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Abstract 

Our long-term ambitious goal is to construct molecular assemblies or machines of 

unprecedented complexity leading to unique function. Porphyrins and phthalocyanines have 

been selected as the building blocks for the construction of the targeted molecular machines. 

The synthesis of different porphyrin/phthalocyanine building blocks is introduced with 

particular emphasis on the introduction of central metal/metalloid elements such as 

ruthenium, indium and lanthanides. 

 The linking of porphyrins to give covalent assemblies suitable for elaboration into 

machine-like arrays is then described. The synthesis of an array in which four porphyrin 

units surround a central porphyrin core is described, alongside modifications to the strategy 

that permits differential metal substitution. 

Strategies for face-to-face elaboration of machine-like structures from the previously 

described covalent multiporhyrin array are discussed. Although unsuccessful, a separate 

reaction pathway is described that leads to controlled formation of triple-decker structures. 

Model diporphyrins, linked through flexible spacers, are smoothly metallated with 

lanthanum. Complementary phthalocyanine macrocycles are then easily inserted, giving 

high yields of triple decker molecules. The synthesis and materials are discussed, and the 

novel structures are characterised by absorption spectroscopy, NMR spectroscopy and 

crystallography. The versatility and generality of the strategy are demonstrated by synthesis 

of analogues that incorporate more heavily functionalised central (phthalocyanine) 

macrocycles. Rotation is hindered (NMR) in these cases.  

Finally, preliminary assessment of extension of this approach towards higher-order 

stacks is described, alongside variation of the linking lanthanides to include magnetic 

elements such as dysprosium. 
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2. AIMS   

Our long-term ambitious goal is to construct molecular assemblies or machines1 of 

unprecedented complexity leading to unique function. Such molecular machines could form 

the basis of true molecular electronics with applications in a wide range of areas such as 

molecular computing,2 single molecule magnets,3 molecular machines…4 The machines will 

be constructed using organic molecules as building blocks that will form nanomachines or 

nanocomponents. This selection of organic molecules as building blocks will allow the 

manipulation of the machine at a molecular level using the incredibly wide range of organic 

chemistry reactions available. It is known that functionality and structure are always linked 

in everyday machines and structures. This inspired us to design the targeted molecular 

machines having real-life machines or structures as models for the design of their molecular 

variants. This function will have consequences to the potential applications of the molecular 

counterpart. With this in mind the aim of this project is to construct molecular machines 

capable of collecting and transferring or concentrating energy to another component, surface, 

or structure. Solutions to harnessing more complex processes are much more complicated 

and could not be achieved in such a small time and require a higher level of manipulation. 

A key step towards developing such function is, however, part of the proposed objectives. It 

is clear that for such compounds to be eventually exploitable their assembly onto substrates 

and subsequent manipulation will be vital. Our approach recognises this and it is 

incorporated as an important element of the project. The targeted machines designed for this 

project are molecular variants of a familiar fairground attraction, the “Teacups ride” 

(Figure 1).  

 

Figure 1 Teacups ride fairground attraction used as real-life model.  



CHAPTER 2: Aims           

  

4 
 

With this machine in mind as the final target for the project, the challenge addressed 

is to construct complex molecular assemblies using organic chemical structures as building 

blocks. This will allow us to design and construct molecular machines of unprecedented 

complexity. The design of the molecular variant of the teacups ride fairground attraction can 

be achieved by careful analysis of the structure and then mimicking the real life structure. 

Such analysis and breakdown of the structure in simple units is represented in figure 2.  

 

Figure 2. Proposed structure model for the target molecular machine. 

This challenging molecular design can be broken down into different parts. This will 

help us to design the molecular machine by constructing the different parts/subunits of the 

machine and studying them separately. The subunits can be synthesised separately as well 

as linked together in many different ways. This wide range of methodologies allowed us to 

embark on such ambitious project as the methodology can be easily modified if different 

problems are encountered. Despite the fact that the designed machine can be broken down 

in many different subunits, the real life structure consists of different parts that will serve as 

a first model for the approach to be followed when constructing the molecular counterpart.  

The teacups ride model structure is basically composed of a flat structure that is 

connected to the surface from the central position acting as fulcrum. This central position 

acts as the centre of the machine having the other different units attached to it. Therefore for 

the construction of the molecular version, we have to have in mind that this central unit is 

going to act as support for the rest of the molecular machine. In order to have suitable linking 

points between all the different units that make up the system, we have to differentiate 

between the connections that the central unit of the structure needs to have available: One in 
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the centre (to link the molecular machine to the surface) and another that needs to connect 

the rest of the units to it (to attach the free-rotating teacups). 

A different part to take into account is the peripheral teacups themselves. These 

independent subunits need to be attached into the structure in very specific positions around 

the periphery of the molecular machine. This attachment needs to allow the units to have 

free rotation through the connection in order to mimic the real life machine. Interactions 

between the attached units and the flat structure will need to be possible to have the desired 

function.  

The final challenge that needs to be studied is the way the different units that 

comprise the system are connected to each other. There are different parts of the machine 

that need to be connected differently and separately. According to this, the “teacups” 

subunits need to be connected onto the frame allowing interactions between the different 

subunits as well as free rotation of the teacups. Separately, the way the entire machine is 

connected onto the surface will be crucial. Finally, both ways to interconnect the system 

need to be independent to one another.  

Therefore, we need to construct a molecular structure that will act as a frame with 

different subunits attached on top of it allowing free-rotation. The molecular machines could 

then be assembled onto a suitable surface in a controlled way.  The entire machine requires 

unsymmetrical building blocks in order to provide link-points for the construction. The 

synthesis will be designed in a stepwise manner by interrogating different parts of the 

superstructure separately in order to leave the chemistry as simple as possible  
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3. GENERAL INTRODUCTION 

A molecular machine can be defined as an assembly of a discrete number of 

molecular components (that is, a supramolecular structure) designed to perform mechanical-

like movements (output) as a consequence of an appropriate external stimulus (input). This 

expression is often more generally applied to molecules that simply mimic functions that 

occur at the macroscopic level. Each molecular component performs a single function 

(structural or dynamic) whilst the entire assembly performs a more complex function leading 

to work. The extension of the concept of machine to the molecular level is important, not 

only for the sake of basic research, but also for the growth of nanoscience and the 

development of a bottom-up approach to nanotechnology. The miniaturization of 

components for the construction of useful devices is currently pursued by a reduction 

approach, that is, by creating smaller machines with the same function such as modern 

microchips for example. This approach, leads physicists and engineers to manipulate smaller 

pieces every time which have intrinsic limitations. As chemistry is already at the bottom, 

since it allows the manipulation of molecules, it is in the ideal position to develop a bottom-

up strategy for the construction of nanoscale machines. 

Scientists and engineers have learnt from the selectivity, specificity, precision and 

accuracy of biological processes and the ensembles formed on a cellular and sub-cellular 

level. Also they have been able to apply these concepts in the laboratory to create molecular 

devices and machines. Natural machines such as ATP-ase, DNA-polymerase, chlorophyll, 

ribosomes etc. are all complex and fascinating examples of Nature’s approach to nanoscaled 

machines. The synthesis and assembly of molecular building blocks capable of functioning 

in a controlled way and in a wholly synthetic sense is an achievable goal and, to this end, 

prototypical machines that demonstrate specific tasks or design features are being reported 

in increasing amounts. 

Our own body can be viewed then as a very complex ensemble of molecular 

machines. The idea of constructing artificial molecular machines, however is quite recent. 

This topic was briefly discussed for the first time by Richard P. Feynman,5 in his address, 

“There’s Plenty of Room at the Bottom”, to the American Physical Society in 1959. Only in 

the past years have systematic studies been performed in this field.4,6,7 Our choice of the 

molecular constructs is then a deliberate link between molecular construction and structures 

familiar in the macroscopic world.  
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The challenge addressed during this project is to construct, in a controlled manner, 

complex assemblies using different building blocks leading to unique functionality such as 

light absorption and energy transfer. The units that are going to be used for the construction 

of the previously designed molecular machines are chromophores. A chromophore is a part 

of an organic molecule that is responsible for its colour by absorbing energy from light over 

a certain range of wavelengths in the visible region. Transmission or reflection of the 

remaining light gives rise to the observed colour of the compound. Therefore, chromophores 

are the perfect molecules to build the machines as they already absorb light. There are many 

different chromophores in nature, such as food colourings, fabric dyes, pH indicators, etc. In 

order to select the best chromophore we need to look at biological systems with complex 

functionalities to act as models as they already have the light absorption properties we are 

looking for. Such common biological structures are photosynthetic plants and an example of 

it is chlorophyll (Figure 3).  

 

Figure 3. Structure of chlorophyll a. 

Photosynthesis transforms the energy of the sun into a chemical form useful to the 

cell. Therefore, the photons to be absorbed come from the sun’s emission radiation. Since 

the sun is essentially a black body at about 5000-6000 K, its quantum output is the broad 

band of Planck’s radiation peaking near 600 nm (Figure 4).8 Absorption in this visible region 

requires a large conjugated molecule such as chlorophyll (Figure 3). Increased conjugation 

brings the HOMO and LUMO orbitals closer together and the energy required to effect the 

electron promotion is therefore less, and the wavelength that provides this energy is 

increased correspondingly (∆E = hc/λ).9  
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Figure 4. Planck’s law electromagnetic radiations of black bodies at various temperatures. 

This photosynthetic process requires the absorption of solar photons and chlorophyll 

plays a vital role for photosynthetic organisms, allowing the photons to be absorbed. 

Moreover, the nature of the molecular organization of the different chlorophylls in plants is 

of fundamental importance in the photoreaction processes.10,11 Also, chlorophyll will be 

required to absorb light and transfer that energy by resonance energy transfer to another 

specific chlorophyll pair.9 There are various different molecular types of chlorophyll: a, b, 

c1, c2, d and f.12,13 Each one of them has a specific role in the photosynthesis process but with 

small structural changes.  

Therefore, the function that this chromophore has in chlorophyll is the absorption of 

light required for the photosynthesis and the transference of that energy into other 

systems.10,14 It is therefore logical to select related chromophore units, porphyrins and/or 

phthalocyanines as building blocks for our target molecular machines.2,15-18 

 

Figure 5. Parent structures for porphyrins (left) and phthalocyanines (right). 
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Porphyrins and phthalocyanines have been studied for a long period of time and their 

properties and chemistry are well known.9,12,19 This vast knowledge of porphyrins can be 

observed as references to these compounds can be found from the early 19th century.19-22 

They are present in everyday life and their biological activities are the reason for the great 

interest over the past century. They hold some advantages in comparison to other types of 

electro- and photoactive compounds which arise from their 18 π-electron aromatic structure. 

These advantages are their high molar absorption coefficients and fast energy and/or electron 

transfer donor abilities to electron acceptor counterparts. Thus, porphyrins and 

phthalocyanines are widely used as molecular components in artificial photosynthetic 

systems,23,24 both for energy-transfer and electron-transfer processes. Finally, porphyrins 

and phthalocyanines display complementary optical transitions.25 In particular, the lowest 

energy absorption of phthalocyanines is red shifted and more intense than that of porphyrins, 

and the Soret band of the phthalocyanine is blue-shifted and weaker than that of the 

porphyrin.  

On the other hand, the possibility of tailoring their redox potentials through 

peripheral functionalization represents an appealing feature for their use in the above 

mentioned energy-related areas and molecular machines. In this connection, both porphyrins 

and phthalocyanines have remarkable absorption in the visible region.26-28 However, 

whereas regular porphyrins do not display significant absorption at energies higher than 550 

nm, phthalocyanines show excellent light harvesting capabilities over a wide range of the 

solar light spectrum with a maximum at around 700 nm, close to where the maximum of the 

solar photon flux occurs.29 Therefore a complex structure containing both chromophores will 

be optimal for the desired light harvesting properties of the molecular machines.30 
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Figure 6. Proposed design for the molecular machine. 

With this in mind, a molecular representation of the targeted light harvesting machine 

was designed using these chromophores as building blocks (figure 7). This molecular 

representation was designed using a porphyrin superstructure where different 

phthalocyanines were attached to resemble the teacups ride model.  

 

Figure 7. Proposed design for the molecular machine using porphyrins and porphyrins as 

building blocks. 



CHAPTER 3. General introduction   
 

11 
 

The challenge for the synthesis can be broken down into two general areas: 

Construction of the molecular machines themselves and controlled assembly onto a suitable 

surface.  Both structures require unsymmetrical building blocks in order to provide 

linking-points for construction of target molecules. The synthesis of the machines was 

planned to be achieved in a stepwise manner by interrogating different parts of the machine 

separately in order to leave the chemistry as simple as possible. For example, it was expected 

that the synthesis of useful unsymmetrical porphyrin derivatives would be relatively 

straightforward18,20,31 and therefore employed first. Unsymmetrical phthalocyanines bearing 

one linking point can also be prepared but are generally more tedious.32,33 

For the synthesis of the molecular machines, the first step is to identify the different 

subunits that form the system. In this case freely rotating units (phthalocyanines) are grafted 

onto a freely rotating superstructure (porphyrins). Also, the way that different units will be 

interconnected may play an important role for the future functionality of the molecular 

machine.34-36 Many different approaches can be followed in order to have linkers of different 

rigidity, length and complexity.  The order of machine assembly will also be crucial, along 

with selection of metal/metalloid elements to link the macrocycles (teacups) onto the frame, 

and to link the frame to the surface.  

There are many possible applications including great potential for relevant 

multielectron processes for new generation energy capture systems. The transition from 

single to multiple electron processes remains one of the most significant and pressing 

challenges for harnessing solar energy. Single molecule processes could also be possible 

with most obvious application in molecular computing, data storage and security systems.  
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4.1 PORPHYRINS 

 4.1.1 Generalities 

The porphyrins (Figure 8) are an important class of naturally occurring macrocyclic 

compounds found in biological systems that play a very important role in the metabolism of 

living organisms. They have a universal biological distribution and were involved in the 

oldest metabolic phenomena on earth. Some of the best examples are the iron-containing 

porphyrins found as heme (of haemoglobin) and the magnesium-containing reduced 

porphyrin (or chlorin) found in chlorophyll. Without porphyrins and their related 

compounds, life as we know it would be impossible and therefore the knowledge of these 

systems and their excited states is essential in understanding a wide variety of biological 

processes, including oxygen binding, electron transfer, catalysis, and the initial 

photochemical step in photosynthesis.37,38 

The word porphyrin is derived from the Greek porphura meaning purple. They are 

in fact a large class of deeply coloured pigment, of natural or synthetic origin, having in 

common a substituted aromatic macrocycle ring that consists of four pyrrole rings linked by 

four methine bridges.39 The porphyrin macrocycle is a highly-conjugated molecule 

containing 22 π-electrons, but only 18 of them are delocalized according to the Hückel’s rule 

of aromaticity (4n+2 delocalized π-electrons, where n = 4). 

 

Figure 8. The structure of porphyrin. 

The porphyrins have attracted considerable attention because they are ubiquitous in 

natural systems and have potential applications2-4,16,25,39-41 in mimicking enzymes, catalytic 

reactions, photodynamic therapy, molecular electronic devices and conversion of solar 

energy. In particular, numerous porphyrin based artificial light-harvesting antennae, and 
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donor acceptor dyads and triads have been prepared and tested to improve our understanding 

of the photochemical aspect of natural photosynthesis.   

 

4.1.2 Chemical characteristics of porphyrins 

The synthetic world of porphyrins is extremely rich and its history began in the 

middle of 1930s. An enormous number of synthetic procedures have been reported until 

now, and the reason can be easily understood analysing the porphyrin skeleton.31 In 

principle, there are many chemical strategies to synthesize porphyrins, involving different 

building blocks, like pyrroles, aldehydes, dipyrromethanes, tripyrranes and linear 

tetrapyrroles.  

The most famous monopyrrole polymerization route to obtain porphyrins involves 

the synthesis of tetraphenyl porphyrins, from reaction between pyrrole and benzaldehyde. 

This procedure was first developed by Rothemund20 and, after modification by Adler, Longo 

and colleagues,42 was finally optimized by Lindsey’s group.43 In the Rothemund and 

Adler/Longo methodology the crude product contains between 5 and 10% of a by-product, 

discovered later to be the meso-tetraphenylchlorin, which is converted to the product under 

oxidative conditions (scheme 1).  

Rothemund in 1935 set up the synthesis of porphyrins in one step by reaction of 

benzaldehyde and pyrrole in pyridine in a sealed flask at 150 °C for 24 h but the yields were 

low, and the experimental conditions so severe that few benzaldehydes could be converted 

to the corresponding substituted porphyrin.20 The reason for the low yield is that the main 

(non-polymeric) by-product of reaction  was meso-substituted chlorin 4 and in understanding 

the nature of its formation, Calvin and coworkers21 discovered that the addition of metal salts 

to the reaction mixture, such as zinc acetate, increases the yield of porphyrin 3 from 4-5% 

for the free-base derivative, and decreases the amount of 4. Other improvements were 

obtained by changing reactant, the reaction conditions and substituents on the benzaldehyde 

derivative. 
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Scheme 1. Synthesis of 5,10,15,20-tetraphenyl porphyrin 3. 

Adler, Longo and coworkers, in 1967,42 re-examined the synthesis of meso-

substituted porphyrins and developed an alternative approach (Scheme 2) with a method that 

involves an acid catalysed pyrrole-aldehyde condensation in glassware open to the 

atmosphere in the presence of air. The reactions were carried out at high temperature, in 

different solvents and concentration range of reactants, with a yields of 30-40 %, and with 

chlorin contamination lower than that obtained with the Rothemund synthesis. 

 

Scheme 2. Adler-Longo general method for preparing meso-substituted porphyrins. 
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Over the period 1979-1986, Lindsey developed a new and innovative two-step room 

temperature method to synthesise porphyrins. His work was motivated by the need for more 

gentle conditions for the condensation of aldehydes and pyrrole, in order to enlarge the 

number of the aldehydes utilizable and then the porphyrins available.43 The method has been 

a new strategy for the synthesis of porphyrins, using a sequential process of condensation 

and oxidation steps. The reactions were carried out under mild conditions in an attempt to 

achieve equilibrium during condensation, and to avoid side reactions in all steps of the 

porphyrin-formation process (Scheme 3). 

 

Scheme 3. Two-step one-flask room-temperature synthesis of porphyrins. 

The porphyrin structure supports a highly stable configuration of single and double 

bonds with aromatic characteristics that permit the electrophilic substitution reactions typical 

of aromatic compounds such as halogenation, nitration, sulphonation, acylation, deuteration, 

formylation. 
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Figure 9. Porphyrin numeration. 

There are two different sites on the macrocycle where electrophilic substitution can 

take place with different reactivity:39 positions 5, 10, 15 and 20, called meso-positions and 

also 2, 3, 7, 8, 12, 13, 17 and 18, called β-pyrrole positions (figure 9). The β-substituted 

porphyrins are widely present in natural products, while the meso-substituted porphyrins 

have no counterpart in nature and were developed as functional artificial models. The 

activation of these sites depends of the porphyrin electronic character.  
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4.1.3 UV-vis spectroscopy of porphyrins  

It was recognized early that the intensity and colour of porphyrins are derived from 

the highly conjugated π-electron systems and that is a feature of porphyrins that can be 

studied by their characteristic UV-vis spectra that consist of two distinct regions: one in the 

near ultraviolet and other in the visible (figure 10).  

 

Fig 10. UV-vis spectra of porphyrin 3 and an expanded view of the Q-region. 

It has been well documented that changes in the conjugation pathway and symmetry 

of a porphyrin can affect its UV-vis absorption spectrum.27,28,44 

The absorption spectrum of porphyrins has long been understood in terms of the 

highly successful “four-orbital” (two highest occupied π orbitals and two lowest unoccupied 

π* orbitals) model first applied in 1959 by Gouterman26 that has discussed the importance 

of charge localization on electronic spectroscopic properties.27 

According to this theory, as reported in scheme 4, the absorption bands in porphyrin 

systems arise from transitions between two HOMOs and two LUMOs (scheme 4a), and it is 

the identities of the metal centre and the substituents on the ring that affect the relative 

energies of these transitions.  
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The electronic absorption spectrum of a typical porphyrin consists therefore of two 

distinct regions. The first involves the transition from the ground state to the second excited 

state (S0 → S2) and the corresponding band is called the Soret or B band. The range of 

absorption is between 380 and 500 nm depending on whether the porphyrin is β- or meso- 

substituted. The second region consists of a weak transition to the first excited state (S0 → 

S1) in the range between 500-750 nm (the Q bands). These favourable spectroscopic features 

of porphyrins are due to the conjugation of 18 π-electrons and provide the advantage of easy 

and precise monitoring of guest-binding processes by spectroscopic methods. Therefore, 

depending of the relative position of the substituents the spectra can be altered and the 

relative intensity of the Q bands will be therefore altered. 

Scheme 4. Porphyrin HOMOs and LUMOs. a) Representation of the four Gouterman 

orbitals in porphyrins.27 b) Drawing of the energy levels of the four Gouterman orbitals 

upon symmetry, lowering from D4h to C2V. The set of eg orbitals gives rise to Q and B 

bands. 

While variations of the peripheral substituents on the porphyrin ring often cause minor 

changes to the intensity and wavelength of the absorption features, protonation of two of the 

inner nitrogen atoms or the insertion/change of metal atoms into the macrocycle usually 

strongly change the visible absorption spectrum. When the porphyrin macrocycle is 

coordinated with any metal, there is a more symmetrical situation than in the free base 

porphyrin and this produces a simplification of the Q bands pattern and the formation of two 

Q bands. 

  



CHAPTER 4. Results and discussion   
 

19 
 

4.1.4 Metallated porphyrins 

 Generally porphyrins are synthesised in a metal-free form and metal ions are 

separately inserted. When the metal ion Mn+ is incorporated into the porphyrin PorH2 to form 

PorM (n-2)+, the two amine protons in PorH2 are dissociated from the two pyrrole groups as 

reported in equation (1):  

(1) 

The size of the porphyrin-macrocycle is perfectly suited to bind almost all metal ions 

and indeed a large number of metals can be inserted in the centre of the macrocycle forming 

metalloporphyrins that play key roles in several biochemical processes.15,45,46 Depending on 

their size, metal ions (e.g. Zn, Cu, Ni, Co, etc.) can fit into the centre of the planar 

tetrapyrrolic ring system forming regular metalloporphyrins resulting in kinetically inert 

complexes. 

When divalent metal ions (e.g. Co(II), Ni(II), Cu(II)) are chelated, the resulting 

tetracoordinate chelate has no residual charge. While Cu(II) and Ni(II) in their porphyrin 

complexes have generally low affinity for additional ligands, the chelates with Mg(II), Cd(II) 

and Zn(II) readily combine with one more ligand to form pentacoordinated complexes with 

square-pyramidal structure (figure 11a). Some metalloporphyrins (Ru(II), Fe(II), Co(II), 

Mn(II)) are able to form distorted octahedral geometries (figure 11b) with two extra 

ligands.47,48 

 

Figure 11. Schematic pictures of square-pyramidal (a) and octahedral structures (b) (only 

nitrogen N, metal M and extra ligands L). 

M n +   +    PorH2  MPor(n-2)+       + 2 H + 



CHAPTER 4. Results and discussion   
 

20 
 

Most of the natural metalloporphyrins are of regular type, i.e. their metal centres are 

located within the plane of the macrocyclic ligand as a consequence of their fitting size. The 

cationic radii are in the range of 55–80 pm corresponding to the sphere in the porphyrin core 

surrounded by the four pyrrolic nitrogens. While the symmetry group of the free-base 

porphyrins is D2h due to the two hydrogen atoms on the diagonally located pyrrolic nitrogens, 

the coplanar (regular) metalloporphyrins (without these protons, figure 12a) are of higher 

symmetry (generally D4h).   

If, however, the ionic radius of the metal ions is too large (over 80-90 pm) to fit into 

the hole in the centre of the macrocycle, they are located out of the ligand plane, distorting 

it forming sitting-atop (SAT) metalloporphyrins (figure 12b) that are characterized by 

special properties49-51 originating from the non-planar structure caused by, first of all, the 

size of the metal centre. 

Figure 12. Schematic representation of (a) regular (M = Zn, Mg…) and (b) SAT 

metalloporphyrins (M = La, Eu…). 

These complexes are kinetically labile and display characteristic structural and 

photoinduced properties that strongly deviate from those of the regular metalloporphyrins. 

The latter kind of structure induces special photophysical and photochemical features that 

are characteristic for all SAT complexes. For example, they allow the formation of stacked 

sandwich like complexes with other porphyrins/phthalocyanines that show intriguing 

intramolecular π-π interactions.52-55 The symmetry of these structures is lower (generally 

C4v-C1) than that of both the free-base porphyrin (D2h) and the regular, coplanar 

metalloporphyrins (D4h), in which the metal centre fits into the ligand cavity.   

Thus different metal insertions allow us to form links between porphyrins or 

attaching porphyrins into surfaces, by having different ligands in the apical positions 

(figure 11). These linking points allow us to have axial functionality perpendicular to the 

porphyrin plane by coordination with such metals. Such axially functionalized porphyrin 

could later on be further reacted in order to obtain porphyrin-porphyrin structures or 
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porphyrin-surface connections. Some examples of this type of functionalization have been 

achieved by the Cammidge group using in recent years silicon and germanium porphyrins.17 

 Other approaches can be observed using different metals such as In, Ru, La, etc. 

Some examples are shown below in figure 13, showing the formation of sandwich-like 

complexes through, for example, indium or ruthenium in 5,56,57 by having oxygen linkers 

with silicon porphyrins in 630,58 or directly linked porphyrins with big metals such as 

lanthanides 7.1,59,60 

Figure 13. Different examples for the formation of porphyrin-phthalocyanine sandwiches 

using different metals or metal substitutions. 
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4.1.5 Synthesis of tetraphenylsubstituted porphyrins 

 The synthesis of symmetrical porphyrins is very well known and was previously 

described. During this work, various symmetrical porphyrins have been synthesised in order 

to have simple structures for the construction of the molecular machines. Also, simple 

structures such as TPP 3, R=H allows the study of the reactivity of different metal complexes 

using them as models in test reactions. After studying the desired process using these simple 

models, we conceive using the same chemistry for construction of the molecular machines.  

 

Scheme 5. General structure for tetra-p-phenylsubstituted porphyrins 11-13. 

For the synthesis of the symmetrical porphyrins used during this chapter and in 

general for this project, the method provided by Adler42 was performed by reacting the 

corresponding aldehyde and freshly distilled pyrrole in propionic acid. This method allowed 

us to obtain a large range of symmetrical porphyrins with a very fast and easy procedure. 

Although the yield of the reaction is low (14–22 %), the very easy purification process and 

the very cheap and commonly available starting materials, makes this method the most 

convenient choice for the synthesis of tetra-substituted porphyrins. Several porphyrins have 

been synthesised using this method in gram scale, using either commercial aldehydes (2, 8 

and 9) or derivatives prepared using standard chemistry (e.g 10). 
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The only porphyrin that has failed to be synthesised efficiently using this method is 

porphyrin 15 (R = OH) from p-hydroxybenzaldehyde 14. This porphyrin 15 is one of the 

key porphyrin intermediates for the construction of the molecular machines. This particular 

porphyrin offers the perfect functionality and symmetry to be the central unit of the machine. 

Because of its high solubility, this porphyrin 15 could not be selectively precipitated from 

the reaction mixture (≈ 90 % impurities). Some attempts to purify this compound from the 

reaction mixture have been performed but all of them have proven to be unsuccessful or 

inefficient.  

Therefore, the easiest way for the synthesis of 15 involved the synthesis of a 

protected precursor 12. Once this protected porphyrin 12 was synthesised and purified, 

following the standard procedure by Adler,42 it could be deprotected using boron tribromide 

or a mixture of HBr/AcOH to obtain the desired porphyrin 15 as represented in scheme 6. 

Scheme 6. Method for the synthesis of T(OH)PP 15. 

The desired porphyrin 15 could be obtained after column chromatography and 

recrystallisation. The previously described reactions could be performed in gram scale with 

a good overall yield allowing the synthesis of the desired porphyrin 15 in reasonable amounts 

for the construction of the target molecular machines.  

 

  



CHAPTER 4. Results and discussion   
 

24 
 

4.1.6 Indium as linking point between porphyrins or porphyrins and surfaces. 

 The first choice for linking porphyrins was inserting indium (III) in the porphyrin 

cavity. It is know that indium forms highly stable covalent bonds with carbon and can also 

be inserted in tetrapyrrolic macrocycles.61-63 This stability will generate highly stable links 

between rings or as fulcrum for building the molecular machines from the ground up and 

also, allows us to further react this monomer using various different reaction conditions with 

less chance of decomposition. This functional group will also allow the system to freely 

rotate through the In-C bond.  

Indium chloride porphyrins can be easily obtained by metalating the free base 

porphyrin using indium(III) chloride.64 This process yields the corresponding indium 

porphyrin derivative with a chlorine atom in the apical position. This could then be 

exchanged with any other aromatic group allowing it to have the desired 90° to the plane of 

the porphyrin and therefore allow as well free rotation through this linking point. Few 

attempts to exchange the chlorine for other organic groups have been reported in the 

literature40,61 giving us a starting point for the reaction conditions to be tried. During this 

work, the substitution of the chlorine for different aromatic rings and a screening for reaction 

conditions were tried. 

  



CHAPTER 4. Results and discussion   
 

25 
 

4.1.6.1 Metallation of porphyrins using InCl3 as indium source 

 

Scheme 7. Structure of InTPPCl 16. 

 The preparation of indium porphyrin complexes was based on the “acetate method” 

reported by Buchler.65 This method consisted of the reflux of a solution of the desired 

metal-free porphyrin and indium chloride in acetic acid for 24 h. After the reaction, the 

porphyrin product was precipitated with MeOH and purified by column chromatography 

over silica gel. The desired indium chloride porphyrins 16-18 were obtained in high yields, 

between 16 - 86 % depending on the porphyrin substituents. 

 

Synthesis of phenylindium porphyrins 

 Before trying to introduce functionalized aromatic groups in the apical position of 

the porphyrin by substitution of the chlorine atom for other phenyl derivatives, the reactivity 

of the system was interrogated. The first reaction performed was between the indium 

chloride porphyrin complex and phenylmagnesium bromide (Grignard reagent) that is easy 

to make and even commercially available in solution. This is a straightforward reaction that 

allowed the reactivity of the system to be checked. If this reaction is successful, other 

reactions using different phenyl reagents for the synthesis of the desired target molecular 

machines can be designed. 

 The first trials were attempted using porphyrin 17 as starting material as represented 

in scheme 8. This particular porphyrin was chosen because there is no other hydroxyl groups 

in the compound that might interfere in the reaction. The target porphyrin 20 has bromide 

functionality on the meso-phenyl gripus that could then be further reacted using Sonogashira 

or Suzuki coupling reactions for the construction of the target molecular machines. 
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Scheme 8. Reaction attempted for the formation of 20. 

 In the initial reaction, chloroindiumporphyrin 17 was treated with an excess of 

phenylmagnesium bromide in toluene at room temperature for 48 h as previously reported 

by Tabard for β-substituted porphyrins.61 Workup and analysis of the crude product revealed 

that it contained mostly unreacted starting material 17 plus traces of the metal free porphyrin 

complex 11. The product could not be obtained using this method. 

 The reaction solvent was changed from toluene to benzene as described in the 

reaction conditions given by Tabard61 for β-substituted porphyrins or Stuzhin63 for 

tetraazaporphyrinates. The rest of the conditions such us temperature, reagents and 

concentrations remained the same. In this case, the same outcome was observed, only 

demetallation of some of the starting material occurred but no product was observed in any 

case.  

 

Synthesis phenoxyindium porphyrins 

 

Scheme 9. Reaction attempted for the formation 21. 

As no straightforward conditions could be found for arylation reaction of indium 

porphyrins, the reaction between indium porphyrin 17 and sodium phenoxide (synthesised 

in situ from phenol and sodium hydride) in ether was then explored. Aliquots were taken 

from the reaction and checked using MALDI-tof MS every 30 min (expected molecular 
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weight of 21 of 1135 g/mol). After 1 h of stirring, a peak corresponding to 1158 g/mol was 

observed. The reaction was left stirring for another hour and stopped. After working up, the 

crude mixture was checked by MALDI-tof MS and TLC, observing only unreacted 

porphyrin 17 (molecular weight of 1078 g/mol). 

Further reaction conditions were tested with chloroindiumporphyrin 16 as starting 

material. This porphyrin was selected for the test reactions because it is much easier to 

synthesize and it is the simplest aryl substituted porphyrin possible. Therefore, it is less likely 

to give other side reactions as long as the only possible reactivity point is the apical 

chlorinated position. 

 

Scheme 10. Reaction attempted for the formation of 22. 

 For the first attempt, a solution of sodium phenoxide was prepared by reacting phenol 

and sodium hydride in THF. To this solution, indiumporphyrin 16 dissolved in the minimum 

amount of THF was slowly added and the resultant mixture was left stirring under Ar. Then, 

aliquots were taken to monitor the reaction by TLC. After 8 h with no observed changes, the 

reaction was left stirring overnight. After 18 h stirring, no product was observed and the 

starting material 16 remained unreacted in the reaction mixture. Consequently, the reaction 

temperature was increased to reflux for 24 h. After analysis of the reaction mixture by TLC 

and MALDI-tof MS, only the unreacted starting material 16 was observed as a single spot 

on TLC as well as single signal peak in MALDI-tof MS.  

 To the same unreacted material 16, hydrolysis of the porphyrin was attempted for the 

formation of hydroxyindiumporphyrin 23 as shown below on scheme 11. To do so, an excess 

of concentrated NaOH was added to the reaction mixture. After heating the reaction mixture 

at reflux for 24 h, the reaction was checked by TLC and a small spot appeared on the 

baseline. The crude was then checked by MALDI-tof MS but no peaks were observed for 

any indium porphyrin derivative expected. The reaction was stopped and the products 
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separated by column chromatography, collecting a major fraction of the unreacted starting 

material 16 and two other small fractions were obtained that could not be characterised. 

 

Scheme 11. Hydroxylation of 16. 

 The observation of different compounds after the reaction was a promising result. 

Another reaction was then attempted by adding a few drops of concentrated NaOH in a 

solution of 16 in toluene. After the overnight reflux, the reaction was checked by TLC and 

MALDI-tof MS appearing only to be unreacted starting material 16. No product 23 was 

observed. Another methodology need to be then explored and, following the literature,62 

tetrabutylammonium hydroxide instead of sodium hydroxide was used for introduction of 

the OH group into bromoindiumphthalocyanines. A 25 % solution of tetrabutylammonium 

hydroxide in MeOH was added to another solution of the corresponding chloroindium 

porphyrin 16 in THF and the mixture set to reflux. Aliquots from the reaction were checked 

by TLC after 1 h, 4 h, 24 h and 48 h without observation of formation of any products. Then 

the solvent was removed and the starting material 16 recovered unreacted.  

 A final attempt for the formation of the target complex 22 was followed by 

introduction of the metal into the porphyrin in the presence of sodium phenoxide in one step 

(scheme 12). Doing this we expected some of the indium chloride to react with the phenoxide 

before or during the insertion of the metal into the porphyrin.  

 

Scheme 12. Attempted one step synthesis of 22. 

 

chugina,#_ENREF_62
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To do so, two different reactions were prepared. In the first one, indium chloride and 

sodium phenoxide were reacted separately (refluxing for 2 h) followed by addition of the 

metal free porphyrin 3. In the other one, the porphyrin 3, indium salt and sodium phenoxide 

were all reacted together in a one pot one step reaction. Both reactions were left refluxing 

for 72 h under an inert atmosphere. After workup and analysis of the reaction products, only 

unreacted starting material was recovered in both cases.  

Another final experiment was then attempted using solvent-free conditions by 

mixing porphyrin 16 and an excess of phenol in a sealed tube leaving the mixture reacting 

at 200 °C overnight. The reaction was checked by MALDI-tof MS and after 24 h a small 

peak in the MALDI-tof MS corresponding to 820 m/z was observed by increasing the laser 

power. The reaction was stopped and checked by TLC but only starting material was 

observed. 

 

4.1.6.2 Metallation of porphyrins using In2O3 as indium source 

In this case, a different indium insertion into porphyrins was attempted as reported 

by Yu-yi Lee and coworkers.66 It is reported that indium (III) oxide could be used as indium 

source for the metallation of the porphyrin in the presence of acetic acid to form the 

corresponding indium porphyrin. We decided to modify this procedure by replacing acetic 

acid with phenol. This way, the desired indium complex 22 is expected to be obtained as 

product of the same metallation step (scheme 13).  

 

Scheme 13. Formation of 22 using In2O3 as indium source. 

 In order to study the formation of the desired porphyrin complex 22 from indium 

oxide, a one pot one step reaction was performed first. Toluene was chosen as solvent 

because its boiling point (110 °C) is very similar to that of acetic acid (118 °C) and therefore 

allows the reaction to reflux at a similar temperature. After refluxing the mixture for 24 h, 
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the reaction was checked by TLC and only unreacted porphyrin 3 was observed. It was then 

noted that indium oxide was not dissolved in toluene as it remained precipitated as white 

solids in the reaction mixture. Therefore, the solvent for the reaction was changed to dioxane 

(boiling point 101 °C). In this case, after 72 h refluxing in dioxane, no reaction was observed 

and the reaction solvent was substituted for DMSO and the temperature increased to 250 °C. 

Again, no product was observed after the reaction.  

 Consequently, a solvent-free reaction between phenol and indium oxide followed by 

addition of 3 was attempted. Indium oxide was mixed with an excess of phenol in a sealed 

tube filled with Ar and heated to 150 °C. After 4 h, 3 was added and the mixture left at 

150 °C for 48 h. At this stage, no product was observed so the crude mixture was further 

reacted at 170 °C for 24h. Again, only unreacted starting material 3 was recovered. 

 After all these failed attempts of exchanging the chlorine atom from the indium 

porphirin derivatives, the idea of using indium porphyrins for the construction of the 

molecular machines was abandoned.  

 

4.1.7 Ruthenium as linking point between porphyrins or porphyrins and surfaces. 

 Ruthenium porphyrins have been extensively studied for a long time. The first 

ruthenium porphyrin complex was described in 1969.67 It was a ruthenium-porphyrin 

chloride complex, although two years later a corrected formulation of the complex, 

Ru(TPP)(CO)(EtOH) 24, was published.56 The chemistry, however, has been restricted 

primarily to studies of ligand exchange at the sixth coordination site.68 Fortunately, previous 

research in our group reported successful double and single ligand exchanges from the 

carbonyl complexes in porphyrins and/or phthalocyanines.47 This allowed us to accept the 

challenge of applying this chemistry into more complex structures. As expected, phosphines, 

thiols and amine donors bind particularly strongly to the metal centre, and once bound, 

exchange of the ligands can be very slow.31 Also, this leads to highly stable complexes as 

ruthenium porphyrins cannot be easily demetallated, even in the presence of concentrated 

sulphuric acid. 
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There are different methodologies for inserting ruthenium into the porphyrin 

cavity,47,69,70 normally forming intermediates like 24 first, using ruthenium dodecacarbonyl 

as ruthenium source, and then reacting it further to exchange the solvent molecule (S) on the 

opposite plane to the carbon monoxide, as shown in scheme 14. 

