decisions. 

 Jobson et al. (2012) also note the lack of investigations in this area and recently 

expanded Dorel et al.’s (2008) work. They explored both intra- and inter-session 
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reliability of muscle activation patterns using a group of experienced cyclists and 

one of non-cyclists. Inter-session repeatability of timing parameters was found to 

be good in both groups, better than intra-session repeatability.  

Whilst both of these reliability studies provide an interesting bank of data on 

muscle activation timing in healthy adults, data from elite athletes and younger 

volunteers is in no way comparable to that from healthy older adults or stroke 

survivors. In fact, the study presented in this thesis provides the first set of test-

retest data for the measures derived during upright pedalling in stroke survivors 

and older adults, and it is hoped it will provide a platform for future work. 

Other observations from Jobson et al. (2012) are of further relevance to the 

methods employed in the current study. One conclusion of their work is that 

systems to advance the evaluation of muscle activity patterns might employ more 

advanced analysis techniques to avoid arbitrary selection of threshold for defining 

patterns. It is hoped, that for both the studies presented in this thesis, careful 

consideration was given to this matter and justifiable, transparent and repeatable 

methods of EMG processing and analysis were adopted, strengthening the 

foundations for future work. 

7.4.2vii Associations with commonly used measure of motor impairment 

(aim 2d) 

Using Spearman’s rank correlation coefficient, there were no significant correlations 

between the derived measures of reciprocal activation or smoothness of pedalling 

and the Motricity Index as a measure of motor impairment or the Functional 

Ambulatory Categories as an indication of walking ability. These findings suggest 

that it would not necessarily be appropriate to use the UP derived measures 

interchangeably with the MI to measure impairment nor to predict walking 

capability and, therefore, the measures have not demonstrated concurrent validity 

with the chosen clinical measures in this study. However, this lack of correlation 

might indicate that the measures recorded during UP are measuring a different 

aspect of motor function to the commonly used clinical tools.  
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Correlations of borderline significance (p=0.06) were demonstrated between the 

measures of muscle activation timing in the affected quadriceps of stroke survivors 

and the Motricity Index. As for the other measurement properties (repeatability 

and discriminatory ability), it is the measurement of an aspect of quadriceps 

function that demonstrates (borderline) significance. In this case, it is possible that 

there this borderline correlation reflects that one third of the MI scale consists of 

measurement of knee extension and the measure of muscle activation captures 

percentage of quadriceps activity on during the extensor phase of pedalling, so 

some similarity of activity was represented. However, it should be noted that even 

if of borderline significance, any correlation was not strong, with r=0.153 for this 

measure.  

However, the above findings were only of borderline significance and there were 

non-significant relationships for all other aspects of the derived measures. In 

general, this lack of significant association with the MI is possibly due to the nature 

of the derived measures. The EMG measures and the smoothness measure were 

derived from very detailed analysis of physiological behaviour underlying the 

production of movement during pedalling. The MI, whilst still regarded as an 

impairment measure, is a rudimentary, “hands-on” tool for measuring the end 

output of that physiological function- voluntary muscle contraction. It may be that 

the measures derived during pedalling are indicative of “pre-clinically-observed 

change.”  Hence, it is possible that this level of measurement could provide 

indications of beneficial change before such change is observed with clinical 

measurement.  As discussed during the interpretation of data from study two, this 

contention needs exploring in future studies that adopt these measures over a 

number of time points as participants take part in a further pilot study of UP.  

7.4.3 Investigation of measures of lower limb impairment after stroke 

made during Upright Pedalling: limitations 

The discussion and interpretation of the results from study three have been made 

with appropriate caution; the anticipated sample size for the stroke survivors was 

not met, and hence, in particular for the analyses of test-retest repeatability for two 

of the measures, confidence intervals were extremely wide. This seriously limits the 
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application of current findings to wider practice and, as such, the measures require 

further investigation to establish the magnitude of variance between testing 

sessions. 

7.4.4 Investigation of measures of lower limb impairment after stroke 

made during Upright Pedalling: conclusions and recommendations 

There were some indications that instrumented UP could be used to discriminate 

between stroke survivors and healthy age-matched volunteers in the both the 

timing of onset and offset muscle activation and reciprocal activation in quadriceps 

during pedalling.  Thus further work is justified.   

Subsequent research is also indicated in order to determine the magnitude of intra- 

and inter-participant variance between testing sessions and data from this study 

could be used to inform sample size calculations for definitive investigation of test-

retest repeatability.      

Additionally, findings from the measurement study have also provided some 

possibly important indications for the use of UP as a potential rehabilitation tool; in 

particular, in terms of demonstrations of both similarity of smoothness of pedalling 

between stroke survivors and healthy volunteers and of reciprocal activation of the 

unaffected leg of stroke survivors and healthy volunteers. 

 

------------------------------------------------------------ 
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Chapter 8.0: Thesis Conclusions, Limitations and Directions for 

Future Work 

 

8.1 Introduction 

 

The purpose of this final chapter is to summarise the conclusions arising from the 

studies presented in this thesis; and to indicate possible directions for future work. 

8.2 Conclusions 

 

The conclusions are presented according to the chapters of the thesis. 

8.2.1 Conclusions: Background review (Chapter 1.0) 

The background to this work highlighted that investigating stroke rehabilitation 

interventions is a current UK research priority, due to the considerable impact of 

this life-altering condition on individuals, those who care for them and on wider 

society. Stroke survivors identify recovery of walking as an important goal and 

physiotherapists need evidence based interventions that might help people to 

achieve this goal. 

It was recognised that stroke rehabilitation research programmes should 

incorporate the identified underlying principles of rehabilitation, including 

investigating the effects of functional, repetitive interventions for the lower limb in 

the important early period after stroke. 

It was further elucidated that reciprocal pedalling exercise might incorporate the 

identified principles and offer opportunities for the promotion of walking-like 

activity early after stroke. Furthermore, it was proposed that reciprocal pedalling 

exercise might allow detailed characterisation of movement to better understand 

the muscle activity underlying the functional movement and the possible effects of 

the intervention. It was illustrated that opportunities for such characterisation of 

functional, reciprocal movement early after stroke were very limited. It was also 

suggested that UP might enable the derivation of sensitive measures of lower limb 
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motor impairment to inform important clinical decisions on progress, again with 

illustration that opportunities for recording of such measures during functional 

movement after stroke are few. 

8.2.2 Conclusions: Systematic Review (Chapter 3.0) 

During preparation of the background to the work, it became apparent that, whilst 

there were some suggestions in the current literature that pedalling might be a 

beneficial intervention for the recovery of motor function after stroke, there had 

been no comprehensive synthesis of available data. Hence, the first study in the 

thesis (Chapter 3.0) was a systematic review of the current studies investigating the 

effects of reciprocal pedalling exercise on motor function after stroke (Hancock et al. 

2012), carried out according to Cochrane methodology. 

A narrative synthesis, including both randomised and non-randomised studies, 

indicated that there was some, but limited, support for pedalling exercise benefiting 

muscle activity, muscle strength, balance, and functional independence after stroke, 

from early phase studies. However, inter-study heterogeneity, small sample sizes, 

wide confidence intervals for effect sizes, and the risks of potential biases suggested 

that the evidence was not sufficiently robust to support or refute the use of 

reciprocal pedalling exercise to enhance recovery of motor function after stroke. 

However, proof-of-concept for pedalling interventions was demonstrated.  

Importantly for the ensuing studies in the thesis, the systematic review also found 

that the devices most favoured for pedalling interventions were recumbent or semi-

recumbent ergometers; studies did not incorporate pedalling in upright postures, 

which might improve task-specificity for walking training. Additionally, there was 

limited investigation of pedalling interventions in early stroke survivors in acute 

settings and less than half the included studies were designed to primarily 

investigate effects on motor function after stroke. Hence, these conclusions from 

the review provided an evidence-based platform for the design of the ensuing 

feasibility study. 
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8.2.3 Conclusions: Establishing methods for investigation of reciprocal 

pedalling after stroke (Chapter 4.0) 

The work presented in this thesis was in the early, developmental phase and as such, 

it was considered particularly important to justify and describe transparently the 

methods adopted. Clearly described decisions in early phase work can provide more 

solid foundations from which to build future research and hence increase 

opportunities for resultant work to translate to clinical practice. This chapter 

therefore presented justification of the tools, techniques, measures and procedures 

adopted for the studies presented in chapters 5.0 and 6.0, using published work 

where appropriate. 

Firstly, current evidence indicated that equipment enabling pedalling in upright 

postures might allow movement experience in a more normal, functional posture 

and hence provide greater task-specificity for walking training. An upright pedalling 

device (U-Ped), incorporating postural support and adjustable seating enabling 

pedalling in an upright posture, was therefore selected for use. Additionally, as the 

importance of characterisation of movement during this functional activity had 

been established (chapter 1.0), an instrumented system for capturing muscle 

activity according the crank angle, within 45 degree segments, or “wheel position 

bins” was incorporated. 

Secondly, chapter 4.0 exposed some challenges in using previously published work 

to inform methods for processing and analysing the EMG signal. A critique of twelve 

pedalling studies that incorporated measures derived using surface EMG, exposed 

inconsistent reporting of justification for use of filters, integrating EMG data, 

establishing a resting signal and quantifying activity bursts. No clear set of 

procedures for adoption for use in the current work was apparent. A lack of clarity 

of such procedure was not considered acceptable in this developmental work and 

hence clearly described, replicable procedures for EMG processing and analysis 

were presented for the studies herein. Algorithms were designed with clearly 

defined pathways for the use of additional filtering, and for any alteration to the 

pre-defined system for deciding “ons” and “offs” of activity bursts. A novel method 
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for precisely quantifying “ons” above the established baseline was presented, using 

percentage of time “on” for each of the 45 degree position bins within each turn. 

Finally, the chapter presented the measures chosen and procedures common to the 

experimental studies. A range of measures were selected to best explore both the 

movement underlying the pedalling activity and its potential effects on function, 

from biological measurement of muscle activity including reciprocity and muscle 

activation timing, through to functional ambulation.  

8.2.4 Conclusions: Investigating the feasibility of participating in 

reciprocal pedalling (Upright Pedalling) early after stroke (Chapter 5.0) 

A feasibility study, investigating participation in UP early after stroke, was carried 

out in an acute hospital setting (Chapter 5.0). 

The findings from this first experimental study indicated that it was feasible for 

people early after stroke, with considerable weakness and unable to walk, to take 

part in Upright Pedalling. 84.6% (n=11) of early stroke survivors that made an initial 

attempt (n=13) could take part in Upright Pedalling. No adverse events were 

recorded. No participants chose to withdraw from the study. 

However, recruitment rates on the acute stroke unit where this research was 

situated were low, with 4.6% (n=19) of those early stroke survivors screened eligible 

to participate in the study. Additionally, only 2.2 % (n=9) of those early stroke 

survivors screened were eventually randomised to the relevant part of the study, 

with no participants taking part in UP on ten consecutive days in the acute stroke 

unit setting. The high attrition was due to a major reconfiguration of local stroke 

services during the period of study. No participants chose to withdraw themselves 

from the study, one was unable to continue due to a serious unrelated event.  

Whilst the study was not able to determine potential clinical efficacy of the 

intervention due to high attrition but was able to indicate that it would be possible 

to carry out a pilot randomised controlled trial of the intervention in alternative 

settings early after stroke.  
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Though attrition rates were disappointing, they provided, along with every other 

aspect of carrying out this type of research in an acute stroke unit, tremendous 

learning opportunities for the author’s future research career and the experience 

gained will be used in developing future protocols. For example, detailed 

assessment of length of stay data at potential sites, development of more than one 

prototype U-Ped and sufficient research staff to enable possible data collection at 

more than one site, might all be indicated as future protocols are developed. 

However, important data were collected during the study, particularly that which 

demonstrated the importance of assessing muscle performance at a detailed 

physiological level, in order to understand the movement patterns underlying 

functional activity. The study, incorporating the methods developed for processing 

and analysing EMG data in Chapter 4.0, elucidated scientific methodology for 

assessing movement during functional activity early after stroke, advancing 

methods of analysing human movement early after stroke in functionally relevant 

postures.   

The study provided foundations for future work investigating potential benefits of 

UP early after stroke. 

8.2.5 Conclusions: Investigation of measures of lower limb impairment 

after stroke made during Upright Pedalling 

A prospective measurement study was carried out in a university laboratory, in an 

attempt to establish aspects of the validity and reliability of measures made during 

instrumented UP. The measures investigated were: muscle activation timing, 

reciprocity of lower limb movement, and smoothness of movement. Participants 

included stroke survivors (n=18)  with a broad range of clinical characteristics and a 

group of age-matched healthy volunteers (n=10). 

The study concluded that there were some indications that instrumented UP could 

be used to discriminate between stroke survivors and healthy age-matched 

volunteers in both the timing of onset and offset muscle activation and reciprocal 

activation in quadriceps during pedalling.  Also for the measurement of muscle 

activation timing, fair test-retest repeatability for the affected quadriceps and 
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hamstring muscles was demonstrated in the stroke survivors, and substantial test-

retest repeatability for the affected quadriceps was demonstrated in the healthy 

older adults. Whilst clinical recommendations about measurement of muscle 

activation timing could not be made at this stage, due to the low sample size, these 

data indicate that further research into this measure is indicated. 

There was no evidence of discriminatory ability for reciprocity of movement of the 

unaffected limb of stroke survivors in comparison with the test limb of healthy older 

adults, nor for smoothness of movement between stroke survivors and healthy 

older adults. Additionally, it was not possible to determine the magnitude of intra- 

and inter-participant variance between testing sessions for the measurements of 

reciprocity or smoothness of movement with sufficient precision to make clinical 

recommendations. This was most likely due a low sample size. However, it will be 

possible to use data from this study to inform sample size calculations for future 

definitive investigation of test-retest repeatability.      

It was especially interesting to the over-arching theme of this thesis that some 

findings of the measurement study also provided possibly important indications for 

the use of UP as a potential rehabilitation tool. In particular, there were 

demonstrations of both similarity of smoothness of pedalling between stroke 

survivors and healthy volunteers and of reciprocal activation of the unaffected leg 

of stroke survivors and the test limb of healthy volunteers. These findings might 

suggest that UP is providing opportunities for lower limb activity similar to that 

experienced by healthy older adults without abnormal compensatory activity in the 

unaffected lower limb. This finding feeds back into the aims established for the 

feasibility study and further justifies future investigation of the efficacy of the 

intervention. 

This work has therefore provided early indications for the use of U-PeD as a 

rehabilitation, assessment and measurement tool after stroke. Further work is 

indicated and planning for this work is underway (section 8.4). 
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8.3 Limitations and strengths of the work 

 

8.3.1 Limitations 

The main limitation of the systematic review was, due to resource constraints, a 

lack of completely independent data extraction by a second reviewer.  Extraction 

was carried out by the lead reviewer, leading to potential bias. However, the 

independent reviewer was consulted on any queries and monthly supervision of the 

review was undertaken by an experienced third party. 

It is also possible that there was some influence by a publication bias as the search 

was limited to studies written only in English. However, studies included were 

carried out across a variety of international centres.  

In general, both experimental studies were limited by reduced sample size. For the 

acute clinical study, this was due to necessarily stringent inclusion criteria for this 

very early rehabilitation study and ensuing high attrition due to service 

reorganisation. For the measurement study, the sample size initially recruited in the 

given timeframe was reasonable, but with reduced participation in the 

measurement sessions themselves predominantly due to participants not meeting 

one of the inclusions criteria on the measurement days (blood pressure). 

Some more specific limitations must be considered when concluding this body of 

work, and these are outlined below: 

• The aims of the studies did not include qualitative investigation of the 

acceptability of taking part in UP. Whilst it was very promising that 84.2% 

(n=16) of those approached (n=19) provided informed consent to participate, 

and no-one attempting to pedal chose to withdraw from the study, a future 

mixed-methods design could provide a deeper understanding of the 

acceptability of participation in UP. Data collected from the feasibility study 

has provided a platform for a future pilot protocol to include working 
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iteratively with stroke survivors, their carers and therapists, to investigate 

their perceptions of the acceptability of UP (section 8.4) 

• The U-PeD is a prototype and hence studies were limited by the availability 

of only one such device. The challenges faced in terms of reorganisation of 

local stroke services might have been more manageable with increased 

availability of upright pedalling equipment; however, the overarching nature 

of work presented herein is developmental and initial studies using only the 

existing prototype were justifiable at this stage 

• Accessibility to the prototype U-PeD and positioning on the device required 

use of a hoist and two staff members to assist early stroke survivors. For the 

more mobile stroke survivors in the investigation of UP derived measures , 

use of a step to access the device was sufficient. Accessibility to the device 

for future studies and potential clinical use needs further consideration.  

• Randomisation in blocks of four was used for the feasibility study; this 

method is likely to lead to the researcher being able to predict group 

allocation and introduce potential bias. This method needs reconsideration 

for future protocols.  

• Work with stroke survivors with substantially reduced mobility necessitated 

some minor adaptations to published guidelines on participant position for 

electrode placement and to positioning of electrodes for data collection 

from hamstrings. Such adaptations were pragmatic when working with this 

participant group and the same adaptations were made for every participant 

so that data might be compared across participants. However, if more than 

one researcher at more than one research site were to be involved in future , 

training would be required to minimise potential biases from these changes.  

The impact of limitations has been documented where relevant throughout the 

thesis and, where appropriate, results were interpreted with reference to those 

limitations.  
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8.3.2 Strengths 

The studies presented in this thesis are novel investigations of a new potential 

rehabilitation intervention for use after stroke. New knowledge has been delivered, 

on the ability of early stroke survivors to take part in UP and the potential 

discriminatory ability and test retest repeatability of UP measures of impairment.  

The work has been demonstrated to be of publishable quality, including 

international, scientific peer reviewed journal articles (Hancock et al. 2012 & 

Hancock et al. 2011) and abstracts/poster presentations at national and 

international conferences (e.g. the UK Stroke Forum & The American Society of 

Rehabilitation Medicine). 

As such, there are a number of important strengths which should be summarised as 

part of the conclusions to the work: 

• The background to the studies used existing evidence to clearly identify an 

opportunity to develop a lower limb rehabilitation tool that enables 

repetitive, functional movement early after stroke. 

• The systematic review of current evidence on reciprocal pedalling after 

stroke adopted methodology recommended by the Cochrane Collaboration 

and hence its findings were considered  to provide a reliable, evidence-

based platform for the development of a protocol for the feasibility study 

• The study investigating the use of Upright Pedalling by early stroke survivors 

was developmental in nature; a feasibility study of a small group of 

participants. A prototype device was investigated in a group of stroke 

survivors with clearly justified inclusion criteria, using a range of measures, 

in an acute stroke unit setting. Such exploratory work is considered to be the 

foundation step in the development of complex rehabilitation interventions, 

and, without investigations beginning at this level, interventions are less 

likely to be adopted for use in clinical settings (Craig et al. 2008). Hence, this 

study has provided a platform for future iterative studies of design and 

implementation of UP. 
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• The feasibility study demonstrated that a group of early stroke survivors 

were able to participate in UP in an acute stroke unit setting, despite 

substantial paresis and the inability to walk. There was evidence of 

reciprocal, smooth movement even in some participants with severe motor 

impairment.  Additionally, later stage stroke survivors were also able to 

participate in UP, demonstrated during the measurement study. 

