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The electronic coupling that mediates energy transfer in molecular aggregates is theoretically in-
vestigated using the principles of quantum electrodynamics (QED). In this context, both the elec-
tromagnetic tensor and rate equation relating to these couplings are re-examined with a focus
on the role of the relative distance and orientation of transition dipole moment pairs, consid-
ering near-, intermediate-, and far-zone contributions to the coupling. The QED based coupling
terms are investigated both analytically and numerically, and they are physically interpreted in
terms of the character of the mediating (virtual) photons. The spatial dependence of the couplings
for a two-dimensional molecular aggregate of ordered and isotropic transition dipole moments
is numerically calculated. Further, Pauli Master Equations are employed for a one-dimensional
chain of molecules and donor-acceptor pairs, to investigate the importance of intermediate- and
far-zone contributions to the electronic coupling on electronic energy transfer dynamics. The re-
sults indicate that although Förster theory is often qualitatively and quantitatively correct for de-
scribing electronic energy transfer (EET) processes, intermediate- and far-zone coupling terms
could sometimes be non-negligible for correctly describing EET in natural and artificial, meso-
scopic, solar energy harvesting systems. In particular, the results indicate that these terms are non-
negligible when using Förster resonance energy transfer spectroscopic ruler techniques for distances
>10 nm. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4861695]

I. INTRODUCTION

Excitation energy transfer (EET), also known as reso-
nance energy transfer (RET), is a process in which electronic
energy may be transferred between molecular species.1–4 Al-
though the basic principles are well established and have been
known for many years, there are still many open questions re-
garding the fundamental mechanisms of this inherently quan-
tum mechanical phenomenon.

In many respects, the process of EET is well described by
semiclassical theories of radiationless energy transfer, which
generally assume the point-dipole approximation for the elec-
tronic coupling between the excitation donor and acceptor.
EET events are, in this case, commonly considered as first
order perturbative processes which are induced by the instan-
taneous Coulomb interaction. However, in reality, EET pro-
cesses are fully quantum mechanical in nature and they are
formally described within the framework of quantum electro-
dynamics (QED), where effects such as retardation must be
taken into account.

Within the context of QED, both matter and radiation
are treated quantum mechanically and they together consti-
tute a closed quantum mechanical system. Here, the EET pro-
cess is described by the coupling of an initially electroni-
cally excited donor to an acceptor which is initially in its

a)garth.jones@uea.ac.uk

ground state, via the photon vacuum field. QED provides ac-
curate relations for the electronic coupling between the donor
and acceptor chromophores which include all interactions
over all distances. The energy transfer process emerges as
a second-order process (signifying one light-matter interac-
tion at the donor and one at the acceptor), mediated by the in-
termolecular propagation of virtual photons. When the donor
and acceptor are part of a condensed phase system, the lo-
cal electromagnetic fields arising from neighboring molecules
“dress” the virtual photon fields, giving rise to virtual
polaritons.

This approach to EET therefore requires finding the ma-
trix element of the transition operator connecting the initial
state (with the donor excited, and the acceptor and polariton
fields in their respective ground states) with the final state (the
acceptor being excited, and the donor and polariton fields in
their ground states). The matrix element connecting the ini-
tial and final states of the system can be found using sec-
ond order perturbation theory which includes intermediate
states (to account for the time interval bounded by polariton
creation and annihilation).5 Within the framework of quan-
tum dynamics, the matrix element is analogous to an off-
diagonal coupling term appearing in the site basis Hamilto-
nian operator. The wavefunction or density matrix can then
be evolved using the time-dependent Schrödinger equation
or the Liouville von Neumann equation, respectively.6 In the
kinetics picture of EET, the modulus squared of the ma-
trix element is the fundamental parameter that is used for
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calculating the rate of energy transfer via the Fermi Golden
Rule expression.7

In the case of energy transfer between molecular species
beyond wavefunction overlap, there are two mechanistically
distinct regimes of EET. The first is known as radiation-
less energy transfer and is often associated with the name of
Förster.8 Radiationless or near-zone energy transfer is char-
acterized by an inverse sixth-power dependence of the rate on
separation of the donor and acceptor chromophores, R−6. This
is the most dominant mechanism over short, non-contact dis-
tances. The latter mechanism, which occurs at longer ranges
and is known as radiative energy transfer, was first addressed
in the context of fluorescence reabsorption,9 and subsequently
recognized as far-zone transfer by Avery;10 its rate obeys
an inverse square law, R−2. However, it is now known that
within the framework of a unified theory of EET, these are
both simply limits of a more general mechanism that op-
erates over all distances.11–13 Interestingly, this unified the-
ory also predicts an intermediate range over which there is
a mechanism that has both short and long range character:
the rate of EET occurring in this intermediate range usually
has an inverse fourth-power dependence, R−4. Experimen-
tally, this term proves difficult to identify, because it always
occurs in conjunction with either the R−2 or the R−6 term or
both. When EET occurs within the condensed phase, how-
ever, local field effects exerted through the molecular polar-
izability of the medium can result in refractive indices with
a large imaginary component.14 This gives rise to additional
odd-powered terms, namely, R−3 and R−5, when the matrix
element is squared (Sec. II B).

Under suitable circumstances, such as when studying
the phenomenon of EET over long distances (i.e., greater
than the Förster radius – the separation at which the rate
of energy transfer equates to that of spontaneous emission
by the donor), these additional correction terms prove more
amenable to experimental detection, as will be shown. In par-
ticular, within highly absorbing media the additional terms
could become particularly important, for example, in molec-
ular aggregate systems such as biological photosynthetic
units where excitation may be transferred between antenna
complexes,15, 16 and also in optically active materials includ-
ing J- and H-aggregates and quantum dot assemblies,17–23

where the complex refractive index can have a large imag-
inary contribution. In these examples, EET may occur over
tens or even hundreds of nanometers within a condensed
phase environment. Of particular interest to this study is
the distance and orientational dependence of a pair of chro-
mophores (technically the dependence on their transition
dipole moments (TDMs)), embedded within a condensed
phase. Specifically the matrix element (cast in terms of the
electromagnetic coupling tensor, vide infra) and its modulus
squared are considered analytically and numerically. In Sec. II
of this paper, the background QED theory of EET in a vacuum
and the condensed phase is reviewed along with the geometri-
cal description of the electric fields associated with the medi-
ating photons. In Sec. III, the results of the analytical and nu-
merical studies of the electronic coupling terms are presented,
and finally the conclusions and outlook are summarised in
Sec. IV.