Scheme 14: Synthetic pathway for the formation of ruthenium substituted porphyrins. 

 These standard conditions were therefore followed.70 A mixture of ruthenium 

dodecacarbonyl and TPP 3 in toluene was refluxed overnight under an inert atmosphere. 

Then, the reaction was cooled down and precipitated with EtOH overnight. The resultant 

crude solids were further purified by column chromatography on neutral alumina followed 

by recrystallisation of the desired ruthenium porphyrin 24 in good yield.  

 Ruthenium porphyrin 24 was further reacted by stirring with pyridine for 30 min. 

When the reaction was completed, the mixture was evaporated under reduced pressure and 

dried under high vacuum overnight to obtain the pure ruthenium porphyrin complex 25 

TPPRu(CO)(py) in a 57 % overall yield. The substitution of ethanol for pyridine was 

straightforward and it could be achieved under very mild conditions. Ruthenium porphyrins 

could therefore provide a suitable linking point for attachment of a superstructure to a 

surface, most reasonably using a surface functionalised with tethered pyridine ligands as 

represented in scheme 15.    

Scheme. 15. Proposed surface attachment of porphyrins into surfaces 26 using ruthenium 

porphyrin 24. 
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 Using this approach, the molecular machine could be constructed containing a 

ruthenium porphyrin unit in the central core position and different porphyrin-phthalocyanine 

complexes in the peripheral positions. Then, the entire molecular machine could be 

selectively attached to, for example, a gold surface. This central connection using ruthenium 

chemistry could act as fulcrum. 

 Different chemistry is however required for construction of the face-to-face 

chromophore arrays at the peripheral positions of the molecular machine to form the 

molecular variations of the “teacups” from the model.  

 

4.1.8 Lanthanides as linking points between chromophores 

 

Figure 14. General structure for porphyrinate phthalocyanate lanthanide double deckers 7. 

In our case, for the construction of the desired molecular machines, incorporation of 

freely rotating phthalocyanines in the peripheral positions of the multiporphyrin array 

needed to be achieved. Our early work indicated that the originally proposed face-to-face 

construction of Por/Pc chromophores through In-C or In-O links would be difficult to 

achieve. We therefore turned our attention to the formation of sandwich-like structures 

linked via lanthanides.  

Different multidecker complexes with large central metal ions including rare earth, 

actinide, early transition, and main group metals, have been fascinating chemists for several 

decades owing to their potential applications as versatile materials in various disciplines such 

as molecular machines,1,71 single molecule magnets3 or molecular electronics.4  The first 
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known double decker was made by Lindstead et al. in 1936 from Sn(Pc)Cl2 and Na2(Pc)19 

where they deduced the constitution Sn(Pc)2 from elemental analysis but did not give hints 

to the structure. The sandwich nature of this compound was proven by X-ray crystallography 

after the discovery by Lux et al. of the actinoid phthalocyanines.72 Since then, considerable 

efforts have been devoted to the synthesis and investigations of electronic and optical 

properties of these complexes. Due to the intra- and inter-molecular π-π interactions and the 

intrinsic nature of the metal centres, these complexes have shown extraordinary optical, 

electrical, thermodynamic and magnetic properties.16,41,55,73 They are expected to have 

applications in molecular electronic, photonic, and magnetic devices. Moreover, their unique 

electronic and optical properties make these complexes promising for photovoltaic 

applications. 

 

Fig 15. Representation of the first christallographically identified porphyrin sandwich.74 

This type of sandwich structure of Por/Pc shows interesting optical properties and 

they have been studied extensively.52,54,75 One of the obvious properties that can be observed 

are their UV-vis absorption spectra. As it can be expected this heteroleptic complexes, 

display those bands of the individual chromophores. For example, [LaH(Pc)(TPP)]53 (see 

figure 16) shows bands at 621 and 421 nm that corresponds to the (Pc)2- and (Por)2- ions 

respectively. The same common spectral properties can be observed in other heteroleptic 

double deckers [MIII(Pc)Por)]-.76,77 Therefore, UV-vis should be an important tool for the 

analysis of this type of sandwich structures.  
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Fig 16. UV-vis spectra of [LaH(TPP)(Pc)].53 

Different approaches for the selective synthesis of Por/Pc lanthanide heteroleptic 

double decker structures 7 have been published.68,75,78 Almost all previously described 

methods are multistep synthetic procedures which apply one-by-one deck construction of 

the target molecules starting by metallation of the porphyrin forming a SAT complex 

([TPP]Ln(acac)) 27 in a high boiling point solvent. For example, it was shown that the 

double-decker 7 with M = Eu could be selectively synthesised in a pseudo one-step 

procedure.60 This synthetic protocol includes the generation of the SAT precursor 27 with 

Ln=Eu ([Por]Eu(acac)), which is used without purification to interact with phthalonitrile to 

form the desired double-decker complex by formation of the phthalocyanine in situ around 

the metal. This procedure was used as the starting point for the formation of the double 

decker complexes during the present work. 
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Stability of the macrocycle, test reaction  

 

Scheme 16. Proposed stability check reaction.  

For the synthesis of the desired complex superstructures bearing double deckers, the 

stability of the multicromophore array was tested under the conditions needed for the 

formation of the double deckers. We therefore performed a test reaction by refluxing 

porphyrin 12 under the presence of DBU in octanol (scheme 16) to see if some 

decomposition or side reaction is observed and therefore, check the stability of the ether 

bond under these conditions. To do so, 20 mg of 12 was subjected to the standard procedure. 

After 24 h under reflux, the crude mixture was then checked by MALDI-tof MS observing 

a single sharp signal corresponding to the starting material (734.44 m/z). Then after 

precipitating the crude with MeOH, 18 mg of the porphyrin 12 were recovered unreacted. 

There was no evidence of exchange between the methoxy group and octanol.  

 Almost a quantitative amount of starting material could be recovered after the 

reaction time. This result allowed us to think that the future multicromophore array should 

then be stable enough under the harsh conditions needed for the formation of the double 

deckers directly over the superstructure. Once the stability of the array was tested, the 

synthesis of double deckers can be explored.  
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4.1.8.1. General synthesis of double deckers via phthalonitrile 29 

 

Scheme 17. Representation of the procedure for the synthesis of heteroleptic double 

deckers 7. 

In a modified procedure60 for the formation of double deckers 7, a mixture of free 

porphyrin 3 and [M(acac)3]·nH2O in n-octanol was refluxed under a slow stream of nitrogen. 

The progress of the reaction was monitored by analysing aliquots from the reaction by 

UV-vis spectroscopy and the reaction stopped when no more changes were observed in the 

Q-region of the spectra (500 - 750 nm). After 4–6 h, depending on the metal salt, the 

transformation to the SAT complex 27 was essentially completed. Then phthalonitrile 29 

and DBU were added to the reaction and the mixture left refluxing overnight. Then, the 

reaction was cooled down and the crude mixture precipitated with MeOH. The resultant 

crude solids were purified by column chromatography on neutral alumina and 

recrystallisation to obtain analytically pure double deckers 7, in 17 % yield (M=Dy) and 

70 % yield (M=La). 
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4.1.8.2. General synthesis of double deckers via phthalocyanine 19 

 

Scheme 18. Representation of the procedure for the synthesis of 7 via Pc 19. 

A different procedure was then attempted to try to improve the yield for the formation 

of the desired double deckers. The main impurity observed during the formation of double 

deckers via the phthalonitrile was phthalocyanine homoleptic double decker. An attempt to 

decrease the formation of this side product was performed by using previously synthesised 

Pc 19 instead of phthalonitrile 29. The rest of the reaction conditions remained the same. 

When the reaction was completed in the same two steps one pot conditions, the crude mixture 

was precipitated with MeOH and the crude solids obtained were purified by column 

chromatography. In this case, the desired double decker was also obtained and the yield 

increased slightly but only traces of phthalocyanine double decker were observed.  

Both methodologies afforded the desired double deckers 7 in high yields and the 

reactions could be performed in gram scale. In the case of the reaction via phthalonitrile 29, 

homoleptic double decker was obtained as side product from the reaction while in the 

reaction via the previously synthesised phthalocyanine 19, this side product was only 

observed as traces making the purification process slightly easier. Also, a slightly higher 

yield was observed for the formation of double deckers via phthalocyanine. On the other 

hand, the second method requires the synthesis of the phthalocyanine 19 from phthalonitrile 

29 which results in a lower overall yield for the desired products. The reaction via the 

phthalonitrile was therefore preferred from now on for the formation of double deckers 7. 
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4.1.8.3. NMR analysis of double deckers  

Due to the magnetic properties of the metal, NMR spectrum of the dysprosium 

double decker complex could not be obtained. On the other hand, UV-vis and MALDI-tof 

MS were in fully accordance with the literature. In the case of lanthanum, previous studies 

on the analysis of double deckers by NMR spectroscopy were previously reported.75,79,80 

Therefore, only lanthanum double deckers could be analysed by 1H NMR spectroscopy. 

The presence of Pc 19 as π-radical anion (Pc·-) in these type of complexes are well 

known.75,81 Due to the presence of this unpaired electron, these complexes, like other 

analogues, are usually NMR silent or broad. We employed the strategy developed by L’Her81 

using hydrazine hydrate as the reducing agent to generate the monoanionic ([TPP]La[Pc])- 

or protonated ([TPP]LaH[Pc]) species (figure 17), in which both macrocycles become 

diamagnetic. We were able to obtain satisfactory 1H NMR spectroscopic data for the reduced 

form of the lanthanum double deckers. The NMR spectrums were produced by dissolving 

complex 32 in d-DMSO and then adding 1 drop of hydrazine hydrate to the NMR tube to 

form the reduced diamagnetic complex and therefore obtaining a clean 1H-NMR spectrum 

as shown in figure 17 for the same NMR tube before and after the treatment with hydrazine.  

 

Figure 17. NMR analysis of La[TPP][Pc] 32 before (above) and after (below) the addition 

of hydrazine hydrate. 

 As can be seen in the 1H NMR spectra, the phthalocyanine peaks can be observed at 

9.1 and 8.2 ppm. The porphyrin peaks can be observed at 7.65, 7.35 and 6.9 ppm 

[TPP]LaH[Pc] + Hy         ([TPP]La[Pc])- 
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corresponding to the phenyl aromatic protons and a singlet at 8.0 ppm corresponding to the 

8 pyrrolic protons.  

 

4.2 Multiporphyrin arrays  

 There are some examples of different multichromophore arrays where porphyrins or 

phthalocyanines have been used for constructing molecular devices.34-36,82 For example, 

Anderson’s group from Oxford developed a controlled synthesis of several multiporphyrin 

nano-rings using a Vernier template-driven synthesis.36 In this case, a synthetic template is 

used for the controlled synthesis of a 12-porphyrin nano-ring using porphyrin metal to 

template interactions (figure 18). 

 

Figure 18. Vernier template- synthesis of a porphyrin nano-ring.36 



CHAPTER 4. Results and discussion   
 

40 
 

Another good example is the approach developed by Lindsey where phenylacetylene 

groups are used as linkers for the construction of various multichromophore arrays using 

porphyrins and phthalocyanines (figure 19) for application in photodynamic processes.35 

Here, it is worth noticing that differentiation is achieved between the peripheral and central 

units, each having metal-free or metallated chromophores. This was achieved by the use of 

metallation processes early in the synthesis. Then, the different metal or metal-free units 

were coupled together to construct the array with metal and metal/free sites selectively. All 

remaining metal-free units were then metallated identically in the last step of the synthesis.    

 

Figure 19. Multiporphyrin arrays using phenylacetylene bridges.35 

 Another example is the work developed by S. Ogi1 where two different molecular 

rotors were interlocked into a bevel-gear-shaped rotor (figure 20). This structure consists of 

a lanthanum double decker (red) and a porphyrinatorhodium(III)-based rotor (blue). This 

provided two different rotational activities in the system.  
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Figure 20. Bevel-gear-shaped rotor developed by S. Ogi et al.1 

In order to achieve the overall goal, a straightforward synthesis of substructures 

comprising porphyrins/phthalocyanines around a complementary central unit was required. 

Porphyrin building blocks were selected, and the key challenge was therefore to devise a 

strategy that enabled control over the different metal (or metal-free) centres of the core 

and/or peripheral units. A representative target, 33, is shown in figure 21. This structure 

would form the core of a molecular machine. The peripheral units will be elaborated with 

the face-to-face assemblies, while the central metalloporphyrin will be used for binding to a 

surface. 
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Figure 21. Designed array 33 bearing different metals in the peripheral (Mb) and central 

(Ma) positions. 

Multiporphyrin 33 shows the peripheral porphyrin units linked to the central core via 

flexible spacers. These spacers were planned to be aliphatic chains (between 5-10 carbons 

long). They allow free movement and are expected to combine ease of synthesis with good 

solubility of the products. Intermediate hexane chains were initially selected.  

For the first synthetic optimisations, metal-free porphyrins were used in conjunction 

with zinc metallated porphyrins. This allowed us to optimise the methodology for the 

synthesis of the multiporphyrin arrays 33, where Ma or Mb were Zn or H2 respectively. Zinc 

was chosen for this analysis because of its high affinity with porphyrins as well as lack of 

reactivity when inserted into porphyrins. 22,31,34-36 This way it can not only be proven that 
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different metals can be successfully inserted into the structure but some further reactions 

could be explored without having other possible reactive positions. 

 

4.2.1. Synthesis of porphyrin building blocks 

 Analysing synthetic strategies, the main structure can be broken down into two 

different porphyrin precursors as represented in scheme 21. The peripheral porphyrin units 

are unsymmetrically substituted and the central are symmetrical. Therefore, the first 

challenge identified was the preparation, in reasonable quantity, of unsymmetrically 

substituted metal-free and zinc metallated porphyrin building blocks. Our ideal target would 

be easy to synthesise and isolate, leading to selection of monohydroxyporphyrins 35 or 40. 

We reasoned that this peripheral unit would offer various approaches to attachment to the 

core, most simply through alkyl linkers (ethers). 

 

Scheme 19. Designed array 33 bearing different metals in the peripheral (Mb) and central 

(Ma) positions.  

This peripheral porphyrin unit was synthesised using a modified version of Adler’s 

methodology42 using a statistical mixture of benzaldehydes as reported by Little et al.83 In 
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our case, the multigram scale synthesis (scheme 20) employed a mixture of benzaldehyde 2 

and 4-hydroxybenzaldehyde 14. The mixture of aldehydes was refluxed in propionic acid 

and freshly distilled pyrrole was added dropwise to the refluxing mixture. After 30 min, the 

mixture was cooled down and the porphyrin mixture precipitated with methanol. The 

mixture of porphyrin products were filtered off, leaving the majority of side products in 

solution. Column chromatography of the porphyrin mixture gave monohydroxyporphyrin 

34, TPP-OH, in around 5 % yield after a recrystallisation from DCM/Methanol. 

 

Scheme. 20. Synthesis of unsymmetrically substituted porphyrin 34. 

With the straightforward synthesis of TPP-OH in hand, attention was turned to the 

core porphyrin 13. This porphyrin 13 consists of a TPP derivative functionalised with 

bromoalkyloxy groups on each of the phenyl para-positions. This porphyrin could be easily 

synthesised by alkylation of tetrakis-p-hydroxyphenylporphyrin 15. In theory, this porphyrin 

15 can be prepared simply by reaction between 4-hydroxybenzaldehyde 14 and pyrrole. 

However, in practice this approach is not convenient because the porphyrin does not 

precipitate from the reaction mixture and it is therefore isolated after workup alongside 

polypyrrole tars. Separation is difficult and tedious. Alternative routes were investigated:  

 

Scheme 21. Different methodologies followed for the synthesis of central tetraalkylated 

porphyrin 13. 
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In the first route, 4-methoxybenzaldehyde 9 was condensated with pyrrole in 

refluxing propionic acid using previously described conditions. The symmetrical tetrakis-

(4-methoxyphenyl)porphyrin 12 is easily isolated. Hydrolysis of the methyl ethers was 

achieved using a refluxing mixture of HBr/acetic acid or BBr3.
84 Realkylation using an 

excess of dibromoalkane (1,6-dibromohexane was used in the first instance) gave the desired 

core porphyrin 13 with an overall yield of 8 %. Subsequently an alternative approach was 

preferred. 4-hydroxybenzaldehyde 9 was alkylated with an excess of dibromohexane to give 

the substituted benzaldehyde 10. Condensation of 10 with pyrrole under standard conditions 

again yielded porphyrin 13 in 11 % yield. This second route afforded the desired porphyrin 

in a better yield and more convenient way therefore this was the preferred route for the 

synthesis of porphyrin 13.  

The prepared peripheral and central porphyrins were then metallated separately prior 

to coupling.  

 

Scheme. 22. Zinc metallated tetraphenyl substituted porphyrin structures 39-41. 

Following typical metallation procedures85 porphyrins 13, 15 or 34 were heated in 

refluxing acetone in the presence of zinc acetate (Zn(OAc)2) for 30 to 60 min. After 

completion, the solvent was evaporated and the crude solid extracted with DCM/H2O, dried 

over MgSO4 and concentrated to collect the pure product. Using this procedure, 

zinc hydroxyphenylporphyrin 39 ZnTPP-OH and zinc tetraalkoxyphenylporphyrin 40 

ZnT(OC6Br)PP were obtained in near quantitative yield. On the other hand, zinc tetrakis(4-

hydroxyphenyl)porphyrin 41 was isolated in 71 % yield. 
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4.2.2. Synthesis of multi-porphyrin arrays 35 (Ma=H,H Mb=Zn) and 36 (Ma=Zn, 

Mb=H,H) 

 

Scheme 23. Proposed starting materials 13 and 39 for the formation of multi-porphyrin 

array 35 having the peripheral porphyrin units protected with Zn. 

 Array 35 has zinc porphyrins on the periphery of a metal-free central porphyrin. In 

the first attempt, porphyrin 13 and the monohydroxylated porphyrin 39 were reacted in 

refluxing MEK with an excess of potassium carbonate. The reaction was followed by TLC 

and MALDI-tof MS but even after 7 days, no product formation was observed.  

Monohydroxylated porphyrin 39 was reacted with tetrabromo porphyrin 13 using the 

same conditions as before but changing the solvent to DMF. After reacting at 100 °C for 4 

days, the crude mixture was poured into water. The resultant purple solid was subjected to 

column chromatography followed by recrystallization to recover the desired multiporphyrin 

array 35 in a yield of 26 %.  
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Array 36, on the other hand, has the reverse arrangement. A zinc porphyrin core 

surrounded by metal-free peripheral units. It was prepared following a similar procedure 

than that developed for the synthesis of analogue 35 employing TPP-OH 34 and zinc 

porphyrin 40. In this case the yield of array 36 was 44 %.  

 

Scheme 24. Synthesis of multi-porphyrin array 36. 

Both multiporphyrin arrays were fully characterised by MALDI-tof MS, UV-vis and 

1H-NMR spectroscopies.  

   

Figure 22. MALDI-tof MS of array 35 (m/z = 3787) and 36 (m/z = 3597). 
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 UV-vis spectrum were obtained for both analogues (Figure 23). The Soret bands 

appear slightly shifted, at 415 cm-1 for array 35 and at 420 cm-1 for array 36. Special attention 

can be put in the Q-region of the spectrum between 450 and 700 cm-1. In this region, array 

35 absorption pattern, resembles those of metallated porphyrins whereas array 36, resembles 

those of metal-free porphyrins. 

 

Figure 23. UV-vis spectrum obtained for arrays 35 and 36. 

Finally, 1H NMR spectra were recorded for both arrays (figure 24). The region 

corresponding to the linking chains appears to be mostly symmetrical and gives similar 

signals for both compounds at around 4.3, 2.1 and 1.7 ppm. The very characteristic NH 

singlet at -2.7 ppm corresponding to the metal-free porphyrins is present in both analogues 

integrating for two protons in array 35 (metal-free central porphyrin) or for eight protons in 

array 36 (metal-free peripheral units). Finally, in array 35, a singlet can be observed at 3.25 

ppm corresponding to 12 protons that corresponds to a molecule of methanol (used as 

recrystallisation solvent) bonded to each one of the four zinc metals present. 
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Figure 24. 1H NMR spectrum of complex 35 (above) and 36 (below).  

 

4.2.3. Synthesis of multi-porphyrin arrays for studies in surface attachment and/or 

multidecker formation  

 For the surface attachment of the molecular machines into surfaces, the possibility 

of using previously studied ruthenium chemistry57,68 to act as fulcrum looks promising. Also, 

formation of sandwich-like structures in the peripheral porphyrins using ruthenium 

chemistry could be explored. With this in mind, previously synthesised arrays 35 and 36, 

were further metallated using previously developed ruthenium chemistry.35 By using this 

approach, multiporphyrin arrays with ruthenium/zinc in the peripheral or central positions 

could be selectively achieved in a straightforward manner. The aim was then to design a 

synthetic pathway two obtain the desired fully metallated analogues in the selected positions. 
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4.2.3.1. Synthesis of ruthenium multi-porphyrin array 37 

The first analogue, metallated multi-porphyrin array 37, (Mb=Zn, Ma=Ru) had zinc 

in the peripheral positions and ruthenium in the central position. It was synthesised by 

refluxing multiporphyrin array 35 in toluene in the presence of 1 equivalent of ruthenium 

dodecacarbonyl for 18 h. Then, the solvent was evaporated to dryness and the residue stirred 

in pyridine for 30 min. pyridine was then removed under vacuum to collect a dark purple 

solid containing the product 37.  

 

Figure 25. Structure of metallated multiporphyrin array 37 (linking chains omitted for 

clarity). 

The resulting complex was then analysed by 1H NMR spectroscopy and compared 

with the spectrum obtained for the starting material (figure 26). 
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Figure 26. Comparison between starting material array 35 (red, top) and the ruthenium 

array 37 (black, below). 

 In this comparison, it can be seen that the signal at -2.7 ppm corresponding to the 

central metal-free NH porphyrin peaks is no longer present. This is proof that there was a 

metal insertion in the central position and no more free-porphyrin is present in the system. 

Finally, the presence of the ruthenium metal can also be observed in the IR spectrum, where 

the very characteristic signal for the CO group attached to the ruthenium appears at 1941 

cm-1. This signal is also in the same region as previously reported ruthenium 

complexes.56,67,68 These results, proved that the chemistry developed for a simple model 

porphyrin can also be applied to more complex structures.  

 

Figure 27. IR spectrum obtained for ruthenium array 37. 

 

  

User 002

Name

56.643 %T

Cursor

Sample 002 By User date Wednesday, October 12 2011

Description

4000 8003500 3000 2500 2000 1500 1000

88

34

40

45

50

55

60

65

70

75

80

85

cm-1

%
T

1941.31



CHAPTER 4. Results and discussion   
 

52 
 

4.2.3.2. Synthesis of ruthenium metallated multi-porphyrin array 38  

The second analogue, metallated multi-porphyrin array 38, (Mb=Ru, Ma=Zn) had 

ruthenium in the peripheral positions and zinc in the central position.  

 

Figure 28. Proposed structure of metallated multiporphyrin array 38 (linking chains 

omitted for clarity). 

Array 36 was refluxed in toluene with an excess of ruthenium to obtain the four 

desired additions. When the addition was completed, the crude mixture was stirred in 

pyridine for 30 min to attach the pyridine to the metallated system. After the reaction and 

purification, the mixture was checked first by 1H NMR spectroscopy and the NH peak 

corresponding to the free porphyrin at -2.7 ppm was not observed in any case proving the 

absence of metal-free porphyrins in the product. Also, IR spectra of the product was obtained 

(figure 29), observing the characteristic peak at 1949.75 cm-1 similar to analogue 37. 

However, in this case, other peaks at 2061.84 and 1996.20 cm-1 were also observed. 
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Figure 29. IR spectrum obtained for the ruthenium array 38. 

The complex was dissolved in DCM and attached to a balloon of CO and stirred 

overnight in order to ensure complete CO complexation. However, after this treatment, no 

sharp signals were observed on the 1H NMR spectrum. MALDI-tof MS, gave a signal at m/z 

= 4585.06 that matches the addition of two pyridine ions to the targeted array [M(py)2]
+.  

Although it was then clear that selective metallation could be achieved in these 

multiporphyrin arrays, the multiple introduction of ruthenium was unsatisfactory. Therefore, 

we turned our attention to alternative synthesis of multideckers. 
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4.2.4 Synthesis of multidecker porphyrin arrays using lanthanides  

 The next set of experiments that were studied involved the possible formation of 

multiporphyrin arrays using functionalized lanthanide double deckers as building blocks for 

the construction of the desired molecular machines.  

 

Scheme 25. Designed synthesis of molecular machine 43. 

We reasoned that use of pre-synthesised double deckers as starting materials should 

be an easy way of introducing the desired free rotating units into the molecular machines. 

Phthalocyanine 19 was chosen as the complementary unit to be attached to the peripheral 

positions of the arrays. These positions therefore comprises a heteroleptic sandwich 

complex.  
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4.2.4.1 Synthesis of multi-porphyrin double decker array via functionalised 

heteroleptic double deckers 

The first, most straightforward approach to assemblies like 43 involved the reaction 

between hydroxylated lanthanide double decker 42 with symmetrically substituted 

porphyrin 40.  

Scheme 26. Proposed general synthesis for the formation of 43. 

The synthesis of this double decker complex 40 was achieved using the general 

method for the formation of porphyrin-phthalocyanine heteroleptic double decker via 

phthalonitrile using porphyrin 34 as starting material (scheme 27).60 TPP-OH 34 and 

lanthanum acetylacetonate were refluxed in octanol for 6 h followed by addition of 

phthalonitrile and a catalytic amount of DBU. The resultant mixture was then refluxed 

overnight and then, the reaction was cooled down and precipitated with MeOH. The resultant 

crude solids were purified by column chromatography in neutral alumina and 

recrystallisation to obtain analytically pure double decker 42 in 72 % yield.  

 

Scheme 27. Synthesis of hydroxylated double decker 42. 
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This functionalized double decker 42 was then mixed with zinc porphyrin 40 and 

potassium carbonate and left stirring at 60 ˚C in DMF following the same conditions as 

previously optimized for the formation of the multiporphyrin arrays 35 and 36. After five 

days reacting, the mixture was precipitated with distilled water and the crude solids obtained 

were checked by MALDI-tof MS. No peaks corresponding to the desired product were 

observed. The only peaks observed corresponded to unreacted starting materials double 

decker 42 (1281.97 m/z) and zinc porphyrin 40 (1394.04 m/z) that remained unreacted. From 

this result, it could be concluded that there was no reaction occurring under this conditions. 

Then, the reactivity of the double decker 42 was examined under a simple reaction by 

refluxing it with 1,10-dibromodecane in MEK as test reaction (scheme 28) in order to obtain 

the alkylated double decker 44.  

 

Scheme 28. Test reaction.  

 The solids obtained after the overnight reflux of the double decker 42 and 

1,10-dibromodecane obtained after precipitation with methanol were checked by 

MALDI-tof MS to observe only a peak corresponding to the unreacted double decker 42 

(1280.87 m/z) and a very small peak (12% relative intensity) at 1346.53 m/z that correspond 

to the addition of a molecule of solvent (MEK) to the starting material. The reaction was 

then purified by column chromatography over silica gel to obtain a single fraction containing 

the unreacted starting material 42 and traces of another small fraction that by MALDI-tof 

MS shows peaks corresponding to double decker 42 1280.93 m/z (100%) and 1346.53m/z 

(45%). NMR spectrum was obtained for the mixture but no pure material could be observed 

even after the addition of hydrazine hydrate to the NMR tube. With this results in mind, it 

could be then concluded that the double decker 42 is not reactive against alkylation as around 

95 % of the material was recovered after the test reaction. 
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Other reactions were tested in different solvents but any encouraging results were 

obtained so far, as using DMF instead of MEK leaded to decomposition of the double decker 

42 after 3 days without any formation of product 44. A final trial was attempted using toluene 

as solvent but also decomposition of the double decker was observed. Therefore, the pathway 

for the construction of molecular machines from functionalised double deckers was 

abandoned.  

 

4.2.4.2 Synthesis of multi-porphyrin double decker array via double decker in situ 

formation 

 A new methodology was the formation of the double deckers in situ on the metal-free 

peripheral units of the previously synthesised multiporphyrin array 36 (scheme 29). In this 

case, the central core porphyrin was protected with zinc to avoid reactions on this position.  

 

Scheme 29. Proposed synthesis of molecular double decker array 43 (linking units omitted 

for clarity. 

 Previously synthesised multi-porphyrin array 36 was refluxed in octanol with the 

lanthanide complex [La(acac)3]·nH2O followed by addition of phthalonitrile and DBU. 

When the reaction was completed, it was cooled down and solvent removed under vacuum 

to obtain a purple solid. This solid was then checked by TLC and MALDI-tof MS observing 

a very complicated outcome of multiple spots on TLC and high mass peaks by MALDI-tof 

MS. None of the peaks observed corresponded to the desired product 43 of mass 6191.26 

m/z. Some possible side reactions were the formation of Pc double deckers (observed in 

MALDI-tof MS) leading to less metal ions being available for the formation of the product 
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leading to partially metallated compounds. The reaction was then repeated with more 

lanthanum metal equivalents (8 eq) to try to avoid the lack of metallation centres in the 

porphyrin due to possible side reactions. Unfortunately, the same outcome was observed 

being the analysis and purifications very difficult.  

 Another test reaction was attempted by reaction of the multi-porphyrin array 36 with 

Pc 19 and the same lanthanum complex to try to avoid side reactions formed during the 

formation of the Pc under this conditions. Array 36 was refluxed in octanol in the presence 

of 8 eq of lanthanum acetyl acetonate. Then, Pc 19 was added and everything left refluxing 

overnight. Then, the octanol was removed by distillation and the resultant solids analysed 

by MALDI-tof MS observing a very complicated MALDI-tof MS (figure 30). No expected 

products were observed but also, no starting material remained in the crude mixture after the 

reaction. Finally, the formation of various unidentified higher mass structures were observed 

(corresponding molecular weights higher than 3500 m/z) but could not be purified or 

analysed by other spectroscopic techniques. 

 

Figure 30: MALDI-tof MS spectrum of the outcome for the formation of 43 with low and 

high laser power. 

0

10

20

30

40

50

60

70

80

90

100

%Int.

1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000 8500 9000 9500

m/z

44 mV[sum= 17702 mV]  Profiles 1-400 Smooth Av 5 -Baseline 15

Reflectron Neg ion TOFMIX_ (reso 10905)_

 

Data: <Untitled>.D20[c] 16 Dec 2012 13:42 Cal: 24 Mar 2009 11:10 

Shimadzu Biotech Axima CFR 2.8.4.20081127: Mode default_linear, Power: 138, P.Ext. @ 8792 (bin 57)

2121.59
2996.48

3004.27

5685.254096.68

2129.69 5692.833655.50 4104.722877.19

2320.74 4734.171230.00 3012.07 3790.32 5352.64 5883.211787.40 6301.91 7653.146897.38 9513.748210.62 9057.298614.39

0

10

20

30

40

50

60

70

80

90

100

%Int.

2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000 8500 9000 9500 10000

m/z

55 mV[sum= 7261 mV]  Profiles 1-131 Smooth Av 5 -Baseline 15

Reflectron Neg ion TOFMIX_ (reso 10905)_

 

Data: <Untitled>.C20[c] 16 Dec 2012 13:40 Cal: 24 Mar 2009 11:10 

Shimadzu Biotech Axima CFR 2.8.4.20081127: Mode default_linear, Power: 152, P.Ext. @ 8792 (bin 57)

2753.74

2856.58

2265.03
2951.29

2271.41

2737.95

8239.473078.12
8744.60

4083.83 8270.653061.89
8900.26

7729.48

3054.02
3989.183535.56 9741.215867.815268.47 7003.44



CHAPTER 4. Results and discussion   
 

59 
 

Clearly, no product was obtained using this methodology. Also, the analysis of all 

the different sub-products was proven difficult as there were many side products and 

intermediates that could be obtained such as half sandwich complexes, multiple deckers, etc. 

 

4.2.5. Conclusions 

Different multichromophore arrays having different metals in the peripheral and 

central positions have been successfully synthesised. By using previously metallated 

porphyrins for the construction of the arrays, several analogues could be synthesised 

following an optimised general methodology. This process allowed the formation of arrays 

with different metal and or metal-free selected positions that could be easily designed 

depending on the needs.  

On the other hand, the desired sandwich complexes with lanthanides could not be 

obtained during this chapter. This was due to lack of reactivity of functionalised double 

deckers.  

The chromophore arrays with metal-free positions 35 and 36 shows favourable 

reactivity for further metal insertion. This process was also proven by the insertion of 

ruthenium in both peripheral and central positions separately and selectively. Equally 

important, this ruthenium complexes shows great affinity for pyridine derivatives. This 

affinity could be used for the future formation of high complexity molecular machines for 

example using pyrazine derivatives as linkers between different chromophores. Finally, 

further surface studies could be attempted with multiporphyrin array 37 where ruthenium 

metal was inserted in the central position using pyridine-functionalised surfaces.  
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4.3. Porphyrin dyads, reaction models 

 For the study of the formation of double deckers on multi-porphyrin arrays, 

simplified porphyrin dyads were selected to act as simple models of the components present 

in our multiporphyrin array 36 (scheme 30). This dyads consists of two porphyrins linked 

together by long alkyl chains. This will allow us to understand the behaviour of the porphyrin 

framework in a more controlled manner.  

 

Scheme 30. Representation of the region in 36 (light blue highlighted) that served as model 

for the design of the porphyrin dyad 45 to be used as model. 

Once the porphyrin dyads are synthesised, the next step will be to form double 

deckers on each side of them following the optimised conditions for the formation of double 

deckers that were developed in previous chapters (scheme 31). Depending on the 

observations, we reasoned that the same principles could then be applied to the formation of 

double decker complexes on the peripheral positions of the previously synthesised multi-

porphyrin array 36 (scheme 30a) to form the desired molecular machines.  
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Scheme 31. Proposed model 49 synthesis. 

 

4.3.1. Formation of model porphyrin dyads 

In order to keep the synthesis of porphyrin dyads as straightforward as possible, 

previously synthesised porphyrin 34 was synthesised following the same known 

procedures86,87 previously developed for the synthesis of multiporphyrin arrays. Different 

dyads with different chain lengths were synthesised to study the possible influence of the 

distance between the porphyrins on reaction outcome and reactivity. In the first approach, 

1-n-dibromoalkanes (n=10 and 12) were used as linkers for the formation of the dyads using 

the reaction conditions shown below: 

Scheme 32. Proposed synthetic pathway example for the formation of porphyrin dyad 45 

using dibromodecane with expected side products 47 and 48. 
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 TPP-OH 34 and the appropriate dibromoalkane were reacted in DMF at 60 ˚C in the 

presence of potassium carbonate. After elimination of the solvent and column 

chromatography, the desired porphyrin dyad was obtained albeit in low yield. The 

production of large amounts of monosubstituted starting material 47 (TPP-OC10Br) and its 

elimination side product 48 (TPP-OC10H19) as well as unreacted starting material 34 

(TPP-OH) were observed.  

 Due to this low product yield, the tedious elimination of the DMF and the significant 

amounts of side products obtained, the reaction was then optimised by a small screening of 

the most commonly used solvents, inorganic salts, catalysts and purification procedures 

found in the literature for this particular type of reaction. 

 

4.3.1.1. Optimisation of the reaction conditions for the formation of C10 porphyrin 

dyad 45 

 Porphyrin 34 and 1,10-dibromodecane were reacted in DMF at 60 ˚C with an excess 

of potassium carbonate. The reaction times were checked by taking aliquots from the 

reaction until completion. Full consumption of starting material was not observed even after 

7 days reaction and only the elimination side product 48 (TPP-OC10H19) was increasing with 

time. It can be concluded that longer reaction times only lead to the higher formation of side 

products so it is not a convenient parameter to be changed.  

The next change was the use of MEK instead of DMF as reaction solvent. Also, the 

use of a catalytic amount of KI (10 % mol) was added to the reaction mixture in order to try 

to avoid the side reaction of elimination in the intermediate as reported in equation (2) as 

this will add iodide ions to the reaction mixture which can be exchanged with some of the 

bromide ions in the alkyl chain increasing the reactivity of the system and therefore 

favouring the formation of products: 

        (2) 

 

(TPP-OC10H20-Br         TPP-OC10H19 + HBr) 

          47                            48 
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An increment of yield with higher consumption of TPP-OH 34 was observed after a 

longer reaction time of 48 hours. On the other hand, an increment of the elimination product 

48 obtained was also observed in the same manner.  

These conditions were promising as the starting material was mostly consumed so 

the reaction was carried out in different scales from 200 mg to 1 g but for the high scale 

reactions, large amounts of unreacted starting material were recovered unreacted. In this 

case, the yield of the reaction decreased when the scale of the reaction was increased and 

also elimination side product was a major side product of the reaction in all cases.  

It seems that the elimination side product always appeared during the reaction. In 

order to avoid this side reaction, the temperature was reduced. The solvent was changed to 

acetone keeping the rest of the conditions the same. The reaction was checked by TLC over 

the course of two days to observe completion of the reaction without any elimination side 

product after 48 h of reflux with high conversion to the desired porphyrin dyad 45.  

Due to the lack of elimination side product using acetone as solvent system, the need 

of KI as catalyst might not be longer necessary so two reactions were prepared with and 

without KI using acetone as solvent. In both cases the same results and yields were observed 

in the same reaction times so we can conclude that the presence of KI was no longer 

necessary to complete the reaction when using acetone as solvent as the elimination process 

was no longer occurring. 

Solvent Temperature (°C) Base Catalyst Time (h) Product 45 Elimination 

DMF 100 K2CO3 - 20 8 % >80% 

MEK reflux K2CO3 - 48 31% 26% 

MEK 70 K2CO3 KI(10%) 18 - - 

MEK 80 K2CO3 KI(10%) 24 - - 

MEK reflux K2CO3 KI(10%) 24 40% 30% 

MEK reflux K2CO3 KI(10%) 48 36% 31% 

MEK reflux K2CO3 KI(10%) 72 38% 33% 

acetone reflux K2CO3 - 72 57% - 

acetone reflux K2CO3 KI(10%) 72 55% - 

Table 1: Representation of the different reaction conditions screened.  
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4.3.1.2. Optimisation of the purification procedure for the formation of C10 

porphyrin dyad 45 

For the treatment of the crude reaction and for all the conditions used, the solvent 

had to be removed under vacuum, the residue redissolved in DCM and extracted several 

times with water to remove the excess base. In the particular case of using acetone as solvent, 

the crude reaction was only precipitated with water and filtered to obtain a purple solid of 

the crude reaction that needed to be further purified.  