• Both the feasibility and measurement studies demonstrated that it was 

possible to characterise UP movement in detail and derive measures of 

impairment, during a functional activity in an upright posture with 

similarities to walking. 

 

8.4 Future directions and concluding statement 

 

The conclusion to this point is that UP is a technology worthy of future investigation. 

Hence, the following future work is suggested: 

• Collaboration with an engineering team to enable development of the 

prototype U-PeD device to include: consideration of accessibility on and off 

U-PeD, an alternative pedal design possibly to include force plates , more 

easily adjustable seat height and trunk support to facilitate optimum upright 

postures in a variety of stroke survivors.  

• Further feasibility work with a new prototype would then be required, using 

a mixed-methods design, and to include: a qualitative investigation of the 

acceptability of the device, using stroke survivors, carers and therapists; 

assessment of prognostic factors to provide possible indicators of response, 

a dose-finding investigation to assess optimal dose for response in early 

stroke survivors. 

• Subsequently, a pilot study of the efficacy of taking part in UP early after 

stroke is expected to be conducted, in alternative locations (early 

rehabilitation units). Pedalling data recorded over a number of days of the 
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intervention would be needed and it is likely that more than one U-PeD 

would enable the work to progress more efficiently.  

• Due to the lack of definitive findings in key areas of the prospective 

investigation of UP derived measures, further work on the repeatability of 

instrumented UP measures is also indicated . The design adopted for the 

study herein could be repeated, using a newly developed UP prototype, but 

with a larger group of stroke survivors, requiring a longer data collection 

period 

 

The author is currently preparing post-doctoral fellowship applications to support 

the proposed work. 

Concluding statement 

This thesis has presented a new, promising technology that can be used by people 

with severe paresis early after stroke and that can enable reciprocal, lower limb 

movement in functional walking-like posture. It offers the potential for task-

orientated training that might best talk to the brain in a language it understands in 

the crucial early period after stroke onset, to best promote functional recovery.   

Upright Pedalling is a technology worthy of future investigation.  

--------------------------------------------------- 
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Appendix I 

Systematic Review Documentation 
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Proforma for Identifying Eligible Studies for Systematic Review 

Reference No. & Author 

 

   

 

Title: 

 

   

 

Full Reference: 

 

   

 

Retrieved From: 

 

   

 

Design (describe): 

 

 

 

   

 

Criteria: 

Add notes as necessary 

 

Yes No Unsure 

 

Participants: 

• Adults 

 

• Stroke 

 

• Paretic lower limb 

 

 

   

 

Intervention: 

• Recip pedalling ex designed 

to enhance motor recovery 

in the lower limb 

 

• (One-off or over time) 

 

 

   

 

Primary Outcomes: 

• Motor Impairments inc 

muscle function 

Secondary Outcomes: 

• Disability 

• Participation 

• Adverse ev/side effects 

 

   

Notes: 
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Data extraction for included studies 

Study: 

 

Trial Setting: 

 

Subject characteristics (inc age, gender, type stroke, time since stroke, inc/exc criteria) 

 

Methods: 

Trial Design: 

 

Randomisation: 

Allocation concealment 

Generation of allocation sequence 

 

Experimental group: 

Category/ treatment description 

Dose 

Co-interventions 

 

Control group: 

Type 

 

Dose 

 

Co-interventions 
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Data extraction for included studies (contd.) 

 

Blinding: 

Subjects 

Providers 

Assessors 

 

Dropouts: 

Numbers 

Reasons 

 

Other potential confounding factors: 

 

Intention to Treat Analysis: 

 

Outcomes: 

Timepoints for measures 

Outcome measures used 

Outcomes for which data is provided in the paper 
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Systematic Review Methodological Quality Assessment- risk of bias 

 

 

Ref No 

 

Author & 

Date 

Sequence Generation Blinding Incomplete 

Outcome data 

Selective result 

reporting 

Other potential 

biases 

Allocation 

concealment? 

Adequate 

sequence 

generation ? 

Blinding 

participants? 

Blinding 

providers? 

Blinding 

Assessors? 

Where relevant, 

incomplete 

outcome data 

addressed? 

Free of selective 

reporting? 

Free of other 

biases? 

 

 

         

 

 

 

 

Comments: 

        

 

 

         

 

 

 

 

Comments: 

 

 

 

 

 

       

YES: LOW risk of bias; NO: HIGH risk of bias; UNCLEAR: unclear; UNABLE: not possible e.g.  participant blinding in trial where pedalling was the key 

intervention 

Ref: Higgins, J & Green, S (Eds) Cochrane Handbook for Systematic Reviews of Interventions; 2008, pp187-241 Wiley-Blackwell, Chichester
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Research Governance, study information and consent 
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Participant information sheet    

Date: ……………………………………….. 

Study title:  Clinical efficacy and prognostic indicators for 

lower limb pedalling exercise early after stroke: A pilot 

randomised controlled trial. 

Researchers:  Professor Valerie Pomeroy, Nicola Hancock 

(Lead Researcher), Dr Phyo Mynt (Local NHS Collaborator), 

Rebecca Stuck, Leo Earl  

You will have been approached by a member of the hospital 

clinical staff about this research.  This clinical staff member 

will not be involved in any other part of the research. 

It is important that you understand the purpose of the 

project. 

It is important that you understand what it will involve. 

Discuss the project with others if you wish.   If you need more 

information, ask the lead researcher, Nicola Hancock.  Her 

contact details are on page 10 and she is  very happy to be 

contacted.  

Part 1 describes the purpose of the study and what will 

happen if you decide to take part. 
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Part 2  answers some common questions patients have about 

research 

Please take time to read the information carefully.  Thank you 

for reading this. 

Part 1 

1.What is the purpose of this study? 

Weakness in the leg is common after stroke and this can 

affect the ability to walk.  Physiotherapists use lots of 

techniques to help people strengthen their legs but we do not 

always know which techniques work for which patients. It is 

also difficult for therapists to help people in the early stages 

after their stroke when they are very weak.  This is because 

muscles may not be able to work well enough to do exercises 

and more than one therapist may be needed to help one 

patient to move. 

Because we do not know what works for which patients, we 

are carrying out some research into a particular therapy: 

We want to find out if pedalling on an upright exercise bike 

can help recovery in the leg early after a stroke.  We also want 

to know which particular patients might be able to pedal and 

who might benefit. 

This research forms part of an educational qualification, 

namely a PhD, for the lead researcher Nicola Hancock. 

2. About the bike 

 The exercise bike has been used before for patients who have 

had a stroke. 
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It is a sturdy piece of equipment with a frame around it to 

help support the body and arms whilst sitting on the seat. 

There are straps for the hips and feet.  The bike has a 

mechanism called a UNICAM which means that it can be 

adjusted so that the weaker leg moves in a smaller circle than 

the stronger one.  This is useful for people who might not 

manage to pedal normally and means that they can still take 

part.  

Here is a picture of the bike: 
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A video of someone being moved onto the bike and pedalling 

it is also available for you to look at if you wish 
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3. Why have I been asked to take part? 

 You have been asked to take part as you have had a stroke in 

the last 30 days.  If you decide to take part you will be one of 

around 24 people in the study. 

We are looking for people who:  

 Have weakness in their leg following a stroke within the 

last month 

 

 Are current patients on the stroke unit 

 

 Were mobile independently before their stroke 

 

 Are well enough to take part this soon after their stroke 

 

Do I have to take part? 

NO.  It is up to you to decide.  Taking part is entirely voluntary 

and your decision will in no way affect any other parts of your 

treatment. 

You are free to withdraw at any time and do not have to give 

a reason. 

 

4. What happens if I decide to take part?     

Once you are happy that you want to take part , 

a member of the research team will visit you on 

the ward. You will be asked to sign a consent 

form to show you agree to take part.   
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Remember that you can stop at any time without giving a 

reason and this will not affect your treatment now or ever. 

 

5. Some information for you about each stage of the research 

study 

Stage 1: On your first visit: 

A member of the research team will assess you to see if you 

are suitable to take part in the study.  This will take around 30 

minutes. We will assess your ability to move your leg, to move 

around the bed e.g rolling, to sit up and to stand.  

Remember that we are looking for people who are very weak 

early after a stroke, so not being able to do a movement does 

not mean you cannot take part. However, if you are not 

suitable to participate in the study, you will be told at this 

point and will not be asked to take any further part in the 

study. 

At this assessment stage we will also need to access some 

information about your clinical condition from your medical 

notes and scans. This information will only be accessed by 

relevant members of the research team. 

Stage 2: If you are suitable: 

You will be asked to do some more short tests of your ability 

to move. Then, you will be shown the exercise bike and if 

happy to proceed, you will be assisted onto the seat and 

positioned securely.  Only when you feel comfortable and 

safe, will you be asked to pedal the bike for one minute.  We 

will record whether you can or cannot pedal. 
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If you cannot pedal: 

You will be given another opportunity to try every three 

days.  This is because you may have felt tired or anxious at 

first or your muscles were still too weak after the stroke. If 

you can pedal for one minute at any of these attempts, you 

will proceed to the next stage of the study. 

If you still cannot pedal: 

You will not be suitable to continue with the study. 

This is unlikely as our previous work shows that many 

people are able to use this bike after stroke. 

If you cannot pedal, it does not mean you have failed- it is 

just that this pedalling therapy is not the right treatment for 

you.  Everyone has different problems after a stroke and you 

will continue to work with the usual therapies 

recommended by the clinical team to help you.  You have 

helped the research team by helping us to know which 

stroke patients might  or might not be able to take part in 

future studies. 

 

 

If you can pedal: 

You will proceed to the next stage of the study 
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Stage 3: 

If you are suitable and able to pedal, you will then have some 

more measures taken.  These will be similar to those taken 

before you tried to pedal but will also include some 

recordings of how active your leg muscles are using 

electromyography or EMG.  There is a section on page 8 

describing this.  

Stage 4: 

You will be allocated to a treatment group or control (no 

treatment) group at random. The allocation will be by an 

independent administrator not part of the research team.  He 

or she will open a sealed envelope containing a number and 

will tell the research team what group you are in.  We will 

then tell you.  You will be identifiable only by a number in this 

process, none of your personal details are used.  

You cannot choose your group.  This has to be at random to 

allow us to find out whether the treatment is effective or not.  

The researcher doing the assessments at the end of the study 

will not know which group you are in and so cannot influence 

the findings.  This is called a “blind” study.  Please do not tell 

the assessor which group you are in. 

Stage 5: 

 

 

 

If you are allocated to the control (no treatment) group: 

You will continue with your usual therapy and not be 

asked to take part in the pedalling exercise. 

After two weeks, we will visit you again to repeat the 

measures taken in stage 3 so that we can compare the 

results with those patients in the treatment group 
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Stage 6:  

We will take some outcome measures at the end of the two 

week period for patients in both groups.  These will consist of 

the same measures taken before you were allocated to a 

group. 

Measuring your muscle activity 

We need to know how active your muscles are and when they 

are working whilst you pedal.  We can get this information 

using electromyography or EMG.  This is a very safe process 

commonly used in rehabilitation research.  

Before you are assisted onto the bike, we will stick two 

electrodes on each thigh, one at the front and one at the back.   

If you are allocated to the treatment group: 

You will attend each weekday for 2 weeks and try to 

pedal on the bike for 10 minutes.  It does not matter if 

you cannot manage 10 minutes, we will just record what 

you can manage. 

Before you get onto the bike, we will be sticking some 

electrodes onto the muscles at the back and front of 

your thigh so that we can record the muscles’ activity.  

This will happen each day and there are some more 

details on this below.   

We will also be using a heart rate monitor and a monitor 

telling us about the oxygen levels in your blood.  These 

will be connected to your finger on your unaffected arm. 
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Here is a picture of the electrode (green) and its connector: 

 

 

We will stick them on after ensuring that your skin is clean.  

You will feel nothing from the electrodes after this.  They are 

connected to a box by some wires.  The box records the 

messages from the electrodes and this information is then 

stored on a laptop computer. You will feel nothing at all from 

this process. 

6. Some other points about your possible involvement in the 

study 

Are there any possible risks with this study? 

 

 There is a small risk that you may experience some pain 

or discomfort if you overwork your leg during pedalling. 

This will be closely monitored and we will pace the 

pedalling to your level of ability. 
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          Therapy can be stopped at any time. If you want to stop 

being 

           involved you simply tell us. 

What are the possible benefits of taking part in the study?  

 

 You will get a very thorough assessment of your ability to 

move after your stroke and if in the treatment group will 

receive additional daily exercise.  However, we do not 

know the possible benefits of pedalling exercise early 

after stroke, which is why we are doing the research.    

 
What happens when the study stops?  
 

 This is the first study on pedalling early after stroke on 

this bike and it would be inappropriate for you to 

continue with this potential therapy after the study 

stops. 

We will send you a leaflet when the study has been analysed, 

informing you of the results 
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What if there is a problem?  

  

 If you have any complaints about the way you have been 

dealt with or any harm is caused during the study this will 

be addressed. Detailed information relating to this is 

outlined in Part 2 (p.13). 

 

Will my taking part in the study be kept confidential?  

  

 Yes, all the information about you and your participation 

in the study will be kept strictly confidential. We will 

follow ethical and legal practice and all information about 

you will be handled in confidence. The details are 

included in Part 2 (p12-14). 

Contact details for lead researchers: 

Professor Valerie Pomeroy: v.pomeroy@uea.ac.uk 

01603 591724 

Nicola Hancock:    n.hancock@uea.ac.uk 

07717 133178 

Rebecca Stuck:    r.stuck@uea.ac.uk 

      01603 597316 

End of Part 1 

mailto:v.pomeroy@uea.ac.uk
mailto:n.hancock@uea.ac.uk
mailto:r.stuck@uea.ac.uk
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Part 2: Some common questions and answers 

 

What happens if new information about the research therapy 

comes along?   

 

 Sometimes in research, new things are found out about 

new therapies.  Few studies have been done about this 

pedalling therapy and this study is partly to find evidence 

to justify a larger study. If however, new information is 

published then you will be told.  

 

What happens if I no longer wish to continue with the study? 

 

 You may withdraw from the study at any time without 

giving a reason. If you withdraw from the study, we will 

need to use the data collected up to when you withdrew. 

 

Will anyone else know I am doing this?  

 It is sensible for other key members of the stroke team to 

be aware of your taking part e.g the senior 

physiotherapist, nurse and stroke physician. 
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 If the Research Team are concerned at any time about your 

health during your participation they will report these 

concerns to the appropriate professional.   

 
What if there is a problem or something goes wrong?  

 

 If you have any concerns about this study, you should 

first contact Nicola Hancock or Professor Pomeroy, who 

will do their best to answer your questions or resolve 

the problem.  (Contact details given at end of Part 1).If 

you are still unhappy or wish to make a formal complaint 

you may do this through the NHS Complaints Procedure. 

Details can be obtained from the hospital.   

 

Will my taking part in this study be kept confidential?  

  

 The research team will only have access to information 

about you that is relevant to the study. All information 

will be kept strictly confidential.  

 Information may include details such as your date of  

birth and     the date and diagnosis of your stroke.  

 You will be given a trial number for the purpose of   

collecting and analysing data. This means you will remain 

anonymous 
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 The data will only be accessed by authorised persons 

within the Research Team and the Research and 

Development Office of the NHS Trust, who ensure the 

quality of the research carried out.  

 

How will my information be stored?  
  

 Data will be stored securely in the research office during 

the study and for 5 years after the study.  Long term data 

is then stored in a secure room in the NHS Clinical trials 

Research Unit at UEA for 20 years.  

 

All procedures for handling, processing, storage and destruction of data 

are compliant with the Data Protection Act 1998. 

 

What will happen to the results of the research study?  

 

 The results of the trial will be analysed and used to justify 

whether or not a larger scale study is required to prove 

effectiveness of this therapy.  

 The results will be published in an academic journal but     

individual participants will not be identifiable. 

Participants can be sent trial report at the end of the 

study.  
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This ends Part 2 

Thank you for taking the time to read this 

information. If you choose to participate, you will keep 

a copy of this participant information sheet and the 

signed consent form. 
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1 copy to be kept by the participant, 1 by the research team and 1 to go into the medical 

notes 

 

Study Title: Clinical efficacy and prognostic indicators for lower limb 

pedalling  exercise early after stroke: A pilot randomised controlled 

trial. 

CONSENT FORM     

 

 

 

Researchers: Professor Valerie Pomeroy, Nicola Hancock, Dr Phyo 

Mynt, Professor Lee Shepstone, Professor Philip Rowe, Rebecca Stuck 

and Leo Earl 

          

 Please √ 

1. I understand the information sheet dated --------   

and I have had the opportunity to ask questions. 

 

2. I understand that I do not have to take part and that   

I can stop at any time without giving a reason. 

 

3. I understand that I will be given an opportunity to    

pedal the bike and I may or may not be able to. 

 

4. I understand that if I can pedal the bike I will be 

allocated to either a group pedalling the bike daily   

for two weeks or a group having only usual therapy. 

 

5. I understand that the research team will have 

access to my medical records and scans.  
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1 copy to be kept by the participant, 1 by the research team and 1 to go into the medical 

notes 

6. I understand that relevant sections of my medical notes  

and data collected during the study, may be looked at  

by individuals from the Norfolk and Norwich University 

Hospitals Trust, from regulatory authorities or from the NHS  

Trust , where it is relevant to my taking part in this research. 

I give permission for these individuals to    

have access to these records      

  

 

7. I agree to take part in the study.  

 

 

Signed (participant):        …………………… Date: ………………..  

  

 

Signed (researcher):         …………………..    Date:………………. 



If you’re interested in helping us, together, we could help 

many others.  Please call our research team on 01603 

593959 or visit us on 

www.uea.ac.uk/foh/research/Institutes/hss/stroke. 

Learning to walk again is a major goal for stroke survivors 

trying to regain their independence.  We are developing a new 

rehabilitation tool that  might help in the measurement of  lower 

limb movements after stroke. Our research team would like 

your help to validate this work 

 

We need two groups of volunteers: 

 

•  If you’re over 50, and reasonably fit and healthy, you could 

help our research by taking part in some lab-based gentle 

exercise on an upright bike.  Just two five minutes cycles in a 

period of two hours is all we ask! 

 

•  If you’re a stroke survivor over 18, we’d very much like to 

hear from you  too. It doesn’t matter how mobile you are, you  

might be able to help us with this study. 

 

We will only need to see you once and we will pay your travel 

expenses.   

