
UNIVERSITY OF EAST ANGLIA                                             
SCHOOL OF EDUCATION AND LIFELONG LEARNING 

 

28/04/2014 

SECONDARY STUDENTS’ 
PROOF SCHEMES DURING 
THE FIRST ENCOUNTERS 
WITH FORMAL 
MATHEMATICAL 
REASONING: 
APPRECIATION, FLUENCY AND 
READINESS 

Ioannis Kanellos 

Thesis submitted for the degree of 
Doctorate in Education 



 



[i] 

 

 

SECONDARY STUDENTS’ PROOF SCHEMES  

DURING THE FIRST ENCOUNTERS  

WITH FORMAL MATHEMATICAL REASONING: 

APPRECIATION, FLUENCY AND READINESS 

An analysis approach by means of Harel and Sowder’s proof schemes taxonomy 

which reflects multiplicity of proof schemes, proof appreciation, proof fluency, proof-

readiness 

ABSTRACT 

 The topic of the thesis is proof. At Year 9 Greek students encounter proof for the 

first time in Algebra and Geometry. Thus the principal research question of the thesis 

is: How do students’ perceive proof when they first encounter it? The analysis tool in 

order to obtain an image of students’ perception of proof, the Harel and Sowder’s 

taxonomy, is itself a research question in what concerns its applicability under Greek 

conditions. Its applicability, of which there is strong evidence, provides the space to 

shape an image of students’ proof fluency, proof appreciation, proof readiness etc. 

 In order to collect data with regard to answering the research questions in 

collaboration principally with the class teacher I constructed the two tests on proof 

that are presented in this thesis.  The first test was administered to the students of 

Year 9 at the beginning of the school year 2010-2011 before the teaching of proof. 

The second was administered after the teaching of proof of the same school year. 

Students’ answers were analyzed and provided strong evidence that the Harel and 

Sowder’s taxonomy is applicable on them. Thus every answer was characterized in 

terms of the taxonomy. As a result every individual student but also the whole sample 

is depicted by proof schemes.  
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 The major findings of the analysis are the two following: 

 Students’ proof fluency is higher in simple proof issues. Although they face 

difficulties when the issues are more demanding, they show high proof appreciation.   

  There is strong evidence of the applicability of the Harel and Sowder’s taxonomy 

in a completely different socio-cultural and educational environment in comparison to 

that of its original invention and application. In the same vein the research proposes 

the mixture of proof schemes within one proof as theoretical and methodological 

contribution. 

 Finally from the findings emerge new research questions as e.g.  

 How teaching and curriculum affect students’ proof schemes?  

 What is the origin of mixed proof schemes? 
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CHAPTER 1:  INTRODUCTION 

 

Pompey: … but what mystery there should be in hanging, if I should be hanged, I 

cannot imagine. 

Abhorson: Sir, it is a mystery. 

Pompey:  Proof? 

Abhorson: Every true man’s apparel fits your thief. If it be too little for your thief, 

your true man thinks it big enough; if it be too big for your thief, your thief thinks it 

little enough: so every true man’s apparel fits your thief.     

(William Shakespeare, Measure for measure) 

   

 In this thesis I report on a research project on Greek secondary education students’ 

first encounters with proof as predicated and described in the mathematical 

curriculum for Year 9 secondary education in Greece. The project was conceived in 

collaboration with my supervisors Elena Nardi and Irene Biza in the context of 

Doctorate in Education (EdD) studies in the School of Education and Lifelong 

Learning in UEA and it began in 2008. The three of us discussed the project 

extensively during the biannual Conference of the Greek Association of Researchers 

in Mathematics Education (ENEDIM) in Rhodes in October-November 2009. I then 

carried out the data collection for the project in the 2010-2011 school year which in 

Greece begins mid-September and ends mid-May. With my present professional 

engagement as a secondary school advisor responsible for teaching mathematics in 

the prefectures of Heraklion and Lassithi in Crete, I was in the privileged position of 

being able to implement and conduct the project.  

 To reach the professional status of secondary school advisor I first studied 

mathematics from October 1972 to May 1977 at the Aristotle University of 
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Thessaloniki, Greece. After graduating with a bachelor’s degree, I worked in the 

private sector as a mathematics teacher. Parallel to this in the summer of 1977 I 

applied for a position teaching mathematics in Greece’s secondary state schools 

which are under the supervision of the Greek Ministry of Education. In Greece, at the 

time, with a bachelor’s degree in mathematics one was allowed to teach mathematics 

in secondary state schools and the equivalent private schools. I was appointed as a 

state school teacher in 1982 and from then until March 2003, with a break between 

1999 and 2001, I taught mathematics in lower and upper secondary schools.  

 Lower secondary Greek education includes Years 7, 8 and 9 with students’ aged 

13, 14 and 15 years respectively; Upper secondary education includes the Years 10, 

11 and 12 with students’ aged 16, 17 and 18 years respectively. At the end of Year 12, 

students take the university entrance examinations. The Greek secondary education 

system has remained almost unaltered for the last forty years and I went through it 

myself before passing my university entrance examinations. 

 At the end of 1998, while working as a mathematics teacher, I passed the 

examinations of the Education Department at the University of Crete and was granted 

a study leave by the Ministry of Education Greek to study the teaching of 

mathematics in the Department at Masters level from March 1999 to December 2001. 

In December 2001 I obtained my Master of Science degree in the Didactic of 

Mathematics. 

 In mid-2002 I applied for a position as secondary school advisor responsible for 

teaching mathematics. I was appointed in March 2003 and still remain in this position 

after having been assessed two more times, in July 2007, and in October 2011. 

According to the Greek law school advisors have to be assessed every four years in 

order to remain in their position.  
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 Mathematics, and especially mathematical proof, plays an important role in Greek 

education. Indeed the role of mathematics in Greek education, with mathematical 

proof at its core, has special weight as for a large number of Year12 students, one of 

the six subjects examined for university entrance is mathematics.  

 More specifically, the mathematics in this examination is about calculus, 

elementary analysis and complex numbers. The examination has typically four 

questions and almost all four require proof and this requirement for proof is at a rather 

high standard. Consider a problem from an example from Inglis and Mejia-Ramos 

(2008) (referred in Tall and Mejia-Ramos (2006)) set a second year university 

student: “Prove that the derivative of a differentiable even function is an odd 

function” to study the university students’ perceptions of the mathematical notions in 

question as well as their proof behaviour. The same question, had it been set in the 

aforementioned Greek secondary education examination would have been perceived 

as one of the simplest. Consequently, in order to reach this level of mathematical 

thinking and to be able to understand proof and carry out proof processes, students 

must become acquainted with proof relatively early in their education. It is in this 

spirit that proof has been a significant issue in the Greek curriculum for decades.  

 From 2007 new text-books of Mathematics were introduced in the Lower 

Secondary Education. In this text-books proof is introduced in Year 9. This was valid 

while I was conducting the research. Proof appears in two forms in this context: 

algebraic and geometric. Algebraic proof mainly includes proof identities such as 

  222
bab2aba  and other algebraic relations as inequalities using the laws of 

algebraic operations. Geometric proof appears in the form of applying the triangle 

congruency criteria which then are used to prove various properties of geometric 
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figures such as that every point of the bisector of any angle is equidistant from the 

sides of the angle.  

 Some of the main issues in teaching proof are the degree to which proof is taught 

successfully; how this success, if any, is obtained; how students perceive proof; and, 

consequently, how they attempt to engage with the proving process. As I mentioned 

above Greek students’ first encounters with proof are of paramount importance at 

least with regard to the effect this has on their subsequent engagement with proof, 

their success in the aforementioned final examinations and, ultimately, influences 

strongly their choice of university studies. In other words mathematics and proof are 

of decisive importance in students’ lives. Thus, research into how the first encounters 

with proof take place in typical secondary classrooms is crucial; and it is the key idea 

underlying the conception of my research project. 

 Choosing this kind of research has practical use because it studies learning in real 

life school situations; it is useful because it can have direct implications for practice 

and, to a school advisor and experienced mathematics teacher, it is also an attractive 

task. Beyond this personal and local interest however, there is a rather broader interest 

in a project like this: although its success in international comparison such as Trends 

in International Mathematics and Science Studies (TIMSS) and Program for 

International Student Assessment (PISA) is questionable, Greece is one of the 

countries that associates high school standards in mathematics with an emphasis on 

proof in the school curriculum. In the last decade several other countries introduced 

proof into the school curriculum and it makes sense that the Greek experience on this 

matter is likely to be of international relevance. Mariotti comments: 

’Reasoning and proof are not special activities reserved for special times 

or special topics in the curriculum but should be a natural, ongoing part 

of classroom discussions, no matter what topic is being studied’.(NCTM, 

2000, p. 342) 
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I wonder whether these words would have been possible only a few years 

ago, and still now the idea of “proof for all” claimed in this quotation is 

not a view that most teachers hold, even in countries where there is a 

longstanding tradition of including proof in the curriculum. (Mariotti, 

2006, p. 173) 

 

I find Mariotti’s thoughts on this to be well founded:  

Why does a pupil learn to speak his mother tongue but not mathematics? 

In the mother tongue he is living the whole day, may be in his dreams 

too. Mathematics can only claim 4 or 5 hours a week. What is learned 

unrelatedly does not last long. Is it not the disappointment familiar to 

every teacher that subjects taught a few weeks ago seem to have 

disappeared out of the pupils’ minds, with no trace left unless they have 

been retrained in the meantime?    (Freudenthal, 1973, p. 77) 

 

Freudenthal speaks of mathematics in general as a curriculum subject, but if 

mathematical notions disappear from students’ minds, as he argues, then the same is 

even truer for proof and proving, because without these mathematical notions and 

knowledge no proof can be understood not to speak of carrying proof out. And further: 

Till now, education in Western Europe has been élite education, that is to 

say education of an élite or at least for an élite. This tendency alas has 

been reinforced by most of the innovation movements. As for 

mathematics I am afraid that its educational   programmes and methods 

are influenced by a belief which is natural for every mathematician, that 

mathematical education is education to become a mathematician-those 

who cannot keep pace are left behind. And for those who were left 

behind or who never even embarked, they serve up as a second infusion 

of this mathematics for the élite. (ibid., p. 62) 

 

Freudenthal warns us here not to accept the idea that mathematics is for just a few 

students, which directly implies that proof is not for all. In a way, he anticipates the 

‘proof for all’ movement before it was given birth.  At the same time, Mariotti not 

only highlights the tendency to introduce proof into the school mathematical 

curriculum but also proposes: 

The evolution of a mathematical culture in the classroom is a long-term 

process, requiring specific strategies of intervention that begin very early 

and develop over a long period. In this respect, investigation cannot be 

detached from classroom reality and, generally speaking, from the school 

environment: classroom investigations are of great value, and, although 
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they raise difficult methodological problems, they should be promoted 

both in the form of comparison between different cultural experiences 

and in the form of teaching experiments. (Mariotti, 2006, p. 199) 

 

Although Mariotti does not explicitly refer to proof in the above quotations it fits 

perfectly as well in the case of teaching proof because proof is at the heart of 

mathematical culture. At the same time she offers a strong argument in favour of 

research like the one I present here which is based on the experience of the natural 

learning environment, the classroom, with typical learners.  

 Some researchers although did not work on proof explicitly, focussed on aspects of 

mathematics and produced research results which are of great importance in relation to 

proof and proving in school. For instance the Van Hieles (1984) developed the theory 

of cognitive levels in geometry. Fuys, Geddes and Tischler successfully took on the 

task of translating the doctoral thesis of Dina van Hiele-Geldof and other works of the 

van Hieles from the Dutch into English. The Van Hiele cognitive levels may not refer 

directly to proof, but presumably remaining at low cognitive levels does not help to 

develop competency at proof. Brousseau (1997) developed the theory of  teaching 

situations
1
  and, although also not directly referring to proof, analyses  the didactical 

value of Euclidean geometry (2000) which leads directly to the question of proving 

ability, because due to its origin, Euclidean geometry has the logical structure that 

bears proof as mode of existence.  

 Many researchers have studied the teaching and learning of proof explicitly. 

Balacheff offers a proof taxonomy in at least one of his works (Balacheff, 1987 ).  

Healey and Hoyles (2000) work on students’ conceptions of proof.  Harel and Sowder 

observe a taxonomy in the ways that students attempt to prove propositions in various 

fields of mathematics such as geometry, linear algebra etc., and formulate their 

                                                 
1
 The terms are known in French as situations didactiques 
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conclusions of corresponding teaching experiments in their theory of students’ proof 

schemes (Harel & Sowder, 1998, 2007). The whole of the 19th International 

Commission on Mathematics Instruction (ICMI) conference, held in Taiwan in 2009, 

was dedicated to proof.  In 2010 Hanna and others edited a collection of works  on 

proof  (Hanna, Jahnke, & Pulte, 2010). Thus many researchers underline the 

significance of the learning and teaching of proof. I return to this research on proof in 

the literature review but the fleeting references to this research here serve the purpose 

of highlighting that there is substantial and influential work in this area, particularly in 

the form of classroom based investigations and also theoretical analysis. The richness 

of this field may suggest that the tendency to study proof processes in secondary 

education will become even stronger in the future. The project reported in this thesis 

aspires to make a contribution in this respect. 

 In addition to this support from tendencies in the international literature I have 

accumulated substantial professional and personal experience of the difficulties 

involved in the teaching and learning of proof and proving. I still remember vividly 

the teacher trying to teach the following theorem, to the Year 9 class- and me among 

them, at a school in Athens in 1970:  

“If the external bisector of a triangle is parallel to the opposite side 

thereof, then the triangle is an isosceles one, and vice versa.”  

 

I also remember that the proof given by the teacher was, to me, somewhat vague and 

not easily understandable. I could not see the proof process clearly and could not do it 

correctly. I cannot recall the exact issue I was struggling with, but the sense of 

hardship I experienced as a learner is still with me today. Thus the research project 

stems from my commitment to observe the endeavours of today’s students, analyse 

their difficulties and find ways of helping them to overcome these. This is an exciting 

prospect. Apart from this personal and professional commitment the merits of such an 
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effort are multiple. The professional development of teachers can only gain from 

discussion of what a study like this finds. I have found so from personal experience. 

As a newly-appointed teacher I learned to appreciate research in the field of teaching 

through reading and engaging with it. I remember demonstrating  triangle inequality 

empirically to Year 8 and  9 students using the Castelnuovo’s  triangle after reading  

an article in Euclid 3
2
 (Valtas, 1983).  

 Later in my carrier as a teacher, while  reading  articles such as Anna Sfard’s “On 

reform movement and the limits of mathematical discourse” (2000), I arrived at the 

conclusion that  had I had the chance to read  such  works  as a newcomer to the 

teaching profession, it would have provided me with a guide  to teaching mathematics 

satisfyingly and to clarifying what reforming teaching actually means. 

 In this context and in order to gain insight into the world of students’ proof 

perceptions the need of an analytical tool is necessary. In my research project this tool 

is the Harel and Sowder taxonomy.  The choice of the analytical tool will be explained 

in a more detailed manner in Chapter 2: Literature Review. For the time-being I name 

the taxonomy only for the sake of making clear what I refer to in the formulation of 

the research questions of my study as they emerge at this point. Namely the purpose of 

the study is to find answers to the following research questions: 

a) What are students’ pre-proof perceptions? 

b) What are students’ perceptions of proof when they first encounter it? 

c) How, if at all, is the Harel and Sowder taxonomy applicable to the Greek 

secondary educational contexts? 

d) How, if at all, can the Harel and Sowder taxonomy be used to elucidate 

students’ competence in proving as well as how they value proof within the 

Greek secondary educational contexts? 

                                                 
2
 A journal published by the Greek Mathematical Society which can be useful for mathematics teachers 

looking for teaching models.  
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 By the term pre-proof perceptions of the students I mean the perceptions of proof 

the students have before the teaching of proof whereas by proof perceptions I mean the 

perceptions the students develop during the teaching of proof as well as after having 

been taught  proof. 

 Beyond reading about research in the field of mathematics education, engaging 

with it in collaboration with colleagues is the other great source of insight that I have 

found. Therefore I want to emphasise the creative collaboration with my colleagues 

that underlies the carrying out of this study. Just for historical reasons I want to name 

the works of Marton and Pang (Marton & Pang, 2006; Pang, 2006) that I came across 

while shaping my ideas on collaboration with my colleagues from a methodological 

point of view.  

 I give now a brief description of the application of the research project which was 

as follows. An appropriate school was chosen for the project: the teachers had already 

developed a high-quality professional relationship with me, and in particular I enjoyed 

excellent professional collaboration with the Year 9 class teacher. The principal, also a 

mathematics teacher and the other mathematics teachers were informed about the 

project already before the beginning of 2010-2011 school year and in May 2010 all 

agreed to help in any way they could. At the beginning of the 2010-2011 school year 

the students and their parents were informed about the project and their reception of 

the idea was remarkably warm.  

 The Year 9 teacher and I began to implement the project in September 2010 

discussing the creation of a test to collect information on how the students who had 

not yet been formally introduced to proof and the proving process, would perform and 

work with problems that involved of elementary proof. A 60-minute test was designed 

mainly by the class teacher and myself and with a further colleague taking part in 
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relevant discussions. We were concerned about how the students would understand the 

very word ‘proof’ in a given problem. The class teacher informed us that in the first 

lessons of the school year, she had introduced not only the word but also an overview 

of the notion of proof in mathematics while teaching material that had been left 

uncovered in Year 8.  We wondered what kinds of problems would fit our purposes of 

investigating ideas of proof. These could be called pre-proof in the sense that the 

official introduction and teaching of proof would be applied later in the school year. 

We ended up with six problems of elementary geometric proof and we decided that at 

this stage algebra did not lend itself to our purpose. This test was intended to provide 

information on the research question  a): What are students’ pre-proof perceptions? On 

the other hand it provides the first elements concerning the research question c): How, 

if at all, is the Harel and Sowder’s taxonomy applicable to the Greek secondary 

educational contexts? 

 After administering the test to 90 students in the four Year 9 classes at the end of 

September 2010, at the end of October, I began to follow the teaching of the four Year 

9 classes of the school, audio recording the lessons and taking extensive notes during 

every lesson in which proof was taught. This class observation lasted until March 2011 

and, during this period, the class teacher and I had many discussions before and after 

lessons on matters of teaching proof and more general issues having to do with 

teaching mathematics. We regularly discussed our perceptions of the students’ 

reactions to the new knowledge. Our discussions were audio recorded and some of 

them video recorded.  

 In March 2011 we set a new test of approximately 30 minutes with proof problems 

in geometry. We gave to half of the four classes a problem mainly created by class 

teacher and to the other half a problem mainly created by me, although both were 
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products of our discussions. The results of this second test do not appear in this work 

as I explain in the methodology chapter.  Data collection was completed in May 2011. 

The final phase for the study reported here was to give to the students a general 90-

minutes test on proof, which this time included problems in both geometry and 

algebra. This final test was voluntary and was taken by 85 of the 92 Year 9 students.   

Both tests were intended to collect data on students’ proof perceptions. Thus they 

provide information concerning the research questions b): What are students’ 

perceptions of proof when they first encounter it? As well as c): How, if at all, is the 

Harel and Sowder’s taxonomy applicable to the Greek secondary educational 

contexts? Finally especially T3 provides information on research question d): How, if 

at all, can the Harel and Sowder’s taxonomy be used to elucidate students’ competence 

in proving as well as how they value proof within the Greek secondary educational 

contexts? 

 Results of the pre-proof Year 9 test have already been presented in the poster 

section (Kanellos, Nardi, & Biza, 2011b)  of the 35th conference of the International 

Group for the Psychology of Mathematics Education (PME 35) held in Ankara-Turkey 

in July 2011. Further at the beginning of the 2010-2011 school year another test, 

created also collectively, was given to three Year 10 classes to investigate proof ideas 

in geometry that they had been taught in Year 9. The results of the Year 10 test 

combined with the results of the Year 9 pre-proof test were accepted and presented as 

a research report (Kanellos, Nardi, & Biza, 2011a) in the 14th European Association 

for Research in Learning and Instruction (EARLI) conference held in Exeter in the UK 

in August-September 2011. Finally in PME 37 held in Kiel Germany results of algebra 

questions of the May 2011 test were presented (Kanellos, Nardi, & Biza, 2013) as a 

short oral report. 
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 In this thesis I present the project focusing on the analysis of the two tests, 

administered in September 2010, in May 2011, before and after teaching students 

about proof. The presentation is as follows: 

 Chapter 2 offers a literature review; Chapter 3 explains the methodology;  Chapters 

4  and 5 present the data analysis and findings, and  Chapter 6 my conclusions.    

 In the literature review I discuss studies relevant to proof that have influenced this 

study. I describe and justify my decision to use the taxonomy of Harel and Sowder’s 

to analyse the students’ perceptions of proof.  

 In the methodology chapter I describe and reflect upon the creation of the data 

collection tools. As mentioned I collaborated with a number of my colleagues, but 

mainly with the Year 9 teacher teaching the classes on which data collection focused. 

 In the analysis and conclusion chapters I present the analysis of the data from the 

two tests as well as the findings of this analysis and its implications for theory, 

practice and further research on how to better understand how Year 9 students 

perceive proof. 
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CHAPTER 2: LITERATURE REVIEW 

2.0 Introductory remarks    

 In this chapter I describe the review of the literature on mathematics education I 

conducted in order to find the appropriate analytical tools for my research project. I 

note that I have conducted this search for analytical tools in full awareness that the 

bulk of research in this area is in cultural and educational milieus that are substantially 

different to the one in which this study was conducted.   

 As I explained in Chapter 1 my intention was to investigate how secondary school 

students in Greece perceive proof when they first encounter it, but this aim did not at 

all exclude research work on other educational levels such as tertiary or primary 

education from my review. In fact, the tool of analysis that I finally chose is the Harel 

and Sowder’s taxonomy of proof schemes (Harel & Sowder, 1998, 2007) that comes 

from a very different cultural, educational and cognitive context, namely, a study 

conducted at the US tertiary educational context. In the Greek educational system 

proof is introduced at the secondary level whereas other systems seem to do so at the 

tertiary level. I can add here, without pre-empting the final findings of my research,  

that I used also various theoretical constructs in my research besides Harel and 

Sowder’s taxonomy that also  describe as well university students’ proof behaviours.  

 In the sections that follow I present my perception of a small part of the plethora of 

theoretical constructs concerning the learning and teaching of proof. Also, I explain 

how the polyphony of theoretical constructs indicates the progress of research on the 

one hand and the divergent currents inherent in this progress on the other hand. This 

diversity also reveals the lack of a general educational theory of proof and what 

follows is presented in full awareness of this absence. First, in section 2.1, I refer to 

some works on proof in mathematics education. Then, in section 2.2 I discuss and 
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justify my choice of the tool of Harel and Sowder’s taxonomy of students’ proof 

schemes as an analytical tool and briefly describe it. Finally, in section 2.3, I 

summarise the present chapter. 

2.1 Research projects related to the teaching and learning of proof 

 Hanna (2002) judging by the many research papers on proof in at least the last two 

decades, considers proof  a prominent issue in mathematics education.  Although 

proof is a controversial issue, it deserves the attention of mathematics educators 

regarding its role in teaching. Proof in the classroom is important for mathematical 

understanding. Among many other issues there is discussion about whether dynamic 

geometry software (DGS) can help with problems of teaching about proof and 

whether is more appropriate to teach proof following the line of mathematical rigor or 

not. The DGS question remains open. In what regards mathematical formality, it has 

become rather apparent that it does not necessarily result in the understanding of 

proof (Hanna, 2002) especially when we speak of the secondary education. Hanna 

(2006) also believes that on the bottom line proof may be the engine driving the 

development of individuals’ analytic thinking in general, but as well, and more 

importantly, it is the engine by which mathematics can be developed further through 

understanding it. In a paper on proof in mathematics, Hanna and Barbeau (2006)  see 

proof as a result of historical evolution. Hana and Barbeau’s  (ibid.) explanation of the 

logic of proof from a teaching point of view indicates that proof is really a very dense 

field of human knowledge requiring repeated efforts to understand it and it must be 

comprehensibly taught. All these aforementioned considerations lead, among others, 

also to the questions where and how to start teaching and learning of proof, what path 

to follow to keep proof coherence intact throughout the educational levels, facilitating 

at the same time students’ learning of it and which didactical problems would 
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probably emerge and what constructs and frameworks are rather appropriate to either 

describe or to solve them. Below I review a number of research works referring to 

primary, secondary and tertiary levels of education investigating the teaching and 

learning of proof. 

2.1.1 Examples of research works regarding proof in primary education 

 At the elementary school level it seems that little research has focused on the issue 

of characterising and understanding proof. In that regard Stylianides (2007b) 

considers four features of an argument: foundation, formulation, representation and 

social dimension. These features are examined within the theoretical framework of 

two principles: (i) the intellectual-honesty principle meaning that proof should be 

conceptualised in a manner that both student and mathematics are served and (ii) the 

continuum principle which states that proof is coherently conceptualised through the 

different grade levels. The examination results in the acceptance or rejection of an 

argument concerning its counting as proof. Stylianides (2007c) conceptualise proof 

with the aim to offer a framework of teaching proof in school mathematics on the 

elementary level and not only. In the same spirit Stylianides (2007a) underlines the 

notion of assumption in two directions: that of the primary school students and that of 

teachers offering to both parties grounds to develop activities reach in mathematical 

content.  Bartolini  (2009) experiments with students of the second grade and on, in a 

primary school and suggests tasks that are manageable by students and teachers on 

this level which can promote logical thinking and reasoning. In a nutshell the above 

works on the one hand support the idea of teaching proof in primary level but at the 

same time shed light on the students’ and teachers’ difficulties  with proof and 

propose ways of overcoming them. 
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 Thus the question that naturally arises therefore is whether secondary school 

students in any educational context are being taught proof well enough. The answer is 

probably not. This answer seems to be indicated by a substantial number of research 

projects and empirical studies some of which I review below. 

2.1.2 Examples of research works regarding proof in secondary education 

 In the UK Healy and Hoyles’ (2000) and  Hoyles and Healey’s (2006) longitudinal 

studies of algebra and geometry, respectively, employ relatively large samples of 

secondary school students. They find that high attaining students seem to think mostly 

empirically when it comes to proof and problem solving, although a tendency has also 

been observed in them to produce semantic proofs (Healy & Hoyles, 2000). Hoyles 

and Healy (2006) warn us not to expect  easy solutions such as the change of the 

curriculum to improve students’ performance. Believing that the problem of teaching 

proof is mainly a curriculum matter is misleading (ibid.). It is accepted that progress 

in mathematical thinking and consequently in proof thinking is painstakingly slow 

(Küchemann & Hoyles, 2006). This is to be expected, since even the most elementary 

mathematical constructs, such as the if-then implication, constitute a difficulty for 

students  (Hoyles & Küchemann, 2002). In connection to this and the comment of 

Hoyles and Healy, not to expect easy solutions on the issue of teaching proof as the 

change of the curriculum, questions are often raised about whether the intentions of 

reforms aiming to improve students’ mathematical performance produce substantial 

results. For example reforms aiming to the teaching of mathematics through problem 

solving is one issue  that seems to benefit students’ of lower social and economic 

status, but questions must be answered concerning whether it is a means for learning 

other mathematical concepts and skills (Lubienski, 2000). Another example of a 

rather unsuccessful reform is the New Math reform movement. The New Math 
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movement in the US and Europe called for a curriculum oriented to formal proof, 

guided by the idea that a coherent logical system can attract the attention of the 

average student. But the problem lies exactly in the fact that in a formal proof the 

questions do not emerge in a natural way for the students and they become 

uninterested about the answers. Thus reforming curriculum has not always proved to 

be the best way to obtain better results in teaching proof. What is needed with or 

without reform movements is that deductive proof should be the final step in the long 

mathematical process of learning about proof. Proofs, of whatever nature, should be 

invoked only where the students are convinced they are required. Proof is meaningful 

when it answers the students’ doubts and proves what is not obvious. It is thus natural 

to conclude, taking in account students’ proof difficulties, that the ability to prove 

depends on forms of knowledge to which most students are rarely, if ever, exposed 

(Dreyfus, 1999).  

 Research goes on, however, and for the researchers it is natural to study, 

investigate the students’ difficulties and propose methods for overcoming them. Thus 

some researchers as Bieda (2009) propose the adoption of  certain mathematical 

activities rich in proof tasks in the context of an appropriate curriculum. 

 Chinnappan, Ekanayake and Brown (2011), in a study of Sri Lankan 10th, 11th 

graders’ construction of proof, invent predictive indices concerning the students’ 

knowledge and skills which influence the successful production of proof in geometry. 

The study’s main conclusion underlines the need for robust geometrical knowledge 

combined with guided problem solving and reasoning skills. 

 Students in Germany first encounter proof in Year 8. Their problems with it 

according to Heinze (2004) may be explained by students’ insufficient knowledge of 

concepts, their deficits in methodological knowledge about mathematical proofs, and 
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the lack of knowledge about how to develop and implement a proof strategy. In an 

earlier work Heinze and Kwak (2002) use the theoretical construct of “declarative” 

and “methodological” knowledge in an experiment on the ability of students to 

articulate and produce proofs. By the term “declarative knowledge” the authors mean 

the knowledge on geometrical axioms, definitions and theorems. By the term 

“methodological knowledge” the authors mean knowledge of the principles of 

mathematical proofs. The deficit of both declarative and methodological knowledge 

seems to play a decisive part in difficulties with proof. 

 Stylianides and Al-Murani (2010) investigate students’ conceptions about proofs 

and refutations examining whether a proof can coexist in students understanding with 

a counter example. The whole idea of the research has a strong association to 

Lakatos’ work Proofs and refutations (1976). Although the survey data offered 

evidence for the presence of the misconception that a proof and a counter example to 

it, can coexist the followed-up interviews did not point to the same direction as 

strongly. Under these conditions they propose measures to be taken to avoid 

ambiguity in future researches. 

 In the US, the two-column proof is part of the tradition of teaching proof in 

geometry and used to be considered a successful model. Revising the two-column 

method under modern reform terms has led to the view that its application was at the 

expenses of students’ initiative and participation and thus of their conquering new 

ideas (Herbst, 2002b). Herbst (Herbst, 2002a) concludes that emphasis must be put 

not on procedural methods but on the deepening of knowledge.  

 Heuristics is a solving problem approach by which a solver uses experienced based 

ideas, both informal and formal, on a problem to reach its solution. Sometimes 

heuristics are simple actions focussed on obtaining a certain result, as the 
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decomposition of an integer in prime factors in order to obtain or count all its divisors, 

whereas sometimes are of strategic character as in the case of decomposing a difficult 

problem in smaller parts easier to handle. Heuristics is probably an indication that 

although mathematics has its own language and formality, it cannot replace all fields 

of rational thinking and needs a ‘bridge’ to this wider world of human logic. This may 

be an indication that mathematical ideas cannot always be fertile without an 

accompanying nebula of non-formal ‘heuristic’ ideas, at least when one has to solve 

mathematical problems. Taking advantage of this consideration Koichu, Berman and 

Moore (2007) propose the theoretical construct of heuristic literacy as a descriptive 

instrument of students’ richness in heuristic ideas. By the term “heuristic literacy” the 

authors mean a solver’s capacity to use heuristic vocabulary and to approach the 

solution of mathematical problems by a multitude of heuristic ideas. Thus the 

progress of mathematical thinking for Koichu, Berman and Moore (2007), who 

experimented with students taking intensive classes and thus high-attaining students, 

is proportional to higher degree of heuristic literacy. One kind of heuristics is the 

deliberate and purposeful organisation of knowledge and information. In an 

experiment described by Marton and Booth (1997) the participants had to memorise a 

list of personalities. The most successful strategy proved to be the creation of a net 

connecting information on these personalities in comparison to simple memorising 

without any structure. It is thus not surprising that an analogous strategy described by 

the theoretical construct called knowledge connectedness, plays an important role in 

students’ mathematical efforts. Indeed high-achievers seem to be able to retrieve more 

information than low-achievers, as reflected in the better results of those with higher 

knowledge connectedness (Lawson & Chinnappan, 2000). Examples of the absence of 

mathematical knowledge connectedness can be found in Monaghan (2000). 
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 Mariotti (2001) builds a theoretical construct of cognitive unity. For Mariotti 

conjecture and proof are bonded together when substantial cognitive obstacles do not 

decisively affect the final result, which, of course, is proof. But even if non-negligible 

cognitive obstacles are present, the same theoretical construct might serve for the 

description of the situation in terms of these very obstacles. The theoretical construct 

of cognitive unity, owes its origin, from the historical and teaching perspectives, to 

Euclid’s Elements where the ‘what is to be said’ should be said in a certain order. The 

rupture of that certain order reveals an absence of cognitive unity. In the same way, 

students with the necessary cognitive unity can find their way and prove after 

formulating an appropriate conjecture. On the contrary students who lack this 

cognitive unity, experience problems in their progress and face stagnation regarding 

proof  (Mariotti, 2001, 2006).  Antonini and Mariotti  (2008)  study indirect proof and 

come to the conclusion that intertwining the teaching of mathematical logic with the 

teaching of proof in mathematics is important for  achieving satisfying teaching 

results. 

 Seen as a dynamic evolution the learning of proof could be interpreted as a 

continuous process of liberation from the chains of the empirical thinking towards the 

freedom of the ideal formal thinking. Arzarello, Domingo and Sabena (2009b) 

experiment with 10th-grade students on early calculus. The researchers introduce the 

terms ‘semi-empirical’ and ‘semi-theoretical’ to describe the proof behaviour of 

students which indicative for the students’ thinking. The terms ‘semi-empirical’ refer 

to the Lakatos’ view of mathematics as a semi-empirical science whereas the terms 

‘semi-theoretical’ refer to methods developed by the students influenced by the 

experiment’s software to cope in paper and pencil environment with limits and ratios.   

Barrier, Durand-Guerrier and Blossier (2009) see empirical facts as a tool to gradual 
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abstraction towards a deductive thinking.  Students, for their part, reduce the 

abstraction of problems when they feel unable to grasp the ideas or notions that are 

connected to these problems. Reducing abstraction is a process used in attempting to 

solve mathematical problems, and probably represents the need to perceive the 

mathematical objects involved empirically. If a given problem is difficult to handle 

there is a tendency to simplify it by reducing its abstraction (Hazzan & Zazkis, 2005). 

 Miyazaki (2000) studies the level of proof in algebra in Japanese schools. He 

proposes a model of the levels of proof observed and an ordering of the steps to be 

taken by the pupils under their teachers’ guidance. These steps also correspond to an 

ascension from the empirical to the formal thinking along a smooth pathway, although 

he admits that his model is only appropriate for algebra. Another of Miyazaki’s 

models interprets and describes the structure of the empirical proof schemes of 

students emerging from measurement in Geometry (Miyazaki, 2008). 

 Kospentaris, Spyrou and Lappas (2011) study the perceptions of 12 grade students 

and students in their first year of university studies regarding area congruency. To 

address such problems the students must develop deductive thinking.  The authors 

observe that when the students cannot find a way to solve a problem they seek help in 

empirical evidence as a substitute for deductive thinking.  

 Lin, Yang and Chen (2004), inspired by Healy and Hoyles (2000) research project 

in the UK, present a corresponding research project with 7th, 8th and 9th graders in 

Taiwan that investigates their  choice of proof for their own and for the best mark. 

They scrutinise the students’ reasoning, proving and understanding of proof using 

certain models of counting in geometrical patterns. The researchers discuss the 

students’ difficulties with proof under this scope and suggest counting in geometrical 

patterns as a mean of developing deductive algebraic thinking. 
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 Battie (2009) studies the difficulties that students experience with proof while 

solving number theoretical problems of congruencies modulo n in their transition 

from the secondary to tertiary education. She analyses their attempts to solve relevant 

problems through the lens of the organising and operative dimensions. The organising 

dimension in proof requires the ability to create a plan, which must be practically 

implemented; this is where the operative dimension is needed and must come into 

action. The two dimensions are complementary and any loss of balance creates 

obstacles in the proving process. 

 The efficacy of DGS in students’ understanding is rather controversial, which is 

again natural given that DGS is a relatively new element in the teaching and learning 

of mathematics. DGS is being introduced slowly because on the one hand it demands 

certain infrastructure, and on the other it must of course be combined with the 

guidance of trained teachers in order to benefit students. However, research has 

produced interesting findings although not always compatible with one another. DGS 

keep researchers busy considering the probable and possible consequences of the role 

of proof in a digitalised world. Borwein (2009) finds that DGS not only challenges 

proof  but also provides it with opportunities and Hanna (2000) believes that the role 

of proof will remain intact. Certainly a number of researchers believe in DGS’s 

didactical potential to support deductive reasoning (Jones, 2000; Laborde, 2000). 

Researchers’ use of DGS environments combined with questions provoking students’ 

surprise of the unexpected is another way to make them to feel the need of proof 

(Hadas, Hershkowitz, & Schwarz, 2000). Marrades and Gurierrez (2000)  use of 

examples in DGS environments leads to the division of students’ justifications of 

various assertions into two main categories: those that are deductive and those that are 

empirical. The researchers assert that appropriate use of some DGS might improve 
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students' attitudes towards to proof.  For Wares (2007), investigating by means of 

DGS conjectures on difficult geometry problems not encountered during mathematic 

teaching would stimulate students to provide proof. For Chazan (1993), instead, 

computer software is suspected of contributing to empirical perceptions. In his 

research evidence and proof sometimes seem to be mixed up in students’ ideas, 

making the issue important. Aiming for more general enhancement of mathematical 

understanding,  Kordaki (2003) chooses the  mathematical issue of area and uses DGS 

environments to help 9th-grade students understand the issue better. Bloch (2003) 

uses technology to ameliorate students’ perceptions of mathematical objects such as 

functions.  

2.1.3 Examples of research works regarding proof in tertiary education 

 Proof at the tertiary level appears to be difficult both in terms of teaching and 

learning. Researchers have raised various aspects of this problem.  

 Epp (2003) gives a very clear picture of the problems of which she has become 

conscious since the late 1970’s and after. Having presented students’ difficulties with 

proof and formal logic in her work proposes courses which, for instance logic and 

geometry are interwoven to make the logic vivid and applicable on the one hand and 

facilitate learning about proof on the other. Thus the combined teaching of logic and 

geometry and in general of proof and logic is indispensable. Epp does not miss the 

social factor; she discusses the possibility of more instructors per student, although 

she accepts the difficulty of such a solution. For Alibert and Thomas (2002), proof in 

the text-books and in the research jargon is algorithmic, linear and opaque to students, 

for whom it should be structured and provide main ideas. The main issue seems to be 

the necessity for communicating scientific results in a productive way in order to 

detect and solve problems of understanding. Durand-Guerrier (2003) observes that 
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students of tertiary education seem to experience as many problems as those in 

secondary education with implications  which are “at the very heart of deductive 

reasoning” (ibid., p. 11). Edwards and Ward (2004) used the theoretical construct of 

concept image and concept definition developed by Tall and Vinner (1981) to analyse 

the phenomenon misuse of definitions and not only. They think that for the misuse of 

definition etc. the teaching is among the contributing factors when it becomes 

stereotypical. Based on their observations and experiences with students learning 

abstract algebra, they propose some teaching measures in order to help students 

understand the different meanings of words. Sowder and Harel (2003) see proof 

understanding, production, and appreciation (PUPA) as “important parts of a 

mathematician's repertoire” (ibid., p. 2). Finding that students in US universities 

demonstrate a deficiency in proving abilities, Sowder and Harel seek the reasons for 

this in their aforementioned work. According to their results, students need to see that 

proof is concrete, convincing and essential implying that these decisive elements are 

not always present in the tertiary teaching of proof. Moore (1994) thinks that students’ 

main difficulties are in understanding concept, mathematical language and notation, 

and getting started on a proof.  Recio and Godino’s (2001) research project looks at 

students’ difficulties with deductive reasoning and formulates the conjecture that they 

may be due to different institutional meanings of proof. Selden and Selden’s (2003) 

study of the proof perceptions of students finds that their  limited ability to distinguish 

proof from ‘fake’ proof shows their poor understanding of logical structure due to the 

stagnation on superficial features of proof. Stylianides, Sylianides and Philippou  

(2004)  studying students’ understanding of the contraposition equivalence rule, 

reveal the complexity of the factors that influence  students’ logical thinking. For Tall 

(2005) students’ difficulties with formal proof have their origin in the earlier 
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‘mathematical life’. Weber (2001, 2003) speaks of students’ lack of strategic 

knowledge in the face proof questions which makes them incapable of putting the 

proof process within a relevant theoretical context in order to apply the theory 

required to reach a proof. Furinghetti, Morselli and Antonini (2011) asked university 

students to produce examples in analysis to study the dialectic of visual versus 

symbolic and find analogies to the dialectic of the formal versus the informal. Uhlig 

(2002) proposes an alternative way of introducing students to proof in linear algebra, 

based on an analysis of educational and historical dimensions. The central idea is to 

avoid the high degree of formality that traditionally characterises courses in linear 

algebra and to appeal to a more natural way of understanding that is closer to 

students’ the ability to grasp such ideas. Dorier, Robert and Rogalski  (2002) concur 

Uhlig’s view. Iannone, Inglis, Mejia-Ramos, Simpson and Weber (2011) explore 

whether the generation of examples is actually predictive for successful handling of 

proof tasks. Their conclusion about the method’s effectiveness remains ambiguous 

without rejecting it. Weber and Alcock (2004) study proof productions and develop 

the theoretical construct of semantic and syntactic proof production: 

 We define a syntactic proof production as one which is written solely 

by manipulating correctly stated definitions and other relevant facts in a 

logically permissible way. In a syntactic proof production, the prover does 

not make use of diagrams or other intuitive and non-formal representations 

of mathematical concepts. In the mathematics community, a syntactic 

proof production can be colloquially defined as a proof in which all one 

does is ‘unwrap the definitions’ and ‘push symbols’. 

 We define a semantic proof production to be a proof of a statement in 

which the prover uses instantiation(s) of the mathematical object(s) to 

which the statement applies to suggest and guide the formal inferences that 

he or she draws. By an instantiation, we refer to a systematically 

repeatable way that an individual thinks about a mathematical object, 

which is internally meaningful to that individual. (ibid., p. 210) 

 

 The authors make a very interesting analogy of semantic and syntactic proof 

productions to Skemp’s (1976)  relational and instrumental understanding 
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respectively concluding therefore that semantic proof production is likely to lead to 

proofs more efficiently. Alcock and Simpson (2004, 2005) study the role of 

visualisation and suggest that the fidelity of visualisation to the formal definition 

contributes positively to proof production. This use, creative or not, of visualisation 

and the parallel correct or incorrect use of definitions and theorems is connected, 

according to the authors, to the Tall and Vinner’s (1981) notions of concept image 

and concept definition. Problem solving is comparable to proof production, and 

Stylianou, Chae and Blanton (2006) study the parallel between the two activities’ 

interrelation and interaction. The notion of isomorphism in its educational meaning, 

that is of problems or problem solving situations essentially similar, is analysed by 

Harel and Greer (1998) who review a number of research papers on the subject and 

support the idea that research must be carried out in an appropriate context. Mamona-

Downs (2001)   works on  proposals  regarding a more effective understanding of 

limits. She supports the idea that imagery potential can be helpful in proofs relevant to 

limits. Mamona-Downs and Downs (2004) made a  teaching  experiment with 

volunteers from a class in which proof was taught, on problem solving connected with 

bijections used for enumeration. In their course they stressed the basic logic, 

mathematical language and practice in doing simple proofs. 

 Harel (1998, 2001, 2007, 2008a, 2008b) develops the idea of the DNR system, 

which aims to clarify what mathematics should be taught at school and university and 

how it should be taught. Although the DNR system is basically inspired by tertiary 

level teaching experiences and the project PUPA it embraces and permeates, as a 

teaching philosophy, all educational levels. DNR stands for the duality principle (=D), 

the necessity principle (=N) and the repeated reasoning principle (=R).  

Mathematics is a union of two sets: The first set is a collection, or 

structure, of structures consisting of particular axioms, definitions, 
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theorems, proofs, problems, and solutions. This subset consists of all the 

institutionalized ways of understanding in mathematics throughout 

history. The second set consists of all the ways of thinking that are 

characteristics of the mental acts whose products comprise the first set. 

(Harel, 2008a, p. 490)  

 

Out of this thesis arise the Duality Principle, a product of interaction between ways of 

understanding and ways of thinking:  

The Necessity Principle has its roots in the Piagetian theory of learning 

and is consistent with the current theory of Problematique put forth by 

French mathematics educators. […] for example, [...] pupils' learning 

depends on their recognition and re-construction of problems as being 

their own... A problem is a problem for a student only if she or he takes 

the responsibility for the validity of its solution. This transfer of the 

responsibility for truth from teacher to pupils' must occur in order to 

allow the construction of meaning. (Harel, 1998, p. 259).  

 

The third cornerstone of the DNR system is the Repeated Reasoning Principle which 

means that students must practice reasoning in order to internalize desirable ways of 

understanding and ways of thinking. DNR embraces all mathematical teaching but 

puts emphasis on reasoning with at least the Repeated Reasoning Principle and thus 

on proof. 

 In some works the researchers are interested in deductive thinking, not necessarily 

in the narrow educational context of teaching and learning proof but also in a broader 

sense. Ayalon and Even (2008) discuss how people professionally engaged in 

mathematical activities perceive deductive thinking. Akin to this work are, Raman 

(2003) on key ideas and Inglis and Mejia-Ramos (2009) investigation of the 

persuasive power of visual arguments when accompanied or not by a text supporting 

them.  

2.1.4 Examples of research works regarding proof focusing mainly on teachers  

 There are researchers who focus on teachers, exploring various aspects of the 

influence the teacher factor on teaching proof and problem solving in both primary 

and secondary education. Brousseau and Gibel (2005) analyse a classroom situation 
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where 5th graders are attempting to solve a problem whose solutions must be 

supported by logical arguments and accentuate the teacher not being able to enhance 

their reasoning because he could not process the students’ reasoning appropriately. 

Biza, Nardi and Zachariades (2009) explore the relationship between beliefs about the 

sufficiency and persuasiveness of a visual argument and personal images about 

tangent lines of secondary education teachers. It turns out that some teachers accept 

incorrect arguments because they are carried away by visual ‘evidence’. Bjuland 

(2004) works on a teaching experiment with future teachers. Through their efforts to 

solve Geometry problems the future teachers begin to understand among other things 

the role of the simplification of related problems when confronted with students’ 

difficulties in solving a problem. Dekker and Elshout-Mohr (2004) study teachers’ 

interventions focused on mathematical content and students’ interactions and find 

indications of how teachers should organise their interventions for better teaching 

results. Harel, Fuller and Rabin (2008) warn us not to risk teaching mathematics in a 

way that could generate in our students the perception that mathematics is a 

procedural routine with irrelevant and arbitrary elements. Knuth (2002), taking 

advantage of the fact that some schools are and others are not following the ‘proof for 

all’ reform in the US distinguishes the pedagogical problems that the teachers 

themselves seem to have with proof per se or as a teaching material. Barbé, Bosch, 

Espinoza and Gascón (2005) analyse the teaching of limits in Spanish schools from a 

praxeological point of view, which distinguishes the teaching in  didactical moments. 

For the authors, types of problems, techniques, technologies and theories in the field 

of mathematics form what it is called mathematical praxeology. On the other hand to 

teach a mathematical praxeology the teaching has to be organised in didactical 

moments. They conclude that the teaching they observed suffered in organisation 
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because it lacked some of the necessary to a successful teaching didactical moments 

in question. Martin, McCrone, Bower and Dindyal (2005) having observed  a 

geometry class for a significant length of time, emphasise the importance of interplay 

between teacher and students, the teacher guiding the students to act for  themselves 

on matters of formal proof, although even in such cases one cannot be sure whether 

the students have indeed internalised the axiomatic method. Schoenfeld (1988) 

presents observations of a 10th-grade geometry class over a long period of time. The 

class is a typical achieving class where curriculum material is taught and state-

administered tests show off students' satisfying achievements. The researcher is 

concerned that aspects of the class do not involve the development of mathematical 

thinking, and from this emanates the paradox of good teaching with bad results. 

Schoenfeld makes the important point that the bad results including those in problem 

solving and proof are not necessarily a consequence of teachers' inefficiency and 

inadequacy. Instead they are the complex product of tight attachment of the teaching 

to curricular premises that are predicated on performing well on state-designed and -

administered tests. Stylianides and Stylianides (2009) study perspective elementary 

teachers’ perceptions of proof and find that even perspective mathematics teachers are 

not always able to recognise what an empirical argument is and explain what a proof 

is, although a number of the research project participants were aware that an empirical 

argument is not a proof. Van-Schalkwijk, Bergen and Van Rooij (2000) experiment 

with students interested in mathematics in a double-bind study: on the one hand  the 

students learn to investigate and on the other the teachers learn to coach this 

investigation. Thus, it is very important to find a balance between mere concentration 

on guiding the process of the students' investigations and active intervention in the 

learning process of proving.  
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2.1.5 Examples of research works regarding proof based on non mathematical 

theoretical constructs  

Sometimes researchers use analytical models framed outside mathematics education 

research and mathematical sciences. Toulmin (2008) and Habermas (2003) offer two 

impressive examples of such models.  

 Toulmin's model of argumentation (2008) has influenced a number of researchers. 

Briefly according to Toulmin an argument is constituted basically of the data, the 

warrant, the backing of the warrant, the qualifier, the claim or conclusion and the 

rebuttal.  When a person builds an argument, she appeals to data by using the warrant, 

which is supported by the backing. Consequently she can assert using a qualifier that 

the conclusion is valid unless there is a rebuttal negating this conclusion. Knipping 

(2008) uses the Toulmin’s model to analyse students’ thinking about proof. Inglis, 

Mejia-Ramos and Simpson (2007) analyse high-attaining post-graduate mathematics 

students’ arguments and conclude that instruction should offer students the ability to 

match modal qualifiers to warrant types.  Krummheuer (2003) applies Toulmin's 

model to primary students’ thinking and asserts that it allows the reconstruction and 

thus the study of the argumentative character of their thinking in retrospect.  

Arzarello, Domingo and Sabena (2009a) claimed that results are not always in favour 

of the Toulmin’s model as an instrument of analysis and they criticised Toulmin’s 

model for not being able to explain all argumentative phenomena. 

 Habermas’  theoretical construct of rational behaviour presented in his book ‘Truth 

and Justification’ (2003) inspired Morselli and Boero (2011) to use it as an instrument 

to  analyse students’ handling of algebraic issues and algebraic proof. They consider 

that their observation and subsequent analysis can be used by curriculum developers 

to production appropriate teaching material. 
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2.1.6 Taxonomic theoretical constructs related to students’ proof perceptions  

 There are research works which offer taxonomic theoretical constructs either on 

students’ knowledge or proving ability. The most widely known work on geometry 

perceptions is the work of the Van Hiele couple. More specifically It is known that in 

the late 1950’s the Van Hieles developed a theory of geometrical knowledge levels 

(Van-Hiele-Geldof & Van-Hiele, 1984): 

According to the Van Hieles, the learner, assisted by appropriate 

instructional experiences, passes through the following five levels, where 

the learner cannot achieve one level of thinking without having passed 

through the previous levels. 

Level 0: The student identifies names, compares and operates on 

geometric Figures (e.g., triangles, angles, intersecting or parallel lines) 

according to their appearance. 

Level 1: The student analyses Figures in terms of their components and 

relationships among components and discovers properties/rules of a class 

of shapes empirically (e.g., by folding, measuring, using a grid or 

diagram). 

Level 2: The student logically interrelates previously discovered 

properties/rules by giving or following informal arguments. 

Level 3: The student proves theorems deductively and establishes 

interrelationships among networks of theorems. 

Level 4: The student establishes theorems in different postulational 

systems and analyses/compares the systems.” (Fuys, Geddes, & Tischler, 

1988, p. 5)  

 

Senk (1989) uses the Van Hiele model on students’ level of geometric knowledge. 

The model is indeed general, since it offers a taxonomy of the students’ geometrical 

knowledge levels. It is confined to geometry and treats the students’ proof behaviour 

in a predictive manner. Doubt is even being cast upon the predictive element 

according to Senk’s research.   