II. THEORY

A. QED formalism and EET in vacuum

The full QED description of the unified EET process can
be found elsewhere.5, 12 For convenience and completeness,
important elements of the theory that are central to this study
will be briefly outlined in this section.

For the case of a two-chromophore system, electronic en-
ergy transfer from a donor to an acceptor chromophore in the
absence of a surrounding medium can be described by the
Hamiltonian,

H = Hmol(D) + Hmol(A) + Hrad + Hint(A) + Hint(D),
(1)

where Hrad describes Hamiltonian for the radiation field,

Hrad =
∑
k,λ

a(λ)†(k)a(λ)(k)¯ck + evac (2)

involving a sum over radiation modes with wave-vector k and
polarization λ; the operators a(λ)†(k) and a(λ)(k) are the cre-
ation and annihilation operators of a photon, respectively, and
evac is the energy of the vacuum. In Eq. (1), Hmol(X) is the
usual molecular Hamiltonian for species X (=A, D, respec-
tively, signifying the energy donor and acceptor) positioned
at RX. The electronic coupling between chromophores occurs
strictly through the interaction of the molecular sub-systems
and the quantized field, i.e., there is no term in the Hamilto-
nian that directly couples the two chromophores. The dipole
interaction Hamiltonian is given by

Hint(X) = −ε−1
0 μα(X).d⊥

α (RX), (3)

where μα(X) is the transition dipole moment between the
electronic ground state and state α of chromophore X, and
the electric displacement field operator is given by

d⊥(R) = i
∑
k,λ

(
¯ckε0

2V

)1/2

e(λ)(k)

×{a(λ)(k)eik·R − a(λ)†(k)e−ik·R}, (4)

where e(λ)(k); (λ = 1, 2) represents an orthogonal pair of po-
larization vectors, and V is the quantization volume.

Following standard QED procedures of using this Hamil-
tonian to calculate the matrix element connecting the initial
and final states, one arrives at the EET rate equation, the Fermi
Golden Rule,

WFI = 2π

¯
|〈F |T̂ |I 〉|2δ(EI − EF ). (5)

Here, T̂ is the transition operator (taken to second order). The
transition matrix element can be reformulated as

〈F |T (2)|I 〉 = μ
f ull

Al
θvac
lj μ

f ull

Dj
, (6)

where

μ
f ull

D = 〈D|μ(D)|D∗〉, μ
f ull

A = 〈A∗|μ(A)|A〉, (7)

in which the superscript full indicates that both electronic and
vibrational contributions are taken into account, and the final
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form of the electromagnetic coupling tensor can be written as

θvac
lj (k, R̂) = k3eiKR

4πε0

[
(δlj − 3R̂lR̂j )

(
1

k3R3
− i

k2R2

)

− (δlj − R̂lR̂j )
1

kR

]
. (8)

In Eq. (8), and throughout this paper, the summation con-
vention over the repeated Cartesian indices is applied. The
subscripts l and j denote Cartesian components referring to
the 3 spatial dimensions, k is the wavenumber correspond-
ing to the transferred energy, R is the distance between chro-
mophores, δlj is the Kronecker delta, and R̂ represents a unit
vector parallel to the donor-acceptor separation vector. The
retarded dipole-dipole coupling tensor, Eq. (8), displays the
three regimes of energy transfer. The R−3 term is characteris-
tic of nonradiative (near-zone) energy transfer, kR � 1, while
the R−1 term corresponds to radiative (far-zone) transfer, kR
� 1. The less familiar R−2 term is especially interesting, as
it is expected to play an important role at critical retardation
distances where kR ∼ 1. This quasi-equality occurs when the
distance between the donor and the acceptor is of the order
of one sixth the wavelength of the mediating photon (specifi-
cally, the reduced wavelength, � = λ / 2π ).

Substituting the electromagnetic tensor, Eq. (8) into the
rate equation (5), then after considerable manipulation includ-
ing Born-Oppenheimer separation of the nuclear and elec-
tronic wavefunctions, and averaging over the initial and sum-
ming over the final states, we arrive at a rate equation in the
following form:

WDA = 2π

¯

∑
n,m,r,p

ρ
(n)
D ρ

(m)
A

∣∣〈ϕ(r)
D

∣∣ϕ(n)
D

〉〈
ϕ

(p)
A

∣∣ϕ(m)
A

〉∣∣2

× ∣∣μAlμDjθ
vac
lj (k, R)

∣∣2
δ
(
eD∗

n
+eAm

−eDr
−eA∗

p

)
, (9)

where ρ
(n)
D and ρ

(m)
A are population distribution functions of

the initial vibrational states of the donor and acceptor, respec-
tively, with n and m being the vibrational indices. Substituting
Eq. (8) into Eq. (9) and collecting terms allows one to express
the rate equation in terms of overlap integrals between the
donor and acceptor spectra. Writing the circular frequency as
ω = ck, gives

WDA = 9

8πc2τD

∫ ∞

0
Fvac

D (ω)σvac
A (ω)ω2gvac(ω; R)dω

(10)
with

gvac(ω, R) = η2
3

c6

ω6R6
+ (

η2
3 − 2η1η3

) c4

ω4R4
+ η2

1
c2

ω2R2
.

(11)
The functions σvac

A (ω) and Fvac
D (ω) are the absorption

cross-section of the acceptor and the emission spectrum of the
donor, respectively,3, 14 and the parameter τD is the radiative
lifetime of the donor. Full details of these terms can be found
in Chap. 2 of Ref. 3. The parameter gvac(ω, R) in Eq. (11) –
which, for the following analysis will be written in terms of
the wave-vector, is analogous to the square of the coupling
term, with the three different regimes of EET making a con-
tribution to the overall rate. Notably, the rotationally averaged

result in this vacuum formulation has no cross-terms in odd
powers of R.