‘Just two hours of your time could help 

us help a stroke victim for a lifetime’ 

Faculty of Medicine and Health Sciences 
University of East Anglia 

Version 1; Poster, 17.01.11  

http://www.uea.ac.uk/foh/research/Institutes/hss/stroke
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  Participant Information sheet 

 

 
Study Title:  Developing a clinical measure of lower limb motor 

impairment after stroke: Test-retest reliability and concurrent validity 

of Upright Pedalling  

 
 

 
You are invited to take part in a research study. Before you decide 

whether you would like to take part you need to understand why the 

research is being done and what would be involved. Please take time to 

read the following information carefully.  

 

Talk to others about the study if you wish. If you have any questions or 

would like further information there are some contact numbers on page 

9 of this information pack. 

 

 Part 1 describes the purpose of this study and what will happen if 

you decide to take part. 

 

 Part 2 gives detailed information about how the study will be 

carried out 

 
Note: It is the practice of our team to use enhanced communication strategies, including 
pictures, throughout information sheets.  This is to ensure that our information is 
accessible to potential participants with different communication needs and is in no way 
designed to patronise.  
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Part 1  
 
 
What is the purpose of this study? 
 
After stroke, it is common to experience weakness in one leg which limits 

ability to walk and perform activities. Physiotherapists need to be able to 

accurately measure this leg weakness in order to assess abilities and 

plan treatment programmes. Information from such measurements is also 

very useful for stroke survivors to be able to see for themselves how they 

are recovering.  

 

Accurate measurements of muscle activity are difficult as very technical 

equipment, often kept in research laboratories, is needed.  Some simple 

measures are available in clinical settings but these do not always give 

the detailed information that might help plan treatments and monitor 

progress. 

 

So there is a need to develop detailed measures of leg muscle activity that 

might be able to be easily used by therapists and stroke survivors in clinical 

settings.  We are in the early stages of developing such a measure.  This 

project is the first step in the process and involves examining the muscle 

patterns of people without stroke using this measure, so that useful 

comparisons can be made. 

 

The new measure will consist of taking measures of leg muscle activity 

during upright pedalling (UP) on a static exercise bike. This has been 



 Version 2; PIS Healthy Volunteers, 01.03.11 

 

chosen as we know that pedalling enables people to experience similar 

repetitive movement to walking. 

This bike has been used before for stroke survivors and is specially adapted. 

It is simple for people without stroke to use.   

Here is a picture of the bike: 

 

 

 

 

 

For a new measure to be accurately used, it must be able to demonstrate 

differences between stroke survivors and people without stroke. This 
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project will explore these aims and to do so, we need the participation of 

some healthy adults of 50 years and over in our rehabilitation laboratory. 

 

 

Why have I been asked to take part? 
 
You have been chosen because you are an adult 50 years of age and over 

and have expressed an interest. If you decide to take part you will be one of 

40 participants in this study.  

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
What will happen if I decide to take part? 
 
Once you are happy that you want to take part in the study, we will visit you 

at UEA to ask you to sign a consent form.  

We will then send you an appointment to attend the Stroke and 

Rehabilitation Research laboratory at UEA. We will only need you to attend 

Do I have to take part? 
 
No. It is up to you to decide. Taking part in the research study is entirely 

voluntary. If you want to you can speak to a member of the research team 

before you decide.   

You are free to withdraw at any time and you do not have to give a reason.  

 

 
We are looking for people who: 
 

 Are adults over the age of 50 in order to closely match the 
age of potential stroke survivors in the study 
 

 Are fit and well enough to take part in a visit to our laboratory 
and a measurement session on the upright bike 

 
 



 Version 2; PIS Healthy Volunteers, 01.03.11 

 

once and will try our best to find a date and time convenient to you.  We will 

reimburse your travel costs. 

We will show you the equipment and ask if you have any questions.  

We will then record your resting heart rate and blood pressure to ensure 

they are within the safe limits set for this study. If we find that your blood 

pressure is high, we will advise you to make an appointment to see your GP. 

      
We will ask you to put on some shorts.   

 

In order to record how active your leg muscles are whilst on the bike, we 

need to use Electromyography or EMG of your thigh muscles.  This is 

described more fully on page 6.  To get accurate EMG readings, we will 

prepare your skin by rubbing a small area on the front and back of your 

thigh on each side with a recommended gel, then wiping and drying it.  

 

We will then help you onto the bike.   

 

You will be asked to sit on the bike with your feet on a block for up to one 

minute whilst we record your resting muscle activity.  We will then position 

your feet on the pedals and ask you to pedal at your comfortable speed 

for 1 minute.  When you are pedalling steadily, we will record your muscle 

activity as described on page 6/7. We will then ask you to pedal for 1 

minute at each of 5 speeds, up to 50 rpm. The highest speed we will be 

recording at is a comfortable pace for most people.  

 

We will also be recording the speed and distance you pedal whilst on the 

bike.   
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We will monitor your heart rate whilst on the bike to ensure it remains 

within safe limits.  You will be asked to stop immediately if it exceeds the 

safe limits set but this is very unlikely.  

You will then get off the bike and rest for up to an hour.   

 

You will then be positioned on the bike again and we will ask you to pedal 

again exactly as you did above.  We will take the same measures.  This will 

help us to evaluate whether these measures can be accurately repeated at 

different times. 

 

This will conclude the session and your participation in this research. 

 

Measuring your muscle activity 

We need to know how active your muscles are and when they are 

working whilst you pedal, to compare between the repeat measurements.  

We can get this information using electromyography or EMG.  This is a 

very safe process commonly used in rehabilitation research.  

Before you are assisted onto the bike, we will stick two electrodes on 

each thigh, one at the front and one at the back.   

 

Here is a picture of the electrode (green) and its connector: 
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We will stick them on after ensuring that your skin is clean using a 

recommended gel.  You will feel nothing from the electrodes after this.  

They are connected to a box by some wires.  The box records the 

messages from the electrodes and this information is then stored on a 

laptop computer. You will feel nothing at all from this process. 

 

 
 
 
 
 

 

 

 
 

 
 
 
 
 
 
 
 
 

 

Expenses 
   
  We will be reimbursing your travel expenses to and from 

the University from our research funds.   

     
£ 

               
Are there any possible risks with this study? 

 
There is a small risk that you may experience some or 

discomfort if you overwork your leg during pedalling. This 

will be closely monitored but is very unlikely as the 

pedalling times are very short. Pedalling can be stopped 

at any time. If you want to stop being involved you simply 

tell us.  
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What are the possible benefits of taking part in the study? 
      

  It is not known yet whether upright pedalling might provide a 

useful clinical way of accurately measuring muscle function 

after stroke. You will be helping us by providing the 

important data needed to evaluate this. 

 
 

      
    What happens when the measurements are completed?  
 

This is the first study of this potential measurement tool. The 

results of this study will tell us whether it might be worth 

using in clinical practice and in further research. We can get 

this information from you in one visit to our laboratory and 

therefore will not need you to continue after this. 

 

What if there is a problem? 
 
 If you have any complaints about the way you have been dealt with or any      

 harm is caused during the study this will be addressed.  

 Detailed information relating to this is outlined in Part 2 (p.10). 

 

Will my taking part in the study be kept confidential? 
  

Yes, all the information about you and your participation in the study will be 

kept strictly confidential. We will follow ethical and legal practice and all 

information about you will be handled in confidence. The details are included 

in Part 2 (p.11). 

 

http://search.msn.co.uk/images/results.aspx?q=finish+line+filterui:photo-graphics
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This completes Part 1 of the information sheet. 

If this information interests you and you are considering taking part, please 

continue to read additional information in Part 2 before making any decision. 

If you have any queries you can contact the Research 

Physiotherapist/Chief Investigator, Nicola Hancock, or Valerie Pomeroy 

the Principal Investigator.  

Contact details:  
 
 
                    
                               

                        
       
      
    
 
 
                    
       
 
       
 
 
 
 
 
       
 
 
Independent Contact Details: 
If you wish to discuss this study with someone who is not involved in the 

research then you can contact the Research and Development Office, NHS 

Norfolk 

   01603  257187 

Nicola Hancock 
Research  
Physiotherapist 

The Queens Building 

University of East Anglia    
Norwich                
NR4 7TJ            
    
     

n.hancock@uea.ac.uk
  

01603 
593959/ 
07717  
133178               
 
 

Professor 
Valerie Pomeroy  
Principle 
Investigator  

The Queens Building 

University of East Anglia    
Norwich                
NR4 7TJ            
    
     

v.pomeroy @uea.ac.uk  01603  
593959               
 
 

mailto:n.hancock@uea.ac.uk
mailto:n.hancock@uea.ac.uk
mailto:j.cross@uea.ac.uk
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 Part 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 
 

     

What happens if new information about the research 
therapy comes along?   
 
Sometimes in research, new things are found out about 

new measurement tools.  No studies have been done 

about this potential measure.  However, new information is 

published then you will be told.  

 

 

     

                 What happens if I no longer wish to continue with the       study? 
       study? 

   

      You may withdraw at any time without giving a reason. If 

you withdraw from the study, we will need to use the data 

collected up to when you withdrew.  

 

 

 
    What if there is a problem or something goes wrong? 
 

If you have any concerns about this study, you should first 

contact Nicola Hancock or Valerie Pomeroy, who will do 

their best to answer your questions or resolve the 

problem.  (Contact details given at end of Part 1). 

If you are still unhappy or wish to make a formal complaint you may do this 

through the University Complaints Procedure. Details can be obtained from 

UEA.  In the event that something does go wrong and you are harmed during 

the research study there are no special compensation arrangements.   

If you are harmed due to someone’s negligence then you may have grounds 

for legal action for compensation against the University of East Anglia, but you 

may have to pay your legal costs 

 

http://images.google.co.uk/imgres?imgurl=http://www.through-the-maze.org.uk/symbols_x2/complain.gif&imgrefurl=http://www.through-the-maze.org.uk/pages/EmpowermentSymbols&h=240&w=240&sz=3&hl=en&start=6&tbnid=DnINic17tP97fM:&tbnh=110&tbnw=110&prev=/images?q=complain&as_st=y&gbv=2&hl=en&sa=G
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Will my taking part in this study be kept confidential? 

The research team will only have access to information about you that is 

relevant to the study. All information will be kept strictly confidential.  

 

Information may include details such as your date of birth.  

 

You will be given a trial number for the purpose of collecting and analysing 

data. This means you will remain anonymous 

 

The data will only be accessed by authorised persons within the Research 

Teams  

 

How will my information be stored?  
 

Data will be stored securely in the research office during the study and for 5 

years after the study.  Long term data is then stored in a secure room in the 

NHS Clinical trials Research Unit at UEA for 25 years.  

 

All procedures for handling, processing, storage and destruction of data are 

compliant with the Data Protection Act 1998. 

 

 
Who is organising the research? 
 
The Research Team at the University of East Anglia are responsible for 

organising and running the research, led by Professor Valerie Pomeroy  

The research is forms part of a PhD (Doctorate) qualification for Nicola 

Hancock, the Chief Investigator 

 

Your 

name 
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End Part 2 

Thank you for taking the time to read this information. If you choose to 

participate, you will keep a copy of this participant information sheet and 

the signed consent form. 

What will happen to the results of the research study? 

 

The results of the trial will be analysed and used to justify 

whether or not this might be a useful measure of lower 

limb muscle activity after stroke 

 

The results will be published in an academic journal but individual 

participants will not be identifiable. Participants can be sent trial report at the 

end of the study.  

 

 

 

 
Who has reviewed the study?  
 
The development of the study has been closely reviewed by a supervisory 

team at UEA and an external supervisor at the University of Strathclyde 

All were positive about the proposed research and feedback has been 

incorporated into this research plan.  

 

The Norfolk Ethics Committee has approved the study  
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1 copy to be kept by the participant and 1 by the research team  

 

 

Study Title: Developing a clinical measure of lower limb motor impairment 

after stroke: Test-retest reliability and concurrent validity of 

Upright Pedalling  

CONSENT FORM 

Please initial & tick 

1. I understand the information sheet dated --------   

and I have had the opportunity to ask questions. 

 

2. I understand that I do not have to take part and that   

I can stop at any time without giving a reason. 

 

3. I understand that I will be attending the STaR lab at the  

University of East Anglia and will be asked to pedal an 

Upright Bike whilst some measurements of muscle activity  

are taken.  

 

4. I understand relevant section of my medical notes and data  

collected during the study may be looked at by individuals  

from regulatory authorities or from the NHS Trust where it  

is relevant to my taking part in this research. I give permission  

for these individuals to have access to my records 

 

5. I agree to take part in the study.  

 

Signed (participant):        …………………… Date: ………………..    

Signed (researcher):         …………………..          Date:………………. 



Version 1; GP Letter, Stroke Survivors, 17.01.11 

Nicola Hancock 
Research Physiotherapist  
Ethics reference: 11/EE/0002 
n.hancock@uea.ac.uk 

 

1 

                                                                    
       
       Faculty of Health 
       Queens Building 
       University of East Anglia 
       Norwich 
       NR4 7TJ 
Date:  
 
Dear Dr …………………… 
 
I am writing to you to inform you that your patient (name) has consented to take part in a 

study that is currently underway at the University of East Anglia. This study is called 

“Developing a clinical measure of motor impairment after stroke: Test-retest 

reliability and concurrent validity of upright pedalling” 

We are aiming to recruit 30 participants who have had a stroke for a one-off measurement 

session in the Stroke & Rehabilitation Laboratory at UEA.  They will be asked to pedal an 

upright exercise bike for a few minutes in two sessions, approximately one hour apart, and 

have some measures of muscle activity taken. 

Please find a one page copy of the protocol attached to this letter. 

 

We would be grateful if you could let us know of any medical reason why your 

patient (name) may not be included in this study. If we have not heard from you 

within 7 working days from the receipt of this letter, then we will understand that 

(name) is medically fit to participate. 

 

If you require any further information about the study then please contact either myself 

(Nicola Hancock) or the Principal Investigator, Professor Valerie Pomeroy. 

 

Nicola Hancock    Professor Valerie Pomeroy 

n.hancock@uea.ac.uk   v.pomeroy@uea.ac.uk  

01603 593959    01603 593959 

07717 133178 

Yours sincerely 

 

 

Nicola Hancock 

Research Physiotherapist 

mailto:n.hancock@uea.ac.uk
mailto:v.pomeroy@uea.ac.uk
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  Participant Information sheet 

 

 
Study Title:  Developing a clinical measure of lower limb motor 

impairment after stroke: Test-retest reliability and concurrent validity 

of Upright Pedalling  

 
 

 
You are invited to take part in a research study. Before you decide 

whether you would like to take part you need to understand why the 

research is being done and what would be involved. Please take time to 

read the following information carefully.  

 

Talk to others about the study if you wish. If you have any questions or 

would like further information there are some contact numbers on page 

10 of this information pack. 

 

 Part 1 describes the purpose of this study and what will happen if 

you decide to take part. 

 

 Part 2 gives detailed information about how the study will be 

carried out 

 
 
Note: It is the practice of our team to use enhanced communication strategies, including 
pictures, throughout information sheets.  This is to ensure that our information is 
accessible to potential participants with different communication needs and is in no way 
designed to patronise.  
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Part 1  
 
 
What is the purpose of this study? 
 
After stroke, it is common to experience weakness in one leg which limits 

ability to walk and perform activities. Physiotherapists need to be able to 

accurately measure this leg weakness in order to assess abilities and 

plan treatment programmes. Information from such measurements is also 

very useful for stroke survivors to be able to see for themselves how they 

are recovering.  

 

Accurate measurements of muscle activity are difficult as very technical 

equipment, often kept in research laboratories, is needed.  Some simple 

measures are available in clinical settings but these do not always give 

the detailed information that might help plan treatments and monitor 

progress. 

 

So there is a need to develop detailed measures of leg muscle activity that 

might be able to be easily used by therapists and stroke survivors in clinical 

settings.  We are in the early stages of developing such a measure and 

this project is the first step in the process.  

 

The new measure will consist of taking measures of leg muscle activity 

during upright pedalling (UP) on a static exercise bike. This has been 

chosen as we know that pedalling enables people to experience similar 

repetitive movement to walking and is something that can be done safely 
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after stroke.  This bike has been used before for stroke survivors and is 

specially adapted to ensure that even very weak participants can sit upright 

safely and pedal. Here is a picture of the bike: 

 

 

 

 

 

For a new measure to be accurately used, it must be reliable when 

repeated at different times, it must agree with similar measures already in 

use and it must reflect what the stroke survivor can actually do. This 

project will explore these aims and to do so, we need the participation of 

stroke survivors on one day in our rehabilitation laboratory. 
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Why have I been asked to take part? 
 
You have been chosen because you have had a stroke. If you decide to 

take part you will be one of 40 participants in this study.  

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
What will happen if I decide to take part? 
 
Once you are happy that you want to take part in the study, one of the 

research team will visit you at home or at your stroke group meeting.  

On this visit a member of the research team will answer any further 

questions you may have. We will then ask you to sign a 

consent form to show you agree to take part.  

      

 
 
 
Do I have to take part? 
 
No. It is up to you to decide. Taking part in the research study is entirely 

voluntary. If you want to you can speak to a member of the research team 

before you decide.   

You are free to withdraw at any time and you do not have to give a reason.  

 

 
We are looking for people who: 
 

 Are adults who have sustained a stroke and have a mild, 
moderate or severe weakness in the leg 
 

 Are able to walk, any distance; either with lots of help from 
another person or a walking aid; with a little help; or 
independently 
 

 Are well enough to take part in a visit to our laboratory and a 
measurement session on the upright bike 
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We will then assess your mobility on a simple scale to see whether or not 

you are suitable to participate in the study. If you are not suitable to 

participate in the study, you will be told by the Research team and you will 

not be asked to take any further part in the study. Assessing this at this 

point will avoid you making an unnecessary trip to the University.  However, 

we anticipate that most people will be able to take part as we are 

purposefully seeking people with a wide range of walking ability 

 

This visit will take approximately 30-40 minutes.  

 

With your consent the Research Team will tell your GP that you are taking 

part in the study and check that there are no medical reasons why you 

cannot take part.  We will write to your GP and ask that they let us know 

within 7 days if they have any medical concerns about your participation. 

 

About ten days after the home visit, we will post you an appointment to 

attend the Stroke and Rehabilitation Research (STaR) Laboratory at the 

University of East Anglia, Norwich.  If you prefer, we can telephone you 

with the appointment.  We will only need you to attend once and will try our 

best to find a date and time convenient to you.  We will reimburse your 

travel costs and can book you an accessible taxi if you would like us to. 

 

What will happen on the day I attend the University laboratory?  

 

On arrival, we will take a measure of your heart rate and blood pressure. 

This is to ensure that they are within the safe limits set for the study. If they 

are, we will proceed with the measurements. We will ask you to put on 

some shorts.  Help is available for this if you need it.  
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We will then take a simple score of your walking ability and a simple 

measure of your leg movements in a sitting position.  These measures will 

help us to compare the pedalling measures to those well-used in clinical 

practice. 