The first attempts of purifying the crude purple solid were by using silica gel column 

chromatography and 3:7 THF:pet ether as eluent, but big amounts of purple solids containing 

the product were stacked in the baseline and could not be recovered with any other more 

polar solvent, even with MeOH. Only between 60 % and 80 % of the starting crude mixture 

could be recovered after the column. To try to avoid the loss of material using silica gel, the 

same column chromatography was performed in alumina but no improvement was observed. 

Instead, more aggregation of the porphyrins was observed leading to product mixtures in the 

column fractions having to repeat the column in silica to recover the pure product. 

In all cases that the product was purified by column chromatography, the fractions 

containing the product needed to be further recrystallised from the mixture of DCM:MeOH 

to obtain analytically pure material. During this precipitation process, a very low solubility 

of the product dyad was observed in the presence of small amounts of MeOH. Due to this 

observation, the crude solids from the reaction mixture obtained after the elimination of the 

solvent were subjected to direct recrystallisation without any previous purification by 

column chromatography. Using two careful recrystallisations it was possible to obtain 

analytically pure dyad 45 without any chromatography. 

 

Figure 31. 1H NMR spectrum obtained for porphyrin dyad 45 without column 

chromatography. 
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In summary, the best conditions obtained for the reaction were the reflux in acetone 

for 72 h, addition of water and filtration of the precipitate followed by careful 

recrystallisations to collect the product 45 as a purple solid (57 % yield). 

 

4.3.2. First model double decker formations 

 Once the methodology for the synthesis of the porphyrin dyads was optimised, a 

study of the formation of double deckers with them was possible. Initially, the modified 

method of two step, one pot procedure developed by Birin88 was followed (scheme 33). 

Metallation of the porphyrin dyad with lanthanum acetylacetonate was followed by addition 

of Pc 19 to the reaction mixture to form the double deckers.  

Scheme 33. Proposed reaction scheme for the formation of the dyad double decker 49.  

 In the first attempt, the reaction was performed on a small scale by reacting porphyrin 

dyad 45 and lanthanum acetylacetonate in refluxing octanol for 6 h. At this stage, UV-vis 

spectroscopy indicated full metallation of the porphyrins. This step was followed by addition 

of phthalocyanine 19 and reflux overnight. When the reaction was completed, the solvent 

was distilled off and the residue recrystallized from a DCM/MeOH mixture to recover green 

solids that were analysed by TLC. Two spots were observed and the mixture was then 

checked by MALDI-tof MS (figure 32). Only two main peaks were observed corresponding 

to 2185.5 m/z and 4002 m/z. The expected mass for the product containing two double 

deckers was 2698.55 m/z but that peak could not be observed in the reaction mixture.  



CHAPTER 4. Results and discussion   
 

66 
 

 

Figure 32. MALDI-tof MS obtained from the reaction mixture. 

 The reaction was repeated at larger scale using 50 mg of porphyrin dyad 45 following 

the same procedure. The isolated green solids where subjected to flash column 

chromatography in THF:Pet ether to obtain two different fractions (first brown and second 

green fractions). Both fractions were analysed separately by MALDI-tof MS and 1H-NMR 

spectroscopy. 

 

4.3.2.1. Analysis of the brown fraction 

 

Figure 33. UV-vis spectrum obtained for the first brown fraction compared with the UV-

vis obtained for [TPP]LaH[Pc] 32. 

 First of all, the UV-vis spectrum that was obtained for the pure brown fraction 

(figure 33) does not look like a typical UV-vis spectrum of a double decker as the typical 

absorption on the Pc region at around 700 cm-1 is not present in this case which mean the 

complex is not a double decker but there is a new absorption at around 360 cm-1 that tell us 

that we are not looking to a simple porphyrin or metallated porphyrin complex either where 
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this absorption should not be present. On the other hand a sharp absorption can be observed 

at around 420 cm-1 that can correspond to the Soret band typical for porphyrins. 

 

Figure 34. MALDI-tof MS obtained for the brown fraction. 

 Then, with this in mind, by a simple observation of the molecular mass observed on 

the MALDI, the difference in mass from the expected product corresponds to a difference 

of 512 m/z to the expected product, which fits exactly with the molecular mass of the 

deprotonated 19 Pc2-. In other words, the mass corresponds to a triple decker structure. There 

are many possible arrangements that fit with the observed mass (figure 35).  

Figure 35. Proposed structures 50-52 for the first brown fraction of the reaction. 
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In order to differentiate from the possible structures, the NMR spectrum was 

examined. It could be noted that there is no metal-free porphyrin because the characteristic 

peak at -2.7 ppm was not present on the spectrum. To distinguish between the possible 

structures, attention was focused in the very characteristic alkoxide signal (-O-CH2-) that 

appears as a triplet at around 4.6 ppm in the 1H NMR spectrum. As long as there was only 

one signal in this region, it could be concluded that both ends of the aliphatic chain must be 

in identical environments (symmetrical molecule). The only proposed structure that meets 

this condition was the first closed triple decker 50, composed of a triple decker structure 

with the Pc in between the porphyrins with the aliphatic chain interconnecting both 

porphyrins.  

Finally, the structure was then characterised with an X-Ray analysis (figure 37). 

 

Figure 37. X-ray analysis obtained of 50. Note that most of disorder components are not 

shown for clarity except for the linker chain which is exactly 50:50 disordered over both 

sites. 

This proposed closed triple decker 50 1H NMR spectrum could then be compared 

with the small number of (not interconnected) triple deckers reported (figure 38).79,80 During 

this work, the complicated 1H NMR spectra signal splitting are totally analysed. 
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Figure 38. 1H NMR spectrum studies of La triple deckers reported by Birin.80 

In our case, our structures were very similar to those reported in Birin’s work but 

further splitting of the phenyl signals was expected due to the lower symmetry of the 

complex because of the aliphatic chain interconnecting the porphyrins. This structure was 

then analysed in detail in the same way (figure 39). Note that the signals corresponding to 

the substituted phenyl protons are differentiated with apostrophe.  
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Figure 39. Analysis of 1H NMR spectrum of complex 50. 

According to the structure of the compound, we should expect the Pc peaks HPc1 

(non-peripheral protons) and HPc2 (peripheral protons) to be split as proposed in figure 40a 

where we should have eight different signals as we have 8 pairs of magnetically non-

equivalent protons due to the plane of symmetry, represented as a dotted line that crosses the 

structure trough the aliphatic chain of the side of the triple decker to connect the two 

porphyrins. On the other hand, we can easily observe two signals (HPc1 and HPc2 on figure 

39) that closely resembles a completely symmetrical Pc as represented in fig 40b. It therefore 

appears that there is fast rotation of the Pc inside of the triple decker in the NMR time scale 

that make all protons of the Pc indistinguishable.  
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a) b)  

Figure 40. Representation of the Pc in triple decker 50 view from above, with the 

porphyrins omitted for clarity. The dotted line represents a plane of symmetry. 

 

4.3.2.2. Analysis of the green fraction 

 

Figure 41. UV-vis spectrum obtained for the green fraction compared with the one of a 

double decker. 

 Again, the first characterisation to look at was the UV-vis spectrum obtained for the 

pure second green fraction (figure 41). It did not look like the previous brown fraction and 

more closely to the typical UV-vis spectrum of double deckers with a few differences. First 

of all, it shows an absorption at 700 cm-1 on the Pc region that was not present in the previous 

brown fraction. Therefore it had then a different arrangement of porphyrins and Pcs. Also, 

the absorption at around 360 cm-1 was also present in the complex, typical for sandwich-like 

structures. On the other hand it can be observed that the sharp absorption at around 420 cm-1 

is much weaker than in any other complex. All that together, might give us an idea of the 

structure where the UV-vis of this fraction was the opposite of the other fraction, very likely 

to be the porphyrins sandwiched in between Pcs.  
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Figure 42. MALDI-tof MS spectrum obtained for the green fraction. 

In this case, by MALDI-tof MS, a molecular ion of 4000 m/z was observed that can 

fit with the addition of four metals and four Pcs to the starting porphyrin dyad. There were 

two possible triple deckers that could have been formed fitting the corresponding molecular 

weight: 53 and 54 as shown in figure 43. These are basically the formation of triple deckers 

where the Pcs are at each side of the porphyrin (53) or one Pc on top of the other (54).  

 

Figure 43. Proposed structures 53 and 54 for the green fraction of the reaction. 

Again, the possible structures could be differentiated by analysing the 1H NMR 

spectrum obtained for the fraction. In this case, the aliphatic protons should be the same in 

both cases so we focused on the aromatic region (Fig 44). The obtained spectrum in this case 
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appear to be much more complicated due to the major splitting of porphyrin signals but the 

same Pc proton splitting can be observed. This splitting means that all phthalocyanines are 

equivalent and the only way that this is possible is by the double addition to both sides of 

each porphyrin as proposed in structure 53. Also, the integral value for the peaks (32 protons 

each at 8.74 ppm and 7.77 ppm) mean that effectively, four Pcs have been added 

symmetrically to the dyad 45. In the other proposed structure 57, there are two 

phthalocyanine environments, one in between the top Pc and the porphyrin and there are 

only two phthalocyanine peaks on the NMR spectrum.  

 

Figure 44. Aromatic region expansion of the 1H NMR spectrum obtained for 

bis(tripledecker) 53. 

 

4.3.3. Selective synthesis of triple deckers 

The first bis(phthalocyanate)-metal complex [SnIV(Pc)2] was reported as early as in 

1936.19 The bis(phthalocyaninato)-rare earth sandwich analogues have been known since the 

mid-1960’s,89 while the studies of bis(porphyrinato) counterparts were started in the 

1980s.90,91 Heteroleptic sandwich compounds with different porphyrinato or 

phthalocyaninato ligands were not reported until 1986.92 The first porphyrin triple decker 

complexes appeared a bit later, in 1986s.74 

Different approaches for the selective synthesis of heteroleptic 

(porphyrinato)(phthalocyaninato) lanthanides have been published earlier.52,60,75,88,93 All 

previously described methods are multistep synthetic procedures which apply one-by-one 

deck construction of the target complexes (scheme 34).  
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Scheme 34. One-by-one deck construction of triple deckers.88 

Most of the published work operate with the late lanthanide series because of the 

higher stability of the half sandwich species. This synthetic procedure includes the 

generation of the [Por]Ln(acac) precursor, which is used without further purification to 

interact with phthalonitrile to form the desired double-decker complexes. Also, mixtures of 

triple-decker complexes [Por]2[Pc]Ln2 and [Por][Pc]2Ln2 were directly prepared using the 

corresponding double deckers and the [Por]Ln(acac) precursor.92  

A recent publication describes an alternative one-pot procedure that allows the 

synthesis of heteroleptic double- and triple-decker (porphyrinato)(phthalocyaninates) of 

various lanthanides (La, Eu, Nd) starting from porphyrin, phthalonitrile and lanthanide 

acetylacetonate using a high-boiling point alcohol as solvent.80,88 The difference between all 

previously described protocols and this one-pot procedure is that the triple-decker complexes 

[Por]Ln[Pc]Ln[Por] can be obtained in a one-step procedure of prolonged reflux of 

porphyrin, phthalonitrile and Ln(acac)3 without any additional treatment of the reaction 

mixture. This method does not need generation of monoporphyrinates and avoids rise-by-

one-story formation of triple-decker complexes. The corresponding double-decker 

complexes and other triple decker structures are also present in the reaction mixture, but the 

yields of the triple-decker compounds are comparable to, and in several cases higher than 

that of double-decker ones that range from 4 % up to 65 %88,93-95 but most yields are more 

generally around 10-30 % with a few exceptions. This final methodology looks promising 

to be used for the study of the synthesis of the desired interconnected triple deckers that are 

the base of this chapter.  
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4.3.3.1. Selective synthesis of closed triple decker dyad 50 

 To synthesise the closed triple decker dyad 50, porphyrin dyad 45 and two 

equivalents of metal were refluxed in octanol under inert atmosphere followed by addition 

of one equivalent of the Pc as shown in scheme 35: 

Scheme 35. Proposed reaction procedure for the formation of closed triple decker 50. 

After completion of the reaction, the crude product mixture was concentrated under 

vacuum and then recrystallised from DCM:MeOH. The resulting dark solids were analysed 

by MALDI-tof MS (figure 45). Formation of only the closed triple decker 50 was observed 

without any formation of the open triple decker 53 (4002 m/z). Only peaks corresponding to 

1399 and 2186 m/z were observed in the crude solid mixture.  

 

Figure 45. Crude MALDI-tof MS of the reaction. 
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 Therefore, the selective synthesis of closed triple decker dyads can be successfully 

achieved by careful stoichiometric reaction of the porphyrin dyad with two equivalents of 

La(acac)3·H2O followed by addition of one equivalent of previously synthesised Pc 19. 

Analytically pure closed triple decker 50 was obtained in 86 % yield by this method. This 

yield is very high, specially comparing it with previous triple decker synthesis reported 

where the previously reported yields for the formation of this structures are between 

4-63 %.59,88,92,93,96  

 

4.3.3.2. Selective synthesis of open bis triple decker 53 

 To selectively synthesise the open bis triple decker 53, porphyrin dyad 45 and 4.2 

equivalents of metal were refluxed in octanol under an inert atmosphere followed by addition 

of an excess (10 eq) of Pc 19 as shown in scheme 44: 

 

Scheme 44: Proposed reaction procedure for the formation of the open triple decker 53. 

 When the reaction was completed, it was cooled down and precipitated with pet ether 

to collect green solids that where then checked by MALDI-tof MS.  
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Figure 47. MALDI-tof MS of the crude reaction. 

The liquids from the filtration (pet. ether/octanol) were also checked by MALDI-tof 

MS and a small amount of closed triple decker 50 was observed in the remaining octanol 

(2185 m/z). In this case, no unreacted starting material 45 (1399 m/z) was observed in the 

crude spectrum. The pure material 53 could be obtained pure after column chromatography 

in 34 % yield. This yield was lower than that obtained for the formation of triple decker 50 

due to the formation of other products, primarily the closed triple decker 50 analogue (2186 

m/z) that was also formed during the reaction conditions. On the other hand it is still higher 

than that obtained in previously reported methods. 
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4.3.3.3. Synthesis of closed triple decker analogues 57, 58 and 64. 

 It can be concluded that both open and closed triple decker dyads 50 and 53 could be 

synthesised selectively by using the right amount of metal and Pc 19 equivalents for the 

reaction. To check the reproducibility of the methodology, closed triple decker 72 was also 

synthesised from C12 porphyrin dyad 46 synthesised from 1,12-dibromoundecane using the 

same conditions previously optimised for porphyrin dyad 45.  

 

Scheme 37. Selective synthesis of closed triple decker 72. 

 The same method was followed by refluxing porphyrin dyad 46 and lanthanum 

acetylacetonate in octanol for 6 h until metallation was completed (checked by UV-vis 

spectroscopy). Then, Pc 19 was added and the mixture refluxed for another 18 h. When the 

reaction was completed, the solvent was distilled off and the crude residue obtained 

recrystallised from DCM/MeOH. The resulting dark solids were purified by column 

chromatography followed by recrystallisation to obtain the pure triple decker 72 in 62 % 

yield.  

 

Synthesis of analogues with substituted phthalocyanines 

As the method was reproducible, a series of analogues were obtained by using 

different Pcs for the formation of closed decker triple deckers. Phthalocyanines can generally 

be substituted in the peripheral positions (2,3,6,7,10,11,14,15) as well as the non-peripheral 

positions (1,4,5,8,9,12,13,16).97 By using these Pcs, simpler aromatic regions in the NMR 

spectrum were expected as either the peripheral or the non-peripheral protons were 
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eliminated and therefore the couplings between them. With this in mind, the possibility of 

the Pc to be rotating rapidly on the NMR time scale was studied by introducing bulky groups 

in the Pc and therefore, blocking the rotation by interaction between the Pc substituents and 

the porphyrin chain linker.  

 To prepare the analogues, the first choice was to introduce an alkylated Pc in the 

triple decker. Peripherally and non-peripherally substituted Pcs 55 and 56 were selected to 

synthesise the corresponding triple deckers 57 and 58 using the same previously developed 

methodology88 from C10 porphyrin dyad 45 as shown in scheme 38: 

Scheme 38. Proposed synthesis of substituted triple deckers 57 and 58. 

 Both Pcs were synthesised separately from the corresponding phthalonitriles using 

previously optimised methodologies in our group98,99 and then used for the formation of the 

corresponding triple decker derivatives.  

Several problems were observed during these studies due to the difficulties trying to 

obtain good NMR spectra for the first reaction attempts. Impure NMR spectra were obtained 

even after two consecutive purifications by column chromatography followed by 

recrystallisations. These impurities appeared despite single spot TLC and single peak 

MALDI-tof MS spectrum were obtained for the products. The first attempt to obtain pure 

samples was by optimisation of the purification process using various solvent systems for 

the column chromatography (in silica or alumina) after the reaction but the same results were 

observed in all cases. Slow decomposition of the material was then observed in the 
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recrystallisation vials for the substituted triple deckers when chloroform was used as solvent. 

It was then concluded that the triple deckers with substituted Pc 56 were not stable enough 

in the used NMR solvents (CDCl3). To obtain good NMR spectrum of the compounds, the 

use of deuterated dichloromethane treated before with molecular sieves was necessary. 

Under this conditions, NMR spectrums of the triple deckers could be successfully obtained 

after purification of the crude mixtures by column chromatography in silica gel followed by 

recrystallisation.   

 

Synthesis of closed triple decker 57 

 

Scheme 39. Synthesis of peripheral octaoctylsubstituted triple decker 57. 

 The closed triple decker 57 was obtained after the standard one pot two step 

procedure for the formation of triple deckers. Then, the completion of the reaction was 

checked by MALDI-tof MS analysis of the crude and the expected peak for the product was 

observed at 3085.4 m/z. In this case, 1H NMR spectrum could be obtained using CD2Cl2 as 

solvent (figure 48).  
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Figure 48. 1H NMR spectrum obtained for closed decker triple decker 57. 

In the case of triple decker 57, the phthalocyanine was peripherally substituted and 

therefore only one set of signals for the phthalocyanine aromatic protons was observed at 

9.1 ppm. On the other hand, the splitting of the porphyrin aromatic protons are on the same 

regions which is in accordance with the formation of the closed triple decker analogue. This 

obtained 1H NMR spectrum was then compared with the one obtained for the previous triple 

decker 50 where the Pc was not substituted. 

 

Figure 49. 1H NMR spectrum obtained for closed decker triple decker 57 (above) 

compared with that of closed triple decker 50 (below). 
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For this substituted analogue, all the Pc aromatic peaks are expected to be singlets as 

the peripheral positions are functionalized with alkyl chains. If phthalocyanine is rapidly 

rotating, only a singlet would appear as all the aromatic positions (Ha) should be equivalent 

in the NMR time scale as represented in figure 50a. However, that is not what was observed 

in the spectrum for the aromatic protons of the Pc around 9.1 ppm. What can be observed on 

the other hand is a group of four singlets, as could be expected for a fixed Pc not rotating 

rapidly on the NMR time scale (H1-4 in Fig 50b). Therefore in the case of triple decker 57, 

the phthalocyanine is not rotating in the NMR time scale. 

 

Figure 50. Representation of the peripherally substituted Pc in triple decker 57 view from 

above with the porphyrins omitted for clarity. The dotted line represents a plane of 

symmetry. 
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Synthesis of closed triple decker 58 

 

Scheme 40. Proposed synthesis of triple decker 58.  

 The same methodology of one pot, two step reflux in octanol was followed using 

pre-synthesised Pc 56.98 To do so, the porphyrin dyad and lanthanum acetylacetonate were 

refluxed in octanol followed by addition of Pc 56. MALDI-tof MS was checked after the 

reaction and the expected peak at 3085.40 m/z was observed. The solvent was distilled off 

and the crude recrystallised from DCM/MeOH. The resulting solid was purified by column 

chromatography and recrystallisation to recover a dark-green fraction containing the product 

as checked by MALDI-tof MS (3085.4 m/z) as well as single spot in the TLC. Then, the 

NMR spectrum of the sample was performed but it was significantly different from the 

previous triple deckers 50 or 57 (figure 51). 
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Figure 51. 1H NMR spectrum obtained for the closed decker triple decker 58 (top) and 

expansion of the aromatic region (middle) and previous triple decker 50 (bottom). 

As it can be observed in the spectrum, the typical signals for the porphyrin peaks that 

were observed previously for other closed triple deckers at around 10 ppm from the oiPhH 

were no longer present in the spectrum for this analogue 58. However, some of the other 

signals typical of closed triple deckers were present, like the signals at around 6.5 - 7.0 ppm 

that corresponds to the mPhH in the triple decker 50. This observations made us think that 

we were looking to some other analogue or processes happening with this particular 

porphyrin-Pc complex and it needed to be analysed deeply. 
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Analysis and comparison of closed triple deckers 57 and 58 

Further information on the structure of 58 can be obtained by comparing the UV-vis 

spectra for the obtained complexes. If the UV-vis spectrum for porphyrins and Pcs are 

compared (figure 52), it can be concluded that each of them absorbs in very different regions 

of the UV-vis as shown in figure 52. 

 

  

Figure 52. UV-vis of porphyrin dyad 45 and Pcs 55 and 56. 

Therefore, it can be expected that in double decker complexes, for example, both 

absorptions should be present in the complex. This can be observed for [TPP]La[Pc] double 

decker 32 (figure 53) where a sharp absorption at around 400 cm-1 is present along with 

another at around 600-700 cm-1 and a final absorption at around 300 cm-1, typical for this 

kind of double decker complexes.53,100 
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Figure 53. UV-vis of porphyrin heteroleptic double decker 32. 

With this in mind, the spectrum obtained for the multidecker structures 50, 53, 57 

and 58 can be further interrogated. Then, when looking at the UV-vis spectra of 

unsubstituted closed triple decker 50 (figure 54), a sharp absorption at the porphyrin region 

of 400 cm-1 can be observed along with another broad absorption at around 300 cm-1 typical 

for sandwich-like complexes. In this case, no absorption was observed in the phthalocyanine 

region between 600 and 700 cm-1. This data also fitted with the expected spectrum observed 

for other structures of this kind where the Pc is located between two porphyrins 

([Por]M[Pc]M[Por]).75,93 The same type of spectrum was obtained for the triple decker 

analogue 57 (figure 54). In this spectrum, the sharp porphyrin absorption is present at around 

400 cm-1 as well as the absorption typical for sandwich-like structures at 350 cm-1 indicating 

that the structure is also a closed triple decker. 

Finally, the non-peripherally substituted closed triple decker analogue 58 (Fig 54) 

showed a particular spectrum. The main absorption was still at around 400 cm-1, typical for 

porphyrins as well as triple deckers and also the absorption at around 300 cm-1 corresponding 

to sandwich-like structures but there was also the typical absorption of Pcs at around 600-

700 cm-1 that is also present in double deckers.75,101 It can be concluded that the absorption 

spectrum of 58 doesn’t correspond to a closed triple decker and is more alike to those of 

double deckers (figure 53). 
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Figure 54. UV-vis of triple deckers 50, 57 and 58. 

That observations for compound 58 (single spot on TLC as well as single and sharp 

MALDI-tof MS signal), could be explained if the compound had various structure 

arrangements and what is observed is the average of absorption of those arrangements. If the 

compound switch from one arrangement to another fast enough in the NMR time scale, that 

might explain why the NMR spectrum signals were not as expected for closed triple deckers 

or double deckers. That process could be the Pc switching from one of the porphyrins to the 

other to form an equilibrium between two different double deckers like it is proposed on the 

next scheme for structure of 58. 

0

0.2

0.4

0.6

0.8

1

1.2

300 400 500 600 700 800 900

UV-vis of triple deckers

triple decker 50 triple decker 57 triple decker 58



CHAPTER 4. Results and discussion   
 

89 
 

 

58                                                                                             58 

Scheme 41. Representation of the opening/closing process. Bond lengths and angles not 

representative for clarity. 

 This process could be supported due to the steric effects that this particular Pc has.102 

It can be observed in the X-Ray analysis for a similar metallated phthalocyanine98 (figure 

55), that the chains cannot fit the same plane of the Pc and therefore some of the side chains 

appear to be perpendicular to the Pc plane. This observed steric repulsion might be 

responsible or at least have some effect in how difficult it is for the triple decker to be formed.  

 

Figure 55. Previously reported X-ray structure for a metallated non-peripherally substituted 

phthalocyanine.98 

R = C8H17 
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This theory could be interrogated by the study of the formation of a non-peripherally 

substituted heteroleptic phthalocyanine porphyrin double decker 60 [C8Pc]La[TPP] 

(scheme 42). The synthesis of this complex was attempted using both previously studied 

methods, addition of the already formed Pc 56 over the freshly metallated porphyrin and/or 

formation of the Pc in situ over the metallated porphyrin 31 using phthalonitrile 61 and DBU 

as catalyst as represented in the next scheme. 

Scheme 42. Reaction pathway for the formation of 60 [C8pC]La[TPP] complex via Pc 56 

or phthalonitrile 61.  

In both cases the heteroleptic double decker 60 formation was checked by MALDI-

tof MS (figure 56) after completion and work-up. The same results were obtained in all cases 

and formation of the double decker (m/z = 2161) was not observed in any case.  

 

Figure 56. MALDI-tof MS of the crude reaction for the formation of double decker 60 via 

Pc 56. 
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 In this spectrum different compounds were observed with relative masses 

corresponding to: TPP 3 (615.5 m/z), La[TPP] 31 (751 m/z), La[TPP]2 62 (1366 m/z), 

La2[TPP]3 63 (2116 m/z) and other peak with a relative mass of 1044 m/z that could not be 

assigned. No peak corresponding to the desired heteroleptic double decker 60 of 2161 m/z 

could be observed.  

 This result demonstrated that the non-peripherally substituted Pc 56 was not a good 

precursor for the formation of double deckers or triple deckers as after subjecting the 

metallated porphyrin to the double decker formation methods, the only sandwich-like 

structures that could be observed at the end were only porphyrin multideckers and formation 

of heteroleptic/homoleptic deckers containing the phthalocyanine were not observed. 

 

Synthesis of closed triple decker 64 

Another closed triple decker analogue was synthesised in order to see if the same 

results could be obtained with a different peripherally functionalised phthalocyanine. The 

triple decker was designed to have a peripherally substituted functionality that should help 

us further interrogate the ability of the internal porphyrin to rotate inside of the system. This 

Pc was then required to have bulky substituents in the peripheral positions with relative size 

between the non-substituted Pc 19 and the octaoctyl substituted Pc 55. The selected 

phthalocyanine was dimethyldioxolane Pc 65. This phthalocyanine has the perfect size and 

also, the dimethyldioxolane groups are suitable for a 1H NMR study of the possible complex 

formed. 

 

Scheme 43. Synthesis of phthalocyanine 65. 
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Phthalocyanine 65 was obtained by heating phthalonitrile 66 and a catalytic amount 

of DBU in refluxing pentanol. When the reaction was completed, the phthalocyanine was 

selectively precipitated with MeOH and recrystallised from the THF/MeOH mixture. It was 

then used for the formation of the correspondent triple decker 64 as shown in the next 

scheme: 

 

Scheme 44. Synthesis of triple decker 64. 

 The same standard procedure of one pot, two steps of reflux in octanol was followed 

and after distillation of the solvent and precipitation of the crude residue with MeOH, the 

obtained solid was checked by MALDI-tof MS (figure 57). The desired peak corresponding 

to triple decker 64 at 2476.39 m/z was observed. Then, the crude solids were separated using 

silica gel chromatography followed by recrystallisation to collect the pure product as a brown 

solid in a 76 % yield.  

 

Fig 57. MALDI-tof MS of the crude mixture of 64 after concentration. 
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 NMR spectrum of the pure product was successfully obtained in CD2Cl2 (figure 58) 

and the expected signals were observed, as compared with previous triple deckers. We 

observe the peaks corresponding to the Pc at around 8.6 ppm for the aromatic phthalocyanine 

protons as well as the signals corresponding to the dimethyldioxolane groups that are no 

longer symmetrical at around 2.14 ppm. This observed pattern matched with a blocked 

rotation of the Pc inside of the triple decker.  

 

 

Fig 58. NMR spectrum obtained for 64 in d-DCM and expansion of the aromatic region 

and methyl peaks at around 2.14 ppm. 
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4.3.3.4. Rotation studies 

Using the new optimised methodology, various closed triple deckers were 

synthesised (figure 59). This triple deckers, have different rotation properties as observed in 

the NMR spectra for the Pc aromatic peaks.  

Figure 59. Different closed triple deckers synthesised. 

We assume the central Pc can be observed rotating in unsubstituted triple decker 50 

and that rotation to be completely blocked in peripherally substituted triple decker 57. 

Finally triple decker 64 shows blocked rotation of the phthalocyanine and the aromatic 

signals appeared to be four broad singlets. This intermediate compound was then used to 

study if temperature changes can be used in order to modify the rotation of the complex. It 

could be expected that the rotation could be faster at high temperatures and slower at lower 

temperatures. According to this, the aromatic signals of the Pc could be expected to sharpen-

up at lower temperatures as the system stops or slows down the rotation and to broaden as 

the temperature increase causing the rotation to be faster (figure 60). The coalesce 

temperature is defined as the temperature at which the appearance of the spectrum changes 

from that of two separate peaks to that of a single, flat topped peak.103 Therefore by 

performing this study the coalescence temperature for the rotation of the Pc in the system 

was expected to be determined. 
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Figure 60. Proton resonance as a function of temperature.103 

The first studies increased the temperature of the NMR experiments.104 The boiling 

point of dichloromethane is relatively low so the solvent was exchanged to d-toluene and 

various 1H NMR spectrums were collected at temperatures ranging from 300 K to 375 K 

(figure 63). By increasing the temperature, it was expected that the Pc rotation would be 

faster and then, the aromatic protons for the Pc should become a broad singlet at the 

coalescence temperature. The same process should then be expected for the 

dimethyldioxolane protons (the two singlets would coalesce). 
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In fact, when the temperature is increased, the signals for the phthalocyanine 

aromatic protons and the dioxolane methyl protons remains sharp. Temperature-related 

processes were observed but those changes did not occur in the Pc region of the spectrum as 

seen in the expansion of the aromatic region of the spectrum (figure 64). It was observed 

that the aromatic Pc peaks that appeared at around 9.0 ppm remained sharp at 300 K and 375 

K. No coalescence was observed for the given peaks, only slight shifting regarding to 

temperature changes. On the other hand, beginning of coalescence procedures were observed 

for the phenyl protons of the porphyrin rings at around 10.2, 8.4, 7.6 and 6.7 ppm (oiPhH, 

ooPhH, miPhH and moPhH respectively) as they became broad signals. Unfortunately the 

coalescence temperature could not be reached as it was above the boiling point of the solvent 

used in the NMR spectrum (383.83 K). 
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4.3.4. Conclusions 

The synthesis of porphyrin dyad double decker 49 was not possible using the simple 

analogues due to the preferable formation of triple deckers 50 and 53 instead. This process, 

explain the high complexity of the reactions that where performed with the multiporphyrin 

arrays during the previous chapter as other different complex triple deckers could have been 

formed instead using the same reaction conditions. On the other hand, the triple deckers 

formed under this chapter were of high interest as they are molecular machines by 

themselves and therefore were studied in more depth. Synthesis of various analogues of the 

closed triple decker 50, 53, 57 and 64 were possible by the refinement of the methodology 

for synthesizing the triple deckers. This method allowed the synthesis of triple deckers 

selectively without formation of other side products, as occurred in previously developed 

methodologies.88,94 This lack of side products also produced the triple deckers in 

unprecedented high yields that are in the range of 76-96 % yield, allowing us to design 

different triple decker analogues selectively and in reasonable amounts for future analysis. 

The rotation properties of closed triple deckers was studied further by the design and 

careful analysis of various triple decker analogues with different steric hindrance. The 

analogues could be synthesised with different substituted Pcs. The analogues where the Pcs 

are substituted in the non-peripheral positions seem to behave differently to the 

peripherically substituted ones and the characterisation was much more complicated. 

Substituted triple decker analogues allowed us to have some different Pcs embedded in 

between porphyrins. Some phthalocyanines shown rotation properties which could be 

blocked by the substitution of the Pc for another one with bulkier substituents on the 

peripheral positions, allowing us to have different triple deckers with and without rotating 

units allowing us to have some control by design. The modification of the rotation of the Pc 

with variations of temperature seems tricky and more analogues need to be designed to find 

the limits between rotation and no-rotation in the NMR time scale. 

Indeed, although a single compound was isolated which has a mass corresponding to 

the triple decker, spectroscopic evidence suggests a rapidly equilibrating structure exists. 
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4.4. Synthesis of magnetic closed triple deckers 

 Lanthanides are metals with lots of electrons and the first row containing occupied f 

orbitals. The magnetic properties of lanthanides are currently of great interest.105-107 In 

particular, metals with high magnetic properties are being extensively studied because of 

their possible applications in the field of single molecule magnets (SMMs).105 This provides 

the metals with high magnetic susceptibilities which are the origin of their magnetic 

behaviour. Several experimental values of magnetic susceptibilities have been obtained for 

lanthanides.108-110 Some theoretical models for the simple calculation of magnetic 

susceptibilities have been also reported.106 All this information shows that the middle-late 

lanthanides, dysprosium to erbium, are the lanthanides with the highest magnetic 

susceptibilities (figure 65).106  

 

Figure 65. Magnetic susceptibility of Ln3+ ions (with the atomic numbers) at room 

temperature.106 

In particular, triple decker structures with magnetic metals such as Dy or Y, show 

the most interesting magnetic properties as reported by J. Jiang (see figure 66).105 During 

their work, some triple deckers were synthesised and their structure fully analysed by X-Ray 

crystallography.59,95 Also their magnetic properties appear to be angle-dependant which is a 

very interesting characteristic as the previously synthesised closed triple deckers developed 

during this thesis appear to be completely overlapped, having a different angle θ. This 
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overlapping is a really unique structure observed for triple deckers which could lead to 

unique characteristics.  

 

Figure 66. Molecular structure of magnetic triple deckers reported by J. Jiang.105 

During this work, different closed triple deckers containing highly magnetic 

lanthanides were studied. The synthesis of triple deckers were performed from previously 

linked porphyrin dyads as developed in previous chapters. Because of availability, high 

magnetic susceptibility and previously optimised synthesis, closed triple deckers of 

dysprosium 67 were selected as targets during this work.  

 

Figure 67. Targeted Dy triple decker 67. 
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Characterisation of this complex was expected to be challenging as its magnetic 

properties make the 1H-NMR spectra analysis difficult due to the lanthanide induced 

shifts.107 This effect was firstly reported by Hinckley in 1969.111 It appears as a substantial 

chemical shift caused by lewis acid complexation of lanthanide atoms with other molecules. 

The effects are consistent with the presence of large shielding and deshielding cones around 

the lanthanide atom caused by unpaired electrons in the f shell of the lanthanide.112 For 

example, europium complexes produce downfield shifts while praseodymium complexes 

produce upfield shifts.112 Such metals were widely used as shift reagents for the 

determination of enantiomeric purity during the 1970s and 1980s.113  

A few 1H-NMR spectrums of triple decker structures of dysprosium were previously 

reported in the range between 10 ppm to -70 ppm (figure 68) and same characteristics should 

therefore be expected for structure 67. It can be observed in the spectra that there are some 

highly upfield shifted phthalocyanine peaks (i and ii) due to the effect of the magnetic metals. 

 

Figure 68. Various 1H NMR spectrum expansions of various triple deckers.105 

 

  

M-M’ = Dy-Dy 

M-M’ = Y-Dy 

M-M’ = Dy-Y 
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4.4.1 Synthesis of dysprosium closed triple decker 

 Following the general procedure for the synthesis of closed triple deckers described 

in the previous chapter, the synthesis of dysprosium closed triple decker 67 was attempted 

using C10 porphyrin dyad 45 as starting material as represented below. 

Scheme 45. Proposed synthesis of dysprosium closed triple decker 67. 

The reaction was performed by refluxing porphyrin dyad 45 and Dy(acac)3˖H2O for 6 h in 

octanol. After the metallation was completed, Pc 19 was added and the mixture refluxed 

overnight. Then, the solvent was eliminated by distillation and the resulting crude solid 

analysed by MALDI-tof MS observing the formation of various high mass structures on the 

expected range.  

 

Figure 69. Expansion of the MALDI-tof MS obtained.  

The relative masses observed corresponded to the addition of one dysprosium metal 

and one phthalocyanine (2075.51 m/z), two dysprosium metals and one phthalocyanine 

(2235.82 m/z) and finally two dysprosium metals and two phthalocyanines (2748.99 m/z). 

These additions could match different arrangements with the same relative masses.  
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 The crude mixture was then separated by silica gel column chromatography using 

THF/Pet ether as eluent. Two different fractions were collected but neither appeared to be 

pure by TLC analysis, so both were mixed together and separated on neutral alumina column 

chromatography. After successful separation of both fractions, they were analysed by 

MALDI-tof MS and 1H NMR spectroscopy. The first fraction corresponded to a relative 

mass of 2074.29 m/z and the second fraction corresponded to a relative mass of 2235.85 

m/z. No other compound could be collected from the column. The fractions matched with 

the addition of one metal and one phthalocyanine to the starting material and two metals and 

one phthalocyanine respectively. The NMR spectra obtained for this first fraction appeared 

to be an extremely complicated NMR spectrum on the range of 10 to -75 ppm as shown on 

the next figure. 
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 The highly upfield shifted 1H NMR spectra obtained was in agreement with previous 

reports of porphyrin/phthalocyanine dysprosium complexes (see figure 68).105 This could 

indicate that a sandwich-like structure of dysprosium was formed. The decker structure could 

be a double or a triple decker but, according to the relative mass obtained (2074.29 m/z), it 

can be concluded that only one metal and one phthalocyanine were added to the porphyrin 

dyad. Therefore, only a double decker structure was formed and the obtained product must 

be extended double decker 68.  

 

Figure 71. Proposed structure for extended double decker 68. 

In the 1H NMR spectrum, the region between 9 and 7 ppm of the spectrum 

corresponds to the free porphyrin part of the molecule, the same region as the highly shifted 

peaks corresponding to the double decker which makes the peak assignment difficult. 

Another region to be interrogated are the aliphatic protons interconnecting the porphyrins. 

These peaks were seen between 4.5 and -4.0 ppm also in accordance with the formation of 

the double decker in one side of the system. It should be expected that the CH2 protons are 

all different and highly shifted the closer they are to the double decker.  

Scheme 46. Proposed reaction scheme. 

 On the other hand, the second fraction from the reaction of relative mass 

2235.82 m/z, corresponded to the desired dysprosium triple decker 67. This triple decker 67 

was further purified by column chromatography but an analytically pure sample could not 
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be obtained. In all attempts, traces of porphyrin dyad 45 and extended double decker 68 were 

observed as fractions, even when they were not observed in the TLC analysis before the 

separation process. This observation could prove the relative instability of this dysprosium 

triple decker as it could not be obtained as a pure material by column chromatography. 