 Balacheff’s taxonomy (1987 ) on the other hand is more general than Van Hieles’ 

regarding  students’ proof behaviour because it does not confine itself in geometry 

only. It takes as its starting point the proof behaviour of the students of Class 4 

(students 13-14 years old). Here is how Balacheff sees proof: 
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We call proof an explication accepted by a given community at a given 

moment. This decision may be the object of debate the significance 

thereof being the demand to determine a system of validation common to 

the interlocutors
1
. (Balacheff, 1987 p. 148) 

 

On the basis of the previous definition this is what Balacheff’s general view: 

The carrying out of a decision or the realization of the content of an 

assertion permits what we will call pragmatic validation of the decision 

or pragmatic proof if they are carried out by the student himself in order 

to establish the validity of a proposition. If this access to realization is not 

possible then the validations are necessarily conceptual. The production 

of these conceptual proofs demand indeed the language formulation of 

these objects to which they refer and the relations of these objects.
2
” 

(Balacheff, 1987 p. 157) 

 

Having given the above definition Balacheff continues his classification, saying that 

from pragmatic proofs (preuves pragmatiques) to conceptual proofs (preuves 

intellectuelles) one can distinguish various types of proofs as follows: 

Naïve empiricism is the first type of proof that we encounter in this 

hierarchy. It consists of concluding the truth of an assertion from the 

observation of a small number of cases.  

The crucial experiment is processes of validation of an assertion where 

the individual explicitly poses the problem of generalization and resolves 

it, betting on a case which he recognise the less particular as possible.
3
.”   

(ibid., p. 163) 

“The generic example involves making explicit the reasons for the 

validity of an assertion by means of the realisation of operations or 

transformations of an object that is not present itself but is a 

                                                 
1
 Nous appelons preuve une explication acceptée par une communauté donnée à un moment donné. 

Cette décision peut être l'objet d'un débat dont la signification est l'exigence de déterminer un système 

de validation commun aux interlocuteurs. (Original text in French, my translation; this also applies to   

all texts translated here from the French original) 
2
 La mise à exécution d'une décision, ou la réalisation du contenu d'une affirmation, permet ce que nous 

appellerons des validations pragmatiques de la décision, ou des preuves pragmatiques lorsqu'elles sont 

effectuées par l' élève lui-même pour établir la validité d'une proposition. Lorsque cet accès a la 

réalisation n'est pas possible alors les validations sont nécessairement intellectuelles. La production de 

ces preuves intellectuelles requièrt notamment l'expression langagière des objets sur lesquelles elles 

portent et de leurs relations. 
3
 L'empirisme naïf est dans cette hiérarchie le premier type de preuve que nous rencontrons. II consiste 

à tirer de l'observation d'un petit nombre de cas la certitude de la vérité d'une assertion (…) L'expérience 

cruciale est un procédé de validation d'une assertion dans lequel l'individu pose le problème de la 

généralisation et le rèsoud en pariant sur la réalisation d'un cas qu'il reconnaisse pour aussi peu 

particulier que possible. 
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characteristic representative of a class of individuals
4
. (ibid., pp. 164-

165) 

“The mental experiment appeals to the action interiorising it and 

detaching it from its realisation by a particular representative. It remains 

marked by anecdotal temporality, but the operations and founding 

relations of the proof are differently designed by the result of their 

carrying out as is the case for the generic example.
5
 (ibid., p. 165)  

 

Naïve empiricism (l'empirisme naïf), crucial experiment (l'expérience cruciale) and 

generic example (l'exemple générique) belong to the general class of pragmatic proofs 

whereas mental experiment (l' expérience mentale) belongs to the class of conceptual 

proofs. 

2.1.7 Research questions emerging from the literature review  

 From the literature review so far two main questions emerge in a natural way 

regarding the students’ proof perceptions. Do students possess proof perceptions 

before being taught proof? I shall call these perceptions pre-proof perceptions because 

they are, if they exist in any form, perceptions about proof before the relevant 

teaching of proof. Let it be noted that there are research works investigating this 

question even on primary level (Stylianides, 2007b). On the other hand it follows 

logically to ask, what are the students’ proof perceptions during and after the first 

teaching of proof. In concise formulation the research questions are: 

a) What are students’ pre-proof perceptions? 

b) What are students’ perceptions of proof when they first encounter it? 

  To answer the questions previously cited a tool of analysis is definitely needed. I 

close the discussion of the literature with the next section 2.2 which is devoted to the 

                                                 
4
 L'exemple générique consiste en 1'explicitation des raisons de la validité d'une assertion par la 

réalisation d’opérations ou de transformations sur un objet présent non pour lui-même, mais en tant que 

représentant caractéristique d'une classe d'individus. 
5
 L’expérience mentale invoque l'action en l’intériorisant et en la détachant de sa réalisation sur un 

représentant particulier. Elle reste marquée par la temporalité anecdotique, mais les opérations et les 

relations fondatrices de la preuve sont désignées autrement que par le résultat de leur mise en oeuvre; 

ce qui était le cas pour l' exemple générique.  
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chosen tool of my research analysis, the Harel and Sowder’s (1998, 2007)  proof 

scheme taxonomy which describes the proof behaviour of students also from a 

taxonomic point of view. Being the chosen tool of analysis it merits a distinguished 

presentation. To this end in 2.2.1 section I give first the philosophy underlying and 

supporting the taxonomy and in 2.2.2 section a detailed presentation of the taxonomy 

in the context of other proof related works – and explain why I chose to use it to 

analyse how Greek students perceive proof when they first encounter it.  

2.2 The conceptual framework of this study: Harel and Sowder’s taxonomy 

2.2.1 The philosophy underlying the Harel and Sowder taxonomy  

 The central concept of the Harel and Sowder taxonomy, as is natural, is the 

concept of proof. But proof, as clear as it might be as a concept in the minds of the 

mathematicians, it is not at all clear for many students.  

Overall the performance of students at secondary and under graduate 

levels in proof, is weak as the findings reported in this paper will show. 

Whether the cause lies in the curriculum, the textbooks, the instruction, 

the teachers’ background, or the students themselves, it is clear that the 

status quo needs, and has needed improvement (…)This chapter argues 

for  “comprehensive perspectives” on proof learning and teaching and 

provides an example of such a perspective. A comprehensive perspective 

on the learning and teaching of proofs is one that incorporates a broad 

range of factors: mathematical, historical-epistemological, cognitive, 

sociological, and instructional. A unifying and organizing element of our 

perspective is the construct of “proof scheme.” (Harel & Sowder, 2007, 

p. 2) 

 

I call the broad range of all these factors, to which Harel and Sowder make reference 

to, the “philosophy” underlying the Harel and Sowder’s taxonomy because it is the 

base to answer the question “what is proof?” and thus in brevity represents the 

ontological nature of the question as well as the answer that Harel and Sowder give to 

it. In order to find and formulate a satisfying answer to this question one has to 

ineluctably indulge in the historical development of the proof concept and study it 

thoroughly. Harel and Sowder studied works on the historical development of the 
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proof concept and parallel to the studying they conducted instructional experiments 

with students.  As a result of this combined effort they shaped ideas and formulated an 

answer to the question “what is proof?”  I summarise my perception of their work 

(Harel & Sowder, 1998, 2007)  on this matter.  

 It is widely accepted today that the pre - Greek mathematics is proof free. A 

number of mathematical truths were known to civilisations prior to the Greek 

civilisation, as the Babylonian and the Egyptian. These were truths concerning 

geometrical objects or of arithmetical character as e.g.  operations  on fractions. But 

all these mathematical truths were not explained, not supported and thus not justified 

by corresponding arguments but were seen as rules of algorithmic and computational 

character for practical usage in certain cases which called for or needed such 

handling. The rise of the Greek mathematics benchmarks a new era in the human 

thought. In this new era nothing is allowed to be left unexplained and unjustified 

especially in mathematics. According to Sfard  (1991) the birth of new abstract ideas 

from previously mainly operational and procedural ideas in various mathematical 

topics is not a product of chance. She believes, on the contrary, that a certain 

development of procedural, algorithmic and computational ideas reaches a 

quantitative limit up and that is the crucial and critical moment where a qualitative 

leap forward generalises these ideas and produces the abstraction thereof igniting the 

mechanism of progress in the various mathematical fields. Under this light she sees 

the eruption of new mathematical ideas in the sixteenth century. She is in resonance in 

this respect with the explanation Harel and Sowder (1998) attribute the genesis of the 

proof concept by the Greeks to a number of factors among of which is the resolving of 

contradictory computational results obtained by earlier civilisations. There are 

probably other things as more general factors of social character which influence the 
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concept proof as e.g. the political system of democracy demanding argumentation to 

support decisions and choices concerning the economic development or various social 

measures which help a society function “better”. Limiting ourselves to the inner 

developmental reasons of mathematics itself as described by Harel and Sowder and 

Sfard, in other words limiting our interest in observing how and why the mathematical 

ideas mature, is of paramount importance for our contemporary understanding of 

students difficulties with proof (Harel & Sowder, 2007). At the same time our 

acceptance of the proof value of Greek mathematics emphasises even more intensely 

the question “what is proof?” Indeed, we take as an exemplary exposition of the 

Greek concept of proof the work of Euclid in the Elements. What is salient and 

exceptional in the work of Euclid is the logical structure which precedes any 

engagement in argumentation, proof and proving of any proposition.  The acceptance 

of some fundamental and undefined truths as a base for further argumentation and 

justification makes the Elements a monumental work which offered to human thought 

the paradigm of an axiomatic system. However the mathematical developed further 

even if the evolution was slow and painstaking. Passing through the sixteenth to 

nineteenth centuries, where considerable progress was recorded, some two thousand 

years later the mathematical thought in its development found itself in the need of a 

new fresh reconsideration of the axiomatic structure after having understood that the 

geometry of Greeks based on the axiomatic ideas of Euclid was not the unique answer 

to questions regarding the notion of parallelism. The final consequence of this new 

revolution in mathematics was the development of the axiomatic system of Hilbert 

which not only answered questions but spontaneously put new ones. Now, if Hilbert’s 

axiomatic system is more complete than the one developed by Euclid, does proof in 

the sense and under the assumptions of Hilbert represent the same thing as proof in 
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the sense and under the assumptions of Euclid? Harel and Sowder propose the 

distinction of the one system from the other by calling that of Euclid the Greek 

axiomatic system or “Greek axiomatic proof scheme” and that of Hilbert the modern 

mathematical axiomatic system or “modern axiomatic proof scheme” (Harel & 

Sowder, 2007, p. 9). Their proposal leads obviously to the result that both Greek proof 

and modern proof are accepted as representing the concept of proof.  In doing so 

Harel and Sowder are totally aware that such a point of view could not by many be 

logically accepted since obviously there are contradictory elements in the two 

systems. For example the Greek axiomatic system idealises the geometrical objects 

but does not free itself from the “material” substance of these objects and the 

impression they exert on us. Thus in the Elements a point is defined as having no 

parts, definition which idealises what we sketch as a point in a geometrical figure. In 

the same vein, in proposition I.32 (Heath, 1956, pp. 316-317) the parallel from a 

triangle’s vertex to the side opposite to the vertex is considered as belonging totally to 

the external angle of the triangle with the same vertex because our experience and 

empirical perception of these objects lead us to this conclusion. In radical revision of 

such ideas which encounters in a number of cases in the Elements the modern 

axiomatic deprives its objects of any so called real world interpretation making them 

void meaningless variables. The contradiction is resolved in the following manner. 

The primacy of the modern axiomatic system is clearly and beyond any doubt 

recognised. Consequently proof teaching has as educational goal and ultimate aim to 

make for our students possible to understand modern axiomatic proof and use it 

productively and fruitfully. In a way it can be said that the “objectivity” of the modern 

axiomatic system is acknowledged. On the other hand to the concept of proof, which 

is not developed within the realm of the modern axiomatic, is attributed the property 
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of “subjectivity” by the following definition: Proof is an argument that a person or a 

community uses to convince others of the validity of a certain assertion or the 

rejection thereof. By virtue of such a consideration one is led to accept the historical 

as well the social nature of the proof itself. The historical aspect perceives proof in its 

development in time. The social aspect sees proof as a collective human activity. 

Indeed the way an ancient Greek mathematician differs from the ones of the sixteenth 

century. Similarly the mathematician of the sixteenth century differs from the ones in 

the nineteenth century. And finally the mathematicians of the nineteenth century 

differ from the mathematicians of the twentieth century and so on.   

 At this point I want to underline that Harel and Sowder idea of the “subjectivity” 

of proof, whether consciously or unconsciously, spontaneously or not, is an accepted 

notion within the context of education. Indeed, for centuries or at least the recent 

several decades the teaching of mathematics does not begin by presenting the students 

with its modern axiomatic foundation. There is more to that if we consider that some 

attempts to proceed in this manner in the secondary education led to the complete 

failure of the teaching regarding proof and not only. Thus in the world of education 

e.g. the empirical element is taken into account and is being used as a first means to 

approach the concept of proof. For example the superposition of triangles in order to 

check their equality is accepted, as in the times of Euclid, as a valid criterion. The 

axiomatisation of this empirical process is left for a later time, mostly during the 

tertiary education. From this observation angle the Harel and Sowder’s conception of 

proof summarises what is already being practised in the classrooms for decades at 

least. In other words beside the existence of the modern axiomatic system we accept 

at least for instructional, cognitive and psychological reasons the coexistence of the 
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Greek axiomatic system or even more primitive pre – proof ideas without any 

endorsing axiomatic systems. 

 Returning to the Harel and Sowder taxonomy’s philosophy we find that the 

subjectivity of proof leads to the study of certain fundamental aspects or functions of 

proof which in their turn guide to the concept of proof scheme. These are the 

following: Conjecture versus fact, proving, ascertaining versus persuading. 

 Conjecture is an assertion formulated by a person or by a community which is not 

automatically true. Thus it can imply that the person making the conjecture might not 

be sure of the validity of the conjecture’s truth. If the person believes in the truth of 

the spoken out conjecture then the latter becomes, for the person’s point of view, a 

fact. 

 Proving is the process which removes doubts or just the contrary consolidates 

doubts about an assertion expressed by a person or a community. 

 Ascertaining and persuading are sub processes of proving. Ascertaining removes 

a person’s or a community’s doubts or consolidates them with regard to an assertion. 

In a way it has to do with introvert actions of a person or a community. Persuading is 

the extrovert action taken by a person or a community to persuade others of the 

validity or the invalidity of an assertion. 

 Thus term proof scheme is used instead of the term proof in order to put an 

emphasis in the subjectivity of the proof either seen historically or as an individual 

action. I repeat here that the acceptance of this mode of thinking towards proof does 

not imply that proof is never “objective”. Far from any such ideas the modern 

axiomatic system is the objective deductive system to prove mathematical 

propositions and is literally the learning objective of mathematical education. 

Especially in education the concept of proof scheme makes the teaching and learning 
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of proof student - centred shifting the focus for us as teachers not solely on the proof 

for itself but at the same time at the students perceptions of proof.  

 On this basis I proceed to the next section. 

2.2.2 The description of  Harel and Sowder taxonomy 

 Below I describe the Harel and Sowder’s taxonomy (2007) in which they also 

address the relationship of their taxonomy to other taxonomies and the functions of 

proof in mathematics. Harel and Sowder present the complete taxonomy in their work 

Students’ Proof Schemes (1998).  In my research I used the names of proof schemes 

presented in Harel and Sowder (2007). According to the authors the taxonomy of 

proof schemes comprises of three classes: the external conviction proof scheme, the 

empirical proof scheme, and the deductive proof scheme.  The authors give the 

following description of the first class of proof schemes: 

External conviction proof schemes. Proving within the external 

conviction proof schemes class depends (a) on an authority such as a 

teacher or a book, (b) on strictly the appearance of the argument (for 

example, proofs in geometry must have a two-column format), or (c) on 

symbol manipulations, with the symbols or the manipulations having no 

potential coherent system of referents (e.g., quantitative, spatial, etc.) in 

the eyes of the student (e.g., ( )
( )

( )
( ) c

a
bc

ba
bc

ba =/+
/+=+

+ ). (Harel & 

Sowder, 2007, p. 7) 

 

 According to the above description, three cases can be distinguished within the class 

of external conviction proof schemes. If an authority such as the teacher or a book is 

appealed in order to support a proof argument the proof scheme is an authoritarian 

proof scheme. If an argument is judged logically adequate due to its appearance but 

not because of its actual logical validity is a ritual proof scheme. If a proof scheme is 

based on arbitrary manipulations of any kind, is a non-referential symbolic proof 

scheme. Thus in brief the external conviction proof scheme class has the following 

structure: 



[41] 

 

 External conviction proof schemes class 

 Authoritarian proof scheme  

  Ritual proof scheme 

 Non-referential symbolic proof scheme  

The second class of proof schemes is empirical proof schemes which Harel and 

Sowder (2007) describe as follows: 

Empirical proof schemes. Schemes in the empirical proof scheme class 

are marked by their reliance on either (a) evidence from examples 

(sometimes just one example) of direct measurements of quantities, 

substitutions of specific numbers in algebraic expressions, and so forth, 

or (b) perceptions. (ibid., p. 7) 

 

 According to this description there are two types of empirical proof schemes. If a 

proof scheme is based on the use of examples and sometimes only on one example or 

on the direct measurement of quantities such as lengths, angles etc., or on the 

substitution of variables by certain numbers it is an inductive proof scheme. If on the 

other hand the argumentation of a proof scheme is based on perceptions, it is a 

perceptual proof scheme. Harel and Sowder (1998) explain what a perception is by 

means of an example where a student perceives two non-congruent line segments as 

congruent and a rectangle as a square (ibid., pp. 256-258). Thus in brief the empirical 

proof scheme class has the following structure: 

 Empirical proof schemes class  

 Inductive proof schemes 

 Perceptual proof schemes      

The third class of proof schemes is deductive proof schemes. As their name indicates, 

they are proof schemes where the arguments are of deductive character. This class has 

two kinds of proof schemes: transformational and axiomatic. Transformational proof 

schemes use common generality, operational thought and logical inference. In other 
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words the arguments of a transformational proof scheme seek to be valid for all cases 

and not just for isolated ones, with exceptions not generally accepted. Operational 

thought is present in the manner that a proof is organised in appropriate steps to reach 

the final goal that completes the proof. Logical inference is made apparent in the way 

the individual offering a proof justifies his use of the data given in the partial steps of 

the proof and their connection. Transformational proof schemes differ from the 

previous classes in the fact that they provide elaborate demonstrations. On this last 

point the authors of the taxonomy give the following example taken from Harel 

(2001): 

Consider the following two responses … to the problem:  

Prove that for all positive integers n,  

   (         )                      . 

Response I 

   (     )                        (     )              

                                                   

Since these work, then    (         )                 
      
A probe into the reasoning of the students who provide responses of this 

kind reveals that their conviction stems from the fact that the proposition 

is shown to be true in a few instances, each with numbers that are 

randomly chosen —a behaviour that is a manifestation of the empirical 

proof scheme.  

Response 2  

(1)    (    )               by definition  

(2)    (      )               .  Similar to    (  ) as in step (1), 

where this time       . 

Then  

   (        )                    
 (3) We can see from step (2) any    (         ) can be repeatedly 

broken down to  

                      
 It is important to point out that in Response 2 the student recognizes 

that the process employed in the first and second cases constitutes a 

pattern that recursively applies to the entire sequence of propositions, 

   (         )                   ,  n=1, 2, 3,... 

 In both responses the generalizations are made from two cases. This 

may suggest, therefore, that both are empirical. As is explained in Harel 

(2001), this is not so: response 2, unlike response 1, is an expression of 

the transformational proof scheme. To see why, one needs to examine the 

two responses against the definitions of the two schemes. While both 

responses share the first characteristic—i.e., in both the students respond 
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to the “for all” condition in the log-identity problem statement—they 

differ in the latter two: whereas the mental operations in Response 1 are 

incapable of anticipating possible subsequent outcomes in the sequence 

and are devoid of general principles in the evidencing process, the mental 

operations in Response 2 correctly predict, on the basis of the general 

rule,    (  )           , that the same outcome will be obtained in 

each step of the sequence. Further, in Response 1 the inference rule that 

governs the evidencing process is empirical; namely, (∃r∈R)( P (r)) ⇒ 

(∀r ∈R)(P(r)). In Response 2, on the other hand, it is deductive; namely, 

it is based on the inference rule (∀r∈R)(P(r)) ∧ (w∈R) ⇒ P(w). (Here r is 

any pair of real numbers a and x, R is the set of all pairs of real numbers, 

P(r) is the statement    (  )              ,” and  w in step n is a pair 

of real numbers           and     .) (Harel & Sowder, 2007, pp. 8,9)  

 

The axiomatic proof scheme also has the three characteristics that define the 

transformational proof scheme. The transformational and the axiomatic proof schemes 

differ in the following sense: an axiomatic proof scheme is given by an individual who 

has acquired the more general knowledge of the fact that mathematics in whatever 

field of its development starts from accepted principles that is from axioms. In this 

research for reasons explained in the methodology chapter I have not used the 

axiomatic proof scheme. Summarising in brief the deductive proof scheme class has 

the following structure: 

 Deductive proof schemes class  

 Transformational proof schemes  

 Axiomatic proof schemes   

 Throughout the present work the following abbreviations are used for the proof 

schemes above:  

 The external conviction proof schemes class (=EC.) comprising the ritual proof 

scheme (=EC.R.); the authoritarian proof scheme (=EC.A.); and the non-

referential symbolic proof scheme (=EC.NRS.). 

  The empirical proof schemes class (=E.) comprising the inductive proof scheme 

(=E.I.); and the perceptual proof scheme (=E.P.). 
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 The deductive proof scheme class (=D.) comprising the transformational proof 

scheme (=D.T.); and the axiomatic proof scheme (=D.A.).  

 Harel and Sowder (2007) call the major classes “classes” and the ‘subclasses’ 

sometimes “subschemes” and sometimes “subcategories”. I prefer simply to use the 

term “proof scheme”: thus for example I speak of the external conviction (=EC.) 

proof scheme and of the external conviction non referential symbolic (=EC.NRS.) 

proof scheme. The deductive axiomatic proof scheme (=D.A.) and consequently finer 

sub-subclasses of it does not appear in my analysis as mentioned; using it would have 

constituted a methodological error because I speak of the first encounter with proof 

whereas the D.A. proof scheme, according to Harel and Sowder obviously refers to 

situations that occur only after systematic work on proof and the gathering of 

substantial amounts of proof experience. Finer sub-classes of D.T. proof scheme 

found in Harel and Sowder (1998) first work on proof schemes do not appear neither 

in my analysis (see methodology chapter). 

2.2.3 The choice of Harel and Sowder taxonomy as analytical tool of the research 

 In what follows I explain the choice for Harel and Sowder’s taxonomy as an 

analytical tool for my research project by reviewing constructs, methods and ideas 

that were presented in section 2.1 as well aspects of the philosophy underlying the 

taxonomy and its structure presented in sections 2.2.1 and 2.2.3. 

 A plethora of ideas developed in a scientific field does not necessarily imply 

controversy, contradiction or conflict but makes their appearance possible as well as 

probable. Every science worthy of its name is alive because of controversy, 

contradiction and conflict. Thus the progress of ideas is normally accompanied by a 

divergence in ideas. In relation to this Balacheff (2008) goes as far as to underline 

how different notions or perceptions of proof in research work could even constitute 
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an obstacle to further progress. Sometimes even the mathematical terminology is not 

universally agreed upon, as in the case of “indirect proof” (Antonini & Mariotti, 

2008). Bergsten’s (2008) work indicates how difficult is to analyse even 

straightforward problems with which all agree that students have difficulties, even 

where interpretation of the difficulties diverges substantially, although they could be 

taken as part of a bigger interpretation embracing and entailing the partial 

interpretations. Bartolini-Bussi (2005) points out the difficulties of communicating the 

results of certain research experiments. Goldin expresses doubts about the quality of 

research and sets the following criterion for attaining it:  

Our knowledge bases in mathematics and the natural sciences should ‘fit’ 

easily with and augment the knowledge bases deriving from educational 

research in these domains. (Goldin, 2003, p. 198) 

 

Lester (2005) engages in an analysis, with political features, considering the factors 

that seem to affect and influence mathematics research and believes that combining 

different perspectives would profit mathematics research. Reacting to Lester’s paper 

Harel (2006) supports the idea that, it is the mathematics and its unique constructs, 

history and epistemology that makes mathematics education a discipline in its own 

right. Anna Sfard (2000) looking critically at some popular ideas about teaching 

mathematics asks how far one may go in re-negotiating and relaxing the rules of 

mathematical discourse before seriously affecting its learnability. According to Sfard 

this also applies to proof: 

I was trying to show, the idea of a negative number cannot be fully 

understood within a discourse which is regarded as describing the 

physical world, since there is nothing in this world, as it is known to the 

student, which would dictate the rule “minus times minus is plus.” 

Similarly, the request for rigorous definitions which may count as “truly 

mathematical” cannot sound convincing without its being related to the 

idea of mathematical proof; and the mathematical rules of proving, in 

their turn, cannot be understood without the agreement that the ultimate 

criterion of a proper argumentation is the logical bond between 
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propositions, and not relations between these propositions and physical 

reality. (Sfard, 2000, pp. 28-29) 

 

There are also cases too where it is difficult for the newcomer to distinguish 

between theoretical constructs and terminology. For example what Brousseau calls 

the “cognitive obstacle” (1997) bears,  to my eyes, a strong resemblance or 

connection to Tall and Vinner’s (1981) notions of concept image and concept 

definition discrepancy of which constitutes a cognitive obstacle.  

In a nutshell, I can summarise the situation as follows:  

 There are studies such as those of  Healy and Hoyles (2000) and Hoyles and Healy 

(2006) which have captured  moments in development of mathematical thinking and 

proof behaviour of students using a classical model for the assessment of their texts, 

assigning marks on a scale decided by the researchers. Specifically in the Healy and 

Hoyles studies reference is made, in what regards proof, to the taxonomy of Harel and 

Sowder and develop notions such as proof production and appreciation by testing 

students’ perceptions of arguments accepted as proofs.  

 There are also studies that refer to qualitative model for assessing knowledge or 

proof behaviour such as: 

a. The Van Hiele model of assessing geometrical knowledge 

b. Balacheff’s  proof behaviour taxonomy 

 Besides these, there is a plethora of qualitative theoretical constructs that could be 

used to analyse students’ proof behaviour including cognitive unity, proof production 

in comparison to proof appreciation, semantic and syntactic proof productions, etc. as 

I explained in the previous section. 

 On the other hand DGS and generally ICT technology offer ideas and contribute to 

the research regarding proof and proving as reflected in various research projects 

examples of which I have already mentioned.  
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 Finally a number of research projects implement theoretical considerations outside 

mathematics or mathematics education such as those of Habermas and of Toulmin. As 

already noted in 2.1 Habermas’ theories use by Morselli and Boero (2011) and 

Toulmin’s by Inglis et al (2007), in Knipping (2008) and Krummheuer (2003).  

 First of all I wanted to investigate students’ proof behaviour when they encounter 

proof for the first time and needed an analytic tool to help me understand the 

perception of proof and proving behaviour. I did not want to use the traditional 

method of texts assessment or any other assessment model and classify various 

aspects of proving performance. I was seeking a qualitative approach to how students 

think when proving.  Choosing Harel and Sowder’s taxonomy I wanted, in a smaller 

scale than above mentioned studies of Healy and Hoyles, to capture moments in the 

development of mathematical thinking and proof behaviour of students through a 

qualitative lens. 

 Although the relevant literature provides many creative ideas, I excluded using 

DGS from the beginning because it does not correspond whatsoever with the reality 

of the first encounter with proof in Greek classrooms.   

 I also wanted to understand how the students perceive proof in both geometry and 

algebra, so a model like Van Hiele’s, although very important and influential, 

investigates only issues of geometry and, further, it investigates proof behaviour only 

tangentially in the broader context of growth of geometrical knowledge.  

 The theoretical constructs of syntactic and semantic proof productions are very 

interesting points of view from which to analyse proof behaviour. Although I did not 

use them as a general analytical tool, there are cases, as the analysis of the students’ 

texts shows, where they clarify some aspects of my observations. The same is valid 
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for important constructs as the relational and instrumental understanding (Skemp, 

1976), concept image and concept definition (Tall & Vinner, 1981) etc.  

 Toulmin’s argumentation model is the product of an admirable and very seminal 

work. Indeed, Toulmin warns the logicians and consequently the mathematicians not 

to turn a blind eye to the complexity of the real world in favour of mathematical 

eternal truths. However, this work analyses an argument in details and goes deeper 

into the structure of the argument itself. I, on the other hand, wanted instead to go in 

the opposite direction, understanding what ‘family’ the argument belongs to and thus 

classifying it, thus the choice of Harel and Sowder’s taxonomy.  However, I find it 

very attractive to use Toulmin’s model in the future for the analysis of students’ 

arguments. 

 Habermas theory might as well be a choice as analytical tool in the future research 

if my knowledge of it permits me to adapt to it.  

 Balacheff’s taxonomy is a very important taxonomic proposal and has influenced 

many researchers although there are also cases where his taxonomy has been seen 

with a critical eye as in Varghese (2011). Harel and Sowder (2007) refer to him and 

his work and find parallels of their work to his.  However, Harel and Sowder’s 

taxonomy, in comparison to Balacheff’s taxonomy appeared to me closer to my 

experience in the classroom and in students’ texts throughout the years I have been 

teaching mathematics, and to my experience as a school advisor. I refer to this point 

in more detailed fashion below where I explain the choice of the analytical tool. 

 There is a number of reasons that led me to the choice of the Harel end Sowder’s 

taxonomy as an analytical tool of the present research. I can divide these reasons in 

the two main following categories:  
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a) Reasons related to the philosophy underlying the Harel and Sowder’s 

taxonomy as I perceive and interpret this philosophy.  

b) Reasons related to my experience as a teacher which influenced the 

understanding of the Harel and Sowder’s taxonomy as a potential applicable 

tool of proof behaviour analysis.  

 In what concerns the first category of reasons, I explained, in relatively extended 

manner in section 2.2.1, what is to be understood under the terms “philosophy 

underlying the Harel and Sowder’s taxonomy” from my point of view. The whole of 

section 2.2.1 constitutes an argument in favour of the use of the Harel and Sowder’s 

taxonomy in this respect. I only repeat here in brevity that the Harel and Sowder’s 

taxonomy has, among others, the following features: 

 It sets for the students as learning objective the understanding and the 

practicing of mathematical proof as it is considered and seen by the modern 

axiomatic system. 

 Although the final purpose of teaching proof is the learning the practising of 

modern axiomatic proof the term proof is being replaced by the term proof 

scheme in order to embrace proofs that cannot necessarily be characterised as 

a deductive axiomatic proof scheme. Thus proof in this sense is characterised 

by a kind of subjectivity either of the individual or of the community that is 

giving a proof to an assertion.  This other looking at matters regarding proof is 

a result of the study of proof’s historical evolution on one hand as well of the 

observation of students’ attempts to formulate and give proofs.  

 The taxonomy shifts the focus of educators, researchers and teachers on 

students without forgetting or neglecting   the concept of proof as it has been 

modulated by the modern axiomatic system. By doing so offers an important 
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pedagogical service because deeper understanding of how students think is of 

crucial importance in the teaching and learning of proof.    

Summarising, the taxonomy’s theoretical background (Harel & Sowder, 1998, 2007)  

is concrete, productive and philosophically strong.  I find that this mode of thinking 

formulates and expresses proof in mathematics as an educational task. I believe also 

that Harel & Sowder’s taxonomy follows the transformation from the empirical to the 

deductive in a sufficiently trustworthy and reliable manner, shedding light on an 

important evolutionary element in what regards students’ reasoning. 

 The second category of the reasons for my choice is intertwined with my 

experience as a teacher. For example, I mentioned earlier that Harel and Sowder’s 

taxonomy seemed to me closer than the Balacheff’s one. For me the categories of 

proof schemes are in Harel and Sowder work very good understandable and very 

strongly related to what I had as well encountered as students’ proof behaviour. This 

could be the result of the refinement Harel and Sowder have made presenting the 

taxonomy’s proof schemes. On the other hand Balacheff’s proof categories appeared 

to my eyes less relevant to what I had encountered as students’ proof behaviour 

making for me more difficult to apply it. Furthermore in the very early stages of my 

research I experimented by applying the Harel and Sowder taxonomy in a small 

amount of data collected for the needs of a different study (Kanellos & Nardi, 2009). 

From this application I gained the feeling that the taxonomy might be a useful tool. 

At the same time, although I tried, I found it difficult to apply the taxonomy of 

Balacheff to the same amount of data. In comparison to the Harel and Sowder’s 

taxonomy, it was much more difficult to allocate student’s proof to Balacheff’s 

categories. Additionally I found the Harel and Sowder’s taxonomy implemented by 

others as e.g. Housman and Porter (2003). These authors offer a rigorous 
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implementation of the taxonomy in question as an instrument of analysis, where the 

researchers analyse above-average students’ proof schemes. This aspect of this work 

made me ask the question: why should be used only for above-average students? 

Why not implement it with a sample of normal students in a normal school?  

 I conclude this section with the consequence of my choice. Namely, the choice of 

Harel and Sowder’s taxonomy leads unavoidably to the two following research 

questions: 

c) How, if at all, is the Harel and Sowder taxonomy applicable to the Greek 

secondary educational contexts? 

d)    How, if at all, can the Harel and Sowder taxonomy be used to elucidate 

students’ competence in proving as well as how they value proof within the 

Greek secondary educational contexts?  

2.3 Summary 

 In this chapter I have described my investigation of the literature on the various 

currents of research, theoretical analysis and constructs. I have reviewed a number of 

works concerning primary, secondary and a tertiary education, and others that do not 

necessarily refer to an educational level. Although they represent a tiny fraction of the 

vast field of relevant literature, these studies gave me the chance to think about 

various theoretical and practical problems and they helped me to understand my own 

orientation with regard to the epistemology mathematics education. I have also 

explained why I have chosen Harel and Sowder’s taxonomy as an instrument of 

analysis for my research project and presented briefly. In the methodology chapter I 

explain how I implemented this taxonomy as an analytical tool in my research project.  
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CHAPTER 3: METHODOLOGY 

3.0 Introduction  

This is a qualitative study with quantitative elements.  Specifically, the method is a 

mixture of qualitative data analysis with some descriptive statistics. 

 While this is not a grounded theory study, I was deeply impressed by the spirit of 

grounded theory, as in Glaser and Strauss (1967), who offer a proposition on how 

theory can be grounded in data collected in real life conditions. I collected such data 

in a typical Greek school, focusing on mathematics lessons in which proof was being 

taught. I did not produce a theory grounded in the data that I collected and analysed as 

such but I deployed a variation of the Harel and Sowder’s taxonomy that I generated 

through the analysis of my data. The taxonomy itself was produced in the following 

manner: 

The system of proof schemes reported in this paper has undergone 

numerous revisions dictated by the results from our qualitative analysis 

data, cross-checked through interviews with mathematics majors at a 

separate institution. The current version of this system’s structure and 

components seems to have reached a stable stage. By this we mean in 

completing the analysis of about 50% of the data, we discovered no 

additional categories of proof schemes and none of the existent 

categories has been altered (Harel & Sowder, 1998, p. 238; my italics)   

 

The passage above is strongly reminiscent of the emergence of categories and the 

stabilisation thereof after certain levels of analysis as in Glaser and Strauss (1967). 

Dey (1999), to underline the impact of grounded theory, speaks of armchair analysis 

which is based on abstract deductive thought , contrasting it to grounded theory, when 

the latter first appeared. In the same spirit I did not accept the taxonomy in an 

axiomatic deductive manner as armchair analysis does, but I tested the taxonomy 

initially on small amounts of data (Kanellos & Nardi, 2009), was convinced it is a 
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viable and meaningful way to analyse my data and then proceeded to using it across 

the bulk of my data.  

 In order to collect my data I collaborated with my colleagues, especially the Year 9 

mathematics teacher of the school that agreed to participate in my study. 

Collaboration of this kind also has a touch of grounded theory because I followed the 

teaching of proof in the classrooms for an extended period of time. In my effort to 

find a theoretical context for the collaboration I came across the ideas of the lesson 

study, lesson design, learning study and learning awareness in the works of Pang and 

Marton (Marton & Pang, 2006; Pang, 2006; Pang & Marton, 2003), Miyakawa and 

Winslow (2009), Marton and Booth (1997), Marton & Tsui (2004) and Pang (2008).  

Although my research project, in terms of the collaboration with teachers, has been 

influenced by the spirit of these works, I cannot say that my study is a learning study 

project.  

 In what follows in section 3.1 of this chapter I describe how my research was 

conducted. In section 3.2 I briefly outline the Greek educational context in which the 

study was carried out. As the data that I collected substantially exceeds the data that I 

present in this thesis, in section 3.3 I describe the data I collected and what part of it I 

finally analysed for the purpose of completing this thesis. In section 3.4 I describe 

how I analysed these data. Section 3.5 is dedicated to ethical issues. The concluding 

section 3.6 summarises the chapter.   

3.1 How the study was conducted  

 In Greece mechanisms that bring teachers together to work on the planning, 

implementation, evaluation, revision and dissemination of a research lesson do not 

officially exist. In my research project I functioned as a mechanism of this kind being 

a member of the team that planned the lessons taught by my colleague J (anonymised 
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thereafter as J) and simultaneously acted as a school advisor and researcher. The 

teachers’ team consisted almost exclusively of two members, namely my colleague J 

and I me. Occasionally other colleagues at the same school took part in our 

discussions, as I explain later.  

 J and I agreed on experimenting with the teaching of proof which became our 

object of learning. So we aimed to pool our experience in one or a series of research 

lessons to improve teaching and learning of proof and proving. My aim as a 

researcher was to observe and qualitatively describe how students perceive proof and 

proving when they first encounter it using Harel and Sowder’s  taxonomy (1998, 

2007) as a theoretical tool of analysing data collected in this process. Choosing this 

taxonomy added a new element to the research process. Analysing the students’ 

perceptions of proof and proving tests the applicability of the tool of analysis itself 

because Greece’s cultural and secondary educational environment is very different to 

that of tertiary education in the US, where the Harel and Sowder’s taxonomy was 

constructed. To teach proof a teacher has to think about how to teach effectively and 

plan and implement lessons in the classroom that will solve students’ problems with 

the objects of learning in question. Indeed, J and I thought about how to teach 

congruency criteria of triangles and algebraic identities: in fact, we agreed upon a 

method to teach triangles’ congruency criteria. We did so by asking the students to 

construct a triangle (for each criterion) of which the corresponding elements were 

given, say the three sides, and then letting them compare their individual 

constructions by superimposing them. Our objective was to give students the chance 

to understand that each criterion describes not only two but a class of equal triangles, 

making any two necessarily congruent. Another important problem for students we 

identified in our discussions is the confusion between data and the unknown in a 
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mathematics problem. We had both empirically observed that students engaging in the 

proof procedure of a theorem, an exercise etc., sometimes appeal to properties that are 

invited to prove as already valid (Mariotti, 2000). This confusion is in essence an 

inability to distinguish the hypothesis and the conclusion. We decided that the 

students would be taught from the beginning, before proving anything, to write down 

clearly what the data are and what the unknown is. Polya in How to solve it (1990), 

among others, underlines the importance of the distinction data-conclusion. With 

regard to algebraic identities and relations connected to them  our main concern was 

to assist  students to understand the significance of, on the one hand, the sequence in 

which operations can be carried out and on the other,  the ability to distinguish 

between what is a sum and what a product in an algebraic expression.   

 Proof as an object of learning and proving as a capability in the present study are 

both confined to the Year 9 curriculum, i.e. algebraic identities and triangle 

congruency criteria, and that is what the  students encounter here  as proof. Thus 

proof under the previous consideration is an object of learning that has two facets: (i) 

capability to prove in the context of the Year 9 curriculum and (ii) appreciation of 

proof.   

 The second step of the study was the ascertaining of students’ pre-understanding of 

the object of learning. To scrutinise the students’ pre-understanding of proof and 

proving in my study I created a test (hereafter T1 or pre-proof test) in September 2010 

in collaboration with my colleagues J, and N (anonymised thereafter as N). While 

preparing   the test we discussed ideas about appropriate questions that we would set 

for the students starting Year 9. The final form of the test was mainly created by J, N 

and myself and included only geometry questions, which we thought most appropriate 

for testing pre-proof understanding, given what the students had been taught in Years 
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7 and 8. The test was administered at the end of September 2010 on a normal school 

day and helped to create a picture of what the students could achieve in what we saw 

as simple proof problems. T1 was created in the spirit of the pre-understanding of 

students’ perceptions and its results are analysed in Chapter 4. 

 The third step was the designing and implementation of lesson plans. In Greece in 

Year 9 mathematics is taught for four lessons per week. About 20 hours were 

allocated to teaching proof in the 2010-2011 school year and there were four Year 9 

classes in the school, so that J and I collaborated on the planning intensively from 

October 25, 2010 until March 11, 2011.  

 The fourth step was the evaluation of the whole process, e.g. through tests that 

focusing on the object of learning. Parallel to our very frequent discussions on the 

performance of the students we administered an intermediate test (hereafter T2) to the 

students. This test is not analysed in the thesis for reasons that I explain in section 3.3 

(data collection) of this chapter.  

In the fourth step of the study, just before the beginning of the official May-June 

school examinations we administered another test (T3) to students who volunteered 

for it. This test asked for proof in algebra as well as geometry, both of which they had 

been taught between October 2010 to March 2011. J and I created the test after 

discussion on what should be expected of the students at the end of the school year. 

T3 is analysed in Chapter 5 and provides information on the conceptions of proof that 

the students developed during teaching in the classroom. The students’ perceptions 

are described in the terms of the proof scheme taxonomy by Harel and Sowder. 

 The fifth step of the study consisted of reporting and disseminating a number of 

results of the study. Up to now, on various occasions, in the context of my activities 

as a school advisor, small parts of the study have been presented to my colleagues 
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with the aim of making them more aware of the problems that the students first 

encounter with proof. Full realisation of this step is an on-going process. Furthermore 

in the context of the fifth step Elena Nardi, Irene Biza and I   have presented 

preliminary findings of the study at the following conferences: at PME 35 in Ankara 

(Turkey) in July 2011 (poster entitled “Tendencies towards deductive reasoning in 

secondary students’ pre-proof ideas: A Greek case” (2011b)); at the 14th biennial 

EARLI Conference  in Exeter (UK) in August-September 2011 as a research report 

entitled “Greek secondary students’ early encounters with mathematical proof in 

algebra and Euclidean geometry” (2011a); at the fourth ENEDIM conference in 

December 2011 in Ioannina, Greece, as a research report entitled “Tendencies 

towards deductive thinking in students’ pre-proof conceptions’” (2011c); at PME 37 

in Kiel (Germany) in July-August 2012 a short oral presentation entitled “The 

interplay between fluency and appreciation in secondary students’ first encounter with 

proof” (2013).  This thesis is also intended as a means of disseminating the results of 

the study.   

3.2 Context of the study  

 In the first chapter I introduced Greek secondary education in brief. Below I give a 

more detailed picture of the mathematics curriculum, with emphasis on Years 7, 8 and 

9 and introduce the participating teachers, students and school. From here onwards, I 

use the word curriculum to mean mathematics curriculum.  

 Greek education is compulsory for 10 years. A preschool year is followed by six 

years of primary education and three years of lower secondary education, or 

Gymnasium, followed by non-compulsory upper secondary education or Lyceum. 

Lower secondary education includes Year 7 (age 13), 8 and 9. 
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 Upper secondary education includes Years 10 (age 15-16), 11 and 12. The students 

graduate at 17-18 years of age. There are two types of upper secondary education: 

general lyceum and vocational lyceum. This thesis is only concerned with the general 

lyceum’s curriculum.  

 Mathematics is taught for four lessons per week in lower secondary schools in 

Greece. The curriculum is divided into Algebra and Geometry.  

 The curriculum prescribes the following topics
1
 for Year 7 (in brackets: 

recommended number of lessons) 

Arithmetic-Algebra: 

 natural numbers, ordering, rounding (1 hour) 

 addition, subtraction and multiplication (2 hours) 

 powers of numbers (2 hours) 

 Euclidean division, divisibility, divisibility criteria, greatest common divisor, 

lowest common multiple, prime factorisation of a natural number (3 hours) 

 the notion of fraction (2 hours) 

 congruent (equivalent) fractions (1 hour)  

 comparing fractions (1 hour) 

 addition and subtraction of fractions (2 hours) 

 multiplication and division of fractions (4 hours) 

 decimal fractions, decimal numbers, ordering decimal numbers, rounding 

decimal numbers (2 hours) 

 operations with decimal numbers. powers  of decimal numbers (4 hours) 

 scientific notation (standard form) of big numbers (1 hour) 

                                                 
1
 Retrievable in Greek  from http://www.pi-schools.gr/programs/depps/ as well as from the National 

Printing House at http://www.et.gr/ in the form of the Official Journal of the Hellenic Republic under 

the name:  ΦΕΚ 303-B’/13.03.03 (Ministry, 2003). 

http://www.pi-schools.gr/programs/depps/
http://www.et.gr/
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 units of measurement (2 hours) 

 the notion of equation, equations of the form a+x=b, x-a=b, a-x=b, ax=b, 

a:x=b, x:a=b (2 hours) 

 solving problems (3 hours) 

 percentages (3 hours) 

 Cartesian coordinates of points in two dimensions (1 hour) 

 ratio of two numbers, proportion (2 hours)  

 proportional quantities, properties of proportional quantities (2 hour) 

 graphic representation of proportion (1 hour)  

 problems which can be solved using  proportions  (2 hours) 

 inversely proportional quantities (2 hours) 

 positive and negative rational numbers, the rational line, point’s abscissa, the 

absolute value of rational number, opposite rationals, comparing rationals (3 

hours) 

 addition and subtraction of rational numbers (3 hours) 

 multiplication of rational numbers (2 hours) 

 division of rational numbers (2 hours) 

 decimal form of rational numbers (1 hour) 

 powers of rational numbers with integer exponent, scientific notation (standard 

form) of big  and small numbers (4 hours) 

Geometry: 

 plane,  point, line segment, straight line, ray, half plane  (2 hours) 

 measurement of line segments, comparison of line segments, congruency of 

line segments, distance between points, middle point of line segment (2 hours) 

 addition and subtraction of line segments (1 hour) 



[60] 

 

 measurement of angles, comparison of angles, angle bisector, congruency of 

linear shapes (2 hours) 

 types of angles, perpendicular straight lines (2 hours) 

 adjacent angles, sum of angles (2 hours) 

 supplementary angles, complementary angles, vertical angles (2 hours) 

 positions of straight lines on the plane (2 hours) 

 distance from a point to a straight line, distance between  parallel straight lines 

(1 hour) 

 the circle, elements of the circle (1 hour) 

 central angle, relation of central angle to corresponding arc, arc measurement 

(2 hours) 

 relative positions of  straight lines and circles (2 hours) 

 axial symmetry, axis of symmetry (3 hours) 

 perpendicular bisector of line segment (2 hours) 

 central symmetry, centre of symmetry (3 hours) 

 parallel straight lines cut by a transversal straight line (2 hours) 

 elements of triangle, sum of angles of a triangle, types of triangles, properties 

of the isosceles triangles (4 hours) 

 parallelogram, rectangle, rhombus, square, trapezoid, isosceles trapezoid and 

the properties thereof (4 hours) 

 For Year 8: 

Algebra: 

 the notion of variable (1 hour) 

 equations of first degree in one unknown, resolving formulas  (4 hours) 

 solving problems using equations (4 hours) 
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 inequalities of first degree in one unknown (4 hours) 

 Pythagorean theorem (2 hours) 

 square root of a positive number (3 hours) 

 irrational numbers (2 hours) 

 the notion of function (2 hours) 

 Cartesian coordinates, graphic representation of functions (3 hours) 

 the functions y=ax (3 hours) 

 the function y=ax+b (3 hours) 

 the function  y=a/x, the hyperbola (2 hours) 

 fundamental notion of statistics, population, sample (2 hours) 

 graphical representations, pictographs, bar graphs pie charts, time charts (3 

hours) 

 frequency and relative frequency distribution (2 hours) 

 grouping data (3 hours) 

  mean value, median, variance (5 hours).  

Geometry: 

 sines, cosines of acute angles (5 hours) 

 tangent of acute angles (2 hours) 

 the notion of the vector, norm of a vector (1 hour) 

 sum and difference of vectors,  analysis of a  vector in two mutually 

perpendicular components (3 hours) 

 area of plane figure (2 hours) 

 measurement units of plane figures (3 hours) 

 area of various plane figures (6 hours) 

 central and inscribed angles (2 hours) 
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 regular polygons (3 hours)  

 length of a circle’s circumference, length of an arc of a circle (4 hours) 

 area of a circle, area of a circular  sector (4 hours) 

 relative positions of straight lines and planes, straight line perpendicular to 

plane, distance of a point from a plane, distance between parallel planes (2 

hours) 

 prism, cylinder and elements thereof, surface area of prism and cylinder, 

volume measurement units, volume of prism and cylinder (3 hours) 

 pyramids, cone and elements thereof, surface area of pyramid and cone, 

volume of pyramid and cone (4 hours) 

 the sphere and its elements, measurement of the sphere  (4 hours) 

 For Year 9: 

Algebra: 

 real numbers and operations (5 hours) 

 monomial and polynomials, operations with monomials, addition and 

subtraction of polynomials (4 hours) 

 multiplication of polynomials (2 hours) 

  basic algebraic identities (5 hours) 

 factorisation of algebraic expressions, greatest common divisor and lowest 

common multiple of algebraic expressions (8 hours) 

 division of polynomials (3 hours) 

 rational algebraic expressions (5 hours) 

 the equation ax+b=0 (1 hour) 

 second degree equations in one unknown,  problems leading to second degree 

equations in one unknown (7 hours) 
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 rational equations (3 hours) 

 inequalities, inequalities in one unknown (4 hours) 

 the notion of a linear equation, the notion of a linear system and its graphical 

solution, algebraic solution of a linear system (7 hours) 

 the function y=ax
2
  (5 hours) 

 sets  (3 hours) 

 sample space, events  (3 hours) 

 the notion of probability (3 hours) 

Geometry: 

 triangle congruency (5 hours) 

 ratio of line segments (2 hours) 

 Thales’ theorem (2 hours) 

 homotheticity, similarity (6 hours) 

 area of similar plane figures (2 hours) 

 trigonometric numbers of angle φ with 0°≤ φ ≤180°  (2 hours) 

 trigonometric numbers of supplementary angles (2 hours) 

 relations between the trigonometric numbers of an angle (4 hours)  

 law of sines, law of cosines (5 hours) 

 This list of mathematics topics gives general direction on what should be taught. 

Every bullet on the list is a topic for teaching and brief instructions are given as to 

how it should be taught. 

 The curriculum is reflected in the content of the state-approved textbooks. Only 

one textbook for each year, from Year 1 in  elementary education through to Year 12 

of secondary education is approved by the state and they cover the above list of 

curriculum topics and other instructions included in the official state document 
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containing the curriculum (Ministry, 2003).  The students receive the approved 

textbook gratis at the beginning of each school year. 

 Almost every year the Ministry of Education sends additional instructions, new 

topics and how they should be taught and minor or major changes to the amount of 

material to be taught. For 2010-2011, in which the present study was conducted, the 

Ministry of Education sent an instructions’ document titled  114368/Γ2/15-09-2010 

prescribing the following for Year 9 referring to the textbook by Argyrakis, 

Vourganas, Mentis, Tsikopoulou and Chryssovergis (2010): 

Part 1  

Chapter 1: Algebraic expressions (hours 29 in total) 

1.1 Real numbers (repetition of Year 8) 

 A. Real number operations (2 hours) 

 B. Powers of real numbers (1 hours) 

 C. Square root of real numbers (2 hours) 

1.2 Monomials – operations with monomials 

 A. Algebraic expressions—monomials (1 hour) 

 B. Operations with monomials (1 hour) 

1.3 Polynomials – addition and subtraction (2 hours) 

1.4 Multiplication of polynomials (2 hours) 

1.5 Fundamental identities without sum and difference of cubes (6 hours) 

1.6 Factorisation of algebraic expressions without sum and difference of cubes and 

without factorisation of trinomial of the form x
2
+(a+b)x+ab (6 hours) 

1.8 Greatest common divisor, least common multiple of algebraic expressions (1 

hour) 

1.9 Rational algebraic expressions (2 hours) 



[65] 

 

1.10 Operations with rational algebraic expressions  

 A. Multiplication – division of rational expressions (1 hour) 

 B. Addition – subtraction of rational expressions (2 hour) 

Chapter: 2 Equations – Inequalities (13 hours in aggregate) 

2.2 Second degree equations 

 A. Solution of second degree equations by factorisation (2 hours) 

 B. Solution of second degree equations using formula (3 hours) 

2.3 Problems leading to second degree equations (2 hours) 

2.4 Rational equations (3 hours) 

2.5 Inequalities – inequalities in one unknown (3 hours) 

 A. Order of real numbers 

 B. Properties of real number ordering 

 C. First degree inequalities in one unknown 

Chapter 3: Systems of linear equations (7 hours in aggregate) 

3.1 The notion of the linear equation (2 hours) 

3.2 The notion of the linear system and its graphic solution (2 hours) 

3.3 Algebraic solution of a linear system (3 hours) 

Chapter 4: Functions (4 hours) 

4.1 The function y=ax
2
 with a≠0 (2 hours) 

4.2 The function y=ax
2
+bx+c with a≠0 (2 hours) 

Chapter 5: Probabilities (6 hours) 

5.1 Sets (without operations with sets) (2 hours) 

5.2 Sample space – events (without operations with events) (2 hours) 

5.3 The notion of probability (without basic rules of probabilities’ calculus) (2 hours) 

Part 2 
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Chapter 1: Geometry (17 hours in total) 

1.1 Congruency of triangles (5 hours) 

1.2 Ratio of line segments (2 hours) 

1.5 Similarity 

 A. Similar polygons (2 hours) 

 B. Similar triangles (2 hours) 

1.6 Ratio of areas of similar plane figures (2 hours) 

Chapter 2: Trigonometry (12 hours in aggregate) 

2.1 Trigonometric numbers of an angle ω with 0°≤ ω ≤180° (2 hours) 

2.2 Trigonometric numbers of supplementary angles (2 hours) 

2.3 Relations between the trigonometric numbers of an angle (4 hours) 

2.4 Law of sines – law of cosines (4 hours) 

The above stipulations are accompanied by instructions on teaching each item and 

what exercises to solve in the lessons or allocate as homework.  