 

In order to record how active your leg muscles are whilst on the bike, we 

need to use Electromyography or EMG of your thigh muscles.  This is 

described more fully on page 7.  To get accurate EMG readings, we will 

prepare your skin by rubbing a small area on the front and back of your 

thigh on each side with a recommended gel, then wiping and drying it.  

 

We will then help you onto the bike.  If needed, we can use a patient lifting 

hoist to help move you onto the bike, or you can simply step up onto it. You 

will be positioned comfortably and the adjustable trunk support can be 

placed if you and/or the research therapist assess that you need it.  

 

You will be asked to sit on the bike with your feet on a block for up to one 

minute whilst we record your resting muscle activity.  We will then position 

your feet on the pedals and ask you to pedal at your comfortable speed 

for 1 or 2 minutes.  When you are pedalling steadily, we will record your 

muscle activity as described on page 7. We will also be recording the 

speed and distance you pedal whilst on the bike.  We will monitor your 

heart rate whilst on the bike to ensure it remains within safe limits.  You will 

be asked to stop immediately if it exceeds the safe limits set but this is 

very unlikely.  

 

You will then get off the bike and rest for up to an hour.   
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You will then be positioned on the bike again and we will ask you to pedal 

again exactly as you did above.  We will take the same measures.  This will 

help us to evaluate whether these measures can be accurately repeated at 

different times. 

 

This will conclude the session and your participation in this research. 

 

Measuring your muscle activity 

We need to know how active your muscles are and when they are 

working whilst you pedal, to compare between the repeat measurements.  

We can get this information using electromyography or EMG.  This is a 

very safe process commonly used in rehabilitation research.  

Before you are assisted onto the bike, we will stick two electrodes on 

each thigh, one at the front and one at the back.   

Here is a picture of the electrode (green) and its connector: 

 
 
We will stick them on after ensuring that your skin is prepared.  You will 

feel nothing from the electrodes.  They are connected to a box by some 

wires.  The box records the messages from the electrodes and this 
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information is then stored on a laptop computer. You will feel nothing at 

all from this process. 

 

 
 
 
 
 

 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
                  

Expenses 
   
  We will be reimbursing your travel expenses to and from 

the University from our research funds.  If you need an 

accessible taxi, please tell us when we visit you at home 

and we can organise this. 

     

£ 

               
Are there any possible risks with this study? 

 
There is a small risk that you may experience some or 

discomfort if you overwork your leg during pedalling. This 

will be closely monitored but is very unlikely as the 

pedalling times are very short. Pedalling can be stopped 

at any time. If you want to stop being involved you simply 

tell us.  

 

 
                            
What are the possible benefits of taking part in the study? 
      

  It is not known yet whether upright pedalling might provide a 

useful clinical way of accurately measuring muscle function 

after stroke. You will be helping us by providing the 

important data needed to evaluate this. 
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This completes Part 1 of the information sheet. 

If this information interests you and you are considering taking part, please 

continue to read additional information in Part 2 before making any decision. 

      
    What happens when the measurements are completed?  
 

This is the first study of this potential measurement tool. The 

results of this study will tell us whether it might be worth 

using in clinical practice and in further research. We can get 

this information from you in one visit to our laboratory and 

therefore will not need you to continue after this. 

 

What if there is a problem? 
 
 If you have any complaints about the way you have been dealt with or any      

 harm is caused during the study this will be addressed.  

 Detailed information relating to this is outlined in Part 2 (p.12). 

 

Will my taking part in the study be kept confidential? 
  

Yes, all the information about you and your participation in the study will be 

kept strictly confidential. We will follow ethical and legal practice and all 

information about you will be handled in confidence. The details are included 

in Part 2 (p.13). 

 

http://search.msn.co.uk/images/results.aspx?q=finish+line+filterui:photo-graphics
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If you have any queries you can contact the Research 

Physiotherapist/Chief Investigator, Nicola Hancock, or Valerie Pomeroy 

the Principal Investigator.  

Contact details:  
 
 
                    
                               

                        
       
      
    
 
 
                    
       
 
       
 
 
 
 
 
       
 
 
 
 
 
Independent Contact Details: 
 
If you wish to discuss this study with someone who is not involved in the 

research then you can contact the Research and Development Office, NHS 

Norfolk 

 

                01603  257187 

Nicola Hancock 
Research  
Physiotherapist 

The Queens Building 

University of East Anglia    
Norwich                
NR4 7TJ            
    
     

n.hancock@uea.ac.uk
  

01603 
593300/ 
07717  
133178               
 
 

Professor Valerie 
Pomeroy  
Principle 
Investigator  The Queens Building 

University of East Anglia    
Norwich                
NR4 7TJ            
    
     

v.pomeroy @uea.ac.uk  01603  
593959               
 
 

mailto:n.hancock@uea.ac.uk
mailto:n.hancock@uea.ac.uk
mailto:j.cross@uea.ac.uk
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Part 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

     

What happens if new information about the research 

therapy comes along?   

 

Sometimes in research, new things are found out about 

new measurement tools.  No studies have been done 

about this potential measure.  However, new information is 

published then you will be told.  

 

 

     

                 What happens if I no longer wish to continue with the       study? 
       study? 

   

You may withdraw at any time without giving a reason. If 

you withdraw from the study, we will need to use the data 

collected up to when you withdrew.  

 

 

 
       Will anyone else know I am doing this? 

  With your consent the research team will contact your GP to 

inform them you are taking part in the study.  

 

 

If the Research Team are concerned at any time about your health during your 

participation in this study they will report these concerns to your GP  

 

 



 Version 2; PIS Stroke Survivors Group, 01.03.11 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
    What if there is a problem or something goes wrong? 
 

If you have any concerns about this study, you should first 

contact Nicola Hancock or Valerie Pomeroy, who will do 

their best to answer your questions or resolve the 

problem.  (Contact details given at end of Part 1). 

 

If you are still unhappy or wish to make a formal complaint you may do this 

through the University Complaints Procedure. Details can be obtained from 

UEA.   

                                  
In the event that something does go wrong and you are harmed during the 

research study there are no special compensation arrangements.   

If you are harmed due to someone’s negligence then you may have grounds 

for legal action for compensation against the University of East Anglia, but you 

may have to pay your legal costs. 

 

 

 
Who is organising the research? 
 
The Research Team at the University of East Anglia are responsible for 

organising and running the research, led by Professor Valerie Pomeroy  

The research is forms part of a PhD (Doctorate) qualification for Nicola 

Hancock, the Chief Investigator 

 

http://images.google.co.uk/imgres?imgurl=http://www.through-the-maze.org.uk/symbols_x2/complain.gif&imgrefurl=http://www.through-the-maze.org.uk/pages/EmpowermentSymbols&h=240&w=240&sz=3&hl=en&start=6&tbnid=DnINic17tP97fM:&tbnh=110&tbnw=110&prev=/images?q=complain&as_st=y&gbv=2&hl=en&sa=G
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Will my taking part in this study be kept confidential? 

The research team will only have access to information about you that is 

relevant to the study. All information will be kept strictly confidential.  

 

Information may include details such as your date of birth and the date and 

diagnosis of your stroke. Personal information such as your address will also 

be required to allow us to visit you at home.  

 

You will be given a trial number for the purpose of collecting and analysing 

data. This means you will remain anonymous 

 

 

 

The data will only be accessed by authorised persons within the Research 

Teams  

 

How will my information be stored?  
 

Data will be stored securely in the research office during the study and for 5 

years after the study.  Long term data is then stored in a secure room in the 

NHS Clinical trials Research Unit at UEA for 20 years.  

 

All procedures for handling, processing, storage and destruction of data are 

compliant with the Data Protection Act 1998. 

 

Your 

name 
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End Part 2 

Thank you for taking the time to read this information. If you choose to 

participate, you will keep a copy of this participant information sheet and 

the signed consent form. 

What will happen to the results of the research study? 

 

The results of the trial will be analysed and used to justify 

whether or not this might be a useful measure of lower 

limb muscle activity after stroke 

 

The results will be published in an academic journal but individual 

participants will not be identifiable. Participants can be sent a trial report at 

the end of the study.  

 

 

 

 
Who has reviewed the study?  
 
The development of the study has been closely reviewed by a supervisory 

team at UEA and an external supervisor at the University of Strathclyde 

All were positive about the proposed research and feedback has been 

incorporated into this research plan.  

 

The Norfolk Ethics Committee has approved the study  

 



Version 2; Consent form, Stroke survivors group, 01.03.11 

1 copy to be kept by the participant and 1 by the research team  

 

 

Study Title: Developing a clinical measure of lower limb motor 

impairment after stroke: Test-retest reliability and concurrent 

validity of Upright Pedalling  

CONSENT FORM 

Please initial & tick 

1. I understand the information sheet dated --------   

and I have had the opportunity to ask questions. 

 

2. I understand that I do not have to take part and that   

I can stop at any time without giving a reason. 

 

3. I understand that the research team will need to contact 

 my GP to inform them of my participation in the study 

 

4. I understand that I will be attending the STaR lab at the  

University of East Anglia and will be asked to pedal an 

Upright Bike whilst some measurements of muscle activity  

are taken.  

 

5. I understand relevant section of my medical notes and data  

collected during the study may be looked at by individuals  

from regulatory authorities or from the NHS Trust where it  

is relevant to my taking part in this research. I give permission  

for these individuals to have access to my records 

 

6. I agree to take part in the study.  

 

Signed (participant):        …………………… Date: ………………..  

  

 

Signed (researcher):         …………………..    Date:………………. 
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Appendix III 

EMG methodology 

Original data sets pertaining to figures 13 to 17 
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EMG methodology 

 

Surface EMG is a well-established tool for the assessment of muscle activity (chapter 4.0). 

However, it is well-recognised that there are limitations associated with the technique, and 

it is important that these are minimised during experimental studies. This section of 

Appendix III details the techniques used, alongside published guidance.  

In the studies presented in this thesis, activity was recorded from quadriceps and 

hamstrings muscles for each leg. The studies used the Datalink EMG system (Biometrics, 

UK), consisting of surface electrodes (37mm x 18mm pre-amplifiers), subject unit, base unit 

and software system. 

The table on the following page presents the procedures used in the study, alongside the 

most recent European recommendations for surface electromyography (SENIAM 8, 2013). 
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Appendix III, Table 1: procedures used in thesis studies with comparison to European 

recommendations for surface EMG (SENIAM 2013) 

Tool and/or 

technique 

Procedure for thesis studies Comparison with SENIAM 

recommendations: ‘√’ if concurs;     

‘?’ if differs, with explanatory text 

Sensors Bipolar, oval sensors with approx. 20mm 

between poles, details of manufacturer 

given.  

√ 

Skin preparation Thorough preparation of skin with 

recommended exfoliator, manufacturer 

given; wiped with alcohol and alcohol 

allowed to vaporise so skin dry prior to 

placement. 

 

√ 

Starting posture Sitting comfortably on U-PeD, feet not in 

pedals but resting on a block enabling 

approximately 15 degrees flexion. 

Quadriceps: Sitting on a table with 

knees in flexion 

Hamstrings: Prone lying. 

?:Neither of these positions were 

reasonable for stroke survivors, 

particularly those early after stroke, 

so the compromise listed in the 

previous column was agreed with 

the supervisory team and was used 

for all stroke survivors and healthy 

volunteers. Additionally, for early 

stroke survivors, a hoist was 

required, so positioning of 

electrodes after the disruption of 

hoisting, therefore without the risk 

of displacement, was considered 

the most rigorous 

Placement 

&fixation 

Sensor orientated to be parallel to the 

muscle fibres. Use of tape to secure 

electrode and wire to minimise movement 

artefact and avoid “pull” on the wire 

 

Reference electrode applied to the wrist 

 

√ 

 

 

 

√ 

Sensor location Quadriceps: sensor attached to the centre of 

the anterior surface of the thigh, parallel to 

the muscle, approximately half the distance 

between the iliac spine and superior patella 

 

Hamstrings: sensor attached to the centre of 

the posterior surface of the thigh, parallel to 

the muscle, approximately half the distance 

from the gluteal fold to the lateral 

epicondyle of the tibia 

 

√ 

 

 

 

?:  this placement exactly follows 

guidelines from Cram et al. (1998). 

It very slightly varies from SENIAM, 

where it is recommended that 

placement is halfway on the line 

between the ischial tuberosity and 

the lateral epicondyle of the tibia. 

Positioning in prone and palpation 

of ischial tuberosity in stroke 

survivors was not reasonable (see 

“starting posture”), whereas the 

design of the seat enabled approx. 

visualisation of the gluteal fold in 

sitting on U-PeD 
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Original data sets pertaining to figures 13 to 17 

 

Original data sets for phase diagrams figures 13a to 15b (affected leg data also used to 

contribute to scatter plots figures 16 & 17). Data recorded at baseline measures session. 

Participant PED 14; percentage activity for each wheel bin, affected quadriceps 

 

Trigger 

1 

Trigger 

2 

Trigger 

3 

Trigger 

4 

Trigger 

5 

Trigger 

6 

Trigger 

7 

Trigger 

8 

Turn 1 71.37 7.51 7.32 7.62 0.00 2.21 100.00 100.00 

Turn 2 47.21 14.35 1.06 8.11 8.22 17.27 100.00 100.00 

Turn 3 85.92 0.00 0.00 27.22 0.00 17.70 83.75 100.00 

Turn 4 85.20 2.04 18.08 0.00 17.59 17.65 90.80 100.00 

Turn 5 90.52 8.25 30.35 12.42 22.68 8.30 78.74 100.00 

Turn 6 45.79 11.43 5.48 0.00 0.00 18.30 96.90 100.00 

Turn 7 64.52 0.00 12.91 16.32 21.69 36.32 100.00 100.00 

Turn 8 100.00 6.64 27.63 0.00 0.00 5.06 94.59 100.00 

Turn 9 71.03 23.19 0.00 0.00 1.38 0.00 92.62 100.00 

Turn 10 77.94 0.00 0.00 4.02 7.00 9.87 78.95 100.00 

% on each 

trigger 

(mean) 73.95 7.34 10.28 7.57 7.86 13.27 91.64 100.00 

% on each 

trigger (SD) 17.80 7.51 11.57 9.00 9.40 10.61 8.42 0.00 

 

Participant PED 14; percentage activity for each wheel bin, affected hamstrings 

  
Trigger 

1 

Trigger 

2 

Trigger 

3 

Trigger 

4 

Trigger 

5 

Trigger 

6 

Trigger 

7 

Trigger 

8 

Turn 1 0.00 66.80 98.17 96.81 50.28 23.99 0.00 0.00 

Turn 2 0.00 71.30 100.00 100.00 89.12 12.05 0.00 0.00 

Turn 3 0.00 81.22 95.34 100.00 72.47 27.88 0.00 0.00 

Turn 4 16.33 64.29 100.00 98.97 70.99 20.81 0.00 0.00 

Turn 5 0.00 58.74 98.83 100.00 76.58 37.12 1.97 0.00 

Turn 6 0.00 66.67 86.64 100.00 59.50 0.43 0.00 0.00 

Turn 7 0.00 49.29 100.00 93.79 94.28 9.83 0.40 0.00 

Turn 8 0.00 52.13 90.46 100.00 74.01 4.22 0.00 0.00 

Turn 9 0.00 74.88 98.15 100.29 66.90 24.56 0.00 0.00 

Turn 10 77.94 0.00 0.00 4.02 7.00 9.87 78.95 100.00 

% on each 

trigger 

(mean) 9.43 58.53 86.76 89.39 66.11 17.07 8.13 10.00 

% on each 

trigger (SD) 24.61 22.77 30.82 30.07 24.38 11.59 24.89 31.62 
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Participant PED 14, percentage activity for each wheel bin, unaffected quadriceps. 

Trigger 

1 

Trigger 

2 

Trigger 

3 

Trigger 

4 

Trigger 

5 

Trigger 

6 

Trigger 

7 

Trigger 

8 

Turn 1 0.00 0.00 13.41 100.00 100.00 37.64 1.39 0.00 

Turn 2 0.00 0.00 8.10 100.00 98.14 48.59 1.52 0.00 

Turn 3 0.00 0.00 0.00 64.17 100.00 69.91 59.58 73.71 

Turn 4 0.00 0.00 0.00 92.31 96.30 58.82 7.60 0.00 

Turn 5 0.00 0.00 0.00 56.67 100.00 36.24 20.87 0.00 

Turn 6 0.00 0.00 0.00 71.56 100.00 46.81 27.13 0.00 

Turn 7 0.00 0.00 0.00 81.61 100.00 58.55 79.37 0.00 

Turn 8 0.00 0.00 0.00 56.44 100.00 66.67 35.14 6.07 

Turn 9 0.00 0.00 0.00 51.86 99.31 86.84 22.54 0.00 

Turn 10 0.00 0.00 3.68 70.76 100.00 76.23 57.09 5.53 

% on each 

trigger (mean) 0.00 0.00 2.52 74.54 99.37 58.63 31.22 8.53 

% on each 

trigger (SD) 0.00 0.00 4.66 18.12 1.24 16.60 26.53 23.03 

 

Participant PED 14, percentage activity for each wheel bin, unaffected hamstrings 

  

Trigger 

1 

Trigger 

2 

Trigger 

3 

Trigger 

4 

Trigger 

5 

Trigger 

6 

Trigger 

7 

Trigger 

8 

Turn 1 100.00 100.00 90.85 84.03 13.61 70.11 100.00 100.00 

Turn 2 100.00 100.00 100.00 95.82 24.40 77.11 96.20 100.00 

Turn 3 100.00 100.00 100.00 96.11 29.43 100.44 100.00 100.00 

Turn 4 94.90 100.00 100.00 96.41 57.10 74.21 100.00 100.00 

Turn 5 100.00 100.00 100.39 94.55 35.69 74.67 100.00 100.00 

Turn 6 100.00 100.00 100.00 94.00 25.55 67.23 100.00 100.00 

Turn 7 100.00 100.00 83.11 94.48 31.93 88.46 100.00 100.00 

Turn 8 100.00 100.00 100.00 89.11 8.22 70.89 100.00 100.00 

Turn 9 100.00 100.00 100.00 86.25 25.86 55.70 86.48 100.00 

Turn 10 100.00 100.00 80.60 77.01 20.33 41.26 94.33 100.00 

% on each 

trigger (mean) 99.49 100.00 95.50 90.78 27.21 72.01 97.70 100.00 

% on each 

trigger (SD) 1.61 0.00 7.76 6.52 13.32 16.18 4.43 0.00 
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Participant PED 07; percentage activity for each wheel bin, affected quadriceps 

Trigger 

1 

Trigger 

2 

Trigger 

3 

Trigger 

4 

Trigger 

5 

Trigger 

6 

Trigger 

7 

Trigger 

8 

Turn 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Turn 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Turn 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Turn 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Turn 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Turn 6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Turn 7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Turn 8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Turn 9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Turn 10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