Also in Eq. (11), the orientational factors, ηq(q = 1, 3),
describe the influence of the relative orientations of the transi-
tion dipole moments of the donor and acceptor chromophores,
given by

ηq = (μ̂A · μ̂D) − q(R̂ · μ̂A)(R̂ · μ̂D). (12)

In the case of near-zone, Förster-type coupling, this factor be-
come most favourable when the transition dipole moments are
parallel (or anti-parallel) to one another and to the displace-
ment vector. Note the origin of these orientational factors in
the terms (δlj − 3R̂lR̂j ) and (δlj − R̂lR̂j ) of Eq. (8). For an in-
depth discussion of orientational aspects of EET, see Chap. 4
of Ref. 3. Throughout this paper, θ lj(k, R) type parameters
shall be referred to as electromagnetic tensor coupling terms,
and g(k, R) type parameters as rate equation coupling terms.
It is important to bear in mind that the two are related quadrat-
ically.

B. EET in the condensed phase

In order to properly describe the EET process within
a condensed phase medium, the effects of the molecules
comprising the medium must be incorporated into the
Hamiltonian.14 Consequently, the Hamiltonian for EET in a
vacuum, Eq. (1), is rewritten to include a polariton bath.
This represents a subsystem which includes both the quan-
tized electromagnetic field and the molecules that constitute
the medium surrounding the units specifically involved in en-
ergy transfer

H = Hmol(D) + Hmol(A) + Hpol + Hint(D) + Hint(A),
(13)

where the Hamiltonian for the polariton bath can be broken
down as

Hpol = Hrad +
∑

X 
=D,A

[Hmol(X) + Hint(X)]. (14)

The replacement of Hrad with Hpol allows one to derive,
after lengthy algebra, the retarded dipole-dipole coupling ten-
sor for a donor-acceptor pair in a medium,

θlj (k, R̂) = 1

n2

(
n2 + 2

3

)2

θvac
lj (nk, R), (15)

where n is the complex scalar refractive index of the medium
(n = n′ + in′′). Here n′′, the imaginary part of the refractive
index, manifests itself as an energy loss to the medium. Note,
to save unnecessarily complicated expressions, the refractive
index is assumed to be isotropic and it is written without ex-
plicit reference to its dependence on the optical frequency.
The dispersion properties are important, nonetheless, and in
the calculations that follow it will always be evaluated at the
frequency (wavenumber) corresponding to the energy being
transferred.

Starting with Eq. (9), and introducing θ lj(k, R) in place
of θvac

lj (k, R), the rate of donor-acceptor energy transfer in a
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dissipative medium becomes

WDA = 9

8πc2τD

∞∫
0

FD(ω)σA(ω)ω2g(ω, R)e−2n′′ωR / cdω

(16)
with the coupling (cast in terms of the wavenumber) now
given by

g(k, R) = |n|2
∣∣∣∣∣η3

[(
1

nkR

)3

− i

(
1

nkR

)2
]

− η1

(
1

nkR

)∣∣∣∣∣
2

= 1

|n|4
{

η2
3

1

k6R6
+ 2η2

3n
′′ 1

k5R5

+ [
η2

3|n|2 − 2η1η3(n′2 − n′′2)
] 1

k4R4

+ 2η1η3n
′′|n|2 1

k3R3
+ η2

1|n|4 1

k2R2

}
. (17)

It is immediately clear that the existence of an imaginary
part in the refractive index gives rise to two more terms in the
coupling – namely, terms in the odd powers of distance, R−3

and R−5. The terms, σ A(ω) and FD(ω) in Eq. (16), have also
been corrected for the influence of the host medium and are
now given explicitly by

σA(ω) = 1

n′

∣∣∣∣n2 + 2

3

∣∣∣∣
2

σvac
A (ω) (18)

and

FD(ω) = n′
∣∣∣∣n2 + 2

3

∣∣∣∣
2

Fvac
D . (19)

Therefore, it should be emphasized that the dielectric in-
fluences of the medium affect the transfer rate in several ways.
First, through the modification of the spectral functions FD(ω)
and σ A(ω); second, through the coupling term g(ω, R), and
finally through the introduction of a real and negative con-
tribution to the exponent in the exponential term, reflecting
losses in an absorbing medium (in accordance with the Beer-
Lambert Law). The inclusion of these factors is vital for the
correct description of long range excitation energy transfer in
a condensed phase medium.

C. The nature of the mediating photon in EET

Deep within the theory of quantum electrodynamics, in-
teractions between electrons occur by the exchange of virtual
photons. These are photons that emerge from and retreat into
the vacuum; they are not detected because, following their re-
lease, they are almost immediately reabsorbed. The summa-
tion over all possible modes, for such virtual photons, leads
by well-trodden paths to the detailed form of the electromag-
netic coupling tensor, given in Eq. (8). It is important to note
that the effective character of the photon in the near-zone
(R ≤ λ / 2π , or kR ≤ 1) is significantly different from that
in the far-zone. We can understand this as follows.

Using the Helmholtz theorem, any vector fields can be
separated into zero-curl (irrotational) and zero divergence

(solenoidal) components

F(R) = FSol(R) + FIrr (R), (20)

where

∇ · FSol(R) = 0, (21)

∇ × FIrr (R) = 0, (22)

and F(R) represents a generalized field.24, 25 When dealing
with slowly moving (i.e., non-relativistic) particles in bound
states, it is most useful to employ the Coulomb gauge when
describing electromagnetic fields,25, 26 and in this case the
irrotational parts of the electric and magnetic fields disap-
pear field. (Indeed, the non-zero curls of these fields can be
used as an alternative basis for representing electromagnetic
properties.)27 The result of the transversality associated with
Eq. (21) is that for each electromagnetic mode, the electric
and magnetic field vectors are disposed orthogonally to k,
the propagation vector. However, the observed behavior is
not quite so straightforward, because differences emerge be-
tween the features of near- and far-field (respectively, short
range and long range) coupling. In quantum electrodynamical
terms, this can be understood as reflecting the fact that when
the released photon is still close to the emitter, its short path
renders it strongly subject to quantum uncertainty in vector
momentum, crucially including direction. The upshot is that,
when due summation is taken over all photon modes, consis-
tent with the unobserved, virtual character of these photons,
the near-field reveals not only components that are transverse,
but also some components that are longitudinal with respect
to the displacement vector R (Refs. 5 and 21). However, over
longer distances the longitudinal component drops away un-
til the behavior is consistent with a fully transverse field. In
the far-field where remote detection can be made, the result
is fully transverse fields, as are normally associated with real
photons.