 I now give concisely the general contour of the upper secondary education 

curriculum 
2
 or otherwise stated the curriculum for the general Lyceum (Years 10, 11 

and 12). In Years 10 and 11 the students are taught a course of Euclidean Geometry in 

the spirit of Euclid’s Elements. In Year 10 the Geometry course includes fundamental 

notions, basic plane figures, triangles, parallel lines, parallelograms and trapezoids 

and plane figures inscribed in circles. In Year 10 Algebra includes an introduction to 

probabilities, real numbers, equations, inequalities, progressions, basic notions of 

functions and the study of linear and quadratic functions. 

 In Years 11 and 12 the school offers three different study options, all three 

including obligatory Geometry and Algebra in Year 11. The course in geometry 

                                                 
2
 I make no particular reference to secondary vocational education where in general are being taught 

the same topics from almost the same books but under different time table.  
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includes proportions, similarity of plane figures, numerical properties of figures, 

areas, circle measurement and lines and planes in space. The algebra course includes 

linear and non-linear systems of equations, properties of functions, trigonometry, 

polynomials and polynomial equations, and exponential and logarithmic functions. 

Two of the options offer the same intensive mathematics course in analytic geometry 

which includes vectors, straight lines on the plane, conic sections and mathematical 

induction.  

 In Year 12 two study options offer a similarly intensive course in mathematics: an 

introduction to complex numbers and Calculus with elements of Analysis. All three 

options include a common obligatory course on Statistics and elementary Analysis.  

 Below I give some more detailed information about my colleagues who 

collaborated on the project and about the school in which the class observations took 

place. I note that in Greece there are two types of schools: state schools and the 

private schools. Both are controlled by the Ministry of Education. This means that 

private schools are obliged to follow the same curriculum as state schools. In state 

schools the teachers are civil servants with open or fixed term contracts.  I myself am 

a civil servant with a permanent job as a teacher, and I am currently also a school 

advisor having been assessed and appointed to this job every four years since 2003 

(2003, 2007 and 2011). 

 The principal of the school, anonymised thereafter as V, is a mathematician. We 

have collaborated on many projects in the past and, among other things, we 

experimented with simultaneous teaching in the same classroom on proof and proving 

in the 2009-2010 school year. We have had many long discussions on educational and 

philosophical aspects of mathematics. Although he contributed a little to the research 
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project, because he was too busy with the school’s administration most of the time, as 

the school principal, he embraced the study whole-heartedly.  

My main collaborator on the research project, teacher J, was appointed as a civil 

servant with a permanent position in 2002. So by the time the study took place she 

had about 8 years of experience. She is a very highly educated mathematician and has 

a doctorate in pure mathematics from a French university. We have collaborated 

many times.  

My colleague N is also a civil servant with a permanent position who, at the time 

of the study had been in service for 16 years as a civil servant. He also has a doctorate 

in pure mathematics from the University of Crete.   

 My colleague A (anonymised thereafter as A), who participated in our discussions 

to a limited extent, is also a civil servant with a permanent position and an MSc 

degree in mathematics from the University of Crete and had been in service as a civil 

servant with a permanent position for about eight years at the time of the study.  

 The school where the study took place was a typical secondary school. Its 

typicality can be seen in the data on the overall performance and the performance in 

mathematics in Years 7, 8 and 9 of the students taking part in the research project (see 

Appendix III). Typicality can also be seen in the occupations of the parents (see 

Appendix II). However, it has a strong reputation as a progressive school – while non-

selective and inclusive of all student abilities – it attracts highly qualified teachers 

(see also above) and parental expectations are high.  

3.3 Data collection 

 The data I collected include the following: 

 Audio-recorded discussions with my colleagues, mainly with J about teaching 

of the four Year 9 classes. 
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 22 hours audio-recordings of teaching from each of the four Year 9 classes. In 

total 88 hours audio-recordings. 

 Handwritten notes kept during the audio-recording in which I described what 

was going on in the classroom. Thus every audio-recorded hour is 

accompanied by handwritten notes. 

 Students’ written answers to the pre proof (T1) test. 

 Students’ written answers to the intermediate (T2) test.  

 Students’ written answers to the test at the end of the school year just before 

the official school examinations (T3). 

 The students’ answers to the official examination covering proof and other 

subjects at the end of the school year (T4). 

 I initially also planned to observe the teaching of proof in Year 10 but abandoned 

this at the beginning of the school year 2010-2011 because it proved impossible to 

combine observations of Year 9 with that Year 10 due to timetables clashes. 

 In this thesis I present only the analyses of the Year 9 T1 and T3 tests. These 

analyses offer important information on students’ perceptions of proof before and 

after their first encounter with it. There are two main reasons why I chose not to 

extend the present thesis beyond the analysis of tests T1 and T3. 

 The first reason is of practical character. The presentation of the analysis of test 

T2, let alone to include the analysis of test T4, would have made the thesis 

disproportionally lengthy which was not desirable. 

 The second reason is of methodological character. The students were not under 

pressure to obtain a good mark in these two tests. T1 was administered on a normal 

school day but the students were not obliged to answer its questions; they had the 

right to leave the classroom giving no answer at all, without any consequences on 
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what mark they would obtain.  Participation    in T3 was also completely voluntarily – 

additionally because it was administered on a non-school day a few days before the 

beginning of the official school examinations. Students could choose not to come to 

school that day also with no consequences. In this sense T1 and T3 (formative 

assessment) are different to T2 and T4 (summative assessment). Further the voluntary 

character is lost in what regards the tests T2 and T4 because students were competing 

for better grades writing the tests in question and thus were under psychological 

pressure. 

 Below I proceed to present T1 in section 3.4.1 and T3 in section 3.4.2. 

3.3.1 T1: The pre-proof test3 

 The purpose of T1 was to collect data about the students’ perceptions of proof 

before teaching the relevant material prescribed in the Year 9 curriculum. This is why 

I call these perceptions pre-proof ideas.  

 T1 was created as a result of two meetings, between J, N and me on two different 

days, at the end of September 2010. However, I am exclusively responsible for the 

final formulation of the questions and the printed form administered to the students.  

The discussion during the meetings in question lasted about three hours and was 

audio-recorded. The object of the discussion was to determine appropriate questions 

answers to which would provide information about the students’ pre-proof ideas and 

their emergent ability to prove. The translation of these questions in English follows. 

For every question a figure accompanied the Greek text. The original T1 in Greek can 

be found in Appendix I. 

                                                 
3
 The tests questions are named as follows: first the name of the test then follows the number of the 

question followed by a or b depending on the part of the question being referred to.  Thus T13a means 

test T1, question 3, part a.  
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 Question T11: In a triangle ABΓ angle  ̂  is 85   and angle  ̂ is 75 . Prove that 

angle  ̂ is 20° (see Figure 3.4.1.1).  

Figure 3.4.1. 1     Question T11 

An adequate answer would be based on the theorem that  ̂   ̂   ̂  180° (1).  

Substituting in (1)  ̂  85° and  ̂  75° and solving it for  ̂ the result  ̂  20° can be 

obtained. As can be verified in the curriculum of Year 7 and, as I have cited in section 

3.3, the sum of the angles of a triangle is taught in Year 7. In the Year 7 textbook 

(Vandoulakis, Kalligas, Markakis, & Ferentinos, 2010, p. 221) a mathematical 

activity is proposed on this question. The students are asked to measure the angles of 

various triangles and then to find their sum. After this empirical approach they are 

asked to develop logical arguments to justify that the sum of the angles stays the same 

independently of the shape of the triangle. To this end it is proposed that they consider 

a parallel line from a vertex of a triangle to the opposite side. Then they are invited to 

note which angles the angles formed by the parallel and the sides of the triangle are 

equal to. Finally the students are prompted to see which angles are adjacent to the 

vertex of the triangle from which the parallel was drawn.  The conclusion is that each 

one of the three adjacent angles is equal to the respective angles of the triangle and 

their geometric sum is an angle of 180°. Additionally a number of activities and 

exercises are given that can be solved only by using the sum of the angles of a triangle 
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(Vandoulakis et al., 2010, pp. 221-224).  In Year 8 the students are taught the 

inscribed angles in a circle. The sum of the angles of the triangle is used again in 

various exercises to calculate angles (Vlamos, Droutsas, Presvis, & Rekoumis, 2010, 

pp. 176-179). Consequently students can be considered sufficiently familiar with the 

sum of the angles of a triangle.   

 Question T12: In a triangle     the angle    ̂ is 78° and the angle    ̂ is 66°. 

The segments AΙ and ΒΙ are bisectors of the angles    ̂ and     ̂ respectively. 

Prove that the angle     ̂  is 108° (see Figure 3.4.1 2). 

Figure 3.4.1. 2      Question T12 

An adequate answer would be based on the fact that AIB is a triangle with angles 

    ̂ and    ̂  which are 39°  and  33° due to the fact that AI and BI are on the bisectors 

of the angles    ̂ and     ̂ respectively. The rest of the proof should be a calculation 

of the angle    ̂ as in Question T1 referring to the triangle AIB. Question T12 

combines the property of the bisector of an angle and the sum of the angles in a 

triangle in a more complicated context than Question T1, allowing testing proof 

ability on a more difficult scale. The bisector of an angle is defined in the Year 7 

textbook followed by various activities and exercises (Vandoulakis et al., 2010, pp. 
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167-168).  The same textbook also gives the definition of the bisector of an angle 

belonging to a triangle (ibid., p. 219). 

 Question T13: The point M on the line segment AB is at the midpoint of AB 

(MA=MB). The line (ε) is the perpendicular bisector of the line segment AB. Let Σ be 

a point on the perpendicular bisector (ε). Let us draw the line segments ΣA and ΣB. 

Prove that the triangle ΣAB is an isosceles triangle (see Figure 3.4.1.3).  

Figure 3.4.1. 3     T13 

An adequate answer to this question can be based on the property of the perpendicular 

bisector. In other words one could assert that ΣA=ΣB because of the property of every 

point on the perpendicular bisector. Thus the triangle ΣAB has two equal sides and is 

consequently an isosceles triangle.  The definition and property of all points of the 

perpendicular bisector of a line segment and activities and exercises relevant to this 

material can be found in the Year 7  text book of (Vandoulakis et al., 2010, pp. 206-

209).  In Year 8 the property of the perpendicular bisector appears indirectly in 

various problems involving the isosceles and equilateral triangles and the rhombus. 
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This question explores how the students treat a problem concerning the implication of 

a property known to be valid.  

 Question T14: In a triangle ABΓ the side ΑΓ is divided into four equal parts by 

means of the points Δ, Ε, Ζ (that is ΒΔ=ΔΕ=ΕΖ=ΖΓ). Prove: (a) ΑΕ=ΕΓ (b) The line 

segment ΒΕ is the median of the triangle from the vertex Β, which corresponds to the 

side ΒΓ (see Figure 3.4.1.4). 

Figure 3.4.1. 4      Question T14 

An adequate answer to part (a) of T14 can be based on the fact that since 

ΒΔ=ΔΕ=ΕΖ=ΖΓ=x then AE=2x and ΕΓ=2x. Consequently AE=ΕΓ. An adequate 

answer to part (b) could comprise the description of the line segment BE. The line 

segment connects the vertex B with the midpoint E of the side AΓ. Thus BE is by 

definition the median of the triangle ABC from the vertex B corresponding to the side 

BC. The Year 7 textbook gives the definitions of the midpoint (Vandoulakis et al., 

2010, p. 160) and the median (ibid., p. 219). This question investigates whether the 

students knew what a midpoint and what a median are and whether they could 

manipulate a situation where the given data can be used to reach conclusions 
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emerging out of it on the basis of definitions of such objects as the midpoint of a line 

segment and the median of a triangle.  

 Question T15: In the figure you see the triangles ΑΒΓ and ΔΕΖ. (a) In the triangle 

ΑΒΓ the lengths of the sides are ΑΓ=5, ΓΒ=3 and ΒΑ=4. Prove that triangle ΑΒΓ is a 

right-angled triangle. (b) In the triangle ΔΕΖ the lengths of the sides are ΔΖ=6, ΖΕ=4 

and ΕΔ=3.  Prove that the triangle ΔΕΖ is not a right-angled triangle (see Figure 

3.4.1.5). 

Figure 3.4.1. 5      Question T15 

An adequate answer to part (a) can draw on the converse Pythagorean Theorem. In 

other words to test whether   , which is the square of the length of the biggest side 

ΑΓ, is equal to       which is the sum of the squares of the lengths of the two 

remaining sides. After the necessary calculations it turns out that          . Thus, 

by virtue of the converse of the Pythagorean Theorem, triangle ΑΒΓ is a right-angled 

triangle with side ΑΓ=5 as the hypotenuse, or in other words with    ̂ equal to a 

right angle. An adequate answer to part (b) would again compare   , that is the square 
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of the length of the biggest side ΔΖ,  to       which is the sum of the squares of the 

lengths of the two remaining sides. Upon verifying that            one could 

appeal to the Pythagorean Theorem and obtain a contradiction concluding that since  

         is valid the triangle cannot be right-angled one because, if it is, then 

necessarily          would be true. Thus the triangle ΑΒΓ is not a right-angled 

triangle. In the Year 8 text book we find the formulation of the Pythagorean Theorem, 

its converse and a number of activities and exercises (Vlamos et al., 2010, pp. 127-

131). The Question T15 was intended to gather information on whether the students 

could handle this problem even though they had only latently been introduced to 

proof in Year 8.   

 Question T16: In the figure 6 an isosceles triangle ΑΒΓ has angles     ̂and    ̂ 

as equal and both 44°. Calculate the measure of the angle    ̂  (see Figure 3.4.1.6). 

Figure 3.4.1. 6     Question T15 

An adequate answer would resemble the one given to Question T11. Thus all is 

needed is to subtract from 180° the sum of the measures of given angles, 88°, from 

180°  to find that    ̂  is  92°. At first sight Question T15 is identical to Question 

T11 in this respect. But there are two underlying purposes in it: (a) the first tested 
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whether the slight change of context in comparison to Question T11 would provoke 

different answers, and to what extent. The words ‘proof’ or ‘prove’ are not used and 

the triangle is an isosceles triangle. (b) The second purpose sought to detect whether 

the students are misled by the figure and perceive the triangle in the figure as a right-

angled triangle
4
.  

 The students had 45 minutes to complete the test and if a student asked for more 

time s/he could be granted an additional 15 minutes time.  No student did.    

3.3.2 The test T3 

 This test consists of two sections: a first section containing three algebra questions 

and a second section containing three geometry questions where the proof has to do 

with Geometry. J and I created the test: I proposed about fourteen questions, on the 

base of what had been taught in the previous months, and we discussed which  of 

them we would use. Our discussion lasted about 45 minutes and was audio-recorded. 

Our intention in choosing the questions was to give the students questions that tended 

to be slightly demanding and avoid questions that were too easy. Questions T34 and 

T35 in the second section were accompanied by figures. Only Question T34 required 

the students to draw their own figure. The original T3 in Greek can be found in 

Appendix I. The description of the questions follows.  

 Question T31: For the real numbers a and b the following relation is valid: 

        . Prove that ( √   √ )
 
 ( √   √ )

 
    . 

An adequate answer could use of identities (   )            . After the 

expansions and all necessary calculations the left side of the equality takes the form 

         (     )          . Question T31 intended to check to what 

                                                 
4
 The idea comes from Harel and Sowder (1998, p. 257) in whose example a student is carried away by 

the figure drawn and perceives a parallelogram as a square.   
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degree the students learned, during the school year, how to use elementary algebraic 

identities and symbols, such as that of the square root, to obtain a certain result. The 

underlying parallel purpose was to check whether Empirical Inductive (E.I.) proof 

schemes were present. Indeed, some students seeing the relation          think 

that the numbers a, b involved have the values 3 and 4.  Such a perception is probably 

due to the fact that the triangle with sides 3, 4, 5 is a right-angled triangle and 

additionally the relation           is strongly reminiscent of the Pythagorean 

Theorem. According to Harel and Sowder the substitution of certain values for the 

variables, under whatever perceptions, reveals the presence of an E.I. proof scheme. 

 Question T32: If the difference of the squares of two unequal natural numbers κ 

and λ  (κ>λ) is equal to the sum of the two natural numbers (a) prove that the 

difference of the two natural numbers is equal to 1 and (b) prove that 5556
2
-

5555
2
=11111.   

 An adequate answer to (a) would begin setting κ
2
-λ

2
=κ+λ which implies                                   

(κ-λ)(κ+λ)=κ+λ  leading to the conclusion κ-λ=1 by observing that κ+λ>0 and either 

by dividing both members by κ+λ or by transferring all the quantities to the right 

member and factorising to obtain (κ+λ)[(κ-λ)-1]=0. Part (b) can be answered by 

implementing the identity A
2 B

2
=(A B)(A+B) setting A=5556 and B=5555. The 

question was intended to check whether the identity A
2
—B

2 
=(A—B)(A+B) could be 

used by the students in proof processes. On the other hand regarding in part (a) 

students might be tempted to substitute for κ, λ  numerical values. Thus the question 

could detect the presence of E.I. proof schemes as well. Finally, if  κ
2
-λ

2
=κ+λ then κ-

λ=1. The converse would be: if  κ-λ=1 then κ
2
-λ

2
=κ+λ. In part (b) 5556-5555=1. The 

underlying purpose was to test whether the students understood this difference. If in 

solving part (b) invoked part (a) that could imply they did not. 
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 Question T33: Two of your peers are wondering how to prove:                                                     

(α—β)(α+β)=α
2
—β

2
. 

 
One of them proposes

 
to give the variables numerical values 

(e.g. α=2 and β=1) and to calculate the left and the right parts and see if the 

calculated values are equal. They experiment with some values of α and β and verify 

that the numerical results on the right and on the left are equal. After that they think 

they have proved the relation. (a) Overhearing the conversation, do you agree with 

them? If not, what would you suggest to them? (b) Do you think the teacher would 

agree with them? 

An adequate answer to part (a) would be to propose application of the distributive law 

on the left member of the given relation to arrive, after the necessary simplifications 

at the right member.  Part (a) is an indirect question about what constitutes proof and 

what the verification of an algebraic relation. If verification is taken for proof, one 

could assert to have detected E.I. proof scheme. Part (b) of the question searches for 

EC.A.proof schemes. Whether this proof scheme is present depends on the type of 

answer
5
.  

 Before describing Questions T34, T35, and T36 I briefly cite the congruency 

criteria of triangles and right-angled triangles as they appear in Year 9 the textbook 

(Argyrakis et al., 2010).    

 The first congruency criterion the textbook gives the following: if two triangles 

have two sides equal one by one and equal the angles included by the equal sides then 

the triangles are congruent (ibid., p. 188).  In English this triangle congruency 

criterion is called Side-Angle-Side (SAS). 

                                                 
5
 Question Τ33ab is in the spirit of Healy and Hoyles (2000), who gave proofs to students and asked 

them to assess what proof would be judged the best by the teacher and what proof the students 

themselves would have given. 
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 The second criterion is as follows: if two triangles have a side equal and the 

adjacent angles to the side equal one by one they are congruent  (ibid., p. 189). This is 

called Angle-Side-Angle (ASA). 

 The third criterion is: if two triangles have their sides equal one by one they are 

congruent (ibid., p. 189). This is called Side-Side-Side (SSS). 

 The textbook notes specifically for the right-angled triangles: 

 Two right-angled triangles are congruent when they have 

 two corresponding sides equal one by one 

 one corresponding side and one corresponding acute angle equal (ibid., p. 

190). 

When the term “corresponding” refers to sides, it means that either both are 

perpendicular or both hypotenuse. According to the textbook the term can be applied 

to acute angles as well. 

 Question T34: A non-rectangular parallelogram ABΓΔ is given. From the vertex A 

we draw a perpendicular line (α) to ΔΓ. Line (a) intersects line ΔΓ at the point E.  

From vertex Γ we draw line (β) perpendicular to the line AB. Line (b) intersects the 

side AB at the point Z.  

a. Draw the figure.  

b. Prove that triangle AΔE is equal to triangle ΓBZ (see Figure 3.4.2.1). 

Figure 3.4.2.1 is a possible adequate construction according to the instructions in the 

text. As for T34b, referring to Figure 3.4.2.1 an adequate answer would be the 

following: compare triangles ΑΕΔ and ΓΒΖ. These are both right-angled triangles 

having equal their hypotenuses ΔΑ=ΒΓ as opposite sides of the parallelogram ΑΒΓΔ.   
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Figure 3.4.2. 1         Question 34ab (a possible drawing) 

Additionally the two triangles have AE=ΓZ both distances between the parallel lines 

ΑΒ and ΓΔ. Thus they are equal according to the congruency criterion for right-

angled triangles referring to two equal corresponding sides. Part a. of the question was 

meant to collect information on the students’ efficiency at drawing a figure to the 

given instructions. If they managed to do this, then part b of the question can be 

proved using the corresponding congruency criterion. By attempting this proof the 

students would provide information on their proof schemes. 

 Question T35: In the figure (see Figure 3.4.2.2) the following are valid: Line ζ 

passing through points A and B is the perpendicular bisector of the line segment ΓΔ.  

Prove that the triangles ΑΒΓ and ΑΒΔ are congruent.  

An adequate answer can be based on any of the three congruency criteria for triangles.  

For example the criterion SSS is valid. Indeed, since ζ is the perpendicular bisector of 

ΓΔ it follows immediately that ΒΓ=ΒΔ and ΑΓ=ΑΔ. On the other hand AB is a 

common side of both triangles. Thus the triangles in question are in fact congruent. 

Let it be noted that all three criteria of triangle congruency could have been invoked 

each with its own justification.  In this question the triangles are   deliberately  
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Figure 3.4.2. 2      Question T35 

positioned to check whether their unusual position would make proving difficult, but, 

the main purpose was to observe which proof schemes would be present in the student 

responses. 

 QuestionT36: In figure 3 (see Figure 3.4.2.3) the triangles ΑΓΒ and EBΔ have 

AΓ=EB, AB=EΔ and ΓB=BΔ. Points A, B and Δ lie on the same line a. (a) Prove that 

the triangles AΓB and EBΔ are equal. (b) Prove that the lines BΓ and EΔ are parallel. 

An adequate answer could be based on the fact that triangles ΑΓΒ and EBΔ have 

three pairs of equal sides and thus according to the SSS criterion they are necessarily 

congruent. From the congruency of the triangles it follows that the angles    ̂ and 

   ̂ are equal. Consequently the lines ΒΓ and ΔE are parallel since they form 

corresponding equal angles with line ABΔ. The first part of the question, on the 

congruency of the triangles ΑΓΒ and EBΔ is the simplest part: here the students have 

to make use of the rest respective equal elements that are implied by the triangles’ 

congruency, namely they must choose the appropriate corresponding angles to prove  
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Figure 3.4.2. 3     Question T36 

the parallelism of lines BΓ and EΔ. The students’ efforts especially to prove the 

second part of the question which is relatively difficult, should reveal interesting 

elements of their proof schemes. 

 Characterisation of selected answers to questions of  T1 and T3 according to Harel 

and Sowder’s taxonomy follows in the next section. 

3.4 Data analysis  

 In this section I describe the analysis of the students’ scripts using Harel and 

Sowder’s taxonomy as presented in Chapter 2. 

 Harel and Sowder (2007) divide students’ proof schemes into three classes: 

external conviction proof scheme, empirical proof scheme, and the deductive proof 

scheme. Each class is divided in its turn into sub-schemes or subcategories
6
. As noted 

in Chapter 2, I prefer to simply use the term “proof scheme”. 

The external conviction proof scheme class includes: 

 the authoritarian proof scheme,  

                                                 
6
 In Harel and Sowder (2007)  is made use of both terms.  
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 the ritual proof scheme,  

 the non-referential symbolic proof scheme. 

The empirical proof scheme class includes: 

 the empirical inductive proof scheme, 

 the empirical perceptual proof scheme. 

The deductive proof scheme class includes: 

 the deductive transformational proof scheme, 

 the deductive axiomatic proof scheme. 

 For individual and simultaneously a general picture of the students’ proof schemes, 

as they emerge through the characterisation of their scripts, an EXCEL spreadsheet 

was created for each test. Each row on the spreadsheet corresponds to the participants 

and columns corresponding to each question or part of a question. Thus every cell of 

the spreadsheet contains the proof scheme used for the particular question or part of a 

question. Abbreviation for each class and its subcategories were presented in section 

2.3. I repeat them here in the following table 3.5.1.Finally an extra abbreviation has 

been added, not belonging to the taxonomy when there is no response to a question or 

part of a question: NS stands for No Solution. 

  I commented in section 2.3 that evidence of the D.A. proof scheme could not be 

expected to appear in the data.  Thus, of the two schemes in the D class, I used 

exclusively use the characterisation D.T. 

 Harel and Sowder (1998) call the deductive proof scheme analytical. Additionally 

the analytical transformational, or in Harel and Sowders (2007) terms, the deductive 

transformational subclass, is further divided into internalised, interiorised and 

restrictive. The analytical transformational restrictive scheme is divided into 

contextual, generic and constructive and the contextual includes the spatial. None of 
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Proof scheme class Abbreviation 

Proof schemes in 

the class 

Abbreviation 

External 

Conviction                 

proof scheme 

 

EC. 

Authoritarian EC.A. 

Ritual EC.R. 

Non Referential 

Symbolic 

EC.NRS. 

Empirical 

proof scheme 

E. 

Inductive E.I. 

Perceptual E.P. 

Deductive 

proof scheme 

D. 

Transformational D.T. 

Axiomatic D.A. 

Table 3.5. 1     Proof schemes abbreviations  

these subdivisions appear in my analysis. My main preoccupation is whether the 

major proof schemes that appear in the Table 3.5.1 are present in the student scripts. 

Harel and Sowder’s  (2007) deductive axiomatic scheme in Harel and Sowder  (1998) 

is called analytical  axiomatic and  is subdivided into intuitive axiomatic, 

axiomatising and structural. From the moment that I decided to use only the deductive 

transformational characterisation, I did not include these distinctions in my analysis 

either. 

 Early on in the characterisation of the students’ scripts evidence of two proof 

schemes started emerging. I decided that both proof schemes would be attached to the 

script and that a combination of the two abbreviations would be entered in the cell. 

Examples of this follow later in this section.  

 In what follows I introduce examples of the analysis emerging from the 

spreadsheets. I symbolise each participant with a capital P and their number in 

brackets. Thus the symbol P[56] means participant number 56. 

 I give examples of D.T., E.P., E.I., EC.NRS., EC.A., EC.R. proof schemes and 

further examples of mixed schemes. 
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 P[01] gives the following answer to T13 (see Figure 3.5.1):  

The perpendicular bisector of a line segment AB is the line that  all its points have 

equal distance from the two endpoints of AB, that is the points A, B. Since the point Σ 

is a point on the perpendicular bisector, AΣ and BΣ are equal.  

Figure 3.5. 1       Participants’ [01] response to Question T13 

I characterised this proof as D.T. because P[01] invokes the fundamental property of 

the perpendicular bisector to justify his assertion that AΣ and BΣ are equal as in the 

adequate answer I have given for this question. I note that there is a slight deficiency 

in the conclusion of the participant’s argumentation: namely one could observe that 

the explicit conclusion “the triangle is thus isosceles” after the sentence “AΣ and BΣ 

are equal”, is missing. Taking into account that the students had not been taught proof 

the lack of rigor can be considered negligible.  

Let us now see the same participant’s answer to the T36a (see Figure 3.5.2).  

Hypothesis AΓ=EB, AB=EΔ, ΓB=BΔ. Conclusion (i) triangle AΓB=triangle EBΔ, (ii) 

BΓ// EΔ. We compare the triangles AΓB and EBΔ and observe that AΓ=EB from the 

hypothesis, AB=EΒ from the hypothesis and ΓB=BΔ from the hypothesis. Thus from 



[87] 

 

SSS it is valid that triangle AΓB=triangle EBΔ. Thus since the triangles are equal 

they have the rest of their respective elements equal, thus  ̂= ̂,  ̂=  ̂,   ̂   ̂ (i) end.  

Figure 3.5. 2     Participant’s [01] response to Question T36a 

I characterise this proof as D.T. because P[01]  writes down orderly why the 

congruency criterion SSS is valid, justifying  correctly the elements that he asserts are 

equal by referring to the data given. His answer is thus in accordance with the 

adequate answer I gave in section 3.4.2. It is noteworthy that after having proved the 

congruency, P[01] writes down the rest equal elements, which in this case are all 

angles, without having been asked to. The odd sentence “(i) end” means “this is the 

end of part (i) of the question.  

P[05] gives T13 the following answer (see Figure 3.5.3):  

 It is isosceles because the perpendicular bisector cuts it in the middle and two 

congruent right triangles are shaped.  
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Figure 3.5. 3     Participant’s [05] response to Question T13 

I characterise this proof as E.P. because P[05] argument is not supported by a logical 

justification as in this case the fundamental property of the perpendicular bisector but 

by judging  by eye the  figure. Indeed  P[05] sees the perpendicular bisector ‘cutting’ 

the figure in congruent triangles. Probably  P[05] wants to say that if the triangles are 

congruent then the ‘whole’ triangle is isosceles perceiving thus  visually the property 

to be proved. I ignore that there is no mention which triangles exactly are congruent 

and concentrate to the fact that judging properties of plane figures by eye and without 

any logical support is evidence of E.I. proof scheme. 

 Let us now take a look how the same participant handled Question T35. He writes 

(see Figures 3.5.4 and 3.5.5):  

AB common side, A1=A2, B1=B2. 
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Figure 3.5. 4     Participant’s [05] response to T35 

Figure 3.5. 5      Question T35 

I characterise this proof as E.P because P[05] cites elements that are supposed to be 

equal without any supportive argument. This means that he sees the equality of these 

elements by eye in the figure. He has not noted any information on the ready-made 

figure (Figure 3.5.5) included on the test paper he was given.  Consequently it is not 

clear what he means by B1=B2 and A1=A2. Probably he means the angles of the 

triangles ΑΒΓ, ΑΒΔ having vertices at A and B. In this case he means, the angles 

   ̂ and    ̂ of the triangle ΑΒΓ and    ̂  and    ̂ of the triangle ΑΒΔ without 

explicit formulation which is when he uses the symbolism B1=B2 and A1=A2.  It is 

true that AB is the only element which is correctly described as common side. P[05] 

apparently tries to support the validity of the ASA criterion. He fails finally because 

the equality of the pairs of angles he refers to is not justified logically but by mere 
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assertion which seems to be based on judging by eye thus providing evidence of E.P. 

proof scheme. 

Participant P[87] gives to the Question T13 the following answer (see Figure 

3.5.6):  

Since ΣA is 5cm and the other ΣB is 5cm and AM is 4,5cm and MB is 4,5cm then 

the triangle is equal because its sides are equal thus the triangle is an isosceles 

triangle.  

Figure 3.5. 6     Participant’s [87] response to Question T13 

I characterise this proof as E.I. because P[87] feels the need to assign numeric values 

to the lengths  of the line segments  ΣΑ, ΣΒ in order to prove that the triangle ΣΑΒ is 

isosceles. P[87] assigned as well numeric values to the lengths of  MA and MB 

probably wanting to support the idea that indeed M  is the midpoint of AB. Assigning 

specific numeric values to lengths of various geometrical magnitudes or substituting 

numerical values for variables and using these assignments as an argument to prove 

assertions concerning properties of figures or of quantities is evidence of E.I. proof 

scheme. Admittedly there is a slight nuance of an EC.NRS. proof scheme at the point 
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where the student asserts that “the  triangle is equal” since it has to do with 

inappropriate use of terminology. By this expression P[87] wants to state that the 

triangle is isosceles. The EC.NRS.  proof scheme  element has been ignored  in this 

case as  not especially important or decisive.  

 P[40] answers Question T13 as follows (see Figure 3.5.7):  

The triangle we find and knew is an isosceles and we can say that this triangle has 

equal angles, equal sides, equal perpendicular lines and all the rest are equal with 

each other and so we see one and the same figure which is the correct. Thus the figure 

we see is an isosceles.  

Figure 3.5. 7      Participant’s [40] response to Question T13 

I characterise this proof as EC.NRS. and explain in what follows why. Harel and 

Sowder’s (1998, 2007) examples of the EC.NRS. proof scheme are examples of the 

misuse of algebraic symbols without any logical coherence. P[40]’s answer is not of 

algebraic character but  geometric and symbols are not involved in the text of the 

question or are they  necessary to articulate an answer: for examples  P[40] begins by 

asserting that the triangle is an isosceles triangle which means that it has among other 
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things equal  “perpendicular lines”. But no element of any triangle can be said to be 

“perpendicular lines”. Thus the notion of triangle’s element has been misused.  P[40] 

continues to assert  “…all the rest are equal we see one and the same figure which is 

the correct” which is a sentence without logical coherence and thus lacks meaning. 

Such inappropriate use of notions and lack of logical meaning are evidence of an 

EC.NRS. proof scheme. 

The same participant gives Question T31 the following answer (see Figure 3.5.8): 

Figure 3.5. 8       Participant’s [40]  response to Question T31 

 
2225   =(sco

7
) 

22 13   

 thus the equation we have been given  is  valid 

( √   √ )
 
 ( √   √ )

 
  25 

thus     √   √       √   √   and  

is equal with 25-125=100 consequently our  equation  

is impossible regarding the above solution 

                                                 
7
 sco stands for ‘something crossed out’ henceforward 
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I characterise this proof as EC.NRS. proof scheme as the following analysis explains. 

P[40] writes 
22222 135   (1) . It seems probable that he has substituted the 

variables as 3 and 1 or vice versa. After that he comments that “…the 

equation we have been given is valid”.  P[40] asserts that  the given “equation” is 

valid, but the assertion  does not comply with the result 1025   yielded after 

calculation of the number powers on the left and right member of relation (1). In 

terms of proof scheme characterisation, this mistake is a first sign of  EC.NRS. proof 

scheme. In the next step the participant manipulates the identity to be proved since 

after writing     1253223
22

   (2) he adds the word “thus” and 

writes:  321252325    (3). There is no expansion of  both 

parentheses, each of which should had been raised to the second power. The number 

25 appears on the left member of (3), the plus sign before 2  in the first 

parenthesis is changed to minus and the content of the second parenthesis on the left 

of (2) is transferred to the right member in (3) whereby the signs are changed. As 

none of these manipulations are in accordance to operation laws of real numbers they 

can be taken as a sign also of EC.NRS. proof scheme. Concluding his manipulations 

on (3) P[40] writes: 25125=100  (4). Again there is no law of the real numbers 

allowing such a conclusion as that presented by (4) as consequence of (3). The 

relation (4) itself is not correct since it states that: 100=100. P[40] seems to 

understand this because he writes “…consequently our equation is impossible 

regarding the above solution”. Here is what Harel and Sowder (1998, p. 251) say 

about such cases: “Symbolic reasoning is a habit of mind students acquire during their 

school years-from elementary school to secondary and post secondary school-a habit 

that is very persistent and extremely difficult to relinquish”. P[40] seems to fit this 
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description. His symbolic reasoning is characterised by mistakes which emerge from 

inappropriate use of symbols and rules about number operations. Thus these 

considerations explain why P[40]’s answer provides evidence of the EC.NRS. proof 

scheme. 

 P[09] gives the following answer to T33b (see Figure 3.5.9): 

Figure 3.5. 9      Participant’s [09] response to Question T33 

              No the teacher would not agree he would say to them the  

              above and additionally to even open their books 

 I characterise this answer as an EC.A.  proof scheme. Let us follow P[09]’s 

argument.  P[09] thinks that the teacher would not agree with her peers. She depicts a 

teacher who, instead of explaining the procedure for a type of  proof,  would only 

confirm that the identity is written like this because it is written like this and its 

validity is due to “the law of identities” (the word “above” refers to the answer to part 

(a) of the question where P[09] speaks of a “law of identities”). Furthermore, 

according to P[09], the teacher would urge the peers to open their books. Thus P[09] 

imagines that an authority, the teacher, would suggest to the peers to attend another 

authority, the book. Appealing to the opinion of an authority and expecting the 

confirmation of truth by authorities of mathematical propositions without seeking any 

logical justification is evidence of EC.A. proof scheme. 
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P [39] writes (see Figure 3.5.10): 

Figure 3.5. 10     Participant’s [39] response to Question T36a 

    Hypoth                   Conclusion                   Proof 

   ΑΓ=ΕΒ                  α) ΑΓΒ=ΕΒΔ                We compare the triangles ΑΓΒ and 

   ΑΒ=ΕΔ                  β) ΒΓ//ΕΔ                      ΕΒΔ 

   ΓΔ=ΒΑ 

I characterise this answer as an EC.R. proof scheme. Participant [39] gives the 

hypothesis, the conclusion, and the point from which to start to carry out a proof. 

Nevertheless, he offers no proof as he appeals to none of the  congruency criteria. 

Thus the principal element of his answer is the ritual character of writing the data 

without justification of any kind. In this respect the answer of P[39] provides evidence 

of EC.R. proof scheme.  

 Below are some examples of combination of proof schemes. I start with a case 

where I observed a mixture of D.T. and EC.NRS. proof schemes.  

 Participant P[21] answering T11 writes (see Figure 3.5.11): 

                                                   In the triangle ΓΒΑ ˆ  the angle 

 Γ̂ =20°, because the sum of the triangle from what  

we know is 180°. Thus Â=85°+ B̂ =75°=160  

                                                             Then in order  

                                                             to have in the triangle  

                                                            sum 180°  

                                                           the other side that is  
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                                                           Γ must be 20°.  

                                                               Thus  ΓBA ˆ+ˆ+ˆ  they will  

                                                                              do 180° 

 

Figure 3.5. 11     Participant’s [21] response to Question T11 

I characterise this proof as a mixture of D.T. and EC.NRS. proof schemes. It is 

obvious that P[21] is aware of the theorem of the sum of the angles of a triangle. From 

this point of view the response offers evidence of a D.T proof scheme, considering 

that on the basis of this knowledge P[21] finds the correct value for angle ̂ .  

However, there is a series of non appropriate use of symbols. The first is when  P[21] 

writes “In the triangle  ˆ ”. Here the symbol of an angle is used for a triangle. 

More weighty is the case where P[21] writes: “Thus 16075B̂85Â  ”. Her 

obvious intention was to write: “  1607585B̂Â ”. She failed, however, to 

reach this end because it seems that she did not notice the inaccuracy which is implied 

by what she wrote. Indeed what she wrote implies for example, among other things, 

that  16075  which cannot be true in real number system.  Then P[21] writes the 

sentence “…the other side that is Γ must be 20°” that is instead of writing the word 

“angle” she writes the word “side”. The combination of knowledge of the theorem on 

the sum of the angles of a triangle and the correct calculation of the angle Γ̂  on the 
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one hand and the not appropriate use of symbols and terminology on the other 

provides evidence of both D.T. proof scheme and EC.NRS. proof scheme. 

 Participant [62] answering T12 (see Figure 3.5.12) writes: 

                                                                              Since AI is 

                                                                             the bisector of ΓΑΒ ˆ   

                                                                             then 78:2  

                                                                            and BI is  

                                                                           the bisector of ΓΒΑ ˆ  

                                                                          then 66:2.  

                                                                            78:2=36   

                                                                           66:2=33 

                                                                         then (36+33)-180   

                                                                              180°-69°=180° 

Figure 3.5. 12     Participant’s [62] response to Question T12 

I characterise this proof as a mixture of D.T. and EC.NRS. of proof schemes. P[62] 

understands what is to be done.  First of all she halves the measures of the angles 

ΓΑΒ ˆ and ΓΒΑ ˆ and then proceeds to add the half measures and subtracts their sum 
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from 180°. In this respect her line of thinking is a D.T. proof scheme But in halving 

78 she calculates a value of 36, which is a mistake because 78:2=39. Of course, the 

inconsistent use of the degrees symbol does not escape the attention and should 

normally be considered as a mistake too even if a negligible one. Then P[62] writes 

“(36+33)-180”. This difference, the false value 36 aside, is also not correct. P[62]’s 

intention was to find the difference 180°-(39°+33°) but she failed. As a conclusion 

P[62] writes “180°-69°=180°”. Again the subtraction gives a false result, because 

even setting aside the false value 36°, the value that should have been found is 111°. 

The P[62]’s knowledge of the theorem of the sum of the angles of a triangle  is 

recognisable and clearly offers evidence of a D.T. proof scheme. . On the other hand, 

she makes many mistakes operating with integers providing as  well evidence of 

EC.NRS. proof scheme. Thus the characterisation given to  P[62]’s answer. 

 P[62] also provides the next example of a mixture of proof schemes. Attempting to 

answer T13 (see Figure 3.5.13) she writes: 

Since AM=MB then if we suppose that AM=1 and MB=1 and the triangle ΜΒΣ ˆ is a 

right triangle then the height √  and the triangle is isosceles.                                                         

I characterise this proof as a mixture of E.I. and EC.NRS. proof schemes. P[62] 

begins the proof with the valid equality AM=MB but then  immediately supposes that 

both the equal line segments are of unitary length. But assigning numerical values to 

various magnitudes or variables provides evidence of  E.I. proof scheme. The next 

step is the assertion that the height of the triangle “ ΜΒΣ ˆ is √ ”.  Obviously there is a 

non appropriate use of symbols concerning the triangle in question because the 

symbolism ΜΒΣ ˆ  symbolise an angle and not a triangle. On the other hand, what is 

meant by the height of the triangle is not clear. A triangle with perpendicular sides of 

unitary length has its hypotenuse equal to 2 , but P[62] makes no reference to such a  
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Figure 3.5. 13     Participant’s [62] response to Question T13 

triangle. Thus, how the triangle’s height is calculated remains not clear. But let’s set 

aside this unclear point. Let us accept for a moment that there is a height and has 

indeed length 2 . Why the conclusion implicated by this fact should be that the 

triangle ΣΒA ˆ , in the participant’s symbolism, is an isosceles is again unclear. To 

recapitulate: around the axis of an idea asserting AM=MB=1, thus empirical inductive 

in Harel and Sowder’s (2007) taxonomy, an argument of EC.NRS. character is 

developed which includes another idea that a ‘height’ is of the length √ . Under these 

circumstances the answer offers evidence of an E.I. proof scheme as well as an  

EC.NRS. proof scheme. 

 Participant P[02] answers T32a (see Figure 3.5.14) as follows:  

I know that   22
    

α)   I want to prove that  1  

         022     
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Figure 3.5. 14     Participant’s [02] response to Question T32a 

     0)1                   

If I substitute   by 1 

then 

     00011       thus 1  

I characterise this proof as a mixture of D.T. and E.I. proof scheme. The answer offers 

evidence of  D.T. proof scheme. The participant correctly manipulates the original 

equality till the point where he writes that       0)1   . From this point 

the expected next step would be to observe first that   is not zero due to the fact 

that  and   are both natural numbers and are not equal to each other. Thus, even if 

one of them were equal to 0, the other could not be. On the other hand the product 

     0)1   can be equal to zero only if the factor   )1   is equal to 

zero. This leads to the conclusion that 1 .  Instead of following the previous 

line of argument P[02] chooses to substitute the value 1 for   .  But choosing a 

convenient value for a variable and substituting it in order to achieve a desired result 

when substitution is not needed to reach a conclusion offers evidence of E.I. proof 

scheme. Consequently P[02] provides with his answer evidence of a mixture of D.T. 

and  E.I. proof schemes. 
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3.5 Ethics  

 This research project was carried out according to the proposal for a study of Year 

9 students’ first encounter with proof that I submitted as part of the third assignment 

for my EdD studies in April 2010 to the School of Education and Lifelong Learning at 

UEA. The proposal was approved by the EDU Ethics Committee.  

 To prepare for the implementation of the research proposal, in May 2010, I paid a 

preparatory visit, to the school where the project would take place. I informed the 

school principal and the mathematics teachers of my intentions to carry out a research 

project on the teaching of proof in mathematics in the next school year.   Among the 

mathematics teachers was V, my colleague with whom I had piloted some ideas in 

February and March 2010, by teaching Year 9 classes various questions of 

geometrical proof. This is a normal task and part of my professional work as school 

advisor, but it nevertheless shows the sense of trust between us and mutual respect. At 

the beginning of the school year 2010-2011 V, knowing and supporting my plans for 

a research project, was appointed school principal at the school in question.  In 

addition to this favourable fact, another welcome coincidence occurred at the 

beginning of that school year. My colleague J, was appointed that year as a teacher of 

mathematics at the school and was allocated the teaching of the four Year 9 classes. 

 In these circumstances, at the beginning of the year 2010-2011, I had preparatory 

meetings with V the school principal, and  J, N and A mathematics teachers at the 

school at which  I discussed my intentions with them again and described research 

project asking for their contribution. J agreed to allow me to sit in the classes and to 

collaborate with me on the implementation of the project. There has been no kind of 

problem whatsoever with the audio-recording of the lessons and our discussions with 

my taking notes during the observations. However I provided V, as a principal, and J 
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and my other colleagues with consent forms (for  consent forms and information 

sheets see Appendix IV). All accepted to help and they all consented to my carrying 

out the project.  

 The teacher J would become my main collaborator because she taught the four 

Year 9 classes. She kindly prepared the students for my visits to their classes telling 

them about my future presence in the classrooms. After J’s preparatory explanations, I 

visited the four classes and told the students what I intended to do. I gave them 

information sheets for their parents and for themselves and a consent form for their 

parents.  

 The school year in Greece ends by June 30th and begins September the first.  I 

attended the Union of Guardians and Parents meeting that is traditionally held every 

year at every school. It took place just a few days after my visit to each of the four 

Year 9 classes. I was introduced to the parents and guardians by V, the principal, not 

only as a researcher but also as the school advisor responsible for matters concerned 

with the teaching of mathematics to their children. This raised their confidence in my 

plan because they understood that my research had to do with the broader aim of 

improving Greek students’ learning processes and that their children would have 

nothing to lose by my presence in their classes. Thus the parents and guardians 

approved my research project and the students’ participation in it. There was not one 

withdrawal or any objection to my audio-recording lessons.  

 The students almost immediately became accustomed to my presence, and  from 

the beginning none were  in any way embarrassed or disturbed by my being in their 

classroom or expressed any kind of discontent. On the contrary there have been 

occasions, toward the end of the class observations, when students asked why I had 

not been with them in the classroom.  
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 To summarise: The principal, my colleagues, and other school personnel, the 

students and their parents gave me a warm reception and their consent.  As a result the 

data collection proceeded smoothly from beginning to end.   

3.6 Summary  

 In this chapter I presented in section 3.1 a brief summary on the study was 

conducted.  

 In 3.2 I presented the general background to Greek secondary education with 

particular emphasis on the curriculum for Years 7,8 and 9. I and described the 

participating school, teachers and students.  

 In section 3.3 I presented the tests intended to collect written answers from the 

students and explained their creation.  

 In section 3.4 I gave examples of students’ scripts and their characterisation to 

show how I worked with the students’ answers using the Harel and Sowder’s 

taxonomy as a lens through which I investigated the details of their written thinking. 

 In 3.5 I have briefly laid out how I covered all the necessary steps to get the 

prescribed ethical approval and the acceptance of my proposal by the UEA Ethics 

Committee. 

 In the next chapter I present the analysis of the students’ answers to tests T1 and 

T3.  

 

 

 



[104] 

 

CHAPTER 4: PRE-PROOF TEST DATA ANALYSIS  

4.0   Introduction 

 In this chapter I analyse the pre-proof test (T1), which was administered to in 

September 2010   to collect data on the participants’ pre-proof perceptions
1
.  

 The T1 data analysis is laid out as follows: first each Question is presented with a 

brief adequate answer, followed by selected examples of the students’ answers 

covering different proof schemes according to Harel and Sowder’s  taxonomy (Harel 

& Sowder, 2007) that appeared by the analysis of the corresponding Question. The 

concluding section offers general comments on the participants’ answers to the 

Question and a table grouping the answers under the different proof schemes. 

4.1  Analysis of responses to Question T11 

 The participants’ answers to Question T11 can be divided into five groups: four of 

which are of various proof schemes. The first group includes D.T.; the second group 

D.T.-EC.NRS; the third E.P.-EC.NRS. ; and the fourth,  one  EC.NRS. proof scheme.  

The fifth group is the  NS group.  

  First I give examples of particular  D.T. proof schemes selected to illustrate the 

variety of answers that can be characterised as D.T. although they differ in various 

respects.  

 

 

 

 

 

                                                 
1
 For practical reasons I repeat the meaning of the abbreviations here. T14b for instance has the 

following meaning: T stands for the word test; the first number after T is the number of the test; the 

second number is the number of the test Question, and  a or b refer to the sub-Question. 
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 P[01] writes (see Figure 4.1.1): 

 Figure 4.1. 1     Participant’s  [01] response to Question T11 

We know that in every triangle  (right or not) 

the sum of its angles is 180°. Thus : (something crossed out
2
) 

180°=85°+75°+x 

x=180° 160° 

x=20° 

P[01]  begins the proof by invoking the theorem that the  sum of the angles of a 

triangle is equal to 180° and then writes an equation in which the sought-for angle is 

represented by the symbol x,  no explanation  concerning the connection between the 

symbol x and the angle  ̂. Then P[01] proceeds to solve the equation for x by 

calculating the correct value x=20°. The final result is doubly underlined by the 

participant as if to announce: “Thus I have proved the desired result and it is indeed 

20°”.  This answer  is adequate and additionally shows the participant’s  tendency to 

use algebraic knowledge creatively to solve the problem. Thus the answer provides 

evidence of the D.T. proof scheme and has been characterised respectively.  

 

                                                 
2
 From now on I use the abbreviation ‘sco’  standing for ‘something crossed out’ 
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 P[04] writes (see Figure 4.1.2): 

 Figure 4.1. 2     Participant’s [04]  answer to Question T11 

 The sum of the angles of a  

triangle is always 180 degrees. Thus , since  ̂   ̂=160° then 

 ̂  180 160  ̂  20° 

This answer is adequate. P[04] does not solve the problem by means of an equation; 

she finds the sum of the two given angles  ̂   ̂=160° and subtracts the sum             

 ̂   ̂=160° from 180 degrees to find angle Γ̂ . The alternative use of the symbol for 

degrees or the Greek word meaning degrees when the symbol is not used is 

noteworthy. However, when P[04] writes  ̂  180 160  in the third line of her answer  

she forgets the degrees symbol which I see a negligible mistake that does not 

substantially reduce the adequacy of the answer. The answer, being adequate provides 

evidence of D.T. proof scheme and has been characterised respectively.  
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P[05] writes (see Figure 4.1.3): 

Figure 4.1. 3       Participant’s  [05] response to Question T11 

Since all the triangle has 

sum of angles 180°  Thus 85°+75°=160°  then  the 

other  angle is 20°. 