 

4.4.2 Selective synthesis of mixed metal triple deckers 

 This dysprosium double decker complex 68 is the perfect starting material for the 

selective synthesis of triple deckers with mixed metallic centres. This, allows the 

development of a synthesis by design were the second metal can be selectively inserted. The 

proposed synthetic strategy involves the formation of the open double decker dyad 68 

followed by a second metal insertion forming the desired mixed triple decker 69 selectively, 

as represented on the next scheme.  

 

Scheme 47. General procedure for the selective synthesis of mixed metal triple decker 69. 

 A test reaction was performed by refluxing the previously synthesised double decker 

dyad 68 and lanthanum acetylacetonate hydrate for 24 h. Then, the solvent was distilled and 

the crude solid recrystallized from DCM/MeOH. The recovered brown solids were checked 

by MALDI-tof MS (figure 72).  
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Fig 72. MALDI-tof MS for the crude mixture for the formation of mixed triple decker 69. 

By analysis of the obtained spectrum, it could be concluded that the desired triple 

decker (Exact mass = 2210.58 g/mol expected, and m/z = 2212.47 observed) was 

successfully formed. It can also be observed the formation of another compound of 2188.28 

m/z that matched with the bislanthanide triple decker 50. After passing the crude solids 

through a silica gel pad using DCM as eluent, the main brown fraction was collected and 

TLC analysis showed a single spot. The same MALDI-tof MS was then obtained for this 

fraction and 1H NMR spectrum (figure 73) was then processed observing a mixture of both 

triple deckers LaDyTD 69 and LaLaTD 50.  
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 Further purification attempts by column chromatography or recrystallizations were 

unsuccessful and both triple deckers could not be separated. The reaction was then tried in a 

bigger scale to try to separate the mixture of triple deckers by recrystallisation or prep-TLC 

but all attempts were unsuccessful.  

 The next attempt tried was the one pot two steps reaction for the selective formation 

of mixed triple decker 69 to check if the purification of the intermediate extended 

dysprosium double decker 68 is avoidable and also to check if the synthesis of the mixed 

triple deckers can be reproduced.   

Scheme 48. Proposed one pot two step synthesis of mixed triple decker 69. 

 In this case, porphyrin dyad 45 was subjected to metallation with 1 eq of dysprosium 

acetylacetonate in refluxing octanol for 6 h. Then, Pc 19 was added to the mixture and the 

mixture refluxed overnight to form the intermediate 68 in situ. After the overnight reaction, 

lanthanum acetylacetonate was added to the reaction and everything refluxed for further 

24 h. When the reaction was completed, the solvent was distilled and the resultant solids 

recrystallised. MALDI-tof MS of the obtained brown solids was analysed and a complex 

mixture was observed, the LaLaTD 50 being the main peak. A complex mixture was also 

observed by TLC analysis so this approach is not useful as it resulted in a more complex 

mixture than the step-by-step procedure previously developed.  

 During this reaction, formation of lanthanum triple decker 50 was observed in all 

cases, even when starting from the pure intermediate dysprosium extended double decker 

68. This result showed that the dysprosium metal might be exchanged by a lanthanum metal 

during the reaction process. This observation can be tested by a simple reaction in which the 
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obtained mixture of triple deckers 50 and 69 obtained previously will be treated with 

lanthanum acetylacetonate metal under the standard reaction conditions of refluxing octanol. 

During this process, dysprosium metal is expected to be exchanged by lanthanum, the 

disappearance of the peak corresponding to DyLaTD 69 in the MALDI-tof MS analysis 

should disappear and mainly the peak corresponding to LaLaTD 50 should be observed as 

represented in the next scheme. 

 

Scheme. 49. Possible side reaction of substitution of dysprosium for lanthanum. 

 A mixture of triple deckers 69 and 50 was refluxed with an excess of lanthanum 

acetylacetonate in octanol. A reference of the mixture of triple deckers was checked by 

taking an aliquot from the reaction mixture before the addition of the lanthanum metal 

complex. Another aliquot of the same volume was taken after 24 h reflux. This way, all the 

parameters were maintained constant during the MALDI-tof MS analysis.  
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Figure 74. MALDI-tof MS of the aliquots before (above) and after (below) 24 h reflux. 

 With this simple test, it could be observed that the peak corresponding to the mixed 

TD 69 of 2211.10 m/z was no longer present and only the peak corresponding to the TD 50 

of 2186.95 m/z was observed in the crude MALDI-tof MS after the reaction. This result 

indicated that the dysprosium ion was displaced by lanthanum ions under the standard 

reaction conditions. Therefore, selective synthesis could not be achieved in a stepwise 

manner for this particular set of triple deckers. 

 

Synthesis of mixed metal triple deckers from C12 porphyrin dyad 71 

 The next study regards the dependence of the chain length interconnecting the 

porphyrins in the formation of mixed metal triple decker complexes. This feature was tested 

by performing the same reaction conditions previously developed but using a longer C12 

porphyrin dyad 46 as starting material. Dysprosium double decker extended dyad 70 was 
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first synthesised followed by reaction with the corresponding lanthanum metal to form the 

desired triple decker as represented in the next scheme.  

 

Scheme 50. Proposed synthesis of mixed triple decker 71 from the C12 dyad 46. 

 The first step consisted in metallation of C12 porphyrin dyad 46 using dysprosium 

acetylacetonate metal in 6 h of refluxing octanol. Then, phthalocyanine 19 was added and 

everything refluxed for 18 h. After the reaction, the crude mixture was concentrated to 

dryness and recrystallised from DCM/hexane. The filtered dark solids containing the desired 

double decker 70 were purified by several column chromatography and recrystallizations 

but analytically pure material could not be obtained. It was then used without further 

purifications for the next step (single spot in TLC).  

 Then, partially purified 70 was mixed with ≈1 eq of lanthanum acetylacetonate and 

refluxed in octanol for 18 h. After precipitation of the crude mixture and purification by 

column chromatography, the product was analysed by TLC to appear as a single brown spot. 

After performing a MALDI-tof MS of the product (figure 75), it appeared again as a mixture 

of two triple deckers, one of them with two lanthanum metals 72 (m/z = 2215. 47) and the 

other one with mixed metals 71 (m/z = 2239.68), one dysprosium and one lanthanum as it 

appeared for the C10 analogues.  



CHAPTER 4. Results and discussion   
 

114 
 

 

Figure 75. MALDI-tof MS of the crude mixture of formation of triple decker 71. 

 Then, the mixture of triple deckers 71 (La, Dy) and 72 (La, La) was treated with an 

excess of lanthanum acetylacetonate and refluxed for 24 h. The reaction crude obtained was 

checked by MALDI-tof MS to check if the dysprosium metal was exchanged for lanthanum.  

 

Figure 76. MALDI-tof MS of the crude mixture of metal exchange test. 

 In this case, the dysprosium was also exchanged for a lanthanum ion in the mixed 

metal triple decker complex 71 as it can be observed by the MALDI-tof MS analysis as the 

peak corresponding to 2239.68 m/z could not be observed anymore in the spectrum.  

 

  

0

10

20

30

40

50

60

70

80

90

100

%Int.

2020 2040 2060 2080 2100 2120 2140 2160 2180 2200 2220 2240 2260 2280 2300 2320 2340 2360 2380 2400 2420 2440 2460

m/z

6.5 mV[sum= 829 mV]  Profiles 1-128 Smooth Av 5 -Baseline 15

T3.1 Cyto C 5pmol Lin L137 Res 1224_

 

Data: <Untitled>.B22[c] 21 Oct 2013 14:20 Cal: matt 

Shimadzu Biotech Axima CFR 2.8.4.20081127: Mode reflectron, Power: 114, P.Ext. @ 2215 (bin 121)

2215.47

2217.29

2214.37

2239.68

2244.722223.222059.68 2388.08 2450.832142.37 2283.31 2419.502009.39 2036.07 2178.36 2346.182086.83

0

10

20

30

40

50

60

70

80

90

100

%Int.

2050 2100 2150 2200 2250 2300 2350 2400 2450

m/z

2.3 mV[sum= 199 mV]  Profiles 1-88 Smooth Av 5 -Baseline 15

T3.1 Cyto C 5pmol Lin L137 Res 1224_

 

Data: <Untitled>.C22[c] 21 Oct 2013 14:22 Cal: matt 

Shimadzu Biotech Axima CFR 2.8.4.20081127: Mode reflectron, Power: 114, P.Ext. @ 2215 (bin 121)

2215.47

2216.47

2217.47

2214.37

2218.38

2231.35 2489.022194.702036.64 2274.442084.26 2125.56 2161.41 2395.902057.92 2306.68 2457.64



CHAPTER 4. Results and discussion   
 

115 
 

4.4.3 Conclusions 

 Triple deckers of dysprosium could not be synthesised using the developed procedure 

for the selective formation of linked closed triple deckers. Instead, extended double decker 

70 was obtained. This extended double decker, was tested as a starting material for the 

selective synthesis of triple deckers containing two different lanthanides. The mixed metal 

triple deckers can be synthesised from the extended double deckers but metal exchange was 

then observed leading to preferred formation of lanthanum triple deckers. 

The same selective synthesis of different metal triple deckers was then attempted 

using porphyrin dyads with a longer linker leading to exactly the same results. Even though 

the selective synthesis of mixed metal triple deckers was proven to be possible and 

reproducible, the metal exchange process could not be eliminated by expansion of the length 

of the linking chain.  
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4.5. Synthesis of multidecker structures 

 Expansion of the triple decker system was attempted for the formation of more 

complex structures. Only a few multidecker structures based on porphyrins and/or 

phthalocyanines with more than three stacked chromophores are known to date, mostly 

reported by J. Jianzhuang (figure 77).114-116  

 

Figure 77. Phthalocyanine quadruple and quintuple deckers structure reported by 

J. Jianzhuang.115,117 

 During their work, a series of quadruple117 and quintuple115 deckers were synthesised 

by combining phthalocyanine lanthanide double deckers and cadmium. These complexes 

were obtained using a one pot reaction procedure to obtain the desired quadruple and 

quintuple deckers in yields from 14 % to 63 %. In both cases, neutral complexes were 

obtained using a combination of Ln3+ and Cd2+ ions.  

During previous work, several linked triple deckers were reported. The next step 

forward consists in extending the stack of chromophores in order to obtain higher linked 

structures such as pentadecker 74, represented in scheme 51. Unlike the derivatives 

developed by J. Jianzhuang our high order stacks are expected to be robust and stable.  
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Scheme. 51 General scheme showing the formation of pentadecker 74. 

Synthesising such complex structures is not expected to be straightforward but the 

same step by step synthesis was performed as used for the formation of triple deckers with 

appropriate modifications. For the triple decker formation, the starting material used was a 

porphyrin dyad (C10 dyad 45 and C12 dyad 46) and, therefore, for the formation of 

pentadeckers, a trans-porphyrin triad 73 was selected as starting material.  

The first selected synthesis was to subject the porphyrin triads to the previously 

developed procedure for the formation of triple deckers to try to observe if such compounds 

are as suitable for the formation of deckers as porphyrin dyads are. With this synthesis in 

mind, a series of triple deckers should be expected as the most likely outcome for the reaction 

(Scheme 52). Analysis of the outcome from this known methodology should give some 

insight in the reactivity of these extended deckers as well as the type of complexes that are 

preferred.  
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Scheme. 52. Expected synthesis of expanded decker 75 from porphyrin triad 73. 

 

4.5.1. Synthesis of porphyrin triad 73 

There are many possible synthetic routes that can be followed in order to synthesise 

trans-porphyrin triad 73. The selected synthesis involves the same reaction conditions used 

for the synthesis of porphyrin dyads using unsymmetrical trans-porphyrin 80 as starting 

material (Scheme 53). This is a straightforward procedure that should allow the synthesis of 

porphyrin triads in large scale for the synthesis of multidecker structures. 

 

Scheme 53. Proposed synthetic pathway for the synthesis of porphyrin triad 73. 



CHAPTER 4. Results and discussion   
 

119 
 

Obtaining trans-porphyrin 73 in reasonable scale will be crucial for the synthesis of 

porphyrin triads. Trans-porphyrins cannot be efficiently obtained by the statistical synthesis 

of porphyrins reported by Adler42 due to the difficulty in the purification of the isomers that 

are formed under these conditions. Therefore, the synthesis of these starting materials was 

performed following previously published methodologies by Lindsey.43,118,119 Two different 

starting materials and routes can be selected for the formation of the desired 

5,15-p-hydroxyphenyl-10,20-phenylporphyrin 80 (trans-TPP(OH)2) as represented in 

scheme 54. 

 

Scheme 54. Proposed synthesis of trans-porphyrin 80. 

 This trans-hydroxyporphyrin 80 provides the substitution pattern that can be used 

for the construction of the desired porphyrin triad 73. 
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4.5.1.1. Synthesis of dipyrromethanes 

 Trans-Substituted porphyrins are key structural components found in a wide range 

of model systems in biomimetic and materials chemistry.4,34,36 Synthetic trans-patterned 

porphyrins offer significant attractions compared to that of β-substituted porphyrins. This is 

due to the rectilinear arrangement of substituents and potential to be formed from pyrrole 

and simple aldehydes. For this reasons, there have been many previous different attempts to 

provide a general, rational approach for the formation of porphyrins with up to four different 

meso-substituents.43,120-124 During the past 20 years, Lindsey’s group have achieved some 

very important advances into the rational synthesis of dipyrromethanes and trans-porphyrins 

that has relied on a number of advances including: 

 Development of simple yet efficient routes to dipyrromethanes, and other related 

derivatives. 

 Development of mild reaction conditions for the synthesis of porphyrins allowing 

the use of a broad scope of substituents. 

 Identification of acid catalysts and reaction conditions for condensations of 

pyrromethane species without accompanying acidolysis (which underlies 

scrambling and formation of a mixture of porphyrin products (scheme 55). 

 Selection and refinement of synthetic methods to increase yields and to limit or 

avoid use of chromatography, thereby achieving scalability to multigram levels. 

 

Scheme 55. Representation of a general scrambling process.118 
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5-Substituted dipyrromethanes 76 and 78 were the selected precursors for the 

synthesis of trans-substituted porphyrin 80. Several one-flask methods were reported for the 

synthesis of 5-substituted dipyrromethanes by the condensation of an aldehyde and pyrrole 

using various combinations of acids and solvents.120,121,123-126 More importantly, Lindsey 

previously reported an optimised one-flask synthesis of dipyrromethanes in which an 

aldehyde is dissolved in a 40-fold excess of pyrrole with a catalytic amount of acid at room 

temperature in the absence of any other solvent (see scheme 57).119,126 This method afforded 

good yields of several 5-substituted dipyrromethanes with many types of functional groups.  

During the following studies, synthesis of various dipyrromethanes and 

methodologies were approached. Two routes were selected, the first one reacting 

dipyrromethane 76 and p-hydroxybenzaldehyde 14 and the second one, using 

dipyrromethane 78 and benzaldehyde 2. Finally, if any problem is encountered, methoxy 

protected trans-porphyrin 79 can be synthesised via condensation of benzaldehydes 2 or 9 

and dipyrromethanes 77 or 76 respectively followed by standard deprotection with BBr3 to 

obtain trans-porphyrin 80 as represented in the next scheme. 

 

Scheme 56. Possible synthetic routes for the synthesis of trans-porphyrin 80. 

For the synthesis of dipyrromethanes 76-78, a modified version of the procedure 

developed by Lindsey126 was performed by stirring a mixture of previously distilled and 

degassed pyrrole (40-fold excess) and the desired 4-substituted benzaldehyde with a 10 % 

TFA as a catalyst at room temperature for 10 min (scheme 57). 
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Scheme 57: general synthesis of phenyldipyrromethanes 76-78. 

 In our case, direct distillation of the crude mixture could not be performed in 

multigram scales due to the lack of necessary equipment needed according to literature 

(kugelrohr distillation system for bulky samples, figure 78a). Therefore, only small scale 

reactions could be purified by direct distillation using the kugelrohr system pictured in figure 

78b.  

a) b)  

Figure 78. Kugelrohr distillation systems: a) for bulky samples b) for small samples. 

As a general procedure, when the 10 min reaction was completed, it was quenched 

with NaOH and ethyl acetate was added. The organics were washed with water and dried 

(Na2SO4), and the solvent removed under vacuum to afford an oil. This oil could be purified 

by direct distillation or column chromatography followed by recrystallisations depending on 

the amount obtained. The desired dipyrromethanes 77 and 78 could be easily synthesised 

using this methodology and were obtained as crystalline solids with spectroscopic data in 

full accordance with literature.  

In the case of 5-phenyldipyrromethane 76, analytically pure samples could not be 

obtained in any case due to its high instability. In this particular case, the dipyrromethane 
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was partially purified by column chromatography followed by distillation and used without 

further purification for the synthesis of trans-porphyrins. 

 

4.5.1.2. Synthesis of trans-porphyrins from dipyrromethanes 

 

Scheme 58: Selected synthetic routes for the synthesis of trans-porphyrin 80. 

The first synthesis attempted for synthesising trans-porphyrin 80 was a modified 

version of the procedure of porphyrin formation from dipyrromethanes at room temperature 

developed by Lindsey et al.118 Pre-synthesised dipyrromethane 78 and benzaldehyde were 

dissolved in DCM. To this, TFA (10 % mol) was slowly added and the mixture stirred for 

10 min. When the reaction was completed, DDQ was added and the mixture stirred for 

further 2 h. Then, water was added to the mixture to precipitate the porphyrin but no solids 

were obtained. The crude was distilled under reduced pressure to leave black solids that 

could not be dissolved in organic solvents. Due to this insolubility, it could be concluded 

that no porphyrin was obtained from the reaction.  

Dipyrromethane 78 did not form any porphyrin so the same methodology was tried 

by reacting 5-phenyldipyrromethane 76 and 4-hydroxybenzaldehyde 14 in the presence of a 

catalytic amount of TFA (scheme 58). As analytically pure dipyrromethane 76 could not be 

obtained using standard methodologies due to its high instability, it was freshly synthesised 

before the reaction and used without further purification after column chromatography. 

Partially purified dipyrromethane 76 (1 spot on TLC and similar melting point to that 

reported in literature119) and benzaldehyde 14 were stirred in DCM for 30 min in the presence 

of TFA, followed by oxidation with DDQ. When the reaction was completed, it was 

extracted with NaOH, then H2O and dried over MgSO4. Finally, MeOH was added but no 

precipitate was formed and no product was detected in any case. This particular procedure 
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did not seem promising due to the impossibility to obtain analytically pure samples of 

dipyrromethane 76. Therefore, it could not be proven that the lack of product at the end of 

the reaction was caused by the interference of impurities, decomposition of the starting 

materials or any other factor. 

Then, the synthesis of protected trans-porphyrin 79 from methoxy-functionalized 

dipyrromethanes/aldehydes was attempted. The same low scrambling methodology was 

followed reacting dipyrromethane 77 and benzaldehyde with a catalytic amount of TFA. The 

reaction crude was then purified using different procedures (column chromatography, 

recrystallisations) but no product was observed in any of the attempts. 

 

Formation of 5,15-bis-(p-methoxyphenyl)-10,20-diphenylporphyrin magnesium 83: 

 As trans-porphyrin 80 could not be obtained using standard methods, another 

approach was followed by formation of trans-methoxyphenylporphyrinato magnesium 83. 

This metallated porphyrin could be easily demetallated following standard procedures if 

synthesis is successful. The methodology used for the formation of magnesium porphyrin 

83 was the procedure reported by Lindsey43 as represented in the next scheme. 

 

Scheme 59: Procedure for the formation of magnesium porphyrin 83. 

 

Benzaldehyde and dipyrromethane 77 were heated in refluxing toluene in the 

presence of magnesium dibromide using DBU as catalyst. The crude mixture was 
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precipitated using MeOH to obtain a purple solid. The solids were filtered off and checked 

by MALDI-tof MS but, unfortunately, scrambling was observed using this methodology 

(figure 79). 

 

Figure 79. MALDI-tof MS obtained for the crude reaction of the formation of trans-

magnesium porphyrins. 

The exact same reaction conditions were followed using previously synthesised 

p-hydroxyphenyldipyrromethane 79 instead of p-methoxyphenyldipyrromethane 77 but the 

same scrambling process was observed from the crude solids obtained (figure 80). Using 

these conditions porphyrins were formed but an inseparable mixture of isomers was 

obtained. Therefore, this method was not appropriate for the selective formation of 

trans-porphyrins and a different strategy needed to be explored.  

 

Figure 80. MALDI-tof MS obtained for the crude reaction of the formation of trans-

magnesium porphyrins. 
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Formation of trans-alkylated porphyrin 82: 

The next attempted method for the synthesis of trans-porphyrin 82 involves 

alkylation of p-hydroxybenzaldehyde 14 prior to the formation of the porphyrin in order to 

obtain directly trans-alkylated porphyrin 82 (scheme 60).  

 

Scheme 60: Direct synthesis of trans-alkylated porphyrin 82 from previously alkylated 

benzaldehyde 84. 

 Benzaldehyde 14 was refluxed with 1,10-dibromodecane and potassium carbonate 

in acetone to obtain pure benzaldehyde 84 as a crystalline solid after column chromatography 

on silica gel. Then, dipyrromethane 76 was synthesised by the standard Lindsey118 method 

of stirring benzaldehyde in freshly distilled pyrrole using TFA as catalyst followed by 

purification by column chromatography. Finally, both aldehyde 84 and partially purified 

dipyrromethane 76 were stirred in DCM and TFA was added to the reaction. After stirring 

the mixture for 10 min, the crude was extracted with NaOH, water and dried over MgSO4. 

Then, MeOH was added to the mixture and the purple precipitate obtained was filtered and 

checked by MALDI-tof MS (figure 81). 
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Figure 81. MALDI-tof MS spectra of the reaction crude. 

 The observed peak did not match with the mass of 1084.37 m/z expected for the 

porphyrin product 82 but it does match the substitution of one molecule of TFA for one of 

the bromine atoms instead forming trans-porphyrin 85 (figure 82).  

 

Figure 82. Obtained side reaction product after the addition of TFA. 

To try to overcome the formation of 85, the same reaction was performed using 

another Lewis acid as catalyst. The study from Lindsey et al. showed that boron trifluoride 

diethyl etherate (BF3·Et2O) can also be used for the formation of trans-porphyrins.126 This 

other catalyst has lower nucleophilicity, therefore it is less likely to give this side reaction. 

In this case, the same reaction conditions were followed with the only change of the catalyst 

and after the same work-up, the MALDI-tof MS was checked for the crude solid obtained. 

Unfortunately, scrambling was observed. 
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As the dipyrromethanes appear to be unstable or give scrambling during the 

formation of trans-porphyrins, other synthetic pathways for obtaining trans-porphyrins were 

explored. The selected route was the statistical reaction of aldehydes for the formation of 

hydroxyphenylporphyrins (scheme 61).42 The statistical reaction between freshly distilled 

pyrrole and the corresponding benzaldehydes 2 and 14 in refluxing propionic acid was 

performed. The resultant crude was then precipitated with MeOH to obtain the mixture of 

porphyrins. After the selective precipitation, the mixture of isomers 80 and 87 was separated 

by column chromatography from the rest of the porphyrins that were produced during the 

reaction.  

 

Scheme 61: Formation of trans- and cis- porphyrins 80 and 87 (amongst other porphyrins). 

 The previously separated isomers of TPP-(OH)2 80 and 87 were then further purified. 

In order to separate both on silica gel, THF:toluene:Pet. ether (1:2:2 v/v) mixture was 

selected as eluent as it allowed separation of spots by TLC analysis. By this purification 

method, the isomers could be partially separated. Both where isolated and analysed by NMR 

spectroscopy allowing the characterization of both structures. Unfortunately this method is 

not optimal for the synthesis of the desired trans-porphyrin 80 in big scale due to the tedious 

purification process and low yielding methodology.  
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Synthesis of porphyrin triads via pentafluorophenyldipyrromethane 90: 

 Due to the instability of the dipyrromethane 76 as well as the scrambling process 

observed during the formation of the corresponding trans-porphyrins, 

pentafluorophenyldipyrromethane 90 was selected for the synthesis of trans-porphyrins 

(scheme 62). This dipyrromethane 90 was chosen due to its known synthesis as well as 

stability. This, allowed us to synthesise it on large scale and test various scrambling-free 

procedures for the synthesis of trans-porphyrins.118,126 Using 90 as starting material would 

lead to triads having the central porphyrin substituted with pentafluorophenyl groups. This 

characteristic will help us to analyse the target multidecker structures by NMR due to the 

elimination of some of the 1H signals as well as allowing us to interrogate the designed 

compounds using 19F-NMR.  

 

Scheme 62: Formation of pentafluorophenyldipyrromethane 90. 

 For the synthesis of pentafluorophenyldipyrromethane 90, pentafluorobenzaldehyde 

89 was stirred with freshly distilled pyrrole using TFA as catalyst using Lindsey’s method.119 

When the reaction was completed, the reaction was quenched with NaOH and ethyl acetate 

added. The organic phase was washed with water and dried over MgSO4, the solvent was 

then evaporated to obtain a green oil that was further purified by column chromatography to 

obtain the pure dipyrromethane as an orange oil that crystallized over time.  

 The obtained dipyrromethane 90 was then used for the formation of different 

trans-porphyrins. These porphyrins should then act as starting materials for the formation of 

porphyrin triad 94. This triad can be synthesised from two different central porphyrins as 

represented in scheme 63. One method consisted in coupling complementary trans-

functionalized porphyrin 92 or 93 and single functionalized porphyrin 34 or 47 respectively. 

These two complementary functional groups can be hydroxyl (porphyrins 34 or 92) or 
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bromoalkoxyl (porphyrins 47 or 93) to be able to couple them together using previous 

methodologies. 

 

Scheme 63: proposed synthesis of porphyrin triad 94 from trans-porphyrins. 

 

Synthesis of trans-porphyrin 92: 

 

Scheme 64: deprotection of porphyrin 91 to obtain porphyrin 92. 

In this particular case, due to the expected high solubility of targeted porphyrin 92, 

it was synthesised from the protected trans-porphyrin analogue 91. After stirring aldehyde 
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9 with dipyrromethane 90 in DCM for 30 min at rt., DDQ was added and the mixture stirred 

for 1 h. The complete reaction mixture was then poured onto a pad of alumina and eluted 

with DCM until the eluting solution was pale brown. The solvent was removed under 

vacuum to give a black solid which was dissolved in toluene and heated under reflux for 1 h 

in the presence of DDQ to oxidize any remaining chlorin. After cooling to room temperature, 

the entire reaction mixture was passed through a short pad of alumina and eluted with DCM 

until the purple material had completely eluted. After removal of the solvent and 

recrystallisation, analytically pure trans-porphyrin 91 was obtained.  

In this case, very encouraging results were obtained as no scrambling was observed 

and the porphyrin could be synthesised in big scale. Then, the methoxyl groups were 

deprotected by stirring porphyrin 91 in the presence of BBr3 overnight and the obtained 

porphyrin 92 was obtained pure after recrystallisation. With these conditions, the desired 

porphyrin 92 could be obtained analytically pure in big scale and good yields.  

 

Synthesis of trans-porphyrin 93: 

Due to the success on the synthesis of this trans-porphyrin 92, the same procedure 

was followed for the synthesis of trans-porphyrin 93 in only one step using previously 

alkylated benzaldehyde 84 and dipyrromethane 90 as shown in scheme 65: 

 

Scheme 65: One step synthesis of alkylated trans-porphyrin 93. 

Dipyrromethane 90 and aldehyde 84 were stirred for 30 min in DCM in the presence 

of a catalytic amount of TFA. Then, DDQ was added and everything stirred for 1 h. When 
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the reaction was completed, the crude mixture was passed through an alumina pad and the 

resultant solution was partially concentrated and MeOH was added. The purple precipitate 

formed was filtered off and checked by MALDI-tof MS to observe scrambling leading to a 

mixture of porphyrins. The different porphyrins obtained could be separated by column 

chromatography but the mixture of isomers could not be further separated by any of the 

methods tried.  

 

Figure 83. MALDI-tof MS obtained for the synthesis of trans-porphyrin 93. 

Due to the successful reaction of formation of trans-protected porphyrin 91, and its 

similarity with 93, another reaction was tested in order to try to eliminate the scrambling 

process observed in this particular case. The same reaction procedure was followed but in 

this case, the reaction was performed at 0 °C instead of rt. maintaining the rest of the 

conditions the same. In this case, product 93 was obtained with no scrambling as observed 

by MALDI-tof MS (figure 84) and TLC analysis. Analytically pure trans-porphyrin 93 was 

obtained after a short column chromatography over silica gel with a 17 % yield.  

 

Figure 84. Scrambling-free MALDI-tof MS obtained for trans-porphyrin 93. 
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4.5.1.3. Synthesis of porphyrin triads 

 The synthesis of trans-porphyrins 92 and 93 in reasonable scale was successfully 

performed in scrambling-free conditions. Therefore, the synthesis of porphyrin triad 94 

could be attempted. For the desired synthesis, two different pathways could be followed as 

previously stated (scheme 63). One of them using the trans-alkylated porphyrin 93 and the 

other trans-hydroxylated porphyrin 92 as starting materials. Both pathways should lead to 

the same porphyrin triad 94. 

 

Synthesis of porphyrin triad 94 via alkylated central porphyrin 93: 

 

Scheme 66. Proposed synthesis of 94 using trans-porphyrin 93. 

 The first reaction tried was refluxing trans-porphyrin 93 and an excess of 

porphyrin 34 in acetone with an excess of K2CO3 to form porphyrin triad 94. The reaction 

was followed by TLC and stopped when no more changes were observed. After purification 

of all fractions by column chromatography, the desired porphyrin triad relative mass could 
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not be observed in any of the fractions by MALDI-tof MS analysis. On the other hand, by 

1H-NMR analysis of the different purified fractions obtained (figure 85), a very complicated 

pattern in the aromatic region of the NMR spectrum could be observed in all fractions even 

when they appear as a single spot on TLC. The desired product was not present in any of 

them. 

 

Figure 85. Expansion of the 1H NMR spectra one of the main fractions obtained from the 

reaction. 

 Observing this NMR, it can be concluded that the aromatic region as well as the 

signals around 3.4 and 4.25 ppm of the spectra became highly unymmetrical. Also, the 

MALDI-tof MS analysis of the fractions didn’t show any peak corresponding to any 

expected side products of the reaction or intermediates. However, some additions were 

taking place, but not forming the expected product. This could be explained if other side 

reactions were taking place, leading to different products. This possibility was explored a 

little bit further and some examples of nucleophilic substitution reactions between 

pentafluorophenyl derivatives and different nucleophiles were observed in the literature 

(scheme 67).127-130 Some of the reported reactions occurred even without the use of catalysts. 

This findings allowed us to think that the excess of hydroxylated porphyrin 7 and base in the 

reaction mixture are very favourable conditions for this process to occur.  

 

Scheme 67. Proposed side reaction occurring under the coupling conditions. 
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 To try to overcome this process, the same reaction was tested adding a catalytic 

amount of KI to the reaction mixture. Unfortunately, it produced no changes to the reaction 

outcome and the same side reactions were observed. A final test was then performed by 

changing the solvent system to DMF with presence of a catalytic amount of KI in the reaction 

mixture. The reaction was performed stirring at 60 °C over 3 days but the same undesired 

processes were observed in all cases, and therefore, the product could not be obtained 

following this method.  

 

Synthesis of porphyrin triad 94 via hydroxylated central porphyrin 92: 

 The next attempt was the reaction of trans-dihydroxylated porphyrin 92 with 

previously alkylated porphyrin 47.  

 

Scheme 68. Proposed synthesis of porphyrin triad 94 using trans-porphyrin 92. 

The same reaction conditions used previously were followed by refluxing the mixture 

of porphyrins 47 and 92 in acetone with an excess of K2CO3 for 3 days. Then, the crude 

mixture was concentrated and purified by column chromatography. The fractions obtained 

were checked by MALDI-tof MS and the desired product observed with expected mass of 

2367.4 m/z. After recrystallisation of the fraction containing the product, only traces of 
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porphyrin triad 94 could be obtained. Another reaction was prepared changing the solvent 

to DMF.  

 The exact same reaction was performed in DMF for 3 days at 60 °C. Then the crude 

was precipitated with water and the purple solid obtained was purified by column 

chromatography and recrystallisation. In this case, the fraction containing the product 

(checked by MALDI-tof MS) was analysed by 1H-NMR appearing to be the product with 

only a trace impurity as shown on figure 86. Recrystallisation did not improve the purity.  

 

Figure 86. Obtained spectra obtained for the porphyrin triad following the above 

procedure. 
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Synthesis of porphyrin triad 73 via trans-alkylated porphyrin 82 

 

Scheme 69: Proposed synthesis of porphyrin triad 73 using trans-alkylated porphyrin 82. 

 Trans-porphyrin 82 was obtained by alkylating trans-porphyrin 80 with 

1,10-dibromodecane and potassium carbonate in acetone and obtained pure after column 

chromatography. Then, trans-porphyrin 82 was reacted with porphyrin 34 in refluxing 

acetone in the presence of potassium carbonate. After several recrystallisations, the desired 

porphyrin triad 73 was obtained. This method of synthesis of porphyrin triad 73 involves a 

low yielding step of alkylation of trans-porphyrin 80. This porphyrin synthesis and 

purification is tedious which makes this approach not optimal as the overall yield is very low 

and could not be done in high scale.  
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Synthesis of porphyrin triad 73 via trans-hydroxylated porphyrin 80 

 

Scheme 70: synthesis of porphyrin triad 73 via trans-porphyrin 80. 

 The complementary methodology involves the reaction of trans-porphyrin 80 with 

previously alkylated porphyrin 47. This synthetic route was attempted in order to obtain 

trans-porphyrin triad in reasonable scale. This way, the need of alkylating trans-porphyrin 

80 was avoided. Porphyrins 80 and 47 were refluxed in acetone with an excess of K2CO3. 

When the reaction was completed, the crude mixture was purified by column 

chromatography followed by recrystallisation. The desired porphyrin triad 73 was obtained 

in low yield and analytically pure product could not be obtained. With these results, another 

methodology was performed using DMF as solvent to try to improve the solubility of all 

materials. Then, the same procedure was performed in DMF and analytically pure porphyrin 

triad 73 was obtained after two recrystallisations in 53 % yield.  
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4.5.1.4. Synthesis of extended triple deckers 

There are many different multidecker structures that can be formed from the 

synthesised porphyrin triads 73 or 94. The first attempts involved the use of porphyrin 94 as 

starting material as it could be obtained in reasonable scale and more material was available. 

These tests consisted of subjecting the triads to the methodology of triple decker formation. 

In order to do so, the porphyrin triads were metallated followed by addition of 

phthalocyanine 19 into the reaction system. With this methodology, an extended triple 

decker 95 was expected as represented in the next scheme: 

 Scheme 71: Proposed synthesis of extended triple decker 95. 

The synthesis of 95 was attempted by reacting a stoichiometric amount of porphyrin 

triad 94 and lanthanum acetylacetonate hydrate (2 eq) in octanol for 18 h followed by 

addition of phthalocyanine 19 (1 eq) and further 15 h reflux. The solvent was then reduced 

by distillation and the crude precipitated with MeOH to recover a purple solid that were 

purified by column chromatography over silica gel. Analysis of the fractions obtained by 

MALDI-tof MS indicated two different products. The expected mass for the extended triple 

decker 95 represented in scheme 71 corresponded to 3148.9 m/z but it could not be observed 

in any of the fractions.  

The main fraction obtained did not give any signal under any conditions used in the 

MALDI-tof MS. The sample was then sent to a high resolution mass spectrometry facility 

and the spectra obtained appeared to be a very complicated polymeric mixture of compounds 

with peaks at 2585, 3241, 4027, 5056, 5956 and 6743 m/z respectively. None of them 
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corresponded to any of the products expected. 1H-NMR spectra was recorded for this 

fraction but due to the high complexity of the splitting observed as well as the broad signals 

observed in the spectra, it could not be analysed. The broad signals and the relative masses 

obtained pointed towards the formation of polymeric structures. 

On the other hand, the second fraction obtained from the reaction gave a single sharp 

signal in the MALDI-tof MS corresponding to 3374.89 m/z. This obtained mass have a 

difference with our expected product 95 of 226 m/z that can match the substitution of two 

fluorine atoms for two molecules of octanol used as solvent (see figure 87). The same type 

of side reaction was observed previously in the formation of the porphyrin triad (scheme 67). 

1H-NMR analysis of the sample obtained also shows broad signals making the analysis very 

difficult. Finally, not enough material was obtained with this methodology to perform other 

analysis. The same reaction was attempted using a bigger scale but only traces of the 

compound were obtained being the polymeric mixture the main fraction obtained in all 

attempts. 

 

Figure 87. Representation of the structure of complex 96 with mass of 3374.89 m/z. 

The same procedure was then performed using the non-fluorinated triad 73 as starting 

material, maintaining the rest of the conditions identical (scheme 72). This was attempted in 

order to eliminate the possibility of reaction of the fluorine atoms of this complex. Only a 

test reaction could be attempted using this methodology as only few milligrams of porphyrin 

triad 73 were available. 
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Scheme 72. Representation of the synthesis of complex 75. 

 After a stoichiometric reaction between porphyrin triad 73 and lanthanum 

acetylacetonate hydrate for 8 h, phthalocyanine 19 was added and the mixture refluxed 

overnight. The crude mixture was precipitated with MeOH and a few drops of distilled water 

to recover a purple solid that was purified by column chromatography on silica gel. Two 

fractions were then collected after the column: the first main brown fraction and a small 

second purple fraction. Both fractions were analysed by MALDI-tof MS and only one peak 

corresponding to the expected product 75 of 2973.53 m/z was observed in both of them. 

 

Figure 88. MALDI-tof MS obtained for the formation of extended triple decker 75. 
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Then, 1H-NMR spectra was processed for both fractions. The 1H-NMR spectrum of 

the second spot corresponded to unreacted starting material with some impurities. On the 

other hand, the first brown fraction resembled much more to the expected spectra for 

extended triple decker 75 as it could be observed from comparison between previously 

synthesised triple decker 50 (from porphyrin C10 dyad 45) and the obtained product 75. 

 

Figure 89. Comparison between triple decker 50 and the product 75. 

  A much more complicated spectrum was expected for product 75 as in this case, the 

obtained complex has much lower symmetry due to the extra porphyrin. However there were 
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a few factors in the 1H-NMR spectrum that were very typical of the formation of triple 

deckers and were observed in all previous triple decker analogues: 

 The appearance of the phthalocyanine peaks (around 9.35 and 8.3 ppm) in the spectra 

is a first indication that the phthalocyanine was successfully inserted into the complex. This 

also appeared in the same range as simpler triple decker 50 (above). 

 The splitting observed at around 10 ppm is very typical for this type of complex and 

they should correspond to the internal ortho- protons of the phenyl groups of the porphyrins 

that are forming the triple decker as previously analysed for other triple deckers.80  

 The same type of splitting can be also observed in the region of 6.7 ppm for the peaks 

corresponding to the external meta- phenyl protons of the porphyrins. This also is in 

coherence with the above spectra for the normal triple decker.  