These features have important implications when distin-
guishing between the character of near- and far-zone EET. In
general, one can envisage two opposing extremities. In the
far-zone extreme, the photons have field components that are
almost exclusively transverse with respect to R, and which
also oscillate perpendicular to the direction of propagation, k̂.
In the other limiting case, the net effect of summing a range of
the photon field components in the near-zone is that the cou-
pling acquires some longitudinal character with respect to R,
consistent with oscillations parallel to the displacement vector
R. The latter extreme allows for the coupling of two transi-
tion dipole moments that are parallel to one another and also
parallel to the displacement vector (Fig. 1(a)), while trans-
verse electric fields are able to couple transition dipole mo-
ments that are parallel to one another, but perpendicular to
the displacement vector (Fig. 1(b)). Relative transition dipole
moment orientations that are between these two extremes are
coupled by both transverse and longitudinal field components,
with the latter primarily featuring in the near-zone.28 These
features acquire particular importance when analysing near-
zone and far-zone EET in terms of the coupling equations (15)
and (17).
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FIG. 1. EET is mediated by virtual photons. The photons have partial longi-
tudinal electric field character in the near-zone and almost fully transverse
electric field character in the far-zone. Longitudinal electric fields couple
transition dipole moments with relative orientations as shown in (a), whereas
transverse electric fields couple transition dipole moments with relative ori-
entations, as shown in (b).

At the source (i.e., near the donor molecule) the electric
field will be almost exclusively longitudinal and hence transi-
tion dipole moments arranged as shown in Fig. 1(a) will be
strongly coupled in the near-zone. However, as the photon
moves away from its source its associated electric field will
take on a more transverse character and as it moves into the
far-zone region it can couple transition dipole moments that
are arranged as shown in Fig. 1(b).

III. RESULTS AND ANALYSIS

It is informative to consider in more detail the spa-
tial dependence of both the electromagnetic coupling tensor,
θ lj(k, R), and rate equation coupling, g(k, R), Eqs. (15) and
(17), respectively. Each will be considered in turn. Of partic-
ular interest is how these parameters are affected by changes
in chromophore separation and orientation. It is intuitively
clear how the individual terms that comprise θ lj(k, R) and g(k,
R) qualitatively depend on separation of the chromophores.
However, the role of the relative orientation of the donor and
acceptor on the coupling and transfer rate is less obvious.

In Sec. III A, the distance and orientation factors are
considered both analytically and numerically. The numerical
calculations are based on a uniformly distributed 2D grid of
molecules of dimension 100 nm × 100 nm. The spatial vari-
ation of the electronic coupling between the donor and ac-
ceptor V

QED
DA = 〈D|T (2)|A〉 = μ

f ull

Dl
θljμ

f ull

Aj
, and also g(k, R),

are calculated between the central chromophore and all of the
other chromophores comprising the 2D grid. Details of the
numerical calculations are given in a subsequent section. It is
important to point out that higher order effects are not consid-
ered in this study. That is, the effects of EET being assisted
by ancillary molecules are not considered, as has been inves-
tigated previously for donor-mediator-acceptor systems.29–31

Finally, population dynamics for a series of one-
dimensional (1D) molecular lattices and donor acceptor sys-
tems is investigated, by numerical integration of the Pauli
Master Equations (PME). The purpose of this study is to de-
termine how the population dynamics associated with rate
constants derived from the R−6 dependent Förster coupling
compares to that of the full, QED derived coupling, Eq. (17).

A. Orientation factors

The orientational factors, Eq. (12), is central to the en-
ergy transfer process. Comprehensive analyses of the standard

near-field orientation factor (the rate dependence on “kappa
squared,” where κ signifies η3 in our terminology) have been
undertaken previously.2 However, the broader perspective of
the present analysis – no longer limited to short-range interac-
tions – invites a revisitation of the orientation dependence, for
comparison to the numerical results. In the analysis of long
range energy transfer within a molecular aggregate, it will be
beneficial to identify and analyse the various contributory fac-
tors. The orientation of the donor and acceptor, and their indi-
vidual orientations with respect to their relative displacement
vector, influence the terms in Eq. (17) in a variety of different
ways. For example, the short range R−6 term is scaled by η2

3,
the intermediate range R−4 term is scaled by (η2

3 − 2η1η3) and
the long range R−2 term is scaled by η2

1. As the vectors in the
orientational factor, Eq. (12) are of unit length, the expression
can be rewritten in terms of cosine functions as

ηq = cos(φT ) − q cos(φD) cos(φA), (23)

where the angles are defined in Fig. 2.
The influence of the extreme values of each of the angles

on the rate equation coupling term g(k, R), is now considered.
As a demonstration of limiting forms of behavior, the orien-
tation factors, η2

1, η1η3, η2
3 are considered where φD, φA, and

φT take possible values φ = 0, φ = π / 2, and φ = π . If all of
the angles were independent of each other, this would lead to
33 = 27 different cases to be considered. However, although
there are four independent internal degrees of freedom for the
transition dipole orientations in the donor-acceptor system,
the angles φD, φA, and φT are not three of those; these angles
are dependent on one another. For example, in cases where
the transition dipole moments are parallel, then in order for
the energy transfer to occur the separation vector is clearly
prohibited from being parallel to one while at the same time
orthogonal to the other. This dependence means that there are
10 special cases, of which 6 are unique. Moreover, since the
orientation factors in Eq. (17) appear as η2

1, η1η3, and η2
3,

then (η1, η3)leads to the same result as (−η1, −η3); this re-
sults in only 2 unique cases, ignoring the trivial case where
(η1, η3) = (0, 0), which corresponds to forbidden en-
ergy transfer. Consequently, the two most interesting and

FIG. 2. The orientational factors, Eqs. (12) and (23), scale the coupling be-
tween an EET donor and acceptor. The parameters required to calculate the
orientational factors are φD, the angle between the donor and the displace-
ment vector, φA, the angle between the acceptor and the displacement vector,
and φT, the angle between the two transition dipole moments.
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physically distinct cases inviting consideration are (η1, η3) =
(±1, ±1) and (η1, η3) = (0, ±2).