P [05]’s  answer is adequate.  He invokes the law regarding the sum of the angles of a 

triangle in the first step.  In the second step he calculates the sum of the given angles 

85°+75°=160°; in the third step he calculates the correct measure of the angle  ̂, 

presumably mentally since there is no sign of written calculation. The calculation of 

the measure of the angle   ̂ is, indeed, very easy and obvious and thus can acceptably 

be computed mentally. No symbol of any angle or of the triangle is used throughout 

the whole proof, only the given measures of angles and the number 180° as the 

measure of the sum of all the triangle’s angles. The fact that the answer is adequate 

provides evidence of a D.T. proof scheme and thus has been characterised 

respectively.  
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P[72] writes (see Figure 4.1.4): 

 Figure 4.1. 4      Participant’s  [72] response to Question T11 

The (incorrect Greek spelling of ‘the’) angles of every triangle 

have sum 180°. Thus the angle  ̂  20° 

P[72] correctly invokes the sum of the angles of a triangle and immediately gives the 

correct measure of angle  ̂, which he appears to have computed mentally. There is no 

use of symbols apart from that for angle  ̂ nor is there explicit reference to the given 

measures of the angles. However, the answer has to be accepted as a D.T. proof 

scheme from the point at which P[72] is aware of the sum of the angles of a triangle 

and his calculation of the measure of   ̂ is correct and easily carried out mentally.  

 The second group consists of answers characterised as mixed D.T. and  EC.NRS. 

proof schemes, some examples of which I present below. 

 P[09] writes (see Figure 4.1.5): 

AΒΓ=180°  Since Α=85° 

Β=75° then (sco)     180=Α+Β+Γ      Γ=(sco)      180(sco)-(Α+Β)   

Γ=180-85+75   Γ=180 160  Γ=20°. 
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Figure 4.1. 5     Participant’s [09] response to Question T11 

P[09] begins the proof  by referring to the law of the sum of  a triangle’s angles and 

then substitutes the given measures of the angles  ̂ and  ̂  in the sum of all the angles 

of the triangle and solves the resulting relation for angle  ̂. Finally he finds the 

measure of   ̂ to be 20°. In this effort P[09] writes the sum of the angles of a triangle 

using the arbitrary symbol  AΒΓ=180°, the probable origin of which is the 

formulation “the sum of the angles of a triangle” which we use in writing as well 

orally. However, whatever the reason behind its use the symbol itself is no less 

arbitrary. There is no use of the angle symbol over the letters symbolising angles, 

although this could be seen of little importance. Then next arbitrary use of symbols is 

the false removal of the parentheses when P[09] writes 180(sco)-(Α+Β)  and then                  

Γ=180-85+75.  Thus P[09]’s answer demonstrates knowledge of the law on the sum 

of the angles of a triangle and the procedure by which the unknown angle is 

calculated, on the one hand: on the other P[09] uses an arbitrary symbol for the sum of 

the angles  and, more importantly, mistakenly removes the parentheses in what 

regards the signs of the quantities involved. In this sense the  answer is not completely 

adequate and thus provides evidence of a D.T. proof scheme but also of the EC.NRS. 

proof scheme, and thus the answer has been characterised as a mixture of the two.  



[110] 

 

 P[45] writes (4.1.6): 

 Figure 4.1. 6     Participant’s  [45] response to Question T11 

 According to our knowledge 

that the right triangle has  

sum of angles 180° angle  ̂ is: 

85+75=160 

180 160=20 

 

Thus  ̂ 

is 20° 

Participant P[45] invokes the theorem on the sum of the angles of a triangle but 

restricts it  to right-angled triangles, and then calculates the sum of the measures of 

the given angles and subtracts the result from 180 to find 20 and concludes that angle 

 ̂  is 20°. This  answer is not completely adequate. Although P[45] calculates the 

correct measure of angle  ̂ this is done on the basis of a misuse  of the law on the 

angles of a triangle. I reject the diagnosis of an E.P. proof scheme because P[45] 

considers no angle as a right one but uses the given measures which directly indicate 

that the triangle is a right-angled one. Thus  the notion of right-angled triangle is not 
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applied on the triangle or any of its angles and  seems only of arbitrary character. 

Thus P[45]’s answer provides evidence of D.T. proof scheme combined with arbitrary 

formulations which also categorises it as an  EC.NRS. proof scheme. Consequently it 

is a D.T.-EC.NRS. mixture of proof schemes. 

 Analogous answers where such mixed occurrences of expected mathematical 

manipulations and formulations with misuse of algebraic or arithmetical symbols and 

arbitrary use of terminology are similarly characterised as D.T.-EC.NRS.   

 There are two examples of mixed E.P. and EC.NRS. proof schemes.  In one of 

them (see Figure 4.1.7) P[89] writes: 

 Figure 4.1. 7     Participant’s [89] response to Question T11 

The triangle ΑΒΓ we learned that angle A is 

85° and angle B=75°  we know that in triangles  

its sum (something not clearly legible) 

because it seems the smallest. 

P[89]  first refers to the measures of the given angles and then asserts something about 

the sum of the angles using an illegible symbol. There is no evidence of calculations 

of any kind. The written answer is barely comprehensible.  The  formulation is 
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incoherent because it is incomplete. Indeed P[89] begins with  the angles of the 

triangle and then abruptly turns to the sum of the angles, but the actual sum is, is not 

to given. Consequently this answer is inadequate. The first part of the answer provides 

evidence of arbitrariness and thus of the EC.NRS. proof scheme, and the rest of the 

next sentence is not comprehensibly connected to the previous ones. Probably P[89] 

regards angle  ̂ as the smallest in the given triangle and for this reason we can take 

this as providing evidence of the E.P. proof scheme. Based on these considerations 

this  answer is a mixture of E.P. and EC.NRS. proof schemes.  

 Finally I present the unique EC.NRS. proof scheme example. Participant P[39] 

writes (see Figure 4.1.8): 

Figure 4.1. 8     Participant’s [39] response to Question T11 

“If we add the two 

other angles and their sum we subtract from 90” 

P[39] believes that to solve the problem it suffices to add the two angles and subtract 

their sum from 90. The sum of the known angles to which P[39] refers is 

85°+75°=160°. Obviously the sum should be subtracted from 180°, but P[39] 

suggests that it should be subtracted from 90. Even in a right-angled, triangle finding 

the difference of the sum of the two acute angles from 90 degrees would lead to a zero 
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degrees result. Apart  from the fact that no degree symbol appears beside the number 

90, it seems that the fact that  subtracting 160° from 90° would result in negative 

number has escaped P[39]’s attention. These two facts, difference zero and difference 

negative, are symptoms of misuse of the theorem on the sum of the angles of a 

triangle while attempting to find the measure of angle  ̂ of  triangle ABΓ. Thus the 

answer provides adequate evidence to characterise the   P[39]’s  proof scheme as 

EC.NRS.  

 Table 4.1.1 below summarizes the results of the script analysis and shows that 61 

(67.78%) answers are classed as D.T. proof schemes, forming the biggest group. This  

result is in accordance with the fact that the sum of the angles of a triangle is 

sufficiently known to the participants,  as explained. I justifiably accepted a wide 

range of answers as D.T. proof schemes since they fulfilled the conditions of an 

adequate answer. That makes those answers no less D.T. but it is a symptom 

connected with the nature of the question. Indeed the question leaves plenty of room 

for different answers ranging from algebraic ones to simple arithmetical calculations. 

The second biggest group of 22 answers (24.44%) D.T.-EC.NRS. answers, all refer to 

the sum of the angles of a triangle as being 180°. With the  D.T. answers these makes 

up a total of 83 (92.22%) answers reinforcing the ‘popularity’ of the theorem on the 

sum of the angles of a triangle among the participants. At the same time it signals the 

difficulty the students encountered even before the official teaching of proof when 

they attempted to use mathematical symbols and to formulate mathematical thoughts. 

Indeed, the very sum of the angles of a triangle is expressed in a number of answers 

using arbitrary symbols such as     180° instead of  ̂   ̂   ̂  180°. In other 

cases, on this same issue, instead of referring to the given triangle the participants 
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Table  4.1. 1   Summary of Question T11 proof schemes 

 speak of a right-angled triangle.  There  are  also  instances  of miscalculation, as for 

example 160 180=20. These examples exemplify the rising problems relevant to the 

development of the various proof schemes at this level of symbolism and formulation. 

 The next two groups, one with two (2.22%) E.P.-EC.NRS. answers and one with 

just one  (1.11%) EC.NRS. answer are almost of negligible size, as also are the four 

(4.44%) NS. The latter is another  indication of  the widespread knowledge of the sum  

of the angles of  a triangle, and  the former two groups can be counted among the   

answers revealing the students’ difficulties with proof. 

4.2 Analysis of responses to Question T12 

 Question T12 combines the property of the bisector of an angle and the sum of the 

angles of a triangle. This makes its context more complicated than that of Question 

PROOF SCHEMES OBSERVED IN THE RESPONSES TO QUESTION T11 

PROOF 

SCHEME 

FREQUENCY 

CUMULATIVE 

FREQUENCY 

RELATIVE 

FREQUENCY (%) 

CUMULATIVE 

RELATIVE 

FREQUENCY (%) 

D.T. 61 61 67.78 67.78 

D.T.-EC.NRS. 22 83 24.44 92.22 

E.P.-EC.NRS. 2 85 2.22 94.44 

EC.NRS. 1 86 1.11 95.55 

N.S. 4 90 4.44 99.99 

     

SUM 90 

 

99.99 
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T11, allowing testing proof ability on a more difficult scale. Consequently a student’s 

performance can  be expected to be inferior to their  performance answering T11  

 Analysis of all the answers produced five groups of answers: four groups of 

different proof schemes and one group of NS. The first is the D.T. group; the second 

the D.T.-EC.NRS. proof scheme; the third is E.P.-EC.NRS. proof scheme, with only 

one answer; and the fourth group is the EC.NRS. proof scheme. The fifth group is  

NS. 

 Some members of the D.T.  and some of the D.T.-EC.NRS. proof scheme are very 

close to the line setting the two groups apart. Some answers characteristic of  the D.T. 

proof scheme would belong to the  D.T.-EC.NRS. proof scheme group if their  

arbitrariness in using symbols or the arbitrariness in language formulation had gone 

beyond a certain limit. Similarly some answers classed as D.T.-EC.NRS.  proof 

schemes could have been characterized D.T. if the arbitrariness had been proved 

unimportant. 

 Finally the D.T. proof scheme answers are not identical but vary from brief 

answers to very detailed ones, as the examples that follow illustrate.  

 P[18] (see Figure 4.2.1) writes: 

Since AI and BI  

bisectors of  the angles  

   ̂ and     ̂ the  

angle     ̂  
2

1
   ̂  and  

the     ̂  
2

1
   ̂ thus  

   ̂  39  and   

      ̂  33  
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The sum of the angles 

in a triangle is  180  

 

therefore     ̂  180      ̂  

    ̂   180° 72°=   

108° 

Figure 4.2. 1     Participant’s [18] response to Question T12 

P[18] calculates the measures of    ̂  39 and     ̂  33  first by appealing to the 

property of an angle’s bisector. Then she invokes the theorem on the sum of the 

angles of a triangle to calculate    ̂  108   correctly without explicitly referring to 

triangle ABI: however it is obvious that the calculation took place in direct connection 

to this triangle. The answer has been characterised a D.T. proof scheme because it 

uses the definition of an angle bisector and the theorem on the sum of the angles of a 

triangle appropriately.  
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 P[88] writes (see Figure 4.2.2): 

Figure 4.2. 2     Participant’s [88] response to Question T12 

Since AI and BI bisectors of  

the angles    ̂     ̂ we have [or I have]     ̂  
   ̂

2
     

and      ̂  
   ̂

2
. Hence       ̂  

2

78

     ̂  39° 

and  

   ̂  
   ̂

2
    ̂  

2

66 

    ̂  33°   

Since we know the degrees  

from the 2 angles of the triangle         (ambiguous symbol over    ) 

that is      ̂  39°  and      ̂  33°  we can  

find also the     ̂  knowing that the sum  
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of the angles in a triangle is always  180°. Thus: 

180°    ̂     ̂     ̂  180°    ̂  39°+33°=180°    ̂  72° 

   ̂  180° 72°    ̂  108° 

P[88] starts the proof by invoking the property of an angle bisector and  expresses 

symbolically the angles     ̂  and    ̂  as     ̂  
   ̂

2
   as     ̂  

   ̂

2
  first, and then 

computes their measures respectively. He then makes explicit reference to triangle 

    to which he applies the theorem on the sum of the angles of a triangle to give him 

the measure of    ̂. It is true that his application of the symbol of equality is rather 

peculiar, but does not misuse it unacceptably. There is also some ambiguity as to  

whether the symbol over the triangle     is the symbol of a triangle or that of an 

angle. Even if it is the latter I did not to take it into in account which would have led 

characterising the proof scheme both D.T. and EC.NRS., and I considered the answer 

as providing evidence of  a D.T. proof scheme. 

 P[13] (see Figure 4.2.3) writes: 

        Bisector of an angle                         

              is called a straight line 

                                                                                 that divides 

                                                                                  the angle in two 

                                                                                equal  parts. 

                                                                                Thus : 
2

ΓΑΒ
IAB

ˆ
ˆ   

                                                                                 
2

78

2

ΓΑΒ
=

ˆ
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                                                                                        ̂  39     

                                                                  The same is valid also  

for the angle IBA ˆ . Thus 33
2

66

2

ΓΒΑ
IBA 

ˆ
ˆ .(sco) * 

(sco) 

* Since  the angles of the triangle have sum 180  then  

180BIAIABIBA  ˆˆˆ . Thus  )ˆˆ( IBAIAB180I   

                                                  33)(39180I   

                                              10872180I   

Figure 4.2. 3       Participant’s [13] response to Question T12 

 

From line 7 to line 9 P[13] writes ΓΑΒ ˆ instead of I.ΑΒ ˆ  This is an obvious mistake, 

which she corrects in line 10. Indeed she wanted to write 39IΑΒ ˆ  but failed, 
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replacing the capital  I  (iota) with capital Γ (gamma).  One can make out in line 9, 

that she has crossed out the upper horizontal of the Γ to create the letter I. Apparently 

the mistake in line 7 escaped her attention and remains uncorrected. There is also an 

inaccuracy regarding the symbol of implication when she writes 10872180I  . 

Finally the symbol for the degree, e.g. 180° is used in an inconsistently appearing 

once in line 10 and nowhere else. However, I have opted to categorise this as a D.T. 

proof scheme, as that these mistakes do not significantly overshadow the elements of 

an adequate answer.  

 P[24] (see Figure 4.2.4) writes: 

 

Figure 4.2. 4     Participant’s [24] response to Question T12 

 

 

 

 

 

Since a  

triangle has  

180 degrees 

we divide the  
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Thus again the angle  

is the correct one 

degrees in 2 

78 39 

66 33 

thus  108 

           33 

       + 39 

         180 

P[24] invokes the theorem  on the sum of the angles in a triangle, making only 

implicit reference to the triangle to which the theorem is applied. Then he finds the 

measures of the halves of the angles required for proof and verifies that these add up 

to 180 degrees. The odd sentence “Thus again the angle is the correct on”’ has in all 

likelihood the following meaning: Questions T11 and T12 ask for proof  that an 

angle’s measure has a certain value. Thus this odd sentence means that P[24] found 

again, in other words as in T11, the sought for value for the angle’s measure.  Under 

these considerations this answer provides evidence of a D.T. proof scheme and has 

been characterised accordingly.  

 Next I present answers that  include both D.T. and EC.NRS. proof schemes.    
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 Participant P[03] writes (see Figure 4.2.5): 

Figure 4.2. 5    Participant’s [03] response to T12 

  

The bisectors  

divide the angles in  

 

 

the middle.  (sco) Thus in the 3angle  

                              AIB the  ̂ (sco)=39 

and  ̂  33. 

In the 3angle AIB (sco) 

Sum angles=180 thus: 

(sco) 

I=180-(39+33) 

I=180-72 

I=108 
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There is also the addition of 39 and 33 in the lower far left corner. In his answer the 

participant begins by  referring to the property of the angle bisector, but uses the 

words “divide in the middle” instead of “divide in equal parts”. This is frequently 

encountered in the Greek students’ writing and speech. The word  “middle”, however, 

even if not accurate, is used here to mean “equal parts”. There are some other 

inaccuracies in the use of the angle and degree symbols. P[03]’s  answer belongs to 

those in which there is confusion when symbolising the angles of triangle AIB. Indeed 

P[03] symbolises angles     ̂  and    ̂  as  ̂ and  ̂ and uses the symbol ‘3angle’ 

instead of the word ‘triangle’. I think this is as a stylistic aspect of the participant’s 

writing. Summarising I consider that the previous inaccuracies constitute elements of 

the EC.NRS. proof scheme. As the answer also contains all  necessary information to 

be characterised as a D.T. proof scheme, this is a mixture of  D.T. and EC.NRS. proof 

schemes.   

 P[26] writes (see Figure 4.2.6): 

Figure 4.2. 6     Participant’s [26] response to Question T12 

                                                                                                     Since  

The angle AI &  
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BI are bisectors 

cut exactly 

in the middle the angle 

A and the angle B 

Thus: 

 

A:38 

B:33 

And since the  

Sum of the angles 

has to be 180° 

 

   ̂  180°  

38°+33°+108°=180° 

The participant misuses the words angle and bisector in the second and third lines of 

his script: “The angle AI and BI are bisectors”. Then he writes A:38 and B:33. By this 

symbolism obviously means the measures of the angles    ̂  38° and    ̂  33°, but 

the symbols are arbitrary and  ambiguous although interpretable: arbitrary because 

customarily this would be written A=38; and ambiguous because, on the one hand in 

mathematics A:38 literally means a fraction with nominator A and denominator 38, 

and on the other it is not clear what angle is referred to since there are, at least, three 

with the same vertex.  Additionally the measure of angle    ̂  is miscalculated as 38° , 

whereas correct calculation yields 39°. In the penultimate line of his script P[26] 

writes that    ̂  180°. The symbol    ̂   stands for the sum of the angles of triangle 

ABI as we understand by reading the next and last lines of his script. However, the 
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symbol is again arbitrary. Indeed there is no such symbol for the angles of a triangle 

in aggregate. The miscalculation of the measure of angle    ̂  is repeated and 

extended to a new miscalculation. In fact the sum  38°+33°+108°  does not yield 180° 

but 179°. These comments notwithstanding participant P[26] has substantial 

knowledge of the bisector of an angle and the theorem on the sum of the angles of a 

triangle. He also knows he needs  to use the theorem to verify the sought-for measure 

of the angle    ̂ . If we ignore his relevant mistakes the answer can be classed as 

mixture of D.T. and EC.NRS. proof schemes.  

P[42] writes (see Figure 4.2.7): 

 Figure 4.2. 7     Participant’s [42] response to Question T12 

 Proof 

Since the side 

I is bisector then 
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it will be exactly  its 

            half. 

Thus   78:2=39° 

and 66:2=33°. 

Then 33+39=72° 

Answer=    ̂ is 108° 

                                                 10872180                                                                

                       

                     (
 triangle the of

 degrees the
) (

   sidesthe of

 degrees the
) 

Participant [42] begins the proof by invoking the property of the bisector. In doing so 

he writes “since the side I is bisector then it will be exactly its half”. He apparently 

intended to write about AI and BI as bisectors of the angles and thus divide each of the  

corresponding angles of the triangle ABΓ into two equal parts each, but failed ending 

up with  inaccurate and ambiguous formulation. Concluding the proof, the participant 

wants the reader to understand that the number 72 is “the degrees of the sides”, but 

again the sentence is vague and arbitrary from the point of view of mathematical 

terminology. P[42]  probably wanted to say that in  triangle ABI the sides AI and BI 

form, with AB, angles the sum of which is 72 degrees. The ambiguous and arbitrary 

formulation is evidence of  the EC.NRS. proof scheme. On the other hand P[42] is 

aware of the property of an angle bisector, the theorem on the sum of the angles of a 

triangle and to which triangle the theorem in question must be  applied. Additionally 

she managed to put these properties together to solve the problem correctly. Thus her 

answer is characterised as a mixture of D.T. and EC.NRS. proof schemes.   
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 P[59] (see Figure 4.2.8) writes:  

Figure 4.2. 8     Participant’s [59] response to Question T12 

78:2=39 

  66:2=33 

 39+33=72 

      72+108= 108  

Thus the AI  

and BI are  

bisectors of the  

angles ΓAB ˆ  

P[59] verifies that angle    ̂ indeed measures 108 degrees. At this point, apart from 

the fact that he offers no explanation whatsoever, one could accept the answer as a 

D.T. proof scheme. But then the participant concludes that AI and BI are bisectors of 

the angles of triangle ABI. Parallel to this the symbol for the triangle, if that was 

indeed the intention, is used instead the symbol of an angle. In this respect P[59] 

provides evidence of the EC.NRS. proof scheme with the misuse of  the symbols and 
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the conclusion that AI and BI are bisectors whereas this is data given. Thus the answer 

is characterised as a mixture of D.T. and EC.NRS. proof schemes.  

 P[62] (see Figure 4.2.9) writes: 

Figure 4.2. 9     Participant’s [62] response to Question T12 

                                                           The angle    ̂  108   

        because every triangle 

                                                                 has sum of angles 

                                                                 180  (sco) 

                                                                (sco) 

                                                             ̂  34  and    ̂  33 

                                                                  Thus  34+33+I=180 

                                                                   I=67-180 

                                                                       Thus I=108 

P[62] invokes the theorem on the sum of the angles of a triangle at the beginning to 

calculate that   ̂  108° and then gives the measures of angles    ̂  and    ̂ . By this 

effort he miscalculates the measure of the former angle as 34° and asserts that 

34+33+I=180 from which concludes that I=67-180 thus solving for I not correctly. 



[129] 

 

The next step is arbitrary. Indeed, P[62] asserts that I=108 whereas the equation  

34+33+I=180  even if correctly solved does not yield this value but instead yields 

I=113. In all of these manipulations there is inconsistent use of the degree and angles 

symbols. At the same time, miscalculations and arbitrariness notwithstanding, the 

participant clearly shows knowledge of the property of an angle bisector, and of  the 

theorem on the sum the angles in a triangle and its use to calculate the requirred angle. 

Under these circumstances the answer is characterised as a mixture of D.T. and 

EC.NRS. proof schemes.  

 Only one answer is  classed as E.P.-EC.NRS. Participant P[87] (see Figure 4.2.10) 

writes: 

Figure 4.2. 10     Participant’s [87] response to Question T12 

                                                                                 ̂  108°  because  

                                                                           AI and  BI  

                                                                           are bisectors 

                                                                           of the angles    ̂  

                                                                                     and      ̂ respectively” 
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P[87] asserts that    ̂  108°  because AI and BI are bisectors of angles     ̂ and  

   ̂. This assertion is arbitrary because these two facts do not have any cause and 

result  relation. AI and BI can be bisectors of angles     ̂ and     ̂  without this fact 

forcing their angle to be 108°. In the particular context of Question T12 indeed 

   ̂  108° because BI and AI are bisectors of angles of given measures and 

simultaneously form with AB triangle AIB. However, the same formulation seems to 

be saying that “   ̂  108  because I see it in the Figure”. In this sense the answer 

contains a mixture of E.P. and EC.NRS proof schemes.  

 To end this presentation of examples of answers, I present one that is classed as 

EC.NRS. proof scheme.  

 P[16] writes (see Figure 4.2.11): 

Figure 4.2. 11     Participant’s [16] response to the Question T12 

         All the 

                                                                                 angles 252 must be 

                                                                              in aggregate 360° 

                                                                                             and we have in aggregate  

                                                                     up to now  78°+66°+108°=252° 
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                                                                                 Thus 360-252=108°        

                                                                        ̂  108° 

Participant [16] begins his proof by asserting that “all the angles 252 must be in 

aggregate 360°”. The meaning of his sentence is explained in the next lines of his 

script: first he adds the measures 66°+78°+108° to find 252°. Then, arbitrarily 

considering that the sum of the measures should have been 360°, he subtracts 252° 

from 360° to find 108°.  Of course there is no reason at all why the angles used as 

summands should add up to 360° as they add up to 252°. Thus from this point of view 

the answer is an EC.NRS. proof scheme because it is based on irrelevant assumptions 

and conditions that have nothing to do with the property of the angle bisector,  the 

theorem on the sum of the angles of a triangle and its application or  any other known 

valid assumption or assertion.   

 Table 4.2.1 gives the quantitative whole picture of the proof schemes that appeared 

in the participants’ answers to Question T12. The first thing to observe in the table is 

the drastically reduction of the number of answers characterised as D.T. proof 

schemes (28, or  31.11%)  in comparison to the corresponding number of D.T. 

answers given to Question T11 (61, or 67.78%).  The 30 (33.33%) D.T.-EC.NRS. 

proof schemes and the number 28 (31.11%)  D.T. proof schemes encountered in the 

analysis of the answers to Question T12 add up to 58 (64.44%) which is near to 

number 61 (67.78%) D.T. proof schemes encountered among the answers to Question. 

This smaller number of D.T. answers is expected but the reduction of 33 (61-28=33)  

is substantial. The change of context in Question T12 in comparison to T11 made the 

field more difficult for a number of participants. To answering Question T11, the 

students had either to verify that the sum of the angles 75°, 85° and 20° is  
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Table 4.2. 1     Summary of Question T12 proof schemes 

°180  or to form an equation of the form °=ˆ+°+° 180Γ8575  and  solve it for the 

unknown Γ̂  to find Γ̂ =20°. They had only to invoke and apply the theorem on the 

sum of the angles of a triangle. There was no need to write much or to justifying their 

actions. However, in Question T12 they had to invoke the property of an angle 

bisector and the theorem on the sum of the angles of a triangle in connection not with 

the original triangle, ABΓ,  but with  the triangle formed by the bisectors BI, AI and 

side AB.  To do this  they had to formulate some thoughts concerning the measures of 

angles    ̂  and    ̂ . Then they had to explain that they were referring to triangle 

ABI. At the same time they had to deliver some calculations. All these efforts led to 

various mistakes in calculations, correct language formulation and even acceptable 

PROOF SCHEMES OBSERVED IN THE RESPONSES TO QUESTION T12 

PROOF 

SCHEME 

FREQUENCY 

CUMULATIVE 

FREQUENCY 

RELATIVE 

FREQUENCY (%) 

CUMULATIVE 

RELATIVE 

FREQUENCY 

(%) 

D.T. 28 28 31.11 31.11 

D.T.-EC.NRS. 30 58 33.33 64.44 

E.P.-EC.NRS. 1 59 1.11 65.55 

EC.NRS. 8 67 8.89 74.44 

N.S. 23 90 25.56 100.00 

     
SUM 90 

 

100.00 
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use of symbols. This explains why the number of EC.NRS. proof scheme grew from 

25 (27.77%) in Question T11
3
  to  39 (43.33%) in Question T12. Another indicator of 

the participants’ difficulties is the number of NS answers, which rose from 4 (4.44%) 

in T11 to 23 (25.56%) in T12. 

 The relatively high number of D.T. answers is a sign that the students  can build 

logical, proof-like arguments although they cannot always use the language and the 

notation properly. Their performance underlines their problems with proof at this 

stage before they have been officially taught it. Their answers to Question T12 fell 

largely into two categories: NS and EC.NRS. proof scheme.  

 The lack of answers involving proof schemes such as  E.I. is due to the nature of 

Question T12 which does not include variable quantities that can be measured or 

substituted with  numbers. Proof schemes as EC.A. or EC.R. are also seldom elicited 

by Questions such as T12.         

4.3 Analysis of responses to Question T13 

 The participants, regarding mathematics, are at a turning point in their school life 

at which they must be able to clearly and successfully formulate properties, 

hypotheses, and conclusions. This is probably difficult exactly because of its 

perceived simplicity, not in the sense of it being an easy task but in the sense of 

logical steps. Sometimes the points at which to begin and end the argument are not 

obvious to them.  Questions T13 and , T11 and T12 are  similar because they demand 

the use of a fundamental geometric property, but they are also different because 

T11and T12’s frames of reference have to do with a fundamental property expressible 

in simple arithmetic or even algebraic terms, whereas the property needed to answer 

T13 correctly is of a logical nature. I decided to characterise as D.T. answers with the 

                                                 
3
 See table 4.1.1 
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basic aspects of the above adequate answer; i.e.  (i) the property of the perpendicular 

bisector (ii) the argument that  point Σ has this property and (iii) the conclusion 

concerning triangle ΣΑΒ. Any other answer using convincing argumentation would 

be acceptable. As I show some answers diverge from the adequate example above and 

yet their mathematical content and logical structure are correct. 

 The curriculum stipulates the teaching of the perpendicular bisector. The definition 

and  the property of all points on the perpendicular bisector of a line segment and 

activities and exercises relevant to this can be found in the Year 7 textbook  

(Vandoulakis, Kalligas, Markakis, & Ferentinos, 2010, pp. 206-209). In Year 8 the 

property of the perpendicular bisector appears indirectly on a number of occasions in 

various problems concerning isosceles and equilateral triangles and the rhombus. 

Question T13 intended to gather information on how the students treated a problem 

concerning the logical laying of thoughts when a hypothesis is given and it and one is 

asked to reach to a certain conclusion from it. 

 Analysis of the participants’ answers to Question T13 revealed a wider scattering 

of proof schemes than in answers to questions T11 and T12. The answers fall into 

eight different groups of various proof schemes or mixtures of proof schemes: D.T, 

D.T.-E.P., D.T.-EC.NRS., E.I., E.I.-EC.NRS., E.P., E.P.-EC.NRS., EC.NRS., and one 

group NS. Below I present examples.  

 P[33] writes (see Figure 4.3.1): 

                                                             Isosceles is called the triangle in which the two 

                                                                              sides are equal.                                                                                                                                    

We know from the                                                                                               

         properties of                                                                                                                                                                             
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                                                                  the perpendicular bisector, that every 

                                                                                                                    point situated 

                                                                                          on the perpendicular bisector 

                                                                                                     is equidistant from the 

                                                                                                         endpoints of the line  

                                                                                                                  segment. Thus: 

                                                                                                             ΑΣ=ΣΒ and since  

                                                                                                               the  two sides of 

                                                                                                     the triangle are equal 

                                                                                                                we say that the 

                                                                                                                   triangle ΑΣΒ 

                                                                                                                    is isosceles. 

Figure 4.3. 1     Partticipant’s [33] response to Question T13 

P[33] gives the definition of an isosceles triangle and then the property of the 

perpendicular bisector of a line segment. Based on this  he asserts that ΑΣ=ΣΒ. 

Finally by virtue of the equality ΑΣ=ΣΒ he concludes that triangle ΑΣΒ answers to the 
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definition of an isosceles triangle and thus completes the proof. The answer satisfies 

the conditions of an adequate answer, conclusively providing evidence of a  D.T. 

proof scheme. 

  P[06] (see Figure 4.3.2) writes: 

Figure 4.3. 2     Participant’s [06] response to Question T13 

                                                                         The triangle ΣAB is isosceles because 

                                                                                                 the point Σ is equidistant 

                                                                                                         from the point A and 

                                                                                                                      the point B. 

P[06]’s  proof asserts that triangle ΣAB is an isosceles triangle  because point Σ is 

equidistant from points A and B. This is true under the condition that point Σ is a 

point on the perpendicular bisector of the segment AB. The last assertion is true 

because every point on the perpendicular bisector is equidistant from end points A and 

B.  But P[06] does not feel the need to invoke the property of the perpendicular 

bisector because he sees it in the figure. Thus where the definition of the isosceles 

triangle is concerned his answer provides evidence of D.T. proof scheme. At the same 
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time the answer also provides evidence of E.P. characteristics and is therefore classed 

as a mixture of  D.T.  and E.P. proof schemes.  

 P[64] (see Figure 4.3.3)  writes: 

Figure 4.3. 3     Participant’s [64] response to Question T13 

Every point of 

the perpendicular bisector of a  

straight line segment 

                                                                     is equidistant from  

the edges of the straight line  

                                          segment  

                                        MΑ=MΒ 

                                                           222 ΑΣΜΣΜΑ  

                                                       222 ΒΣΜΣΜΒ =+  

P[64] begins her proof by stating the property of the perpendicular bisector, but does 

not take the expected next step, ΑΣ=BΣ. Instead she takes an unexpected turn: rather 

than declaring the triangle ΑBΣ an isosceles triangle and concluding the proof, she 
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writes MA=MB which is true. Her last step is to write ==+ 222 ΑΣΜΣΜΑ

222 ΒΣΜΣΜΒ =+ (1). The relation 222 ΑΣΜΣΜΑ =+  is the valid Pythagorean 

theorem for the right triangle MAΣ with M vertex of the right angle, since the straight 

line (ε) is perpendicular to line segment AB at M. Similarly 222 ΒΣΜΣΜΒ =+ is valid 

in triangle MBΣ with M vertex of the right angle. P[64] ends the proof after presenting  

relation (1), probably because P[64] considers that from (1) comes up 2ΑΣ = 2ΒΣ and 

thus  ΑΣ=ΒΣ.  However, there is no need to resort to (1) for this purpose because after 

having stated the property of the perpendicular bisector of a line segment the direct 

conclusion is ΑΣ=ΒΣ and consequently that the triangle ΑBΣ is an isosceles triangle. 

To summarise: what P[64] writes is mathematically correct and thus there is evidence 

of D.T. proof scheme. On the other hand the incompleteness of her arguments, caused 

by the failure to state clearly and explicitly how the final conclusion can be reached, 

makes her proof scheme also an EC.NRS. Accordingly her answer is classed as 

mixture of D.T. and EC.NRS. proof schemes 

 P [87] writes (see Figure 4.3.4):  

Figure 4.3. 4     Participant’s [87] response to Question T13 
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                                                                    Since ΣΑ is 5cm 

                                                                      and the other ΣΒ 

                                                            is 5cm and 

                                                             AM is 4.5cm 

                                                           and MB is 

                                                            4.5cm then  

                                                                            the triangle is equal 

                                                                   because its legs 

                                                                 are equal thus 

                                                               the triangle is 

                                                                      isosceles triangle 

 P [87] start her proof by  asserting  that ΣΑ=ΣΒ=5cm and AM = MB =4.5cm. It is 

not clear how she assigned these numerical values to the corresponding line segments, 

but the need to assign values to various quantities with no given numerical magnitude 

in order to articulate a proof is considered, in  the taxonomy of Harel and Sowder’s  

(2007, p. 7) taxonomy, evidence of an E.I. proof scheme. Thus P[87]’s  need for 

numerical substitution in order to formulate a proof classes this answer as an E.I. 

proof scheme.  

 P[62] (see Figure 4.3.5) writes: 

Since AM=MB then if we assume that AM=1 and MB=1  

and the triangle ΜΒΣ ˆ  

is a right one then 

the height 2 and 

the triangle  ΣΒΑ ˆ  

 is isosceles. 
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Figure 4.3. 5     Participant’s [62] response to Question T13 

Participant [62] begins her argument with the assumption that AM= MB= 1. She thus 

assigns number values to the lengths of AM and MB. In the fourth line she assigns the 

number 2 to the length of the height of the triangle ΣBM. Triangle ΣBM is a right-

angled triangle with the vertex of the right angle at M. Thus the sides MΣ and MB are 

both heights. The third height, from point M to side ΣB is not drawn in the figure. 

There is no information or any other evidence to indicate which height P[62] is 

speaking of and nor is there any implication as to whether the new numerical 

assignment is the product of a calculation or of an arbitrary action. The conclusion, 

that triangle ABΣ is an isosceles triangle is plainly arbitrary because it is not based on 

the existence of two equal sides or any other plausible argument. As previously seen, 

the need to assign inconsistently numerical values to various quantities in a proof 

demonstrates what Harel and Sowder define as E.I. proof scheme. On the other hand, 

the obscurity of what P[62] means by the word “height” and its rather arbitrary way of 

its appearance is a sign of logical incoherence and thus of the EC.NRS. proof scheme. 
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The conclusion is of the same quality. Why a triangle should be an isosceles triangle 

when it has height of length 2  is not at all clear and it is not  justified by argument. 

It may be that the participant has a memory of a right-angled isosceles triangle with 

equal sides of length 1 which has indeed a hypotenuse of length 2 .  However there 

is no height of length  2  in this case. Thus the answer provides evidence of both 

E.I. and EC.NRS. proof schemes and it is characterised as a mixture of  E.I. and 

EC.NRS. proof schemes.  

 P[38] (see Figure 4.3.6) writes: 

Figure 4.3. 6     Participant’s [38] response to Question T13 

The triangle ΣΑΒ is isosceles because the perpendicular bisector  

                                                                                            passes exactly over 

the vertex of 

  the figure (Σ) and 

(sco) the middle 

of the base and 



[142] 

 

divides it 

in the middle 

Participant [38] makes no reference to the fundamental property of the perpendicular 

bisector and neither does she refer to any property of the point Σ. She confines herself 

only to an empirical description of the position of the perpendicular bisector, which 

she perceives as a line that divides in the ‘middle’. This perception probably  has to do 

with activities  in Year 7 and possibly also at primary school, where folding a piece of 

paper along an axis of symmetry along an axis of symmetry in a drawing is a way of 

showing that one half will fit the other. I class this answer as an E.P. proof scheme 

because P[38] perceives but  and does not prove the validity of the property to be 

proved.  

 P[42] (see Figure 4.3.7)  writes: 

Figure 4.3. 7     Participant’s  [42] response to Question T13   

In the way that the triangle has been divided 

                    in the middle 
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                                                 by the perpendicular bisector ε 

                                 into 2 smaller triangles 

                                 that have been created 

                                                                   we can define 

                                                                  a right angle. 

                                                  Answer: Thus for the triangle 

                                                                 to be isosceles  

                                                                it ought not be formed  

                                                                 a right angle.”      

In the first 7 lines P[42] describes her perception of the figure, in which she sees in 

the perpendicular bisector and two “smaller” triangles. According to her formulation 

the “smaller” triangles are what allow us to “define” a right angle. Of course, there is 

no need to turn to the smaller triangles to define a right angle or the particular right 

angle in this case. The right angle or angles are there, in this case, because the straight 

line (ε) is indeed perpendicular to line segment AB at point M. Then P[42] writes the 

word “answer”. The answer itself, in the text that follows is an argument in which 

P[42]  justifies the opposite of what is asked. She concludes that the triangle is not an 

isosceles because a right angle is formed. The argument is arbitrary because she gives 

no plausible reason to justify the impossibility of the existence of an isosceles triangle 

due to the formation of a right angle. The first 7 lines of P[42]’s  script have a 

perceptual character and are thus an E.P. proof  scheme, while the second part after 

the word “answer”  consists of  arbitrary and unjustified reasoning and is thus an 

EC.NRS. proof scheme. Consequently the answer is classed as mixture of E.P. and 

EC.NRS. proof schemes. 
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 P[69] (see Figure 4.3.8) writes:  

Figure 4.3. 8     Participant’s [69] response to Question T13 

Knowing that MA=MB we suppose that  

ΑΣ=ΣΒ 

This laconic formulation is an example of an arbitrary and irrelevant argument. The 

connecting element between MA=MB and ΑΣ=ΣΒ is the presence of the 

perpendicular bisector, but no reference is made to this fact. Of course, in whichever 

triangle not every median is drawn between equal sides as ΣΜ in Question T13. Thus 

not appealing to any valid property P[69] arbitrarily asserts that  the conclusion is 

valid  as a direct consequence of the hypothesis. This answer provides evidence of  an 

EC.NRS. proof scheme and is classed accordingly.  
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 Table 4.3.1 below, presents the general picture of the participants’ answers 

showing that the number of  D.T. answers has declined further in T13 to 14 (15.56%) 

in comparison to questions T11 and T12 which had 61 (67.78%) and 28 (31.11%) 

such answers respectively.  This  is to be expected because each of the questions T11, 

T12, T13 is more complicated than the previous one. T11 and T12 require the use of a 

combination of  properties and calculations whereas Question T13 requires  logical 

thinking, and the participants are facing such issues for the first time in their school 

life. Mathematics research provides evidence of the difficulty of proof when it has 

been taught, and it is all the more difficult when it has not been taught as in the case 

of this study.  

Another aspect of the general picture is the appearance of the E.P. proof schemes in 

bigger numbers than in T11 and T12. In fact the biggest group, after NS, proves to be 

that of E.P. proof schemes at 21 (23.33%).  Unlike Question T11 and T12, T13 has no 

arithmetical data and thus, all the proof steps should be based on properties and logic.  

In their efforts to articulate an adequate answer, the participants  seek support from 

perceptions without justifying them logically, leading to substantial augmentation of 

the number of E.P. proof scheme. Parallel to the reinforcement of the E.P. numbers is 

the appearance of a small number of E.I. proof scheme. Any appearance of numerical 

substitution representing line segment lengths etc. is expected to be connected with 

such E.I. proof scheme. In other words  the appearance of the various proof schemes, 

particularly this of the empirical class, is not independent of the structure of the 

question.   
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PROOF SCHEMES OBSEREVED IN THE RESPONSES TO QUESTION T13 

PROOF 

SCHEME 
FREQUENCY 

CUMULATIVE 

FREQUENCY 

RELATIVE 

FREQUENCY (%) 

CUMULATIVE 

RELATIVE 

FREQUENCY (%) 

D.T. 14 14 15.56 15.56 

D.T.-E.P. 4 18 4.44 20.00 

D.T.-EC.NRS. 6 24 6.67 26.67 

E.I. 1 25 1.11 27.78 

E.I.-EC.NRS 2 27 2.22 30.00 

E.P. 21 48 23.33 53.33 

E.P.-EC.NRS. 12 60 13.33 66.66 

EC.NRS. 4 64 4.44 71.10 

NS 26 90 28.89 99.99 

          

SUM 90   99.99   

Table  4.3. 1     Summary of  Question T13 proof schemes      

 

 

 

 



[147] 

 

4.4  Analysis of responses to Question T14a 

 The curriculum specifies the definition of the elements of a triangle, i.e. its sides, 

angles, heights, angle bisectors and medians. The textbook of Year 7 gives the 

definitions of the midpoint (Vandoulakis et al., 2010, p. 160) and that of the median 

(ibid., p. 219).  

 This question was intended to collect information on whether the students knew 

what a midpoint and a median are. Whether they could manipulate a situation in 

which given data can be used to reach conclusions emerging from it on the basis of 

the definition of objects as the midpoint of a line segment and the median of a 

triangle.  

 In this section I present the analysis of answers to T14a, which fall into seven 

groups. Six groups of  D.T., D.T.-EC.NRS., E.I., E.P., E.P.-EC.NRS., EC.NRS. proof 

schemes and seventh group that of NS. Below I present one example of each group in 

the order listed above.    

 P[59] (see Figure 4.4.1)   writes: 

Figure 4.4. 1     Participant’s [59] response to Question T14a 
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                                                                                  AΔ=x              AΔ+ΔΕ=2x 

                                                                                 ΔΕ=x                 ΕΖ+ΖΓ=2x                                

                                            ΕΖ=x 

                                              ΖΓ=x 

                                                                                                            since they are 

                                                                                              all equal 

P [59] gives an algebraic answer similar to the proposed adequate answer, using the 

symbol x to express the common length of the line segments AΔ=ΔE=ΕΖ=ΖΓ=x.. 

Then the sums AΔ+ΔE=2x and ΕΖ+ΖΓ=2x become expressions of x. These two last 

equalities prove that the sums are equal. Without stating it explicitly, P[59] in writing 

AΔ+ΔE=2x and ΕΖ+ΖΓ=2x intends to express the respective line segments AE and 

ΕΓ in the form of the sum of the line segments  and to show that these last two are 

equal. The sentence “since they are all equal”, meaning AΔ=ΔE=ΕΖ=ΖΓ=x, is 

written to this purpose. Summing up, the answer is, although elliptical, adequate.  

Thus the answer provides evidence of D.T. proof scheme is classed accordingly.  

 P[45] (see Figure 4.4.2)  writes: 

Figure 4.4. 2     Participant’s [45] response to Question T14a 

                                                                       Side AΓ  
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                                                                        is constituted of 4 equal 

                                                           parts. 

                                                                         Thus since AΔΕ 

   have equal distance the 

same would occur even 

with  ΕΖΓ 

AΕ=EΓ” 

P[45] begins the proof with a  description of the structure of line segment AΓ and  

continues “…since AΔΕ have the same distance…” obviously meaning,  that the three 

points A, Δ, Ε and in that order are equidistant with each other i.e. AΔ=ΔΕ . The 

symbols AΔΕ used for this purpose is indeed ambiguous and arbitrary. The same is 

true of  the next formulation ‘the same would occur even with ΕΖΓ’. The conclusion 

AΕ=EΓ follows. Thus in writing AΔΕ and ΕΖΓ the participant means AΕ and EΓ 

respectively. On the other hand, the essence of the thinking is correct and  thus 

P[45]’s understanding of the conditions of the problem provides evidence of a D.T. 

proof scheme. At the same time the vagueness in the use of symbols provides 

evidence of the EC.NRS. proof scheme, so the Thus answer is categorised as a 

mixture of  D.T. and EC.NRS. proof schemes. 
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 P[77] (see Figure 4.4.3) writes: 

Figure 4.4. 3     Participant’s  [77] response to Question T14a 

                                                                If we assume  

                                                        that side AΓ  

                                                     is 20cm on the 

                                                  basis of the data                                                  

                                                   of the exercise  

 AΔ=ΔE=ΕΖ= ΖΓ=5cm  

                                                            Thus it is to conclude  

                                                      since AE=10cm 

                                                   & EZ=10cm
4
 that   

                                                       they are equal 

Participant [77] assigns a numerical value to AΓ=20cm serves the purpose of 

illustrating the solution. The reasons for using an argument based on numbers are not 

clear, and nor is it clear why the participant does not make the next step, that is  to 

generalise and thus offer a D.T. proof,  as in the D.T. answers discussed previously. If 

                                                 
4
 Slight mistake. The correct equality is  AE=EΓ 

2
0
-1

0
=

1
0
cm

 

2
0
-1

0
=

1
0
cm
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P[77]  had taken it a step further and asserted that the same procedure  would be valid 

independently of  the numeric values  for the lengths of the lines segments his answer  

could have seen as a kind of a generic proof in the spirit of Harel and Sowder (1998, 

2007).  In such a case the answer would have been characterised as a D.T. proof 

scheme, but the step in question is not taken.  P[77] has not yet decisively freed 

himself from the assignment of arithmetic values,  in contrast to participants that 

employ a generalised argument. However, the substitution of numerical values to 

variable magnitudes in order to achieve a solution or a proof is evidence of an E.I. 

proof scheme. Thus I characterised this answer as an E.I. proof scheme. 

 P[01] (see Figure 4.4.4)  writes: 

Figure 4.4. 4     Participant [01] response to Question T14a 

                                                              They are equal because  

                                 AΔ=
4

1
ΑΓ       the median BE cuts  

                  AE=
2

1
ΑΓ         the base AΓ  

                                                                         in 2 equal segments (AE,EZ). 

                                                          We know that the median 
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                                                           of a triangle passes 

                                                        through a vertex of  

                                                           the triangle and cuts  

                                                                            the base opposite the vertex in 2 

                                            equal parts 

P[01] has noted beside the figure the equalities AΔ=
4

1
ΑΓ  and AE=

2

1
ΑΓ which are 

both true but unjustified, thus they have an empirical perceptual character. 

Furthermore in line 4 of his script P[01] refers in the parentheses to line segments 

AE,EZ. I assume that these line segments are not correctly written. Indeed the equal 

segments are not the written ones but AE and EΓ. Probably the participant intended to 

write these down but failed. Let’s ignore this apparently minor mistake. The 

participant argues that E is the middle point of AΓ because BE is the median 

corresponding to it. Like  a number of other participants P[01] has been carried away 

by the power of the figure. Consequently, without noticing it, P[01] accepts he 

property that is to be proved for the line segment BE or alternatively for the point E, 

in advance and does not use the given data at all. Any proof based on the perception 

or perceptions about the properties in a figure constitute substantial evidence of the 

E.P. proof scheme. Consequently the proof scheme in question has been characterised 

as E.P. proof scheme.  
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 P [91] (see Figure 4.4.5) writes:                                                       

Figure 4.4. 5     Participant’s [91] response to Question T14a 

        Triangle ABΓ  

                                                                             has been cut down 

                                                                   the middle: ABE can 

                                                                         be cut down the middle anew 

having angle 90° so 

we observe ΑΔ=ΕΖ and 

ΔΕ=ΖΓ so ΑΕ=ΕΓ 

P[91] begins his answer by asserting that  triangle ΑΒΓ “has been cut down the 

middle” and  asserts that triangle ABE can also be “cut down the middle” presumably  

in the same spirit. This cut down the middle is connected to the as-yet unproved fact 

that E is the midpoint of AΓ. As one can see from the notation by the figure, the 

participant ‘sees’ triangle ABE as equilateral and AΔ as its height, and consequently as 

its median.  The way he tries to sketch the height of triangle ABE from B and make it 

pass through Δ, although it does not necessarily do this, is interesting. These 

assertions and attempts, and the notation, reinforce the evidence of the answer’s E.P. 

character.  The participant concludes that ΑΔ=ΕΖ and ΔΕ=ΖΓ which is not relevant to 

the previous perception that triangle ABE is equilateral. However, the assertion that 
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ΑΔ=ΕΖ and ΔΕ=ΖΓ have been proved is an  EC.NRS. quality, simply because the 

equality of these segments  is given from the beginning and there is  nothing to prove 

here. Thus the answer provides evidence of  both E.P. and EC.NRS. proof schemes 

and has been characterised accordingly. 

 P [26]  (see Figure 4.4.6) writes: 

Figure 4.4. 6     Participant’s [26] response to Question T14a 

Since the 

triangle is divided  

by the number 4  (sco) 

and  side ΑΓ  

has been divided into  

equal parts then if it is divided  

and by number 2 it will 

have again equal. Since  

AE (sco) is the  

half and EΓ is the half 

                                                                                                  thus they are equal 
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P [26]’s first sentence of the proof is the phrase “…the triangle is divided by the 

number 4…”.  This sentence is an arbitrary distortion of the given situation. Indeed, 

side AΓ, and not the triangle, is divided into four equal parts by points Δ, E, Z. P[26] 

continues in the same vein. The implication he has to prove is as follows: if the side 

AΓ is indeed divided into four equal parts ΑΔ=ΔΕ=ΕΖ=ΖΓ by points Δ, E, Z then E is 

the midpoint of AΓ.  But his formulation of the implication sounds as  “…and  side AΓ 

has been divided into equal parts; then if it is divided and by number 2 it will have 

gain equal”. The arbitrary distortion is again clear. His conclusion is no less arbitrary. 

He writes “Since AE is the half and EΓ is the half thus they are equal’. But that is 

exactly the question: Why is AE=EΓ? The question is never answered. The 

comparison of P[26]’s  formulations to the data and formulation of the problem lead 

me to the conclusion that the proof scheme here is an EC.NRS. one. 

 Table 4.4.1 illustrates the general picture of the proof schemes.  The number of  

D.T. proof  schemes has risen slightly to  22 (24.44%) answers 8 more than in T13.   

On the other hand the empirical proof schemes persist. In fact, there are only 2 

(2.22%)  answers classed as E.I., but  answers classed as E.P. stand at 24 (26.67%); 

and EC.NRS. appears in a total
5
 of 32 (35.56%) answers. The problems with proof in 

the answers to Question T13, generally remains unchanged in the answers to T14a. 

Indeed, the two questions are similar in quality. There is no need for algebraic or 

arithmetic calculations instead demand logical steps from the data and the hypothesis 

to the conclusion. Questions T13 and T14a thus emphasise the students’ problems 

 

 

                                                 
5
 Alone or in a mixture 
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PROOF SCHEMES OBSERVED IN THE RESPONSES TO QUESTION T14a 

PROOF 

SCHEME 

FREQUENCY 

CUMULATIVE 

FREQUENCY 

RELATIVE 

FREQUENCY (%) 

CUMULATIVE 

RELATIVE 

FREQUENCY (%) 

D.T. 22 22 24.44 24.44 

D.T.-EC.NRS. 6 28 6.67 31.11 

E.I. 2 30 2.22 33.33 

E.P. 14 44 15.56 48.89 

E.P.-EC.NRS. 10 54 11.11 60.00 

EC.NRS. 16 70 17.78 77.78 

N.S. 20 90 22.22 100.00 

  

90 

  

SUM  

 

90 

 

100.00 

 

Table 4.4. 1     Summary of Question T14a proof schemes 

with logical steps. However, almost one fourth of the participants managed to give an 

adequate answer and thus to deliver a D.T. proof scheme, a fact that must be seen as 

indicating readiness to deal with proof successfully. 
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4.5  Analysis of responses to Question T14b   

 The participants’ answers fell into seven groups:  D.T., D.T.-E.P., D.T.-EC.NRS., 

E.P., E.P.-EC.NRS., EC.NRS. and NS. 