 Finally peaks corresponding to the free porphyrin could also be observed in the 

region of 8.9 ppm but unlike the previous signals typical of triple deckers, this could not be 

differentiated from the starting material. On the other hand, starting material was not 

observed on the MALDI-tof MS, therefore these signals should correspond the free 

porphyrin of the product 75. 

Unfortunately, analytically pure material could not be obtained for the product due 

to the small amount of material that was recovered from the reaction. For this reason, 

successful analytical data from the complex could not be obtained. On the other hand, the 

analysis performed for the fraction obtained from the column is in accordance with the 

presence of the expected product as previously analysed.   
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4.5.2. Conclusions 

The synthesis of trans-porphyrins has proven to be difficult due to the instability of 

some dipyrromethanes that are needed as precursors. The synthesis of several 

dipyrromethanes was attempted in order to establish the best possible synthetic route for the 

synthesis of trans-porphyrins. Even with stable dipyrromethanes such as 77 or 78, other 

problems appeared during the synthesis when scrambling processes are present. Finally, 

some trans-porphyrins were obtained in big scale using pentafluorophenyl dipyrromethane 

90 as starting material. This allowed the synthesis of porphyrin triad 94 in big scale. On the 

other hand, another porphyrin triad 73 could also be obtained from trans-porphyrin 80 but 

with a low yield due to a very difficult purification. 

Once porphyrin triads 73 and 94 were synthesised, a first standard procedure for the 

formation of triple deckers was attempted using this porphyrin triads as templates. Various 

problems were encountered such as addition of solvent molecules to the product and 

appearance of other undesired side products. On the other hand, extended porphyrin triple 

decker 75 could be observed using porphyrin triad 73 as starting material. With the data 

collected so far, it was proven that some more complex structures can be obtained in a 

controlled manner. The methodology developed during this work was successful but the 

synthesis still need optimisation and other porphyrin triads need to be further studied in order 

to overcome the various problems observed.  
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5.1. General methods 

Physical measurements  

1H NMR spectra were recorded either at 400 MHz on a Varian 400 spectrometer, or 

at 500 MHz in a Bruker 500. Signals are quoted in ppm as δ downfield from 

tetramethylsilane (δ 0.00) as internal standard, or using residual solvent as reference. 

13C NMR spectra were recorded at 100.5 or 126 MHz on the same spectrometers. The 

nucleus and operating frequency are indicated for each set of data and coupling constants J 

given in Hertz. The spectra were recorded at room temperature unless otherwise stated. 

Infrared spectra were recorded on a Perkin-Elmer 1720X FT-IR spectrophotometer 

as neat liquid films or Nujol mulls for solid materials. UV-vis Spectra were taken on a 

Hitachi U-3000-X spectrometer in solvent as stated. 

Mass spectra were recorded on a Shimadzu Axima-CFR MALDI-tof spectrometer 

by direct sample deposition or using trans-2-[3-(4-t-butyl-phenyl)-2-methyl-2-

propenylidene]malononitrile (DCTB) as matrix for the analysis when specified.   

TLC was carried out on a Merck aluminium backed silica gel 60 F254 coated plates, 

and the compounds were visualised by viewing under UV light at 254 nm or 366 nm.   

Column chromatography was performed at ambient temperature using Fluka or 

Merck silica gel 60 (70-230 mesh) at ambient pressure or occasionally at moderate pressure. 

Solvent ratios are given as v/v. 

Melting points are uncorrected and recorded using a Kofler hot-stage melting point 

apparatus with a digiton model 2751-K display. 

Reagents, Solvents and Reaction Conditions   

Unless otherwise stated, all chemicals were obtained from commercial sources and were 

used without purification.   

Nitrogen gas used is oxygen free. Petroleum ether is light petroleum (B.p. 40-60 ˚C). Dried 

solvents, THF and diethyl ether, were freshly distilled from sodium and benzophenone when 

especified. Other solvents were SLR-grade and used without drying, unless otherwise stated. 
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Water refers to distilled water. Brine is a saturated aqueous solution of sodium chloride. 

Organic layers were dried over anhydrous magnesium sulphate. Evaporation of solvent was 

carried out on a Büchi rotary evaporator at reduced pressure.    

Temperatures quoted in the reaction conditions are the temperatures of the reaction cooling 

or heating baths. 
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5.2. Synthetic procedures 

5,10,15,20-Tetraphenylporphyrins, general procedure 1: 

 

For the synthesis of symmetrical porphyrins, a modified version of the synthesis 

developed by Adler was followed.42 The corresponding aldehyde (0.1mol) was dissolved in 

propionic acid (250 ml) and left to reflux, to this, freshly distilled pyrrole (0.1 mol) was 

added dropwise and the mixture reacted for 30 min opened to air. Then, the reaction mixture 

was cooled down to room temperature and left precipitating overnight in the fridge, then 

MeOH was added to the mixture (200 ml), filtered and further washed with MeOH to obtain 

purple crystalline solids of the product. 

 

Tetraphenylporphyrin42 (TPP) 3 

 

The title compound was obtained following the general procedure 1 reacting 

benzaldehyde (8.48 g, 80 mmol) and pyrrole (5.36 g, 80 mmol) in propionic acid (200 ml). 
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The title compound was obtained as a purple solid (2.21 g, 18 %). m.p. >350 ˚C. 1H NMR 

(500 MHz, CDCl3) δ 8.77 (s, 8H), 8.15 (dd, J = 7.7, 1.5 Hz, 8H), 7.72 – 7.65 (m, 12H), -

2.85 (s, 2H). 13C NMR (126 MHz, CDCl3) δ 142.31, 134.71, 127.85, 126.83, 120.28. MS 

(MALDI-tof): m/z = 614.22 [M+]. UV-vis (DCM)/nm: 417, 515, 550, 590, 648. IR (KBr, 

cm-1): 2833, 1604, 1505, 1460, 1437, 1348, 1287, 1245, 1172, 1105, 1033, 980, 964. 

 

Tetra-p-bromophenylporphyrin131 (TBrPP) 11 

 

The title compound was obtained following the general procedure 1 reacting 

4-bromobenzaldehyde (14.8 g, 80 mmol) and pyrrole (5.36 g, 80 mmol) in propionic acid 

(200 ml). The title compound was obtained as a purple solid after recrystallization from 

DCM/MeOH (2.96 g, 16 %). m.p. >350 ˚C. 1H NMR (500 MHz, CDCl3) δ 8.84 (s, 8H), 8.07 

(d, J = 8.5 Hz, 8H), 7.90 (d, J = 8.5 Hz, 8H), -2.87 (s, 2H). 13C NMR (126 MHz, CDCl3) δ 

140.97, 135.98, 130.14, 122.79, 119.14. MS (MALDI-tof): m/z = 930.8 [M+]. IR (KBr, 

cm-1): 3062, 190.6, 1556, 1474, 1390, 1348, 1266, 1211, 1176, 1069, 1011, 964. 
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Tetra-p-methoxyphenylporphyrin131 (T(OMe)PP) 12  

 

 The title compound was obtained following the general procedure 1 reacting 

p-methoxybenzaldehyde (14.8 g, 80 mmol) and pyrrole (5.36 g, 80 mmol) in propionic acid 

(200 ml). The title compound was obtained as a purple solid (2.47 g, 17 %). m.p. >350 ˚C. 

1H NMR (500 MHz, CDCl3) δ 8.86 (s, 8H) Hβ; 8.13 (d, J = 8.5 Hz, 8H) HoPh; 7.29 (d, J = 

8.5 Hz, 8H) HmPh; 4.10 (s, 12H) -O-CH3; -2.75 (s, 2H) -NH. 13C NMR (126 MHz, CDCl3) δ 

159.52, 158.96, 135.74, 134.79, 119.87, 112.33, 77.36, 55.73. MS (MALDI-tof): m/z = 

733.92 [M+]. IR (KBr, cm-1): 2833, 1604, 1505, 1460, 1437, 1348, 1287, 1245, 1172, 1105, 

1033, 980, 964. 

 

p-(6’-Bromohexanoxy)benzaldehyde132 10 

 

4-hydroxybenzaldehyde (3 g, 24 mmol) was mixed with 1,6-dibromohexane (14.9 g, 

61.4 mmol) and dissolved in 200 ml of acetone, and 5 g of potassium carbonate were added. 

The mixture was then left refluxing overnight. After 20 h refluxing, it was filtered and the 

solids washed with DCM. The solvents were removed and the white solid obtained was 

purified using silica column chromatography using DCM:Pet ether (1:1 v/v) as eluent. Then 

the fraction containing the product was precipitated with hexanes in ice to yield white solids 

(4.29 g, 61 %). m.p.: 40.5-41.6 °C. 1H NMR (500 MHz, CDCl3) δ 9.88 (s, 1H) CHO, 7.83 
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(d, J = 8.8 Hz, 2H) HoPh, 6.99 (d, J = 8.7 Hz, 2H) HmPh, 4.05 (t, J = 6.4 Hz, 2H) O-CH2, 3.43 

(t, J = 6.7 Hz, 2H) Br-CH2, 1.91 (p, J = 6.8 Hz, 2H) -CH2-, 1.84 (p, J = 6.8 Hz, 2H) -CH2-, 

1.54 – 1.50 (m, 4H) -CH2-. 
13C NMR (126 MHz, CDCl3): δ 191.00, 164.27, 132.16, 129.93, 

114.86, 68.25, 33.91, 32.73, 29.02, 27.99, 25.36. 

 

p-(10’-Bromodecanoxy)benzaldehyde133 84 

 

4-hydroxybenzaldehyde (2 g, 16 mmol) was mixed with 1,10-dibromohexane 

(12.3 g, 40.1 mmol) and dissolved in 200 ml of acetone, then 5 g of potassium carbonate 

were added. The mixture was left refluxing overnight. After 20 h refluxing, it was filtered 

and the solids washed with DCM. The solvents were removed and the white solid obtained 

was purified using silica column chromatography using DCM:Pet ether (1:1 v/v) as eluent. 

Then the first fraction containing the product was precipitated with hexanes in ice to yield 

white solids (4.56 g, 82 %). m.p.: 29.5-30.3 °C. 1H NMR (500 MHz, CDCl3) δ 9.88 (s, 1H), 

7.82 (d, J = 8.8 Hz, 2H), 6.99 (d, J = 8.7 Hz, 2H), 4.04 (t, J = 6.5 Hz, 2H), 3.41 (t, J = 6.9 

Hz, 2H), 1.95 – 1.66 (m, 4H), 1.51 – 1.40 (m, 4H), 1.39 – 1.27 (m, 8H). 13C NMR (126 MHz, 

CDCl3) δ: 190.96, 164.40, 132.13, 129.91, 114.89, 68.54, 34.17, 32.94, 29.54, 29.48, 29.41, 

29.19, 28.87, 28.28, 26.08. 
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Tetrakis-4-(6’-bromohexanoxy)phenylporphyrin134 13 

 

  Using general procedure 1,42 p-(6’-bromohexanoxy)benzaldehyde 10 (5 g, 17.5 

mmol) and freshly distilled pyrrole (1.2 ml, 1.16 g, 17.5 mmol) refluxed in propionic acid 

for 30 min. After work up, purple crystals of the pure product were obtained (0.653 g, 11 %). 

1H NMR (500 MHz, CDCl3) δ 8.86 (s, 8H) Hβ; 8.11 (d, J = 8.5 Hz, 8H) HoPh; 7.27 (d, J = 

8.5 Hz, 8H) HmPh; 4.26 (t, J = 6.3 Hz, 8H) -O-CH2-(CH2)2-, 3.51 (t, J = 6.8 Hz, 8H) Br-CH2-

(CH2)2-; 2.01 (q, 6.6 Hz, 16H) -O-CH2-(CH2)2-; 1.72 – 1.62 (m, 16H) Br-CH2-(CH2)2-; -2.76 

(s, 2H) NH. 13C NMR (126 MHz, CDCl3) δ 159.52, 158.96, 147.61, 135.74, 134.79, 119.87, 

112.33, 68.33, 34.09, 32.88, 29.50, 28.23, 26.25. MS (MALDI-tof): m/z = 1331.23 [M+]. IR 

(KBr, cm-1): 2930, 2853, 1605, 1572, 1507, 1465, 1428, 1389, 1350, 1282, 1243, 1174, 1107, 

1048, 980, 964, 802. 

 

Following a different methodology, tetra-p-hydroxyphenylporphyrin 15 (0.33 g, 

0.486 mmol), 1,6-dibromohexane (1.5 ml, 2.34 g, 9.72 mmol) and potassium carbonate (1.62 

g, 11.8 mmol) were dissolved in 20 ml of MEK and refluxed overnight. After 20 h, the 

reaction was cooled down and precipitated with MeOH, after filtration, the crude solids were 

separated by column chromatography using DCM:Pet. ether (1:1 v/v) with 1% Et3N as eluent 

to recover the product as a purple solid (1.85 g, 59 %).  
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Tetra-p-hydroxyphenylporphyrin84 (T(OH)PP) 15 

 

Tetrakis-p-methoxyphenylporphyrin 12 (1 g, 1.36 mmol) was dissolved in DCM 

(30 ml) and stirred. Then, BBr3 (32.6 ml of 1 M solution in DCM, 32.6 mmol)) was added 

dropwise and the reaction left stirring overnight. After quenching the reaction with MeOH 

and neutralising it with triethylamine, the reaction turned from green to dark red colour. The 

crude was concentrated and redissolved in ethyl acetate. Water was then added and the 

mixture extracted several times with ethyl acetate, dried with MgSO4, filtered and 

concentrated to obtain the title product (0.77 g, 83 %) with spectroscopic data in full 

accordance with the literature.84 1H NMR (500 MHz, Acetone) δ 8.93 (s, 8H) Hβ; 8.07 (d, J 

= 6.5 Hz, 8H) HoPh; 7.30 (d, J = 6.5 Hz, 8H) HmPh; 2.63 (s (br), 4H) -OH, -2.70 (s, 2H) NH. 

MS (MALDI-tof): m/z = 679.33 [M+]. IR (KBr, cm-1): 3330 (br), 1614, 1514, 1249, 1181, 

803. 

 

5-p-hydroxyphenyl-10,15,20-triphenylporphyrin83 (TPP-OH) 34 

 

A modified version of the procedure developed by Adler42 was followed using a 

mixture of aldehydes. Both p-hydroxybenzaldehyde (3.05 g, 25 mmol) and benzaldehyde 

(7.96 g, 75 mmol) where dissolved in propionic acid (200 ml) and left to reflux. To the 
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refluxing mixture, freshly distilled pyrrole (6.94 ml, 6.71 g, 100 mmol) was added dropwise 

and the mixture was refluxed for 30 min. After cooling down to room temperature, the crude 

mixture was precipitated selectively with MeOH (150 ml) and after suction filtration, a 

purple solid was obtained. The crude solids were purified by column chromatography 

(maximum 6 cm high) using DCM:Pet ether (1:1) as eluent to collect a first purple fraction 

corresponding to TPP 3. Then, when no more purple solution eluted, the solvent was changed 

to 100 % DCM to recover the product TPP-OH (0.812 g, 5 %). m.p. >350 ˚C. 1H NMR (500 

MHz, CDCl3): δ 8.88 (m, 2H) and 8.84 (m, 6H) Hβ; 8.215 (d, J = 10 Hz, 6H), 8.08 (d, J = 

10 Hz, 2H) for HoPh; 7.77 (m, 9H) and 7.21 (d, J = 10 Hz, 2H) HpPh and HmPh; 5.18 (s, br, 

1H) –OH; -2.77 (s, 2H) –NH. 13C NMR (500 MHz, CDCl3) δ 155.55, 142.35, 135.85, 

134.88, 134.71, 127.85, 126.83, 120.24, 120.16, 120.00, 113.82. MS (MALDI-tof): m/z = 

631.54 [M+]. 

 

(Tetraphenylporphyrin)indium chloride65 (TPP-InCl) 16  

 

According to the method developed by Butchler,65 metal free TPP 3 (1.62 g, 2.13 

mmol) and InCl3 (0.94 g, 4.26 mmol) were dissolved in acetic acid (200 ml) and the mixture 

left refluxing overnight. The resultant reaction mixture was cooled and evaporated to obtain 

brown solids, which were dissolved in DCM and subjected to flash chromatography on silica 

gel using DCM/Pet. Ether (2/3) as eluent. A purple solids of 16 were isolated (1.28 g, 83 %). 

1H NMR (500 MHz, CDCl3) δ 9.00 (s, 8H) Hβ; 8.33 – 8.28 (m, 4H) HoPh; 8.04 (d, J = 7.5 

Hz, 4H) Ho’Ph; 7.77 – 7.73 (m, 8H) HmPh;, 7.71 – 7.64 (m, 4H) HpPh. 
13C NMR (500 MHz, 

CDCl3) δ 149.62, 141.88, 135.24, 134.41, 132.94, 128.17, 127.04, 126.88, 121.91. MS 

(MALDI-tof): m/z = 727.22 [M+]. IR (KBr, cm-1): 3059, 1596, 1474, 1439, 1338, 1205, 

1176, 1069, 1010. 
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(Tetra-p-bromophenylporphyrin)indium chloride66 (TBrPP-InCl) 21 

 

 The indium insertion method developed by Butchler was followed.65 TBrPP 11 (50 

mg, 0.05 mmol) and InCl3 (22.1 mg, 0.10 mmol) were dissolved in acetic acid (200 ml) and 

the mixture left refluxing for 48 h. The resultant crude mixture was dried to obtain brown 

solids, which were dissolved in DCM and subjected to flash chromatography on silica gel 

using DCM/MeOH (2:3 v/v) as eluent. Compound 21 was isolated as a purple solid (35 mg, 

65 %). 1H NMR (500 MHz, CDCl3) δ 8.84 (s, 8H) Hβ; 8.07 (dt, J = 8.5, 2.5 Hz, 8H) HoPh; 

7.90 (dt, J = 8.5, 2.5 Hz, 8H) HmPh. 
13C NMR (500 MHz, CDCl3) δ 140.97, 135.98, 130.14, 

122.79, 119.14, 77.36. MS (MALDI-tof): m/z = 1078.12 [M+]. IR (KBr, cm-1): 2923, 2853, 

1723, 1586, 1473, 1391, 1208, 1072, 1007, 966. 

 

(Tetra-p-hydroxiphenylporphyrin)indium chloride65 (TOHPP-InCl) 18 

 

 The indium insertion method developed by Butchler was followed.65 TOHPP 15 

(0.6 g, 0.9 mmol) and InCl3 (0.39 g, 1.8 mmol) were dissolved in acetic acid (200 ml) and 

the mixture left refluxing for 48 h. The resultant crude mixture was dried to obtain green 

solids, which were dissolved in MeOH and neutralised with triethylamine and then subjected 

to flash chromatography on silica gel using MeOH/Pet ether (2:3 v/v) as eluent. Purple solids 

of 18 were isolated (0.12 mg, 16 % yield). m.p >350 ˚C. 1H NMR (500 MHz, Acetone) δ 

9.13 (d, J = 24.2 Hz, 8H), 8.89 (s, 4H), 8.11 (s, 4H), 8.03 (d, J = 7.0 Hz, 4H), 8.00 (d, J = 

7.0 Hz, 4H), 7.27 (s, 4H), -2.73 (s, 2H). MS (MALDI-tof): m/z = 826.32 [M+].  
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(Tetraphenylporphyrin)ruthenium carbonmonoxyde, ethanol complex70 

TPPRu(CO)(EtOH) 24 

 

A modified method for the insertion of ruthenium into porphyrins developed by 

Collman was followed.70 To a solution of ruthenium dodecacarbonyl (31 mg, 0.05 mmol) in 

toluene 10 ml under Ar atmosphere, TPP 3 was added (30 mg, 0.05 mmol) and left refluxing 

overnight. Then, the reaction was cooled down and EtOH (100 ml) added to the mixture and 

left stirring again overnight, then filtered and the liquid fraction concentrated and separated 

by column chromatography in alumina (neutral) using DCM:EtOH (99:1 v/v) mixture as 

eluent. The dark red band collected and concentrated and recrystallized from the mixture of 

DCM-hexane to recover the pure product (22.3 mg, 58 % yield). 1H NMR (500 MHz, CDCl3) 

δ 8.69 (s, 8H) Hβ; 8.22 (d, J = 6.5 Hz, 4H) HoPh; 8.13 (d, J = 6.5 Hz, 4H) Ho’Ph; 7.74 (m, 

12H) HmPh and HpPh; 0.75 (s, 1H). –OH; 0.34 (s(br), 2H) -CH2; -0.51 (s(br), 3H) -CH3. MS 

(MALDI-tof): m/z = 714.23 [M+-(EtOH)-(CO)]. UV-vis (DCM)/nm: 411, 528. IR (KBr, 

cm-1): 2962, 2161, 2042, 1949(CO), 1596, 1440, 1351, 1260, 1176, 1069, 1008, 796, 753, 

718, 704, 418 
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(Tetraphenylporphyrin)ruthenium carbonmonoxyde, pyridine135 TPPRu(CO)(py) 25 

 

To a solution of ruthenium dodecacarbonyl (31 mg, 0.05 mmol) in toluene 10 ml 

under argon, TPP 3 was added (30 mg, 0.05 mmol) and left refluxing overnight. Then, the 

reaction was cooled down and EtOH (100 ml) added to the mixture and left stirring again 

overnight, then filtered and the liquid fraction concentrated and separated by column 

chromatography in alumina (neutral) using DCM:EtOH (99:1 v/v) mixture as eluent. The 

dark red band collected and redissolved in 10 ml of DCM, to this, an excess of pyridine (10 

ml) was added and left stirring for 30 min. The solvents were distilled under pressure to 

collect the desired complex as a purple solid (23 mg, 57 %). 1H NMR (500 MHz, CDCl3) δ 

8.61 (s, 8H) Hβ; 8.25 – 8.20 (m, 4H) HoPh; 8.05 (d, J = 7.4 Hz, 4H) Ho’Ph; 7.72 (p, J = 4.0 

Hz, 8H) HmPh; 7.66 (m, 4H) HpPh; 6.08 (tt, J = 7.5, 1.5 Hz, 1H) HpPy; 5.20 (td, J=7.5 Hz, 2H) 

HmPy; 1.55 (dd, J = 6.6, 1.5 Hz, 2H) HoPy. (MALDI-tof): m/z = 714.23 [M+-(py)-(CO)] and 

791.92 [M+-(CO)]. UV-vis (DCM)/nm: 412, 532. IR (KBr, cm-1): 2962, 1971(CO), 1597, 

1529, 1442, 1360, 1305, 1260, 1070, 1007. 
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Zinc metallated porphyrins, general procedure 2: 

 

In a general synthetic procedure for the zinc insertion into porphyrins,85 the porphyrin 

is going to be refluxed in acetone in the presence of zinc acetate for 30 to 60 min. After 

completion, the solvent was evaporated and the crude extracted with DCM/H2O, dried over 

MgSO4 and concentrated to collect the pure product. 

 

Zinc 5-p-hydroxyphenyl-10,15,20-triphenylporphyrin136 ZnTPPOH 39 

 

Following general procedure 2, TPP-OH 34 (1 g, 1.58 mmol) and zinc acetate (0.3 g, 

1.63 mmol) were refluxed in 300 ml of acetone. Then concentrated, redissolved in DCM 

(100 ml) and extracted with water (2 x 100 ml) and brine (100 ml) to recover the product as 

a light purple solid (1.05 g, 96 %). 1H NMR (500 MHz, CDCl3) δ 8.99 (d, J = 4.6 Hz, 2H) 

and 8.96 (d, J = 4.7 Hz, 2H) Hβ’ and 8.95 (s, 4H)  Hβ; 8.23 (dd, J = 7.5, 1.5 Hz, 6H) HoPh; 

8.08 (dd, 2H) HoPh’; 7.82 – 7.72 (m, 9H) HmPh and HpPh; 7.20 (dd, 2H) HmPh; 5.04 (s, br, 1H) 

-OH. 13C NMR (126 MHz, CDCl3) δ 155.55, 142.35, 135.85, 134.88, 134.71, 127.85, 

126.83, 120.24, 120.16, 120.00, 113.82. (MALDI-tof): m/z = 693.21 [M+]. IR (KBr, cm-1): 

3382 (br), 2957, 1648, 1598, 1485, 1440, 1339, 1269, 1170, 1069, 1003, 995, 880. 
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Zinc Tetrakis-5,10,15,20-(p-(6’-bromohexanoxy)phenyl)porphyrin 18 

ZnT(OC6Br)4PP 40 

 

Free porphyrin 13 (725 mg, 0.54 mmol) was metallated using a modified version of 

procedure 2 by heating it and zinc acetate (120 mg, 0.65 mmol) in 60 ml of refluxing mixture 

of DCM:acetone (2:1) for 90 min. Then, 100 ml of water were added, extracted, filtered and 

recrystallized from DCM:MeOH to obtain light-purple crystals (751 mg, 99 %). 1H NMR 

(500 MHz, CDCl3): δ 8.97 (s, 8H) Hβ; 8.11 (d, 8H, J=8.0Hz) HoPh; 7.27 (d, 8H, J=8.0Hz) 

HmPh; 4.27 (t, 8H, J=6.5Hz) O-CH2; 3.51 (t, 8H, J=6.5Hz) Br-CH2; 2.01 (m, 16H) -CH2-; 

1.67 (m, 16H) -CH2-. 
13C NMR (126 MHz, CDCl3) δ 159.52, 158.96, 147.61, 135.74, 

134.79, 119.87, 112.33, 68.33, 34.09, 32.88, 29.50, 28.23, 26.25. MS (MALDI-tof): m/z = 

1395.19 [M+]. IR (KBr, cm-1): 2932, 2855, 1606, 1525, 1508, 1493, 1461, 1338, 1244, 1174, 

1107, 1068, 998, 847, 804. 
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Dysprosium porphyrin acetylacetonate75 28 

 

 A modified procedure of the synthesis of half sandwich complexes developed by 

Jiang J. was followed.60 In this case, TPP 3 (61.4 mg, 0.1 mmol) was mixed with dysprosium 

acetylacetonate (55.2 mg, 0.1 mmol) and refluxed in 4 ml of octanol for 5 h. The reaction 

completion was checked by UV-vis and then, 60 ml of pet. ether were added to the mixture 

and the resultant solids collected by vacuum filtration. The resultant purple solid was 

subjected to column chromatography in neutral alumina using DCM:pet. ether (1:1) and the 

second light-pink fraction collected. After concentration and recrystallisation in 

DCM:MeOH, the half sandwich complex was isolated (16.3 mg, 21 %). MALDI-tof: 776.31 

m/z [M+-(acac)]. UV-vis (DCM)/nm: 416, 553. 

 

Dysprosium porphyrinatephthalocyanate double decker 30 

 

For the synthesis of 30, a modified method for the synthesis of double decker 

developed by Jiang, J. et al. was followed.60 In this case, TPP 3 (122.8 mg, 0.2 mmol) was 

mixed with dysprosium acetylacetonate (110.36 mg, 0.24 mmol) and the mixture refluxed 

in octanol (5 ml) for 6 h. Then, the reaction was cooled enough to stop the reflux and 

phthalonitrile (150 mg, 1.2 mmol) and DBU (0.1 ml) were added to the reaction mixture and 
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refluxed overnight. MeOH was then added to the mixture and the resultant precipitate 

formed was collected using vacuum filtration. The dark solids obtained were purified by 

column chromatography in neutral alumina using DCM as eluent and the first brown fraction 

containing the title compound was collected and concentrated. Analytically pure product 

was then obtained after recrystallization in DCM:MeOH (27.4 mg, 17 %). MALDI-tof: 

1287.94 m/z [M+] UV-vis (DCM)/nm: 337, 418, 598, 749. (1H NMR and 13C NMR could 

not be performed due to its magnetic properties). 

 

Lanthanum porphyrin acetylacetonate75 31 

 

A modified procedure for the synthesis of SAT porphyrin complexes was 

performed.60 In this case, metal free TPP 3 (122.4 mg, 0.2 mmol) was refluxed in 4 ml of 

octanol for 5 h in the presence of lanthanum acetylacetonate hydrate (104.69 mg, 0.24 

mmol). The reaction completion was checked by UV-vis and then, 20 ml of pet. ether were 

added to the mixture and the crude left precipitating overnight. The resultant solid was added 

to 20 ml of DCM, filtered and concentrated to recover the pure metallated complex. (32.5 

mg, 19 %). MALDI-tof: 776.31 m/z [M+-(acac)]. IR (KBr, cm-1): 2924, 1534, 1472, 1437, 

1193, 1073, 975. 
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Lanthanum porphyrinatephthalocyanate double decker53 32 

 

According to Jiang’s procedure,60 TPP 3 (122 mg, 0.2 mmol), phthalonitrile (150 

mg, 1.2 mmol) and lanthanum acetylacetonate hydrate (104 mg, 0.24 mmol) were mixed 

together in 4 ml of octanol. Then, 0.1 ml of DBU was added to the mixture and everything 

refluxed for 18 h. After cooling down the mixture, pet. ether was added (20 ml) and the 

resultant black solids were recovered by filtration. The solids obtained were subjected to 

column chromatography over silica gel using DCM:pet. ether (1:1 v/v) as eluent. The 

resultant green fractions obtained were collected and further separated in silica gel using 

THF:pet. ether (3:10 v/v). The last green fraction was collected, concentrated and 

recrystallized from DCM/MeOH mixture to give the title compound as a pure green solid 

(177.5 mg, 70 %). MALDI-tof: 1265.60 m/z [M+]. 1H NMR (500 MHz, DMSO) δ 9.11 – 

9.06 (m, 8H), 8.21 – 8.17 (m, 8H), 8.00 (s, 8H), 7.68 – 7.59 (m, 8H), 7.42 – 7.25 (m, 8H), 

6.91 (d, J = 7.0 Hz, 4H). 13C NMR (126 MHz, CDCl3) δ 151.54, 139.32, 128.10, 124.95, 

34.43, 30.47. UV-vis, (DCM)/nm(log ε): 343(4.8), 419(4.8), 624(4.3). IR (KBr, cm-1): 2957, 

2869, 1667, 1646, 1483, 1457, 1390, 1364, 1330, 1246, 1161, 1057, 980, 882. 
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Lanthanum functionalised double decker 42 

 

The modified procedure for the synthesis of double deckers60 was followed. 

TPP-OH 34 (126 mg, 0.2 mmol), phthalonitrile (150 mg, 1.2 mmol) and lanthanum 

acetylacetonate hydrate (104 mg, 0.24 mmol) were mixed together in 4 ml of octanol. Then, 

0.1 ml of DBU was added to the mixture and everything refluxed for 18 h. After cooling 

down the mixture, pet. ether was added (20 ml) and the resultant black solids were recovered 

by filtration. The solids obtained were subjected to column chromatography over silica gel 

using DCM:Pet. ether (1:1 v/v) as eluent and the fraction containing the desired double 

decker (checked by MALDI-tof MS) further purified in silica gel chromatography using 

THF:Pet. ether (3:10 v/v) as eluent. Double decker 42 was obtained pure as green solids after 

recrystallisation (183.6 mg, 72 %). MS MALDI-tof: 1280.66 m/z [M+]. 1H NMR (500 MHz, 

DMSO) δ 9.12 (dd, J = 5.4, 3.0 Hz, 8H), 8.22 (dd, J = 5.6, 2.7 Hz, 8H), 8.13 – 8.10 (m, J = 

4.2 Hz, 4H), 8.02 (d, J = 4.1 Hz, 4H), 7.71 – 7.65 (m, 8H), 7.42 – 7.37 (m, 8H), 7.12 (s, 3H). 

13C NMR (126 MHz, DMSO) δ 151.54, 139.32, 128.10, 124.95, 34.43, 30.47. UV-vis, 

(DCM)/nm(log ε): 337(4.5), 419(4.8), 608(3.9), 747(3.7). IR (KBr, cm-1): 3384.9, 2957, 

1669, 1645, 1469, 1434, 1159, 1057.  
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Multiporphyrin array 36 (Ma = Zn, Mb = H,H) 

 

Zinc porphyrin 40 (370 mg, 0.265 mmol) and TPP-OH 34 (1 g, 1.58 mmol) were 

dissolved in 100 ml DMF and left stirring at 80º C for 6 days. The reaction was then cooled 

down, concentrated until approximately 20 ml and precipitated with water and filtered. The 

resulting solids were then loaded into a silica gel column and separated using DCM:Pet ether 

(1:1 v/v), the contents of  the first fraction where then recrystallized in DCM:MeOH to obtain 

the pure title compound (420 mg, 44 %). m.p.: 297-300 °C. MS (MALDI-tof): m/z = 3594.84 

[M++(H+)2]. UV-vis, (DCM)/nm(log ε): 415(5.6), 518(4.2), 551(4.1), 591(3.8), 646(3.6). 1H 

NMR (500 MHz, CDCl3) δ 9.01 (s, 8H) Hβ-central, 8.90 (d, J = 4.5 Hz, 8H) Hβ-per, 8.83 (s, 

24H) Hβ-per, 8.24 – 8.17 (m, 24H) HoPh, 8.16 – 8.09 (m, 16H) HoPh’, 7.78 – 7.67 (m, 36H) 

HmPh and HpPh, 7.33 – 7.26 (m, 16H) HmPh’, 4.37 – 4.23 (m, 16H) ) -O-CH2-, 2.08 (s, 16H) -

CH2-, 1.81 (s, 16H) -CH2-, -2.77 (s, 8H) -NH. IR (KBr, cm-1): 2936, 1604, 1506, 1243, 1174, 

995. (13C NMR spectra could not be processed due to precipitation of the material in the 

NMR solvent for high concentrations). 
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Multiporphyrin array 35 (Ma = H,H, Mb = Zn) 

 

Metal free porphyrin 13 (0.317 g, 0.24 mmol), ZnTPP-OH 39 (0.8 g, 1.14 mmol) and 

potassium carbonate (1.12 g, 8.1 mmol) were heated in DMF (60 ml) at 60º C for 5 days. 

Then water was added to the crude and filtered off, the crude was eluted through a short 

silica pad using THF and all impurities removed, then the mixture of compound 35 and silica 

was mixed with DCM and gravity filtered. The resultant purple solution was then 

precipitated with MeOH and the purple solid collected (0.287 g, 26 %). 1H NMR (400 MHz, 

CDCl3) δ 9.00 (d, J = 4.5 Hz, 8H) and 8.93 (d, J = 4.5 Hz, 8H) Hβ’per; 8.93 (s, 16H) Hβ-per; 

8.89 (s, 8H) Hβ-central; 8.20 (dd, J = 8.7, 3.3 Hz, 24H) HoPh; 8.12 (dd, J = 8.0, 5.9 Hz, 16H) 

HoPh’; 7.76 – 7.67 (m, 36H) HmPh and HpPh; 7.31 – 7.22 (m, 16H) HmPh’; 4.25 (m, 16H) -O-

CH2-; 2.05 (d, J = 5.8 Hz, 16H) -CH2-; 1.78 (s, 16H) -CH2-; -2.73 (s, 2H) -NH. m.p. 203-

205 °C. MS (MALDI-tof): m/z =3787.58 [M++(H+)4]. UV-vis, (DCM)/nm(log ε): 420(4.8), 

549(3.7), 587(3.4). IR (KBr, cm-1): 2936, 1604, 1506, 1339, 1243, 1174, 994. (13C NMR 

spectra could not be processed due to precipitation of the material in the NMR solvent for 

high concentrations). 
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Multiporporphyrin array 37 (Ma = Ru, Mb = Zn) 

 

Multiporphyrin array 35 (20 mg, 5.28x10-3 mmol) and ruthenium dodecacarbonate 

were dissolved in 5 ml of toluene and left refluxing overnight. After 20 h refluxing, the crude 

was poured over 100 ml of ethanol and filtered. Then washed with MeOH to recover a purple 

solid that was mixed in an excess of pyridine and left stirring for 4 h. Then, the crude was 

concentrated to dryness to obtain multiporphyrin array 37 as a light purple solid (18.8 mg, 

89 %). 1H NMR (400 MHz, CDCl3) Hβ δ 9.00 (d, J = 4.7 Hz, 8H) Hβ, 8.93 (d, J = 4.5 Hz, 

24H) Hβ, 8.74 (s, 8H) HoPh, 8.23 – 8.17 (m, 24H), 8.13 (d, J = 8.4 Hz, 16H) HoPh’, 7.76 – 

7.68 (m, 36H) HmPh and HpPh, 7.28 (dd, J = 5.6, 4.6 Hz, 16H) HmPh’, 4.28 (d, J = 6.4 Hz, 16H) 

-O-CH2-, 3.57 (s) Hpy, 2.05 (d, J = 7.3 Hz, 16H) -CH2-, 1.80 (s, 16H) -CH2-, 1.15 (s, 60H) 

Hpy. UV-vis, (DCM)/nm(log ε): 416(5.6), 421(5.5), 548(4.3). IR (KBr, cm-1): υco = 1941.31. 