The first case, where (η1, η3) = (±1, ±1), corresponds
to situations when the transition dipole moments are parallel
or antiparallel to each other, and both are perpendicular to
the separation vector (see Fig. 1(b)). In this situation η2

1 = η2
3

= η1η3, both short and long-range interactions are scaled by
the same amount, leading to the coupling function

g(k, R) = 1

|n|4
{

1

k6R6
+ 2n′′

k5R5
+ 3n′′2 − n′2

k4R4

+ 2n′′|n|2
k3R3

+ |n|4
k2R2

}
. (24)

Since for most frequencies of light, n′2 � 3n′′2, the inverse
4th power term takes a negative sign, leading to a lower trans-
fer rate at intermediate ranges except near resonances in the
medium. Notably, this is different from the increased transfer
rate that the same term produces, in the case of a randomly or
isotropically oriented donor-acceptor pair.

The second case to be considered is when (η1, η3)
= (0, ±2). In this situation, the transition moment and dis-
placement vector are collinear (i.e., any combination of par-
allel of antiparallel relative orientations – see Fig. 1(a)). The
rate equation coupling term then becomes

g(k, R) = 1

|n|4
{

4

k6R6
+ 8n′′

k5R5
+ 4|n|2

k4R4

}
(25)

which contains no long-range coupling terms. This means
that EET becomes negligible beyond the reduced wavelength
(� = λ/2π ) of the energy transferred. However, at short
ranges, the coupling is scaled by a factor of 4. Observe that the
term in R−4 is specifically positive, further enhancing the rate
of transfer. The lack of effective transfer in the far-zone cor-
responds to the fact that under the described conditions, the
coupling would have to be essentially longitudinal, whereas
photons propagating in this region would necessarily be al-
most entirely of transverse character.5

These results suggest that when designing an energy
transfer system, such as an energy harvesting photosyn-
thetic device, optimal configurations for fast transfer between
nearby sites are those where the donor and acceptor transi-
tion dipole moments and the separation vector are collinear.
Coupling may also be “switched off” between certain chro-
mophores by arranging them such that the transition dipole
moments are mutually orthogonal. This can, in effect, en-
able one to design molecular aggregate materials that are op-
timized to focus the energy transfer to specific points.

The case where the transition dipole moments of the
donor and acceptor take random orientations is now con-
sidered. This is important, for example, when considering
energy migration between disconnected donor and acceptor
units, for example, in a liquid phase, where the medium be-
tween the donor and acceptor can be considered to be opti-
cally isotropic. The effect on the transfer rate may be calcu-
lated by taking a rotational average of the orientation factors
as they appear in the coupling function: η2

1, η1η2, and η2
3. The

final form of the isotropic rate equation coupling terms is then

given by

〈g(k, R)〉 = 1

|n|4
{

2

3

1

k6R6
+ 4

3

n′′

k5R5
+ 2

3

|n|2
k4R4

+ 2

9

|n|4
k2R2

}
.

(26)
The derivation of this equation can be found in the

Appendix.
Comparing Eq. (26) with (25) and (24), it can be seen

that the rotational averaging, in general, dampens the coupling
terms of the rate equation. This suggests that artificial energy
transfer systems that possess chromophores that are randomly
oriented with respect to one another will generally be less ef-
ficient than in materials where they are set. This is reflected in
the numerical calculations, reported in subsequent sections.

B. Distance dependence

As observed earlier, in the originally derived form of the
rate equation coupling, g(k, R), for a donor and acceptor sep-
arated by vacuum, only three terms emerge. Namely, those
proportional to the inverse-sixth, the inverse-fourth, and the
inverse-square powers of the transfer distance, Eq. (11). The
inverse sixth power term gives rise to the dominant contri-
bution to the transfer rate in the short range limit (kR � 1)
while the inverse squared term gives rise to the long-range (kR
� 1) limit. The inverse fourth term is most significant at in-
termediate ranges (kR∼1), i.e., when the distance between the
chromophores is approximately equal to the reduced wave-
length of the transferring photon (i.e., the order of 100 nm
for UV/visible light). When EET occurs in the condensed
phase, the existence of the imaginary part of the complex val-
ued refractive index ensures that two additional terms emerge,
namely, the inverse fifth and inverse cube terms in Eq. (17).
The coupling contribution to the inverse ith term will be
referred to as gi(ω, R). Identifying the individual terms in
Eq. (17), the explicit forms of gi(ω, R) for i = 2, 3, 4, 5, 6, are
as follows:

g2(k, R) = η2
1

1

k2R2
, (27)

g3(k, R) = 1

|n|2 2η1η3n
′′ 1

k3R3
, (28)

g4(k, R) = 1

|n|4
[
η2

3|n|2 − 2η1η3(n′2 − n′′2)
] 1

k4R4
, (29)

g5(k, R) = 1

|n|4 2η2
3n

′′ 1

k5R5
, (30)

g6(k, R) = 1

|n|4 η2
3

1

k6R6
. (31)