 I present one example from each of the groups of various proof schemes in the 

above order. 

 P [02] (see Figure 4.5.1) writes: 

Figure 4.5. 1     Participant’s [02] response to Question T14b 

Since     
2

1
   

(sco) the straight line segment BE is the median of the triangle 

(sco) from the vertex B which corresponds to 

the side AΓ” 

By writing the equality    
2

1
    P[02] writes indirectly the fact that E is at the 

midpoint of ΑΓ. On this basis his conclusion about BE can be accepted as the 

definition of the median of a triangle and his answer is accepted as adequate and can 

be  considered as a D.T. proof scheme. P[02]’s answer  to  T14a also falls under  D.T.  



[158] 

 

 The characterisation of the answers to T14a is independent of those of T14b. The 

answer to each sub-question has been categorised according to whether it can be 

accepted as adequate or not. However, for each participant quoted here I repeat the 

proof scheme in which fell the participant’s answer to T14a.  

 P[23] (see Figure 4.5.2)  writes:                                                              

Figure 4.5. 2     Participant’s  [23]  response to Question T14b 

                                                                   The  straight line  

                                      segment BE is the median 

                                                            because it starts from the 

                                                                      vertex of the triangle  

and ends at the midpoint of the opposite  side . The median 

of a triangle divides it into 2 equal parts. 

Participant’s [23] proof is in two parts: The first part, from line one to line five, is an 

adequate answer regarding the definition of a median.  Accordingly the assertion that 

BE is the median follows out of the fact that it connects a vertex of the triangle to the 

midpoint of the opposite side provides evidence of D.T. proof scheme. The second 
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part of the proof begins in line five and ends in line six. The participant adds a 

comment on an alleged property of the median, namely that of dividing the triangle 

into two equal parts. However, this is not valid or at least it is only valid in the sense 

that triangles ΒΑΕ and ΕΓΒ are of equal areas. This property is not common 

knowledge at the beginning of Year 9 and the probability that P[23] is referring to it is 

unlikely. His comment is rather a false perception often encountered among in Years 

7, 8 and 9 students when they try to describe a median of a triangle. In such cases an 

interesting change of formulation takes place: from the fact that E divides AΓ into two 

equal parts, students pass to the formulation “BE divides AΓ into two equal parts” and 

finally to “BE divides triangle ABΓ into two equal parts”. Thus the fact that E is the 

midpoint of AΓ is distorted to the perception that BE “divides” the triangle ABΓ into 

two equal parts. Thus the participant’s answer to T14b is classed as a mixture of D.T. 

and E.P. proof schemes.  
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P [78] (see Figure 4.5.3) writes: 

Figure 4.5. 3     Participant’s [78] response to Question T14b 

                                                                           The line segment  

                                                                                  BE is a median 

                                                                                     because if we cut 

AΓ in two equal parts its bisector is E. 

From E we draw a line to the angle opposite to it  

that is B to draw the median 

P[78] tries to define segment BE. The meaning of his script is in the spirit of an 

adequate answer, that is, one  should connect the midpoint of AΓ, which is E, with 

vertex B. Under this consideration the answer provides evidence of a D.T. proof 

scheme. However, the participant uses the word “bisector” for the point E, instead of 

“midpoint” for point E, and then writes “From E we draw a line to the angle opposite 

it” instead of that BE connects E with the vertex B opposite  AΓ. In other words his 

formulation contains an arbitrary use of terms which is an element of the EC.NRS. 
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proof scheme. Thus on aggregate P[78]’s  answer is classed as a mixture of D.T. and 

EC.NRS. proof schemes.   

 P[01] (see Figure 4.5.4) writes: 

Figure 4.5. 4     Participant’s  [01]  response to Question T14b 

                                               As we have said as well previously 

                                             the median of a triangle  

                                                              is the straight line that 

passes through a vertex of the triangle and cuts the opposite   

to the vertex base in the middle 

Participant [01] refers to his answer to Question T14a which, however,  belongs to the 

E.P. proof schemes. In other words from the beginning this participant has seen the 

line segment BE as the median dividing the side to which it corresponds into two 

equal parts. His perception inverts the fact that first,  E is the midpoint of AΓ, and then 

that  BE is the median. Probably he does not adequately understand that he has to 

prove that E is the midpoint of AΓ in Question T14a and has already perception of BE 

as a median. Consequently in T14b when he is asked to prove that BE is the median 
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he repeats the justification he gave in T14a. This argument that BE is the median 

because we see it as a median provides evidence of an E.P. proof scheme and is 

classed accordingly.  

 P[91] (see Figure 4.5.5) writes: 

Figure 4.5. 5     Participant’s [91] response to T14b  

The square  

BAE has 180° in aggregate 

thus BA=60 and 

BE=60 thus if I subtract  

from E=60° the 180° we have 120° and that is the angle 

BΓ=120°  thus we observe the angles EΓ and 

BE are the same thus 180-120=60 thus 60:2=30  

thus BE=20° and EΓ=20° 

P[91] perceives the triangle ABE as equilateral, but rather than calling it a triangle she 

calls it a square. She then asserts that BA=60 and BE=60. Both equalities demonstrate 

an arbitrary use of the angle symbol and at the same time the meaning is ambiguous. 
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The arbitrary and ambiguous use of the angle symbol continues when the participant 

refers to angles EΓ and BE which, she claims, are  “same”, probably meaning “equal”. 

In the last two lines of her script there are various arbitrary calculations without any 

validation. However, they seem to refer to angles EBΓ and BΓE. Even if this were true 

it has nothing to do with the definition of the median. Summarising: P[91] perceives 

properties of the figure that are not given and could in no way be concluded from  the 

data given. From this point of view her proof scheme is E.P.. At the same time she 

misuses symbols and terminology and makes arbitrary calculations, providing 

evidence of  the EC.NRS. proof scheme. Consequently the answer of P[91] is classed 

as mixture of E.P. and EC.NRS. proof schemes. Let it be noted that the same mixture 

of proof schemes characterises her answer to T14a. 

 P[82] (see Figure 4.5.6) writes: 

 Figure 4.5. 6     Participant’s [82] response to Question T14b 

BE 

is median 

because after Δ 
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which comes to 

the straight line segment AE is bisector the  

same as well Z which comes to the straight line 

EΓ. 

P [82]’s answer is difficult to interpret which is why the English translation also 

appears random and is syntactically incoherent. Basically P[82] asserts that point E is 

between  points Δ and Z which are midpoints of the straight line segments AE and  EΓ 

respectively. Thus, according to P[82], BE is the median. Generally speaking, if Δ is 

the midpoint of AE and Z the midpoint of EΓ it does not follow that E is the midpoint 

of AΓ. In T14 it has been given that AΔ=ΔE=EZ=ZΓ. Only under this assumption is E 

in fact the midpoint of AΓ. On the other hand this proof had to be provided in part (a). 

P[82] confuses the words  “median” and  “bisector” using both to mean median. Thus 

his proof is of EC.NRS. character since there is no readily discernible meaning in 

what he writes and he misuses the mathematical terminology. 
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 Table 4.5.1 illustrates the general picture of the answers to Question T14b. 

PROOF SCHEMES OBSERVED IN THE RESPONSES TO QUESTION T14b 

PROOF 

SCHEME 
FREQUENCY 

CUMULATIVE 

FREQUENCY 

RELATIVE 

FREQUENCY (%) 

CUMULATIVE 

RELATIVE 

FREQUENCY (%) 

D.T. 17 17 18.89 18.89 

D.T.-E.P. 2 19 2.22 21.11 

D.T.-EC.NRS. 15 34 16.67 37.78 

E.P. 7 41 7.78 45.56 

E.P.-EC.NRS. 5 46 5.56 51.12 

EC.NRS. 9 55 10.00 61.12 

N.S. 35 90 38.89 100.01 

 

        

SUM 90   100.01   

Table 4.5. 1     Summary of Question T14b  proof schemes    

NS is the biggest group here, and rises considerably from 20 (22.22%)  in T14a to 35 

(38.89%) in T14b. The D.T. group follows in size, with 17 (18.89%) cases.  Overall 

D.T. proof scheme appears the most 34 occurrences (37.78%) among the various 

proof schemes. The EC.NRS.  proof scheme follows,  at  29 (32.23%), and finally the 

E.P. proof scheme appears in total  14 (15.56%) times. The E.I. proof scheme is not 

present,  a normal consequence of the structure of Question T14b which does not lend 
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itself to empirical trial. The general picture is as expected because, as in T13 and T14a 

the participants have to provide proofs based on logical assumptions and definition 

without having been taught to do so, and thus a number of problems arise regarding 

the use of mathematical definitions, the properties of mathematical objects and 

mathematical terminology. Many participants fail to formulate their thoughts properly 

because of these problems, combined with their main difficulty in distinguishing 

between the data and the conclusion. However the presence of D.T. proof scheme 

either alone or in combination with others proof schemes is encouraging. 

4.6  Analysis of responses to Question T15a 

 The Year 8 curriculum stipulates teaching the Pythagorean theorem and  its 

converse, which are formulated in the textbook as follows:  

  In every right-angled  triangle the sum of the squares of the two perpendicular 

         sides is equal to the square of the hypotenuse […] 

  If in a triangle the square of the biggest side is equal to the sum 

  of the squares of the two other sides the angle 

        opposite to the biggest side is right.(Vlamos, Droutsas, Presvis, & Rekoumis, 

2010, p. 127)  

A number of activities and exercises using these two theorems can also be found in 

the Year 8 textbook (ibid., pp. 127-131). Question T15 was intended to collect 

information on whether the students could handle this unique case when proof had 

only been taught to them officially in Year 8.  

 Question T15 revealed a problem with characterising the participants’ answers 

according to  Harel and Sowder’s taxonomy. This problem emerged in 25 answers to 

T14a where students  compared 3
2
+4

2
 to 5

2
, correctly found that  3

2
+4

2
=5

2
, and 

concluded that the triangle is a right-angled but made no reference to the converse 

Pythagorean theorem. There are also 26 such answers to T14b, in which 3
2
+4

2
  is 

compared to 6
2
 to arrive at the conclusion that the triangle is not right-angled, but no 
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reference is made to the Pythagorean theorem as an argument justifying this 

conclusion. I decided to accept the parts of these answers with correct calculation of  

3
2
+4

2 
and correct  comparison of the aforementioned sum to 5

2
 or to  6

2 
as evidence of 

a D.T. proof scheme. Where correct reference to the respective theorem is missing 

this was taken as evidence of the EC.NRS. proof scheme.  I made this decision to 

retain consistency of  the criteria used to classify the answers to previous Questions. 

 Under this assumption the analysis of the answers revealed six groups. Five were 

following proof schemes: D.T., D.T.-EC.NRS., E.P., E.P.-EC.NRS., EC.NRS. The 

sixth group is NS. 

 Below I present examples of answers belonging to various proof schemes in the 

order given above.  

 P[14] (see Figure 4.6.1) writes: 

Figure 4.6. 1     Participant’s [14] response to Question T15a 

We apply the converse of the  

Pythagorean theorem according to which if the hypotenuse 
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raised to the second power is equal to the sum of  the squares of the two other 

sides the triangle is a right-angled one:              

5
2
=3

2
+4

2 25=9+16   thus the triangle is a right-angled one 

Participant [14] invokes the appropriate theorem and verifies its validity. In doing so 

she calls the biggest side the hypotenuse. In terminology of mathematics books, 

including  Greek mathematics textbooks, the word “hypotenuse”  is used for the side 

of a right-angled triangle opposite to the vertex of its right angle of the triangle. In this 

respect the word, before having proved the existence of a right angle, is a slight 

inaccuracy which I deliberately ignored characterising the answer as a D.T. proof 

scheme. 

 P [75] (see Figure 4.6.2) writes: 

Figure 4.6. 2     Participant’s [75] response to Question T15a 

                    To verify  that the triangle is  

         a right-angled one we must apply the P.Τ.      thus:                           

                                       the triangle is                                                  4
2
+3

2
 

                         a right-angled one                                                       16+9 
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                                                                                                  25  

                                                                                                        

 

P[75] verifies that triangle ΑΒΓ is right-angled by applying the Pythagorean theorem 

(symbolised as P.T.). In the penultimate line P[75] writes “     25 ”. I see these 

two points in his proof as evidence of the EC.NRS. proof scheme In fact  the theorem 

to be applied is the converse of the Pythagorean theorem and in the equality      

25   the symbol of the second power and of the square root are both misused since 

the equality should be in the form     25  . On the other hand P[75] knows how 

to check whether triangle ΑΒΓ is a right-angled. Thus his proof also provides 

evidence of a D.T. proof scheme and his  answer is characterised a mixture of  D.T. 

and EC.NRS. proof schemes. 

 P[48] (see Figure 4.6.3) writes: 

Figure 4.6. 3     Participant’s [48] response to Question T15a 

   5 
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                  (sco)                                               Angle B is 90° 

Participant [48] perceives the right angle in triangle ΑΒΓ, as the angle with the vertex 

at point B by just looking at the figure. All that we have here is evidence that the 

student knows what a right-angled triangle is: a triangle with one right angle. But 

P[48] answers the question asking which of the three angles of the triangle ΑΒΓ is the 

right-angled one by naming the angle  ̂, without any logical justification. In this 

respect one can reasonably claim evidence of an E.P. proof scheme, the main aspect 

of which is the perception of properties of plane figures from the shape they visually 

seem to have without logical justification. 

 P [91] (see Figures 4.6.4 & 4.6.5) writes: 

Figure 4.6. 4     Participant’s [91] response to Question T15a  

 

Figure 4.6. 5     Participant’s [91] response to Question T15a 
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 [Figure 4.6.4] If we name the hypotenuse  

X the meaning of which is AB=X then we will prove it with PT. 

According to PT the length of the sides  

cannot be calculated but we know for sure 

[Figure 4.6.5] that the triangle is a right one since  

the angle ΑΓ=90° 

Participant [91] gives to AB the symbolic name X writing AB =X , but in what follows 

use anywhere the symbol  X. Thus remains incomprehensible the symbol’s X meaning 

and seems to be just an arbitrary action. P[91] then asserts the impossibility of 

calculating the lengths of the sides of triangle ΑΒΓ; however, these are given in the 

figure and consequently there is no need to calculate them. These two points in her 

answer, both of which are arbitrary, are evidence of an EC.NRS. proof scheme. 

Finally P[91] declares the triangle as right-angled because “ΑΓ=90°”, thus continuing 

to develop an EC.NRS. proof scheme with this last arbitrary angle symbol comprising 

two letters. Probably she means angle    ̂ but fails. While she sees that the angle is a 

right angle she does not feel any need to justify this with logical arguments. And thus 

this is an E.P. proof scheme, and in aggregate the answer is characterised by a mixture 

of E.P. and EC.NRS. proof schemes. 
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 P[50] (see Figure 4.6.6) writes: 

Figure 4.6. 6     Participant’s [50] response to Question T15a 

4
2
+5

2
+3

2
=8+10+6=25 

Participant [50] gives a very abbreviated EC.NRS. proof scheme. First, there is no 

word of explanation regarding the purpose of the calculation made; second, every 

power is wrongly calculated; and third, the sum of the three numbers is ambiguously 

written.  I think these three points offer enough evidence to justify this single-line 

proof as an EC.NRS. proof scheme 

Table 4.6.1 illustrates the general picture of the answers given to Question T15a. 

The disproportionality of the 58 (64.44%) answers in the D.T.-EC.NRS. group of 

proof schemes compared to numbers in the other groups is due to the fact that some 

answers reveal practical knowledge of how to check whether a triangle is a right-

angled one but do not clearly refer to the converse Pythagorean theorem, thus 

providing evidence of  a D.T. proof scheme on the one hand and an EC.NRS. proof 

scheme on the other. Only five  (6.67%) answers invoked the converse Pythagorean 

theorem and provided generally correct calculations, thus qualifying as D.T. proof  

schemes.  
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Table 4.6. 1     Summary of  Question T15a  proof schemes    

 

 

 

 

 

 

 

PROOF SCHEMES OBSERVED IN THE RESPONSES TO QUESTION T15a 

PROOF 

SCHEME 

FREQUENCY 

CUMULATIVE 

FREQUENCY 

RELATIVE 

FREQUENCY (%) 

CUMULATIVE 

RELATIVE 

FREQUENCY (%) 

D.T. 5 5 5.56 5.56 

D.T.-EC.NRS. 58 63 64.44 70.00 

E.P. 2 65 2.22 72.22 

E.P.-EC.NRS. 1 66 1.11 73.33 

EC.NRS. 5 71 5.56 78.89 

N.S. 19 90 21.11 100.00 

     
SUM 90   100.00   
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4.7 Analysis of responses to Question T15b 

 I explained the problem emerged when categorising the answers to T15a and T15b 

in section 4.6. I repeat here only that any answer not appealing explicitly to the 

Pythagorean theorem is accepted as D.T.-EC.NRS.  if it contains comparison of  6
2
 to 

3
2
+4

2
   correct calculations and the conclusion that the triangle is not a right-angled 

one. 

 Under these assumptions as in the  case of T15a, the answers fell into six groups 

presented here: D.T., D.T.-EC.NRS., E.P., E.P.-EC.NRS., EC.NRS; the sixth group is 

that of NS. 

 I present examples of the answers in the same order. 

 P[53] (see Figure 4.7.1) writes: 

Figure 4.7. 1     Participant’s [53] response to Question T15b 

(sco)                           6
2
  3

2
+4

2
                    this triangle 

(sco)                           36=9+16                     does not verify 
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                                                                             the Pythagorean theorem thus 

                                              36=25                  it is not a right-angled triangle 

Participant [53] checks if  6
2
  3

2
+4

2
 is valid and finds it is not; she thus concludes 

that the triangle is not a right-angled one since it does not satisfy the Pythagorean 

theorem. Her answer is adequate and is characterised as a  D.T. proof scheme. It is 

worth noting that she uses the same reasoning when answering T15a. This illustrates 

the problem that arose in the categorisation of T15 answers. Many participants turn to 

the Pythagorean Theorem whether they have to check equalities as           5
2
  3

2
+4

2
 

or as 6
2
  3

2
+4

2
. They have not understood that checking if   5

2
  3

2
+4

2 
 means that 

the
    

converse Pythagorean is applied. Neither have they understood that checking if 

6
2
  3

2
+4

2 
which is not valid is equivalent to arguing that the triangle is not right-

angled because otherwise the Pythagorean theorem would be valid which is not.  

According to the convention I have used throughout to classify  the responses this 

answer  to T15b is adequate and thus is a D.T. proof scheme. 
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 P [72] (see Figure 4.7.2)  writes: 

Figure 4.7. 2     Participant’s [72] response to Question T15b 

the triangle ΔΖΕ is not 

a right-angled one because 3
2
+4

2
=6

2
      9+16=36 

25=36cm   (sco) this is not valid thus it is not  

               a right-angled one        

Participant [72] asserts correctly that triangle ΔΖΕ is not a right-angled but does not 

refer to any theorem, just as in his answer to T15a, as well which is interesting. Thus 

both P[72] and P[53] illustrate the problem of the categorisation of proof schemes: 

few participants  answered  both T15a and T15b  with reference to the correct 

theorem. Thus as defined earlier P[72]’s answer is a D.T.-EC.NRS. proof scheme 

because on the one hand he knows what to do and on the other he does not have a 

clear of which theorem is applicable. 
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 P[39] (see Figure 4.7.3) writes: 

Figure 4.7. 3     Participant’s [39] response to T15b 

           because (sco) the angle (sco)                                                                         

(sco) E is not 90°  

Participant [39] perceives angle  ̂ as not a right angle without feeling any need to 

logically justify his perception. Perceptions of properties of a figure that are not 

justified or not given as data indicate an  E.P. proof scheme. P[39] does not refer to 

the other angles in the figure. Triangle ΔΕΖ could have been a right-angled triangle, 

for example, with vertex at Δ or Z. Probably P[39] perceives these angles as acute. It 

is worth noting that P[39] does not  answer T15a at all. The crossed-out sentence in 

T15a as far as I can make out, read: “to prove whether the triangle is a right one I will 

apply the Pythagorean theorem”.  However, no application of the Pythagorean 

theorem is to be seen. In summary, the answer is classed as an E.P. proof scheme.   
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 P[56] (see Figure 4.7.4) writes: 

Figure 4.7. 4     Participant’s [56] response to T15b 

                           Neither angle ΔZ nor ΔΕ nor 

             ZE are right angles. Thus this   

             triangle is not  a right-angled one 

Participant [56] is more consistent than P[39] in her perception that triangle ΔΕΖ is 

not a right-angled. She refers to all the angles of triangle ΔΕΖ perceiving none of them 

as right angles. In doing so she misuses the angle symbol and symbolises them with 

two capital letters. Thus on the one hand her proof scheme is E.P. because she does 

not feel any need to justify, logically or by reference to the data given  her statement 

that the angles of triangle ΔΕΖ are not right angles; on the other hand the misuse of 

symbols provides evidence of the EC.NRS. proof scheme. Thus her answer provides 

evidence of a mixture of the two. Her answer  to T15a checks whether the triangle is a 
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right-angled one by calculating   3
2
+4

2
  and finding it equal to 5

2
 but again without 

explanation.   

 P[38] (see Figure 4.7.5)  writes: 

Figure 4.7. 5     Participant’s [38] response to Question T15b 

To prove that the triangle  

is not a right-angled one  I will apply the Pythagorean theorem      

                             4
2
=3

2
+6

2 16=9+36 16=45 

the triangle is not right-angled  because the analogy I found 

by the Pythagorean theorem is not correct. 

P [38] first announces that she will apply the Pythagorean theorem to prove that the 

triangle is not a right-angled one, but in doing so she writes 4
2
=3

2
+6

2
  to arrive at 

16=45.  She  has not understood that when checking whether a triangle is a right-

angled triangle, in all cases, the square of the length of the longest side is compared to 

the sum of squares of the lengths of the two remaining sides, because the biggest 

angle is to be found opposite the longest side of a triangle. What P[38] does reminds 
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of relational and instrumental understanding.  In the  Harel and Sowder’s taxonomy 

misuse of the criteria for judging whether a triangle is right-angled or not is evidence 

of EC.NRS. proof scheme. P[38] is also confused in her answer to T15a  regarding  of 

which side the square should be computed and compared to the sum of the squares of 

the remaining sides. This is a strong indication of systematic misuse of the criteria in 

question. 

 Table 4.7.1 illustrates the general picture of proof schemes observed in the answers 

to T15b. Table 4.7.1 shows that there are 26 (28.89%)  D.T. answers to Question 

T15b compared to  5 (5.56%) for  T15a. This indicates that the participants do not 

have a clear idea of when the Pythagorean theorem and when its converse is the 

correct argument to use.  Furthermore only P[57] clearly appeals to the converse 

Pythagorean theorem in answering to T15a as well as to the Pythagorean theorem in 

answering T15b. The same participant demonstrates D.T. proof schemes in her 

answers to questions T11, T13, T15a, and T15b but does not answer Questions T12, 

T14, T16.  Another element of the answers to T15b is the lack of E.I. proof schemes, 

because the nature of the question leaves little space for a proof scheme of this kind,  

while there are five instances of the E.P. proof scheme. Finally the EC.NRS. proof 

scheme appears in total more  in T15a and in T15b than in the other questions because 

I had to distinguish the answers appealing to the appropriate theorem from those that 

did not. As a result the total number of EC.NRS. raised higher since every answer not 

appealing to a theorem is considered as EC.NRS. 
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PROOF SCHEMES OBSERVED IN THE RESPONSES TO QUESTION T15b 

PROOF 

SCHEME 

FREQUENCY 

CUMULATIVE 

FREQUENCY 

RELATIVE 

FREQUENCY (%) 

CUMULATIVE 

RELATIVE 

FREQUENCY (%) 

D.T. 26 26 28.89 28.89 

D.T.-EC.NRS. 37 63 41.11 70.00 

E.P. 4 67 4.44 74.44 

E.P.-EC.NRS. 1 68 1.11 75.55 

EC.NRS. 4 72 4.44 79.99 

N.S. 18 90 20.00 99.99 

SUM 90 

 

99.99 

 

Table 4.7. 1     Summary of  Question T15b  proof schemes         
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4.8 Analysis of responses to Question T16 

 At first sight the Question T16 is identical to Question T11 in this respect. There 

were two reasons for giving the participants a question that is almost identical to T11: 

(a) to test whether the slight change of context in comparison to Question T11 would 

provoke different answers and to what extent; the words proof or prove are not used 

and the triangle is an isosceles one; (b) to detect whether the students would be misled 

by the figure and perceive the triangle as a right-angled, because although it is not it 

bears a strong resemblance to a right-angled triangle.  This idea, which I have 

mentioned in some occasions earlier, comes from Harel and Sowder (1998, p. 257) in 

whose example a student perceives a parallelogram as a square.  

 These answers fell into five groups: the four proof schemes: D.T., D.T.-EC.NRS., 

EC.NRS., E.P.-EC.NRS. , and the NS group. 

 Below I present examples of various proof schemes in the order given above. 

 P[72] (see Figure 4.8.1) writes: 

Figure 4.8. 1     Participant’s [72] response to Question T16 
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                                        Since the angles of  every triangle  have sum 

                                                                   180°  then 

                                                                                              (sco) we add 

                                                                   the angles  

                                                                          ̂ &     ̂ 

                                                                   &  the sum  

                                                                      we subtract it  

                                                                from 180 

                                                                 thus     ̂ 

                                                            is  92° 

P[72] gives an adequate answer,  providing  evidence of  a D.T. proof scheme.  Indeed 

P[72] appeals to the sum of the angles of a triangle. On this basis  he subtracts the sum 

of  angles    ̂ and     ̂ from 180 degrees to find 92°. The calculations find the 

desired angle are visible beside the given figure of the triangle. P[72]’s response to 

Question T11 also included evidence  of  a D.T. proof scheme.   

 P [11] (see Figure 4.8.2)  writes: 

Figure 4.8. 2     Participant’s [11] response to Question T16 

                    Since we have    ̂  44°    ̂  44° 
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                     then 44+44+ΒΑΓ=180°  (sco)    ̂  180  

                                                                         88    ̂  92° 

                                                                     ̂  92° 

Participant [11] uses the theorem of the sum of the angles of a triangle to calculate the 

correct value of  angle    ̂  92°. In doing so, to write the sum of the given angles 

she uses the arbitrary symbolism “   ̂  44°    ̂  44°”. Thus the answer provides 

evidence of a D.T. proof scheme, there is also evidence of an EC.NRS. proof scheme 

in the arbitrary symbolism for the sum of the given angles. Thus the answer is a 

mixture of D.T. and EC.NRS. proof scheme, as was her answer to T11, which also 

included arbitrary symbolism.  

 P [10] (see Figure 4.8.3)    writes: 

Figure 4.8. 3     Participant’s [10] response to Question T16 

The measure of angle    ̂ is 44°  

                      because the triangle is isosceles 

Participant’s [10] answer is not adequate. He asserts that “the measure of the angle 

   ̂ is 44°  because the triangle is isosceles”. The triangle is in fact isosceles because, 

according to the data given it has already two equal angles    ̂ and     ̂ both 
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measuring 44°. Consequently if  angle    ̂  had been 44° triangle ΑΒΓ would have 

been an equilateral triangle; but as an equilateral  triangle,  all three angles must be 

equal to 60°.  Thus the following facts escape P[10]’s  attention: (i) a triangle with 

three equal angles cannot be an isosceles triangle but is equilateral;  (ii) a triangle with 

three equal angles should have angles of 60° ; and (iii) the sum of three angles 

measuring each one 44° is equal to 132° and not 180° as it should be. Thus P[10] 

misuses the theorem on the sum of the angles of a triangle as well as  the terminology 

calling a triangle, necessarily equilateral according to his thoughts, isosceles. But 

arbitrary misuse of theorems and terminology is evidence of an EC.NRS. proof 

scheme. 

 P[92] writes (see Figure 4.8.4): 

 

Figure 4.8. 4     Participant’s [92] response to Question T16 

The measure of the angle of  

                               ΒΑΓ is 178° because B and Γ  

                                                                   are equal  

                                                              and A  



[186] 

 

                                                                    is a right  

                                                                    angle and  

                                                             thus  

                                                                                         I add them all together  

                                                                    I take the  

                                                                      sum 178°.  

                                                                               The angle    ̂  

                                                                    is 178° 

P[92]’s  answer is not adequate. He thinks that he is being asked to find the sum of the 

angles of  triangle AΒΓ, as this becomes obvious not only from his script but also 

from the numbers he has written on the figure. In the script he asserts that “…B and Γ 

are equal and A is a right angle…” and he has written 90° in the figure in angle     ̂. 

Additionally the symbol    ̂ appears to mean all the angles of  triangle ABΓ to P[92],  

which is why he concludes his answer “Angle    ̂ is 178°”. In fact 

178°=44°+44°+90°. Thus P[92] is the only participant who perceives angle    ̂ as a 

right angle, in this respect offering evidence of an E.P. proof scheme. The rest of his 

proof is arbitrary and irrelevant: he adds up the angles of triangle ABΓ to arrive at 

178°,  which constitutes a misuse of the theorem on the sum of the angles of a 

triangle, which is always 180°. Thus his arbitrary misuse of theorems and terminology 

provides evidence of an EC.NRS. proof scheme and his answer is characterised as a 

mixture of both  EC.NRS. and E.P. proof schemes. 

 Table 4.8.1 illustrates the general picture regarding the various proof schemes 

given as answers to Question T16. 

In general the theorem on the sum of the angles of a triangle is widely known and thus 

the 56 (62.22%) D.T. answers naturally result from this. However,  some points 
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regarding the D.T. answers given to both T11 and T16 are worth noting: 46 of  the 61 

(67.78%) participants  who gave D.T. answers  to T11 also  gave a  D.T. answer to 

T16. In other words, for various reasons 15 participants failed to articulate a D.T. 

proof answering T16: 5 gave an EC.NRS. answer and  10 gave an NS answer. If we 

reverse the direction of observation,  of the 56 participants who gave T16 a D.T. 

answer, 46 participants  also gave a D.T. answer to T11. The other  10 participants 

gave a D.T.-EC.NRS. answer for T11. The increased  number in the NS answers to 

 

PROOF SCHEMES OBSERVED IN THE RESPONSES TO QUESTION T16 

PROOF 

SCHEME 

FREQUENCY 

CUMULATIVE 

FREQUENCY 

RELATIVE 

FREQUENCY (%) 

CUMULATIVE 

RELATIVE 

FREQUENCY (%) 

D.T. 56 56 62.22 62.22 

D.T.-EC.NRS. 2 58 2.22 64.44 

EC.NRS. 11 69 12.22 76.66 

EC.NRS.-E.P. 1 70 1.11 77.77 

N.S. 20 90 22.22 99.99 

     
SUM 90 

 

99.99 

 

Table 4.8. 1     Summary of  Question T16  proof schemes         

T16 is also important : there are  20 compared to 4 for T11. Of these, 2 participants 

answered neither T16 nor T11. Of the remaining 18, 10 gave D.T. and 8 D.T.-

EC.NRS. answers to T11. The essence of these numbers is the instability that 
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characterises the participants’ attempts to articulate D.T. answers facing the definite 

questions. A slight change of  context disoriented a number of participants. The E.I. 

and especially E.P. proof schemes are weakly represented: only one participant 

perceived the triangle T16 as right-angled. 
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4.9 Summary 

 This research project has scrutinised students’ perceptions of proof at the 

beginning of Year 9 aimed by means of the T1pre-proof test. The small size of the 

research sample and small number of questions do not allow generalisation of the 

results. Below I briefly recapitulate some of my observations. Within the 

aforementioned methodological context I am going briefly to recapitulate some 

observations. 

QUESTIONS OF TEST T1 

PROOF 

SCHEMES  

T11 T12 T13 T14a T14b T15a T15b T16 

D.T. 67.78 31.11 15.56 24.44 18.89 5.56 28.89 62.22 

D.T.-E.P. 0.00 0.00 4.44 0.00 2.22 0.00 0.00 0.00 

D.T.-EC.NRS. 24.44 33.33 6.67 6.67 16.67 64.44 41.11 2.22 

E.I. 0.00 0.00 1.11 2.22 0.00 0.00 0.00 1.11 

E.I.-EC.NRS 0.00 0.00 2.22 0.00 0.00 0.00 0.00 1.11 

E.P. 0.00 0.00 23.33 15.56 7.78 2.22 4.44 0.00 

E.P.-EC.NRS. 2.22 1.11 13.33 11.11 5.56 1.11 1.11 1.11 

EC.NRS. 1.11 8.89 4.44 17.78 10.00 5.56 4.44 10.00 

NS 4.44 25.56 28.89 22.22 38.89 21.11 20.00 22.22 

SUM 99.99 100.00 99.99 100.00 100.01 100.00 99.99 99.99 

Table 4.9. 1     Percentages of proof schemes observed per Question of test T1 
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 Table 4.9.1 illustrates the whole picture of test T1. In the first column each of the 

rows from 3 to 11 contain a name of a proof scheme or mixture of proof schemes 

observed by the analysis of the students’ scripts. In the second row, each of the 

columns from 2 to 8 contains the name of a respective question of the T1 test. Each 

cell formed by the aforementioned rows and columns contains the percentage reached 

by the respective proof scheme or mixture of proof schemes in the respective 

question.  

 The most commonly-encountered proof schemes are the D.T. followed by D.T.-

EC.NRS mix and then by NS. There is a rather weak presence of the rest of proof 

schemes and mixtures of proof schemes in the research sample. Charts 4.9.1 and 

4.9.2 show the number of answers evidencing D.T. proof scheme per Question and 

total D.T. appearance per Question. In the bar of each chart one can read the 

corresponding percentage. The number of D.T. per Question is an indicator of the 

participants’ readiness and preparedness to work with proof issues. Thus specifically 

in what regards the D.T. proof scheme (see charts 4.9.1 and 4.9.2) it can be said that: 

 The number of D.T. answers is diminishing when the participants have to 

answer with logical arguments combining properties and given data in order to 

reach a conclusion. Nevertheless, the fact that proof is not yet taught to them 

underlines the importance of the fraction of them that managed to deliver 

proofs of this quality even so.  Besides it had to be expected that students not 

yet taught proof should have the most problems dealing with questions 

demanding logical thinking. 

 The number of D.T. answers raise when the participants have to answer 

questions where calculations based on widespread knowledge is needed, as the 

sum of the angles in a triangle.  
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 In what concerns T15a and T15b the ‘irregularity’ observed in D.T. answers is 

explicable as follows: The participants practically seem to ignore what the 

converse of the Pythagorean Theorem is. It seems that for the majority of 

participants if a relation has the form a
2
+b

2
=c

2
  and either they have to apply 

it or test its validity, for them it is the Pythagorean theorem. Thus in T15b 

where indeed the Pythagorean theorem has to be invoked the numbers of D.T. 

are bigger than those of T15a where the converse of the Pythagorean theorem 

has to be invoked.  

 Comparing T11 and T12 one can observe immediately that the change of 

context for applying the same theorem on the sum of the angles in a triangle, 

changes to a certain extent the D.T. number of answers. 

 The same as in the previous comment is valid when one compares T11 and 

T16. This time, however, the reduction in D.T. answers is substantially smaller 

due in all likelihood to simpler and only change from a scalene triangle to an 

isosceles one. Anyway it is there signalling that even in a small number there 

are participants that cannot deal successfully with small context changes of the 

in respect with the applying of the same principle. 
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Chart 4.9. 1     D.T. proof scheme percentage per Question  in bar chart form 

Last but not least, the Harel and Sowder’s taxonomy of proof schemes  proves to be 

applicable even in Greek educational environment. The particular aspects of their 

presence need in the future to be further analysed but D.T., EC.NRS., E.I., E.P. proof 

schemes seem to characterize the answers of the participants even though E.I. and 

E.P. are of relatively low numbers. The various proof schemes that have been so far 

 

Chart 4.9. 2     Total D.T. proof scheme percentage per Question  in bar chart form 
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encountered  are functions of the Questions. In other words some proof schemes have 

not been encountered because the Questions did not leave much space for them. I 

speak here of EC.A. and EC.R. proof schemes because the D.A. proof schemes were 

excluded from the beginning. 

 I rest the case of further conclusions for the last chapter and I pass now to chapter 

five where I present the analysis of the T3 test.  
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CHAPTER 5: ANALYSIS OF T3 DATA  

5.0 Introduction  

 In this chapter I present the analysis of the T3 test, which was taken by 85 of the 92 Year 9 

students at the beginning of May 2011. T3 aimed to investigate the students’ ability to prove 

algebraic relations such as identities and solve geometrical problems involving, for example, 

congruency of triangles theorems. The relevant material, including about 22 hours of lessons 

on proof, had been taught between the end of October 2010 and March 2011. 

 The presentation of T3 is as follows: first I present each Question and a brief adequate 

answer. This is followed by selected examples of answers evidencing different proof schemes 

according to the Harel and Sowder’s taxonomy. The concluding section includes general 

comments on the participants’ answers and a table containing the numerical data from the 

characterisations of the student answers, grouped by proof schemes (or combinations of). I 

have only used combinations of up to two proof schemes. 

 As mentioned before the use of the symbols of implication and logical equivalence are not 

taught systematically either before or during Year 9. Consequently I do not take their use into 

account when I classify a proof as containing evidence of the D.T. proof scheme group, if the 

answer is otherwise adequate.  

5.1 Analysis of responses to Question T31 

 This algebra question was intended to explore how well the students had learned to use 

fundamental algebraic identities and symbols, such as the square root symbol. The underlying 

aim was to explore whether student answers – by trying specific values for a, and b – would 

contain evidence of the empirical inductive (E.I.) proof scheme. For example, some students, 

seeing the relation a
2
+b

2
=5

2
,  may think that numbers a, and b have the values 3 and 4 or 4 

and 3. Such a perception is probably due to the fact that a triangle with sides of lengths 3, 4, 5 

is a right triangle and thus reminds students of 3
2
+4

2
=5

2
 of the Pythagorean Theorem. 
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Substituting the values 3, and 4 for variables a, and b would lead me to characterise an 

answer as E.I. 

 I found evidence of six proof schemes: D.T., D.T.-EC.NRS., E.I., E.I.-EC.NRS., and 

EC.NRS. and NS. In the following I present examples of the various proof schemes in that 

order. 

 P[08]   (see Figure 5.1.1) writes: 

Figure 5.1. 1     Participant’s [08] response to Question T31 

Participant [08] gives an adequate answer to T31.  First he gives the relations 5
2
=a

2
+β

2
 and 

( ) ( ) 1253β-2α2β3α
22

=++  and then takes the left side of the latter and expands the 

identities, making the proper reductions and finding 5(a
2
+β

2
) which is correct. Then he writes 

5(a
2
+β

2
)=125, by which he means that the  left side, which has been transformed to 5(a

2
+β

2
), 

must now be equal to 125. From 5(a
2
+β

2
)=125 he concludes that  5

2
=a

2
+β

2
.  There he stops 

because this is the first given relation. Indeed there is a problem of logical equivalence which 

I put aside, because P[08] shows that he can use the symbol of square root correctly, knows 

how to expand  the identities (A B)
2
 and operates flawlessly. In this respect this answer 

provides evidence of a D.T. proof scheme. 
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P[37]  (see Figure 5.1.2) writes: 

Figure 5.1. 2     Participant’s [37] response to Question T31 

The E.I proof scheme has a very strong presence in P [37]’s answer.  Indeed, having given a 

proof to the Question T31, P[37] continues to assign values for α and β, (α=3 and β=4; and 

α=4 and β=3). In line 9 of his script he writes “Because of the Pythagorean Triad…” aiming 

to justify what follows, and continues towards verifying that numbers 3 and 4 can be accepted 

as values for α and β. Probably he has been influenced by the Pythagorean Triad 3, 4, 5 and 

so he finds it natural to substitute definite values for a and b. What seems to escape his 

attention is that numbers α and β are real according to Question T13.  For example, one could 

have observed that ( ) ( ) 25232
22

=+ where both values √   and  √   are irrational, i.e. 

real numbers. The conjecture that P[37], and other participants who offered the same 

justification for the values of α and β, may think that numbers are integer or rational always 

and probably have not understood the existence of irrational numbers could be plausible. 

Thus P[37]’s  need to substitute integer values for a and b provides evidence of an E.I. proof 
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scheme. However he gives an adequate answer regarding the proof of the given relation 

which also provides evidence of the D.T. proof scheme. Under these considerations P[37]’s  

answer is classified  as containing evidence of a mixture of E.I. and D.T. proof schemes.  

 P[85] (see Figure 5.1.3) writes: 

Figure 5.1. 3     Participant’s [85] response to Question T31 

Although P[85]’s answer seems to have characteristics of the  D.T.  proof scheme there are 

also signs of arbitrary use or misuse of symbols. P[85] expands the parentheses but fails to 

use the symbol for the product of the square roots correctly. Thus the term ( )( )2b3a2   in 

the first parenthesis takes the irrelevant form 12αβ. The mistake is repeated in the expansion 

of the second parenthesis giving  12αβ. Probably P[85] thinks that the product of two square 

roots leads to the elimination of the square root symbol, ignoring the fact that the radicands 

must be the same for the elimination to be valid as in the case of ( ) 222 2
2

== . Thus 

the misuse of the radicals by P[85] seems to relate to this perception of their properties . The 

opposite signs of the previous terms in question make their sum equal to zero; thus the final 

result is not affected by the mistakes. P[85]’s answer provides evidence that he  understands 

what must be done to prove the validity of the given relation and his answer provides 

evidence of  an EC.NRS. proof scheme in his use of symbols. Under these considerations the 

answer is categorised as a mixture of D.T. and EC.NRS. proof schemes. 
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 P[05]  (see Figure 5.1.4) writes: 

Figure 5.1. 4     Participant’s [05] response to Question T31 

P [05] gives an inadequate proof.  He substitutes the values α=3, β=4 before expanding the 

identities; i.e. the second line of his script reads: “Since 5
2
=α

2
+β

2 
then α=3, β=4 (from PT)”. 

By the abbreviation “PT” P[05] means the Pythagorean theorem. In the rest of the proof the 

expansion of the identities is correct and thus the final result of the computations is indeed 

125. However, the need to substitute specific numeric values for the variables provides 

evidence of an E.I. proof scheme and the answer has been classified accordingly. 
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 P [52] (see Figure 5.1.5) writes: 

Figure 5.1. 5     Participant’s [52] response to Question T31 

P [52]’s answer is inadequate. In her proof she makes the substitution α=β=5. This 

substitution of variables without logical justification is a sign of an E.I. proof scheme. At the 

same time this very substitution is evidence of an EC.NRS. proof scheme because there is no 

logical explanation for why α, β should be substituted by 5. On the other hand, if α=β=5,  

then from 5
2
=α

2
+β

2
 one would be led to 5

2
=5

2
+5

2 
, which is not valid. Besides this, P[52] 

expands the parentheses correctly. Her expansion is a misuse of the identities (A±B)
2
  again 

offering evidence of an EC.NRS. proof scheme. Thus P[52]’s answer provides evidence of a   

mixture of  E.I. and EC.NRS. proof schemes and is characterised accordingly. 

 P[72] offers an inadequate answer (see figures 5.1.6 and 5.1.7). In figure 5.1.6 he 

manipulates the relation 5
2
=α

2
+β

2
. This in itself is not a problem to start with, given that 

there are no arbitrary or absurd transformations. However in line 4 of his script he first 

misuses the parenthesis and as a result finds a false product in line 5, which leads him to see 

the expression at hand as a quadratic trinomial in one variable, although it is not in one 

variable. I understand this misperception as he calculates the alleged ‘discriminant’ of the 

alleged ‘quadratic trinomial’ and finds it “‘Δ= 84”. There is no written comment or 
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conclusion, and thus all these procedures remain unexplained. Then the participant leaps to a 

next page and another misuse of the identities resulting in the false relation 5α+5β=125 

(Figure 5.1.7). This arbitrary misuse of symbols is evidence of an EC.NRS. proof scheme and 

P[72]’s answer is characterised accordingly. 

Figure 5.1. 6     Participant’s [72] response to Question T31 (i) 

Figure 5.1. 7     Participant’s [72] response to Question T31 (ii) 

 Table 5.1.1 illustrates the overview of answers given to Question T31.  

The biggest group is that of NS indicating the participants’ difficulty with the question. The 

expansion  of  the  identities combined with the symbol of  the square  root and  the use of the                            
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PROOF SCHEMES OBSERVED IN THE RESPONSES TO QUESTION T31 

PROOF 

SCHEME 
FREQUENCY 

CUMULATIVE 

FREQUENCY 

RELATIVE 

FREQUENCY (%) 

CUMULATIVE 

RELATIVE 

FREQUENCY (%) 

D.T. 12 12 14.12 14.12 

D.T.-E.I. 1 13 1.18 15.30 

D.T.-EC.NRS. 8 21 9.41 24.71 

E.I. 8 29 9.41 34.12 

E.I.-EC.NRS. 15 44 17.65 51.77 

EC.NRS. 12 56 14.12 65.89 

N.S. 29 85 34.12 100.01 

          

SUM 85   100.01 

 
Table 5.1. 1     Summary of Question T31 proof schemes 

relation              to reach the final result seem to have been the difficult aspects of 

Question T31. Indeed the fact that there are only 12 (14.12%) answers characterised as D.T. 

is a strong indicator of these problems. There are 21 (24.71%) answers characterised as D.T.  

in total but only 12 (14.12%) are free of  minor or major errors. This reflects the problems 

inherent in the transition from handling and mastering arithmetical operations to handling and 

mastering algebraic expressions experienced by a substantial number of participants. 

 The expected appearance of E.I. proof schemes indeed occurred in 24 (28.24%) answers in 

total. This is evident in the numerical substitution of the real variables α, β in the relation 

α
2
+β

2
=5

2
 with a variety of values. The tendency to make numerical substitutions is indicator 

of the still immature understanding of the role of the variable.   
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 The highest number of answers,  35 (41.18%), are in the EC.NRS. group, lending evidence 

to the fact that students at this stage make arbitrary misuse of symbols. 

5.2 Analysis of responses to Question T32a 

 In part (a) students might be tempted to substitute numerical values for κ, and λ. Thus 

some presence of E.I. proof schemes was expected. 

 The characterisations of the answers fell into seven groups; the proof schemes D.T., D.T.-

E.I., D.T.-EC.NRS., E.I., E.I.-EC.NRS., EC.NRS. and NS. In the following I present 

examples of each in the above order. 

 P[74] (see Figure 5.2.1) writes: 

Figure 5.2. 1     Participant’s [74] response to Question T32a  

Participant [74] gives an adequate answer.  In the fourth and fifth line of her script she 

asserts:  

Thus for the  (   )(   )   to be equal to κ+λ  the  (κ-λ)  

has to be equal to 1. 

Thus λ+1=κ and κ-1=λ. 

P [74] gives another dimension of an adequate proof. The assertion that from the relation 

(   )(   )      it follows that    =1 is valid:  it draws on the properties of 

number 1 as a neutral element of multiplication. This reminds me of the syntactic and 

semantic proof productions (Weber & Alcock, 2004) because P[74] does not proceed to solve 

for     but correctly perceives the solution for     which she logically proves to be equal 

to 1. The final, correct conclusion  “      and      ”  is neither necessary nor asked 
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for but it appears that P[74] wanted to emphasise the fact that      . Thus the answer is 

characterised as containing evidence of a  D.T.  proof scheme.  

 P[02] (see Figure 5.2.2) writes: 

Figure 5.2. 2     Participant’s [02] response to Question T32a 

P[02]  gives an adequate answer but with the following deficiency: before concluding that κ-

λ=1, instead of proving, he proceeds to substitute for κ-λ  the value 1. The proof begins in 

line 4. In line 5, P[02]   writes: 

If I substitute the κ-λ with 1  

then   

(   )[   ]    (   )       Thus  κ-λ=1 

Up to the point where P[02] writes (   )[  (   )]    the answer is adequate and thus 

can be classified as D.T.. From this point onwards the expected next step would be to observe 

that      , and thus for the product  (   )[  (   )]    to be equal to zero the 

only remaining possibility is that   (   )    which leads to      . But in order to 

prove this fact, P[02] substitutes for     the value 1. The substitution, I think, is evidence 

of an E.I. proof scheme because rather than the logical conclusion previously described, he 

prefers numerical validation to be sure that the product is zero. Thus P[02] is capable of 

manipulating efficiently the algebraic expressions. In this respect his answer provides 
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evidence of  a D.T. proof scheme. The numerical substitution κ-λ=1 instead of the logical 

proof that κ-λ=1, by application of real number properties on (   )[  (   )]    is a 

sign of confusion between what constitutes a proof and what constitutes a verification.  Thus 

the answer offers evidence of an E.I. proof  scheme. Summarising, the answer of P[02] offers 

evidence of both D.T. and E.I. proof schemes and is classified accordingly. 

 P[13] (see Figure 5.2.3) writes:  

Figure 5.2. 3     Participant’s [13] response to Question T32a 

P [13] answer is adequate to a certain extent, but beyond a certain point it is deficient in 

handling the results obtained. Let’s see in detail what happens. Up to line 4 the proof 

develops smoothly. Thus up to this point can be characterised as containing evidence of the 

D.T. proof scheme. In line 5 the problem begins when P[13] concludes that “ 0  or 

01 ”. Even at this point P[13] could have rejected that 0 as κ and λ are 

unequal natural numbers. Instead P[13] accepts the possibility that 0 and continues, 

making another mistake by concluding that κ=λ which he considers impossible as κ>λ. Thus 

we see his logical effort to reject the case 0 . However, this effort is characterised by 

logical gaps and arbitrary assertions providing evidence of an EC.NRS. proof scheme. 

Believing he has correctly rejected the case 0 he concludes that “Answer: 
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     ” on the right of the seventh line of his script.  P[13]’s provides evidence of both   

D.T. and EC.NRS. proof schemes and is characterised accordingly. 

 P[60] (see Figure 5.2.4) writes: 

Figure 5.2. 4     Participants [60] response to Question T32a 

Participant [60] gives an inadequate answer.  Indeed the proof consists of her substituting the 

values 2 and 1 for κ and λ respectively, and then checking the validity of the expression. The 

first line of her script being sco, in line 2 of her script, on the right, she writes “Let κ=2” and 

directly under this substitution in line 3 writes “λ=1” although this is not clearly written. In 

line 3 the verification “(2-1)(2+1)=2+1” can be seen. The procedure of verification 

continuous in line 5 when the participant writes “1∙ 3=3” and in line 6 “3=3 correct”.  A clear 

general conclusion is nowhere to be found. Obviously the verification of the given relation 

for the aforementioned chosen values for the variables is ‘seen as proof’ enough. But the 

perception that any verification of an algebraic relation constitutes a general proof of its 

validity is evidence of an E.I. proof scheme.    

 P[88] (see Figure 5.2.5) writes: 

 

 

Figure 5.2. 5     Participant’s [88] response to Question T32a 
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P[88] gives an inadequate answer. In his script in line 2 he writes (   )   .  No 

explanation is given as to the origin of this assertion. Probably he has the incorrect idea that 

the relation (   )        is valid.  P[88] proceeds in line 3 with a numerical 

substitution of the variables κ  and  λ. It seems that κ takes on the value 3 and λ the value 2. 

No explanation is given for why these particular numbers were chosen. The most plausible 

explanation is that their difference is equal to one. The next step in line 3 is the expansion of 

the parenthesis (3-2)
2 

which, is correct.  Finally P[88] calculates the arithmetical expression  

9-12+4 and verifies that its result is indeed equal to 1. No other explanation or comment is 

offered. P[88] may think that the proof is complete and so no further explanation is needed.  

This answer of P[88] contains the arbitrary relation (   )   . Writing arbitrary relations 

without any logical justification of their validity is evidence of an EC.NRS. proof scheme. On 

the other hand, substituting numerical values for variables without giving a plausible reason 

for doing so, from one stand point, and believing that numerical verification of algebraic 

relations constitute proof from another, is evidence of an E.I. proof scheme. Thus this answer 

is classified as containing evidence of a mixture of E.I. and EC.NRS. proof schemes. 

 P[86] (see Figure 5.2.6) writes: 

Figure 5.2. 6     Participant’s [86] response to Question T32a 

P[86]’s answer offers  is  inadequate. The goal of the proof is to show that κ-λ=1. P[86] 

transforms the hypothesis given             to  (   )(   )     . And then 

writes:  

“as                .” 

It seems that Participant [86] proves that         using as supportive argument exactly 

that what was to be proved, namely that      . But using what is to be proved as data 
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given and proving the obvious         is evidence of arbitrary confusion of data, 

hypothesis, and conclusion and thus evidence an EC.NRS. proof scheme.  