% on each 

trigger 

(mean) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

% on each 

trigger (SD) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 

Participant PED 07; percentage activity for each wheel bin, affected hamstrings 

Trigger 

1 

Trigger 

2 

Trigger 

3 

Trigger 

4 Trigger 5 

Trigger 

6 

Trigger 

7 

Trigger 

8 

Turn 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Turn 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Turn 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Turn 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Turn 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Turn 6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Turn 7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Turn 8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Turn 9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Turn 10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

% on each 

trigger 

(mean) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

% on each 

trigger (SD) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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Participant PED 07, percentage activity for each wheel bin, unaffected quadriceps 

Trigger 

1 

Trigger 

2 

Trigger 

3 

Trigger 

4 

Trigger 

5 

Trigger 

6 

Trigger 

7 

Trigger 

8 

Turn 1 0.00 0.00 0.00 95.45 100.00 100.00 100.00 53.25 

Turn 2 0.00 0.00 0.00 76.21 100.00 100.00 100.00 18.50 

Turn 3 0.00 0.00 0.00 84.76 100.00 100.00 100.00 35.37 

Turn 4 0.00 0.00 0.00 71.43 100.00 100.00 100.00 74.38 

Turn 5 0.00 0.00 0.00 80.93 100.00 100.00 100.00 26.11 

Turn 6 0.00 0.00 0.00 79.58 100.00 100.00 100.00 26.88 

Turn 7 0.00 0.00 0.00 86.08 100.00 100.00 100.00 40.74 

Turn 8 0.00 0.00 3.24 88.21 100.00 100.00 100.00 53.55 

Turn 9 0.00 0.00 0.00 57.75 100.00 100.00 100.00 58.00 

Turn 10 0.00 0.00 0.00 73.77 100.00 100.00 100.00 35.48 

% on each 

trigger (mean) 0.00 0.00 0.32 79.42 100.00 100.00 100.00 42.23 

% on each 

trigger (SD) 0.00 0.00 1.03 10.46 0.00 0.00 0.00 17.27 

 

Participant PED07, percentage activity for each wheel bin, unaffected hamstrings 

Trigger 

1 

Trigger 

2 

Trigger 

3 

Trigger 

4 

Trigger 

5 

Trigger 

6 

Trigger 

7 

Trigger 

8 

Turn 1 100.00 97.60 24.46 0.00 0.00 0.00 0.00 38.46 

Turn 2 100.00 100.00 49.74 0.00 24.87 10.82 0.00 47.98 

Turn 3 100.00 100.00 53.81 0.00 13.61 6.88 35.18 33.54 

Turn 4 100.00 100.00 38.59 0.00 3.31 0.00 0.00 32.50 

Turn 5 100.00 100.00 42.62 0.00 0.00 4.47 1.05 52.23 

Turn 6 100.00 100.00 25.00 0.00 11.43 16.20 0.00 50.63 

Turn 7 100.00 100.00 32.97 0.00 0.00 7.22 1.03 57.41 

Turn 8 100.00 100.00 43.78 0.00 29.14 0.00 0.00 57.42 

Turn 9 100.00 100.00 22.73 1.60 0.00 7.56 23.37 42.00 

Turn 10 100.00 100.00 73.41 0.00 0.60 15.20 0.00 0.00 

% on each trigger 

(mean) 100.00 99.76 40.71 0.16 8.30 6.84 6.06 41.22 

% on each trigger 

(SD) 0.00 0.76 15.76 0.51 11.09 5.96 12.55 17.07 
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Participant PED 09, percentage activity for each wheel bin, affected quadriceps 

Trigger 

1 

Trigger 

2 

Trigger 

3 

Trigger 

4 

Trigger 

5 

Trigger 

6 

Trigger 

7 

Trigger 

8 

Turn 1 0.00 5.69 0.00 76.72 71.92 90.27 80.37 100.00 

Turn 2 100.00 84.27 91.92 100.45 100.00 99.02 100.00 52.47 

Turn 3 100.00 74.37 85.77 56.47 40.99 81.58 30.73 50.22 

Turn 4 59.83 100.00 0.97 19.08 12.54 8.23 38.07 0.00 

Turn 5 0.84 0.84 0.00 19.61 0.00 0.00 3.59 0.00 

Turn 6 12.44 0.00 1.83 0.00 0.00 0.00 9.51 12.00 

Turn 7 8.12 63.81 20.59 2.53 71.43 0.49 31.27 23.88 

Turn 8 88.70 70.92 22.12 25.00 65.64 0.00 78.24 31.43 

Turn 9 41.53 53.02 24.08 25.48 96.44 100.00 100.00 100.00 

Turn 10 69.88 67.72 90.99 85.13 78.85 81.90 100.00 100.00 

% on each 

trigger (mean) 48.13 52.07 33.83 41.05 53.78 46.15 57.18 47.00 

% on each 

trigger (SD) 40.97 36.60 39.64 35.89 38.03 47.24 38.53 40.67 

 

Participant PED 09, percentage activity for each wheel bin, affected hamstrings 

Trigger 

1 

Trigger 

2 

Trigger 

3 

Trigger 

4 

Trigger 

5 

Trigger 

6 

Trigger 

7 

Trigger 

8 

Turn 1 67.44 98.58 72.89 60.32 5.42 0.00 0.00 0.00 

Turn 2 0.00 62.50 100.00 100.45 33.33 0.49 0.00 5.38 

Turn 3 0.00 0.00 78.66 100.00 87.84 35.79 20.00 0.00 

Turn 4 0.00 0.00 0.00 58.40 95.47 75.76 52.28 5.21 

Turn 5 0.00 0.00 0.00 0.00 72.09 100.00 84.30 51.28 

Turn 6 53.11 22.27 46.33 100.00 62.31 93.00 100.00 100.00 

Turn 7 100.00 56.19 32.77 45.57 28.57 0.00 94.59 100.00 

Turn 8 100.00 100.00 67.31 25.00 54.36 100.00 69.95 94.29 

Turn 9 100.00 78.14 53.93 58.17 23.56 0.00 0.00 67.51 

Turn 10 47.49 98.43 99.55 83.08 49.52 23.08 0.97 0.00 

% on each 

trigger (mean) 46.80 51.61 55.14 63.10 51.25 42.81 42.21 42.37 

% on each 

trigger (SD) 44.37 42.73 36.00 33.85 28.99 44.56 42.51 44.95 
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Participant PED 09, percentage activity for each wheel bin, unaffected quadriceps 

Trigger 

1 

Trigger 

2 

Trigger 

3 

Trigger 

4 

Trigger 

5 

Trigger 

6 

Trigger 

7 

Trigger 

8 

Turn 1 56.98 100.00 100.00 100.00 65.02 23.01 18.69 41.67 

Turn 2 55.21 90.32 100.00 100.45 100.00 75.49 26.99 22.42 

Turn 3 0.00 17.09 46.25 100.00 100.00 84.21 81.95 7.86 

Turn 4 11.35 28.57 14.49 27.10 100.00 100.00 94.42 80.09 

Turn 5 25.63 40.08 0.00 8.33 50.78 100.00 100.90 89.74 

Turn 6 70.81 16.59 6.42 84.62 27.14 57.98 100.00 100.00 

Turn 7 100.00 61.90 10.92 35.02 0.00 0.00 41.31 100.00 

Turn 8 100.00 100.00 100.00 31.48 4.10 0.00 10.36 62.86 

Turn 9 100.00 100.00 100.00 83.17 17.33 3.72 0.00 22.84 

Turn 10 42.86 96.06 100.00 100.00 91.35 32.13 19.42 0.00 

% on each 

trigger (mean) 56.28 65.06 57.81 67.02 55.57 47.65 49.40 52.75 

% on each 

trigger (SD) 36.90 36.33 46.06 36.93 41.26 40.85 40.38 38.61 

 

Participant PED 09, percentage activity for each wheel bin, unaffected hamstrings 

Trigger 

1 

Trigger 

2 

Trigger 

3 

Trigger 

4 

Trigger 

5 

Trigger 

6 

Trigger 

7 

Trigger 

8 

Turn 1 99.22 100.00 100.00 60.85 40.39 100.00 98.13 100.00 

Turn 2 83.33 99.19 95.77 86.61 47.62 67.16 100.00 85.65 

Turn 3 92.31 87.94 100.00 100.00 100.00 50.00 29.27 82.10 

Turn 4 66.38 0.00 78.26 100.00 100.00 68.83 59.39 42.18 

Turn 5 86.13 74.68 71.43 62.75 100.00 100.00 99.10 48.21 

Turn 6 71.29 100.44 100.00 100.00 100.00 100.00 100.00 90.22 

Turn 7 59.90 79.52 100.00 100.00 100.00 0.99 96.53 100.00 

Turn 8 56.96 77.55 48.56 100.00 100.00 100.00 100.00 99.59 

Turn 9 100.00 81.40 63.35 66.83 100.00 88.37 100.00 100.00 

Turn 10 100.00 100.00 80.18 89.74 89.42 100.00 100.00 100.00 

% on each 

trigger (mean) 81.55 80.07 83.75 86.68 87.74 77.53 88.24 84.79 

% on each 

trigger (SD) 16.81 29.97 18.41 16.77 23.35 32.39 24.23 21.95 
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Additional original data sets contributing to scatter plots, figures 16 and 17 

Participant PED 05; percentage activityfor each wheel bin, affected quadriceps 

 

Participant PED 05; percentage activityfor each wheel bin, affected hamstrings 

  

Trigger 

1 

Trigger 

2 

Trigger 

3 

Trigger 

4 

Trigger 

5 

Trigger 

6 

Trigger 

7 

Trigger 

8 

Turn 1 0.00 0.00 0.00 0.00 15.94 5.99 1.71 0.00 

Turn 2 0.00 0.00 3.72 0.00 0.57 4.28 0.00 0.00 

Turn 3 0.00 0.00 0.00 6.06 12.50 3.23 2.75 0.00 

Turn 4 0.00 0.00 0.00 0.00 0.00 25.90 25.43 0.00 

Turn 5 0.00 0.00 0.00 5.45 9.75 43.07 36.89 30.75 

Turn 6 0.00 0.00 0.00 6.37 21.71 44.74 67.35 43.49 

Turn 7 26.55 28.52 10.45 5.68 40.00 69.33 49.43 45.19 

Turn 8 0.00 0.00 0.00 0.00 18.40 76.08 56.93 16.43 

Turn 9 0.00 0.00 0.00 0.00 0.00 58.23 65.63 73.93 

Turn 10 0.00 0.00 0.00 0.00 0.00 39.56 82.90 43.78 

% on each 

trigger (mean) 2.65 2.85 1.42 2.36 11.89 37.04 38.90 25.36 

% on each 

trigger (SD) 8.39 9.02 3.38 3.05 12.92 26.71 30.34 26.04 

 

  Trigger 1 

Trigger 

2 

Trigger 

3 

Trigger 

4 Trigger 5 

Trigger 

6 

Trigger 

7 Trigger 8 

Turn 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Turn 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Turn 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Turn 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Turn 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Turn 6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Turn 7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Turn 8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Turn 9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Turn 10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

% on each 

trigger (mean) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

% on each 

trigger (SD) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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Participant PED 06; percentage activityfor each wheel bin, affected quadriceps 

  

Trigger 

1 

Trigger 

2 

Trigger 

3 

Trigger 

4 

Trigger 

5 

Trigger 

6 

Trigger 

7 

Trigger 

8 

Turn 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Turn 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Turn 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Turn 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Turn 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Turn 6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Turn 7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Turn 8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Turn 9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Turn 10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

% on each 

trigger (mean) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

% on each 

trigger (SD) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 

Participant PED 06; percentage activity for each wheel bin, affected hamstrings 

  

Trigger 

1 

Trigger 

2 

Trigger 

3 

Trigger 

4 

Trigger 

5 

Trigger 

6 

Trigger 

7 

Trigger 

8 

Turn 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Turn 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Turn 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Turn 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Turn 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Turn 6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Turn 7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Turn 8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Turn 9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Turn 10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

% on each 

trigger (mean) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

% on each 

trigger (SD) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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Participant PED 13; percentage activityfor each wheel bin, affected quadriceps 

Trigger 

1 

Trigger 

2 

Trigger 

3 

Trigger 

4 

Trigger 

5 

Trigger 

6 

Trigger 

7 

Trigger 

8 

Turn 1 75.16 61.34 11.33 52.33 90.38 92.65 92.19 69.27 

Turn 2 94.90 70.00 38.14 65.22 100.00 83.48 53.96 41.19 

Turn 3 65.95 66.04 26.19 36.42 84.77 100.00 83.43 98.40 

Turn 4 100.00 73.10 40.20 77.55 100.34 100.00 100.00 100.00 

Turn 5 100.00 90.98 39.44 98.97 13.18 100.00 100.34 97.31 

Turn 6 99.40 92.25 86.14 89.94 99.56 93.98 100.00 100.00 

Turn 7 100.00 100.00 98.58 17.43 69.16 100.00 100.00 100.00 

Turn 8 74.50 98.31 91.81 34.45 92.47 100.00 100.00 100.00 

Turn 9 94.86 98.27 100.00 100.00 100.00 93.22 100.00 100.00 

Turn 10 100.00 100.00 93.93 78.01 96.05 100.00 100.00 91.18 

% on each trigger 

(mean) 90.48 85.03 62.58 65.03 84.59 96.33 92.99 89.73 

% on each trigger 

(SD) 13.22 15.56 34.44 28.87 26.90 5.53 14.77 19.54 

 

Participant PED 13; percentage activity for each wheel bin, affected hamstrings 

  Trigger 1 

Trigger 

2 

Trigger 

3 

Trigger 

4 

Trigger 

5 

Trigger 

6 

Trigger 

7 

Trigger 

8 

Turn 1 100.00 100.00 0.00 26.94 9.86 0.00 14.32 83.45 

Turn 2 100.00 100.00 96.33 85.22 15.64 0.00 21.99 72.28 

Turn 3 100.00 99.84 63.69 39.70 21.55 0.00 0.00 82.62 

Turn 4 100.00 100.22 50.98 18.03 0.00 0.00 22.70 81.17 

Turn 5 100.00 99.82 65.49 54.11 0.00 0.00 24.48 74.25 

Turn 6 100.00 100.00 72.61 67.75 37.18 34.21 0.00 6.70 

Turn 7 79.28 100.00 100.00 78.57 50.78 11.46 11.46 30.26 

Turn 8 74.50 100.00 100.00 86.29 47.60 0.00 0.00 7.42 

Turn 9 70.69 100.00 100.00 61.22 17.97 0.00 0.00 0.00 

Turn 10 60.16 100.00 97.65 29.91 7.63 0.00 0.00 0.00 

% on each trigger 

(mean) 88.46 99.99 74.68 54.77 20.82 4.57 9.50 43.82 

% on each trigger 

(SD) 15.62 0.11 32.09 25.09 18.50 11.02 10.71 37.91 
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Clinical efficacy and prognostic indicators for lower
limb pedalling exercise early after stroke: Study
protocol for a pilot randomised controlled trial
Nicola J Hancock1*, Lee Shepstone1, Philip Rowe2, Phyo Kyaw Myint1, Valerie Pomeroy1

Abstract

Background: It is known that repetitive, skilled, functional movement is beneficial in driving functional
reorganisation of the brain early after stroke. This study will investigate a) whether pedalling an upright, static
exercise cycle, to provide such beneficial activity, will enhance recovery and b) which stroke survivors might be
able to participate in pedalling.

Methods/Design: Participants (n = 24) will be up to 30 days since stroke onset, with unilateral weakness and
unable to walk without assistance. This study will use a modified exercise bicycle fitted with a UniCam crank. All
participants will give informed consent, then undergo baseline measurements, and then attempt to pedal. Those
able to pedal will be entered into a single-centre, observer-blinded randomised controlled trial (RCT). All
participants will receive routine rehabilitation. The experimental group will, in addition, pedal daily for up to ten
minutes, for up to ten working days.
Prognostic indicators, measured at baseline, will be: site of stroke lesion, trunk control, ability to ambulate, and
severity of lower limb paresis.
The primary outcome for the RCT is ability to voluntarily contract paretic lower limb muscle, measured by the
Motricity Index. Secondary outcomes include ability to ambulate and timing of onset and offset of activity in
antagonist muscle groups during pedalling, measured by EMG.

Discussion: This protocol is for a trial of a novel therapy intervention. Findings will establish whether there is
sufficient evidence of benefit to justify proceeding with further research into clinical efficacy of upright pedalling
exercise early after stroke. Information on potential prognostic indicators will suggest which stroke survivors could
benefit from the intervention.

Trial Registration: ISRCTN: ISRCTN45392701

Background
Therapy early after stroke
In the first few weeks after stroke, the brain is ‘primed’ for
neurological recovery in response to rehabilitation training
[1]. Indeed, Cramer [2] describes a ‘golden period’ for initi-
ating restorative therapies, starting in the first days after
onset and continuing for several weeks. However, animal
studies on early therapy are equivocal. Kozlowski et al [3]
demonstrated an increase in lesion size following early
training and proposed a ‘use-it-but-don’t-overuse-it’

strategy in this period. In contrast, Biernaskie et al [4]
found that rats given enriched rehabilitation training from
day five after an induced lesion demonstrated a marked
improvement in recovery, whilst those given similar train-
ing beginning at day 30 improved no more than controls.
Whilst animal studies provide insights into brain

changes underlying recovery, caution must be observed
in generalising to human populations. Nonetheless, clin-
ical studies do support early rehabilitation intervention
to improve outcomes [5,6]. It is also possible that, if
rehabilitation onset is delayed, patients might establish
compensatory behaviours that could impact negatively
on recovery of useful functional activity [7,8]. Addition-
ally, National Clinical Guidelines for Stroke in the
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United Kingdom advise that people with acute stroke
should be mobilised as early as possible [9]. However,
the optimal dose and type of physical therapy required
to drive useful functional reorganisation in early stroke
survivors with different clinical characteristics remains
unknown.

Repetitive, functional training early after stroke
In the first days to weeks after onset, stroke survivors can
present particular therapeutic challenges. Leg weakness is
often substantial and the ability to contract paretic mus-
cle sufficiently to be able to take part in functional, rele-
vant activity, such as walking training, can be severely
compromised. There are interventions which can be used
to improve ambulatory capacity early after stroke-includ-
ing treadmill training with and without partial body
weight support, and walking facilitated ‘hands-on’ by
therapists-but these are often time-consuming and likely
to require extensive physical assistance from one or more
members of a therapy team. The effort required from
both patient and therapist(s) is often too great to enable
more than a few repetitions of activity. This dose might
be too low for effect.
Although the number of repetitions of an activity

needed to facilitate human brain reorganisation has not
been established, animal model studies suggest that 300-
400 repetitions in a 30 minute session might be needed
[10]. Repetition of motor activity has been demonstrated
to produce changes in cortical representation maps
[10,11], and may be an important consideration in reha-
bilitation programmes.
Repetition of motor activity alone, however, is not a suf-

ficient driver to induce functional reorganisation of corti-
cal networks. Motor skill acquisition, or motor learning,
has been demonstrated to play a central role, in both ani-
mal [12] and human [13,14] studies. It has also been sug-
gested that there may be benefit from goal-directed
functional activity associated with normal afferent stimula-
tion [15]. The salience of a task is an important considera-
tion in rehabilitation programmes [7]. Indeed, current
clinical guidelines suggest that functional, task specific
activity is a key component of rehabilitation after stroke;
gait re-training to improve independence in walking is
such a functional activity and a principle goal for many
patients [9]. Such evidence might suggest that optimal
rehabilitation programmes should involve task specific
activity and increasing levels of motor skill [16].
Therapists are therefore challenged to find strategies

that enable repetitive, relevant and skilled activity in
early stroke survivors. However, it remains unknown a)
which specific physical therapies might drive brain reor-
ganisation and motor recovery and b) which patients
might respond best to which therapies.