The range at which the odd-powered terms, g5(k, R) and
g3(k, R) become important will now be established. The imag-
inary part of the refractive index is, of course, highly de-
pendent on the wavelength of the light propagating through
the medium. Generally speaking, n′′ becomes large when the
molecules comprising the condensed phase have an allowed
electronic transition which is of similar magnitude to the
transferred energy. This is clearly the case in molecular ag-
gregates, such as thin film J-aggregates, where all molecules
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are identical. It has been experimentally verified that or-
ganic thin film molecular aggregates mostly have refractive
indices with large imaginary components at highly absorbing
frequencies.32 It is important to note the dispersion behavior
of a condensed phase system, i.e., the imaginary part of the
refractive index, can in general span several orders of magni-
tude for a particular medium. For example, in water the range
is ∼10−9 to ∼1.33

To examine the influence of the g5(k, R) and g3(k, R) rate
contributions, the conditions for which they are equal to g6(k,
R) will be considered. This will be the chromophore separa-
tion at which these terms significantly influence, and may start
to dominate the EET process. Of particular interest is whether,
for allowed values of the orientation factors and the refrac-
tive index, the magnitude of the couplings are in the regime
kR � 1 is non-negligible.

The inverse fifth power term is considered first. Set-
ting g6(k, R) = g5(k, R), and solving for kR, gives the dis-
tance between the chromophores for which the two terms are
equal

kR = 1

2n′′ . (32)

Consequently, for common values of n′′ (i.e., n′′ � 1), g5(k,
R) = g6(k, R) at kR � 1, and g5(k, R) is therefore negligi-
ble in most cases. However, the inclusion of this term may be
important when considering the transfer of high-energy ex-
citations over short distances in a highly absorbing medium
or at near resonant frequencies. Fig. 3 shows the logarithmic
plots of g6(k, R) and g5(k, R) against kR, with η3 = 1, (a)

where n′′ = 10−5, (b) n′′ = 0.1, (c) n′′ = 0.5, and (d) n′′ = 1.0,
taking the real part of the refractive index as n′ = 1.9.

For the case of the inverse cubic term, setting g3(k, R)
= g6(k, R), gives

kR =
(

η3

2η1|n|2n′′

) 1
3

. (33)

Thus, as with g5(k, R), this term is negligible for
n′′ � 1. As the medium becomes more highly absorbing
(n′′ → 1), the onset of significant contributions from this term
depends on the orientation factors as well as the magnitude of
the complex refractive index. The dependence on the orienta-
tion factor seriously complicates the analysis. However, it can
be seen in cases where the two orientation terms are approx-
imately equal (e.g., η1 ≈ η3 ≈ ±1, as is the case when the
transition dipole moments are parallel or anti-parallel to each
other and perpendicular to the separation vector), that g3(k, R)
= g6(k, R) in the range kR < 1. Consequently, the R−3 term
is non-negligible in these situations.

For highly absorbing media where n′′ � 0, there is a
critical kR range where all of the different contributions in
Eq. (17) play a role in the coupling. This could lead to ma-
jor departures from Förster distance dependence, and may ex-
plain some of the behavior that has recently been seen in en-
ergy transfer studies in polymer-based nanostructured films.20

Fig. 4 shows the contributions from the individual gi(k, R);
(i = 2, 3, 4, 5, 6), for a range of kR values where η1 = η3 = 1.

Figure 4 shows the distance dependence for (the absolute
value of) the individual coupling terms, Eqs. (35)–(39), in the
range 0.1 ≤ kR ≤ 2.0. As can be anticipated, it is clear from

FIG. 3. The distance dependence of the R−5 (blue, dashed) and R−6 (red, solid) terms of the electronic coupling, Eqs. (30) and (31), respectively. Plot (a) shows
that the R−6 term dominates for highly transparent media with a small imaginary component of the refractive index. However, as n′′ become larger, the terms
become of comparable magnitude, with the R−5 term dominating in highly absorbing media at large distances.
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FIG. 4. Plots of the contributions from the individual rate equation coupling
terms, gi(k, R), in Eq. (22) for an absorbing medium (n = 1.9+0.5i). The
parameters are set as η1 = η3 = ±1. Note that for g4(k, R) the coupling mag-
nitude is negative in this case, and consequently absolute values are shown.

the main plot that the g6(k, R) term dominates at short dis-
tances, while the g2(k, R) term dominates at long distances.
From the inset, one can see that within the range 0.5 ≤ kR
≤ 1.0 the magnitude of the coupling components of the long
range terms start to dominate over the short range ones. This
is because it is in this range that the mediating photon begins
to take on real (and hence transverse electric field) character,
and there is a crossover from the nonradiative near-zone to the
far-zone radiative coupling at approximately half the reduced
wavelength.

C. Numerical calculations of the coupling terms
for a molecular aggregate

In this section, the individual coupling terms are applied
to a model system of a thin film molecular aggregate. The ob-
jective of this study is to obtain a realistic description for the
electromagnetic coupling tensor and the rate equation cou-
pling; these parameters are calculated for all molecules in the
gird, with respect to the central molecule.

The numerical study involves setting up a two-
dimensional grid of 41 × 41 generalized molecules, notion-
ally 2.5 nm apart in both directions. The value of 2.5 nm was
chosen to reflect approximate dimensions of typical florescent
dye molecules that comprise organic molecular aggregates.21

These conditions result in a square lattice of approximate di-
mensions 100 nm × 100 nm having a total of 1681 molecules.
The coupling is calculated with respect to the molecule at the
centre of the grid, labelled molecule 0 at point (0,0) in the xy-
plane. The experimentally realistic value of n = 1.9 + 0.5i is
used for the complex refractive index.32 The transition dipole
moments and electronic excitation energy of the constituent
molecules are taken to be 10.0 D and 3 eV, respectively, which
are realistic values for many molecules comprising organic
thin films.21 For the transfer of energy at the blue end of the
visible spectrum, the reduced wavelength is approximately 65
nm. Consequently, in the numerical simulations, the maxi-
mum value of kR is approximately 0.75, at the corners of the

FIG. 5. Schematic diagrams of 5 × 5 molecular grids. The molecules are
assumed to be point particles separated by 2.5 nm. The arrows represent the
transition dipole moments of the molecules. The first grid, (a), is the case of
ordered transition dipole moments (TDM) where all TDMs lie in the direc-
tion of the x-axis. The second grid, (b), is the isotropic case, where all of
the TDMs are randomly oriented in the xy-plane, but still centered on their
respective grid points.