 Table 5.2.1 illustrates the overview of answers to Question T32a. There were 49 (57.65%) 

NS to Question T32a even more than the 29 (34.12%) given to Question T31. The number of 

D.T. answers dropped from 12 (14.12%) in the latter to 7 (8.24%). Of the 12 participants who 

give a clear D.T. answer to Question T31, 6  six did the same  with T32a; and of  the 7 who 

gave a clear D.T. answer to Question T32a,  6 also did for T31 and 1 gave a D.T.-E.I. answer. 

These data indicate many participants’ difficulty in handling Question T32a. 

 D.T. appears 11 times  (12.94%). in the answers to Question T32a, E.I. 15 times  (17.65%) 

and EC.NRS. 19 times 19 (22.35%). There is no appearance of E.P. proof  scheme because 

Question T32a left almost no space for such schemes. Instead the  nature of the data and 

probably the difficulty of T32a, led to the appearance of E.I. proof scheme. 

 Summarising the general handling of proof matters, the participants of the sample found 

many difficulties in  dealing  with  proof  in  a  context that  was more  complicated  than  one  

PROOF SCHEMES OBSERVED IN THE RESPONSES TO QUESTION T32a 

PROOF SCHEME FREQUENCY 

CUMULATIVE 

FREQUENCY 

RELATIVE 

FREQUENCY (%) 

CUMULATIVE 

RELATIVE 

FREQUENCY (%) 

D.T. 7 7 8.24 8.24 

D.T.-E.I. 1 8 1.18 9.42 

D.T.-EC.NRS. 3 11 3.53 12.95 

E.I. 9 20 10.59 23.54 

E.I.-EC.NRS. 5 25 5.88 29.42 

EC.NRS. 11 36 12.94 42.36 

N.S. 49 85 57.65 100.01 

          

SUM 85 

 
100.01 

 

Table 5.2. 1     Summary of Question T32a  proof schemes 
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simply requiring expansion of identities and using algebraic expressions. The structure of 

T32a requires beginning from the data and the hypothesis via the appropriate steps to reach 

the conclusion. This is not yet a field in which many participants feel at ease. 

 And yet the seven answers who offered a D.T. proof scheme shows that even in small 

numbers there are very efficient students in what regards proof at the end of Year 9. 

5.3 Analysis of responses to Question T32b 

 The underlying purpose of T32b was to test whether the students understood the converse 

of a proposition. If they invoked part (a) in solving part (b) then they did not understand the 

difference between the two. This underlying purpose was inspired by various works about 

students’ underpinning problems with implications (Durand-Guerrier, 2003; Epp, 2003; 

Hoyles & Küchemann, 2002). 

 The answers fall into four groups: the proof schemes, D.T., D.T.-EC.NRS., EC.NRS. and 

NS. Eleven participants only calculated the difference 5556
2
-5555

2
 without applying the 

identity A
2
-B

2
=(A-B)(A+B) and these responses are classified as D.T. proofs. Of the 

remaining participants, 19 used the identity, among whom 6 falsely invoked part (a). 

However, I consider these proof as D.T. as well because my purpose was only to investigate 

whether the participants would confuse a proposition and its converse is this way. On the 

bottom line, on the one hand, recognition of the converse is very difficult and on the other 

and from practical point of view since 5556-5555=1 independently of wrongly invoking part 

(a) they arrived at the correct result.  

 In the following I present the examples of these proof schemes in the above order. 
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 P[81] (see Figure 5.3.1) writes: 

Figure 5.3. 1     Participant’s [81] response to Question T32b 

P [81] gives an adequate answer which applies the identity (A+B)
2
 making the following 

transformation: 5556
2
=(5555+1)

2
. In this respect this proof diverges creatively from what I 

have given as an adequate answer, but answers not identical with or in some cases even close 

to the answer proposed above are accepted if they offer an alternative adequate answer.  

There is a minor problem in the last line of the proof where P[81] writes 5556
2
-5555=11111 

instead of  5556
2
-5555

2
=11111:  in other words mistakenly omits the exponent 2 of the 

second power of 5555. I consider this lack negligible mistake and in any case non-systematic. 

Under these considerations the answer is classified as D.T.. 

 P[08] (see Figure 5.3.2) writes: 

Figure 5.3. 2     Participant’s [08] response to Question T32a 

P[08]’s answer is adequate. P[08] uses the identity A
2
-B

2
=(A-B)(A+B), putting  A=5556 and  

B=5555 and proving, by application of the identity, that the relation is true. Thus P[08]’s  

answer is characterised as containing evidence of a D.T. proof scheme. 
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 P[10] (see Figure 5.3.3) writes: 

Figure 5.3. 3     Participant’s [10] response to Question T32a 

P[10] gives an adequate answer, preferring  the direct computation 5556
2
=30869136 and 

5555
2
=30858025 and then calculates the correct result 11111 subtracting the latter result 

from the former. It is true that omits the exponent ‘2’ of the second power of 5555 but I put 

aside this mistake as the calculation is correct. Thus the answer has been categorised as a 

D.T. proof scheme. 

 P[67] (see Figure 5.3.4) writes: 

Figure 5.3. 4     Participant’s [67] response to Question T32a 

Participant [67] gives an ambiguous answer. She writes: 

If we multiply them by themselves and then we subtract  

from one another then it is valid that 5556
2
-5555

2
=11111  

(sco) more simple we can suppose that the 2 squares 

yield to us + and  add with one another and then  

5556
2 5555

2
=11111 

From a formal point of view, line 1 and line 2of the script give an adequate answer, 

describing what action has to be taken to prove what the questions asks to. From line 3 to line 

5 the formulation is false because instead of subtraction P[67] proposes addition. I disregard 

this minor mistake because in these lines she simply asserts that the square of a non-zero 
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number is a positive number and says little else. On the other hand there is no evidence that 

she calculated the squares as well as their difference and found them all correctly. From this 

viewpoint the answer is inadequate because it is an arbitrary assertion without any 

justification. Thus the answer is a D.T. proof scheme regarding what must be done, and it is, 

also, an EC.NRS. proof scheme because it contains unjustified assertions. Thus the answer is 

a mixture of D.T. and EC.NRS. proof schemes.    

 P[49] (see Figure 5.3.5) writes: 

Figure 5.3. 5     Participant’s [49] response to Question T32a 

P[49] gives an inadequate answer which he considers complete in line 2, writing  “because 

5556
2 5555

2
=x

2
”. He gives no information about what x is. Neither is there any explanation 

of why this undefined x and consequently x
2
 has the power to prove the relation to be proved. 

The arbitrariness of the assertion is evidence enough to consider the answer an EC.NRS. 

proof scheme.  
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 Table 5.3.1 illustrates the overview of answers to the Question T32b. 

PROOF SCHEMES OBSERVED IN THE RESPONSES TO QUESTION T32b 

PROOF 

SCHEME 
FREQUENCY 

CUMULATIVE 

FREQUENCY 

RELATIVE 

FREQUENCY (%) 

CUMULATIVE 

RELATIVE 

FREQUENCY (%) 

D.T. 30 30 35.29 35.29 

D.T.-EC.NRS. 1 31 1.18 36.47 

EC.NRS. 10 41 11.76 48.23 

N.S. 44 85 51.76 99.99 

  

    

SUM 85   99.99   

Table 5.3. 1     Summary of Question T32b  proof schemes 

 The first thing to observe is that the number of NS is not much smaller than, those found 

in Question T32a, at 44 (51.76%) compared to the latter’s 49 (57.65%). On the other hand 

there are considerably more D.T. answers at 30 (35.29%) compared to 7 (8.24%) for 

Question T32a. Thus, although a significant number of participants found Question T32b 

easier than T32a, for an equally significant number the question was hard to handle. Nineteen 

gave a D.T. answer using the identity A
2
-B

2
=(A-B)(A+B) and eleven calculated the powers 

5556
2
 and 5555

2
,  and  their difference,  to find 11111. Thus the arithmetic nature of the 

question helped those who did not think of using the identity to give a D.T. answer. 

 Question T32b was about specific numbers and so gave no opportunity for E.I. evidence, 

which was not present in any answer. 

 There are 10 (11.76%) clear EC.NRS. answers compared to the 11 (12.94%) answers to 

T32a and a total of 12 (12.95%) compared to 19 (22.35%) for T32a.  
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5.4 Analysis of responses to Question T33ab 

 Part (a) of T33 is an indirect question about what constitutes the proof and what the 

verification of an algebraic relation. If verification is taken for proof then this would be 

characteristic of E.I.  proof scheme. Part (a) is in the spirit of Healy and Hoyles (2000) who 

gave certain arguments to students and asked them to assess which the teacher would judge 

the best and what proof the students themselves would give.  

 In what regards part (b) from the view point any participant: what the participant thinks, 

what the participants’ peers think, and what the teacher as a person with authority thinks. 

Parallel to proof appreciation, the question investigates whether the participants consider a 

persuasive argument to be a proof; it also looks for characteristics of EC.A. proof scheme, 

described by Harel and Sowder (1998, 2007). The EC.A. proof scheme refers to situations in 

which where the student seeks the validity of a proof by referring to an authority such as the 

teacher, a book etc.  

 The answers to T33a fall into: the proof schemes D.T., D.T.-E.I., D.T.-EC.NRS., E.I., 

EC.A., EC.NRS. and NS.  

 The answers to T33b fall into: the proof schemes D.T., D.T.-E.I., D.T.-EC.NRS., E.I., 

EC.A., EC.NRS. and NS. 

 In the following I present in the same previous order of T32a examples of answers and I 

insert examples of T33b if needed to cover all the cases of proof schemes.  
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 P[02] (see Figure 5.4.1) writes: 

Figure 5.4. 1     Participant’s [02] response to Question T33ab 

exercise A3 

a) No (sco)  I do not agree 

I suggest they applied the distributive property 

that is (sco) 

 

(   )(   )  (sco)       (sco)              end 

 

b) The teacher would not agree with them 

P [02] gives adequate answers to both T33a and T33b (see figure 5.4.1). In his answer to 

T33a he disagrees with his peers. He thinks that proof is a procedure that justifies the validity 

of the identity in question in general and does not depend on the definite values of the 

variables involved in it. He explains his opinion by correctly applying the distributive law to 

the product (a b)(a+b). He draws lines showing the multiplications that must be carried out 

according to the distributive law. Carries out the indicated multiplications and after 

simplification finds the correct final result a
2 b

2
. Consequently his answer has been 

characterised as containing evidence of a D.T. proof scheme.  
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 P[02]’s answer to T33b is laconic. He just certifies that the teacher would not agree with 

his peers. Laconic answers are generally difficult to characterise but in the case of Question 

T33ab I have to accept an interdependence of answers. P[02]’s answer to T33a has already 

provided evidence of  an adequate answer, and in a way has already answered both question 

by answering T33a because apparently the teacher would give the same explanation as P[02] 

did. Under these considerations his answer to T33b has been characterised as well as 

containing evidence of a D.T. proof scheme. 

 P[01] (see Figure 5.4.2) writes: 

Figure 5.4. 2     Participant’s [01] response to Question T33ab 

P[01] gives a partly adequate answer because for various reasons she does not completely 

reject the numerical value substitution. P[01] argues: 

       a) I agree partly, but to prove that the relation 

      (   )(   )         is valid for all numbers (since 

      it is an identity) we can do the computations: 

      (   )(   )        

                         

                  

Thus, (sco)  this relation has been proved that it is an identity. 

     b) I believe that the teacher would agree with both  
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     ways, but I think that [the teacher] would consider more correct not to 

    give numerical values to a and b, but to do normally 

    the computations. 

P[01] understands that the general truth of the relation is established by the application of the 

distributive law to the product (a b)(a+b). Nevertheless he does not completely reject the 

use of numerical values.  The answer to T33b reinforces this impression. Indeed, P[01] tells 

that the teacher would agree with both methods and would consider the application of 

distributive law as ‘more correct’. Probably he is influenced by the common practice of 

investigating before embarking on a full proof process. In this sense he leaves room for us to 

believe that, to him, the experimenting with numerical substitutions still has something of a 

proof and is not to be completely rejected in this respect. Sometimes numerical substitutions 

are used as examples in the classroom. However, this is not done with the aim of 

underpinning the role of an example to prove the validity of a relation but exactly the 

opposite, namely to show the insufficiency of resorting to examples as a general proof. 

Namely one can indeed prove that a relation is not generally valid if one finds at least one 

example of numerical substitution making the relation not valid. I have to accept that 

probably P[01] is taking a friendly approach towards his peers and consequently is lenient in 

his criticism of their numerical substitutions. However, his answer differs from those 

categorically rejecting the substitutions as a method of proof and so I decided to classify the 

answer as a mixture of D.T. and E.I proof schemes. 
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 P[82] (see Figure 5.4.3) writes: 

Figure 5.4. 3     Participant’s [82] response to Question T33ab 

P[82] gives a partly adequate answer. P[82] argues: 

“A3a 

I who follow the discussion (sco) I would not agree with 

them because the values cannot have the same value 

since the first parenthesis has negative sign and the other 

(sco) positive. I would suggest to them that they use the difference 

of squares to find  the result they are seeking 

A3b 

I believe that the teacher (sco) would not agree with them 

because they did not carry out the operations with mathematics but simply 

experimented with trials” 

P[82]’s answer to both T33a and T33b  has aspects of adequacy. P[82] does not agree with 

his peers  and believes that it would have been better to use the identity of the difference of 

squares. He says that one does not prove an identity by substituting values in the identity. 

However, the formulation of his premise is flawed. For example, the meaning of the phrase 

“because the values cannot have the same value since the first parenthesis has negative sign 

and the other (sco) positive” is ambiguous. He seems to be saying that the values of the 
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parentheses are different; this is not a valid argument against the use of values but a reality, 

exactly because the parentheses are not identical. Here an element of arbitrariness is to be 

found. P[82] next proposes to apply the difference of squares, but this is exactly the problem 

one has to prove its validity. P[82] proposes the application of the identity  to be proved as a 

proof of the identity. This indicates a confusion of hypothesis and conclusion and is a sign of 

arbitrariness; thus the answer to T32a is  characterised as containing evidence of a mixture of  

D.T. and EC.NRS. proof schemes. The same applies to T33b because again is vague when he 

writes “they did not carry out the operations with mathematics”. But in the analysis of T33a 

the “operations with mathematics” has a controversial meaning. Altogether P[82]’s  answer is 

without the clear meaning as it would have had if he had referred to for instance the 

application of distributive law etc. 

 P[25] (see Figure 5.4.4) writes: 

Figure 5.4. 4     Participant’s [25] response to Question T33ab 

P[25] gives an inadequate answer to both T33a and T33b. P[25] argues: 

α=2, β=1 

(2-1)(2+1)= (s.c.o.) 

1∙3=3 

(2
2
-1

2
)=                              Yes the teacher would agree with them 

4-1=3 

Participant [25] gives an inadequate answer. P[25] does not distinguish clearly between parts 

(a) and (b). It seems that he uses numbers 2 and 1, to which the script refers, and verifies the 
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identity without comment or explanation. However, it is obvious that this part of the answer 

is his own verification of the identity the proof of which is the issue in the discussion of the 

two peers. P[25] in the same vain with his makes numerical substitutions. Thus this part can 

be considered an answer to (a). The need to substitute numerical values for the variables in 

order to check the validity of an algebraic relation without justification and the generalisation 

of the validity beyond the concrete values is a sign of an E.I. proof scheme; in his answer to 

part (b) P[25] writes “Yes the teacher would agree with them” thus he is considering the 

substitution of numerical values as a method that even the teacher proposes and accepts. 

Consequently P[25]’s  answer to part (b) provides also evidence of  an E.I. proof scheme. 

 P[09] (see Figure 5.4.5) writes: 

Figure 5.4. 5     Participant’s [09] response to Question T33ab 

 A3           a
2 b

2
 is factorised as follows (a+b)(a-b) and also is 

 an identity and the law of  identities says that the result 

is valid for whichever values it takes 

A3               No the teacher would not agree he would say to them the  

above and to open their books 

The answers to both parts of the question are inadequate. In the answer to (a) in the question 

the peers are wondering how to prove the identity and whether the substitution of values for 

the variables and the verification of the identity for these values is enough to achieve this. 

P[09]  supports the idea that the identity is valid because it is factorized as follows: 

a
2 b

2
=(a+b)(a b). But the problem is exactly whether this factorization is the logical result 

b 

a 
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of some procedure. P[09] seems to think that there is no need to apply the distributive law on 

the product (a b)(a+b) to obtain after all the simplifications the result a
2 b

2
. At this point is 

worth noting that the identity in the text has the order (a+b)(a b)= a
2 b

2 
whereas P[09] 

writes it as a
2 b

2
=(a+b)(a b). This reinforces the thought that he sees the identity as 

formula prescribed by an authority and thus  P[09] does not feel the need to prove the identity 

because he is convinced that this is the only way to write it and its validity is beyond doubt 

because of  “the law of the identities”. However, the only law that the proof is based on is the 

distributive law. The declarative character of the answer regarding the validity of the identity, 

and the inversion of the order of the text for the formula of the identity constitute evidence of 

an external conviction of the validity of the identity, which is characteristic of an EC.A. proof 

scheme. 

 In the answer to part (b) P[09] thinks that the teacher would repeat the argument in part (a) 

to his peers, so  instead of explaining the procedure for some kind of proof the teacher would 

only confirm that the identity is written like this way because it is written this, and its validity 

is due to “the law of identities”. Additionally, according to P[09], the teacher would urge the 

peers to open their books. Thus P[09] thinks the teacher would repeat to the peers similar 

arguments with P[09]’s with a new element, the strict order “open your books” which is a 

clear sign of seeking an authoritative opinion on the validity of the identity. Seeking the 

opinion of an authority and believing their confirmation of the validity of mathematical truths 

without any logical justification is evidence of  the EC.A proof scheme putting both this and 

P[09]’s answer to T33b into that category  proof schemes.  
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 P[73] (see Figure 5.4.6) writes: 

 Figure 5.4. 6     Participant’s [73] response to Question T33a 

A3)a) Principally and in  my opinion it will not be 

always the same because there are opposite signs in every 

parenthesis and for them to be equal logically in the first 

parenthesis where the sign is negative it must be a number smaller 

then zero in order to have the negative sign 

in front of it so that it would need a parenthesis in which it will be written and 

[consequently 

to be transformed in positive since minus and minus 

                   yields plus 

The translation of P[73]’s script is difficult. Basically P[73] believes that the identity is not 

always valid,  based on the difference between the signs in the two parentheses which, she 

argues, must be the same. Thus she believes that instead of (a-b)(a+b) one should have 

(a+b)(a+b) necessary for a valid identity. She unfolds her argument regarding this change by 

asserting that if  b has a negative sign then this negative sign combined with the minus sign 

before b would give plus. I suspect that she has confused the given identity with the identity 

(a+b)
2
=a

2
+2ab+b

2
. Under this assumption the meaning of the assertion  “in my opinion it 

will not be always the same” is understandable. Thus she supports the arbitrary idea that the 

two parentheses have to be equal to each other. However, if that were possible we would 

have (a+b)
2
 the left side leading to another arbitrary result, namely (a+b)

2
=a

2 b
2
. P[73]’s  
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fails to realise that  if her argument about b were correct,  the minus sign would appear in the 

second parenthesis. Indeed if b= t then (a b)(a+b)=(a+t)(a t). Thus the argument 

regarding the minus sign is arbitrary. The arbitrariness of the various assertions, the 

confusion of identities and even the ambiguous formulation constitute evidence that P[73]’s 

answer offers evidence of an EC.NRS. proof scheme.  

 Tables 5.4.1 and 5.4.2 illustrate the overview of answers to Question T33. Table 5.4.1 

shows that the biggest group of answers to T33a are in the  D.T. group, 38 (44.71%) and 

similarly Table 5.4.2 shows  the corresponding number to be 36 (42.35%). There is a drastic 

improvement  of  student  performance  in  Question  T33  in  comparison  to  T31  and    T32 

PROOF SCHEMES OBSERVED IN THE RESPONSES TO QUESTION T33a 

PROOF 

SCHEME 
FREQUENCY 

CUMULATIVE 

FREQUENCY 

RELATIVE 

FREQUENCY (%) 

CUMULATIVE 

RELATIVE 

FREQUENCY (%) 

D.T. 38 38 44.71 44.71 

D.T.-E.I. 9 47 10.59 55.30 

D.T.-EC.NRS. 4 51 4.71 60.01 

E.I. 8 59 9.41 69.42 

EC.A. 1 60 1.18 70.60 

EC.NRS. 2 62 2.35 72.95 

N.S. 23 85 27.06 100.01 

     
SUM 85 

 
100.01 

 
Table 5.4. 1     Summary of Question T33a proof schemes 

indicating that many participants found Question T33 easier to solve. The total number of 

answers in which some evidence of D.T. proof schemes was found is 51 (60.01%) for T33a 

and 43 (50.59%) for T33b; the highest number so far has been 31 (36.47%) for T32b. 
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Therefore D.T,  numbers are significantly high. Although the participants faced many 

difficulties in handling Questions T31 and T32ab adequately, they appear to recognise an 

acceptable proof when they are presented with one. In their research with prospective primary 

teachers Stylianides and Sylianides (2009) found similar results.  

 In conclusion even if there are considerable difficulties involved in producing a proof the 

appreciation of a proof is rather strong.  

 There are 8 (09.41%) answers to Question T33a that contain evidence of E.I. proof 

schemes and 9 (10.59%) for  Question T33b. There is a total  of  17  (20.00%) appearances of 

PROOF SCHEMES OBSERVED IN THE RESPONSES TO QUESTION T33b 

PROOF 

SCHEME 
FREQUENCY 

CUMULATIVE 

FREQUENCY 

RELATIVE 

FREQUENCY (%) 

CUMULATIVE 

RELATIVE 

FREQUENCY (%) 

D.T. 36 36 42.35 42.35 

D.T.-E.I. 4 40 4.71 47.06 

D.T.-EC.A. 1 41 1.18 48.24 

D.T.-EC.NRS. 2 43 2.35 50.59 

E.I. 9 52 10.59 61.18 

EC.A. 3 55 3.53 64.71 

N.S. 30 85 35.29 100.00 

          

SUM 85 

 
100.00 

 
Table 5.4. 2      Summary of Question T33b proof schemes 

the E.I. proof scheme, alone or with other proof schemes,  in the answers to Question T33a 

and 13 (15.29%) for Question T33b. This is to be expected as these questions lend 



[224] 

 

themselves easily to substitution of numerical values. For similar reasons the E.P. proof 

scheme is completely absent in the answers to both questions.  

 Other important findings here are that only 1 (01.18%)  answer to Question T33a is 

classified as EC.A. and only 3 (03.53%) for Question T33b; and the total number of 

appearances of the E.I. proof scheme (4  or 4.71%) is higher only in T33b. 

 Finally the number of NS remains rather high at 23 (27.06%) for Question T33a and 30 

(35.29%) for Question T33b.  

5.5 Analysis of responses to Question T34ab 

 Part (a) of the question was intended to gather information on the students’ efficiency at 

drawing a figure according to given instructions. If they managed this part (b) can be proved 

using the appropriate congruency criterion for right-angled triangles. In other words either a 

criterion which refers to two pairs of equal corresponding sides or one which refers to one 

pair of equal corresponding sides and one pair of corresponding angles. Thus Question T34b 

was open to the application of more than one congruency criterion for right-angled triangles. 

Attempting this proof the students would provide information on their proof schemes. 

 For T34a I decided to mark a figure as correct if it generally satisfied the following 

criteria: (i) the final result strongly resembles a parallelogram; (ii) the names of the vertices 

are in the right order; (iii) the perpendiculars resemble perpendiculars or the right-angle 

symbol is drawn in the right place. Judging by these criteria I found 55 (64.71%) of figures to 

be correct and 19 (22.35%) not correct; 11 (12.94%) participants neither drew a figure nor 

answered T34b, apart from one who gave an EC.NRS. answer. Among the 19 participants 

who drew incorrect figures 2 offered T34b answers characterised as D.T.-EC.NRS., 1 as E.P., 

2 as E.P.- EC.NRS., 9 as EC.NRS., and 5 NS.  

 The answers to T34b fell into eight groups; the 7 proof schemes group D.T., D.T.-

EC.NRS., D.T.-E.P., E.P., E.P.-EC.NRS., EC.NRS., EC.NRS.-EC.R. and one NS group.  
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 While analysing the students’ scripts I sometimes found it difficult to decide whether an 

answer was characteristic of the E.P. or the EC.NRS. proof scheme. If a participant, for 

instance, named congruent sides without justification I decided to characterise the situation as 

evidence of the E.P. proof scheme. If on the other hand a participant named for instance 

congruent sides with an invalid justification I saw it as characteristic of the EC.NRS. proof 

scheme. 

 When teaching the congruency of triangles, class teacher J underlined the distinction that 

must be made from the beginning between the hypothesis and the conclusion before engaging 

in the proof procedure, and taught the students to write hypothesis and conclusion explicitly.  

Additionally she taught them after accomplishing a proof to explicitly set out not only the 

final conclusion concerning the triangles’ congruency but also the rest of the elements of 

congruent triangles that could be concluded from their congruency. This intended to give the 

students have a holistic idea of the congruency of triangles and to teach them to use these rest 

elements to prove something beyond the initial congruency of triangles. Writing data, 

hypothesis, and conclusion as well as the rest equal elements of triangles proved to be 

congruent might lead to the presence of a ‘ritual’ element in a proof and under certain 

conditions to an EC.R. proof scheme. The EC.R. proof scheme is one of Harel and Sowder’s 

external conviction proof schemes which,  as far as I understand they refer to the negative 

sense when students use a ritual form such as  the traditional two-column proof habitual in 

US educational without productive results. Thus as I understand it we can categorise a proof 

as belonging to the EC.R. proof scheme if is not D.T. otherwise it has no meaning to speak of  

a D.T. ritual proof.  From this viewpoint the ‘ritual’ element as taught by J is present to a 

greater or a lesser degree in 26 of the answers. Of these, 2 have been characterised as D.T., 4 

as D.T.-E.P., 7 as D.T.-EC.NRS., 1 as E.P., 3 as E.P.-EC.NRS., 6 as EC.NRS. and 2 as 

EC.NRS.-EC.R. For all but the latter two I do not believe that the EC.R characterisation 
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would offer anything further of importance to the analysis and, as I mentioned in section 5.0, 

I had decided not to make characterisations of more than two proof schemes at once. 

 In the following I present examples of the participants’ responses in the order given above. 

 P[14] (see Figure 5.5.1) writes:  

Figure 5.5. 1     Participant’s [14] response to T34ab 

β.     HYPOTHESIS   

          ̂   ̂     

         AΔ=ΒΓ 

        ΑΒ=ΔΓ 

       CONCLUSION 

       ΓΒΖΑΔΕ


=  

       PROOF 
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  I compare the (sco) right-angled triangles ΑΔΕ


 and ΓΒΖ


. These have  

AΔ=ΒΓ since ΑΒΓΔ   //gram and thus it has the opposite of its sides 

congruent. Also α=β since α height of  ΑΔΕ


 
 and   β height of ΓΒΖ



but 

at the same time are perpendicular in the //gram and they are heights 

of  ΑΒΓΔ. Thus from the criterion for right-angled  triangles ΓΒΖΑΔΕ


= . 

In her proof P[14] uses the abbreviation “ //gram” meaning parallelogram. Her answer is 

adequate: she invokes the criterion of congruency for right-angled triangles having two pairs 

of respective sides equal. She calls AΔ=ΒΓ a  pair of congruent sides arguing that they are 

opposite sides of a parallelogram, and then names the pair of sides α=β (see Figure 5.5.2)  

and gives as her reason that they are the heights of the parallelogram ΑΒΓΔ.  While her 

formulation is ambiguous, her final argument is that both segments are heights between the 

same parallel sides and so ignoring the ambiguity I have characterise the answer as a D.T. 

proof scheme. 

 P[10] (see Figure 5.5.2) writes: 

Figure 5.5. 2     Participant’s [10] response to Question T34a  
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(b) 

    We compare the triangles ΑΔΕ and ΓΒΖ and they have: 

   (sco)                                    AE=ZΓ 

We compare the triangles ΑΔΕ and ΓΒΖ and they have: 

       (sco)                                    AE=ZΓ 

   (sco)                                    ̂   ̂           

   (sco)                                  ΑΔ=ΒΓ 

    and from the criterion ASA 

    the triangles  ΑΔΕ and  ΓΒΖ  are congruent. 

This is an adequate answer to a certain extent. P[10] invokes the correct elements in order to 

prove the congruency, namely  AE=ZΓ,  ẐÊ  ,  ΑΔ=ΒΓ, but justifies this only by stating 

that  the angles are equal as they are right angles. The congruency of the two pairs of sides is 

not justified by any argument. Thus invoking the congruency criterion is characteristic of 

D.T. proof scheme. Probably P[10] has not a clear idea what kind of congruency criterion she 

is using as she names the applied criterion Angle-Side-Angle. Practically what she writes is 

correct but we do not usually refer to the angle included between two sides if it is a right 

angle. Under these considerations the answer has been finally characterized as a mixture of 

D.T. and E.P. proof schemes. 
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 P[66] (see Figure 5.5.3) writes: 

Figure 5.5. 3     Participant’s [66] response to Question T34ab 

 Triangles ΑΔΕ  ΒΖΓ are congruent because 

   they have one congruent angle    ̂     90°, side α= 

  side β since AB//ΓΔ and α and β are 

  perpendicular to them and finally angle       as 

 ΑΔ//ΒΓ. Thus the two triangles  (sco) (non readable) from the 

 criterion (sco) ASA since they have (sco) angles and the  

 included side congruent 

 P[66] gives a partially adequate answer. He refers to the fact that   ̂         , which 

means that the triangles are both right-angled, and then asserts that α=β. He justifies the last 

equality because the segments in question are perpendicular to the parallel lines ΑΒ and ΓΔ. 
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The formulation is vague but I accept it as valid. Finally he asserts that       because 

ΑΔ//ΒΓ. This part of the answer is not adequate because the assertion is arbitrary in the sense 

that it is not adequately justified. While it is true that angles with parallel sides are congruent 

or supplementary, Year 9 students do not yet know this, and even if they did, the argument is 

not complete because it has not excluded the case of supplementary angles. To this end it had 

sufficed to observe that both angles in question are complementary to the equal angles  ̂ and  

 ̂. Arbitrary and irrelevant justifications are taken as evidence of the EC.NRS. proof scheme. 

According to the above, this answer provides evidence of a mixture of  D.T. and EC.NRS. 

proof schemes 

 P[44] (see Figure 5.5.4) writes: 

    Figure 5.5. 4     Participant’s [44] response to Question T34ab 

 (b)  If  the triangles ΑΔΕ and ΓΒΖ have an angle congruent         

           and two sides congruent then from the criterion of equal  

           triangles (which asserts that if 2 triangles have 2 sides 

           and an angle congruent then they are congruent) our triangles are 

           congruent. 
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P[44] gives an inadequate answer to T34b and draws an incorrect figure. He invokes a falsely 

formulated criterion, but the necessary congruent elements are all indicated in his figure. The 

criterion regards the pairs of sides ΑΔ=ΒΓ, ΔΕ=ΖΒ and the angles  ̂   ̂; however, none of 

these congruencies are supported by logical justification. Not logically justifying properties 

that one asserts are valid because one sees them as valid in a figure is evidence of the E.P. 

proof scheme. Thus the answer of P[44] is characterised accordingly as an E.P. proof scheme. 

 P[11] (see Figure 5.5.5) writes:  

Figure 5.5. 5     Participant’s [11] response to Question T34ab 

b. Proof 

        Since it is a parallelogram, we have ΑΔ and BΓ paral- 

        lel  and congruent (sco) sides. Also AE and ΖΓ are 

        parallel and congruent sides. Also  ̂   ̂ and  

         ̂   ̂. Thus (sco) also  ̂ and   ̂ are (sco) congruent 

       as well as ΔΕ and ZB sides are congruent 



[232] 

 

       (sco) because the triangles are congruent and have all 

        their corresponding points equal. 

P[11] gives an inadequate answer. First she repeats the pairs of congruent sides of the 

parallelogram and then proceeds to assert that  ̂   ̂ which is correct, but she does not offer 

the justification of their being opposite angles of a parallelogram. She next asserts that  ̂   ̂ 

but this time there is a strong suspicion that she is not referring to  the corresponding angles 

of the parallelogram but to the angles    ̂ and     ̂. In any case the reference is ambiguous 

and not logically supported. She  goes on to assert that angles   ̂ and   ̂ are equal again 

without logical support. Up to this point P[11] sees properties in a figure as valid without 

logical support, which is evidence of the E.P. proof scheme. The last part of the proof 

justifies all the previous equalities in the name of the congruency of the triangles. The 

argument is cyclical and thus arbitrary. This is evidence of the EC.NRS. proof scheme. Thus 

this answer is categorised as a mixture of E.P. and EC.NRS. proof schemes. 

 P[54] (see Figure 5.5.6) writes: 

Figure 5.5. 6     Participant’s [54] response to Question T34 

β) I compare the right-angled triangles ΑΔΕ 

                                         and ΓΒΓ:                                 

                                        1) AE//ΖΓ 

                                         2)  ̂   ̂ 

                                     The triangles are congruent according to the 
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                                      criterion of right-angled triangles. 

P[54] gives an inadequate answer. There is an obvious mistake when instead of writing ΖΒΓ 

he writes ΓΒΓ P[54]. This minor mistake can be put aside, but the whole argument that 

follows is arbitrary. P[54] appeals to AE//ΖΓ and  ̂   ̂ as congruency elements supporting 

the congruency of the triangles. But parallelism is not an element of congruency and the 

equality of angles does not suffice to support a criterion of congruency. Thus the whole 

argument is irrelevant regarding parallelism and, as a whole, arbitrary. Arbitrary and 

irrelevant assertions constitute evidence of the EC.NRS. proof scheme and thus P[54]’s is 

classified as such. 

 P[32] (see Figure 5.5.7) writes: 

Figure 5.5. 7     Participant’s [32] response to Question T34 

β) Hypothesis 
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    ΑΒ//ΓΔ   ΑΒ=ΔΓ 

   ΑΔ//ΒΓ    ΑΔ=ΒΓ 

  Conclusion   

  ΓΖΒΑΔΕ


=  

      Proof 

I compare triangles ΑΔΕ and ΓZB. These have: 

    AB=ΔΓ (from hypothesis) 

   ΑΔ=ΒΓ (from hypothesis) 

As  (sco) the figure is a not right-angled paral- 

lelogram, all it sides are congruent thus 

AE=ΖΓ and ΑΕ//ΖΓ. From the 3o criterion (sco) 

of the congruency of triangles, where the two triangles are congruent when they have 

2 corresponding (sco) sides congruent, we see that the triangles 

      ΑΔΕ and ΖΒΓ are congruent.  

P[32] gives an inadequate answer. I want to emphasize her efforts to follow the ritual element 

in writing down the hypothesis, the conclusion and the proof procedure clearly and explicitly. 

In this respect I characterised the proof scheme as EC.R.. Where the assertions contained in 

hypothesis, conclusion, and proof are concerned: elements such as the perpendicular to the 

sides of the parallelogram from vertices A and Γ are lacking from hypothesis, but I do not 

think this particularly important. The conclusion is a repetition of Question T34b. In the 

proof, although she refers to triangles ΑΔΕ and ΓZB she appeals to the equality AB=ΔΓ, 

which is irrelevant to the triangles. Then she refers to the equality AE=ΖΓ as a consequence 

of the congruency of the sides of the parallelogram, which is again irrelevant. Finally she 

appeals to the third criterion of congruency, asserting that it refers to two sides only, which is 

a distortion of whichever criterion she means. Deforming the formulation, and making 



[235] 

 

arbitrary or irrelevant assertions are evidence of the EC.NRS. proof scheme. Under these 

considerations I classify P[32]’s  answer as a mixture of  the EC.NRS. and EC.R. proof 

schemes. 

 Table 5.5.1 illustrates the overview of answers to Question T34b. The table shows one of 

the lowest incidences of clear D.T. proof schemes in the whole test, namely 8 (9.41%). At the 

same time the D.T. proof schemes appears alone and in mixture with other proof schemes 

significantly in more answers than in Questions as in T31, T32a at 31 (36.47%). Thus, taking 

this evidence of D.T. presence as an indicator 

PROOF SCHEMES OBSERVED IN THE RESPONSES TO QUESTION T34b 

PROOF SCHEME FREQUENCY 

CUMULATIVE 

FREQUENCY 

RELATIVE 

FREQUENCY (%) 

CUMULATIVE 

RELATIVE 

FREQUENCY (%) 

D.T. 8 8 9.41 9.41 

D.T.-EC.NRS. 16 24 18.82 28.23 

D.T.-E.P. 7 31 8.24 36.47 

E.P. 5 36 5.88 42.35 

E.P.-EC.NRS. 8 44 9.41 51.76 

EC.NRS. 19 63 22.35 74.11 

EC.NRS.-EC.R. 2 65 2.35 76.46 

N.S. 20 85 23.53 99.99 

     

SUM 85 

 
99.99 

 
Table 5.5. 1     Summary of Question T34b proof schemes 

the performance of the participants is overall higher compared to T31, T32a. I take this to 

imply a readiness for proving which may become more technically fluent in the future. 
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 There are 5 (5.88%) answers containing evidence of E.P. proof schemes and 20 (23.53%) 

answers where the proof scheme appears alone or in mixture with other proof schemes. 

 Given the nature of the question it is not surprising that there is no evidence of the E.I. 

proof scheme. 

 There are 19 (22.35%) answers containing evidence of the EC.NRS proof scheme, making 

this the second largest group. Overall there are 45 (52.93%) instances of EC.NRS. in the 

answers of this question. 

 Question T34b is the first question in T3 with some evidence of the EC.R. proof scheme. 

 Finally this question had the smallest number of NS is the whole of T3.  

5.6 Analysis of responses to Question T35 

 In this question the position of the triangles is deliberately drawn to explore whether their 

relatively unusual position causes the students problems with proving. Of course, the main 

purpose was to explore what evidence of proof schemes would emerge.  

 I take answers appealing without justification to the equality of sides or angles, which are 

indeed congruent as evidence of an E.P. proof scheme. If an answer appeals to the equality of 

sides or angles and includes irrelevant or arbitrary justification this is evidence of an 

EC.NRS. proof scheme. 

 The answers to T35 fell into eight groups: proof schemes D.T., D.T.-E.P., D.T.-EC.NRS., 

E.I., E.P., E.P.-EC.A., E.P.-EC.NRS., EC.NRS., EC.NRS.-EC.R. and NS. During the analysis 

I found some answers which could be characterised by a mixture of three proof schemes; 

basically I speak again of the ritual element. There are 24 answers where the ritual element is 

present to a greater or lesser degree, and of these I have classified 10 as D.T., 3 as D.T.-E.P., 

3 as D.T.-EC.NRS., 1 as E.P., 2 as E.P.-EC.NRS., 3 as EC.NRS., 2 as EC.NRS.-EC.R.. In the  

D.T.  answers the ritual character does not have the negative connotation that it has in Harel 

and Sowder’s  taxonomy. There are also 1 E.P. and 3 EC.NRS. answers in which the EC.R. 
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element is present but not counted in the table of answers.  Thus there are these two answers 

where I thought that the EC.R. element could be included in the characterisation as an 

indication of the presence of the respective proof scheme.  

 In the following I present examples of participants’ responses in the order cited above. 

 P[37] (see Figure 5.6.1) writes: 

Figure 5.6. 1     Participant’s [37] response to question T35 

                                            Hypoth 

                                       (sco) ΓΘ=ΘΔ 

                                                 ̂      

                   AB common 

                   ΓΒ=ΔΒ from the property of the perpendicular bisector 

                  since ΓΒ=ΒΔ the straight line ζ bisects angle B 

                  thus B1=B2 

                  and so  from the congruency criterion SAS 
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                  the two triangles are congruent  ΑΒΔΑΒΓ


=  

P[37]  gives an adequate answer. He begins with the hypothesis of T35. There is an 

inaccuracy in  


90 ; probably he meant 


90 , but this inaccuracy is negligible. 

Then P[37] appeals to the fact that AB is a side common to the triangles ΑΒΓ


and ΑΒΔ


. 

While he does not mention the triangles it is clear in what follows that he is referring to them. 

He then appeals to the property of the perpendicular bisector in order to establish the relations 

ΓΒ=ΔΒ and B1=B2. In the equality of the equality of the angles there is a minor inaccuracy in 

the absence of the angle symbol. The justification of this last equality is adequate, although 

slightly cryptic. Finally the invoked congruency elements indeed constitute the criterion SAS. 

Under these considerations the answer provides evidence of a D.T. proof scheme. 

 P[68] (see Figure 5.6.2) writes: 

Figure 5.6. 2      Participant’s [68] response to Question T35 

Γ2) Every point of the perpendicular bisector is equidistant from the endpoints 

of the line segment. Thus AΓ=AΔ 

also the two triangles share AB  

The angle    ̂ and    ̂ are equal, because (sco) 

(sco) the straight line 180° is divided by AΓ and 

AΔ which are equal. Also observing the figure with 

the 4angles from behind is isosceles. Thus the angles are 

congruent. Thus by virtue of SAS are equal. 
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P[68] gives a partly adequate answer. Referring to the triangles ΑΒΓ


and ΑΒΔ


 she justifies 

the equality ΑΓ=ΑΔ by the property of the perpendicular bisector and adds that AB is shared 

by the two triangles. Then she has a problem, having chosen the previously mentioned equal 

sides, proving that angles     ̂  and    ̂  included by the pairs BA, AΔ and BA, AΓ 

respectively, are equal. At this point, instead of justifying the equality she writes “Also 

observing the figure with the 4angles from behind is isosceles”.  The ambiguous “4angles” 

could probably refers to triangle ΑΓΔ.  However, the justification of why ΑΓΔ is an isosceles 

triangle and why this fact leads to the equality of the angles in question is substituted by the 

verb “observing”. Thus the angles’ equality is based on a perception of properties judging 

from the figure and not by logical   arguments. Here part of the answer provides evidence of a 

D.T. proof scheme and part of an E.P. proof scheme, thus the answer is classified as a 

mixture of the two.  

 P[79]  (see Figure 5.6.3) writes: 

Figure 5.6. 3      Participant’s [79] response to  Question T35 

Γ2 

    We see that for the triangles it is valid AB is common, 21 BB ˆ=ˆ and 21 AA ˆ=ˆ  because  

it is perpendicular bisector. By the theorem ASA we know that if a triangle has 

2 angles and the (sco) 1 side common they have also all the points the same. Thus ΑΒΓ


and 

ΑΒΔ


. 

P[79]’s answer is partly adequate. He is clearly trying to prove that the two triangles share a 

common side, which is included between congruent pairs of sides. In this respect the answer 

provides evidence of D.T. proof scheme. Observing his notes in the figure (see Figure 5.6.4)  
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Figure 5.6. 4      Participant’s [79] notes on figure of Question T35  

we certify the existence of 1B̂  and 2B̂ . But 1Â  and 2Â  are not noted, which gives the 

symbolism in the script an arbitrary character. His assertion that the pairs of angles in 

question are equal because of the perpendicular bisector is also cryptic. Even if we put aside 

these objections the formulation of the criterion is false, as it is not sufficient for two triangles 

to have two equal angles and a side but the included side to be congruent. Thus the answer 

provides evidence of both D.T. and an EC.NRS. proof scheme, the latter element due to the 

arbitrariness of the symbolism and mis-formulation of the appropriate congruency criterion.  

 P[17] (see Figure 5.6.5) writes: 

Figure 5.6. 5     Participant’s [17] response to Question T35 
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 Geometry 

    Γ2 

    ABΓ=180° 

   A=150° 

   Γ=10° 

   Β=20° 

  I took the protractor and measured the degrees of every angle. 

  Also 

  ABΔ=180° 

   A=150° 

   Β=20° 

   Γ=10° 

   (sco) 

  (sco) ΓB=9 cm BΔ=9 cm 

   ΓΑ=6,5 cm AΔ=6,5 cm 

  Also ΓA with AΔ are congruent lines because they cut from  

 the point A and it is perpendicular bisector of the line 

 segment ΓΔ. 

  ΓB and = congruent lines because they cut from  

  the point B and is perpendicular bisector of the line 

  segment ΓΔ 

   and the two triangles are right-angled. 

P [17] gives an inadequate answer, the main aspect of which is the measurement of the 

lengths of the sides of the triangles whose congruency she is asked to prove.  The need to find 

concrete numbers, either assigned or by measurement, representing variable magnitudes with 



[242] 

 

which to formulate an argument or justify an assertion is evidence of E.I. proof scheme. 

There are also elements of an EC.NRS. proof scheme where P[17] attempts to formulate the 

property of the perpendicular bisector, but I neglected this element. P[17] speaks of right-

angled triangles, probably meaning triangles ΑΘΓ and ΑΘΔ or ΒΘΓ and ΒΘΔ. In any case the 

assertion, valid or not, is irrelevant. Eventually I decided that the answer as provides evidence 

of proof scheme E.I. because this is the only answer in which there is measurement of the 

elements of the figure in accordance with  Harel and Sowder’s theoretical description. 

 Participant [05] writes (see figure 5.6.6): 

Figure 5.6. 6       Participant’s [05] response to Question T35 

       Γ2. 

       AB common 

       B1=B2 

       A1=A2 

P[05]’s answer is inadequate. P[05] cites three equalities of elements of the triangles in 

question  which are needed to support the congruency of the triangles, without any 

explanation. Not even the congruency criterion is named. Thus P[05] sees the equal elements 

that lead to the congruency the triangles in the figure without any support and justification.  

Seeing properties in a figure, valid or not, without any justification is evidence of an E.P. 

proof scheme. Under these considerations the answer characterised respectively.  
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 Participant [51] writes (see figure 5.6.7): 

Figure 5.6. 7          Participant’s [51] response to Question T35 

 Triangles ABΓ and ABΔ are congruent because it has same sides and congruent because the 

perpendicular bisector cuts in two congruent triangles (so says the theory). 

P [51] answer is inadequate. The main body of the answer supports the congruency of the 

triangles as a consequence of an alleged property of the perpendicular bisector to bisect two 

congruent triangles. I put aside the touch of EC.NRS. in the answer and focus on the 

perception of congruency seen in the figure or in other words on the evidence of an E.P. 

proof scheme. P[51] concludes her argument by appealing to  “the theory”. Although it is not 

clear which ‘theory’ she is referring to, and whether from a teacher or book, the formulation 

is characteristic of an EC.A. proof scheme in which the truth of an assertion is supported by 

appealing to an authority. In other words one cannot consider an answer as D.T. because a 

D.T. proof scheme cites theory explicitly. This answer is a unique example in this respect and 

is classified as containing evidence of a mixture of E.P. and EC.A. proof schemes. 
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 P[53] (see Figure 5.6.8) writes: 

Figure 5.6. 8          Participant’s [53] response to Question T35 

                                 Hypothesis :  ζ=perpendicular bisector ΓΔ 

                  (Γ.2.)   (sco)  Conclusion : ΑΒΔΑΒΓ


=      

                                  Proof :      I compare triangles ΑΒΓ & ΑΒΔ 

                                              These have : 1) AB common 

                                                                   2) B1=B2 

                                                                   3) Γ1=(sco) Δ1     

                                  On the basis of the congruency criterion ASA the 

                                two triangles ( ΑΒΔΑΒΓ


& ) are congruent 

                                since they have 1 side in common and 2 

                                 angles congruent.      

P[53]’s answer is inadequate. It starts by citing congruent elements of the two triangles. The 

equality B1=B2, although correct, is perceived as valid only by looking at the figure, because 

there is no supportive argument, providing evidence of an E.P. proof scheme. The 

congruency Γ1= Δ1 is again not logically supported, and it is not clear which angles P[53] is 

referring to. Even if it is accepted that she is referring to angles    ̂ and    ̂ the asserted 

equality thereof is characteristic of an E.P. proof scheme, but on the other hand the whole 
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argument about the triangles’ congruency is  arbitrary, which is evidence of an EC.NRS. 

proof scheme. The same can be said about the formulation of the ASA congruency criterion. 

Indeed the ASA is not correctly formulated by referring to two angles and one side of the 

respective triangles but included side. Under these considerations there is evidence of both 

E.P. and EC.NRS. proof schemes and the answer characteristic of a mixture thereof .   

 P[26] (see Figure 5.6.9) writes: 

   Figure 5.6. 9          Participant’s [26] response to Question T35 

 Γ2)  We compare triangles ΔΒΘΓΒΘ


&   

         ΒΘ common line  

         ΓΘ=ΘΔ (the line ζ cuts ΓΔ in  

                       equal parts) 

                                  

        We compare triangles ΔΒΘAΓΘ


&   

         ΘA common line  

Thus ΔΒΘΓΒΘ


&  
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         ΓΘ=ΘΔ (the line ζ cuts ΓΔ in  

                       equal parts) 

 

Thus we conclude that  ΒΔAΓΒA


=  because 

 

P[26] gives an inadequate answer, which he completes in three steps. The first refers to the 

congruency of triangles ΔΒΘΓΒΘ


& . It misuses the criterion because two pairs of equal 

elements do not suffice to support the congruency unless they are right-angled triangles the 

equal sides are the appropriate, but the fact that the triangles are both right-angled is missing. 

Whether P[26] is aware of the latter is not clear. The same is true of step two. As for step 

three, P[26] supports an arbitrary idea of the sum of the triangles which is neither defined nor 

described. The arbitrary formulation and misuse of triangle congruency criteria and the 

arbitrary invention of a ‘law’ adding triangles provide evidence of an EC.NRS. proof scheme 

and  the answer is characterised accordingly. 

 P[38] (see Figure 5.6.10) writes: 

Figure 5.6. 10          Participant’s [38] response to Question T35 

     Hypoth                                                    Concl 

    ζ (perpendicular bisector of  ΓΔ)            ΑΒΓ=ΑΒΔ 

Thus ΘΔΑAΓΘ


&  

 ΒΘΔΑΔΒΘΔΑΓΘΒΓΑΒΓΘΒ


=+&=+  
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   Proof 

  The angles of (sco)     ̂ and      ̂  (sco)  ̂  and   ̂ 

  are corresponding angles and 

  (sco) are congruent. (sco) They have a side in common 

   ΓΔ 

P[38] answer is inadequate. At the beginning it seems from the formulation that she uses the 

angle symbol to symbolise triangles. Then she asserts that angles   ̂  and   ̂  are congruent 

because of parallel lines. This arbitrary assertion is not supported by any justification. Finally 

she asserts, again arbitrarily,  that the triangles in question have in common the side ΓΔ, 

whereas none of the triangles have as a side the line segment  ΓΔ. The arbitrariness of the 

assertions constitutes evidence of EC.NRS. proof scheme. At the same time we observe that 

the ritual element is present where P[38] writes the hypothesis and conclusion in an orderly 

way and announces the proof. From this point of view P[38]’s answer provides evidence of 

both EC.R. and EC.NRS.  proof scheme and is characterised accordingly. 

 Table 5.6.1 illustrates the overview of answers to T35. The biggest group 22 (25.88%) of 

those who answered T35 includes evidence of D.T. proof schemes in their scripts. The total  

appearance of D.T. proof scheme, alone or in mixture with others,  is even higher at 38 

(44.70%).  

 There is only one 1 (1.18%) answer characterised as containing evidence of an E.I. proof 

scheme; three  (3.53%) of E.P., and in total 17 (20.00%) appearances of E.P. proof scheme;

 15 (17.65%)of EC.NRS. and in total  26 (30.59%) appearances of this proof scheme. See 

also my earlier comments on the EC.R. proof scheme. Finally 22 (25.88%)  participants did 

not answer this question (NS).  
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 Judging by the aforementioned numbers, and particularly from the D.T 22 (25.88%) and 

total D.T. 38 (44.70%), the participants’ performance can be considered as impressive. Even 

those  answers  without D.T. elements sometimes  include allusions  to  knowledge  about the 

congruency criteria but they cannot yet correctly articulate a proof. I see this as rather natural 

PROOF SCHEMES OBSERVED IN THE RESPONSES TO QUESTION T35 

PROOF SCHEME FREQUENCY 

CUMULATIVE 

FREQUENCY 

RELATIVE 

FREQUENCY (%) 

CUMULATIVE 

RELATIVE 

FREQUENCY (%) 

D.T. 22 22 25.88 25.88 

D.T.-E.P. 10 32 11.76 37.64 

D.T.-EC.NRS. 6 38 7.06 44.70 

E.I. 1 39 1.18 45.88 

E.P. 3 42 3.53 49.41 

E.P.-EC.A 1 43 1.18 50.59 

E.P.-EC.NRS. 3 46 3.53 54.12 

EC.NRS. 15 61 17.65 71.77 

EC.NRS.-EC.R. 2 63 2.35 74.12 

NS 22 85 25.88 100.00 

     
SUM 85 

 

100.00 

 
Table 5.6. 1     Summary of Question T35 proof schemes 

for students taught proof for the first time.  
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5.7 Analysis of responses to Question T36a 

  Question T36a allows observation of how the change of context affects the participants’ 

efficacy at formulating a proof. T35 is practically the same asT36a from the point of view of 

the triangle congruency criterion SSS; the difference lies in the form in which T36 is offered 

to the participants. In T35 the participants are given a common side and then have to 

recognise the congruency of two missing pairs of sides by invoking the property of the 

perpendicular bisector. Additionally, the position of the triangles, in the figure drawn for 

Question T35, is rather unusual. For Question T36a, three pairs of congruent sides are given 

directly and clearly from the beginning. Thus there is no need for any other justification apart 

from invoking the appropriate criterion SSS.    