(13C NMR spectra could not be processed due to precipitation of the material in the NMR 

solvent for high concentrations). 
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Multiporporphyrin array 38 (Ma = Zn, Mb = Ru) 

 

Multiporphyrin array 36 (53 mg, 1.47x10-5 mol) was mixed with ruthenium 

dodecacarbonyl (11.3 mg, 1.77x10-5 mol) and dissolved in 2 ml of toluene. The mixture was 

left refluxing for 48 h. Then, 2 ml of pyridine were added and the mixture left stirring at rt. 

for 4 h. The crude was then precipitated with MeOH and filtered and after recrystallization 

with DCM:pet ether, the pure product was obtained (12 mg, 20 %). MS (MALDI-tof): m/z 

= 4585.06 ([M]++(py)2). UV-vis, (DCM)/nm(log ε): 404(4.8), 420(4.9), 537(3.9).  IR: υco = 

1949.75 cm-1 (full characterisation could not be obtained due to decomposition of the 

material during recrystallisation). 
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5-(10’-bromodecanoxyphenyl)-10,15,20-triphenylporphyrin137 (TPP-OC10Br) 47 

 

 TPP-OH 34 (100 mg, 0.16 mmol, 1 eq) and 1,10-dibromodecane (57 mg, 0.19 mmol, 

1.2 eq) were dissolved in 25 ml of acetone. K2CO3 (55 mg, 0.39 mmol, 2.5 eq) were then 

added and the mixture refluxed for 24 h. The crude mixture was then precipitated with 50 

ml of distilled water and filtered. The solids obtained were washed with MeOH to recover a 

purple solid. After column chromatography of the solid over silica gel using THF:pet ether 

(1:3 v/v) as eluent and a recrystallization from DCM/MeOH, the title compound was 

obtained pure (57 mg, 42 %). 1H NMR (500 MHz, CDCl3) δ 8.89 (d, J = 4.5 Hz, 2H) and 

8.84 (s, 6H) Hβ; 8.22 (m, 6H) and 8.12 (dd, J = 2 Hz, J = 6.5 Hz, 2H) HoPh; 7.77 (m, 9H) and 

7.28 (dd, J = 2 Hz, J = 6.5 Hz, 2H) HpPh and HmPh; 4.25 (t, J = 7  Hz, 2H) -O-CH2-; 3.44 (t, 

J = 7 Hz, 2H) -CH2-Br; 2.03 – 1.95 (m, 2H)-CH2-; 1.90 (m, 2H)-CH2-; 1.63 (m, 2H)-CH2-; 

-2.75 (s, 2H) -NH. 13C NMR (500 MHz, CDCl3) δ 159.02, 142.26, 135.63, 134.58, 134.35, 

127.70, 126.69, 120.07, 112.76, 68.33, 34.09, 32.88, 29.56, 29.53, 29.50, 29.46, 28.83, 

28.23, 26.25. MS (MALDI-tof): m/z = 851.33 [M+]. IR (KBr, cm-1): 2926, 2854, 1594, 1507, 

1471, 1440, 1350, 1284, 1246, 1175, 1001, 980, 965, 845. 
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Porphyrin C10 dyad 45 (TPP-O-(CH2)10-O-TPP) 

 

 

A mixture of 1,10-dibromodecane (47.6 mg, 0.16 mmol) and TPP-OH 34 (200 mg, 

0.32 mmol) was dissolved in acetone (40 ml), then an excess of K2CO3 (220 mg, 1.5 mmol) 

was added and the mixture left refluxing for 48 h. Then the mixture was precipitated with 

MeOH and two slow recrystallisations from the DCM:MeOH mixture yielded the pure 

product as a purple solid (127 mg, 57 %). m.p. > 350 °C. 1H NMR (500 MHz, CDCl3): δ 

8.89 (d, J = 4.5 Hz, 4H) and 8.83 (d, J = 4.5 Hz, 12H) Hβ; 8.21 (dd, J = 7, <2 Hz, 12H) HoPh; 

8.12 (dd, J = 7, <2 Hz, 4H) HoPh’; 7.79 – 7.70 (m, 18H) HmPh and HpPh; 7.29 (dd, J  = 7, <2 

Hz, 4H) HmPh’; 4.28 (t, J = 6.5 Hz, 4H) O-CH2-CH2-; 2.07 – 1.99 (m, 4H) O-CH2-CH2-; 1.72 

– 1.65 (m, 4H) -CH2-; 1.53 (s, 8H) -CH2-; -2.76 (s, 4H) NH. 13C NMR (500 MHz, CDCl3): 

δ 159.18, 142.38, 135.77, 134.70, 134.48, 127.82, 126.81, 125.68, 120.35, 120.20, 120.07, 

112.90, 77.41, 77.16, 76.91, 68.51, 30.48, 29.83, 29.74, 26.45. MS (MALDI-tof): m/z = 

1399.61 [M+]. UV-vis, (DCM)/nm(log ε): 418(5.3), 514(3.9), 551(3.7), 593(3.5), 649(3.7). 

IR (KBr, cm-1):2928, 2858, 1600, 1514, 1471, 1442, 1349, 1246, 965. 
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Porphyrin C12 dyad 46 (TPP-O-(CH2)12-O-TPP) 

 

A mixture of 1,12-dibromododecane (45.3 mg, 0.138 mmol) and TPP-OH 34 (200 

mg, 0.317 mmol) was dissolved in MEK (10 ml), then an excess of K2CO3 (220 mg, 1.58 

mmol) and a catalytic amount of potassium iodide (6 mg, 0.036 mmol) were added to the 

mixture and everything refluxing for 48 h. Then the mixture was precipitated with MeOH 

and separated by column chromatography using THF:pet ether (3:7 v/v) as eluent to yield 

the pure product as a purple solid (75 mg, 38 %). m.p. 312-315 °C. 1H NMR (400 MHz, 

CDCl3) δ 8.89 (d, J = 4.5 Hz, 4H) and 8.84 (d, J = 4.5 Hz, 12H) Hβ; 8.21 (dd, J = 8.5; <2 

Hz, 12H) HoPh;  8.11 (d, J = 8.5 Hz, 4H) HoPh’;  7.80 – 7.71 (m, 18H) HmPh and HpPh;  7.28 

(d, J = 8.5 Hz, 4H) HmPh’;  4.26 (t, J = 6.4 Hz, 4H) -O-CH2-; 2.05 – 1.89 (m, 4H) -CH2-;  1.71 

– 1.61 (m, 4H); 1.53 (s, 12H) -CH2-;  -2.76 (s, 4H) NH. 13C NMR (126 MHz, CDCl3) δ 

158.92, 142.13, 135.52, 134.45, 134.23, 127.57, 126.56, 125.42, 120.10, 119.95, 119.82, 

112.65, 77.16, 76.91, 76.65, 68.25, 30.22, 29.57, 29.49, 26.19. MS (MALDI-tof): m/z = 

1428.65 [M+]. UV-vis, (DCM)/nm(log ε): 418(5.1), 515(3.8), 550(3.5), 591(3.3), 647(3.6). 

IR (KBr, cm-1): 2956, 2931, 2869, 1599, 1471, 1440, 1363, 1245, 1175, 1071, 1001, 980, 

966. 
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Metal free phthalocyanine138 19 

 

Following a general procedure using lithium as a template,139 a solution of 

phthalonitrile (0.5 g, 4 mmol) in 1-pentanol (6 ml) was heated to 120 °C, and then lithium 

(28 mg, 4 mmol) was added to this solution and the reaction was continued for 1 h. Then, 

acetic acid was added (10 ml) and refluxed for 1 h. After that, the reaction mixture was 

cooled down to room temperature, methanol (100 ml) was added to precipitate the product 

and the dark blue solid of the pure phthalocyanine collected by vacuum filtration (210.7 mg, 

41 %). 

 

As an alternative method, the corresponding phthalonitrile can be also reacted with 

DBU as catalyst to form the desired phthalocyanine.140 This method was performed by 

refluxing phthalonitrile (0.5 g, 4 mmol) in pentan-1-ol in the presence of DBU for 3 h under 

inert atmosphere. After cooling, the solution was poured over methanol and the dark blue 

precipitate collected by vacuum filtration and washed with MeOH to obtain the pure free 

phthalocyanine (185.0 mg, 36 %). MALDI-tof: m/z = 514.22 [M+]. Due to high insolubility 

in organic solvents further characterisation was not possible. 
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1,2-dibromo-4,5-dimethoxybenzene 9798  

 

1,2-Dimethoxybenzene (16.14 g, 117 mmol) and iodine (0.63 g, 2.5 mmol) were 

added to dichloromethane (315 ml) with stirring on an ice bath. Bromine (15 ml, 46.8 g, 296 

mmol) was added at a rate of roughly one drop a second. The mixture changed from purple 

to yellow-brown through the course of the reaction. After addition of the Br2 was complete, 

the reaction was stirred an additional 3 hours. Volatiles were removed under vacuum and the 

resulting solid was dissolved in hot isopropanol (315 ml). The solution was cooled (-20 ˚C) 

for 24 h. The resulting solid was isolated by filtration and dried under vacuum to produce 

colourless needles (34.43 g, 99 %).m.p. 91 ˚C. 1H NMR (400 MHz, CDCl3) δ 7.05 (s, 2H), 

3.85 (s, 6H). 13C NMR (101 MHz, CDCl3) δ 149.04, 116.09, 114.92, 56.42. 

 

1-Octyl magnesium iodide 98141 

 

Magnesium turnings (6.05 g, 0.25 mol) were added to distilled Et2O (25 ml) under 

an inert atmosphere and heated to reflux. After 10 min of reflux, a single crystal of iodine 

was added together with 1-Iodooctane (30.0 ml, 40 g, 0.17 mol) in Et2O (25 ml) in a dropwise 

manner using an addition funnel. The mixture was left refluxing for 1 h after the complete 

addition of the alkyl halide. The mixture was left to cool and used immediately for the 

Kumada coupling reaction. The resulting Grignard reagent was obtained as a viscous grey 

liquid and the concentration was assumed to result from a 95 % conversion (50 ml, 3.32 M). 
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4,5-Dioctyl-1,2-dimethoxybenzene 9998 

 

4,5-dibromoveratrole (10.0 g, 0.0338 mol) and 1,1'-

bis(diphenylphosphino)ferrocenepalladium(II) dichloride Pd(dppf)Cl2 (1.24 g, 1.69 mmol, 

5 %) were added to dry Et2O (5 ml) in a round bottom flask under Ar atmosphere. A solution 

of n-octylmagnesium iodide in diethyl ether (50 ml, 3.32 M, 0.169 mol) was added to the 

solid mixture via syringe at rt. Upon addition the reaction changes colour to dark green and 

then mustard yellow. This was then left to stir for a further 30 min after which it was set to 

reflux for 18 h. The resulting reaction was a dark, black mixture that upon cooling becomes 

viscous. The crude mixture was quenched in water and the remaining catalyst filtered off 

under vacuum. The recovered filtrate was washed with dilute HCl (2x25 ml), brine, and 

extracted with pet ether. The organics were then dried (Na2SO4) and the solvent removed 

under reduced pressure. The resulting title compound was purified by column 

chromatography over silica gel using pet ether as eluent to give the pure product as a light 

orange oil (5,7 g, 47 %). 1H NMR (400 MHz, CDCl3) δ 6.67 (s, 2H) HAr, 3.86 (s, 6H) -O-

CH3, 2.60 – 2.50 (m, 4H) -(CH2)7-CH3, 1.63 – 1.52 (m, 4H) -(CH2)7-CH3, 1.43 – 1.26 (m, 

20H) -(CH2)7-CH3, 0.93 – 0.89 (m, 6H) -(CH2)-CH3.
 13C NMR (101 MHz, CDCl3) δ 146.87, 

132.68, 112.70, 55.94, 32.53, 31.98, 31.79, 29.83, 29.61, 29.38, 22.75, 14.15. 
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4,5-Dioctyl-1,2-dihydroxybenzene 10098 

 

4,5 dioctyl-1,2-dimethoxybenzene (5.7 g, 0.016 mol) was dissolved in a mixture of 

hydrobromic acid and glacial acetic acid (200 ml, 1:1 v/v) to give an emulsion and left 

refluxing for 18 h under normal atmosphere. The mixture turned dark brown in colour and 

was left to cool to room temperature. After cooling, the product was washed with water 

(3x50 ml), brine and extracted with DCM. The organics were dried (Na2SO4) and the solvent 

removed under reduced pressure to give the pure product as a dark brown oil (4.78 g, 91 %). 

1H NMR (400 MHz, CDCl3) δ 6.66 (s, 2H) HAr, 4.98 (s, 2H) -OH, 2.52 – 2.42 (m, 

4H) -(CH2)7-CH3, 1.56 – 1.47 (m, 4H) -(CH2)7-CH3, 1.39 – 1.23 (m, 20H) -(CH2)7-CH3, 0.93 

– 0.85 (m, 6H) -(CH2)7-CH3.  

 

4,5-Dioctyl(1,2-ditrifluoromethanesulfonyloxy)benzene 10198  

 

4,5-Dioctyl-1,2-dihydroxybenzene (4,5 g, 0.0134 mol) and lutidine (4.64 ml, 4.30 g, 

0.040 mol) were dissolved in 100 ml of distilled DCM. The mixture was cooled to -78 ºC 

and trifluoromethanesulfonic anhydride (11.25 ml, 18.86 g, 0.067 mol) was added dropwise 

via syringe under an inert atmosphere. After the addition, the light brown solution was left 

to warm to room temperature and stirred overnight. The crude product was washed with 

water (2x50 ml), brine and extracted with DCM. The organics were dried (Na2SO4) and 

filtered. The solvent was removed and loaded onto a short silica gel column and eluted in 

hexane and a single fluorescent band was isolated from a brown\black baseline. The title 

compound was recovered as a clear oil (5.62 g, 70 %). 1H NMR (400 MHz, CDCl3) δ 7.20 

(s, 2H), 2.62 (d, J = 8 Hz, 4H), 1.63 – 1.53 (m, 4H), 1.43 – 1.22 (m, 20H), 0.93 – 0.85 (m, 

6H). 13C NMR (101 MHz, CDCl3) δ 143.29, 137.96, 123.70, 118.77 (q, J = 320.8 Hz, COTf), 

32.44, 31.98, 30.67, 29.62, 29.52, 29.34, 22.80, 14.20. 
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4,5-Dioctylphthalonitrile 10298 

 

To a solution of bis(dibenzylideneacetone)palladium (0.343 g, 0.37 mmol, 4 mol %) 

and Pd(dppf)Cl2 (0.832 g, 1.5 mmol, 16 mol %) in anhydrous DMF (18 ml) at rt, 4,5 

dioctyl(1,2-ditrifluoromethanesulfonyloxy)benzene (5.62 g, 9.39 mmol) was added under 

argon atmosphere via syringe. The reaction mixture was stirred and heated until the 

temperature stabilised at 62 ºC. Once the temperature was obtained, zinc cyanide (1.32 g, 

11.26 mmol) was added in 12 equal additions over a period of two hours. After the addition, 

the reaction was left stirring and heating at 62 ºC for a further 18 h. The resulting mixture 

was quenched in water and the excess cyanide and spent catalyst filtered off using vacuum 

filtration. The filtrate was washed with water, brine and extracted with DCM. The organics 

were dried (Na2SO4) and filtered. The solvent was evaporated to give a bright yellow oil. 

The resultant oil was purified by column chromatography over silica gel (1:3 v/v DCM:Pet 

ether) to give the product as a yellow oil (1.54 g, 47 %). 1H NMR (400 MHz, CDCl3) δ 7.55 

(s, 2H), 2.67 (t, J = 9.5 Hz, 4H), 1.71 – 1.49 (m, 4H), 1.42 – 1.23 (m, 20H), 0.88 (t, J = 7.0 

Hz, 6H). 13C NMR (101 MHz, CDCl3): 147.5, 134.1, 115.9, 112.9, 32.7, 31.9, 30.5, 29.6, 

29.5, 29.3, 22.8, 21.2. 
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Metal free 2,3,9,10,16,17,23,24-octakis(octyl)phthalocyanine98 55 

 

4,5-Dioctylphthalonitrile (0.7 g, 2.19 mmol) was added to a 1 necked round bottom 

flask and dissolved in pentanol (6 ml), to this, DBU (0.5 ml,  10 % mol) was added and the 

mixture left to reflux for 3 h at 140 ºC. After cooling down to room temperature, MeOH (20 

ml) were added and the resulting mixture filtered under suction. The product was obtained 

as a blue solid (92 mg, 12 %). MS (MALDI-tof): m/z = 1412.67 [M+]. UV-vis, 

(DCM)/nm(log ε): 344(4.8), 671(4.9), 705(4.9). 1H NMR (400 MHz, CDCl3) δ 9.4 (8H, s), 

3.3–3.25 (16H, m) 2.3–2.25 (32H, m), 1.63–1.58 (64H, m), 1.4–1.35 (24H, m), 0.32 (2H, s). 

IR (KBr, cm-1): 2955, 2919, 2851, 1467, 1324, 1149, 1015. 
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Metal-free 1,4,8,11,15,18,22,25-octakis(octyl)phthalocyanine98 56 

 

4,6-dioctylphthalonitrile (0.7 g, 2.19 mmol) was added to a 1 necked round bottom 

flask and dissolved in pentanol (6 ml), to this, DBU (0.5 ml,  10 % mol) was added and the 

mixture left to reflux for 3 h. After cooling down to room temperature, MeOH (20 ml) was 

added and the resulting mixture filtered under suction and washed with MeOH. The product 

was obtained as a green solid (101 mg, 15 %). 1H NMR (400 MHz, CDCl3) δ 7.87 (s, 8H) 

ArH, 4.44 (d, J = 6.9 Hz, 16H) -CH2-, 2.08 (dt, J = 15.3, 7.7 Hz, 16H) -CH2-, 1.60 – 1.51 

(m, 16H) -CH2-, 1.36 – 1.29 (m, 16H) -CH2-, 1.27 – 1.15 (m, 54H) -CH2-, 0.79 (t, J = 6.9 

Hz, 24H) -CH3, 0.04 (s, 2H) NH. MS (MALDI-tof): m/z = 1412.67 [M+]. UV-vis, 

(DCM)/nm(log ε): 354(4.7), 701(5.0), 728(5.1). IR (KBr, cm-1): 2952, 2921, 2851, 1466, 

1327, 1148, 1026, 874. 
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Metal-free 2,3,9,10,16,17,23,24-octakis(dimethyldioxolane)phthalocyanine142 65 

 

4,5-dimethyldioxolanephthalonitrile 66 (0.37 g, 18.5 mmol) was added to a 1 necked 

round bottom flask and dissolved in pentanol (8 ml), to this, DBU (0.3 ml,  10 % mol) was 

added and the mixture left to reflux for 3 h. After cooling down to room temperature, MeOH 

(30 ml) was added and the resulting precipitate containing phthalocyanine 65 filtered off. 

The product was obtained as a dark-blue solid (80 mg, 22 %). 1H NMR (500 MHz, CDCl3) 

δ 8.51 (s, 8H), 1.53 (s, 24H). MS (MALDI-tof): m/z = 802.69 [M+]. UV-vis, (DCM)/nm(log 

ε): 347(4.1), 691(4.2), 652(4.1). IR (KBr, cm-1): 2991, 1490, 1476, 1450, 1412, 1377, 1334, 

1280, 1220, 1074, 1026, 982, 852. 
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Closed triple decker dyad 50 

 

C10 porphyrin dyad 45 (200 mg, 0.143 mmol) was mixed with lanthanum(III) 

acetylacetonate hydrate (125 mg, 0.286 mmol) in a 25 ml round bottom flask and dissolved 

in 15 ml of octanol. The mixture was set up to reflux at 200 ºC under Ar for 16 h and after 

complete metallation being checked by UV-Vis, free phthalocyanine 19 was then added and 

everything left refluxing overnight under inert atmosphere. After 18 h, the solvent was 

removed by distillation under reduced pressure and the crude recrystallised from 

DCM:MeOH. The resulting solids were then separated by column chromatography through 

silica gel using DCM:pet ether (6:4 v/v) as eluent and the first brown fraction containing the 

title product was collected as dark brown solids (268 mg, 86 %). 1H NMR (500 MHz, CDCl3) 

δ 10.08 (d, J = 7.2 Hz, 2H) HoiPh’; 9.99 (t, J = 7 Hz, 6H) HoiPh; 9.36 (dd, J = 5, 3 Hz, 8H) 

HpC; 8.48 – 8.40 (m, 6H) HooPh; 8.29 (dd, J = 5, 3 Hz, 8H) HpC; 7.98 (d, J = 6.5 Hz, 2H) 

HooPh’; 7.86 – 7.77 (m, 6H) HmiPh; 7.31 (d, J = 4 Hz, 4H) Hβ; 7.26 – 7.21 (m, 18H) Hβ, HmiPh 

and HpPh ; 6.87 (d, J = 6.0 Hz, 2H) HmiPh’; 6.73 (d, J = 7Hz, 2H) HmoPh’; 6.64 (t, J = 7 Hz, 

6H) HmoPh; 4.59 (t, J = 7 Hz, 4H) -O-CH2- ; 2.33 – 2.23 (m, 4H) -CH2-; 1.92 (m, 8H) -CH2-

; 1.81 (s, 4H) -CH2-. 
13C NMR (126 MHz, CDCl3) δ 158.74, 153.70, 148.23, 147.88, 143.14, 

136.74, 133.57, 133.43, 130.19, 128.57, 128.46, 127.74, 127.25, 125.97, 125.93, 123.60, 

120.22, 120.12, 110.26, 29.62, 29.39, 28.75, 26.76, 15.81. MS (MALDI-tof): m/z = 2186.05 

[M+]. UV-vis, (DCM)/nm(log ε): 360(4.8), 419(5.2), 485(2.7), 550(2.5), 605(2.6). IR (KBr, 

cm-1): 3053, 2928, 2855, 1606, 1513, 1469, 1439, 1406, 1330, 1288, 1243, 1198, 1177, 1116, 

1003, 984, 880. 
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Closed triple decker dyad 72 

 

C12 porphyrin dyad 46 (10 mg, 7x10-3 mmol) was mixed with lanthanum(III) 

acetylacetonate hydrate (6.4 mg, 14.7x10-3 mmol) in a 10 ml round bottom flask and 

dissolved in 5 ml of octanol. The mixture was set up to reflux at 200 ºC under Ar for 6 h and 

after complete metallation being checked by UV-Vis, The free phthalocyanine (3.6 mg, 

7x10-3 mmol) was then added and everything left refluxing overnight under inert 

atmosphere. After 18 h, the solvent was removed by distillation under reduced pressure and 

the crude was purified by column chromatography over silica gel using DCM: Pet ether (1:1 

v/v) as eluent. The fraction containing the product was then recrystallised from DCM:MeOH 

to yield the title product as dark brown solids (9.6 mg, 62 %). 1H NMR (500 MHz, CDCl3) 

δ 9.91 (t, J = 7.0 Hz, 6H) HoiPh; 9.86 (d, J = 6.5 Hz, 2H) HoiPh’; 9.37 (dd, J = 5.5, 3 Hz, 8H) 

HpC; 8.42 (t, J = 7 Hz, 6H) HooPh; 8.30 (dd, J = 5.5, 3 Hz, 8H) HpC; 7.97 (d, J = 6 Hz, 2H) 

HooPh’; 7.81 (t, J = 7.5 Hz, 6H) HmiPh; 7.31 (d, J = 4.5 Hz, 4H) Hβ; 7.25 – 7.19 (m, 18H) Hβ, 

HmiPh and HpPh ; 6.80 (d, J = 6 Hz, 2H) HmiPh’; 6.62 (d, J = 7 Hz, 8H) HmoPh’ and HmoPh; 4.46 

(t, J = 6.5 Hz, 4H) -O-CH2- ; 2.21 – 2.12 (m, 4H) -CH2-; 1.96 – 1.86 (m, 4H) -CH2-; 1.79 

(m, 4H) -CH2-; 1.73 (s, 8H) -CH2-. 
13C NMR (101 MHz, CDCl3) δ 153.71, 148.28, 147.95, 

147.92, 147.90, 143.12, 143.08, 136.77, 133.63, 133.43, 130.20, 128.66, 128.59, 128.50, 

127.23, 125.93, 123.66, 120.24, 30.03, 29.85, 29.41, 27.00, 26.71, 1.17.MS (MALDI-tof): 

m/z = 2215.01 [M+]. UV-vis, (DCM)/nm(log ε): 363(4.7), 421(5.1), 480(2.3), 553(2.1), 

611(2.5). 

 



CHAPTER 5. Experimental procedures   
 

180 
 

Open bis-triple decker 53 

 

C10 porphyrin dyad 45 (25 mg, 17.9x10-3 mmol) was mixed with lanthanum(III) 

acetylacetonate hydrate (32.7 mg, 76.0x10-3 mmol) in a 25 ml round bottom flask and 

dissolved in 10 ml of octanol. The mixture was set up to reflux at 200 ºC under Ar overnight 

and then, an excess of free phthalocyanine 19 (92 mg, 179.0x10-3 mmol) was added and 

everything left refluxing overnight under inert atmosphere. After 16 h, the reaction was 

cooled down and precipitated with pet ether. The resulting green solids were then separated 

by column chromatography through silica gel using DCM as eluent and the green  fraction 

containing the title product was collected as dark green solids (24.9 mg, 34 %). 1H NMR 

(400 MHz, CDCl3) δ 10.01 (d, J = 7.0 Hz, 12H) HArpor; 9.91 (d, J = 8.0 Hz, 5H) HArpor; 8.82 

(dd, J = 5.5, 3 Hz) HArpC; 8.41 (t, J = 7.5 Hz, 13H) HArpor; 8.23 – 8.14 (m, 9H) HArpor; 8.03 – 

7.93 (m, 9H) HArpor; 7.84 (dd, J = 5.5, 3 Hz, 32H) HArpC; 7.76 (d, J = 4.4 Hz, 3H) HArpor; 7.70 

(d, J = 7.8 Hz, 14H) HArpor; 4.81 (t, J = 6.5 Hz, 4H) -O-CH2-; 2.45 (m, 4H) -CH2-; 2.10 (m, 

4H) -CH2-, 1.93 (m, 4H) -CH2-; 1.83 (m, 8H) -CH2-. MS (MALDI-tof): m/z = 4002.84 [M+]. 

UV-vis, (DCM)/nm(log ε): 347(5.4), 417(2.9), 669(4.6), 705(4.7). IR (KBr, cm-1): 2961, 

2917, 2849, 1645, 1463, 1261, 1093, 1020, 879. (13C NMR spectra could not be obtained for 

this compound due to the absence of peaks in the processed spectrum because of the low 

amount obtained).  
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Closed triple decker 64 

 

C10 porphyrin dyad 45 (30 mg, 0.021 mmol) was mixed with lanthanum(III) 

acetylacetonate hydrate (19.26 mg, 0.044 mmol) in a 5 ml round bottom flask and dissolved 

in 3 ml of octanol. The mixture was set up to reflux at 200 ºC under Ar for 6 h. and after 

complete metallation being checked by UV-Vis, the free phthalocyanine 65 (16 mg, 0.021 

mmol) was then added and everything left refluxing overnight under inert atmosphere. After 

18 h., the solvent was removed by distillation under reduced pressure and the crude washed 

and filtered with MeOH. The resulting brown solids where then separated by column 

chromatography through silica gel using EtOAc:Pet ether (1:4 v/v) as eluent and the first 

brown fraction containing the title product was collected as dark brown solids (34.4 mg, 

76 %). 1H NMR (500 MHz, d-toluene) δ 10.41 (d, J = 8.5 Hz, 2H) HoiPh’; 10.30 (d, J = 7.0 

Hz, 4H) HoiPh; 10.25 (d, J = 7.0 Hz, 2H) HoiPh’; 9.04 (s, 2H) HpC; 9.02 (s, 2H) HpC; 9.02 (s, 

2H) HpC; 8.99 (s, 2H) HpC; 8.41 (t, J = 7.5 Hz, 6H) HooPh; 8.19 (d, J = 8.5 Hz, 2H) HooPh’; 

7.80 (d, J = 4.5 Hz, 4H) Hβ; 7.69 (d, J = 4.5 Hz, 4H) Hβ; 7.67 – 7.64 (m, 8H) Hβ; 7.60 (t, J 

= 7.5 Hz, 6H) HpPh; 7.06 (d, J = 7.5 Hz, 6H) HmiPh; 6.92 (m, 2H) HmiPh’; 6.86 (m, 2H) HmoPh’; 

6.77 (d, J = 6.5 Hz, 6H) HmoPh; 4.25 (t, J = 7.0 Hz, 4H) -O-CH2-; 2.21 (dt, J = 4.5, 2.0 Hz, 

2H) -CH2-; 2.13 – 2.11 (m, 2H) -CH2-; 2.11 – 2.09 (m, 2H) -CH2- (hidden under solvent);  

2.04 (dd, J = 4.5, 2.0 Hz, 2H) -CH2-; 1.95 (dt, J = 4.5, 2.0 Hz, 2H) -CH2-; 1.64 (s, 12H) C-

(CH3)2; 1.60 (s, 12H) C-(CH3)2; 1.58 (s, 6H) -CH2-. 
13C NMR (126 MHz, CD2Cl2) δ 151.57, 

148.06, 134.00, 128.95, 128.87, 128.76, 127.74, 126.49, 126.44, 120.61, 120.55, 30.26, 

30.24, 29.83, 29.13, 26.50, 26.43. MS (MALDI-tof): m/z = 2503.72 [M+]. UV-vis, 

(DCM)/nm(log ε): 369(4.4), 419(4.8), 556(3.5), 602(3.5). IR (KBr, cm-1): 2965, 2920, 2851, 

1605, 1471, 1396, 1261, 1066, 982, 862. 
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Closed triple decker 57 

 

 

C10 dyad 45 (9.9 mg, 7.1x10-3 mmol) was mixed with lanthanum(III) acetylacetonate 

hydrate (6.5 mg, 14.9x10-3 mmol) in a 10 ml round bottom flask and dissolved in 5 ml of 

octanol. The mixture was set up to reflux at 200 ºC under Ar for 6 h and after complete 

metallation (checked by UV-vis), free phthalocyanine 55 (10 mg, 7.08x10-3 mmol) was 

added and everything left refluxing overnight under inert atmosphere. After 16 h, the solvent 

was removed by distillation under reduced pressure to obtain green solids, that were 

separated by column chromatography using DCM:Pet ether (1:1 v/v) to obtain triple decker 

57 (18.4 mg, 83 %). 1H NMR (500 MHz, CD2Cl2) δ 10.01 (t, J = 7.0 Hz, 8H) HoiPh’, 9.12 (s, 

2H) HArpC, 9.11 (s, 2H) HArpC, 9.10 (s, 2H) HArpC, 9.07 (s, 2H) HArpC, 8.44 (dd, J = 9.0, 5.3 

Hz, 6H) HooPh, 7.98 (d, J = 6.0 Hz, 2H) HooPh’, 7.81 (t, J = 8.0 Hz, 6H) HmiPh, 7.40 – 7.15 (m, 

22H) Hβ, HmiPh and HpPh, 6.87 (d, J = 6.0 Hz, 2H) HmiPh’, 6.80 (d, J = 8.0 Hz, 2H) HmoPh’, 

6.75 (t, J = 6.0 Hz, 6H) HmoPh, 4.53 (t, J = 7.0 Hz, 4H) -O-CH2-, 3.43 – 3.26 (m, 16H) -CH2-

Pc, 2.25 (t, J = 7.0 Hz, 4H) -CH2-por, 2.18 – 2.02 (m, 16H) -CH2-Pc, 1.97 – 1.77 (m, 27H) -

CH2-, 1.74 – 1.63 (m, 16H) -CH2-Pc, 1.38 – 1.19 (m, 38H) -CH2-, 1.10 – 1.00 (m, 19H), 0.96 

(t, J = 7.0 Hz, 6H), 0.87 (t, J = 7.0 Hz, 10H). MS (MALDI-tof): m/z = 3086.15 [M+]. UV-

vis, (DCM)/nm(log ε): 365(5.5), 421(5.7), 497(3.8), 610(3.6). IR (KBr, cm-1): 2958, 2924, 

2854, 1610, 1514, 1466, 1323, 1243, 1078, 984. (13C NMR spectra could not be obtained 

due to slow decomposition in the NMR solvent)  
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Dipyrromethanes, general procedure 3 

 

 The various dipyrromethanes were obtained following a modified general method 

developed by Lindsey for the synthesis of dipyrromethanes.119 Pyrrole (25 eq) and the 

corresponding aldehyde (1.0 eq) were added to a dry round-bottomed flask and degassed 

with a stream of Ar for 5 min. TFA (0.10 eq) was then added, and the solution was stirred 

under Ar at room temperature for 5 min and then quenched with 0.1 M NaOH. Ethyl acetate 

was then added. The organic phase was washed with water and dried (Na2SO4), and the 

solvent removed under vacuum to afford an orange oil. Column chromatography followed 

by crystallization give the pure dipyrromethane as a crystalline solid as compared with 

literature data.119,125 

 

5-Phenyldipyrromethane119 76 

 

 The general procedure 3 was followed reacting benzaldehyde (1.53 g, 1.5 ml, 14.4 

mmol) and freshly distilled pyrrole (24.1 g, 25 ml, 360 mmol). The dipyrromethane 76 was 

obtained after the column chromatography in 1:1 DCM:Pet ether. To obtain the 

dipyrromethane as an analytically pure solid it had to be further purified via kugelrohr 

distillation. After the distillation, the product was obtained as a white crystalline solid 
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(0.42 g, 13 %). m.p.: 101-104 °C (lit119 = 100-101 °C). 1H NMR (500 MHz, CDCl3) δ 7.83 

(s(br), 2H), 7.18 - 7.32 (m, 5H), 6.64 (d, J = 2.6, 2H), 6.15 (d, J = 2.6, 2H), 5.89 (s, 2H), 5.43 

(s, 1H). 

 

5-(p-hydroxyphenyl)dipyrromethane119 78 

 

 The general procedure 3 was followed reacting 4-hydroxybenzaldehyde (1.76 g, 

14.4 mmol) and freshly distilled pyrrole (24.1 g, 25 ml, 360 mmol). The resultant crude 

was purified using 19:1 DCM/EtOAc as eluent for the column chromatography followed 

by crystallisation in hexane to yield the pure product as pale pink solids (2.12 g, 62 %). 

m.p.: 126 °C 1H NMR (500 MHz, CDCl3) δ 7.92 (s(br), 2H) NH, 7.08 (d, J = 8.5 Hz, 2H) 

HoPh, 6.76 (d, J = 8.5 Hz, 2H) HmPh, 6.70 (td, J = 2.5, 1.5 Hz, 2H) Hpyrr, 6.16 (q, J = 2.5 Hz, 

2H) Hpyrr, 5.94 – 5.88 (m, 1H) Hpyrr, 5.42 (s, 1H) Hmet, 4.67 (s, 1H) HOH. 13C NMR (126 

MHz, CDCl3) δ 154.56, 134.55, 132.94, 129.76, 117.30, 115.56, 108.56, 107.22, 43.29. IR 

(KBr, cm-1): 3411 (br), 3119, 1613, 1556, 1512, 1436, 1260, 1095, 844. 
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5-(p-methoxyphenyl)dipyrromethane119 77 

 

 The general procedure 3 was followed reacting 4-methoxybenzaldehyde (1.96 g, 

1.75 ml, 14.4 mmol) and freshly distilled pyrrole (24.1 g, 25 ml, 360 mmol). The resultant 

crude was purified using DCM/Pet ether (1:1 v/v) as eluent for the column chromatography 

followed by crystallization in EtO2:Hexane to yield the pure product as white solids (2.1 g, 

58 %). m.p.: 98 °C. 1H NMR (500 MHz, CDCl3) δ 7.90 (s(br), 2H) NH, 7.14 (d, J = 8.5 Hz, 

2H) HoPh, 6.86 (d, J = 8.5 Hz, 2H) HmPh, 6.69 (dd, J = 4.5, 2.5 Hz, 2H) Hpyrr, 6.16 (dd, J = 6, 

2.5 Hz, 2H) Hpyrr, 5.94 – 5.89 (m, 2H) Hpyrr, 5.43 (s, 1H) CH, 3.80 (s, 3H) –CH3. 
13C NMR 

(126 MHz, CDCl3) δ 158.69, 134.33, 132.99, 129.53, 117.24, 114.14, 108.55, 107.19, 55.44, 

43.28. IR (KBr, cm-1): 3099, 3000, 2956, 2934, 2836, 2906, 1583, 1608, 1560, 1509, 1464, 

1441, 1425, 1400, 1324, 1302, 1247, 1176, 1114, 1091, 1028, 970, 885, 841. 

 

Pentafluorophenyldipyrromethane119 90 

 

 General procedure 3 was followed reacting pentafluorobenzaldehyde (2.82 g, 

1.78 ml, 14.4 mmol) and freshly distilled pyrrole (24.1 g, 25 ml, 360 mmol). The resultant 

crude was purified using DCM/pet. ether (1:1 v/v) as eluent for the column chromatography 
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followed by kugelrohr distillation to yield the pure product as orange crystals (2.29 g, 51 %). 

m.p.: 129-130 °C. 1H NMR (CDCl3) δ 8.15 (s(br), 2H) NH, 6.73 (m, 2H) Hpyrr, 6.16 (q, J = 

3 Hz, 2H) Hpyrr, 6.12 – 5.92 (m, 2H) Hpyrr, 5.90 (s, 1H) CH. 13C NMR (126 MHz, CDCl3) δ 

33.0, 107.6, 108.6, 118.1, 128.1. 

 

Trans-5,15-bis(pentafluorophenyl)-10,20-bis(p-methoxyphenyl)porphyrin143 91 

 

Pentafluorophenyldipyrromethane 90 (2.31 g, 7.4 mmol) and p-

methoxybenzaldehyde (1.00 g, 0.9 ml, 7.4 mmol) were dissolved in 500 ml of DCM and the 

mixture stirred. To the mixture, TFA (0.1 eq) was added and everything stirred for 30 min. 