2D grids (see Figs. 6 and 7). Longer range effects (kR > 1)
are considered in Sec. III D.

Two physically distinct situations are considered, namely,
one where the transition dipole moments are ordered, all lying
in the x-direction, and the other where they are randomly ori-
ented. Fig. 5 presents a schematic depiction of the two cases
considered. For clarity, only the central 25 molecules are dis-
played. The molecules are assumed to be point-like particles
2.5 nm apart from one another in both the x- and y-directions.
The coupling is calculated with respect to the central (red)
molecule. Fig. 5(a) corresponds to the case where the transi-
tion dipole moments are ordered, and Fig. 5(b) is the isotropic
case.

The scalar coupling is calculated by contraction of the
condensed phase electromagnetic coupling tensor with the
transition dipole moments of the molecules in the grid

V
QED
n0 = 〈n|T (2)|0〉 = μf ull

nl
θljμ

f ull

0j
. (34)

Fig. 6 shows the magnitudes of the individual electromagnetic
coupling terms for the 100 nm × 100 nm grid. Specifically,
this figure displays the coupling between the centrally placed
donor (denoted |0〉) and each of the other molecules on the
grid (|n〉), for both ordered and randomly oriented transition
dipole moments.

The full expression for the R−1, R−2, and R−3 contribu-
tions to the electromagnetic coupling of the nth molecule with
the central molecule can be written in full as

V R−i

n0 (k, R) = μf ull
nl

θR−i

lj μ
f ull

0j
, (35)

where

θR−1

lj (k, R̂) = −k3eiKR

4πε0

[
(δlj − R̂lR̂j )

1

kR

]
, (36)

θR−2

lj (k, R) = −k3eiKR

4πε0

[
(δlj − 3R̂lR̂j )

(
i

k2R2

)]
, (37)

θR−3

lj (k, R̂) = k3eiKR

4πε0

[
(δlj − 3R̂lR̂j )

(
1

k3R3

)]
, (38)
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FIG. 6. (a)–(f) The R−1, R−2, and R−3 components of the electromagnetic coupling, V(k, R), between the central molecule and the other molecules in the
aggregate. All transition dipole moments are pointing in the x-direction for the upper panels, and are isotropic (randomly oriented in the plane) for the lower
panels. Logarithmic plots are used for clarity.

and the full coupling is given by

V
QED
n0 =

3∑
i=1

V R−i

n0 . (39)

The physical character of the electromagnetic coupling
tensor can be understood most easily by considering Fig. 6,
within the context of these equations. The upper part of
Figs. 6(a)–6(c) shows the situation where the transition dipole
moments are aligned in the x-direction, and the lower sec-
tion of Figs. 6(d)–6(f) where the transition dipole moments
are randomly oriented in the x,y-plane. It is important to note
that the values of the electromagnetic tensor span several or-
ders of magnitude. As one would expect, there is a region
of very strong coupling about the central molecule for the
R−3 term, with a significantly smaller region of strong cou-
pling for the R−2 and no strong coupling for the R−1 contri-
bution. The numerical calculations indicate that the radius of
“strong” coupling is of the order of 10 nm for the R−3 term,
and a few nanometers for the R−2, based on the isotropic cases
(Figs. 6(d)–6(f)).

It is interesting to consider the case in which the tran-
sition dipole moments are ordered. In this case, one can see
that there is a very structured spatial dependence of the cou-
pling. For V R−3

n0 , there are four regions of strong coupling in
the x (positive and negative) and y (positive and negative) di-
rections. The strongest coupling is in the x-direction, where
the transition dipole moment of molecules 0 and n are paral-
lel to one another, and also to their mutual displacement vec-
tor. The result exemplifies an earlier comment that this strong

coupling occurs because, at short distances, the virtual pho-
tons that mediate the EET process have longitudinal character.
Consequently, molecules with transition dipole moments par-
allel to one another and also parallel to the displacement vec-
tor are strongly coupled for kR � 1. However, it can be seen in
Fig. 5(c) that there is also some strong coupling in the
y-direction, because the virtual photons also have some
transverse character at small distances. The shape of the
strong coupling region for V R−2

n0 (k, R) is similar to that for
V R−3

n0 (k, R) (as the orientational dependence (δlj − 3R̂lR̂j ) is
the same for both terms, Eqs. (37) and (38)), but falls away
more rapidly. The spatial dependence of the long range cou-
pling, V R−1

n0 (k, R) is particularly interesting as it is fundamen-
tally different from the intermediate and short range coupling
terms. The long range interactions are mediated exclusively
by transverse virtual photons and consequently there is ex-
actly zero coupling between the origin molecule and all other
molecules lying along the x-axis (i.e., y = 0). The coupling
then fans out in the positive and negative y-directions. The
capacity to modify this feature by high-level laser scanning
is, indeed, a feature that has attracted attention in connection
with all-optical switching.34, 35

Of particular interest is the very low magnitude cou-
pling in the diagonal directions, for both V R−2

n0 (k, R) and
V R−3

n0 (k, R). This arises, because in these regions the donor
and acceptor transition dipole moments cannot be coupled
strongly either by longitudinal or transverse electric fields.

A similar approach can be used for numerically analysing
the individual terms that comprise the rate equation coupling
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FIG. 7. (a)–(j) The R−2, R−3, R−4, R−5, R−6 components of the rate equation coupling, g(k, R), between the central molecule and the other molecules in the
aggregate. All transition dipole moments are pointing in the x-direction for the upper panels, and are isotropic (randomly oriented in the plane) for the lower
panels. Asinh plots are used to emphasize weak coupling regions.

term for a condensed phase medium, Eq. (22). The coupling
is considered in terms of the five fundamental components,
Eqs. (35)–(39). The upper part of Figs. 7(a)–7(e) shows the
individual coupling terms for an ordered set of transition
dipole moments, all aligned along the x-axis. The lower part
(Figs. 7(f)–7(j)) shows the couplings that arise when the ori-
entation of the dipole moments are randomly distributed in
the x,y-plane.