 As before unjustified but valid assertions about congruent pairs of sides or angles are 

taken as evidence of E.P. proof scheme and arbitrary justified assertions are taken as evidence 

of an EC.NRS. proof scheme. 

 The answers fall into seven groups: those characteristic of the proof schemes D.T., D.T.-

E.P., D.T.-EC.NRS., E.P., E.P.-EC.NRS.,  EC.NRS., and NS. 

 The ‘ritual’ element as discussed earlier is present as well in 22 answers to T36a to greater 

or lesser degrees. Of these 19 are characteristic of D.T. neutralising any negative aspect of the 

rituality; one is E.P.-EC.NRS., one is EC.NRS. and a student did not answer. This is most 

impressive NS of participant [39] (see Figure 5.7.1). 

 Participant [39] writes (see figure 5.7.1): 

 Figure 5.7. 1          Participant’s [39] response to Question T36ab  
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Γ3. 

    Hypoth                   Conclusion                   Proof 

   ΑΓ=ΕΒ                  α) ΑΓΒ=ΕΒΔ                We compare the triangles ΑΓΒ and 

   ΑΒ=ΕΔ                  β) ΒΓ//ΕΔ                      ΕΒΔ 

   ΓΔ=ΒΑ 

P [39] repeats the data given in the problem as taught by J in ritual manner. However, under 

‘proof’ he only states which triangles are to be compared. The sentence should also include 

“these are congruent according to the SSS criterion”. Thus we have an NS answer with all the 

rituality retained. 

 In the following I present examples of answers characteristic of the above proof schemes 

in the same order.  

 P[32] (see Figure 5.7.2) writes: 

Figure 5.7. 2          Participant’s [32] response to Question T36a 

Γ3.     Hypothesis 

              ΑΓ=ΕΒ 

              ΑΒ=ΕΔ 

               ΓΒ=ΒΔ 
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α.         Conclusion   

                  (sco) 
 

                    


   

             Proof 

       I compare 


  and  


 . These have the respective  

     sides ΑΓ and ΕΒ   congruent (sco)  ΑΒ=ΕΒ (from hypothesis) 

     and ΓΒ=ΒΔ  (from hypothesis). Thus from the 3rd criterion 

      of triangles’ congruency, (sco)  


   

P [32] gives an adequate answer. She first sets out the data and the conclusion in an orderly 

way, and in the proof she invokes the hypothesis and the appropriate criterion to prove the 

triangles’ congruency. A minor inaccuracy concerning the sides ΑΓ and ΕΒ where the 

hypothesis is not invoked is taken as negligible. Under these considerations the answer is 

characteristic of a D.T. proof scheme.  

 P[69] (see Figure 5.7.3) writes: 

Figure 5.7. 3     Participant’s [69] response to Question T36a 

    Γ3        Hypothesis 

     α)   We know that ΑΓΒ


 and ΕΒΔ


 have ΑΓ=ΕΒ, ΑΒ=ΕΔ and 
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                ΓΒ=ΒΔ 

_____________________________________________________________________ 

            Conclusion 

                (sco)         ΑΓΒ


, ΕΒΔ


 are congruent 

_____________________________________________________________________ 

Proof  We know already from the hypothesis that the (sco) triangles  

             ΑΓΒ


 
and ΕΒΔ



 have all three sides congruent  

               to each other. They have as well an angle   ̂    ̂ . 

              (sco)   

P[69] gives a partly adequate answer. Writing the proof she appeals to the congruency of the 

three pairs of sides. But although this is sufficient to support the congruency of the triangles 

she feels the need to add that   ̂    ̂, which does not justify logically. Thus the assertion is 

made from her judgment of what she perceives looking at the figure. Assertions of validity of 

properties of geometric objects only by looking at a figure offers evidence of an E.P. proof 

scheme. Under this point of view the answer of P[69] provides evidence of D.T. and E.P. 

proof schemes and has been characterized accordingly. 

 P[52] (see Figure 5.7.4) writes: 

Figure 5.7. 4          Participant’s [52] response to Question T36a 
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 Γ3 

α.     ΑΓ  = ΑΒ    = ΓΒ 

        ΕΒ      ΕΔ       ΒΔ 

   They have 3 sides congruent thus from the  

    criterion SSS  are congruent. 

P[52] gives an adequate answer appealing to the correct criterion for triangles’ congruency 

but uses an arbitrary symbol resembling the fraction symbol for the  congruent sides. Thus 

the answer provides evidence of both D.T. and  EC.NRS. proof schemes. 

 P[03] (see Figure 5.7.5) writes: 

Figure 5.7. 5     Participant’s [03] response to Question T36a 

Γ3 

α) The triangles are (sco) both isosceles. (sco) 

     (sco) 

    But since the equal sides of each are congruent to each other ΑΓ=ΑΒ=Ε 

    ΒΔ  (sco) and their bases are congruent ΒΔ=ΓΔ thus 

    all their sides are congruent since the triangles are 

    isosceles they are congruent (sco). 

P[03]’s answer is inadequate. The whole proof is based almost exclusively on the perception 

that the triangles are both isosceles triangles rather than on their three pairs of congruent 

sides. I put aside the inaccuracy in writing the sides that he sees “making” the triangles 
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isosceles ones. Under these considerations P[03]’s answer has perceptual elements that 

overshadow any correct use of the data given, providing evidence for an E.P. proof scheme 

and thus  the answer is characterized accordingly. 

 P[82] (see Figure 5.7.6) writes: 

Figure 5.7. 6          Participant’s [82] response to Question T36a 

 α) ΕΒΔΑΓΒ


&   are congruent  because they have  ̂ in common and  ̂  ̂  

         equal 

P[82]’s answer is inadequate. On the one hand, looking at the figure he sees properties but 

does not justify them, and in this respect the answer is characteristic of an E.P. proof scheme.  

However, even if the perceptions were both true they do not offer a basis from which  to 

appeal to triangles’ congruency criteria. P[82] arbitrarily asserts that his perceptions  suffice 

to support the congruency of the triangles, thus misusing triangle congruency criteria. This 

second aspect is characteristic of an EC.NRS. proof scheme, and thus this answer of P[82] is 

classified as a mixture of  E.P. and EC.NRS.. 
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 P[47] (see Figure 5.7.7) writes: 

Figure 5.7. 7          Participant’s [47] response to Question T36a 

Γ3 

α) The triangles  (sco) ΑΓΒ and ΕΒΔ are  

    congruent because they are similar 

P [47] answer is not adequate in that it asserts that triangles ΑΓΒ and ΕΒΔ are equal because 

they are similar. This constitutes a misuse of the criteria for the congruency of triangles and 

arbitrary invention of a criterion without logical support and is characteristic of an  EC.NRS. 

proof scheme. 

 Table 5.7.1 illustrates the overview of answers to T36a. The biggest group shown in Table 

5.7.1 is D.T., 42 (49.41%). The total number of D.T. appearances is 45 (52.94%); these can 

be compared to the results for Question T35, which are 22 (25.88%) and 38 (44.70%) 

respectively. This gives us a measure of the influence of the context on the difficulty of 

formulating a proof: in T35 the three pairs of congruent sides are not given directly and one 

has to arrive at the point of being able to use the SSS criterion by way of using the property 

of the perpendicular bisector. This task has proved to be complicated judging by the numbers 

of D.T. answers. When the context of a question calls for the application of the SSS criterion 

more directly, the criterion is recognised by many more participants. This is evident in the 

shift of D.T. number of answers in T35 and T36a: from the 22 in T35 to 42 in T36a, almost 

double.  
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PROOF SCHEMES OBSERVED IN THE RESPONSES TO QUESTION T36a 

PROOF 

SCHEME 
FREQUENCY 

CUMULATIVE 

FREQUENCY 

RELATIVE 

FREQUENCY (%) 

CUMULATIVE 

RELATIVE 

FREQUENCY (%) 

D.T. 42 42 49.41 49.41 

D.T.-E.P. 1 43 1.18 50.59 

D.T.-EC.NRS. 2 45 2.35 52.94 

E.P. 2 47 2.35 55.29 

E.P.-EC.NRS. 4 51 4.71 60.00 

EC.NRS. 8 59 9.41 69.41 

N.S. 26 85 30.59 100.00 

          

SUM 85 

 

100.00 

 
Table 5.7. 1     Summary of Question T36a proof schemes 

D.T. and N.S. answers apart, there are 17 answers distributed to the remaining groups of 

proof schemes. The biggest of these is the EC.NRS. group, 8 (9.41%). 

 There are 26 (30.59%) NS, compared to the 22 (25.88%) of T35. 

 These results were generally expected, particularly the numbers in the D.T. groups given 

the ease with which the congruency criteria are invoked by the formulation of the question. It 

seems that a rather big number of participants can handle the proof issues in this question 

well. What is less expected – and less easily interpreted – is the substantial N.S. number. 
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5.8 Analysis of responses to Question T36b 

 Students’ efforts to prove the second part of the question were again expected to be 

interesting as they faced relatively complicated tasks. Their answers fell into six groups: 

those providing evidence of the proof schemes   D.T., D.T.-EC.NRS., E.P., E.P.-EC.NRS., 

EC.NRS., and NS. 

 In the following I present examples of the answers using these proof schemes in the order 

given here. 

 P[81] (see Figure 5.8.1) writes: 

Figure 5.8. 1     Participant’s [81] response to Question T36b 

                                                                                             Hypothesis 

                  ΑΓ=ΕΒ 

                                ΑΒ=ΕΔ   

                                                   ΓΒ=ΒΔ  

 

 

Concl 
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α ΕΒΔΑΓΒ


=  

β   ΒΓ//ΕΔ                                             

                                                                    Proof 

                                                  α.  ΕΒΔΑΓΒ


=  from criterion SSS: 

                                                           ΑΓ=ΕΒ, ΑΒ=ΕΔ, ΓΒ=ΒΔ thus as well: 

                                                        ̂   ̂,   ̂   ̂,  ̂    ̂      

                                                  β   ΒΓ//ΕΔ since :   ̂   ̂ as corresponding  

                     and because points B and Δ 

                                                  lie on straight line α. 

P[81] gives an adequate answer to T36b. She asserts that BΓ//ΕΔ because   ̂   ̂. There is a 

minor ambiguity in the Greek formulation regarding the justification of parallelism which I 

cannot translate it into English and render absolutely clear. However I put aside this minor 

ambiguity because earlier P[81] writes “ΒΓ//ΕΔ as :   ̂   ̂” which is unambiguous and 

correct. Under these considerations this answer provides evidence of  D.T. proof scheme and 

has been characterised accordingly. 

P[02] (see Figures 5.8.2 and 5.8.3) writes: 

Figure 5.8. 2          Participant’s [02] response to Question T36b 

b) Since the triangles ΑΒΓ


 and   ΕΒΔ


 are congruent 

    (sco) then  (sco)  their respective angles are congruent  
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Figure 5.8. 3          Participant’s [02] notes on the figure of  Question T36b   

    as     ̂    ̂ 

   Also     ̂   and    ̂  are interior alternating angles. Thus ΕΓ//ΒΔ 

   because the interior alternating angles define parallels. 

P[02] gives a partly adequate answer. From the congruency of the triangles he concludes that 

angles   ̂ and    ̂  are congruent (see figure 5.8.3). Up to this point, even if elliptic in its 

justification, the proof is adequate. But then P[02] calls the angles “interior alternating” 

constituting a misuse of the terminology because the angles in question are corresponding 

and not alternating. This misuse of terminology is evidence of EC.NRS. proof scheme. Under 

these considerations this answer provides evidence of both D.T. and EC.NRS. proof schemes 

and is classified as a mixture of the two. 

 P[21] (see Figure 5.8.4) writes: 

b) ΒΓ//ΕΔ 

   ΒΓ is parallel to ΕΔ because: 

   We draw straight line ΓΕ. Thus a parallelogram ΓΕΒΔ is formed. 

        Thus it will be ΓΕ//ΒΔ and ΓB//EΔ. 



[260] 

 

Figure 5.8. 4         Participant’s [21] response to Question T36b 

P[21]’s  answer is not adequate. She refers to the given figure, thinking that if the line ΓΕ is 

drawn then a parallelogram is formed, of which the order of the vertices is falsely written, but 

that is minor mistake. Thus looking at the given figure P[21]  perceives the existence of 

parallelogram ΓΕΔΒ. Her perception is at the same time her justification of the parallelism of 

ΒΓ and ΔΕ. Perceiving properties in a plane figure without justifying them logically is 

evidence of an E.P. proof scheme.  

 P[60] (see Figure 5.8.5) writes: 

Figure 5.8. 5     Participant’s [60] response to Question T36b 

                  β  (sco) 

                      (sco) 

                     (sco)  In the figure  

                     ΓΕΖΒ,  ΕΒ  divides 
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                    the figure in the middle. 

                     ΓΕ  is // parallel 

                       to BZ  

                    Also angles    ̂   and    ̂ 

                  are interior alternating thus 

                  ΓΒ  //  to EZ consequently  

                  to ΕΔ      

P [60] answer is not adequate. In her proof she asserts that “EB divides the figure in the 

middle”, the meaning of which is not clear. However, whatever the meaning, perceiving a 

property in a figure without offering a logical argument to support offers evidence of an E.P. 

proof scheme.  P[60] (see figure  5.8.6) goes on to assert that  

Figure 5.8. 6     Participant’s [60] notes on the figure of  Question T36b 

 ΓΕ//BZ,  by which she probably means that BZ is drawn parallel to ΓΕ. She adds: “ ̂   and   

 ̂ are interior alternating”. Judging by the notation on    ̂  probably by  ̂  she means angle 

   ̂  and by  ̂   she means angle    ̂  . Then from the fact that  ̂  and   ̂  are interior 

alternating angles results that ΓΒ//ΕΖ. This  last assertion is arbitrary and a misuse of the 

notion of ‘interior alternating angles’ as  when  the interior alternating angles are congruent, 

the lines forming them with a transversal are parallel and vice versa. This instance of misuse 
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has to do with the concept image and the concept definition (Tall & Vinner, 1981). In cases 

such as this there is clearly  confusion about the notion of ‘interior alternating angles’ which 

is a property of position on the plane independent of the parallelism as we speak of ‘interior 

alternating angles’ even when there is no parallelism. Misuse of terminology and the 

confusion of a concept definition with an idiosyncratic concept image are evidence of an 

EC.NRS. proof scheme. This answer thus provides evidence of both E.P. and EC.NRS. proof 

schemes and is characterised accordingly.  

 P[69] (see Figure 5.8.7) writes: 

Figure 5.8. 7     Participant’s [69] response to Question T36b 

Figure 5.8. 8     Participant’s [69] notes on the figure of  Question T36b 

    b) We know that the straight lines ΒΓ and ΔΕ have their origin 

         on the same line. The angles δ1 and β2 

         are related to each other. 

P [69]’s answer is not adequate. He asserts the obvious fact that the line segments ΒΓ and ΔΕ 

have one of their endpoints on line α (see figure 5.8.8) and then completes the proof by 
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asserting that “The angles δ1 and β2 are related to each other”. This arbitrary and ambiguous 

assertion provides evidence of an EC.NRS. proof scheme because it substitutes the usual 

terminology for congruent corresponding angles with an idiosyncratic formulation. From this 

point of view P[69]’s answer provides evidence of an EC.NRS. proof scheme and is 

classified accordingly. 

 Table 5.8.1 illustrates the overview of answers to T36b.  In the table the large NS number, 

43 (or 50.59%) is striking. It might be the case that the context of T36b impeded the 

participants’ ability to reach an answer; they were perhaps unable to discern the parallel lines 

that would help reaching this answer.  Two lines intersected by a transversal is one thing; 

embedding this  in a  more complicated context  and  diagram is quite another. Further, many 

PROOF SCHEMES OBSERVED IN THE RESPONSES TO QUESTION T36b 

PROOF 

SCHEME 
FREQUENCY 

CUMULATIVE 

FREQUENCY 

RELATIVE 

FREQUENCY (%) 

CUMULATIVE 

RELATIVE 

FREQUENCY (%) 

D.T. 4 4 4.71 4.71 

D.T.-EC.NRS. 4 8 4.71 9.42 

E.P. 4 12 4.71 14.13 

E.P.-EC.NRS. 7 19 8.24 22.37 

EC.NRS. 23 42 27.06 49.43 

N.S. 43 85 50.59 100.02 

  
    

SUM 85   100.02   

Table 5.8. 1     Summary of Question T36b  proof schemes 
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understood the description of the position of the angles as corresponding or interior 

alternating to provide the condition for parallelism. The relatively high number of EC.NRS.  

answers (23 or 27.06%) is also indicative of the difficulties the students faced. 

5.9   Summary 

 In this chapter I have presented the analysis of the T3 test, as summarised in Table 5.9.1. 

QUESTIONS OF TEST T3 

PROOF 

SCHEMES 

T31 T32a T32b T33a T33b T34b T35 T36a T36b 

D.T. 14.12 8.24 35.29 44.71 42.35 9.41 25.88 49.41 4.71 

D.T.-E.I. 1.18 1.18 0.00 10.59 4.71 0.00 0.00 0.00 0.00 

D.T.-E.P. 0.00 0.00 0.00 0.00 0.00 8.24 11.76 1.18 0.00 

D.T.-EC.A. 0.00 0.00 0.00 0.00 1.18 0.00 0.00 0.00 0.00 

D.T.-EC.NRS. 9.41 3.53 1.18 4.71 2.35 18.82 7.06 2.35 4.71 

E.I. 9.41 10.59 0.00 9.41 10.59 0.00 1.18 0.00 0.00 

E.I.-EC.NRS. 17.65 5.88 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

E.P. 0.00 0.00 0.00 0.00 0.00 5.88 3.53 2.35 4.71 

E.P.-EC.A 0.00 0.00 0.00 0.00 0.00 0.00 1.18 0.00 0.00 

E.P.-EC.NRS. 0.00 0.00 0.00 0.00 0.00 9.41 3.53 4.71 8.24 

EC.A. 0.00 0.00 0.00 1.18 3.53 0.00 0.00 0.00 0.00 

EC.NRS. 14.12 12.94 11.76 2.35 0.00 22.35 17.65 9.41 27.06 

EC.NRS.-

EC.R. 

0.00 0.00 0.00 0.00 0.00 2.35 2.35 0.00 0.00 

N.S. 34.12 57.65 51.76 27.06 35.29 23.53 25.88 30.59 50.59 

SUM 100.01 100.01 99.99 100.01 100.00 99.99 100.00 100.00 100.02 

Table 5.9. 1  Proof schemes observed in test T3 

 Table 5.9.1 reveals the following characteristics of the answers to T3: 
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 A wide range of proof schemes, with some occurring in small or very small 

percentages. For example, T33a and T33b also elicited answers that contained 

evidence of the EC.A. and EC.R. proof schemes.    

 The D.T. and EC.NRS proof schemes, occurred most frequently.  

 The participants had the most difficulty answering questions T32a T36b.  

 It is interesting that, although T35 and T36a could be proved using the congruency 

criterion Side-Side-Side, a number of participants did not do this. This might explain 

the rather high difference in percentages of D.T. proof schemes from 9.41% for T35 

to 49.41% for T36a. 

 The participants’ technical difficulties with proof notwithstanding, the answers offer 

evidence of strong proof appreciation in algebra. The substantial percentages of D.T.  

proof scheme in the answers to T33a and T33b (44.71% and 42.35% respectively) 

offer evidence that the students seem to appreciate that proof of mathematical 

relations is based on certain laws of real numbers. 

 The largest number in the N.S. group combined with the large number of D.T. proof 

schemes occurs in Question T36a where students overall either provided a complete 

answer (49.41% D.T.) or none at all (30.59% N.S.).  

 In the following, bar charts 5.9.1 and 5.9.2 focus on the  students’ fluency with proving 

with a presentation of the D.T. proof scheme percentages.  Chart 5.9.1 depicts  the 

percentages of answers classified as  D.T. alone and Chart  5.9.2 adds to these the mixture 

with other proof schemes. 
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Chart 5.9. 1     D.T.  proof scheme bar chart in percentages per Question of test T3

 

Chart 5.9. 2     Total D.T.  proof scheme bar chart in percentages per Question of test T3 

 Charts 5.9.1 and 5.9.2 can be interpreted as follows: 

 Proof fluency may oscillate due to the difficulty of the questions but it seems that 

teaching proof in Year 9 is productive, as a number of participants offer evidence of 

D.T. proofs in their answers even to the most difficult question. 
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 At this stage participants perform satisfactorily when called upon to prove simple 

algebraic and geometric propositions. This is an important first step, as the more 

difficult proof problems the students will be tackling soon are often composed of 

several more simple ones.  
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CHAPTER 6: CONCLUSION 

6.0 Introduction 

 In this chapter I summarise, discuss and conclude the data analysis I presented in 

Chapters 4 and 5. In section 6.1 I present a general summary of the findings in 

relation to the reviewed literature on teaching and learning proof. The findings of the 

study and its implications provide answers to the research questions stated in chapters 

1 and 2 which were the following: 

a) What are students’ pre-proof perceptions? 

b) What are students’ perceptions of proof when they first encounter it? 

c) How, if at all, is the Harel and Sowder’s taxonomy applicable to the Greek 

secondary educational contexts? 

d) How, if at all, can the Harel and Sowder’s taxonomy be used to elucidate 

students’ competence in proving as well as how they value proof within the 

Greek secondary educational contexts? 

 In section 6.2 I discuss the contribution of the study and its implications from four 

different perspectives:  

 (1)  the perspective of teaching and learning proof; 

  (2)     the theoretical perspective regarding the application of Harel and Sowder’s 

proof schemes taxonomy  (1998, 2007) ;   

  (3)  the methodological perspective of the  analysis of students’  answers; 

  (4)  the classroom practice perspective in relation to educational policy, 

curriculum and pedagogy.  

 In section 6.3 I discuss the limitations of the study. Finally, in section 6.4., I 

discuss the wider project in which the present study is embedded and make 

suggestions for further research. 
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6.1 The findings of the study 

 The first two research questions of this study ask, what are the students’ proof 

perceptions before and after being introduced to proof and proving. To record these 

perceptions the Harel and Sowder’s taxonomy was chosen as an analytical tool which 

led to the third research question, whether this taxonomy is applicable within the 

context of the Greek secondary education. In students’ responses in both T1 (pre-

proof test) and T3 (post-proof test), I found strong evidence of the various proof 

schemes proposed in the Harel and Sowder’s taxonomy (1998, 2007). I discuss in 

more details the proof scheme taxonomy, its background and its role in my study in 

section 6.2. Here I am only interested in the following point:  Harel and Sowder 

(1998) developed the taxonomy mainly parallel to and after teaching students about 

proof. In their study, the students had already encountered and experienced proof 

previously in their secondary school education. My study indicates that even when 

secondary school students have not yet been introduced to the proof explicitly in 

advance, they appear to develop proof schemes corresponding to the taxonomy.  Thus 

it can be said, judging by the answers given to T1 test, that the students’ pre-proof 

perceptions are very well described by Harel and Sowder’s taxonomy. This 

conclusion is also valid for T3 test which followed the teaching of proof. 

 According to Tall (2005), students’ difficulties with formal proof have their origin 

in their earlier ‘mathematical life’. This opinion can be applied to the participants of 

my research, who had not been taught proof when they sat T1 at the beginning of 

Year 9. They indeed demonstrated such difficulties.  Based on the results of my study, 

if I transform Tall’s argument, I can also say that students’ efficiency has its origin in 

their earlier ‘mathematical life’. Thus the emergence of the taxonomy’s proof 

schemes in their answers can be presumed to be the result of how students perceived 



[270] 

 

previous teaching of mathematics. In primary school and in Years 7 and 8 in the 

secondary school the participants have encountered various mathematical notions, 

which shape their concept images that evoke in students’ effort to handle specific 

mathematical tasks (Tall & Vinner, 1981). For example what is a parallelogram and 

how to calculate its area or what is an equation of the first degree in one unknown and 

how to solve it etc.. In other words they have already accumulated some experience in 

the field of mathematics. The quality and content of the experience they have 

acquired, and how and what they have understood of the mathematical objects, affect 

and influence how they handle proof problems. Thus when the participants are invited 

to deal with proof questions they do not begin from scratch; they have already formed 

ways of understanding, ways of learning (Harel & Sowder, 2005) and ways of 

working which they demonstrate in their handling of proof problems in the form of 

proof schemes. Their methods of understanding and learning are not always adequate 

or productive. Specifically speaking of, students’ ways of understanding of particular 

notions might be responsible for their underperformance in proof tasks. If, for 

instance, there is a misconception about the square root multiplication that includes 

incorrect statements such as 632 =  , this misconception will pop up in a question 

related to the expansion of an algebraic expression with roots such as ( )2

3b2a + . 

And if this expansion is embedded in a proof task, particular misunderstanding of the 

square root will lead to evidence of the EC.NRS. proof scheme. This can occur even 

after the teaching of proof, especially if the specific concept image of the square root 

diverges from its formal concept definition (Tall & Vinner, 1981). In the case where 

the square root has been semantically understood it will be treated correctly and if it is 

involved in a proof process then the use of it will support D.T. proof schemes (Weber 

& Alcock, 2004). I should make clear that I am not interpreting the genesis of proof 
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schemes here; I am only following Harel and Sowder’s (ibid.) line of thinking which 

is inspiring and gives ideas for a deeper investigation of the proof schemes genesis. 

Students’ level of linguistic articulacy is potentially affecting their mathematical 

performance as indicated by PISA studies (Heinze & Kwak, 2002). This is sometimes 

evident in students’ answers in the present research, but the decisive aspect is not so 

much how students formulate their thoughts in their native language as what 

mathematical content they include in this formulations. Herein lies the importance of 

cognitive aspects, which research into mathematics education has proposed and 

investigated. For example, in Skemp’s (1976) work on relational and instrumental 

understanding, Tall and  Vinner’s (1981) concept image and concept definition, and 

research into the key ideas that students have developed or not yet developed (Raman, 

2003), etc.. These theoretical constructs are evident in the participants’ answers. The 

above example of the square root is a case of discrepancy between concept image and 

concept definition leading to cognitive obstacles in presenting proof. The way the 

participants treated, for example, Question T36b show that many of them do not yet 

understand the key ideas on possible parallels and their transversals, but a number 

who did understand them used them creatively showing heuristic literacy (Koichu, 

Berman, & Moore, 2007) and cognitive unity (Antonini & Mariotti, 2008). If an 

expression of the type   2ba  is to be expanded, the student may demonstrate 

relational understanding by showing knowledge of the mechanism of expansion, or  

instrumental understanding if he/she simply tries to memorise the final expansion’s 

result or misunderstands the expansion in a ‘linear’ manner as in    222
baba   

and so on (Skemp, 1976). 

 Particularly T1 test requires both technical and theoretical knowledge. The 

participants have to be acquainted with the symbols denoting degrees as a measure of 
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an angle. Probably many cannot tell the difference between the measure of an angle 

and the angle itself because the distinction is little, if ever, discussed in the lower 

secondary school classroom. They have to be acquainted with the symbols for angles 

as geometrical objects, using either three letters or one. They have to be able to 

recognise in a figure the angle they refer to, independently of the symbol used for it. 

Thus they have to be acquainted with the geometrical shape of an angle and how an 

angle is formed, which means that they have to understand that line segments with a 

common origin form an angle, and in fact they form more than one angle. Also, 

students need to understand that they should not judge the validity of any geometrical 

property from the figure and they need to use the geometrical definitions and 

properties and to distinguish between data and conclusion in order to ground their 

judgements (Mariotti, 2000). Students must also understand theoretically how many 

degrees there are in the sum of the angles of a triangle. Consequently they have to be 

able to manipulate the given measures arithmetically or algebraically, if they refer to 

the angles with their symbols, in order to obtain the measure of the unknown angle.  

They have to formulate correctly definitions as that of a perpendicular bisector of line 

segment, of a midpoint of a line segment, a median of a triangle and apply them 

appropriately if needed to. They have to know what the second power of a number is 

and to formulate and apply the Pythagorean Theorem. All the above pieces of 

knowledge are necessary for the formulation of coherent and accurate responses. As a 

result, the inappropriate use of any of these pieces can lead to at least an EC.NRS. 

proof scheme. Misunderstanding when and why a property of a geometrical figure is 

valid can lead to an E.P. or E.I. proof schemes depending on whether the participant 

perceives the properties by eye or by measuring the figure. However, regardless the 

high demand in knowledge I describe above, there are still participants who give 
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adequate answers or in other words produce D.T. proof scheme. Thus previous 

students’ mathematical knowledge, previous pre-proof mathematical experience at 

school, namely the development of habits as, using symbols appropriately or 

arbitrarily, formulating correctly or incorrectly definitions, understanding or 

misunderstanding given data, etc., might lead to the various proof schemes; all of 

these are reflected in T1 as evidence and indication of what pre-proof origins might 

the various proof schemes have their roots in. 

 The answers to T1 also show that even such knowledge, well known to the 

students, as the sum of the angles of a triangle cannot be exploited successfully when 

the context of the problem is not familiar to the students. It also indicates that the 

participants have more difficulty arranging their thoughts properly to reach 

conclusions from given properties and relations than through calculation. It can thus 

be said that T1 provides the contour of the problems that the participants were 

expected to have with proof issues at this early stage. In this respect the picture gained 

through T1 is successful and has yielded plenty of information. 

 The second picture from the participants’ proof perception is shaped by their 

answers to T3. The test deliberately included some demanding questions because I 

wanted to avoid an oversimplified and overoptimistic picture of the participants’ 

performance. Thus the overall results offer a useful indication of what should be 

expected at the end of Year 9 regarding proof. It should be noted that from the 95 

hours teaching of mathematics, 10 hours were devoted to algebraic and 10 hours to 

geometric proof.  In aggregate about 20 hours were devoted to proof and this was for 

the first time in the participants’ school life. 

 In T3 test the algebraic questions allowed investigation of the students’ fluency in 

and appreciation of proof.  Healy and  Hoyles (2000) gave students various proofs to 
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evaluate them and found that they demonstrated strong proof appreciation in what 

they recognised correct proofs. Inspired by their example I included in T3 the 

Question T33 which tests the students’ ideas on the proof of the identity 

   22 bababa  . It proved to be productive as it revealed students’ high proof 

appreciation with regard to how algebraic identities are justified although proof 

fluency is of significantly lower level in my participants’ sample.  Stylianides and 

Stylianides (2009) tested prospective elementary school teachers setting to them a 

construction-evaluation activity. Here is their opinion on that matter: 

Our focus on “construction–evaluation” tasks in the domain of proof 

revealed the interesting phenomenon of some prospective elementary 

teachers providing erroneous responses to mathematical tasks posed to 

them by the instructor while being aware that their responses were 

incorrect (see, e.g., Sherrill and Joan’s responses). This phenomenon, 

which presumably is particular neither to prospective elementary teachers 

nor to proof, has received little attention in the literature.(ibid., p. 251) 

 

Thus my study’s relevant results meet the results of the aforementioned studies and in 

this manner it contributes to turn the researchers’ attention to this matter.  In the spirit 

of these two studies, and following Harel & Sowder (1998, 2007), proof fluency could 

be defined as the students’ ability to articulate acceptable proofs within the Greek 

educational context of Year 9. Accordingly we could define proof appreciation as the 

students’ ability to recognise, within the same context, acceptable proofs as defined 

above even as ‘superior’ to their own. On this basis the participants in the present 

research showed strong proof appreciation in algebraic matters as described before. 

This handling of the students’ responses gives a satisfying answer to research question 

d): How, if at all, can the Harel and Sowder’s taxonomy be used to elucidate students’ 

competence in proving as well as how they value proof within the Greek secondary 

educational contexts? Indeed, using the notions of proof fluency and proof 

appreciation on the data collected a structure is bestowed upon them, revealing the 
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internal relation of the proof schemes appeared in the analysis. The level of proof 

fluency is an indication of the difficulties that the participants encountered in their 

attempts to answer the test questions. There are participants who have learnt to deal 

with algebraic identities and relations to such a degree that they can successfully 

tackle problems involving the extensive use of mathematical symbolisation. The 

algebraic questions in T3 invited the participant to step beyond the simple application 

of identities. However, the very same application of identities that was necessary for 

an adequate response to these questions uncovered issues that are frequently  observed 

in everyday teaching regarding the use of the three fundamental identities 

  222
bab2aba   and     22 bababa  . A part of the sample population 

provides evidence of problems manipulating algebraic expressions which in some 

cases are the main reason for failing to reach a proof, due to the accumulation of 

incorrect steps. In other words, more work and practice is needed before these 

participants will be able to handle relevant matters.  

 However, at first sight and  ‘contrary’ to the evidence of the many difficulties the 

students encountered in producing proof, strong evidence was found of high proof 

appreciation and ability in fundamental issues such as how to explain and prove basic 

identities. The participants provide evidence of a very widespread persuasion that the 

truth of an identity results from certain rules and logical steps. The teaching approach 

of the mathematics teacher J has probably affected these students’ responses. She 

insisted on the application of rules when she began teaching algebraic identities, 

emphasising the logic of algebraic manipulations and presenting it as a ‘game’ with 

rules rather than an arbitrary and incoherent process. Based on this strong proof 

appreciation and other factors, certain students have developed the ability to answer 

even the most difficult questions. The proofs the participants were asked to produce 
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were not simple for them if we judge their simplicity by the objectivity of the 

numbers found when counting the adequate answers to the various questions. Thus 

the gap, between the strong proof appreciation and not analogously strong proof 

fluency, is not surprising.   

 The geometry-related questions in T3, which are mainly on the congruency criteria 

for triangles, also provided evidence of students’ difficulties in producing a proof 

unless the question is simple and the necessary criterion is easily recognisable. 

However, it is natural for them to demonstrate these difficulties because this was the 

first time in their school life that they were asked to explicitly prove difficult 

geometric problems. Proof in this context is a completely different task to learning 

how to draw a figure and mastering the terminology. I have already commented on 

the geometric proof, which many of the participants appeared to find difficult, even in 

the pre-proof test, because it requires not arithmetic or algebraic calculations but a 

sequence of steps in which thoughts are put in the correct order using definitions and 

properties to deduce certain conclusions.  

 However, some participants delivered immaculate proofs even for the most 

difficult questions. Anne Watson (2010) speaks of the shifts of mathematical thinking 

in adolescence that is needed in order to develop mathematical efficiency. The 

participants, who had experienced such shifts and were able to offer difficult proofs, 

constitute, together with the wide spread phenomenon of proof appreciation across the 

sample, a very interesting aspect of the findings. It seems that a relative readiness of 

many participants to be taught proof is present.  This readiness needs to be further 

investigated and promoted if we want proving ability to flourish in adolescence.  

 It should also be taken very much into account that many of the students in my 

sample appear to understand or appreciate proof at end of Year 9, at least in the 
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relatively simple context of some the T1 and T3 questions. Quite a few though could 

not. The pace of evolution in proof efficiency has been observed to be laborious 

(Harel & Sowder, 1998; Healy & Hoyles, 2000). Thus the present research in its own 

way confirms the results of many studies of the difficulty of proof.   

 My findings cannot be seen as an assessment of any kind. The size of the sample 

does not allow generalisations and this was not in my intention. On the other hand and 

although my analysis uses a very new tool for the Greek education context, it provides 

indications of the kinds of problems that emerge when students face proof. I 

encountered the same mistakes and false perceptions in the participants’ scripts that I 

have come across many times before in my professional life, but the new light in 

which I saw them is valuable because it opens up a new conception in the research 

analysis that draws attention to the factors that constitute mathematics teaching, in 

other words the curriculum, the teacher and the students in a dynamic interactive 

reality. I will discuss this in more detail in the next section. 

6.2 Contribution of the study  

 In this section I discuss the contribution and implications of the study from four 

different perspectives:  

 (1)  the perspective of teaching and learning proof; 

  (2)     the theoretical perspective regarding the application of Harel and Sowder’s 

proof schemes taxonomy (1998, 2007) ;   

  (3)  the methodological perspective of the  analysis of students’  answers; 

  (4)  the classroom practice perspective in relation to educational policy, 

curriculum and pedagogy.  



[278] 

 

6.2.1 Contribution to teaching and learning of proof 

 This study has investigated how Year 9 students perceive proof on encountering it 

for the first time. Teacher J and I discussed and exchanged thoughts how to teach 

algebraic identities and triangle congruency criteria and agreed on the following 

general points. First, algebraic operations with real numbers should be prioritised in 

proving. Second, in geometry, the congruency criteria should be taught as follows: 

first the students construct triangles from the elements of which the corresponding 

criterion makes use; then the students compare the constructing triangles empirically 

by superimposing them. We also decided to emphasise the writing down and 

understanding of data and conclusions prior to undertaking proof procedures as 

suggested by Polya (1990). The teaching under these considerations by no means 

covers all the knowledge pieces necessary for proof fluency.  Heinze (2004) is of the 

opinion that when students lack knowledge of facts (=Faktenwissen) it is because they 

have not absorbed the teaching. Analysing the tests I found many cases of lack of 

knowledge of facts that could hinder students’ completion of an adequate proof. 

 Without going into every detail, first of all, even before they are taught about proof 

the students have already shaped various ideas and perceptions of mathematical 

objects that define their understanding of proof and proving. These perceptions and 

ideas are not always desirable ones that will help them to develop a good relationship 

with proof procedures. Limited understanding of mathematical objects leads to a 

limited understanding of proof. Thus, as expected, previous knowledge plays an 

important role in the encounter with proof and proving, and teachers should take their 

students’ previous knowledge very much into account, when starting to teach proof.  

 The process of examining students’ efficiency in pre-proof mathematics poses 

problems beyond the scope of this study, such as, under what conditions, is proof 
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teachable in a given classroom. Students in a class naturally perform in a range of 

ways. However if this range goes beyond certain extremes one cannot expect the class 

to be able to follow the teaching of not only proof but also any material as a team. 

Thus when I speak of the teacher’s taking into account the previous mathematical 

understanding I do not mean to solve unsolvable problems. It is true that up to a 

quarter or a third of the participants did not provide an answer to at least one of the 

questions in T1. Questions about what this means and its consequences are posed 

spontaneously even in this research, but addressing this particular and very important 

problem is not one of my aims. In this research the only thing that can be said is that 

the number of failures to provide a proof underlines the difficulty of teaching proof 

and mathematics in general. This is a problem to be addressed via curriculum policy 

under the condition that this policy will be inspired by and based on further research. 

 Returning to my previous argument, it is important to be aware of students’ 

previous knowledge. Even if a teacher is not able to resolve all of the students’ 

difficulties she/he can address many of them if he/she is aware of students’ 

background and understanding. A pre-proof test, or any kind of test, cannot embrace 

the whole gamut of potential problems, although testing the students at the beginning 

of the school year is indispensable. The results of any such test are only indicative, 

however, and can serve as the basis of a dynamic process and an on-going dialogue 

between teacher and students which allows the teacher to deepen his understanding of 

his students’ mathematical thinking and provides a chance for mutual feed-back. 

Things observed in one school year may sometimes be exploited later, rather than 

directly and immediately. For example, with awareness of some students’ tendency to 

‘see’ in the relation 222 5   e.g. the numbers 4 , 3 , it could probably 

be prevented by citing other possible cases where a or b or both are allowed to also 
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take on non-integer values such as   2
2

2 5241  , ( ) ( ) 222

5223 =+  etc. 

Naturally the fact that the numbers in question such as 22   are irrationals and not 

integers has to be explained and stressed. Such examples allow the distinction of the 

‘Pythagorean triads’ from the ‘common’ triads of numbers satisfying the relation

222 5ba  . This approach will not eradicate mistakes once and for all, but the 

teacher’s contract is always to find new ways of conveying ideas. It is important to 

spread many seeds if some of them are to blossom.  

6.2.2 Contribution regarding the application of Harel and Sowder’s taxonomy                                                                    

 I used Harel and Sowder’s taxonomy of students’ proof schemes to analyse the 

participants’ answers. This taxonomy emerged out of a relevant study of the proof 

behaviour of university students taking part in programs in which linear algebra, 

Euclidean geometry and number theory were taught (Harel & Sowder, 1998). In their 

work on the taxonomy Harel and Sowder (1998, 2007) give examples of proof 

behaviour that refer not only to written texts but also, especially where they involve 

the EC.A. proof scheme, to oral answers. Harel and Sowder do not discuss whether 

the various proof schemes could make simultaneous appearances in the proof 

behaviour of students. Using the taxonomy in question Housman and Porter (2003) 

found that a student could provide evidence of different proof schemes answering 

different questions. The participants of this research were above average students.  

 The educational context of my study is in many respects different to that in which 

Harel and Sowder’s research led to the theory of proof schemes as I am going to 

explain. First, their research was conducted at the tertiary level of education and 

consequently the participants had more experience of mathematics, and probably 

some at least had been taught proof at high school. Second, Harel and Sowder’s 
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research participants were being taught elementary number theory, college geometry, 

linear algebra and advanced linear algebra all of which are more advanced subjects 

than those that are taught in Year 9 mathematics classes in the US, in Greece or 

elsewhere. Third, the cultural context, and within that, the educational context in the 

US is different to that in Greece, as I indicated with the presentation of the syllabus 

and the description of the Greek context in Chapter 3. Additionally the sample in the 

present research was composed not of university or above average or high attaining 

students of any kind but of ordinary Year 9 students. All these factors constitute an 

important and weighty difference to the circumstances under which the taxonomy first 

emerged and was applied. Thus the verification of the applicability of the taxonomy 

by the present research reinforces its universal character and its independence of 

particular socio-cultural and educational conditions, and if this character of the 

taxonomy is scientifically accepted it can be used as a tool for broader analysis in 

longitudinal studies. From this point of view I once again emphasise that my research 

evidence answers positively the research question c): How, if at all, is the Harel and 

Sowder’s taxonomy applicable to the Greek secondary educational contexts? I return 

to this point in section 6.4.  

 Analysis of the answers provided evidence of the various proof schemes foreseen 

and described by Harel and Sowder’s taxonomy. Thus, the emergence of the 

taxonomy in my sample is independent of the specific educational environment and 

appears to characterise the proof behaviour of students regardless of their level of 

education. This strong evidence of the taxonomy’s existence includes some very 

interesting aspects which appear to be present in my research sample. 

    First, the appearance of the E.I. and E.P.  proof schemes, depends on the nature of 

the questions that the participants are called upon to prove. Harel and Sowder may 
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insinuate this dependence through the examples they use to illustrate the theoretical 

descriptions of the proof schemes. However, they do not formulate this dependence 

explicitly. In the present research, evidence of the E.P. proof scheme appears in the 

answers to questions of geometric character and is rare in the algebraic answers if not 

impossible. The E.I. proof scheme is more likely to appear in the answers to algebraic 

questions involving variables. A very small number of students’ answers provided 

evidence of E.I. proof scheme, however, because the corresponding participants, 

extraordinarily, measured the readymade geometric figures given to them. 

Analogously, the proof scheme EC.A. made few appearances in their answers because 

it principally has to do with an appeal to an authority when something is discussed, 

mainly, in the classroom, which was not an option under test conditions. In Harel and 

Sowder’s description of the EC.R. proof scheme the ritual character overpowers any 

logical element, almost replacing it. In the present study it seems that this ritual 

element did not have such a strong character. Finally, I deliberately decided not to 

classify any answer as D.A. which means that the absence of this proof scheme is due 

only to methodological reasons. I have explained in methodology chapter why this 

choice was made. I repeat briefly that to classify an answer as D.A. means that the 

answer provides evidence of knowledge of the axiomatic structure of mathematics. 

This can only happen after a systematic study and accumulation of experience in 

proving, which was not yet the case for the participants of my study.  

 Second, as Housman and Porter  (2003) observed when they used the Harel and 

Sowder’s taxonomy, different proof schemes appear in different answers of the 

participants. In my research many of the answers provided evidence of a mixture of 

proof schemes. For example, students often did not succeed in their efforts to prove 

propositions completely, and various inefficiencies can be found, for example, in the 



[283] 

 

misuse of concepts, or the validation of properties by judging the properties of a 

figure perceptually etc., yet their answers are sometimes accompanied by elements of 

deductive thinking. This led to my use of combinations of proof schemes. In this 

respect the taxonomy – and my refined use of it in the form of mixed proof schemes – 

provides new insight into how proof schemes develop. 

 Recapitulating, the main contribution of this research where Harel and Sowder’s 

taxonomy is concerned is the strong indication of its applicability under different 

social, cultural and educational circumstances and conditions and this supports its 

theoretical generality. In this sense the taxonomy describes at satisfactory level how 

students perceive proof even before they have been taught it. These observations 

indicate that previous mathematical discourse, in the broader sense as it takes place in 

everyday school practice, contributes positively as well as negatively to students’ 

understanding of proof. In this respect, used appropriately, the taxonomy could be a 

valuable tool to enrich our understanding of the consequences of mathematics 

teaching. 

6.2.3 Contribution regarding the methodology used to analyse the students’ 

answers                                                                                      

 There are some methodological contributions of the study reported in this thesis. I 

briefly discuss them in this section. 

 To analyse the answers and keep them in order, every participant was assigned a 

code number. Then each of the proof schemes was codified with capital initials 

indicating the full spelling of the corresponding term. The external conviction proof 

schemes are coded EC. with the addition of authoritative proof , coded A., thus 

EC.A.; the ritual R., thus EC.R.; and the non-referential  coded NRS., thus EC.NRS.. 

Similarly the empirical proof schemes take the code symbol E. plus the perceptual 
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proof scheme, P. thus, E.P., and the inductive, I. thus, E.I.. I coded the deductive 

transformational proof scheme on its own as D.T.. The participants and their answers 

to each question, or sub-question were tracked on an EXCEL spreadsheet for each 

test. The complete spreadsheets create an overall picture of each test and can be used 

to create a table showing the absolute and relative frequencies of the proof schemes. 

All the previous steps are indispensable but procedural and are customary in research, 

as they represent the measures necessary for gathering all the relevant information in 

a form that is easy to read and study.   

 I now present some aspects of the methodology that can be regarded as a 

contribution to the research, given that the analytical tool used was Harel and 

Sowder’s taxonomy. I am speaking only of the characterisation of the written 

responses to the question set. Before going into detail I want to emphasise that Harel 

and Sowder’s taxonomy is not an assessment tool; it is a research tool. Every 

assessment puts the person making the assessment in a rather ‘antagonistic’ position 

towards the person being assessed. The assessor accepts what is ‘correct’, ‘rational’, 

‘acceptable’ etc. and rejects what is ‘incorrect’, ‘irrational’, ‘unacceptable’ etc. The 

taxonomy in question, by contrast, demands from the researcher a deeper 

understanding of what the participant is doing or writing. In a way one has to take the 

place of the participants for a moment and go as deeply as possible into their mode of 

thinking. This is a consistent work based on criteria emerging from the taxonomy. In 

doing this, the researcher not only reflects on what the participants wrote but also 

aligns the investigation with any observable reasons why the various ideas of the 

participants were formed. 

 I now take each proof scheme separately and examine what criteria should be used, 

according to the taxonomy, to categorise the scripts. These criteria constitute the main 
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methodological contribution to the literature because they solidify how the analysis 

was carried out and thus could be applied again to written answers in the future, not 

only in research but also as a practical tool for analysing texts in the school practice. 

 Evidence of an EC.A. proof scheme can be said to be present if a script, in support 

of an argument, includes elements of reference to an authority such as the textbook, 

the teacher or some other  scientific authority without attention to whether the 

argument is logically valid or without proposing a justification which, independently 

of the reference to an authority, supports the argument content. I have already 

explained that such occurrences are not frequent in written responses, at least in the 

present study, although the possibility of their appearance cannot be absolutely 

excluded. An EC.A. proof scheme can theoretically occur independently of the 

question. 

 Evidence of an EC.R. proof scheme can be said to be present in a script that 

includes elements of a ritual exposition of ideas which, however, is not logical or 

valid. For example, there may be rituality in writing down the hypothesis and the 

conclusion followed by an attempt to proceed to a proof which partially or totally 

fails. Of course, the ritual writing down of the hypothesis and conclusion and 

proceeding to the proof cannot necessarily have a negative meaning (Herbst, 2002; 

Polya, 1990). The negative element lies in the fact that the proof that follows or is 

embedded in the ritual element is not based of logical arguments and justifications. 

This is why, as I believe, Harel and Sowder relate EC.R. proof scheme to the two-

column proof, meaning the use of the two-column structure, as well as any other 

procedural structure, but void of logical content. An EC.R. proof scheme can 

theoretically occur independently of the nature of the question.  
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 Evidence of EC.NRS. proof scheme can be said to be present where the 

definitions, or conclusions of theorems etc., or various symbols are misused, or where  

the participant makes arbitrary assertions or invents idiosyncratic laws in her or his 

answer. A discrepancy between concept image and concept definition (Tall & Vinner, 

1981) may be responsible for such occurrences as well as the instrumental 

understanding (Skemp, 1976) of algebraic manipulations, the poor knowledge of 

mathematical objects (Heinze & Kwak, 2002) the insufficient previous knowledge 

(Chinnappan, Ekanayake, & Brown, 2011) etc.. All these considerations explain why 

the EC.NRS. proof scheme can occur independently of the nature of the question.  

 Evidence of an E.P. proof scheme can be said to be present in a script that includes 

assertions regarding geometrical properties which the participant has estimated by eye 

from a given or self-drawn figure, without any justification or supporting argument. 

The E.P. proof scheme, proved to be question-dependent in my research. It is closely 

connected to geometrical figures and perception of them. 

 Evidence of an E.I. proof scheme can be said to be present where a participant 

assigns values to variables and proves the question on this basis. There is no 

generalisation of the solution, for example by asserting that the same would be valid 

for any other value-assignment. The E.I. proof scheme is question dependent. Indeed, 

it usually appears when variables or possibility of measurement or both are involved 

in proof processes. In cases of E.I. proof scheme appearance, variables are substituted 

by assigned numerical values and various quantities, for example line segment 

lengths, are measured,  without any generalisation of the proof thus obtained beyond 

the numbers assigned or found as measure. In my research sample it appeared in a 

limited number of responses to algebraic questions and in few responses to questions 

of geometry where the participant measured elements of the plane figure.  
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 Finally the D.T proof scheme is particularly question-independent. It has a broad 

meaning in the present research and its presence was equated with evidence that the 

proof offered by a participant is logically adequate. A characteristic example is the 

proof of the relation 1111155555556 22  . In this case the arithmetical 

computation in the left member of the relation to be proved is an acceptable D.T. 

proof, although it does not use the algebraic identity   bababa 22  .  If the 

arithmetical computation is correct it is also logically acceptable.   

 A major methodological contribution is the multiple characterisation of proof 

procedures to embrace the appearance of more than one proof scheme in a number of 

the participants’ answers. 

6.2.4 Contribution to classroom practice, curriculum policy, and teaching                                                                    

 In a recent seminar to mathematics teachers on the use of a DGS software in 

mathematical teaching, one of them, who was having difficulty in understanding how 

to use the software, exclaimed “I will never make any of my students repeat the 

mathematics examination again!”. For her, being a student and learning the software 

made her realise the difficulty of being a student and trying to follow the teacher’s 

instructions. 

 Sometimes in the history of human civilisation a reordering of priorities, the 

invention of a symbol as naïve as that for the ‘number’ zero etc., which in retrospect 

seems simple, has produced a great leap forward in the development of thought. Harel 

and Sowder’s taxonomy is not only a technical instrument, and must not be 

understood instrumentally but relationally. It is not simply another research proposal 

regarding proof. There is a philosophy behind it which is reified by the taxonomy. 