Cycling as a potential therapeutic activity early after
stroke
Cycling is a functional activity that has potential to ben-
efit patients when used as an adjunct to therapy after
stroke [17]. It requires that agonist and antagonist mus-
cles are contracted reciprocally and in a similar pattern
to that required for walking [18]. Therefore, it is a repe-
titive muscle activity that may be beneficial in retraining
gait [19]. Indeed, pedalling may facilitate phasic, co-ordi-
nated muscle activity even in patients with severe hemi-
paresis [20]. Whilst familiar to many stroke survivors,
reciprocal pedalling is likely to require re-acquisition of
motor skill following the onset of hemiparesis.
Clinically, there is therefore potential to use static cycling

for repetitive, co-ordinated exercise training as part of
stroke rehabilitation programmes aiming to address deficits
in motor function. However, the evidence in support of
cycling interventions is preliminary. The early findings
from our ongoing systematic review are that, whilst
research into aerobic capacity after stroke has often incor-
porated a cycling paradigm [21-23], few trials have specifi-
cally evaluated the effects of cycling exercise on motor
function early after stroke. There are some indications that
cycling activity may have a positive effect on strength, reci-
procal activation of antagonistic muscle groups and balance
in stroke survivors in the sub-acute and chronic stages but
cautious interpretation of these results is required for a
number of reasons: sample sizes were relatively small (n =
24 [24]; n = 17 [20]; n = 8 [25]), exact time since stroke
onset was not specified [24] and findings related to a single
session which was not repeated over time [20].
In addition, much of this work has used a recumbent

position with a standard leg cycle ergometer for cycling
exercise [20,22,24,25]. Although suitable for cardiovascular
training, this position does not replicate the upright pos-
ture needed for walking. We propose that cycling to pro-
vide functional training of the lower limbs early after
stroke is best provided in an upright posture, in order to
maximise potential for activity in major lower limb muscle
groups, in a posture similar to walking. Indeed, muscle
activation patterns during pedalling are not fixed and are
modified according to body position [26,27] and heigh-
tened levels of activity in quadriceps and hamstrings have
been demonstrated in more upright pedalling postures
[26].
We have therefore adapted a standard exercise bike a)

to provide trunk support in an upright pedalling posture
and b) to maximise opportunities for patients with
severe lower limb weakness to pedal, with use of the
UniCam crank (UniCam Inc, Emerson, New Jersey,
USA; see instrumentation). This crank enables a reduced
circumference of the pedalling circle on the paretic side,
where position 2 (P2) is the smallest circle and position
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9 (P9) the largest (i.e normal pedalling). A preliminary
study (unpublished, 2004/05, Wandsworth UK, Local
Research Ethics Committee 03.0102) has demonstrated
that stroke survivors can: a) pedal the modified exercise
cycle for up to ten minutes with no adverse effects, and
b) tolerate the different positions of the right and left
pedals. Participants were included in this observational
study if they were at least 14 days after stroke onset,
able to sit without support for one minute, able to fol-
low a one-stage command, previously independently
mobile but now unable to mobilise and having no other
limiting disease process or pathology.

Potential prognostic indicators for therapeutic
interventions
Therapists use a wide range of clinical interventions in
their repertoire but there is little research evidence to
guide clinical decisions on which patients are likely to
respond to which therapies. Possible influential factors
include the location and size of brain lesion [28,29],
degree of motor weakness; and ability to control the
trunk to sit independently [30,31]. It is unknown
whether these factors are prognostic for obtaining bene-
fit from pedalling exercise early after stroke.

Aims
The driver for this proposed research is the hypothesis
that UniCam crank-assisted upright pedalling (UP), used
as an adjunct to conventional physical therapy, enhances
recovery of lower limb motor function in stroke survi-
vors with substantial paresis early after stroke. However,
before this hypothesis can be tested in a phase III trial,
it is important to establish whether there is sufficient
evidence of benefit (clinical efficacy) to justify proceed-
ing to subsequent larger trials and which stroke survi-
vors are most likely to be able to participate in UP
(prognostic indicators). Therefore, the aims for the cur-
rent early phase clinical research study are:

1. Clinical Efficacy

To determine whether there is sufficient evidence for
UP, balancing efficacy and potential adverse events (pain
and fatigue), to justify proceeding to subsequent larger
clinical trials; as assessed by:

a) ability to voluntarily contract paretic muscle;
b) production of reciprocal activation of antago-
nistic muscle groups during pedalling, similar to
walking;
c) timing of onset and offset of activity in
antagonist muscle groups during pedalling, simi-
lar to walking;
d) ability to walk independently.

2. Prognostic Indicators

To determine whether site of stroke lesion, trunk con-
trol ability, severity of lower limb paresis and/or ambu-
latory ability predicts ability to use UP within 30 days of
stroke onset.

Methods
Design, setting and randomisation
The proposed study will be a single centre, early phase
randomised controlled trial with observer blinding, pre-
ceded by an observational component. This design is
illustrated in figure 1.
Study procedure
All participants will undergo baseline measurement set 1
(prognostic indicators). They will then be assessed for
their ability to perform UP. Potential participants will be
taken to the treatment area and shown the cycling
equipment. If content to proceed, a hoist will be used to
seat them on the bike safely. They will be asked to
pedal slowly for one minute to familiarise themselves
with the equipment. They will then be asked to pedal
for one further minute and a visual observation of
whether they can pedal or not will be made.
Those unable to pedal and who are 31 days or more

after stroke onset will be excluded from the randomised
part of this trial. Those unable to pedal and who are 30
days or less after stroke onset will be offered further
pedalling assessments approximately every three days.
The rationale for further pedalling assessments is that,
during the first 30 days after stroke, people may experi-
ence fear of movement or emotional distress and there-
fore may need more than one experience of pedalling
within a therapeutic environment. Without repeated
opportunities for pedalling assessment some participants
may be excluded unfairly from the opportunity to parti-
cipate in UP.
Those participants able to pedal for one minute and

who are 30 days or less after stroke onset, will then
undertake baseline measures set 2 (clinical efficacy). Par-
ticipants will then be allocated randomly to either rou-
tine conventional physical therapy (CPT; control group)
or to CPT plus UP (experimental group). Randomisation
order will be generated before the trial begins by an
independent statistician, in blocks of four. Group alloca-
tion will be concealed in sequentially numbered opaque
sealed envelopes held by an independent administrator,
who is not involved in the study and will have no con-
tact with study participants. The next highest number
envelope will be opened by the independent administra-
tor in response to a telephone request from the research
therapist. After opening, envelopes will be stored
securely with the participants’ study data. Randomisa-
tion will be concealed from the independent outcome
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assessor and participants will be asked not to discuss
group allocation with the outcome assessor.
Participants will receive their allocation intervention for

up to ten minutes a day, for up to ten working days or dis-
charge from acute stroke care, whichever occurs first. On

completion of the intervention phase, participants will
undertake clinical efficacy outcome measures. Every
attempt will be made to undertake outcome measures even
if participants withdraw or are discharged before the inter-
vention phase is completed (intention to treat principle).

Yes 

Screening for study criteria 
and recruitment 

Does not meet 
study criteria 

Excluded from trial 

30 days or less after stroke 
onset given further pedalling 

assessments 

unable 
Assessment of ability to pedal 

31 days or more 
after stroke onset 

Baseline measures set 1 
(prognostic indicators) 

able 

Baseline measures set 2 
(clinical efficacy) 

Meets study criteria 

No Excluded from trial Provision of informed consent 

Approached by clinical team 

Discussion with research team 

CPT +UniCam crank-assisted 
UP, ten mins daily, up to ten 

days 

CPT 

Outcome measures 

Randomisation Excluded from 
clinical efficacy  
i i i

Figure 1 Flowchart illustrating trial design.
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Blinding
Blinding of research therapists in a therapy intervention
study is not always feasible and patients are clearly
aware that they are undergoing therapeutic interven-
tions. Consequently, for this exploration of pedalling
exercise, blinding of therapists and participants is not
possible. However, the independent assessor of clinical
outcome measures will be a trained therapist blinded to
group allocation.

Ethical considerations
Patients with communication deficit (particularly apha-
sia) are frequently excluded from stroke rehabilitation
research, despite having potential for motor benefit. In
clinical practice, however, stroke survivors with aphasia
are included in motor rehabilitation. This protocol
ensures that, providing patients can follow a single-stage
command, they can participate. Thus the results of this
trial will be applicable to clinical practice. In addition,
the protocol addresses a frequent complaint from stroke
survivors with aphasia; namely that they are not given
opportunities to be involved in research.
However, in clinical practice as well as research, it is

important to distinguish between language and cognitive
communication impairment and close liaison with the
clinical team, in particular the Speech and Language
Therapy members, is essential. Before approaching a
potential participant, the researcher will therefore dis-
cuss decision making capacity of individuals with the
clinical team. If, as a result of their assessment, the clini-
cal team’s conclusion is that communication impairment
is too great to allow an individual to give informed con-
sent, then the researcher will not approach the potential
participant. If the clinical team’s conclusion is that
informed consent is possible, albeit with the use of
enhanced communication strategies, then the researcher
will approach the potential participant.
Enhanced communication strategies will be used in

this trial. These include the use of diagrams, charting
information, repetition in a variety of ways and checking
for understanding. In addition, information sheets and
informed consent forms present information in a textual
and pictorial form.
All potential participants will be given at least 24 hours

(1 working day) to consider the information and ask ques-
tions. They will be encouraged to consult with others, out-
side of the research team, before making their decision.
All data will be encrypted and then stored on an lap

top computer by the researcher before leaving the stroke
unit. Data will be transferred onto a secure hard drive in
the research laboratory. No names will be used in any
recorded material except for the initial screening docu-
ment. Participants will be anonymised with the use of
study ID numbers.

The research study has received the approval of the
Essex 1Research Ethics Committee, UK (09/H0301/
52).

Participant inclusion criteria and recruitment process
Participants will be recruited from an acute stroke unit
and, if necessary due to pressure on stroke beds, medi-
cal wards; in a University Hospital Trust. Consultant
and therapy teams have agreed to support this trial.
Stroke survivors will initially be approached by a clini-

cal team member responsible for their care, to check that
they agree to speak to a researcher. If they agree, then a
researcher will provide potential participants with verbal
and written printed information about the trial. A video
of the procedure for getting on and off the exercise cycle
will also be available if patients wish to view it. A mini-
mum of twenty four hours (1 working day) later,
informed, signed consent will be sought. Those providing
written informed consent will be participants in this trial.
All potential participants will then be screened to check
that they meet the study criteria, which are;

• adults aged 18+
• three to thirty days following a unilateral stroke
resulting in unilateral muscle weakness with or with-
out sensory deficit;
• fit to participate as assessed by a consultant-led
medical team with resting oxygen saturations 95% or
above, resting heart rate 90 beats per minute or less
and systolic blood pressure of 100-160 mmHg
• score 0, 1 or 2 on the Functional Ambulation
Categories [32]. Clinically, this means unable to
walk; or need the help of two or more people; or
require firm continuous or intermittent support of
one person assisting with weight and balance;
• be able to sit unsupported for 30-seconds on the
edge of a bed with feet on the floor.
• have sat out of bed in a chair or wheelchair at least
once for a continual period of 15-minutes i.e. have
appropriate sitting tolerance to participate in this
cycling intervention;
• be able to follow a one-stage command i.e. suffi-
cient communication, orientation and memory to
participate in this cycling intervention;
• be independently mobile with or without an aid
prior to the index stroke;
• have no co-existing pathology contributing to
observed impairment in the paretic lower limb e.g
osteoarthritis with associated knee deformity.

Sample Size
This early phase trial is the first to use this equipment
and with this participant group. Consequently there are
no data to inform a power calculation. Sample size will
therefore be based on practical considerations, using
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estimates of the number of participants we could expect
to recruit within a 12 month time period. Using data
from our previous trials of rehabilitation earIy after
stroke [e.g [33]], we estimate a recruitment rate of two
participants per month. Therefore, the sample size has
been set at 24 participants.

Intervention and Instrumentation
All participants will receive routine conventional physi-
cal therapy (CPT) as deemed appropriate by the clinical
team. To enable replication of CPT we will record its
content and dose (minutes of therapy) with a standar-
dised schedule [34].
Control intervention
Participants allocated to the control group will receive
CPT only as described above.
Experimental Intervention
Participants allocated to the experimental group will
receive UP in addition to CPT. All experimental partici-
pants will be asked to pedal at 50 revolutions per
minute (50 rpm) at a comfortable resistance whilst
maintaining a heart rate of 85% or below their age-
predicted maximum (i.e. less than 220-age ×0.85 beats
per minute). If patients cannot achieve 50 rpm, the
research therapist will be guided by their response in
setting the maximum rpm. The mean rpm achieved will
be recorded for each participant for each intervention
session. It is anticipated that few patients this early after
stroke will immediately manage ten minutes of pedal-
ling, so the number of minutes pedalled, up to ten min-
utes, will be recorded.
Each intervention session will also involve recording:

the pedal crank setting; the degree of reciprocal activa-
tion of antagonistic muscle groups (see measurement
battery); the timing of onset and offset of activity in
antagonistic muscle groups (see measurement battery);
and the distance pedalled (m). This description of each
intervention session will allow replication of the inter-
vention and information on how to progress the inter-
vention over time in subsequent clinical trials.
Instrumentation
Maintaining sitting balance early after stroke often
requires substantial concentration and physical effort
which may limit production of selective movement in
the paretic lower limb. We have therefore adapted a
standard exercise bike so that postural support for the
trunk is provided if needed (figure 2).
We have also incorporated a UniCam crank, an

adjustment that can be applied to any commercially
available exercise bike and which enables movement of
the axis of the crank towards the centre of rotation of
the bike pedal. This thereby reduces the circumference
of the pedalling circle and reduces the required range of
movement at the knee and hip, allowing patients who

may have substantial lower limb weakness and/or limita-
tions in the range of joint movement to still pedal.
EMG data will be collected using the Datalink system

(Biometrics, UK). Muscle activity in quadriceps and
hamstring muscles for each leg will be recorded using
SX 230 (Biometrics, UK) preamplifiers. The preampli-
fiers connect to 4 analogue channels of the Datalink
subject unit, which is connected to the base unit. Infor-
mation from the base unit is collected on a lap top com-
puter running the Datalink software system. Continuous
EMG data will thus be recorded during pedalling.
The bicycle wheel is demarcated every 45 degrees

using reflective tape. As the participant pedals, an LED
sensor placed at a fixed point on the bicycle frame, is
triggered as each of the eight markers passes (figure 3).
This trigger creates a drop in voltage, creating a spike in
the software. The spikes are recorded synchronously, via
a digital channel on the Datalink subject unit, with the
EMG data. This system allows for muscle activity to be
related to the position of the pedal during the 360
degree turn.

Measurement battery
Baseline measures will be made before randomisation
and outcome measures after the intervention phase has
been completed (figure 1). Baseline measures consist of
two sets: prognostic indicators and clinical efficacy. Out-
come measures will consist of clinical efficacy measures
only.
The participant characteristics to be recorded for all

potential participants and participants will be: gender,
age (years), type and site of the stroke lesion (liaison
with medical team from scanning/clinical findings) and
time since stroke onset at entry to the trial and at each
set of study measures (days).
Clinical efficacy measures
As the primary aim of this pedalling intervention is to
enhance ability to voluntarily contract paretic muscle,
the primary measure enables assessment of impairment
level change. The Motricity Index [35] is a simple mea-
sure that can be used easily in the clinical setting to
assess the severity of motor impairment. It is also a sig-
nificant predictor of ambulatory outcomes after stroke
[30,36]. Hence it is a highly clinically relevant measure,
as it provides a direct assessment of motor function that
is correlated with eventual mobility outcomes.
To detect changes in muscle activity underlying partici-

pants’ observed performance, EMG data will be employed.
Therapists in the clinical setting frequently observe and
record alterations in, for example, muscle strength and
walking ability, but cannot accurately measure the biologi-
cal changes in muscle activity that might contribute to
changes in functional performance. In recording, proces-
sing and analysing at this level, the proposed trial will be
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able to evaluate biological change alongside frequently
used clinical measures of recovery. This change in motor
activity will be able to be detected earlier than if using
clinical measures of movement performance alone.
Regaining mobility is a key goal for stroke survivors and

independent mobility enables independence in other activ-
ities of daily living [9,30]. It is possible that, as pedalling
exercise uses similar motor control patterns to those
required for walking, UP after stroke might have a positive
effect on ambulatory function. A measure of walking ability
has therefore been included in this study. The Functional
Ambulatory Categories (FAC) [32] has demonstrated

sensitivity in stroke survivors who cannot walk at the begin-
ning of their rehabilitation period, applicable to participants
in this trial, who are not mobile at inclusion. This measure-
ment of ambulatory function provides an assessment of an
activity level change that is highly relevant after stroke and
completes a spectrum of measures for this trial from body
structure through function to activity.
Primary outcome 1. Ability to voluntarily contract pare-

tic muscle

This will be measured by the Motricity Index (MI) lower
limb section [35]. The MI is a widely used measure and

Figure 2 The modified exercise cycle.
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has established validity and reliability for use after stroke
[37]. It is an ordinal weighted scale with six measurement
levels within each of three categories for the lower limb.
The three categories are: ankle dorsiflexion, knee exten-
sion, and hip flexion. For each movement, a score of 0, 9,
14, 19, 25, or 33 is given, where 0 is no movement, 19 is
full range movement against gravity not against resistance
and 33 is normal power.
Secondary outcomes 2. Ability to walk independently

As measured by the Functional Ambulation Categories
(FAC) [32]. This scale is designed to give detail on physical
support needed by patients for walking, so has clinical
relevance, and is easy to use. It has established validity and
reliability for use after stroke [38]. It is an ordinal scale,
patients scoring from 0-5, where 0 indicates a patient who
is not able to walk or needs help of 2 therapists, and 5

indicates a patient who is independent in ambulation even
on stairs.