Then, DDQ (1 eq) was added and the mixture stirred for 60 min. The crude was then filtered 

through an alumina pad (7.5 cm diameter) and eluted with further DCM. The solvent was 

then evaporated to obtain a black solid that was then redissolved in toluene and DDQ was 

added and refluxed for 1 h to oxidize any remaining chlorine. The mixture was then cooled 

down and filtered through another alumina pad (4 cm diameter) and DCM added until no 

more purple solution was eluted. The solvent was then evaporated and the resulting purple 

solid was recrystallized from DCM/MeOH to obtain bright purple crystals of 91 (0.49 g, 

16 %). m.p.: > 350 °C. 1H NMR (500 MHz, CDCl3) δ 8.90 (d, J = 4.7 Hz, 4H) Hβ, 8.71 (d, 

J = 4.6 Hz, 4H) Hβ, 8.04 (d, J = 9.0 Hz, 4H) HoPh, 7.23 (d, J = 9.0 Hz, 4H) HmPh, 4.03 (s, 6H) 

–CH3, -2.88 (s, 2H) NH. 19F NMR (500 MHz, CDCl3) δ -136.78 (dd, J = 24.0, 8.3 Hz), -

152.46 (t, J = 20.8 Hz), -162.05 (td, J = 24.0, 8.3 Hz). 13C NMR (126 MHz, CDCl3) δ 159.88, 

135.82, 133.70, 129.19, 128.38, 125.45, 121.43, 116.70, 112.61, 102.14, 55.76. MS 

(MALDI-tof): m/z = 854.84 [M+]. 
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Trans-5,15-bis(pentafluorophenyl)-10,20-bis(p-hydroxyphenyl)porphyrin 92 

 

Trans-porphyrin 90 (200 mg, 0.23 mmol) was refluxed in a mixture of HBr/HOAc 

(1:1 v/v) for 24 h. Then, after cooling down the mixture, the crude was poured over a solution 

of NaHCO3 and filtered off. The solids were then collected with MeOH and triethylamine 

was added until the solution turned purple. The resultant solids from the evaporation of the 

solvent where then separated by column chromatography in DCM:Pet ether (1:1 v/v) and the 

last spot containing the pure product was collected (73.5 mg, 38 %). m.p. > 350 °C. 1H NMR 

(500 MHz, Acetone) δ 9.13 (s, 4H) Hβ, 9.01 (d, J = 4.5 Hz, 4H) Hβ, 8.96 (s, 2H) -OH, 8.06 

(d, J = 8.5 Hz, 4H) HoPh, 7.27 (d, J = 8.5 Hz, 4H) HmPh.
 19F NMR (500 MHz, Acetone) δ -

140.12 (dd, J = 24.0, 8.0 Hz), -156.04 (t, J = 20.5 Hz), -164.89 (td, J = 24.0, 8.0 Hz). 13C 

NMR (126 MHz, Acetone) δ 158.83, 136.77, 133.19, 122.73, 117.28, 115.01, 103.11, 68.16, 

26.26. MS (MALDI-tof): m/z = 827.42 [M+]. 
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Trans-porphyrin 93 

 

An impure sample of pentafluorophenyl dipyrromethane 93 (3 g, 9.6 mmol) purified 

by column chromatography and p-(10’-bromodecanoxy)benzaldehyde 84 (2 g, 5.86 mmol) 

were dissolved in 500 ml of DCM and cooled to 0 ˚C in an ice bath. The mixture was stirred 

and protected from light and TFA was added (1.2 ml). After stirring for 30 min, 1.5 g of 

DDQ were added to the mixture and the reaction continued for 60 min. The crude mixture 

was passed through an alumina pad (7.5 cm of diameter) and washed with DCM until pale 

brown solution came out. The collected washings were concentrated and the solids 

redissolved in 100 ml of toluene, 0.7 g of DDQ were added and everything refluxed for 1 h 

to oxidise any remaining chlorine. The resulting solution was passed through an alumina pad 

(3 cm of diameter) and washed with DCM. The liquids collected were then concentrated to 

approximately 50 ml and 50 ml MeOH were added and left crystallising for 1 h. The resultant 

precipitate was filtered off and separated by silica gel chromatography using DCM:pet. ether 

(1:1 v/v) as eluent followed by recrystallisation from DCM/MeOH to yield purple crystals 

of the product (0.66 g, 18 %). m.p.: 224-225 °C. 1H NMR (500 MHz, CDCl3) δ 8.99 (d, J = 

4.5 Hz, 4H) Hβ, 8.78 (d, J = 4.5 Hz, 4H) Hβ, 8.11 (d, J = 8.5 Hz, 4H) HoPh, 7.30 (d, J = 8.5 

Hz, 4H) HmPh, 4.26 (t, J = 6.5 Hz, 4H) -O-CH2-, 3.44 (dd, J = 8.5, 5.0 Hz, 4H) -CH2-, 2.03 

– 1.96 (m, 4H) -CH2-, 1.94 – 1.87 (m, 4H) -CH2-, 1.69 – 1.60 (m, 4H) -CH2-, -2.81 (s, 2H) 

NH. 19F NMR (500 MHz, CDCl3) δ -136.79 (dd, J = 24.5, 8.0 Hz), -152.50 (t, J = 20.5 Hz), 

-162.08 (m). 13C NMR (126 MHz, CDCl3) δ 159.46, 135.84, 113.11, 68.52, 34.22, 33.01, 

29.69, 29.64, 29.63, 29.59, 28.96, 28.36, 26.38. MS (MALDI-tof): m/z = 1265.76 [M+]. 
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Trans-5,15-diphenyl-10,20-di-p-hydroxyphenylporphyrin144 80 

 

 For the synthesis of 80, a modified version of the methodology provided by Adler 

was performed with a statistical mixture of aldehydes. To do so, benzaldehyde (5.3 g, 

50 mmol) and p-hydroxybenzaldehyde (6.1 g, 50 mmol) were dissolved in propionic acid 

(250 ml). When the mixture reached reflux, freshly distilled pyrrole (6.5 g, 6.7 ml, 0.1 mol) 

was added dropwise to the reaction mixture. When the addition was completed, the reaction 

was further refluxed for 30 min. Then, the mixture was allowed to cool at rt. and then 250 

ml of MeOH were added to the mixture and everything left precipitating overnight. Then, 

the mixture was filtered and washed with MeOH to recover the statistical mixture of 

porphyrins. The mixture of cis/trans isomers were previously separated from the complex 

mixture of porphyrins using THF/pet ether (1:3 v/v) as eluent. 

 

 The isomers of TPP-(OH)2 80 and 87 were then separated using silica gel 

chromatography. THF:toluene:pet ether (1:2:2 v/v) mixture was used as eluent allowing 

partial separation of the isomers. The title compound was obtained as an analytically pure 

purple crystalline solid (0.1 g, 1 %). 1H NMR (500 MHz, CDCl3) δ 8.87 (d, J = 4.5 Hz, 4H) 

Hβ, 8.84 (d, J = 4.5 Hz, 4H) Hβ, 8.21 (dd, J = 8.0, 1.5 Hz, 4H) HoPh, 8.08 (d, J = 8.5 Hz, 4H) 

HoPh’, 7.81 – 7.73 (m, 6H) HmPh and HpPh, 7.21 (d, J = 8.5 Hz, 4H) HmPh, 5.10 (s, 2H) OH, -

2.77 (s, 2H) NH. MS (MALDI-tof): m/z = 648.07 [M+]. IR (KBr, cm-1): 3327(br), 2956, 

2924, 2872, 1608, 1514, 1471, 1349, 1231, 1170, 966. (13C NMR could not be obtained due 

to the low amount of material obtained). 
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Cis-5,10-diphenyl-15,20-bis-p-hydroxyphenylporphyrin 87 

 

 Cis-porphyrin 87 was synthesised along with the trans-isomer 80. The isomers of 

TPP-(OH)2 80 and 87 were then separated using silica gel chromatography. THF:toluene:pet. 

ether (1:2:2) mixture was used as eluent allowing partial separation of the isomers. The title 

compound was obtained as a pure purple crystalline solid (0.1 g, 1 %). MS (MALDI-tof): 

m/z = 648.07 [M+]. 1H NMR (500 MHz, CDCl3) δ 8.88 (s, 4H) Hβ, 8.84 (d, J = 3.1 Hz, 4H) 

Hβ, 8.22 (d, J = 6.3 Hz, 4H) HoPh, 8.07 (d, J = 8.4 Hz, 4H) HoPh’, 7.81 – 7.72 (m, 6H) HmPh 

and HpPh, 7.19 (d, J = 8.4 Hz, 4H) HmPh’, 5.16 (s, J = 69.9 Hz, 2H) OH, -2.76 (s, 2H) NH. IR 

(KBr, cm-1): 3325(br), 2957, 2924, 2875, 1606, 1513, 1472, 1231, 966. (13C NMR could not 

be obtained due to the low amount of material obtained). 
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5,15‑Di(p‑10’-bromodecanoxyphenyl)-10,20-diphenylporphyrin 82 

 

A mixture of trans porphyrin 80 (78 mg, 120.6 mmol), potassium carbonate (83 mg, 

602.8 mmol) and 1,10-dibromodecane (144 mg, 482.2 mmol) in 75 ml acetone overnight. 

When the reaction was completed, 50 ml of distilled water were added to the mixture and 

the purple precipitate formed was filtered off. The solids were then separated by silica gel 

chromatography using DCM/Pet. ether (1:1 v/v) as eluent to recover a first purple band 

containing the mono-alkylated intermediate. Then the eluent was changed to 100 % DCM 

and the product collected, concentrated and recrystallised using DCM/Pet ether to obtain the 

title compound as a purple solid (41.1 mg, 31.5 %). 1H NMR (500 MHz, CDCl3) δ 8.88 (d, 

J = 4.5 Hz, 1H), 8.84 (d, J = 4.5 Hz, 1H), 8.22 (d, J = 6.5 Hz, 1H), 8.11 (d, J = 8.5 Hz, 1H), 

7.82 – 7.71 (m, 6H), 7.27 (d, J = 8.5 Hz, 1H), 4.25 (t, J = 6.5 Hz, 1H), 3.44 (t, J = 6.5 Hz, 

1H), 2.03 – 1.94 (m, 4H), 1.94 – 1.83 (m, 4H), 1.72 – 1.56 (m, 4H), -2.75 (s, 2H). 13C NMR 

(126 MHz, CDCl3) δ 159.13, 142.44, 135.76, 134.71, 134.50, 127.81, 126.81, 120.12, 

112.88, 77.16, 68.45, 34.22, 33.01, 29.69, 29.65, 29.63, 29.59, 28.96, 28.36, 26.38. MS 

(MALDI-tof): m/z = 1086.14 [M+]. IR (KBr, cm-1): 2930, 2853, 1606, 1505, 1465, 1351, 

1285, 1245, 1176, 965, 843. 
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Porphyrin triad 73 

 

 Trans-porphyrin 80 (15.0 mg, 0.023 mmol) and alkylated porphyrin 47 (43.5 mg, 

0.05 mmol) were dissolved in DMF. Then, potassium carbonate (16 mg, 0.11 mmol) and a 

catalytic amount of KI (≈1 mg) were added and the mixture heated to 60 ˚C and stirred for 

48 h. Then, 20 ml of distilled water were added and the precipitate formed was filtered and 

washed with MeOH. The purple solid obtained was recrystallized twice from the mixture of 

DCM:MeOH to recover the pure triad 73 (27.1 mg, 53 %).1H NMR (500 MHz, CDCl3) δ 

8.91 – 8.86 (m, 8H), 8.86 – 8.78 (m, 16H), 8.24 – 8.16 (m, J = 5.9 Hz, 16H), 8.13 – 8.08 (m, 

8H), 7.70 (s, J = 7.4 Hz, 24H), 7.31 – 7.27 (m, J = 8.4 Hz, 8H), 4.28 (s, 8H), 2.06 – 1.99 (m, 

8H), 1.68 (s, 8H), 1.25 (s, 8H), -2.77 (s, 6H). MS (MALDI-tof): m/z = 2186.50 [M+]. IR 

(KBr, cm-1): 2919, 2855, 1607, 1510, 1470, 1349, 1244, 1174, 965. (13C NMR could not be 

obtained due to precipitation of the material in the NMR tube at high concentrations). 
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Extended triple decker 75 

 

Porphyrin triad 73 (15 mg, 6.8x10-3 mmol) and lanthanum acetylacetonate hydrate 

(5.99 mg, 0.013 mmol) were dissolved in 3 ml octanol and refluxed for 8 h. Then, it was 

cooled down enough to stop the boiling and PcH2 19 (3.53 mg, 0.06 mmol) was added to the 

mixture and subjected to reflux for 18h. When the reaction was completed, the reaction was 

cooled down to rt. and a mixture of methanol/water 5 ml (10:1 v/v) was added and left 

precipitating overnight. The resultant solid was filtered off and separated by silica gel 

column chromatography using THF/Pet ether (2:3 v/v). The pure product was collected as 

the second brown fraction and further purified by recrystallisation to obtain the pure product 

(2 mg, <1 %). MS (MALDI-tof): m/z = 2974.69 [M+]. 1H NMR (500 MHz, CDCl3) δ 10.07 

(s, 2H), 9.99 (d, J = 7.4 Hz, 4H), 9.87 (s, 2H), 9.35 (dd, J = 5.3, 2.9 Hz, 8H), 8.93 (d, J = 4.8 

Hz, 2H), 8.86 (d, J = 4.7 Hz, 2H), 8.84 (s, 6H), 8.43 (t, J = 7.6 Hz, 6H), 8.29 (dd, J = 5.6, 

2.4 Hz, 8H), 8.25 – 8.20 (m, 8H), 8.16 (d, J = 8.6 Hz, 2H), 7.98 (s, 4H), 7.77 (ddd, J = 13.5, 

11.7, 7.0 Hz, 16H), 7.35 (d, J = 8.6 Hz, 2H), 7.31 – 7.29 (m, 4H), 7.24 – 7.22 (m, 6H), 6.85 

(s, 2H), 6.79 – 6.76 (m, 2H), 6.73 (s, 2H), 6.63 (d, J = 6.3 Hz, 4H), 6.57 (s, 2H), 4.65 – 4.54 

(m, 8H), 4.41 – 4.30 (m, 8H), 1.91 (s, 8H), 1.80 (s, 8H), 1.62 (s, 8H), -2.74 (s, 2H). (13C 

NMR could not be obtained due to the low amount of material obtained). 
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Extended double decker 68   

 

 For the synthesis of extended double decker 68, C10 dyad 45 (101 mg, 0.072 mmol), 

Dy(acac)3˖H2O (49.8 mg, 0.11 mmol) and PcH2 19 (37.1 mg, 0.072 mmol), were dissolved 

in 7 ml of octanol and refluxed for 24 h. Then, the solvent was distilled under pressure to 

obtain dark solids that were purified by silica gel column chromatography using THF/Pet 

ether using EtOAc/pet. ether (1:1) as eluent and the third brown band collected, concentrated 

and further separated using DCM/Pet ether (3:2) to collect the last brown fraction. The 

resultant purple-brown solids were then recrystallised from DCM/MeOH to yield the pure 

product (51 mg, 34 %). 1H NMR (500 MHz, CDCl3) δ 8.83 – 8.72 (m, 4H), 8.70 (s, 2H), 

8.49 (s, 2H), 8.23 (s, 2H), 8.19 – 8.05 (m, 8H), 8.00 (d, J = 8.3 Hz, 1H), 7.97 – 7.90 (m, 3H), 

7.74 – 7.66 (m, J = 7.1 Hz, 3H), 7.65 – 7.58 (m, 2H), 7.35 (d, J = 8.0 Hz, 2H), 7.18 (d, J = 

8.4 Hz, 1H), 6.20 (d, J = 8.2 Hz, 2H), 2.88 (d, J = 5.8 Hz, 2H), 2.81 (s, 2H), 1.30 (s, 2H), 

1.13 (s, 1H), 0.32 (s, 2H), -0.30 (s, 2H), -0.78 (s, 2H), -1.25 (s, 2H), -1.78 (s, 2H), -2.35 (s, 

2H), -2.91 (s, 1H), -3.07 (s, 2H), -3.24 (s, 2H), -3.35 (s, 2H), -3.72 (d, J = 31.9 Hz, 4H), -

18.87 (d, J = 105.7 Hz, 1H), -19.00 – -19.15 (m, 1H), -31.50 (s, 1H), -53.74 (s, 1H), -70.46 

(s, 1H). MS (MALDI-tof): m/z = 2076.06 [M+]. (1H NMR and 13C NMR could not be fully 

analysed due to problems with shifting) 
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Extended double decker 70 

 

 For the synthesis of extended double decker 70, C12 dyad 46 (25 mg, 0.017 mmol), 

Dy(acac)3˖H2O (12.1 mg, 0.022 mmol) and PcH2 19 (9.0 mg, 0.017 mmol), were dissolved 

in 7 ml of octanol and refluxed for 24 h. Then, the solvent was distilled under pressure to 

obtain dark solids where recrystallized from DCM/hexane. The resultant solid was purified 

by column chromatography over silica gel using DCM as eluent. The resultant purple 

fraction was then further separated by gravity percolation column chromatography using 

EtOAc/Pet ether (1:4) as eluent. The second brown fraction contained the product (11.4 mg, 

31 %). MS (MALDI-tof): m/z = 2102.86 [M+]. Analytically pure material could not be 

obtained and it was used without further purification at this step). 
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Crystallographic data 

Table 1.  Crystal data and structure refinement details. 

  

Identification code  2013ncs0805r1a     

Empirical formula  C130H90La2N16O2 

Formula weight  2186.00 

Temperature  100(2) K 

Wavelength  0.71075 Å 

Crystal system  Triclinic 

Space group  P1  

Unit cell dimensions a = 13.4498(9) Å  = 84.304(9)° 

 b = 14.5712(10) Å  = 70.593(8)° 

 c = 16.0742(11) Å   = 89.1220(10)° 

Volume 2956.0(4) Å3 

Z 1 

Density (calculated) 1.228 Mg / m3 

Absorption coefficient 0.769 mm1 

F(000) 1112 

Crystal Plate; Colourless 

Crystal size 0.06  0.04  0.01 mm3 

 range for data collection 2.644  25.017° 

Index ranges 15  h  15, 17  k  17, 19  l  19 

Reflections collected 42896 

Independent reflections 10369 [Rint = 0.1379] 

Completeness to  = 25.242° 97.0 %  

Absorption correction Semiempirical from equivalents 

Max. and min. transmission 1.000 and 0.729 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 10369 / 3132 / 1069 

Goodness-of-fit on F2 1.035 
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Final R indices [F2 > 2(F2)] R1 = 0.0853, wR2 = 0.1820 

R indices (all data) R1 = 0.1564, wR2 = 0.2064 

Extinction coefficient n/a 

Largest diff. peak and hole 1.216 and 0.966 e Å3 

 

Diffractometer: Rigaku AFC12 goniometer equipped with an enhanced sensitivity (HG) 

Saturn724+ detector mounted at the window of an FR-E+ SuperBright molybdenum 

rotating anode generator with VHF Varimax optics (70µm focus). Cell determination and 

data collection: CrystalClear-SM Expert 3.1 b27 (Rigaku, 2013). Data reduction, cell 

refinement and absorption correction: CrystalClear-SM Expert 3.1 b27 (Rigaku, 2013). 

Structure solution: SUPERFLIP (Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 

786-790). Structure refinement: SHELXL-2012 (Sheldrick, G.M. (2008). Acta Cryst. A64, 

112-122). Graphics: OLEX2 (Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. 

A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341). 

 

Special details:  

DELU, SIMU and RIGU restraints applied to whole structure.  Selective DFIX restraints 

applied (see CIF for details). Solvent mask applied (see CIF for details).  Full details of 

restraints applied are listed in CIF 
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Table 2. Atomic coordinates [ 104], equivalent isotropic displacement parameters [Å2  

103] and site occupancy factors. Ueq is defined as one third of the trace of the 

orthogonalized Uij tensor. 

 

Atom  x y z Ueq S.o.f. 

 

La1 1009(1) 4633(1) 605(1) 42(1) 1 

N1 2064(6) 5742(5) 1069(5) 55(2) 1 

N2 501(6) 4373(5) 2250(4) 52(2) 1 

N3 1362(5) 2990(5) 984(4) 47(2) 1 

N4 2900(5) 4361(5) 195(5) 55(2) 1 

N5 900(20) 3372(14) 1426(19) 47(7) 0.65(2) 

N6 1100(20) 4960(13) 1153(15) 41(3) 0.65(2) 

N7 1757(19) 6538(13) 1419(13) 38(5) 0.65(2) 

N8 303(12) 6293(9) 26(9) 37(2) 0.65(2) 

C55 1370(20) 4212(14) 1630(16) 39(4) 0.65(2) 

C56 2233(19) 4452(13) 2455(14) 43(5) 0.65(2) 

C57 2771(17) 3953(14) 3168(13) 56(6) 0.65(2) 

C58 3537(17) 4408(14) 3871(13) 76(7) 0.65(2) 

C59 3809(15) 5318(13) 3867(11) 70(6) 0.65(2) 

C60 3297(17) 5823(13) 3158(12) 57(6) 0.65(2) 

C61 2468(15) 5393(12) 2471(11) 38(5) 0.65(2) 

C62 1756(18) 5690(12) 1642(12) 37(4) 0.65(2) 

C63 1100(20) 6815(11) 672(13) 37(4) 0.65(2) 

C64 1085(19) 7756(12) 430(12) 47(5) 0.65(2) 

C65 1642(14) 8576(10) 871(11) 59(5) 0.65(2) 

C66 1352(17) 9363(11) 479(12) 84(6) 0.65(2) 

C67 516(17) 9401(11) 314(13) 92(7) 0.65(2) 

C68 31(15) 8614(10) 767(11) 67(5) 0.65(2) 

C69 252(15) 7788(10) 375(11) 50(5) 0.65(2) 
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C70 201(17) 6856(11) 628(11) 35(4) 0.65(2) 

C1 2921(8) 6235(7) 498(7) 66(2) 1 

C2 3025(9) 7087(8) 851(8) 87(3) 1 

C3 2246(9) 7081(8) 1622(8) 85(3) 1 

C4 1621(8) 6235(7) 1791(6) 65(2) 1 

C5 776(8) 5969(6) 2552(6) 60(2) 1 

C6 265(7) 5095(6) 2778(5) 52(2) 1 

C7 558(8) 4790(6) 3581(6) 63(2) 1 

C8 793(8) 3899(6) 3572(6) 61(2) 1 

C9 107(7) 3625(6) 2717(5) 47(2) 1 

C10 39(7) 2732(6) 2454(5) 48(2) 1 

C11 667(7) 2412(6) 1672(5) 51(2) 1 

C12 806(7) 1487(6) 1465(6) 57(2) 1 

C13 1589(8) 1499(6) 685(6) 64(3) 1 

C14 1954(7) 2433(6) 382(6) 51(2) 1 

C15 2809(7) 2722(6) 388(6) 59(2) 1 

C16 3256(7) 3589(6) 635(6) 58(2) 1 

C17 4218(7) 3848(7) 1357(7) 69(3) 1 

C18 4448(7) 4732(7) 1350(7) 67(3) 1 

C19 3633(7) 5073(7) 609(6) 59(2) 1 

C20 3632(7) 5953(7) 313(7) 69(2) 1 

C21 490(50) 6620(40) 3250(30) 65(5) 0.36(2) 

C22 330(40) 7100(30) 3250(20) 76(6) 0.36(2) 

C23 650(40) 7830(30) 3810(30) 81(6) 0.36(2) 

C24 110(40) 7980(40) 4380(30) 83(7) 0.36(2) 

C25 750(40) 7400(20) 4340(20) 86(7) 0.36(2) 

C26 1090(40) 6720(20) 3750(20) 78(6) 0.36(2) 

C27 726(7) 1959(6) 3087(5) 54(2) 1 

C28 1723(9) 1801(8) 3085(7) 81(3) 1 

C29 2318(10) 1027(8) 3615(8) 91(3) 1 
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C30 1888(9) 472(7) 4144(6) 66(2) 1 

C31 944(9) 664(7) 4155(7) 77(3) 1 

C32 355(9) 1412(7) 3640(6) 70(2) 1 

C33 3260(20) 1950(20) 1060(20) 71(5) 0.51(3) 

C34 2810(20) 1833(19) 1708(17) 66(5) 0.51(3) 

C35 3130(20) 1109(15) 2241(17) 79(6) 0.51(3) 

C36 3940(20) 550(19) 2118(19) 91(6) 0.51(3) 

C37 4390(20) 670(18) 1470(20) 92(6) 0.51(3) 

C38 4050(20) 1385(18) 919(19) 84(5) 0.51(3) 

C39 4384(17) 6710(20) 930(30) 68(4) 0.5 

C40 4193(13) 7198(12) 1646(12) 55(4) 0.5 

C41 4892(13) 7894(13) 2190(13) 57(4) 0.5 

C42 5768(15) 8113(14) 1988(14) 61(4) 0.5 

C43 5983(16) 7660(18) 1312(14) 79(5) 0.5 

C44 5307(16) 6944(17) 776(14) 82(5) 0.5 

O1 6390(10) 8834(10) 2538(9) 78(3) 0.5 

O2 2421(11) 332(9) 4699(8) 72(3) 0.5 

C45 7268(15) 9090(15) 2365(14) 74(5) 0.5 

C46 7806(15) 9922(14) 3019(15) 76(5) 0.5 

C47 7369(16) 10754(14) 2967(13) 70(4) 0.5 

C48 6822(17) 11063(13) 3564(13) 69(4) 0.5 

C49 6362(19) 12086(15) 3589(15) 85(5) 0.5 

C50 6000(20) 12337(15) 4353(16) 87(5) 0.5 

C51 5023(17) 11895(14) 4372(13) 73(5) 0.5 

C52 4647(19) 11936(15) 5143(14) 83(5) 0.5 

C53 3741(19) 11556(14) 5180(14) 81(5) 0.5 

C54 3394(16) 10608(13) 4652(13) 68(5) 0.5 

N5A 1100(40) 3410(20) 1390(30) 29(6) 0.35(2) 

N6A 1150(40) 5010(20) 1110(30) 42(3) 0.35(2) 
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N7A 1870(40) 6570(20) 1290(20) 36(7) 0.35(2) 

N8A 380(20) 6294(16) 89(16) 37(2) 0.35(2) 

C55A 1480(50) 4280(30) 1600(30) 43(6) 0.35(2) 

C56A 2400(40) 4530(20) 2370(30) 42(7) 0.35(2) 

C57A 3020(30) 4050(20) 3070(30) 54(9) 0.35(2) 

C58A 3850(30) 4520(30) 3700(20) 64(9) 0.35(2) 

C59A 4100(30) 5410(30) 3630(20) 73(9) 0.35(2) 

C60A 3480(30) 5930(20) 2970(20) 56(9) 0.35(2) 

C61A 2650(30) 5450(20) 2320(20) 40(7) 0.35(2) 

C62A 1860(40) 5740(20) 1520(20) 41(6) 0.35(2) 

C63A 1180(40) 6820(20) 540(30) 37(6) 0.35(2) 

C64A 1190(40) 7750(20) 280(30) 50(7) 0.35(2) 

C65A 1960(20) 8478(17) 611(18) 49(7) 0.35(2) 

C66A 1830(30) 9196(18) 120(20) 72(8) 0.35(2) 

C67A 1060(30) 9180(20) 710(20) 84(9) 0.35(2) 

C68A 370(30) 8440(19) 1100(20) 71(8) 0.35(2) 

C69A 440(30) 7719(19) 570(20) 53(8) 0.35(2) 

C70A 110(40) 6830(20) 770(30) 45(7) 0.35(2) 

C33A 3400(30) 1960(20) 845(19) 63(5) 0.49(3) 

C34A 3100(30) 1684(19) 1552(19) 61(5) 0.49(3) 

C35A 3570(30) 930(20) 2019(17) 71(5) 0.49(3) 

C36A 4300(30) 450(20) 1790(20) 87(6) 0.49(3) 

C37A 4630(20) 697(18) 1050(20) 86(6) 0.49(3) 

C38A 4170(20) 1480(20) 570(20) 81(6) 0.49(3) 

C21A 310(30) 6680(20) 3202(19) 58(4) 0.64(2) 

C22A 216(17) 7476(13) 2985(14) 66(4) 0.64(2) 

C23A 590(20) 8132(16) 3577(14) 77(5) 0.64(2) 

C24A 514(18) 8021(19) 4406(17) 72(5) 0.64(2) 

C25A 10(20) 7269(14) 4640(13) 83(5) 0.64(2) 

C26A 387(19) 6589(13) 4067(12) 73(5) 0.64(2) 
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C39A 4506(18) 6590(20) 810(30) 78(5) 0.5 

C40A 4264(17) 7388(16) 1235(19) 98(7) 0.5 

C41A 5072(18) 8015(16) 1760(20) 105(7) 0.5 

C42A 6103(19) 7770(20) 1920(20) 101(7) 0.5 

C43A 6327(15) 7032(17) 1463(15) 82(5) 0.5 

C44A 5558(15) 6372(16) 966(14) 76(5) 0.5 

 

Table 3. Bond lengths [Å] and angles [°]. 

  

La1N1 2.488(7) 

La1N2 2.493(6) 

La1N3 2.491(7) 

La1N4 2.486(7) 

La1N6i 2.75(3) 

La1N6 2.78(3) 

La1N8i 2.686(12) 

La1N8 2.804(14) 

La1N6Ai 2.80(6) 

La1N6A 2.70(6) 

La1N8Ai 2.89(2) 

La1N8A 2.69(2) 

N1C1 1.371(11) 

N1C4 1.383(11) 

N2C6 1.385(10) 

N2C9 1.370(10) 

N3C11 1.399(10) 

N3C14 1.361(10) 

N4C16 1.382(11) 

N4C19 1.396(11) 
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N5C55 1.344(12) 

N5C70i 1.33(3) 

N6La1i 2.75(3) 

N6C55 1.369(11) 

N6C62 1.389(12) 

N7C62 1.320(12) 

N7C63 1.331(11) 

N8La1i 2.686(12) 

N8C63 1.388(11) 

N8C70 1.384(11) 

C55C56 1.458(12) 

C56C57 1.400(12) 

C56C61 1.408(14) 

C57H57 0.9500 

C57C58 1.370(15) 

C58H58 0.9500 

C58C59 1.382(17) 

C59H59 0.9500 

C59C60 1.394(15) 

C60H60 0.9500 

C60C61 1.386(13) 

C61C62 1.461(12) 

C63C64 1.460(13) 

C64C65 1.414(15) 

C64C69 1.407(14) 

C65H65 0.9500 

C65C66 1.353(15) 

C66H66 0.9500 

C66C67 1.397(16) 
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C67H67 0.9500 

C67C68 1.375(16) 

C68H68 0.9500 

C68C69 1.401(15) 

C69C70 1.461(14) 

C70N5i 1.33(3) 

C1C2 1.442(13) 

C1C20 1.431(13) 

C2H2 0.9500 

C2C3 1.331(14) 

C3H3 0.9500 

C3C4 1.454(13) 

C4C5 1.390(13) 

C5C6 1.412(12) 

C5C21 1.495(19) 

C5C21A 1.520(15) 

C6C7 1.429(12) 

C7H7 0.9500 

C7C8 1.343(12) 

C8H8 0.9500 

C8C9 1.469(11) 

C9C10 1.400(11) 

C10C11 1.417(11) 

C10C27 1.529(12) 

C11C12 1.414(11) 

C12H12 0.9500 

C12C13 1.342(12) 

C13H13 0.9500 

C13C14 1.436(12) 
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C14C15 1.413(11) 

C15C16 1.372(12) 

C15C33 1.61(3) 

C15C33A 1.46(3) 

C16C17 1.448(12) 

C17H17 0.9500 

C17C18 1.330(13) 

C18H18 0.9500 

C18C19 1.449(12) 

C19C20 1.412(13) 

C20C39 1.541(15) 

C20C39A 1.469(15) 

C21C22 1.29(6) 

C21C26 1.34(6) 

C22H22 0.9500 

C22C23 1.44(5) 

C23H23 0.9500 

C23C24 1.37(7) 

C24H24 0.9500 

C24C25 1.41(6) 

C25H25 0.9500 

C25C26 1.41(4) 

C26H26 0.9500 

C27C28 1.365(14) 

C27C32 1.348(13) 

C28H28 0.9500 

C28C29 1.422(14) 

C29H29 0.9500 

C29C30 1.375(15) 
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C30H30 0.9500 

C30C31 1.310(14) 

C30O2 1.440(15) 

C31H31 0.9500 

C31C32 1.383(13) 

C32H32 0.9500 

C33C34 1.396(10) 

C33C38 1.398(10) 

C34H34 0.9500 

C34C35 1.397(10) 

C35H35 0.9500 

C35C36 1.396(10) 

C36H36 0.9500 

C36C37 1.399(10) 

C37H37 0.9500 

C37C38 1.403(10) 

C38H38 0.9500 

C39C40 1.39(2) 

C39C44 1.39(2) 

C40H40 0.9500 

C40C41 1.408(18) 

C41H41 0.9500 

C41C42 1.37(2) 

C42C43 1.33(3) 

C42O1 1.39(2) 

C43H43 0.9500 

C43C44 1.41(2) 

C44H44 0.9500 

O1C45 1.36(2) 
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O2C54i 1.40(2) 

C45H45A 0.9900 

C45H45B 0.9900 

C45C46 1.54(3) 

C46H46A 0.9900 

C46H46B 0.9900 

C46C47 1.34(3) 

C47H47A 0.9900 

C47H47B 0.9900 

C47C48 1.43(3) 

C48H48A 0.9900 

C48H48B 0.9900 

C48C49 1.61(3) 

C49H49A 0.9900 

C49H49B 0.9900 

C49C50 1.47(3) 

C50H50A 0.9900 

C50H50B 0.9900 

C50C51 1.49(3) 

C51H51A 0.9900 

C51H51B 0.9900 

C51C52 1.48(3) 

C52H52A 0.9900 

C52H52B 0.9900 

C52C53 1.37(3) 

C53H53A 0.9900 

C53H53B 0.9900 

C53C54 1.54(3) 

C54O2i 1.40(2) 
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C54H54A 0.9900 

C54H54B 0.9900 

N5AC55A 1.341(16) 

N5AC70Ai 1.40(5) 

N6ALa1i 2.80(6) 

N6AC55A 1.371(15) 

N6AC62A 1.385(16) 

N7AC62A 1.318(16) 

N7AC63A 1.326(15) 

N8ALa1i 2.89(2) 

N8AC63A 1.385(16) 

N8AC70A 1.380(16) 

C55AC56A 1.457(16) 

C56AC57A 1.403(17) 

C56AC61A 1.403(17) 

C57AH57A 0.9500 

C57AC58A 1.367(19) 

C58AH58A 0.9500 

C58AC59A 1.38(2) 

C59AH59A 0.9500 

C59AC60A 1.390(19) 

C60AH60A 0.9500 

C60AC61A 1.391(17) 

C61AC62A 1.458(16) 

C63AC64A 1.458(16) 

C64AC65A 1.42(2) 

C64AC69A 1.402(18) 

C65AH65A 0.9500 

C65AC66A 1.348(19) 
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C66AH66A 0.9500 

C66AC67A 1.40(2) 

C67AH67A 0.9500 

C67AC68A 1.38(2) 

C68AH68A 0.9500 

C68AC69A 1.394(19) 

C69AC70A 1.459(18) 

C70AN5Ai 1.40(5) 

C33AC34A 1.42(3) 

C33AC38A 1.41(3) 

C34AH34A 0.9500 

C34AC35A 1.41(3) 

C35AH35A 0.9500 

C35AC36A 1.33(4) 

C36AH36A 0.9500 

C36AC37A 1.47(4) 

C37AH37A 0.9500 

C37AC38A 1.45(3) 

C38AH38A 0.9500 

C21AC22A 1.42(3) 

C21AC26A 1.42(3) 

C22AH22A 0.9500 

C22AC23A 1.39(2) 

C23AH23A 0.9500 

C23AC24A 1.36(3) 

C24AH24A 0.9500 

C24AC25A 1.37(3) 

C25AH25A 0.9500 

C25AC26A 1.40(2) 
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C26AH26A 0.9500 

C39AC40A 1.37(2) 

C39AC44A 1.39(3) 

C40AH40A 0.9500 

C40AC41A 1.41(2) 

C41AH41A 0.9500 

C41AC42A 1.38(3) 

C42AH42A 0.9500 

C42AC43A 1.32(3) 

C43AH43A 0.9500 

C43AC44A 1.40(2) 

C44AH44A 0.9500 

N1La1N2 72.8(2) 

N1La1N3 113.3(2) 

N1La1N6 114.5(4) 

N1La1N6i 112.1(4) 

N1La1N8 80.6(3) 

N1La1N8i 169.7(3) 

N1La1N6Ai 114.8(7) 

N1La1N6A 112.0(8) 

N1La1N8Ai 167.5(5) 

N1La1N8A 76.5(5) 

N2La1N6 167.4(6) 

N2La1N6i 77.5(6) 

N2La1N8i 110.8(3) 

N2La1N8 114.5(3) 

N2La1N6Ai 79.2(12) 

N2La1N6A 168.5(12) 

N2La1N8A 111.3(5) 
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N2La1N8Ai 113.2(5) 

N3La1N2 72.7(2) 

N3La1N6i 113.5(4) 

N3La1N6 111.4(4) 

N3La1N8 166.0(3) 

N3La1N8i 76.9(3) 

N3La1N6Ai 112.1(8) 

N3La1N6A 113.0(8) 

N3La1N8A 170.2(5) 

N3La1N8Ai 79.1(5) 

N4La1N1 72.6(2) 

N4La1N2 114.1(2) 

N4La1N3 72.4(2) 

N4La1N6i 168.4(6) 

N4La1N6 78.4(6) 

N4La1N8 112.7(4) 

N4La1N8i 113.1(4) 

N4La1N6A 77.4(12) 

N4La1N6Ai 166.7(11) 

N4La1N8Ai 112.6(6) 

N4La1N8A 112.4(6) 

N6iLa1N6 90.0(4) 

N6iLa1N8 59.2(6) 

N6La1N8 59.0(5) 

N8iLa1N6i 60.7(5) 

N8iLa1N6 60.3(6) 

N8iLa1N8 89.2(4) 

N6ALa1N6Ai 89.4(8) 

N6ALa1N8Ai 60.1(11) 
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N6AiLa1N8Ai 57.9(9) 

N8ALa1N6A 61.4(9) 

N8ALa1N6Ai 61.2(11) 

N8ALa1N8Ai 91.1(6) 

C1N1La1 124.2(6) 

C1N1C4 108.0(7) 

C4N1La1 121.9(6) 

C6N2La1 121.9(5) 

C9N2La1 121.2(5) 

C9N2C6 107.9(7) 

C11N3La1 124.0(5) 

C14N3La1 123.8(5) 

C14N3C11 106.6(7) 

C16N4La1 123.5(6) 

C16N4C19 107.2(7) 

C19N4La1 123.1(6) 

C70iN5C55 120.4(18) 

La1iN6La1 90.0(4) 

C55N6La1i 115(2) 

C55N6La1 115(2) 

C55N6C62 107.2(9) 

C62N6La1 115.3(17) 

C62N6La1i 114.0(18) 

C62N7C63 123.5(11) 

La1iN8La1 90.8(4) 

C63N8La1i 116.0(12) 

C63N8La1 113.5(13) 

C70N8La1 114.2(11) 

C70N8La1i 114.1(11) 
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C70N8C63 107.7(9) 

N5C55N6 127.3(11) 

N5C55C56 122.1(11) 

N6C55C56 110.5(9) 

C57C56C55 133.0(11) 

C57C56C61 120.7(10) 

C61C56C55 106.3(8) 

C56C57H57 121.1 

C58C57C56 117.9(12) 

C58C57H57 121.1 

C57C58H58 119.3 

C57C58C59 121.5(11) 

C59C58H58 119.3 

C58C59H59 119.2 

C58C59C60 121.6(11) 

C60C59H59 119.2 

C59C60H60 121.2 

C61C60C59 117.5(12) 

C61C60H60 121.2 

C56C61C62 106.0(9) 

C60C61C56 120.5(10) 

C60C61C62 133.3(10) 

N6C62C61 110.0(9) 

N7C62N6 126.7(10) 

N7C62C61 123.3(10) 

N7C63N8 127.0(10) 

N7C63C64 123.6(10) 

N8C63C64 109.4(9) 

C65C64C63 133.3(10) 
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C69C64C63 106.7(9) 

C69C64C65 119.6(11) 

C64C65H65 121.3 

C66C65C64 117.4(11) 

C66C65H65 121.3 

C65C66H66 118.4 

C65C66C67 123.1(13) 

C67C66H66 118.4 

C66C67H67 119.6 

C68C67C66 120.9(12) 

C68C67H67 119.6 

C67C68H68 121.4 

C67C68C69 117.1(11) 

C69C68H68 121.4 

C64C69C70 106.4(9) 

C68C69C64 121.7(11) 

C68C69C70 131.9(11) 

N5iC70N8 129.0(14) 

N5iC70C69 120.8(13) 

N8C70C69 109.7(9) 

N1C1C2 109.5(9) 

N1C1C20 126.2(8) 

C20C1C2 124.3(9) 

C1C2H2 126.9 

C3C2C1 106.3(9) 

C3C2H2 126.9 

C2C3H3 125.1 

C2C3C4 109.8(9) 

C4C3H3 125.1 
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N1C4C3 106.4(8) 

N1C4C5 127.6(8) 

C5C4C3 125.9(9) 

C4C5C6 126.1(8) 

C4C5C21 117(3) 

C4C5C21A 118.8(17) 

C6C5C21 117(3) 

C6C5C21A 115.0(17) 

N2C6C5 125.0(8) 

N2C6C7 108.0(8) 

C5C6C7 127.0(8) 

C6C7H7 125.3 

C8C7C6 109.4(8) 

C8C7H7 125.3 

C7C8H8 126.9 

C7C8C9 106.1(8) 

C9C8H8 126.9 

N2C9C8 108.5(7) 