This philosophy gives proof a socio-cultural face and makes it a product of the 

evolution of human thought. In this respect it allows us to see mathematical proof in 
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its historical dimension, and not as a truth once and for all given. Today, after 

centuries of mathematical development mathematicians know that Euclid’s proof is 

different from Hilbert’s proof. Both however have in common the acceptance of 

axioms on which the proof of theorems is built. That is why Euclid’s Elements is a 

work of paramount importance because it gave birth to the seminal idea of axiomatic 

foundation of mathematics. Efimov (1980, p. 18;  my italics) comments on the 

arguments of the proof of Proposition 32 of Book I (Heath, 1956, pp. 316-322) as 

follows: “Thus the above arguments depend heavily on the visual evidence” (1980, p. 

18;  my italics). However, nobody dares to think that, because of his visual evidence 

in this and other cases, Euclid, is not among the greatest mathematicians of all times. 

Seeing the taxonomy from this point of view spurs a simple rearrangement in our 

minds and invites us to impose it creatively on the school reality. The students’ proof 

behaviour must be understood in an evolutionary manner. The genetic principal is 

based on this philosophy (Freudenthal, 1973; Schubring, 1978; Wittenberg, 1963). 

Thus it must be understood as repeating in condensed form the progress and set-backs 

of the historical evolution of mathematical thinking. This angle of observation 

reorders our priorities from assessing to understanding, and from comparing the proof 

thinking of the students with abstract deductive thinking to the laborious birth of 

deductive thinking from various others forms such as empirical proof thinking.  

 Harel and Sowder’s taxonomy provides teachers and educators with a particular 

insight into students’ difficulties and thus offers a basis for rational compassion and 

empathy with them. The taxonomy forces one to understand their mode of thinking 

about such a complicated matter as proof.  Since proof embraces all the mathematical 

knowledge of students, the various proof schemes analysed under the magnifying 

glass of the taxonomy illustrate how knowledge is constructed in the classroom as 
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well as by each individual student in the class. Consequently analysis by means of the 

taxonomy makes the divergence from the wishful deductive reasoning clear and thus 

turns our attention to the probable reasons responsible for this.  

 The two factors that can account for students’ proof behaviour, apart from the 

students themselves, are the teaching of mathematics, which is always personified by 

the teacher, and the curriculum, which institutionalises proof.  

 By observing the proof behaviour of the students and analysing it in terms of the 

taxonomy in question, the teacher can detect where the teaching has allowed or 

supported deviations from deductive thinking and adjust his/her teaching accordingly 

for better results. 

 Regarding the curriculum and its influence on the students’ proof behaviour, the 

taxonomy is offered as a tool of analysis; however, longitudinal studies are needed to 

create credible results.  

6.3 Reflections on some limitations of the study 

 The scope of this study was to investigate how the students in Greece perceive 

proof, just before being taught proof procedures at the beginning of Year 9, and at the 

end of Year 9, after having had a time interval in the school year of being taught about 

proof. The first limitation of the study is the small size of the participants’ sample, 

compared to the population of students at this level across the country, although it 

comes from a school with ordinary students. Another is that this school has attracted 

teachers with particularly high qualifications in mathematics. Thus the findings of the 

research are indicative and need to be validated with further investigation. 

 The study offers evidence of the applicability of Harel and Sowder’s taxonomy 

(positively answering research question c) but this evidence needs to be strengthened 

further by future, broader studies in the same vein.   Obviously this evidence is 
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limited to the  students who participated in this study; and to the mathematical 

contexts of the questions in the two tests (e.g. applications of algebraic identities and 

geometrical proofs that involve, e.g., the use of the triangle congruency theorems). I 

do believe however that the significant number of students in whose answers 

substantial evidence of the D.T. proof scheme was found – and the overall quality of 

these answers – allows the emergence of the main findings reported in this study with 

some confidence. Of course this confidence needs to be strengthened further with 

larger and deeper investigations. 

6.4 The larger study project this study is embedded in.                                                        

Suggestions for further research 

 The present study is a result of collaboration mainly between teacher J and myself 

and, to some extent, with other school colleagues during the school year 2010-2011. 

Our common work has some exceptional features:  Teachers and researchers work 

together towards agreeing on an object of learning and aim to teach it effectively. 

Usually the object of learning is one that demonstrates cognitive difficulties for the 

students, and the teaching is planned with the aim of overcoming these difficulties. 

This type of collaboration is not well-known in the Greek educational context and the 

larger project, which the study presented in this thesis is part of, can be considered a 

pilot project of this type of collaboration among teachers. Among other products of 

this collaboration are audio-taped meetings with my colleagues and audio-taped 

classroom sessions together with the notebook in which I took notes on the teaching. 

Additionally there are further written answers to test named T2 and to the final 

official examinations, T4. The audio-taped meetings and teaching observation can be 

analysed and exploited to aid understanding of how the enacted curriculum is applied 
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to teaching about proof and the probable interrelationships among teachers, the 

teaching of proof, students’ understanding as a case study but also more generally. 

 Therefore many possibilities for further study have emerged in the process. Here 

are some: 

 How should students be taught mathematics before encountering proof, and 

how can they be prepared for a successful encounter with proof? 

 On what grounds do the various proof schemes develop? 

 How does proving ability, as seen through Harel and Sowder’s taxonomy, 

evolve in the years beyond Year 9? 

 Is the Year 9 students’ performance with respect to the proof schemes they 

produced predictive of their future mathematical development? 

 To what extent and in what manner does the teacher’s teaching approach 

affect the production of the various proof schemes?   

 To what extent and in what manner does the curriculum influence the proof 

scheme production and the distribution of the various proof schemes? 

 To what extent and in what manner can the collaboration between researchers 

and practitioners in mathematics education curriculum influence the students’ 

learning experiences in proof, and more widely, in mathematics?  

 I look forward to engaging with the analyses of the remaining bulk of data 

collected in the context of the larger study (but not included here) and I hope to have 

the opportunity to engage in further research projects investigating some of these and 

other relevant questions in the near future. 
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APPENDIX I 

TEST T1  AND TEST T3 IN GREEK 

ΔΙΑΓΝΩΣΤΙΚΟ ΤΕΣΤ (Τ1) 

ΚΩΔΙΚΟΣ_______________________________ ΗΜΕΡΟΜΗΝΙΑ____________ 

1. Σε ένα τρίγωνο ΑΒΓ (Σχήμα 1) η γωνία Â  έχει μέτρο  85Â και η γωνία 75B̂ . 

Να αποδείξετε ότι η γωνία ̂  έχει μέτρο  20̂  

........................................................................................................................................... 

..........................................................................................................................................

..............................................

..............................................

..............................................

..............................................

..............................................

..............................................

..............................................

............................................... 

 

2. Σε ένα τρίγωνο ΑΒΓ (Σχήμα 2) η γωνία    ̂ έχει μέτρο    ̂      και η γωνία 

   ̂      . Οι ΑΙ και ΒΙ είναι διχοτόμοι των γωνιών    ̂ και     ̂ αντίστοιχα. Να 

αποδείξετε ότι η γωνία AIB έχει 

μέτρο    ̂       

.......................................................

.......................................................

.......................................................

.......................................................

.......................................................

.......................................................

.......................................................

.......................................................

.......................................................

.......................................................

.......................................................

..........................................................................................................................................

......................................................................................................................................... 
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3. Ενός ευθυγράμμου τμήματος ΑΒ το σημείο Μ είναι το μέσο του (ΜΑ=ΜΒ). Η 

ευθεία (ε) είναι η μεσοκάθετος του τμήματος ΑΒ (Σχήμα 3). Έστω Σ ένα σημείο της 

μεσοκαθέτου (ε).Φέρουμε τα τμήματα ΣΑ και ΣΒ. Να αποδείξετε ότι το τρίγωνο 

ΣΑΒ είναι ισοσκελές......................................................................................................... 

............................................... ..........................................................................................

..........................................................................................................................................

...................................................

...................................................

...................................................

...................................................

...................................................

...................................................

...................................................

...................................................

...................................................

...................................................

...................................................

...................................................

...................................................

...................................................

.................................................... 

 

 

4. Σε ένα τρίγωνο ΑΒΓ (Σχήμα 4) διαιρούμε την πλευρά ΑΓ σε τέσσερα ίσα μέρη με 

τα σημεία Δ, Ε και Ζ (δηλαδή ΑΔ=ΔΕ=ΕΖ=ΖΓ). Να αποδείξετε ότι 

a) ΑΕ=ΕΓ............................................ 

..............................................................

..............................................................

............................................................. 

b) Το ευθύγραμμο τμήμα ΒΕ είναι η 

διάμεσος του τριγώνου από την 

κορυφή Β που αντιστοιχεί  στην 

πλευρά ΑΓ............................................. 

..............................................................

..............................................................

..............................................................

..............................................................

..............................................................

........................................................................................................................................... 

 

 

 

 

 



[294] 

 

5. Στο Σχήμα 5 βλέπετε τα τρίγωνα ΑΒΓ και ΔΕΖ. 

 
a) Στο τρίγωνο ΑΓΒ τα μήκη πλευρών είναι ΑΓ=5, ΓΒ=3 και ΒΑ=4. Να αποδείξετε 

ότι το τρίγωνο ΑΓΒ είναι ορθογώνιο................................................................................ 

..........................................................................................................................................

........................................................................................................................................... 

b) Στο τρίγωνο ΔΖΕ τα μήκη πλευρών είναι ΔΖ=6, ΖΕ=4 και ΕΔ=3. Να αποδείξετε 

ότι το τρίγωνο ΔΖΕ δεν είναι ορθογώνιο……………………………………………….. 

..........................................................................................................................................

........................................................................................................................................... 

6. Στο σχήμα 6 είναι σχεδιασμένο ένα ισοσκελές τρίγωνο του οποίου οι γωνίες    ̂ 

και    ̂ είναι ίσες και έχουν μέτρο    ̂     ̂     . Να υπολογίσετε το μέτρο 

της γωνίας 

   ̂ .........................................

.................................................

.................................................

.................................................

.................................................

.................................................

.................................................

.................................................

.................................................

.................................................

.................................................

..........................................................................................................................................

........................................................................................................................................... 
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ΤΕΣΤ ΑΠΟΔΕΙΚΤΙΚΩΝ ΘΕΜΑΤΩΝ  

ΣΤΗΝ ΑΛΓΕΒΡΑ ΚΑΙ ΤΗ ΓΕΩΜΕΤΡΙΑ  

ΤΗΣ Γ΄ ΓΥΜΝΑΣΙΟΥ (Τ3) 

ΚΩΔΙΚΟΣ:______________________________    ΗΜΕΡΟΜΗΝΙΑ:___________ 

 

 

1. ΑΛΓΕΒΡΑ  

A1. Δίνεται ότι για τους πραγματικούς αριθμούς  ,  ισχύει  
2225   . Να 

αποδείξεις  ότι     1253223
22

  . 

A2.  Αν η διαφορά των τετραγώνων δυο άνισων  φυσικών  αριθμών  κ και λ (κ>λ) 

είναι ίση με το άθροισμα αυτών των φυσικών αριθμών  τότε: 

a. Να αποδείξεις  ότι η  διαφορά των δυο φυσικών αριθμών κ και λ είναι ίση με 

τη μονάδα.  

b. Να αποδείξεις  ότι 1111155555556 22  . 

 

A3. Δυο συμμαθήτριες σου συζητούν πώς να αποδείξουν ότι 

   22   .  Η μια προτείνει να  δώσουν αριθμητικές τιμές στα    

και   (π.χ. 2  και  1 ) και να κάνουν τις πράξεις για να διαπιστώσουν αν 

το αριστερό μέλος δίνει το ίδιο αριθμητικό αποτέλεσμα με το δεξιό μέλος. 

Πειραματίζονται με μερικές τιμές των   και   και  διαπιστώνουν ότι το 

αριθμητικό αποτέλεσμα στο αριστερό και στο δεξιό μέλος είναι κάθε φορά το 

ίδιο. Μετά από αυτά πιστεύουν ότι η σχέση αποδείχθηκε.  

a. Εσύ που παρακολουθείς τη συζήτηση συμφωνείς με την άποψη τους; Αν όχι τι 

έχεις να τους προτείνεις;  

b. Πιστεύεις ότι ο καθηγητής τους θα συμφωνούσε μαζί τους;  
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2. ΓΕΩΜΕΤΡΙΑ 

Γ1. Δίνεται ένα πλάγιο παραλληλόγραμμο ΑΒΓΔ. Από την κορυφή Α  φέρουμε  την 

ευθεία  (α) κάθετη στην ευθεία ΔΓ. Η ευθεία (α) τέμνει την ευθεία ΔΓ στο 

σημείο Ε.  Από την κορυφή Γ φέρουμε  την ευθεία (β) κάθετη στην ευθεία ΑΒ. Η 

ευθεία (β) τέμνει την ευθεία   ΑΒ στο σημείο Ζ.  

a. Να σχεδιάσεις το σχήμα.  

b. Να αποδείξεις ότι το τρίγωνο ΑΔΕ είναι ίσο προς το τρίγωνο ΓΒΖ.  

 

Γ2. Στο Σχήμα 2 ισχύουν τα εξής: Η ευθεία ζ, η οποία διέρχεται από τα σημεία Α και 

Β, είναι  μεσοκάθετος  του ευθυγράμμου τμήματος  ΓΔ. Να αποδείξεις  ότι τα 

τρίγωνα ΑΒΓ και ΑΒΔ είναι ίσα.  
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Γ3. Στο Σχήμα 3 τα τρίγωνα ΑΓΒ και ΕΒΔ  έχουν  ΑΓ=ΕΒ, ΑΒ=ΕΔ  και ΓΒ=ΒΔ. Τα 

σημεία Α, Β και Δ βρίσκονται πάνω στην ίδια ευθεία α.   

a. Να αποδείξεις ότι τα τρίγωνα ΑΓΒ και ΕΒΔ είναι ίσα. 

b. Να αποδείξεις ότι οι ευθείες  ΒΓ και  ΕΔ είναι παράλληλες. 
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APPENDIX II 

PARENTS AND GUARDIANS PROFESSIONS  

C
O

D
E

 

N
U

M
B

E
R

 

FATHER'S PROFESSION MOTHER'S PROFESSION 

01 PRIVATE SECTOR EMPLOYEE HOUSEWIFE 

02 UNIVERSITY PROFESSOR CLOTHES MERCHANT 

03 NOT DECLARED NOT DECLARED 

04 MERCHANT AGRONOMIST 

05 HOTEL DIRECTOR SALESWOMAN 

06 CIVIL SERVANT CIVIL SERVANT 

07 CLOTHES HANDICRAFT OWNER CLOTHES HANDICRAFT OWNER 

08 DENTAL TECHNICIAN HOUSEWIFE 

09 ELECTRICAL ENGINEER HOUSEWIFE 

10 NEUROSURGEON GYNECOLOGIST 

11 POLICEMAN TEACHER 

24 PRIVATE SECTOR EMPLOYEE BUSINESSWOMAN 

25 MARITIME BUSINESSMAN ART HISTORY SPECIALIST 

12 DRAPE HANDICRAFT DRAPE HANDICRAFT 

13 PHYSICIAN GENERAL 

PRACTIONER 

SECONDARY SCHOOL TEACHER 

PHYSICIST 

14 CHIEF POLICE INSPECTOR SECONDARY SCHOOL TEACHER 

PHILOLOGIST 

26 PENSIONER SEAMAN UNEMPLOYED 

15 TAXI DRIVER BANK EMPLOYEE 

27 TRAINER NURSE 
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C
O

D
E

 

N
U

M
B

E
R

 

FATHER'S PROFESSION MOTHER'S PROFESSION 

16 BUILDER HOUSEWIFE 

28 EARTH WORKS TYPIST 

17 PRIVATE SECTOR EMPLOYEE SELF-EMPLOYED 

29 SELF-EMPLOYED PRIVATE SECTOR EMPLOYEE 

18 NURSE NURSE 

30 BUSINESSMAN HOUSEWIFE 

19 SECONDARY SCHOOL TEACHER SECONDARY SCHOOL TEACHER 

31 INFORMATICS EMPLOYEE SECONDARY SCHOOL TEACHER 

32 WORKER TEACHER OF GERMAN LANGUAGE 

47 HOTEL DIRECTOR HOTEL EMPLOYEE 

20 CAR MECHANICHER HOUSEWIFE 

33 PATHOLOGIST PATHOLOGIST 

34 SALESMAN SALESWOMAN 

21 AUTOMOBILIST PRIVATE SECTOR EMPLOYEE 

22 NOT DECLARED NOT DECLARED 

48 POLICEMAN CAPTAIN SARGENT HOUSEWIFE 

35 BUILDER PRIVATE SECTOR EMPLOYEE 

36 ACCOUNTANT ACCOUNTANT 

49 PRIVATE SECTOR EMPLOYEE PRIVATE SECTOR EMPLOYEE 

37 CIVIL ENGINEER CIVIL ENGINEER 

50 CRAFTSMAN DENTIST ASSISTANT 
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C
O

D
E

 

N
U

M
B

E
R

 

FATHER'S PROFESSION MOTHER'S PROFESSION 

51 NOT DECLARED NOT DECLARED 

52 BUSINESSMAN HOUSEWIFE 

38 SELF-EMPLOYED NURSE 

53 NOT DECLARED NOT DECLARED 

54 ACCOUNTANT EMPLOYEE SECONDARY SCHOOL TEACHER 

39 MILITARY SECONDARY SCHOOL 

55 PORT EMPLOYEE PRIVATE SECTOR EMPLOYEE 

56 PLUMER NURSE 

40 MERCHANT HOUSEWIFE 

57 NOT DECLARED NOT DECLARED 

41 CONSULTANT UNIVERSITY EMPLOYEE 

58 CIVIL SERVANT CIVIL SERVANT 

59 IMPORT-EXPORT MERCHANT NUTRITIONIST-DIETICIAN 

69 REPAIR SHOP PRIVATE SECTOR EMPLOYEE 

42 CIVIL SERVANT SELF-EMPLOYED 

70 PRIVATE SECTOR EMPLOYEE PRIVATE SECTOR EMPLOYEE 

71 PRIVATE SECTOR EMPLOYEE CIVIL SERVANT 

72 MILITARY BANK EMPLOYEE 

43 TOUR GUIDE PIANO TEACHER 

73 PHYSICIAN PHYSICIAN 

74 PHYSICIAN PHYSICIAN 
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C
O

D
E

 

N
U

M
B

E
R

 

FATHER'S PROFESSION MOTHER'S PROFESSION 

75 AGRICULTURIST ACCOUNTANT 

76 CIVIL SERVANT CIVIL SERVANT 

23 SELF-EMPLOYED NURSERY GOVERNESS 

77 PHYSIOTHERAPIST PHYSIOTHERAPIST 

44 SALES REPRESENTATIVE SELF-EMPLOYED 

60 NURSE NURSE 

45 BUSINESSMAN MERCHANT 

46 DENTIST MILITARY 

78 MERCHANT MERCHANT 

79 ELECTRICAL ENGINEER ENGLISH TEACHER 

61 SELF-EMPLOYED SELF-EMPLOYED 

80 PEROPERTY DEVELOPMENT CIVIL SERVANT 

81 PHYSICIST CIVIL SERVANT 

82 CIVIL SERVANT CIVIL SERVANT 

83 SELF-EMPLOYED CIVIL SERVANT 

84 ELECTRICAL ENGINEER EMPLOYEE IN THE GREEK 

ELECTRICAL COMPANY 

62 NOT DECLARED ACCOUNTANT 

85 NOT DECLARED ACCOUNTANT 

86 ELECTRONIC NURSE 

87 CARPENTER HOUSEWIFE 

63 NOT DECLARED NOT DECLARED 
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C
O

D
E

 

N
U

M
B

E
R

 

FATHER'S PROFESSION MOTHER'S PROFESSION 

88 PRIVATE SECTOR EMPLOYEE CIVIL SERVANT 

64 ACCOUNTANT RETIRED NURSE 

89 BUILDER HOUSEWIFE 

65 COMPUTER PROGRAMMER PRIMARY EDUCATION TEACHER & 

COSMETICIAN 

66 NOT DECLARED NOT DECLARED 

90 PRIVATE SECTOR EMPLOYEE PRIVATE SECTOR EMPLOYEE 

67 CARDIOLOGIST ECONOMIST 

91 PRIVATE SECTOR EMPLOYEE EMPLOYEE IN THE GREEK 

ELECTRICAL COMPANY 

68 SECONDARY SCHOOL TEACHER HEMATOLOGIST 

92 BUTCHER PRIVATE SECTOR EMPLOYEE 
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APPENDIX III 

PARTICIPANTS’ MATHEMATICS SCHOOL PERFORMANCE IN YEARS 7, 8, AND 9  

P
A

R
T

IC
IP

A
N

T
’S

 

C
O

D
E

 N
U

M
B

E
R

 

YEAR 7 

MATHE-

MATICS           

MARK 

OF THE 

FINAL 

OFFICIAL 

EXAM 

YEAR 7    

AVERAGE 

MATHE-

MATICS       

MARK   

YEAR 8 

MATHE-

MATICS            

MARK 

OF THE 

FINAL 

OFFICIAL 

EXAM 

YEAR 8        

AVERAGE 

MATHE-

MATICS       

MARK   

YEAR 9         

MATHE-

MATICS            

MARK 

OF THE 

FINAL 

OFFICIAL 

EXAM 

YEAR 9  

AVERAGE 

MATHE-

MATICS       

MARK   

01 19 19 20 20 20 20 

02 19 19 20 19 19 20 

03 20 19 20 20 20 20 

04 18 19 19 18 19 19 

05 18 19 20 18 14 17 

06 20 19 18 19 20 20 

07 17 16 20 19 18 20 

08 10 15 14 16 18 18 

09 19 19 18 18 18 18 

10 18 18 18 17 14 16 

11 14 17 20 18 18 19 

12 8 13 16 12 19 17 

13 20 19 20 20 20 20 

14 20 19 20 20 20 20 

15 10 13 8 10 15 14 

16 11 14 10 12 12 17 

17 2 9 9 10 4 12 

18 20 20 20 20 19 20 

19 17 19 18 18 19 20 

20 16 18 20 19 20 20 

22 2 8 5 9 3 12 

23 15 18 18 19 19 20 

24 8 16 10 16 16 17 

25 11 13 13 12 17 16 

26 14 17 19 19 18 19 

27 12 16 5 14 18 18 

28 13 14 12 13 10 14 

29 11 11 13 11 4 12 

30 17 18 19 19 18 19 

31 9 15 4 9 16 17 

32 12 14 20 16 17 18 

33 20 19 20 20 18 20 

35 4 9 9 10 6 11 

36 12 17 18 19 15 18 

37 16 18 18 19 18 19 

38 17 18 14 16 16 17 
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P
A

R
T

IC
IP

A
N

T
’S

 

C
O

D
E

 N
U

M
B

E
R

 

YEAR 7 

MATHE-

MATICS           

MARK 

OF THE 

FINAL 

OFFICIAL 

EXAM 

YEAR 7    

AVERAGE 

MATHE-

MATICS       

MARK   

YEAR 8 

MATHE-

MATICS            

MARK 

OF THE 

FINAL 

OFFICIAL 

EXAM 

YEAR 8        

AVERAGE 

MATHE-

MATICS       

MARK   

YEAR 9         

MATHE-

MATICS            

MARK 

OF THE 

FINAL 

OFFICIAL 

EXAM 

YEAR 9  

AVERAGE 

MATHE-

MATICS       

MARK   

39 13 15 9 12 10 14 

40 4 13 4 11 3 11 

41 19 19 18 18 17 19 

42 16 18 9 14 14 16 

43 13 13 12 14 16 17 

44 14 17 15 16 10 16 

45 14 16 17 17 13 16 

46 8 10 7 10 9 13 

47 12 14 14 14 11 16 

48 14 16 13 17 14 18 

49 9 14 4 11 6 12 

50 15 16 14 17 17 17 

51 5 10 9 9 6 11 

52 11 15 13 14 14 15 

53 9 11 9 12 15 17 

54 19 17 15 17 14 17 

55 2 9 2 9 6 11 

56 8 12 16 15 16 16 

57 16 17 17 18 17 19 

58 15 14 14 13 12 14 

59 17 16 15 15 19 18 

60 19 18 17 17 17 18 

61 14 14 15 14 14 14 

62 10 14 17 18 19 20 

63 11 13 11 12 10 14 

64 19 19 20 19 19 20 

65 14 17 18 18 13 16 

66 20 19 17 18 19 19 

68 20 19 19 19 18 19 

69 11 15 14 15 14 16 

70 8 10 8 10 6 10 

71 14 16 13 15 13 15 

72 13 15 10 15 16 18 

73 14 15 10 14 15 16 

74 20 20 20 20 19 20 

75 13 16 17 14 18 18 

76 9 13 9 10 9 14 

77 11 15 18 19 19 19 

78 18 19 19 19 18 19 

79 15 15 13 15 11 16 

80 10 13 10 13 10 13 
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P
A

R
T

IC
IP

A
N

T
’S

 

C
O

D
E

 N
U

M
B

E
R

 

YEAR 7 

MATHE-

MATICS           

MARK 

OF THE 

FINAL 

OFFICIAL 

EXAM 

YEAR 7    

AVERAGE 

MATHE-

MATICS       

MARK   

YEAR 8 

MATHEM

ATICS            

MARK 

OF THE 

FINAL 

OFFICIAL 

EXAM 

YEAR 8        

AVERAGE 

MATHEM

ATICS       

MARK   

MATHEM

ATICS            

YEAR 9         

MARK 

OF THE 

FINAL 

OFFICIAL 

EXAM 

YEAR 9  

AVERAGE 

MATHEM

ATICS       

MARK   

81 19 19 19 18 20 19 

82 18 18 16 17 12 16 

83 12 16 19 18 18 18 

84 15 18 14 16 16 17 

85 12 16 17 18 16 17 

86 16 17 17 14 13 17 

87 10 11 6 10 11 14 

88 19 19 19 19 18 19 

89 3 8 8 10 4 11 

90 18 19 17 17 14 17 

92 14 15 10 14 17 17 

21 11 15 16 15 16 18 

34 19 17 15 17 15 18 

67 15 16 16 14 14 14 

91 9 15 16 16 14 18 

       

A
V

E
-

R
A

G
E

 13  59/92  15  15/23  14  43/92  15  11/23  14  61/92  16   3/4   

S
T

 D
E

-

V
IA

T
IO

N
 4 120/161 3   6/277 4 379/489 3 127/389 4 202/375 2  11/16  

Μ
Α

Χ
 

20         20         20         20         20         20         

Μ
ΙΝ

 

2         8         2         9         3         10         

R
A

N
G

E
 18         12         18         11         17         10         

Grades in scale 1-20 
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APPENDIX IV 

 

Information sheets and consent forms                                                                       

and their Greek translations 

 

1. Model of information sheet for parents/guardians 

Dear _______________________ 

My name is Ioannis Kanellos and I am supervisor of teaching Mathematics in the 

prefectures of Heraklion and Lassithi. Aiming at improving the quality of our 

mathematical education, enhancing the professional skills of my colleagues as well as 

mine and as a student of Doctorate in Education of the School of Education and 

Lifelong Learning of the University of East Anglia (UEA) I am conducting a research 

on the teaching of proof in our schools.  

 

Title of Research Project: “The Learning Studies approach to explore and improve the 

learning experience of year 9 and 10 Greek students with regard to their first 

encounter with mathematical proof.”     

Researcher: Ioannis Kanellos 

Supervisors: Elena Nardi, Irene Biza 

 

I would like to invite your child to take part in my research. Before you decide you 

need to know why I am doing this research and what it will involve. Please take time 

to read this information carefully together with your child to help you decide whether 

or not to take part. Please ring me and ask if there is anything that is not clear or if 

you would like more information. Thank you for reading this. 

 

What is this study about? 

I am trying to explore and improve the teaching and learning of proof of secondary 

school children in Years 9 and 10. The reason for this study is that understanding 

proof is a decisive point in the development of mathematical thinking. Let it be noted 

that there is currently little research in this area in our country. I hope that through this 

research, I will be able to contribute to the design of more effective strategies that 

enhance deeper mathematical understanding among students. 

 

How will my child be involved? 

The research will be conducted within the context of the current curriculum so that 

your child will take part in lessons as usual. The lessons plans will be taught by the 

classroom teacher or me. But in order to evaluate, revise and investigate the lesson 

process I will tape-record and video-record the lessons. Parallel to this procedure in 

the classroom could be present also teachers members of the lessons’ plan working 

group.  

 

What are the potential benefits? 
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This is an opportunity for your child to get involved in research. Besides that, the 

result from this study will contribute to the design of activities that promote more 

effective strategies for students’ deeper mathematical understanding.  

 

Will it affect my child’s Mathematics lesson? 

No, your child’s Mathematics lesson will not be affected in any way since as previous 

already mentioned there will be no divergence of the curriculum and the syllabus. 

 

Can you change your mind? 

Yes. You and your child have the right to withdraw at any time. 

 

Who will have the access to the video-recordings (data)? 

Data management will follow the current Data Protection Act valid in England. I will 

not keep information about your child that could identify it to someone else. Only I 

and my supervisors will have access to the data. The data will be only analysed for the 

scope of my final dissertation and this will be accessible only by me, my supervisors 

and the two other markers of my work.  All the names of the children taking part in 

the research and the Schools will be anonymised to preserve confidentiality. 

 

Who has reviewed the study? 

The School of Education and Lifelong Learning, UEA and the UEA Ethics 

Committee have reviewed and approved the study. 

 

Whom do I speak to if problems arise? 

If there is a problem please let me know. You can contact me at the following 

address: 

Ioannis Kanellos 

Parodos Ikarou 28, 71601 

Nea Alikarnassos  

Or 

If you would like to speak to someone else you can contact Elena Nardi 

School of Education and Lifelong Learning  

University of East Anglia 

NORWICH NR4 7TJ 

Tel: +4401603592631 

 

OK, I want to take part – what do I do next? 

You and your child need to fill in the consent form, both sign it and your child will 

take it back to the school. 

 

Thank you for your time. 
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2. Student information sheet 

Dear Student, 

You are being invited to take part in a research study. Before you decide if you would 

like to take part, it is important that you understand why the research is being done 

and what taking part will involve. Please take some time to read this sheet carefully 

and discuss it with your parents. 

 

Who is doing this research? 

 The research is conducted by me, Ioannis Kanellos, supervisor for teaching 

Mathematics in the prefectures of Heraklion and Lassithi. I  will be working 

under the supervision of  Elena Nardi and Irene Biza  

 

What I want to find out? 

 I am trying to research and improve the teaching and learning of proof in 

Years 9 and 10. I hope that through completing this study, I will be able to 

design more effective strategies in enhancing a deeper mathematical 

understanding among students. 

 

Why have you been chosen? 

 You have been chosen as a participant in this research because your school is 

helping me out in conducting this research. 

 

Do you have to take part? 

 NO. You do not have to take part in this study. 

 If you decide YES, it is still okay to change your mind later and say NO. 

 You do not have to give a reason for your decision. 

 

How will you be involved? 

 While engaged in a mathematical task, you will be working as usual in the 

classroom. 

 There will be video recordings of every lesson of the research project. 

 

Can I change my mind? 

 YES. You have the right to stop participating at any time. 

 

Will information about me be kept private? 

 YES. All recordings and information about you will not be revealed or shown 

to someone else. 

 Only I and my supervisor will have access to these recordings. 

 

What happens at the end? 

 The results will be written as part of my final dissertation. Your identity will 

be protected. 

 

Whom do I speak to if there is a problem? 

 If there is a problem please let me know. You can contact me at the following 

address: Ioannis Kanellos, Parodos Ikarou 28, 716 01 Nea Alikarnassos  

Or  
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 If you would like to speak to someone else you can contact Elena Nardi or 

Irene Biza School of Education and Lifelong Learning University of East 

Anglia NORWICH NR47TJ Tel; +4401603592631  

 

OK, I want to take part – what do I do next? 

 You need to fill in the consent form with your parent, both of you sign it and 

then take it back to school. 

 

Thank you for your time. 
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3. Head Teacher/Teacher information sheet  

DATE: 

 

Ioannis Kanellos 

 

The person this letter is going to 

 

Dear Head Teacher/Teacher, 

 

 

You know me as a supervisor for the teaching of Mathematics in the prefectures of 

Heraklion and Lassithi. In order to enhance my professional skills as well as those of 

my colleagues I am willing to conduct a research as a supervisor as well as a student 

of Doctorate in Education of the School of Education and Lifelong Learning at the 

University of East Anglia (UEA). 

 

My research, entitled “The learning studies approach to explore and improve the 

learning experience of year 9 and 10 Greek students with regard to their first 

encounter with mathematical proof”, will focus on the teaching and learning of proof 

within the context of the current curriculum. 

 

I am to carry out my fieldwork in a school, particularly, in a classroom with students 

as participants engaged in Mathematics lessons.  

 

My research requires the tape- and video-recording of the lessons. Besides that, if 

necessary, the study will employ video-stimulated recall interview to obtain further 

details on recordings made. 

 

I would greatly appreciate your consent to my request. If you require any additional 

information, please do not hesitate to contact me. I can be reached at: 

 

E-mail : I.Kanellos@uea.ac.uk 

 

And my supervisors E.Nardi@uea.ac.uk, I.Biza@uea.ac.uk 

 

 

Yours sincerely 

 

 

 

 

 

 

 

mailto:I.Kanellos@uea.ac.uk
mailto:E.Nardi@uea.ac.uk
mailto:I.Biza@uea.ac.uk
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4. Parent/guardian consent form 

Dear Parent/Guardian, 

  

I am writing to you about the research that I am conducting as a supervisor for 

teaching Mathematics and as a student of Doctorate in Education of the School of 

Education and Lifelong Learning at the University of East Anglia (UEA). I am 

interested in researching and improving teaching and learning of proof in Years 9 and 

10. 

 

I have approached the School your child attends, and have explained to them the 

purpose of the study, and they have kindly agreed to distribute these letters to you. 

 

If you are not interested in allowing your child to take part in this research, please 

read together with your child the information sheet enclosed. If you are willing for 

your child to take part in this study, please sign the form enclosed, ask your child to 

sign it too and hand it in to the school where it will be passed on to me.  

 

If you have any further questions about the research, please contact me.  

 

Yours sincerely, 

Ioannis Kanellos  

 

I have read the information about the study and I am willing for my child to take part 

in the study  

 

Name : ……………………………………………. 

 

School : ……………………………………………. 

 

Class : …………………………………………….. 

 

Parent/Guardian Signature: ………………………………………….. 

 

Student Signature: ………………………………………….. 

 

Date : …………………………………………….. 
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5. Head Τeacher/Teacher consent form 

Dear …………………………………… 

 

I am writing to you about the research that I am conducting as a supervisor for 

teaching Mathematics and as a student of Doctorate in Education of the School of 

Education and Lifelong Learning at the University of East Anglia (UEA). I am 

interested in researching and improving teaching and learning of proof in Years 9 and 

10. 

 

Please read the information sheet enclosed. If you are willing to support/take part in 

this study, please sign this form.  

 

If you have any further questions about the research, please contact me.  

 

Yours sincerely, 

Ioannis Kanellos  

 

I have read the information sheet about the study and I am willing to support/take part 

in the study  

 

Name : ……………………………………………. 

 

Head Τeacher/ Teacher Signature: ………………………………………….. 

 

Date : …………………………………………….. 
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Greek translation of  

information sheet for parents 

 

Αγαπητέ/-ή ____________________ 

Ονομάζομαι Ιωάννης Κανέλλος και είμαι σχολικός σύμβουλος Μαθηματικών στους  

νομούς Ηρακλείου και Λασιθίου. Στοχεύοντας την βελτίωση της ποιότητας της 

μαθηματικής μας εκπαίδευσης, την ανάπτυξη της επαγγελματικής ικανότητας τόσο 

των συναδέλφων όσο και της δικής μου και ως φοιτητής του Διδακτορικού του 

School of Education and Lifelong Learning του Πανεπιστημίου East Anglia (UEA) 

διεξάγω έρευνα με θέμα την διδασκαλία της απόδειξης στα σχολεία μας. 

 

Τίτλος της έρευνας: «Η προσέγγιση Learning Studies  για την διερεύνηση και τη 

βελτίωση της γνωστικής εμπειρίας των μαθητών Γ’ Γυμνασίου και Α’ Λυκείου σε 

σχέση με την πρώτη τους συνάντηση με την μαθηματική απόδειξη.» 

Ερευνητής: Ιωάννης Κανέλλος    

Επιβλέπουσες Καθηγήτριες: Έλενα Ναρδή, Ειρήνη Μπιζά 

 

Θα ήθελα να καλέσω το παιδί σας να λάβει μέρος στην έρευνα. Πριν αποφασίσετε 

χρειάζεται να γνωρίζετε γιατί κάνω αυτήν έρευνα και τι συμπεριλαμβάνει. Σας 

παρακαλώ να διαθέσετε λίγο χρόνο να διαβάσετε αυτές τις πληροφορίες μαζί με το 

παιδί σας για να βοηθηθείτε να αποφασίσετε αν θα λάβετε μέρος. Παρακαλώ 

επικοινωνήστε μαζί μου αν κάτι δεν σας είναι σαφές ή αν θέλετε περισσότερες 

πληροφορίες. Σας ευχαριστώ για τον κόπο σας να διαβάσετε το παρόν κείμενο. 

 

Ποιο το αντικείμενο της  έρευνας; 

Προσπαθώ να διερευνήσω και να βελτιώσω τη διδασκαλία και τη μάθηση της 

απόδειξης των μαθητών της Γ’ Γυμνασίου και της Α’ Λυκείου. Η αιτία για την 

έρευνα αυτή είναι το ότι η κατανόηση της απόδειξης είναι ένα αποφασιστικό σημείο 

στην ανάπτυξη της μαθηματικής σκέψης. Να σημειωθεί ότι υπάρχει λίγη έρευνα στη 

χώρα μας σε αυτήν την περιοχή αυτή τη στιγμή. Ελπίζω μέσω αυτής της έρευνας να 

σταθώ ικανός να συμβάλλω στο σχεδιασμό αποτελεσματικότερων στρατηγικών που 

θα συμβάλλουν στην βαθύτερη μαθηματική κατανόηση των μαθητών.  

 

Πώς θα εμπλακεί το παιδί μου;  

Η έρευνα θα διεξαχθεί μέσα στα πλαίσια του ισχύοντος αναλυτικού προγράμματος 

πράγμα που σημαίνει ότι το παιδί σας θα λάβει μέρος στο μάθημα ως συνήθως. Τα 

σχέδια μαθήματος θα διδαχθούν στην τάξη από τον καθηγητή της τάξης ή από εμένα. 

Για να μπορέσω όμως να εκτιμήσω, να επανελέγξω   και να διερευνήσω τη 

διαδικασία του μαθήματος  θα βιντεοσκοπήσω και μαγνητοφωνήσω τις διδασκαλίες. 

Παράλληλα με αυτήν την διαδικασία  στην τάξη μπορεί να είναι παρόντες και άλλοι 

καθηγητές/-τριες μέλη της ομάδας εργασίας. 

 

Ποια μπορεί να είναι οφέλη; 

Δίνεται στο παιδί σας η ευκαιρία να εμπλακεί στην έρευνα. Εκτός αυτού το 

αποτέλεσμα της έρευνας θα συμβάλει στο σχεδιασμό δραστηριοτήτων που προάγουν 



[314] 

 

πιο αποτελεσματικές στρατηγικές για την βαθύτερη μαθηματική κατανόηση των 

μαθη-τών/-τριών. 

 

Θα επηρεάσει τις ώρες των Μαθηματικών του παιδιού μου; 

Όχι! Οι ώρες των Μαθηματικών του παιδιού σας δεν θα επηρεαστούν κατά κανένα 

τρόπο αφού όπως ειπώθηκε προηγουμένως δεν θα υπάρξει απόκλιση από το 

αναλυτικό και το ωρολόγιο πρόγραμμα. 

 

Μπορείτε να αλλάξετε γνώμη; 

Ασφαλώς. Εσείς και το παιδί σας μπορείτε να αποσυρθείτε από την έρευνα όποτε 

θελήσετε. 

 

Ποιος θα έχει πρόσβαση στις βιντεοσκοπήσεις και τα δεδομένα; 

Η διαχείριση των δεδομένων της έρευνας υπόκειται στον ισχύοντα νόμο περί 

Προστασίας Δεδομένων που ισχύει στην Αγγλία. Δεν θα διατηρήσω πληροφορίες που 

θα μπορούσαν να αποκαλύψουν την ταυτότητα του παιδιού σας σε τρίτα πρόσωπα. 

Μόνον εγώ και οι επιβλέπουσες καθηγήτριες θα έχουν πρόσβαση στα δεδομένα. Τα 

δεδομένα θα αναλυθούν από την σκοπιά της τελικής μου διατριβής και θα είναι 

προσβάσιμα μόνο από εμένα, τις επιβλέπουσες καθηγήτριες και τους δυο 

βαθμολογητές της   τελικής μορφής της διατριβής. Ονόματα των παιδιών που 

λαμβάνουν μέρος στην έρευνα και τα σχολεία δεν θα αναφέρονται για να τηρηθεί ο 

εμπιστευτικός χαρακτήρας τους. 

 

Ποιος έχει ελέγξει και εγκρίνει την έρευνα; 

Το  School of Education and Lifelong Learning και η Ethics Committee (Επιτροπή 

Προστασίας Προσωπικών Δεδομένων)  του Πανεπιστημίου East Anglia (UEA)  

 

Με ποιον μπορώ να μιλήσω αν προκύψουν προβλήματα; 

Εάν υπάρξουν προβλήματα παρακαλώ ενημερώστε με. Μπορείτε να επικοινωνήσετε 

με εμένα στην διεύθυνση  

Ιωάννης  Κανέλλος 

Πάροδος Ικάρου 28 , 76 01 

Νέα Αλικαρνασσός  

Ή 

Αν επιθυμείτε να μιλήσετε σε κάποιον άλλον μπορείτε να απευθυνθείτε  

Στην Κα Έλενα Ναρδή 

School of Education and Lifelong Learning  

University of East Anglia 

NORWICH NR4 7TJ 

Tel: +4401603592631 

 

Σας ευχαριστώ για τον χρόνο που διαθέσατε 
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Greek translation of  

student information sheet 

 

Αγαπητέ μαθητή/αγαπητή μαθήτρια 

Σε προσκαλώ να λάβεις μέρος σε μια έρευνα. Πριν αποφασίσεις αν θα ήθελες να 

λάβεις μέρος είναι σημαντικό να κατανοήσεις για ποιο λόγο διεξάγεται η έρευνα και 

τι σημαίνει να λαμβάνεις σε αυτήν μέρος. Σε παρακαλώ να διαθέσεις λίγο από το 

χρόνο σου να διαβάσεις προσεκτικά το ενημερωτικό  σημείωμα και να το συζητήσεις 

με τους γονείς σου. 

 

Ποιος κάνει την έρευνα; 

 Ο υποφαινόμενος, Ιωάννης Κανέλλος, σχολικός σύμβουλος Μαθηματικών 

στους νομούς Ηρακλείου και Λασιθίου θα εργασθεί ερευνητικά υπό την 

εποπτεία των κκ. Έλενας Ναρδή και Ειρήνης Μπιζά. 

 

Τι  επιδιώκω να ανακαλύψω; 

 Προσπαθώ να ερευνήσω και να βελτιώσω τη διδασκαλία και τη μάθηση της 

απόδειξης των μαθητών της Γ’ Γυμνασίου και της Α’ Λυκείου. Ελπίζω με την 

ολοκλήρωση της έρευνας θα είμαι σε θέση να σχεδιάζω αποτελεσματικότερες 

στρατηγικές διευρύνοντας την βαθύτερη μαθηματική κατανόηση των 

μαθητών. 

 

Γιατί επιλέχθηκες; 

 Επιλέχθηκες  να λάβεις μέρος στην έρευνα επειδή το σχολείο σου με βοηθά 

να διεξάγω την έρευνα. 

 

Είσαι υποχρεωμένος/-νη να λάβεις μέρος; 

 Όχι. Δεν είσαι υποχρεωμένος/-νη να λάβεις μέρος σε αυτήν την έρευνα. 

 Αν αποφασίσεις ότι θέλεις δεν υπάρχει πρόβλημα αν αλλάξεις αργότερα 

γνώμη και θες να αποχωρήσεις. 

 Δεν έχεις υποχρέωση να εξηγήσεις τους λόγους της απόφασης σου. 

 

Πως θα λάβεις μέρος; 

 Θα λάβεις μέρος στο καθημερινό μάθημα της τάξης 

 Κάθε ώρα διδασκαλίας του ερευνητικού προγράμματος θα βιντεοσκοπείται  

 

Μπορώ να αλλάξω γνώμη; 

 Ναι. Έχεις το δικαίωμα να σταματήσεις να συμμετέχεις όποια στιγμή θες. 

 

Θα διαφυλαχθούν τα προσωπικά μου δεδομένα; 

 Ναι. Όλες οι πληροφορίες που σε αφορούν δεν θα αποκαλυφθούν σε τρίτα 

πρόσωπα. 

 Μόνο εγώ και οι επιβλέπουσες καθηγήτριες θα έχουν πρόσβαση στα δεδομένα 

της έρευνας. 

 

Τι θα συμβεί στο τέλος; 

 Τα αποτελέσματα θα αποτελέσουν μέρος της τελικής μου διατριβής. Η 

ταυτότητά σου θα προστατευθεί. 
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Με ποιον θα μιλήσω αν υπάρξει πρόβλημα; 

 Αν υπάρξει πρόβλημα σε παρακαλώ να με ενημερώσεις. Μπορείς να 

επικοινωνήσεις μαζί μου στην διεύθυνση: Ιωάννης Κανέλλος, Πάροδος 

Ικάρου 28, 716 01, Νέα Αλικαρνασσός  

ή 

 Αν θες να μιλήσεις με κάποιον άλλο μπορείς να απευθυνθείς στην κ. Έλενα 

Ναρδή ή κ. Ειρήνη Μπιζά στη διεύθυνση School of Education and Lifelong 

Learning University of East Anglia NORWICH NR4 7TJ Tel: 01603 

 

Θέλω να λάβω μέρος, τι κάνω; 

 Χρειάζεται να συμπληρώσεις το φύλλο συγκατάθεσης μαζί με τους γονείς σου 

και να το φέρεις στο σχολείο. 

 

Σε ευχαριστώ για το χρόνο σου. 
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Greek translation of  

Head Teacher/Teacher information sheet 

 

Ημερομηνία :________________________________ 

Ιωάννης Κανέλλος 

Προς_________________________________________ 

Αγαπητέ κ. Διευθυντή 

Με γνωρίζετε ως σχολικό σύμβουλο των Μαθηματικών στους  νομούς Ηρακλείου και 

Λασιθίου. Επιδιώκοντας να αναπτύξω την επαγγελματική μου ικανότητα καθώς και 

αυτή των συναδέλφων μου προτίθεμαι να διεξάγω έρευνα τόσο ως  Σχολικός 

Σύμβουλος αλλά και ως υποψήφιος διδάκτωρ του προγράμματος Doctorate in 

Education του School of Education and Lifelong Learning του Πανεπιστημίου της  

East Anglia (UEA). 

Η έρευνά μου που έχει τίτλο «Η προσέγγιση Learning Studies για τη διερεύνηση και 

βελτίωση των γνωστικών εμπειριών των μαθητών Γ’ Γυμνασίου και Α’ Λυκείου κατά 

την πρώτη τους επαφή με τη μαθηματική απόδειξη», θα εστιάσει στη διδασκαλία και 

τη μάθηση της απόδειξης στα πλαίσια του ισχύοντος αναλυτικού προγράμματος. 

Πρόκειται να επιτελέσω την εργασία μου στο σχολείο, ιδιαίτερα στη τάξη με τους 

μαθητές/-τριες ως συμμετέχοντες/συμμετέχουσες στο μάθημα των Μαθηματικών. 

Η έρευνά μου χρειάζεται την μαγνητοφώνηση και βιντεοσκόπηση των μαθημάτων. 

Πέραν αυτού αν κριθεί αναγκαίο μπορεί να εφαρμόσει συνέντευξη επανάληψης που 

πυροδοτείται από παρακολούθηση βιντεοσκοπημένου υλικού για την επίτευξη 

παραπέρα πληροφοριών επί των βιντεοσκοπημένων στιγμιοτύπων. 

Θα εκτιμούσα ιδιαίτερα τη σύμφωνη γνώμη σας στο αίτημά μου. Αν χρειάζεστε 

πρόσθετες πληροφορίες σας παρακαλώ μη διστάσετε να επικοινωνήσετε μαζί μου 

στην ηλεκτρονική διεύθυνση 

I.Kanellos@uea.ac.uk 

Και με τις επιβλέπουσες καθηγήτριες στις ηλεκτρονικές  διευθύνσεις 

E.Nardi@uea.ac.uk, I.Biza@uea.ac.uk 

 

Με εκτίμηση 

 

 

 

 

mailto:I.Kanellos@uea.ac.uk
mailto:E.Nardi@uea.ac.uk
mailto:I.Biza@uea.ac.uk
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Greek translation of the  

parent/guardian consent form 

Αγαπητοί Γονείς/Κηδεμόνες, 

 

Σας ενημερώνω για την έρευνα που διεξάγω τόσο ως σύμβουλος Μαθηματικών όσο 

και ως υποψήφιος διδάκτωρ  του προγράμματος Doctorate in Education του School of 

Education and Lifelong Learning του Πανεπιστημίου East Anglia  (UEA). 

Ενδιαφέρομαι να ερευνήσω και να βελτιώσω την διδασκαλία και τη μάθηση της 

απόδειξης των μαθητών Γ’ Γυμνασίου και Α’ Λυκείου. 

 

Επισκέφθηκα το σχολείο που παρακολουθεί το παιδί σας και εξήγησα στα παιδιά το 

σκοπό της έρευνας και είχαν την καλοσύνη να δεχθούν να σας επιδώσουν την 

παρούσα επιστολή. 

 

Αν δεν ενδιαφέρεστε να επιτρέψετε στο παιδί σας να λάβει μέρος σε αυτήν την 

έρευνα σας παρακαλώ να διαβάσετε με το παιδί σας το φύλλο πληροφοριών. Αν 

επιθυμείτε τη συμμετοχή του παιδιού σας  παρακαλώ υπογράψτε την αντίστοιχη 

φόρμα μαζί με το παιδί σας και στείλετε την με αυτό σε μένα μέσω του σχολείου. 

 

Αν έχετε παραπέρα ερωτήσεις για την έρευνα επικοινωνήστε με εμένα στο τηλέφωνο 

_____________________________________ 

 

Με εκτίμηση 

Ιωάννης Κανέλλος 

Σχολικός Σύμβουλος Μαθηματικών 

 

Διάβασα το φύλλο πληροφοριών της έρευνας και προτίθεμαι να επιτρέψω στο παιδί 

μου να λάβει μέρος στην έρευνα. 

 

Όνομα :  ___________________________________________ 

 

Σχολείο: ___________________________________________ 

 

Τάξη : _____________________________________________ 

 

Υπογραφή γονέα/κηδεμόνα : _________________________________________ 

 

Υπογραφή μαθητή/μαθήτριας: 

 

Ημερομηνία: _______________________________________ 
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Greek translation of 

Head Τeacher/Teacher consent form 

Αγαπητέ συνάδελφε ............................................... 

 

Σας  ενημερώνω για την έρευνα που διεξάγω  ως  Σχολικός Σύμβουλος Μαθηματικών 

και ως υποψήφιος διδάκτωρ του προγράμματος  Doctorate in Education του School of 

Education and Lifelong Learning του πανεπιστημίου  East Anglia (UEA). 

Ενδιαφέρομαι να ερευνήσω και να βελτιώσω  τη διδασκαλία και τη μάθηση της 

απόδειξης στην Γ΄ Γυμνασίου και Α΄ Λυκείου. 

 

Σας παρακαλώ να διαβάσετε το φύλλο πληροφοριών της έρευνας. Αν προτίθεσθε  να 

υποστηρίξετε/λάβετε μέρος στην έρευνα  παρακαλώ υπόγραψε παρακάτω. 

 

Αν έχετε πρόσθετες απορίες γύρω από την έρευνα  παρακαλώ επικοινωνήστε μαζί 

μου. 

 

Στη διάθεσή σας  πάντοτε. 

 

 

Διάβασα το φύλλο πληροφοριών γύρω από την έρευνα  και προτίθεμαι να 

υποστηρίξω/λάβω μέρος στην έρευνα. 

 

Ονοματεπώνυμο:................................................................. 

 

Υπογραφή Διευθυντή/Καθηγητή:................................................. 

 

Ημερομηνία:............................................... 
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