3. Onset and offset of EMG activity of antagonistic
muscle groups during pedalling

EMG activity will be recorded in quadriceps and ham-
string muscles for each leg. Before getting on the bike,
participants will have a small (37 mm × 18 mm) pre-
amplifier applied to the front and back of their thigh on
both sides, following skin preparation to minimise signal
interference. Electrode position is known to be a vital
factor in achieving accurate EMG information [39]. For
this study, a single researcher will place the electrodes
for each participant and for every session, using pub-
lished guidelines [40]. When the participants are posi-
tioned comfortably on the bike, the leads from the

Figure 3 Diagrammatic representation of wheel demonstrating divisions.
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pre-amplifiers will be connected as described in
instrumentation.
Resting EMG activity will be recorded as a voltage at

1,000 Hz whilst the participant’s foot is resting firmly
on a box so that the leg is still and supported with the
knee in 5-15 degrees of flexion, for 30 seconds. This will
be undertaken for each leg. EMG data (voltage) will be
collected continuously during pedalling for a minimum
of 30 seconds at approximately 50 rpm.
Baseline EMG values will be calculated from the recti-

fied, processed signal as the mean ± 3 SD (standard
deviations) during the 30 seconds baseline data collec-
tion period. Onset of activity in each of the four muscle
groups will be defined as the time point during the 360
degree turn at which EMG voltage exceeds the mean
baseline value plus 3SD for 20 consecutive data points
(20 ms). Offset of activity in each of the four muscle
groups will be defined as the time point during the 360
degree turn at which EMG voltage falls below the mean
baseline value minus 3SD for 20 consecutive data points
(20 ms). The time point for onset and offset of muscle
activity in each of the four muscle groups will also be
recorded as a function of the position of the pedal dur-
ing the 360 degree turn.

4. Reciprocal activation of antagonistic muscle
groups (muscle activity) during pedalling

Rectified EMG data for each antagonistic muscle
group will be analysed using Spearman’s correlation
coefficient. An r value of 1.0 indicates perfect positive
correlation and therefore complete co-contraction, no
reciprocal activation, of an antagonistic muscle pair. An
r value of 0 indicates no correlation and therefore no
relationship between EMG activity of an antagonistic
muscle pair. An r value of -1.0 indicates a perfect nega-
tive correlation and therefore complete reciprocal activa-
tion of antagonistic muscle groups.
Prognostic indicator measures

5. Site of stroke lesion

The location and size of stroke lesion have been
demonstrated to be a prognostic factor for functional
outcomes after stroke [28,29]. It is possible, therefore,
that this clinical factor might be linked to the ability to
take part in rehabilitation interventions. Brain lesion
location will therefore be recorded from the clinical
scan.

6. Degree of muscle weakness as measured by the
Motricity Index (see clinical efficacy measures)
7. Ambulatory Capacity as measured by the Func-
tional Ambulatory Categories (see clinical efficacy
measures)

The FAC has been found to have good predictive
validity for community ambulation after stroke (FAC ≥
4 predicts community ambulation at six months with
100% sensitivity and 78% specificity) [38]. It is proposed
that pedalling exercise might have a positive effect on
walking and thus postulated that the ability to walk
might influence the ability to pedal and respond to ped-
alling intervention.

8. Ability to control the trunk

As measured by the Trunk Control Test [37]. This is a
short, simple measure of motor loss developed for use
after stroke. Patients are asked to do four movements-
rolling to their weak side, rolling to their strong side,
sitting up from lying down and balancing in a sitting
position. Each movement is scored according to ability,
either 0, 12 or 25, leading to a total score out of 100.
Validity and reliability (comparison with Rivermead
Motor Assessment at six, twelve and eighteen weeks
post-stroke-Spearman’s rho, r= 0.70, 0.72 and 0.79
respectively; interrater reliability, Spearman’s rho, r =
0.76, p < 0.001) have been established [37].
Balance (trunk) control is highly specific to ambula-

tory control, and makes a crucial contribution to the
ability to perform activities of daily living [41]. The
Trunk Control Test has been found to be a predictor of
functional outcomes after stroke, including significant
correlation with: discharge Functional Independence
Measure (Pearson’s r = 0.738) and gait velocity (Pear-
son’s r = 0.654) [31]; and discharge walking ability
(Spearman’s rho = 0.71) [36]. It is possible, therefore,
that trunk control early after stroke might influence the
ability to perform rehabilitation activities and thus will
be assessed as a potential prognostic indicator for pedal-
ling exercise after stroke.
Adverse events
There is a small risk that for some people, UP might
lead to an “overuse” syndrome, as expressed through an
increase in pain or fatigue. We will monitor for this by
checking for participant reports of lower limb pain,
either verbal or behavioural. Intervention will cease and
an adverse event recorded if a participant demonstrates
a decrease of 2 or more minutes in ability to pedal on 2
consecutive treatment days, or a 25% reduction in mean
rpm on 2 consecutive treatment days.

Statistical Analysis
The aim of the analysis is not to definitively demonstrate
efficacy in this early phase trial. Rather the data will be
used to inform a decision on whether or not to undertake
subsequent studies of UP. Assuming a normal distribu-
tion, independent t-tests will be used to compare groups
between trial arms for follow-up measures, together with
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95% confidence intervals to inform preliminary conclu-
sions on clinical benefit. Within-group analysis will be
assessed using paired t-tests. If a normal distribution can-
not be assumed, analogous non-parametric methods will
be used.
Associations between potential prognostic indicators

and the ability to pedal will be examined using Fishers
Exact test.

Trial management
A Trial Management Group (TMG) will provide overall
supervision and ensure good conduct of the trial (i.e.
adherence to the Declaration of Helsinki). The TMG
will meet every three months during the course of this
trial. In accordance with the MRC code of good practice
in clinical trials and the CONSORT guidelines, we will
document all decisions regarding eligibility for entry,
consent giving, inclusion, exclusion and attrition. Mem-
bers of the TMG will be: the researcher (NH) and mem-
bers of the research team (VP, LS, PR, PKM). Every six
months during data collection, the TMG will include an
invited independent patients’ advocate from the clinical
stroke service.

Discussion
This protocol describes an original, two-stage early
phase trial, in which a group of early stroke survivors
will first be evaluated for their ability to pedal a modi-
fied upright exercise cycle. Those who can pedal the
cycle will then be participants in an early phase rando-
mised controlled trial of daily pedalling intervention, for
up to ten subsequent working days of their in-patient
hospital stay.
Findings from neuroimaging studies suggest that reha-

bilitation programs incorporate repetition, motor skill
acquisition and functional activity in order to optimally
drive useful cortical plasticity [e.g. [10-14]]. It has been
suggested that early rehabilitation intervention might
exploit a crucial period in which the brain is primed to
begin repair, in the first few days after stroke onset
[1,2]. Therapists are therefore challenged to find rehabi-
litation strategies incorporating these underlying princi-
ples. Cycling provides a paradigm through which such
activity might be achieved even in early stroke partici-
pants with severe weakness. For this trial, a prototype
upright exercise cycle has been developed to enable
such patients to experience bilateral pedalling motion.
The locomotor strategies employed during cycling are
akin to those used in ambulation [18] and our exercise
cycle also incorporates adaptations to allow stroke survi-
vors with considerable weakness to attempt to pedal in
an upright posture, similar to walking.
Whilst evidence exists correlating clinical aspects of

stroke to functional outcomes [e.g. [28-30]], prognostic

information on what factors might influence the ability
to take part in specific rehabilitation activities has yet to
be established. This information has the potential to
inform the design of future research and provide indica-
tors to clinicians about which patients might best take
part in which activities. The current trial will record
four potential prognostic indicators-site of lesion, trunk
control, paretic leg motor function and walking ability-
before participants attempt to use the equipment; links
to the ability to pedal the pedalling activity will be ana-
lysed and contribute to clinical conclusions and inform
future research. For this novel aspect of the study, selec-
tion of potential indicators was based on those factors
previously demonstrated to correlate to functional out-
comes after stroke.
Some exploratory studies have investigated the potential

clinical efficacy of pedalling exercise after stroke [20,24,25]
but the early findings of our systematic review (in pro-
gress) suggest that no trial has evaluated upright pedalling
in a group of stroke survivors within one month of stroke
onset. The potential challenges that early stroke survivors
might face in taking part in this activity, such as safely sit-
ting in an upright posture and taking part in repetitive
exercise, have been addressed: firstly by using a modified
exercise cycle, and secondly, by ensuring that physiological
parameters and evidence of fatigue are monitored and
recorded by the research team.
It is possible that our results might indicate none of the

prognostic indicators are linked to the ability to pedal,
and/or clinical efficacy of the intervention is not demon-
strated. If this is the case, the risk of wasting valuable
research resources on larger-scale trials, using the current
indicators and measures, is minimised. However, interpre-
tation of findings, whether negative or positive, will reflect
the small sample size and early phase nature of this work.
A further novel aspect is that this study of pedalling

exercise incorporates biological level measures, alongside
more frequently used clinical, functional measures. EMG
data from quadriceps and hamstrings will be recorded at
baseline and outcome as well as at each pedalling ses-
sion, providing evidence of any change at a biological
level that might contribute to, and underpin, possible
changes in functional measures. Using sessional EMG
recordings will also allow analysis of whether pedalling
is being achieved by the unaffected leg propelling the
crank i.e with the use of compensatory strategies, or
whether there are changes in recordable activity in the
affected leg suggestive of recovery.
The control group will undergo conventional therapy

only, and this will be quantified on a standardised treat-
ment schedule, allowing for comparisons of amount and
type of therapy across trial arms. Concern has been
expressed that reporting of research into complex inter-
ventions often lacks sufficient detail on comparators
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[42]. The use of careful recording of conventional ther-
apy in this trial will go some way towards addressing
these concerns and might provide important informa-
tion for potential dose-matching in later phase work.
This trial is being carried out in an acute stroke unit,

and uses portable EMG equipment so that all trial mea-
sures can be taken on site. This enables participants to
take part in an active rehabilitation setting and hence
exploration of the feasibility of the use of the modified
bicycle in a busy therapeutic environment; and ensures
close collaboration between clinical and research teams
for the duration of data collection.
In summary, the proposed novel, early phase research

will increase knowledge of prognostic indicators for, and
clinical efficacy of, upright pedalling exercise early after
stroke. It will provide essential information for the
design of subsequent trials.
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Effects of lower limb reciprocal pedalling exercise on
motor function after stroke: a systematic review of
randomized and nonrandomized studies

Nicola J. Hancock1*, Lee Shepstone1, Will Winterbotham2 and Valerie Pomeroy1

This review systematically synthesized current evidence on
the effects of lower limb reciprocal pedalling exercise on
motor function poststroke. Detailed analysis of single studies
in the review revealed multiple instances of heterogeneity
including outcome measures; therefore we decided to avoid
undertaking a single, potentially misleading meta-analysis.
We found that despite beneficial (although nondefinitive)
effects on balance, functional independence, and muscle
strength, it is not possible to make clinical recommendations
that support or refute the use of reciprocal pedalling exercise
to enhance recovery of motor function after stroke. Our
findings provide proof-of-concept for pedalling interventions
and provide a foundation for subsequent research, suggest-
ing a need for further standardized, controlled clinical trials of
clearly described pedalling interventions for stroke survivors
and with subsequent transparent reported findings.

Key words: cycling, pedalling, rehabilitation, stroke, systematic
review, therapy

Background

Poststroke, it is possible to drive beneficial functional reor-
ganization of the brain with behavioural training (1,2). Rep-
etition of motor activity can produce changes in brain
representation maps (3,4). Motor skill acquisition, or motor
learning, may drive these changes (4–6). The findings suggest

rehabilitation programmes incorporate these underlying prin-
ciples and hence involve:

• increasing levels of motor skill

• goal-directed activity (7), and

• tasks that are meaningful for participants in rehabilita-
tion programmes (8).

It remains unclear which specific therapeutic modalities are
best used to provide the repetitive, skilled activity necessary to
drive brain changes that might lead to improvements in func-
tional activities, like gait.

Regaining walking independence is a principle objective for
many patients (9); interventions contributing to this func-
tional outcome are therefore important in a goal-directed
rehabilitation programme. Poststroke, patients often have
substantial leg weakness and are unable to contract paretic
muscle sufficiently to take part in functional, relevant activity,
like walking training.

Both patient and therapist effort is often too great to enable
more than a few repetitions of activity; and this dose might be
too low for effect. The number of repetitions of an activity
needed to facilitate brain reorganization has not been estab-
lished in human studies, although animal model studies
suggest that 300–400 repetitions in a 30-min session might be
required (10). Therapists are challenged to find strategies that
enable repetitive reciprocal activity in those with lower limb
weakness poststroke.

Pedalling is a repetitive, functional activity that has been
proposed to have potential benefit to patients when used as an
adjunct to therapy after stroke (11). While familiar to many
stroke survivors, reciprocal pedalling is likely to require reac-
quisition of motor skill following the onset of haemiparesis. It
requires that agonist and antagonist lower limb muscles are
contracted reciprocally and in a similar repeating pattern to
that required for walking (12). Evidence from an exploratory
observational study suggests that pedalling may facilitate
phasic, coordinated muscle activity even in patients with
severe haemiparesis (13).

Pedalling might enhance motor recovery after stroke but to
the best of our knowledge, the current available evidence has
not been collated nor analysed. This paper presents a system-
atic review carried out to synthesize existing knowledge of the
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effects of pedalling exercise after stroke. The aim of the review
was to establish whether there is currently sufficiently robust
research evidence to justify using lower limb pedalling exercise
to enhance motor recovery after stroke.

Methods

The design of this review followed recommendations of the
Cochrane Collaboration (14). The review protocol was not
published prior to this report. The review was carried out by
the lead author (N. H.) and an independent reviewer (W. W.).

Search strategy

The following databases were searched electronically:
COCHRANE: Database of Systematic Reviews; Database of
Abstracts of Reviews of Effects; Central Register of Controlled
Trials; Cochrane Methodology Register; Cochrane Stroke
Group; MEDLINE; EMBASE; CINAHL; AMED; PEDro; Psy-
cINFO. The search was developed in close liaison with a
medical librarian and terms were adapted according to the
specific requirements of each database (Box 1).

The search period was conducted to cover induction of the
databases to March 2010. Reference lists included in the full
text papers retrieved were hand searched for any extra possi-
ble relevant records, as were our own private databases of

references was undertaken. Contact was made with key
authors in the field. These were identified as those publishing
three or more papers in the area of study following the initial
title scan.

Criteria for inclusion of studies

Types of study
The initial scoping exercise revealed a limited number of ran-
domized controlled trials (RCTs) of the intervention, which is
not uncommon for rehabilitation interventions (15). Strin-
gently restricting design may have led to the exclusion of
studies of interest. Consequently, the review was not confined
to RCTs and all study designs were included.

Types of participants
Adults, over 18 years, at any time poststroke.

Types of interventions
There were no methodological restrictions on dose, frequency,
intensity, or duration of intervention. The following interven-
tions were included:

• reciprocal pedalling exercise designed to enhance motor
recovery in paretic lower limb

• reciprocal lower limb pedalling exercise as part of an aerobic
exercise programme; outcomes include evaluation of effect on
motor function

• reciprocal lower limb pedalling exercise in any body
position, and

• reciprocal lower limb pedalling exercise as a one-off inter-
vention or series of interventions over time.

The following interventions were excluded:

• pedalling exercise where used solely to achieve a maximal
exercise stress test for the evaluation of aerobic capacity

• pedalling exercise where used as an adjunct to other
therapeutic interventions, e.g. with functional electrical
stimulation; or as part of a combined therapeutic exercise
programme, and

• pedalling used for movement analysis/modelling, i.e. pedal-
ling not used for the investigation of efficacy.

Types of outcome measures
All outcomes of motor function after stroke used in the
included studies (excluding upper limb outcomes). ‘Motor
function’ here encompasses a spectrum from the physiological
functioning of body systems and structure, through to the
execution of specific tasks by an individual. Outcomes
included:

• timing of onset and offset of muscle activity

• reciprocity of muscle activity

• muscle strength, and

• balance and walking, and stair-climbing ability.

Box 1 Example search strategy for electronic databases:
ovidMEDLINE, EMBASE, AMED, psycINFO

1. exp Cerebrovascular Disorders/
2. exp Stroke/
3. (cerebral or cerebellar or brainstem or vertebro-

basilar or brain).mp.
4. (infarct* or ischemia or thrombo* or embol*).mp.
5. 4 and 3
6. (cerebral or brain or subarachnoid or intracerebral

or intracranial or cerebellar).mp.
7. (haemorrhage or hematoma or bleed*).mp.
8. 6 and 7
9. (hemipleg* or hemipar*).m_titl.

10. 8 or 1 or 9 or 2 or 5
11. limit 10 to (English language and humans and ‘all
adult (19 plus years)’)
12. (bicycl* or bike or pedal* or ergomet* or cycle or
cycling or cyclical).mp.
13. (cycle* adj menstrua*).mp. [mp=title, original title,
abstract, name of substance word, subject heading
word]
14. 12 not 13
15. limit 14 to (English language and humans and ‘all
adult (19 plus years)’)
16. 11 and 15
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Examples of measures included: electromyography, the
Motricity Index, the Functional Ambulatory Categories,
timed walking, and stepping tests and measures of functional
independence.

Study selection

To ensure consistency of reviewers’ selection of studies, we
randomly selected 50 titles from the total pool, using a com-
puterized random number system. These titles were sent to the
second reviewer for identification of potential studies. A pre-
liminary meeting was then held, where agreement of response
was evaluated and any disagreements discussed to finalize cri-
teria for study selection.

The two reviewers then worked independently to identify
eligible studies, using the criteria for inclusion of studies. The
reviewers considered each reference independently via a title
scan, categorizing as ‘definitely relevant’, ‘possibly relevant’ or
‘definitely irrelevant’. This process was repeated for abstracts
and full papers. Disagreements were resolved in one-one dis-
cussion. Any persistent disagreements were referred to a third
party and were resolved by discussion and re-referral to the
original paper. This process eventually resulted in all full
papers being categorized as ‘definitely relevant’ or ‘definitely
irrelevant’

Assessment of potential risk of bias

The potential risk of bias within all included studies was
assessed by using the Cochrane Collaboration tool (14). This
is normally only used for RCTs but we also chose to use the
same tool for risk assessment of potential bias within the
nonrandomized studies. While it was not developed with such
studies in mind, the general structure is suggested as useful
where studies are heterogeneous and no quantitative synthesis
is planned (14). The use of this tool for the nonrandomized
studies allowed for heterogeneity to be clearly demonstrated.

Each study was individually evaluated according to the cri-
teria by the lead author, in consultation with the review team.

Data extraction and management

Data were extracted on key aspects of each study, including
design, participants, type, dose and duration of intervention,
equipment, and setting.

Measures of treatment effect

Cohen’s effect sizes were calculated for continuous outcomes in
the randomized controlled studies to assess the magnitude of
effects. Differences in the direction of measures were corrected,
for example multiplication by -1 for those scales where an
increase in the measure indicates worsening motor function.