N2C9C10 126.0(7) 

C10C9C8 125.4(8) 

C9C10C11 127.8(8) 

C9C10C27 119.1(7) 

C11C10C27 112.9(7) 

N3C11C10 123.6(7) 

N3C11C12 109.5(7) 

C12C11C10 126.9(8) 

C11C12H12 126.7 

C13C12C11 106.6(8) 

C13C12H12 126.7 
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C12C13H13 125.5 

C12C13C14 109.0(8) 

C14C13H13 125.5 

N3C14C13 108.2(7) 

N3C14C15 125.8(8) 

C15C14C13 125.9(8) 

C14C15C33 115.5(15) 

C14C15C33A 114.1(15) 

C16C15C14 127.1(8) 

C16C15C33 117.4(15) 

C16C15C33A 117.4(15) 

N4C16C17 107.7(8) 

C15C16N4 125.6(8) 

C15C16C17 126.5(8) 

C16C17H17 125.3 

C18C17C16 109.4(9) 

C18C17H17 125.3 

C17C18H18 126.5 

C17C18C19 107.1(9) 

C19C18H18 126.5 

N4C19C18 108.6(8) 

N4C19C20 125.8(8) 

C20C19C18 125.4(9) 

C1C20C39 116(2) 

C1C20C39A 117(2) 

C19C20C1 125.2(8) 

C19C20C39 119(2) 

C19C20C39A 118(2) 

C22C21C5 112(4) 
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C22C21C26 127(3) 

C26C21C5 121(4) 

C21C22H22 120.3 

C21C22C23 119(4) 

C23C22H22 120.3 

C22C23H23 120.2 

C24C23C22 120(4) 

C24C23H23 120.2 

C23C24H24 122.1 

C23C24C25 116(4) 

C25C24H24 122.1 

C24C25H25 117.9 

C26C25C24 124(4) 

C26C25H25 117.9 

C21C26C25 114(3) 

C21C26H26 123.0 

C25C26H26 123.0 

C28C27C10 120.1(9) 

C32C27C10 120.9(9) 

C32C27C28 119.0(9) 

C27C28H28 120.2 

C27C28C29 119.6(10) 

C29C28H28 120.2 

C28C29H29 120.5 

C30C29C28 119.0(11) 

C30C29H29 120.5 

C29C30H30 120.1 

C29C30O2 123.3(12) 

C31C30C29 119.7(11) 
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C31C30H30 120.1 

C31C30O2 117.0(11) 

C30C31H31 119.1 

C30C31C32 121.9(11) 

C32C31H31 119.1 

C27C32C31 120.7(10) 

C27C32H32 119.7 

C31C32H32 119.7 

C34C33C15 119.4(18) 

C34C33C38 123(2) 

C38C33C15 117.3(17) 

C33C34H34 120.3 

C33C34C35 120(2) 

C35C34H34 120.2 

C34C35H35 121.1 

C36C35C34 118(3) 

C36C35H35 121.1 

C35C36H36 118.8 

C35C36C37 122(3) 

C37C36H36 118.8 

C36C37H37 120.0 

C36C37C38 120(2) 

C38C37H37 120.0 

C33C38C37 117(2) 

C33C38H38 121.5 

C37C38H38 121.5 

C40C39C20 123.2(17) 

C40C39C44 116.6(14) 

C44C39C20 120.2(18) 
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C39C40H40 119.1 

C39C40C41 121.8(16) 

C41C40H40 119.1 

C40C41H41 120.5 

C42C41C40 118.9(18) 

C42C41H41 120.5 

C41C42O1 115.1(18) 

C43C42C41 121.1(17) 

C43C42O1 123.8(18) 

C42C43H43 119.7 

C42C43C44 120.6(18) 

C44C43H43 119.7 

C39C44C43 120.9(18) 

C39C44H44 119.5 

C43C44H44 119.5 

C45O1C42 117.8(16) 

C54iO2C30 118.8(14) 

O1C45H45A 109.8 

O1C45H45B 109.8 

O1C45C46 109.2(18) 

H45AC45H45B 108.3 

C46C45H45A 109.8 

C46C45H45B 109.8 

C45C46H46A 107.0 

C45C46H46B 107.0 

H46AC46H46B 106.7 

C47C46C45 121.3(18) 

C47C46H46A 107.0 

C47C46H46B 107.0 
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C46C47H47A 107.5 

C46C47H47B 107.5 

C46C47C48 119.4(19) 

H47AC47H47B 107.0 

C48C47H47A 107.5 

C48C47H47B 107.5 

C47C48H48A 106.9 

C47C48H48B 106.9 

C47C48C49 121.8(17) 

H48AC48H48B 106.7 

C49C48H48A 106.9 

C49C48H48B 106.9 

C48C49H49A 108.8 

C48C49H49B 108.8 

H49AC49H49B 107.7 

C50C49C48 113.8(17) 

C50C49H49A 108.8 

C50C49H49B 108.8 

C49C50H50A 107.6 

C49C50H50B 107.6 

C49C50C51 119(2) 

H50AC50H50B 107.1 

C51C50H50A 107.6 

C51C50H50B 107.6 

C50C51H51A 105.8 

C50C51H51B 105.8 

H51AC51H51B 106.2 

C52C51C50 126.1(19) 

C52C51H51A 105.8 
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C52C51H51B 105.8 

C51C52H52A 105.4 

C51C52H52B 105.4 

H52AC52H52B 106.0 

C53C52C51 127.7(19) 

C53C52H52A 105.4 

C53C52H52B 105.4 

C52C53H53A 108.2 

C52C53H53B 108.2 

C52C53C54 116(2) 

H53AC53H53B 107.3 

C54C53H53A 108.2 

C54C53H53B 108.2 

O2iC54C53 110.4(18) 

O2iC54H54A 109.6 

O2iC54H54B 109.6 

C53C54H54A 109.6 

C53C54H54B 109.6 

H54AC54H54B 108.1 

C55AN5AC70Ai 123(3) 

La1N6ALa1i 90.6(8) 

C55AN6ALa1 113(4) 

C55AN6ALa1i 115(4) 

C55AN6AC62A 107.0(14) 

C62AN6ALa1i 119(3) 

C62AN6ALa1 112(4) 

C62AN7AC63A 121.6(17) 

La1N8ALa1i 88.9(6) 

C63AN8ALa1i 115(2) 
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C63AN8ALa1 114(2) 

C70AN8ALa1i 115(2) 

C70AN8ALa1 115(2) 

C70AN8AC63A 108.1(14) 

N5AC55AN6A 127.3(19) 

N5AC55AC56A 121.7(19) 

N6AC55AC56A 110.7(14) 

C57AC56AC55A 133.4(17) 

C61AC56AC55A 106.0(13) 

C61AC56AC57A 120.5(15) 

C56AC57AH57A 121.3 

C58AC57AC56A 117.4(18) 

C58AC57AH57A 121.3 

C57AC58AH58A 119.2 

C57AC58AC59A 121.5(18) 

C59AC58AH58A 119.2 

C58AC59AH59A 118.8 

C58AC59AC60A 122.5(19) 

C60AC59AH59A 118.8 

C59AC60AH60A 122.0 

C61AC60AC59A 115.9(18) 

C61AC60AH60A 122.0 

C56AC61AC62A 106.4(13) 

C60AC61AC56A 121.6(15) 

C60AC61AC62A 131.9(17) 

N6AC62AC61A 109.9(13) 

N7AC62AN6A 128.5(17) 

N7AC62AC61A 121.5(17) 

N7AC63AN8A 128.3(17) 
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N7AC63AC64A 121.4(17) 

N8AC63AC64A 110.3(13) 

C65AC64AC63A 131(2) 

C69AC64AC63A 104.6(13) 

C69AC64AC65A 121.5(19) 

C64AC65AH65A 121.7 

C66AC65AC64A 116.6(17) 

C66AC65AH65A 121.7 

C65AC66AH66A 119.4 

C65AC66AC67A 121.1(19) 

C67AC66AH66A 119.4 

C66AC67AH67A 118.2 

C68AC67AC66A 123.6(19) 

C68AC67AH67A 118.2 

C67AC68AH68A 122.1 

C67AC68AC69A 115.8(18) 

C69AC68AH68A 122.1 

C64AC69AC70A 108.4(14) 

C68AC69AC64A 120.8(17) 

C68AC69AC70A 130.7(18) 

N5AiC70AC69A 128(3) 

N8AC70AN5Ai 122(3) 

N8AC70AC69A 108.1(14) 

C34AC33AC15 117(2) 

C34AC33AC38A 120(2) 

C38AC33AC15 123(2) 

C33AC34AH34A 118.9 

C35AC34AC33A 122(2) 

C35AC34AH34A 118.9 
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C34AC35AH35A 120.1 

C36AC35AC34A 120(2) 

C36AC35AH35A 120.1 

C35AC36AH36A 119.6 

C35AC36AC37A 121(2) 

C37AC36AH36A 119.6 

C36AC37AH37A 119.9 

C38AC37AC36A 120(2) 

C38AC37AH37A 119.9 

C33AC38AH38A 121.7 

C37AC38AC33A 117(2) 

C37AC38AH38A 121.7 

C22AC21AC5 122.8(19) 

C26AC21AC5 121(2) 

C26AC21AC22A 115.7(14) 

C21AC22AH22A 119.3 

C23AC22AC21A 121.5(16) 

C23AC22AH22A 119.3 

C22AC23AH23A 119.3 

C24AC23AC22A 121.3(19) 

C24AC23AH23A 119.3 

C23AC24AH24A 120.4 

C23AC24AC25A 119(2) 

C25AC24AH24A 120.4 

C24AC25AH25A 119.2 

C24AC25AC26A 121.5(17) 

C26AC25AH25A 119.2 

C21AC26AH26A 119.7 

C25AC26AC21A 120.6(17) 
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C25AC26AH26A 119.7 

C40AC39AC20 117.3(17) 

C40AC39AC44A 119.5(16) 

C44AC39AC20 123(2) 

C39AC40AH40A 119.9 

C39AC40AC41A 120.2(19) 

C41AC40AH40A 119.9 

C40AC41AH41A 120.7 

C42AC41AC40A 119(2) 

C42AC41AH41A 120.7 

C41AC42AH42A 120.0 

C43AC42AC41A 120(2) 

C43AC42AH42A 120.0 

C42AC43AH43A 118.9 

C42AC43AC44A 122.2(19) 

C44AC43AH43A 118.9 

C39AC44AC43A 117.7(19) 

C39AC44AH44A 121.2 

C43AC44AH44A 121.2 

 

Symmetry transformations used to generate equivalent atoms:  

(i) x,y+1,z       

 

Table 4. Anisotropic displacement parameters [Å2 103]. The anisotropic displacement 

factor exponent takes the form: 2 2[h2a*2U11 + ... + 2 h k a* b* U12 ]. 

 

Atom U11 U22 U33 U23 U13 U12 

 

La1 43(1)  43(1) 33(1)  7(1) 4(1)  8(1) 
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N1 60(4)  54(4) 52(3)  6(3) 20(3)  13(3) 

N2 66(4)  50(3) 35(3)  5(2) 12(3)  8(3) 

N3 45(4)  47(3) 42(3)  8(2) 5(3)  1(3) 

N4 42(3)  57(3) 56(4)  3(3) 4(3)  7(3) 

N5 45(12)  46(5) 37(9)  13(5) 6(8)  12(6) 

N6 43(5)  41(4) 29(4)  8(3) 3(3)  11(4) 

N7 38(7)  45(5) 27(6)  8(4) 5(5)  14(4) 

N8 38(3)  40(3) 27(4)  9(2) 4(2)  8(2) 

C55 37(8)  44(5) 30(4)  10(4) 1(5)  9(4) 

C56 43(9)  47(5) 31(5)  10(4) 2(6)  15(5) 

C57 52(11)  59(6) 40(6)  22(5) 15(7)  23(6) 

C58 76(12)  69(7) 48(8)  28(6) 33(8)  34(7) 

C59 74(10)  69(7) 40(7)  22(6) 23(7)  34(7) 

C60 64(9)  54(6) 34(7)  9(5) 11(7)  28(6) 

C61 37(7)  47(5) 25(5)  10(4) 2(5)  16(4) 

C62 39(7)  42(4) 26(5)  7(3) 5(5)  12(4) 

C63 38(7)  42(4) 28(6)  7(3) 6(5)  11(4) 

C64 53(8)  46(4) 38(7)  14(4) 7(6)  15(4) 

C65 72(9)  51(5) 44(7)  10(5) 4(6)  25(6) 

C66 110(11)  55(6) 57(9)  17(6) 15(8)  35(7) 

C67 118(12)  54(6) 69(9)  26(6) 24(8)  34(6) 

C68 83(10)  52(5) 49(8)  20(5) 7(7)  22(5) 

C69 62(8)  46(4) 38(7)  14(4) 7(6)  16(5) 

C70 39(6)  45(4) 23(6)  10(4) 14(5)  6(4) 

C1 63(5)  62(5) 70(4)  8(4) 16(3)  21(4) 

C2 86(6)  76(5) 86(6)  19(5) 6(5)  42(5) 

C3 95(7)  72(5) 78(6)  22(4) 12(5)  33(5) 

C4 77(5)  61(5) 56(4)  17(3) 18(3)  17(4) 

C5 82(5)  54(4) 47(4)  11(3) 22(3)  10(3) 
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C6 69(5)  50(3) 37(4)  9(3) 16(3)  0(3) 

C7 85(6)  57(4) 40(4)  11(3) 11(4)  3(4) 

C8 75(6)  58(4) 38(4)  10(3) 3(4)  2(4) 

C9 53(5)  55(3) 33(3)  6(3) 11(3)  3(3) 

C10 50(4)  52(4) 38(4)  6(3) 8(3)  2(3) 

C11 54(4)  51(4) 40(3)  7(3) 6(3)  4(3) 

C12 64(5)  49(4) 48(4)  5(3) 3(4)  2(4) 

C13 77(6)  47(4) 50(4)  8(3) 3(4)  0(4) 

C14 45(4)  50(4) 49(4)  8(3) 2(3)  2(3) 

C15 50(4)  53(4) 58(4)  6(3) 4(3)  5(3) 

C16 49(4)  56(3) 56(5)  3(3) 1(4)  1(3) 

C17 54(5)  66(5) 64(5)  3(4) 5(4)  2(4) 

C18 48(5)  69(5) 68(5)  6(4) 1(4)  5(4) 

C19 43(4)  66(4) 60(5)  1(3) 7(3)  12(3) 

C20 55(4)  70(4) 74(5)  5(3) 10(3)  17(3) 

C21 99(10)  50(8) 45(7)  7(7) 21(6)  10(7) 

C22 107(10)  71(11) 50(11)  14(9) 25(9)  3(9) 

C23 116(12)  74(12) 57(12)  19(9) 31(10)  10(10) 

C24 120(14)  76(12) 55(11)  17(9) 31(10)  3(11) 

C25 123(13)  81(11) 64(11)  25(9) 40(11)  5(11) 

C26 111(12)  71(11) 59(10)  18(9) 35(9)  3(10) 

C27 65(4)  50(4) 36(4)  8(3) 3(3)  1(3) 

C28 70(5)  84(6) 76(6)  24(5) 16(4)  17(4) 

C29 79(6)  98(7) 83(7)  26(5) 16(5)  25(5) 

C30 80(5)  63(5) 38(5)  1(4) 1(4)  11(4) 

C31 94(6)  73(6) 57(6)  13(4) 19(5)  16(5) 

C32 84(6)  66(5) 54(5)  11(4) 21(4)  12(4) 

C33 69(9)  61(7) 58(8)  9(6) 12(6)  6(6) 

C34 70(11)  47(9) 53(8)  3(7) 14(7)  1(7) 
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C35 99(13)  53(10) 66(10)  9(8) 1(9)  19(8) 

C36 110(13)  69(11) 73(11)  9(9) 6(9)  33(9) 

C37 103(11)  82(9) 70(12)  13(9) 0(9)  30(8) 

C38 82(10)  81(9) 66(11)  12(8) 7(8)  22(7) 

C39 50(7)  76(8) 75(7)  1(6) 19(5)  20(6) 

C40 38(7)  61(8) 57(8)  15(6) 1(5)  4(6) 

C41 42(6)  64(8) 59(8)  11(6) 7(6)  8(6) 

C42 36(7)  68(8) 72(8)  7(7) 7(6)  8(6) 

C43 56(8)  88(10) 93(9)  12(8) 29(7)  31(7) 

C44 60(7)  91(10) 95(9)  15(8) 31(7)  30(7) 

O1 56(6)  89(7) 74(7)  1(6) 4(5)  28(5) 

O2 85(8)  70(7) 48(7)  1(5) 6(6)  15(6) 

C45 56(8)  77(8) 75(10)  1(7) 4(7)  25(7) 

C46 52(8)  65(7) 92(11)  3(7) 0(7)  24(6) 

C47 75(11)  70(8) 54(9)  13(7) 5(8)  15(7) 

C48 77(11)  68(8) 54(9)  23(7) 5(8)  5(8) 

C49 99(12)  72(9) 80(10)  21(8) 21(9)  2(8) 

C50 110(11)  64(10) 86(11)  14(8) 29(9)  6(8) 

C51 99(10)  56(10) 56(9)  27(8) 8(8)  0(8) 

C52 107(11)  68(11) 63(9)  9(8) 16(8)  40(9) 

C53 108(11)  57(9) 68(10)  2(8) 14(9)  36(8) 

C54 65(11)  58(9) 65(11)  8(8) 2(9)  19(8) 

N5A 29(13)  43(7) 19(10)  10(6) 11(8)  0(7) 

N6A 44(7)  43(6) 31(4)  10(4) 1(4)  8(5) 

N7A 35(10)  43(6) 26(8)  3(5) 6(8)  6(6) 

N8A 38(3)  40(3) 27(4)  9(2) 4(2)  8(2) 

C55A 43(10)  45(6) 33(6)  11(5) 1(7)  7(6) 

C56A 40(11)  50(7) 31(8)  11(5) 1(8)  8(6) 

C57A 50(14)  58(9) 42(9)  22(7) 6(10)  12(8) 
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C58A 59(13)  69(10) 46(11)  28(8) 15(10)  21(9) 

C59A 69(13)  71(10) 53(12)  28(9) 21(11)  28(9) 

C60A 60(12)  62(9) 32(11)  18(7) 8(10)  22(8) 

C61A 39(10)  48(7) 30(8)  9(6) 5(8)  8(6) 

C62A 43(10)  44(6) 29(6)  6(4) 2(7)  8(6) 

C63A 37(9)  41(5) 29(7)  6(4) 4(7)  6(5) 

C64A 58(11)  43(6) 41(9)  10(6) 4(8)  9(6) 

C65A 56(11)  41(7) 43(10)  6(7) 5(8)  8(7) 

C66A 86(14)  51(9) 55(11)  17(8) 13(9)  26(9) 

C67A 101(15)  58(9) 61(11)  26(8) 22(10)  34(9) 

C68A 88(14)  57(8) 50(10)  21(8) 9(9)  27(9) 

C69A 64(12)  46(6) 42(9)  13(6) 3(9)  12(7) 

C70A 51(11)  43(6) 34(8)  12(6) 2(8)  5(5) 

C33A 62(8)  54(6) 50(8)  2(6) 12(6)  6(6) 

C34A 66(11)  46(9) 46(8)  0(7) 12(7)  3(7) 

C35A 85(12)  56(9) 50(9)  8(7) 9(8)  15(8) 

C36A 102(13)  77(10) 64(12)  17(9) 4(9)  34(9) 

C37A 93(11)  82(10) 63(12)  13(8) 1(9)  34(8) 

C38A 82(10)  83(9) 64(11)  16(8) 4(8)  27(8) 

C21A 81(10)  50(6) 48(5)  13(5) 25(5)  8(6) 

C22A 103(10)  55(7) 52(7)  22(6) 39(7)  5(7) 

C23A 115(11)  71(9) 60(7)  29(6) 44(8)  16(9) 

C24A 100(13)  77(8) 56(7)  35(6) 41(8)  25(9) 

C25A 120(13)  87(8) 54(7)  34(6) 41(8)  35(9) 

C26A 105(12)  73(8) 53(6)  27(5) 37(7)  26(8) 

C39A 59(6)  79(7) 86(10)  3(6) 12(6)  25(5) 

C40A 66(7)  92(9) 116(13)  18(9) 10(8)  23(7) 

C41A 70(8)  92(9) 128(14)  20(10) 9(8)  26(7) 

C42A 69(8)  99(10) 114(12)  12(10) 9(8)  25(8) 
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C43A 62(7)  85(10) 90(11)  9(9) 13(7)  27(7) 

C44A 61(6)  82(9) 79(10)  12(8) 12(6)  23(6) 

 

Table 5. Hydrogen coordinates [ 104] and isotropic displacement parameters [Å2  103]. 

 

Atom  x y z Ueq S.o.f. 

 

H57 2610 3320 3164 68 0.65(2) 

H58 3890 4091 4373 91 0.65(2) 

H59 4357 5607 4359 84 0.65(2) 

H60 3509 6439 3145 68 0.65(2) 

H65 2199 8574 1420 71 0.65(2) 

H66 1734 9916 757 100 0.65(2) 

H67 323 9978 544 111 0.65(2) 

H68 577 8629 1321 81 0.65(2) 

H2 3545 7559 585 104 1 

H3 2118 7557 2006 102 1 

H7 889 5160 4048 75 1 

H8 1300 3522 4028 73 1 

H12 420 961 1810 69 1 

H13 1858 974 381 76 1 

H17 4622 3450 1772 82 1 

H18 5036 5074 1754 81 1 

H22 711 6968 2870 91 0.36(2) 

H23 1223 8204 3793 97 0.36(2) 

H24 316 8439 4784 99 0.36(2) 

H25 1133 7485 4732 103 0.36(2) 

H26 1700 6359 3709 93 0.36(2) 

H28 2017 2205 2730 97 1 
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H29 3003 897 3604 110 1 

H30 2273 50 4501 79 0.5 

H31 656 280 4527 93 1 

H32 319 1542 3676 84 1 

H34 2283 2242 1788 79 0.51(3) 

H35 2819 1001 2672 95 0.51(3) 

H36 4184 70 2491 109 0.51(3) 

H37 4921 267 1395 110 0.51(3) 

H38 4347 1481 474 101 0.51(3) 

H40 3575 7056 1774 66 0.5 

H41 4758 8206 2689 69 0.5 

H43 6598 7819 1188 95 0.5 

H44 5482 6615 304 98 0.5 

H45A 7761 8569 2430 89 0.5 

H45B 7068 9255 1749 89 0.5 

H46A 8516 9996 2973 91 0.5 

H46B 7911 9751 3623 91 0.5 

H47A 7935 11214 3043 84 0.5 

H47B 6868 10768 2357 84 0.5 

H48A 6222 10628 3448 83 0.5 

H48B 7306 10988 4169 83 0.5 

H49A 5762 12136 3037 102 0.5 

H49B 6915 12534 3604 102 0.5 

H50A 6583 12202 4894 105 0.5 

H50B 5908 13013 4395 105 0.5 

H51A 5073 11231 4191 88 0.5 

H51B 4441 12134 3887 88 0.5 

H52A 4622 12601 5333 100 0.5 

H52B 5226 11683 5620 100 0.5 
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H53A 3832 11497 5809 98 0.5 

H53B 3162 11993 4963 98 0.5 

H54A 3932 10146 4896 82 0.5 

H54B 3332 10643 4025 82 0.5 

H57A 2875 3420 3102 65 0.35(2) 

H58A 4256 4219 4201 77 0.35(2) 

H59A 4727 5692 4052 88 0.35(2) 

H60A 3616 6564 2966 67 0.35(2) 

H65A 2528 8460 1151 59 0.35(2) 

H66A 2285 9724 342 86 0.35(2) 

H67A 996 9699 1036 101 0.35(2) 

H68A 127 8426 1678 86 0.35(2) 

H34A 2570 2013 1715 73 0.49(3) 

H35A 3365 770 2496 86 0.49(3) 

H36A 4622 49 2108 104 0.49(3) 

H37A 5140 339 880 103 0.49(3) 

H38A 4384 1662 106 97 0.49(3) 

H22A 309 7562 2422 79 0.64(2) 

H23A 910 8670 3402 92 0.64(2) 

H24A 809 8460 4816 87 0.64(2) 

H25A 83 7208 5205 99 0.64(2) 

H26A 711 6062 4256 88 0.64(2) 

H40A 3550 7516 1175 118 0.5 

H41A 4906 8597 1998 126 0.5 

H42A 6655 8120 2351 121 0.5 

H43A 7034 6950 1475 98 0.5 

H44A 5748 5792 742 92 0.5 
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Table 6. Torsion angles [°]. 

  

La1N1C1C2 151.9(7) 

La1N1C1C20 29.7(14) 

La1N1C4C3 152.7(7) 

La1N1C4C5 30.0(14) 

La1N2C6C5 36.6(12) 

La1N2C6C7 144.4(6) 

La1N2C9C8 145.5(6) 

La1N2C9C10 38.6(11) 

La1N3C11C10 29.7(11) 

La1N3C11C12 151.5(6) 

La1N3C14C13 151.9(6) 

La1N3C14C15 30.5(12) 

La1N4C16C15 32.9(13) 

La1N4C16C17 151.0(6) 

La1N4C19C18 150.9(6) 

La1N4C19C20 34.1(13) 

La1N6C55N5 54(5) 

La1iN6C55N5 48(5) 

La1iN6C55C56 129(2) 

La1N6C55C56 129(2) 

La1iN6C62N7 51(4) 

La1N6C62N7 51(4) 

La1iN6C62C61 128.4(17) 

La1N6C62C61 129.5(17) 

La1iN8C63N7 50(3) 

La1N8C63N7 53(3) 

La1iN8C63C64 128.2(18) 
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La1N8C63C64 128.6(19) 

La1N8C70N5i 43(3) 

La1iN8C70N5i 60(3) 

La1iN8C70C69 127.7(15) 

La1N8C70C69 129.7(15) 

La1N6AC55AN5A 48(9) 

La1iN6AC55AN5A 54(9) 

La1N6AC55AC56A 125(5) 

La1iN6AC55AC56A 132(5) 

La1N6AC62AN7A 55(8) 

La1iN6AC62AN7A 48(8) 

La1N6AC62AC61A 126(4) 

La1iN6AC62AC61A 131(3) 

La1N8AC63AN7A 49(7) 

La1iN8AC63AN7A 51(7) 

La1N8AC63AC64A 131(4) 

La1iN8AC63AC64A 128(4) 

La1iN8AC70AN5Ai 33(6) 

La1N8AC70AN5Ai 69(6) 

La1N8AC70AC69A 126(3) 

La1iN8AC70AC69A 133(3) 

N1C1C2C3 0.9(14) 

N1C1C20C19 7.4(18) 

N1C1C20C39 167.4(12) 

N1C1C20C39A 179.3(13) 

N1C4C5C6 6.8(18) 

N1C4C5C21 177(3) 

N1C4C5C21A 170.6(14) 

N2C6C7C8 2.8(11) 
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N2C9C10C11 1.0(15) 

N2C9C10C27 175.7(8) 

N3C11C12C13 1.9(11) 

N3C14C15C16 5.9(17) 

N3C14C15C33 171.2(13) 

N3C14C15C33A 171.5(15) 

N4C16C17C18 1.0(12) 

N4C19C20C1 4.8(17) 

N4C19C20C39 169.8(12) 

N4C19C20C39A 176.7(14) 

N5C55C56C57 1(6) 

N5C55C56C61 176(3) 

N6C55C56C57 178(3) 

N6C55C56C61 1(4) 

N7C63C64C65 4(5) 

N7C63C64C69 177(3) 

N8C63C64C65 174(3) 

N8C63C64C69 1(3) 

C55N6C62N7 180(3) 

C55N6C62C61 0(4) 

C55C56C57C58 178(3) 

C55C56C61C60 177(3) 

C55C56C61C62 1(3) 

C56C57C58C59 3(3) 

C56C61C62N6 1(3) 

C56C61C62N7 179(3) 

C57C56C61C60 6(4) 

C57C56C61C62 179(3) 

C57C58C59C60 2(3) 



CHAPTER 7. Appendix   
 

244 
 

C58C59C60C61 3(3) 

C59C60C61C56 6(3) 

C59C60C61C62 180(3) 

C60C61C62N6 176(3) 

C60C61C62N7 5(4) 

C61C56C57C58 1(4) 

C62N6C55N5 176(4) 

C62N6C55C56 1(4) 

C62N7C63N8 1(5) 

C62N7C63C64 179(3) 

C63N7C62N6 1(5) 

C63N7C62C61 179(3) 

C63N8C70N5i 170(3) 

C63N8C70C69 3(3) 

C63C64C65C66 173(3) 

C63C64C69C68 175(2) 

C63C64C69C70 2(3) 

C64C65C66C67 2(3) 

C64C69C70N5i 170(3) 

C64C69C70N8 3(3) 

C65C64C69C68 1(4) 

C65C64C69C70 176(2) 

C65C66C67C68 3(4) 

C66C67C68C69 3(3) 

C67C68C69C64 2(3) 

C67C68C69C70 175(2) 

C68C69C70N5i 13(4) 

C68C69C70N8 174(2) 

C69C64C65C66 1(3) 
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C70iN5C55N6 11(6) 

C70iN5C55C56 172(4) 

C70N8C63N7 179(3) 

C70N8C63C64 1(3) 

C1N1C4C3 1.2(11) 

C1N1C4C5 176.0(10) 

C1C2C3C4 0.1(15) 

C1C20C39C40 98(4) 

C1C20C39C44 82(4) 

C1C20C39AC40A 72(4) 

C1C20C39AC44A 117(4) 

C2C1C20C19 170.8(11) 

C2C1C20C39 14.5(18) 

C2C1C20C39A 1.2(19) 

C2C3C4N1 0.7(14) 

C2C3C4C5 176.6(11) 

C3C4C5C6 170.0(10) 

C3C4C5C21 1(3) 

C3C4C5C21A 12.6(19) 

C4N1C1C2 1.3(12) 

C4N1C1C20 177.0(10) 

C4C5C6N2 3.1(16) 

C4C5C6C7 175.7(10) 

C4C5C21C22 102(5) 

C4C5C21C26 73(6) 

C4C5C21AC22A 65(3) 

C4C5C21AC26A 113(3) 

C5C6C7C8 176.2(9) 

C5C21C22C23 173(4) 
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C5C21C26C25 176(4) 

C5C21AC22AC23A 177(2) 

C5C21AC26AC25A 177(2) 

C6N2C9C8 2.3(10) 

C6N2C9C10 173.6(9) 

C6C5C21C22 87(5) 

C6C5C21C26 99(6) 

C6C5C21AC22A 112(3) 

C6C5C21AC26A 69(3) 

C6C7C8C9 1.4(11) 

C7C8C9N2 0.6(11) 

C7C8C9C10 175.4(9) 

C8C9C10C11 174.3(9) 

C8C9C10C27 0.4(14) 

C9N2C6C5 175.9(9) 

C9N2C6C7 3.1(10) 

C9C10C11N3 6.4(15) 

C9C10C11C12 172.2(9) 

C9C10C27C28 87.5(11) 

C9C10C27C32 94.0(11) 

C10C11C12C13 176.8(9) 

C10C27C28C29 174.1(9) 

C10C27C32C31 174.3(8) 

C11N3C14C13 2.5(10) 

C11N3C14C15 175.1(9) 

C11C10C27C28 97.1(10) 

C11C10C27C32 81.4(10) 

C11C12C13C14 0.4(12) 

C12C13C14N3 1.4(11) 
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C12C13C14C15 176.3(10) 

C13C14C15C16 171.3(10) 

C13C14C15C33 11.6(17) 

C13C14C15C33A 5.7(19) 

C14N3C11C10 176.1(8) 

C14N3C11C12 2.7(10) 

C14C15C16N4 4.5(17) 

C14C15C16C17 170.8(10) 

C14C15C33C34 87(3) 

C14C15C33C38 89(3) 

C14C15C33AC34A 95(2) 

C14C15C33AC38A 81(3) 

C15C16C17C18 175.0(10) 

C15C33C34C35 174(3) 

C15C33C38C37 175(3) 

C15C33AC34AC35A 177(3) 

C15C33AC38AC37A 175(3) 

C16N4C19C18 2.1(10) 

C16N4C19C20 172.9(10) 

C16C15C33C34 90(3) 

C16C15C33C38 94(3) 

C16C15C33AC34A 98(2) 

C16C15C33AC38A 86(3) 

C16C17C18C19 0.3(12) 

C17C18C19N4 1.5(12) 

C17C18C19C20 173.5(10) 

C18C19C20C1 169.3(10) 

C18C19C20C39 16.0(17) 

C18C19C20C39A 2.5(19) 
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C19N4C16C15 174.1(10) 

C19N4C16C17 1.9(10) 

C19C20C39C40 77(4) 

C19C20C39C44 103(4) 

C19C20C39AC40A 115(4) 

C19C20C39AC44A 56(4) 

C20C1C2C3 177.5(11) 

C20C39C40C41 179(3) 

C20C39C44C43 178(3) 

C20C39AC40AC41A 177(3) 

C20C39AC44AC43A 179(3) 

C21C5C6N2 174(3) 

C21C5C6C7 5(3) 

C21C5C21AC22A 147(26) 

C21C5C21AC26A 32(21) 

C21C22C23C24 3(7) 

C22C21C26C25 2(9) 

C22C23C24C25 2(7) 

C23C24C25C26 1(7) 

C24C25C26C21 3(7) 

C26C21C22C23 1(10) 

C27C10C11N3 178.7(8) 

C27C10C11C12 2.8(13) 

C27C28C29C30 2.2(17) 

C28C27C32C31 4.2(15) 

C28C29C30C31 0.3(17) 

C28C29C30O2 179.4(10) 

C29C30C31C32 0.6(17) 

C29C30O2C54i 5.0(19) 



CHAPTER 7. Appendix   
 

249 
 

C30C31C32C27 1.7(16) 

C31C30O2C54i 174.7(13) 

C32C27C28C29 4.4(16) 

C33C15C16N4 172.5(13) 

C33C15C16C17 12.2(18) 

C33C15C33AC34A 4(8) 

C33C15C33AC38A 180(12) 

C33C34C35C36 2(4) 

C34C33C38C37 0(4) 

C34C35C36C37 2(4) 

C35C36C37C38 1(4) 

C36C37C38C33 0(4) 

C38C33C34C35 1(4) 

C39C20C39AC40A 17(16) 

C39C20C39AC44A 155(23) 

C39C40C41C42 2(4) 

C40C39C44C43 2(5) 

C40C41C42C43 2(3) 

C40C41C42O1 177.4(16) 

C41C42C43C44 1(4) 

C41C42O1C45 179.4(19) 

C42C43C44C39 2(4) 

C42O1C45C46 177.3(17) 

C43C42O1C45 0(3) 

C44C39C40C41 0(5) 

O1C42C43C44 179(2) 

O1C45C46C47 70(3) 

O2C30C31C32 179.1(10) 

C45C46C47C48 101(3) 
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C46C47C48C49 174.9(19) 

C47C48C49C50 169(2) 

C48C49C50C51 72(3) 

C49C50C51C52 169(2) 

C50C51C52C53 178(2) 

C51C52C53C54 37(3) 

C52C53C54O2i 175.9(19) 

N5AC55AC56AC57A 6(12) 

N5AC55AC56AC61A 172(6) 

N6AC55AC56AC57A 180(7) 

N6AC55AC56AC61A 2(8) 

N7AC63AC64AC65A 13(10) 

N7AC63AC64AC69A 174(6) 

N8AC63AC64AC65A 167(6) 

N8AC63AC64AC69A 6(6) 

C55AN6AC62AN7A 179(7) 

C55AN6AC62AC61A 2(8) 

C55AC56AC57AC58A 180(7) 

C55AC56AC61AC60A 178(5) 

C55AC56AC61AC62A 1(6) 

C56AC57AC58AC59A 4(7) 

C56AC61AC62AN6A 1(6) 

C56AC61AC62AN7A 180(5) 

C57AC56AC61AC60A 3(8) 

C57AC56AC61AC62A 180(5) 

C57AC58AC59AC60A 7(7) 

C58AC59AC60AC61A 7(6) 

C59AC60AC61AC56A 5(7) 

C59AC60AC61AC62A 178(5) 
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C60AC61AC62AN6A 177(6) 

C60AC61AC62AN7A 2(9) 

C61AC56AC57AC58A 2(8) 

C62AN6AC55AN5A 172(7) 

C62AN6AC55AC56A 2(9) 

C62AN7AC63AN8A 0(10) 

C62AN7AC63AC64A 180(6) 

C63AN7AC62AN6A 4(10) 

C63AN7AC62AC61A 177(6) 

C63AN8AC70AN5Ai 163(6) 

C63AN8AC70AC69A 2(6) 

C63AC64AC65AC66A 167(6) 

C63AC64AC69AC68A 168(5) 

C63AC64AC69AC70A 7(6) 

C64AC65AC66AC67A 6(6) 

C64AC69AC70AN5Ai 158(6) 

C64AC69AC70AN8A 6(6) 

C65AC64AC69AC68A 5(8) 

C65AC64AC69AC70A 171(5) 

C65AC66AC67AC68A 0(6) 

C66AC67AC68AC69A 4(6) 

C67AC68AC69AC64A 1(7) 

C67AC68AC69AC70A 176(5) 

C68AC69AC70AN5Ai 26(10) 

C68AC69AC70AN8A 169(5) 

C69AC64AC65AC66A 9(7) 

C70AiN5AC55AN6A 21(11) 

C70AiN5AC55AC56A 166(7) 

C70AN8AC63AN7A 178(6) 
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C70AN8AC63AC64A 2(6) 

C33AC15C16N4 169.8(16) 

C33AC15C16C17 6(2) 

C33AC15C33C34 176(11) 

C33AC15C33C38 0(7) 

C33AC34AC35AC36A 1(4) 

C34AC33AC38AC37A 0(4) 

C34AC35AC36AC37A 0(4) 

C35AC36AC37AC38A 2(4) 

C36AC37AC38AC33A 2(4) 

C38AC33AC34AC35A 1(4) 

C21AC5C6N2 174.4(13) 

C21AC5C6C7 6.8(17) 

C21AC5C21C22 3(19) 

C21AC5C21C26 177(29) 

C21AC22AC23AC24A 3(4) 

C22AC21AC26AC25A 2(4) 

C22AC23AC24AC25A 3(4) 

C23AC24AC25AC26A 3(4) 

C24AC25AC26AC21A 3(4) 

C26AC21AC22AC23A 2(4) 

C39AC20C39C40 165(23) 

C39AC20C39C44 15(16) 

C39AC40AC41AC42A 7(5) 

C40AC39AC44AC43A 8(6) 

C40AC41AC42AC43A 12(5) 

C41AC42AC43AC44A 15(5) 

C42AC43AC44AC39A 13(4) 

C44AC39AC40AC41A 6(6) 
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 Symmetry transformations used to generate equivalent atoms:  

(i) x,y+1,z       

 