Data synthesis and interpretation

Though effect sizes have been stated where calculable, meta-
analysis was not indicated because of heterogeneity across

domains including design, participants, methods, and out-
comes. Statistically combining such clinically diverse studies
would be meaningless, thus a narrative synthesis was consid-
ered most appropriate. Qualitative data synthesis was enabled
by tabulation, with motor function outcomes classified
according to the International Classification of Functioning
(16). Interpretation was informed by the assessment of poten-
tial biases alongside examination of effect sizes where relevant.

Results

The literature search identified 1628 records from the elec-
tronic database searches. Contacts with lead authors produced
23 records and four were identified via the hand search. After
removal of duplicates, 1345 records progressed to filtering. Via
title screening, 90 records were considered potentially relevant
for abstract review, at which stage 52 were eliminated and 38
progressed to detailed filtering by full text review. Twelve
papers were finally selected for inclusion in this review
(Fig. 1).

Design

The design of the included studies was heterogeneous
(Table 1). Five of the 12 were randomized controlled, or ran-
domized clinical, trials (19–21,24,25). One used a prospective
matched control design (27). Three studies used a ‘before-
and-after’ design with a single group of participants
(13,22,23). Two of these used the same cohort of participants:
the earlier paper evaluated and reported pedal reaction force
components following bicycle training (22), the second paper
evaluated and reported functional outcomes after the pedal-
ling intervention (23). Seki et al. (2009) (26) was considered a
‘before-and-after’ study for the purposes of this review, as the
only relevant extractable data were from the single group of
stroke survivors in their report.

Two papers presented either case reports or single case
studies (11,18).

Participants

The participant details are presented in Table 1. Altogether
there were 351 participants included in the 12 studies (range
1–92). Of these, data were extractable on 288 (range 1–90). No
study used more than 92 participants, and four used less than
10 (Table 1). The mean age of participants in the 12 studies
ranged from 55 (13,18) to 69 (26) years. Time since stroke
onset at admission to studies ranged from six-days (27) to a
mean of 57 months (21). There was a trend in using partici-
pants later after stroke onset – only two studies used partici-
pants less than three-months from onset (11,27). Two other
studies stated that participants were excluded if they were
admitted to the rehabilitation unit where the research took
place later than 30 days from stroke onset, but did not clarify
at when they were admitted to the research study (19,20).
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Primary purpose, intervention, dose,
and equipment

The primary purpose of the included studies was either: (1) to
investigate the effects of pedalling exercise on motor function
after stroke (11,13,20,22,23,26); and (2) to investigate the
effects of aerobic programmes, where pedalling exercise was
used as the primary tool (18,19,21,24,25,27) (Table 2).

Although all interventions involved reciprocal pedalling
exercise of the lower limbs, there was heterogeneity across
numerous domains, including dose and duration of pedalling
exercise and variety of cycling equipment (Table 2). The inter-
ventions were achieved in different ways, including, for
example, pedalling on a standard static exercise bike (18),
pedalling an adapted wheelchair (26), and pedalling a limb-
loaded cycling device (11). Detailed information about equip-
ment was given in only two studies (11,26).

Dose of pedalling activity varied from a single session of
pedalling for eight wheel turns (26), to 30 mins of pedalling
three times per week for 10 to 12 weeks (21,24).

Control interventions

The control interventions in the five RCTs were:

• routine therapy only (19,20)

• sham exercise carried out for the same time per session as
the intervention (21)

• passive exercise regime carried out for the same time per
session as the intervention (24), and

• home-based program of stretching exercises at the same
weekly frequency as the pedalling intervention group,
with telephone contact by a physical therapist once each week
(25).

Outcome measures and effect sizes: summary
of findings

The 12 included papers evaluated effects using a range of
outcome measures and time intervals for measurement
points. Outcomes were classified according to the Interna-
tional Classification of Functioning (16) (Tables 3–7). Because
of the heterogeneity observed between studies, meta-analysis
was not indicated. However, where appropriate data were
available, Cohen’s effect sizes (defined as the difference in
means divided by the pooled within group standard devia-
tion) were calculated to enable presentation of the magnitude
of any effects. An approximate 95% confidence interval for
this effect size was calculated based on the method described
by Reiser and Guttman (28).

Records identified through

electronic database searching

n = 1628

Additional records identified

through other sources including

hand search, contact with authors

n = 27

Records after duplicates removed

n = 1345

Records screened: n = 1345

titles, reduced to n = 90 

abstracts

Full text papers assessed

for eligibility, n = 38

Full text papers included

in final synthesis, n = 12

Total records

excluded, n = 1307

Full text papers excluded: 

n = 26 

-not efficacy study, n = 13,

-combined rehab 

programme and/or 

pedalling adjunct to 

another intervention, n = 8,

-pedalling as max aerobic 

test, n = 2, and

-others, n = 3

Fig. 1 Flow diagram of results of systematic review search strategy.
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Table 2 Primary purpose of study, intervention, dose, and equipment used

Study

Primary purpose of pedalling
exercise (MF: motor function; AE:
aerobic exercise) Dose/duration of pedalling exercise Type of exercise equipment used

Brown et al. (11) MF: Feasibility of limb-loaded cycling
as exercise intervention for stroke

10 sets of 20 repetitions in each
session. Patient 1 – 13 sessions
completed; Patient 2 – five
sessions of hybrid programme
developed as unable to complete
initial programme.

Limb-loaded cycling device

Fujiwara et al. (17) MF: Assessment of effects of
pedalling exercise on lower limb
muscle activity

Single session, pedalling for five-
minutes

Servo-dynamically controlled
ergometer with trunk support

Holt et al. (18) AE: Effects of an aerobic
programme on participant’s
functional mobility

Eight-weeks of two and three
sessions per week on alternate
weeks, 20 sessions total. Twelve-
minutes pedalling incrementally
increased by two-minutes on
alternate sessions to maximum of
30 mins

Static bicycle

Katz-Leurer et al. (19) AE: Effects of early aerobic training
on independence and activity at
six-months

Part 1: 10 sessions over two-weeks,
two-minutes per session
increasing within tolerance to
20 mins per session

Part 2: Nine sessions over
three-weeks, 30 mins per session

Leg cycle ergometer

Katz-Leurer et al. (20) MF: Effects of early cycling training
on balance

Five sessions per week for
three-weeks, individualized
programme

Leg cycle ergometer

Lee et al. (21) AE: Effects of aerobic cycling
programme on walking ability

30 sessions over 10 to 12 weeks,
each session 30 mins of cycling
with resistance adjusted to
achieve a target heart rate. After
each session, underwent ‘sham’
leg resistance training.

Semi-recumbent motorized isokinetic
cycle ergometer

Perell et al. (22,23) MF: evaluation of pedal reaction
forces following bicycle training

Three sessions per week for
four-weeks, each session consisted
of 12 one-minute cycling trials
with one-minute rests in between.

Recumbent bicycle with adapted
pedals to allow for force
measurements

Potempa et al. (24) AE: evaluation of response of stroke
patients to aerobic training

3 sessions per week for 10 weeks,
30 mins per session. For first 4
weeks, training load gradually
increased, for final 6 weeks,
highest training load maintained
for each participant

Adapted cycle ergometer

Quaney et al. (25) AE: Effect of aerobic cycling
programme on executive function
and mobility

3 sessions per week for 8 weeks,
progressing aerobic intensity from
week 2

Stationary bicycle

Seki et al. (26) MF: Assessment of effects of
pedalling exercise on lower limb
muscle activity

Single session, pedalling for 8 wheel
revolutions

Cycling wheelchair

Tang et al. (27) AE: feasibility of adding aerobic
cycle ergometery to standard
rehabilitation early after stroke

3 sessions per week, up to 30 mins
a session, individualize programme
for each participant

Semi-recumbent cycle ergometer
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Motor impairment
Measures of motor impairment included muscle strength
and activity measures and predominated across the smaller,
exploratory studies (e.g. (13,22,23,26)). General trends to
benefits in strength and activity were observed across these
studies (Tables 4 and 5). One RCT (21) also demonstrated a
small positive effect on maximum affected knee muscle
strength (effect size (E.S.) = 0·18, confidence interval (CI)
-0·57 to 0·94) and affected leg endurance (E.S = 0·16, CI
-0·60 to 0·93) (Table 3).

Functional activity
Measures of activity predominated across the randomized
studies. Individual study comparisons found a trend towards
beneficial effects on balance immediately after pedalling inter-
vention (Postural Assessment Scale for Stroke (PASS), total,
E.S = 1·5, CI 0·61 to 2·43; PASS static, E.S = 1·25, CI 0·38 to
2·15; PASS dynamic, E.S = 1·54, CI 0·64 to 2·47; Berg Balance,
E.S = 0·22, CI -0·42 to 0·85; Get Up and Go, E.S = 0·46, CI

-0·23 to 1·06), and at six- to eight-week follow-up (PASS,
total, E.S = 1·5, CI 0·60 to 2·42; PASS static, E.S = 0·97, CI 0·11
to 1·83; PASS dynamic, E.S = 1·78, CI 0·74 to 2·67; Berg
Balance, E.S = 0·27, CI -0·37 to 0·91; Get Up and Go,
E.S = 0·33, CI -0·33 to 0·91) (20,25) (Table 3). Two studies
demonstrated a moderate positive effect size on functional
independence measures (E.S = 0·31, CI -0·10 to 0·72;
E.S = 0·39, CI 0·44 to 1·20) (19,20) (Table 3). The study using
matched controls found no significant differences between
control and intervention groups on a series of walking
measures (27) (Table 4). Any beneficial effects have been
interpreted with caution alongside the assessment of potential
biases and consideration of sample sizes and confidence
intervals.

Assessment of potential bias

The results of the assessment of potential bias are presented in
Table 8.

Table 6 Summary of findings, single case study

Author and date N Outcome measures

Measurement time points with outcomes Outcomes according to ICF

Baseline 1
Baseline 2 (within
19 days of baseline 1)

Posttraining
(20 sessions) BS A P

Holt et al. (18) 1 10 m timed walk (s) 36·5 35·0 24·0 X
Speed gait during 10 m (ms) 0·27 0·29 0·42 X
Steps during 10 m walk 37 40 32 X
6-min walking distance 99 107 145 X
Speed gait during 6 mins

walk (ms)
0·27 0·30 0·40 X

Motricity Leg Score 65 65 76 X
Ashworth Knee Score 2 2 1 X
Ashworth Ankle Score 4 4 2 X

Findings: Positive progression demonstrated in walking speed, distance and muscle
strength according to the Motricity index with no adverse effects on spasticity in the
upper or lower limb

Table 7 Summary of findings, case series

Author and date N Measurement time points Outcome measures

Outcomes according to ICF

BS A P

Brown et al (11) 2 Varies across 2 participants
as pedalling regimes varied
according to ability

Dynamic load index (load ¥ reps) X

Three times during 10–13
pedalling sessions

FIM X

Three times during 10–13
pedalling sessions

Ambulatory statues (description) X

Findings: For each participant, measures used to demonstrate progression in ability only.
Positive progression in FIM score, walking status and Dynamic Load Index demonstrated
for both over the intervention period.
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In summary, none of the included studies had a low risk of
bias for all eight assessed design elements. Only one study had
adequate allocation concealment (21) and only three studies
demonstrated adequate sequence generation (19–21). Asses-
sors were blinded for all outcomes in only one study (25).
Blinding of participants and intervention providers was not
used in all 12 studies as it is, of course, difficult, if not impos-
sible, to avoid knowledge of provision of an exercise-based
intervention. In general, the assessment of bias would have
benefitted throughout from improved clarity of reporting of
key elements of studies.

Excluded studies

Of the 38 studies, 26 were excluded at the full text review stage
(Table 9) (29–54) Reasons for exclusion included: pedalling
used as a paradigm for analysing and evaluating movement
after stroke, not designed to enhance motor recovery, pedal-
ling used as an adjunct to another intervention, e.g. functional
electrical stimulation pedalling used as part of a combined
therapy programme where it was impossible to extract data
from the pedalling intervention alone.

Interpretation and discussion

The synthesis indicates that there is some, but limited, support
for pedalling exercise benefiting muscle activity, muscle
strength, balance, and functional independence after stroke,
from early phase studies. However, interstudy heterogeneity,
small sample sizes, wide confidence intervals for effect sizes,
and the risks of potential biases suggest that this evidence is
not sufficiently robust to support or refute the use of recipro-
cal pedalling exercise to enhance recovery of motor function
after stroke. These present findings support the conclusion of
a narrative review by Fujiwara and colleagues (17), that while
pedalling might have potential to enhance motor function in
people with central nervous system disorders, further research
is needed before use in clinical practice.

The smaller, exploratory studies included in this review
show the feasibility of using pedalling interventions (e.g.
(12,23,26)). These studies also found some trends towards
benefit from pedalling on measures of motor impairment,
including lower limb muscle activity and muscle strength.
These findings provide proof-of-concept, but insufficient
evidence to support or refute the clinical use of pedalling.
Risks of potential biases were high for these studies, often as
a direct reflection of study design, though reports of results
according to design were generally clear. However, it was this
set of studies, plus one small randomized pilot study (20)
that specifically aimed to examine the effects of pedalling
activity on motor function. All of the larger studies used
pedalling as a form of aerobic exercise, though did include
some secondary outcomes of motor function, evaluated gen-
erally using activity level measures. No large-scale study spe-
cifically designed to evaluate the effects of pedalling activity
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on motor function after stroke was found in this review
process. Hence, evidence from the smaller studies in this
review might provide precursors for later phase studies of
clinical efficacy, incorporating measures of both impairment
and activity.

While meta-analysis was not indicated for the RCTs, single
study examination revealed large effect sizes for beneficial
effect on balance and functional independence, immediately
and six-weeks after a pedalling intervention (20). However, the

large effect sizes should be interpreted with caution as sample
size for this pilot study was small, with 10 participants in the
intervention arm and 14 in the control, confidence intervals
were wide; and a moderate risk of bias was evident. A small
beneficial effect on balance was also demonstrated in a study
of aerobic pedalling exercise but again, sample sizes were small
with 19 in each trial arm, confidence intervals were wide and
there was a lack of clarity of reporting on key elements
(sequence generation) (25). Despite these positive trends,
definitive, generalizable conclusions cannot be drawn about
effects of pedalling on balance and functional independence.
It is noteworthy that one of the larger studies with the lowest
risk of bias demonstrated small but positive effects on lower
limb muscle strength and endurance with pedalling interven-
tion in 54- to 72-year olds with chronic stroke, supporting
observations in the smaller studies (21).

It is of interest that the mean participant age of 63 years was
nonrepresentative of the UK stroke population, where 75% of
first strokes occur in those aged 65 and over (55). Older stroke
survivors may present different research and rehabilitation
challenges to younger survivors. For example, the likelihood of
multiple pathologies alongside the stroke may be higher,
leading to extraneous reasons why participation in rehabilita-
tion activities and research trials might be limited. Further
research into pedalling exercise in an older participant group
is indicated to ensure generalizability of findings to the sur-
viving stroke population.

Over half of the included studies recruited participants
greater than three-months since stroke onset. It is possible that
such patients are easier to recruit to exercise trials, as they tend
to be more medically stable and with less fluctuation in their
abilities. However, current evidence suggests that early thera-
peutic intervention might optimize potential for recovery.
Clinical studies support the concept that early rehabilitation is
important for improving outcomes (56–58). Indeed, Cramer
(2008) (59) describes a ‘golden period’ for initiating restora-
tive therapies, when the brain is galvanized to begin repair,
starting in the first days after onset and continuing for several
weeks. This review has identified that current research into
pedalling as a potential therapeutic intervention has not
exploited this important window, and thus results cannot be
generalized to early stroke survivors. Opportunities therefore
exist for further exploration of the effects of pedalling exercise
in stroke survivors early after onset.

Studies included in this review used variable doses of pedal-
ling interventions. Evidence on optimal dose of rehabilitation
interventions after stroke remains equivocal (60).Although the
number of repetitions of an activity needed to facilitate brain
reorganization has not been established in human studies,
animal model studies suggest that 300–400 repetitions in a
30-min session might be needed (10). Pedalling exercise has the
potential to provide high numbers of repetitions of lower limb
flexion and extension in reasonable therapeutic time frames,
and there are opportunities for future research to explore
optimal, tolerable doses in stroke survivors.

Table 9 Excluded studies

Author and year
Reason for exclusion at full text
review stage

Bowden et al. (29) Not an efficacy study
Brown & DeBacher (30) Not an efficacy study
Brown & Kautz (31) Not an efficacy study
Brown & Kautz (32) Not an efficacy study
Brown et al. (33) Not an efficacy study
Chen et al. (34) Not an efficacy study
Dawes et al. (35) Not an efficacy study
Ferrante et al. (36) Pedalling as an adjunct to another

intervention (functional electrical
stimulation)

Janssen et al. (37) Pedalling as an adjunct to another
intervention Electrical Stimulation
(ES), stimulation to elicit muscle
contraction given to intervention
group and ‘sensible’ stimulation
that could be felt but did not elicit
activity given to control group

Katz-Leurer & Shochina (38) Not an efficacy study, examined
pedalling patterns as predictor of
activity at six-months: other

Kautz & Brown (39) Not an efficacy study
Kautz et al. (40) Unilateral pedalling: other
Kautz et al. (41) Pedalling as part of a combined

exercise programme
Kautz & Patten (42) Not an efficacy study
Kelly et al. (43) Not an efficacy study
Lennon et al. (44) Pedalling as maximum aerobic test

and upper limb pedalling involved
Makino et al. (45) Physiological costs of pedalling activ-

ity and not a true efficacy study:
other

Marklund & Klassbo (46) Pedalling as part of combined pro-
gramme

Perell et al. (47) Not an efficacy study
Rogers et al. (48) Not an efficacy study
Rosecrance & Guiliani (49) Not an efficacy study
Sibley et al. (50) Pedalling as maximum aerobic test
Sibley et al. (51) Pedalling as an adjunct within a

combined programme
Sullivan et al. (52) Pedalling as part of a combined

programme
Sullivan et al. (53) Pedalling as part of a combined

programme
Szecsi et al. (54) Pedalling as an adjunct to another

intervention (functional electrical
stimulation)
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Limitations of the review

It is possible that there was some influence of a publication
bias as the search was limited to studies written only in
English.

Conclusions

This review has, for the first time, systematically synthesized
the current evidence on the effects of lower limb reciprocal
pedalling exercise on motor function after stroke. Our detailed
analysis of single studies included in the review revealed het-
erogeneity across multiple domains including outcome meas-
ures, and thus we decided to avoid undertaking a single,
potentially misleading meta-analysis.

Despite some beneficial, though not definitive, effects on
balance, functional independence, and muscle strength, the
review has found that is not possible to make clinical recom-
mendations that support or refute the use of reciprocal ped-
alling exercise to enhance recovery of motor function after
stroke. The findings provide proof-of-concept for pedalling
interventions and provide a foundation for subsequent
research, suggesting a need for further standardized, control-
led clinical trials of clearly described pedalling interventions,
across a broad range of stroke survivors and with subsequent
transparent reporting of findings.
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