Inspection of Fig. 7 allows one to gain insight into how
the spatial variation of the rate coupling, Eq. (22), is influ-
enced by the individual contributing terms. It is important to
note that g6(k, R), g4(k, R), and g2(k, R) in the rate equation
coupling are analogous in their physical origins to V R−3

n0 (k, R),
V R−2

n0 (k, R), and V R−1

n0 (k, R), respectively (although g4(k, R)
does acquire some contributions from the interference of R−1

and R−3 terms). One can observe that the shapes of the region
of strong coupling are quite similar. For example, V R−3

n0 (k, R)
and g6(k, R) both have significant couplings along the x and y
axes, with the coupling along the x-axis, most favourable.

It is interesting to consider the orientational dependence
of g4(k, R), in the case of condensed phase EET. There are
two different contributions that this term makes. It is additive
with respect to the total coupling, Eq. (17), in the x-direction,
when the transition dipole moments are parallel to the dis-
placement vector, and subtracts from the total coupling in the
y direction, when the transition dipole moments are perpen-
dicular to the displacement vector. These results are clearly
consistent with Eqs. (24) and (25), which give the analytical
expressions when the transition dipole moments are perpen-
dicular and parallel to the displacement vector, respectively.

In the case of the rate equation couplings, the far-zone
terms, g2(k, R) and g3(k, R) can be seen to have shorter ranges
of influence than the V R−1

n0 (k, R) term in the electromagnetic
tensor coupling, due to the fact that squaring the weak inter-
actions significantly dampens them. The profile is however
similar, as expected.

D. Numerical simulations: Short-range hopping
verses direct long-range transfer

In order to quantify the extent to which long range elec-
tronic coupling terms may be involved in the electronic en-
ergy transfer process in molecular aggregates, one must com-
pare the population dynamics derived from Förster theory
with that derived from the QED coupling terms, Eq. (17).
More precisely, the question we seek to ask is: Under what cir-
cumstances does short range incoherent hopping out-compete
long range coherent transfer? There are at least two differ-
ent approaches that could be undertaken to analyse this. The
first is a quantum dynamics approach where the time de-
pendent wavefunction (or density matrix) is propagated di-
rectly using the electronic Hamiltonian, as is done in nu-
merous past studies.4, 6, 36–40 The other approach employs the
PME, where the rate constants are used to describe the pop-
ulation transfer between sites.6, 41–44 It is important to point
out that while the first approach explicitly includes quantum
coherent effects into the dynamics, the PME approach de-
scribes incoherent transport, with quantum effects (i.e., in-
terference terms) being included implicitly through the rate
constants.

In this study, long range transfer is of particular impor-
tance, and hence it is computationally more tractable to model
the time dependence of exciton diffusion on a 1D lattice,
rather than a 2D grid. As outlined below, by altering the ori-
entation of the TDMs with respect to 1D lattice, insight into
the dynamics of EET occurring in different directions on the
2D grids (Fig. 8) can be gained. In the simulations, electronic
energy transfer occurs from the initially excited molecule in
the center of the 1D lattice. The exciton diffusion process is
modelled kinetically by evaluating PMEs,

d

dt
Pμ(t) =

N∑
μ 
=ν

[Wμ←νPν(t) − Wν←μPμ(t)]. (40)
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This set of equations describes the dynamics of the population
on site μ with reference to all other sites in the molecular ag-
gregate. Here, Pμ is the electronic population on the μth site
and Wμ←ν is the rate constant for the transfer of population
from site ν to μ.

In this study we seek, specifically, to compare the dynam-
ics obtained when only Förster coupling is used, i.e., the R−6

term only, Eq. (31) to calculate the rate constants, and when
the full QED coupling, Eq. (17), is employed to calculate the
rate constants. Direct calculation of the rate constants using
Eq. (16) requires the knowledge of some empirical parame-
ters such as the radiative lifetime of the donor and spectral
overlap between the absorption cross-section of the acceptor
and the emission spectrum of the donor. These parameters
have been chosen in a phenomenologically consistent way.
A reasonable estimate for the radiative lifetime, τD, of chro-
mophore that may be found in a molecular aggregate, such as
a J-aggregate, would be about 1 ps.45 Estimating the spectral
overlap parameter, on the other hand, is more complicated. It
turns out to be more convenient to recast the rate Eq. (16) in
terms of the Förster radius. The rate equation for short range
Förster coupling can be rewritten as

W
(R−6)
DA = 9c4η2

3

8πτDR6

∞∫
0

FD(ω)σA(ω)|n|−4ω−4e−2n′′ωR/c

= 1

τD

(
R0

R

)6

, (41)

where all terms, except the radiative lifetime and the distance
between the chromophores become subsumed into the R6

0
term. Förster radii are documented for many chromophores
and form the basis of the spectroscopic ruler.45, 46 It is im-
portant to realize that when the rate is written in terms of
the Förster radius the orientational factor, η3

2, is replaced by
its rotationally averaged value, of η3

2 = 2 / 3. Consequently,
in order to incorporate orientational effects into the simula-
tions, we must factor this out the expression, Eq. (41). The
rate equation for Förster coupling is now written as

W
(R−6)
DA =

(
3

2

) 1
6 η2

3

τD

(
R0

R

)6

. (42)

In order to employ Förster radii for the calculation of the
other contributions to the rate equation, two assumptions must
be made. Namely, that the frequencies, ω, of spectral overlap
region are significantly smaller than the excitation frequency
and that the refractive index is constant over the spectral over-
lap region. Once we have made these reasonable assumptions,
we may rewrite the individual contributions to the rate con-
stant in terms of the Förster radii,

W
(R−5)
DA =

(
3

2

) 1
6 k

τD

[
η2

32n′′] (
R6

0

R5

)
, (43)

W
(R−4)
DA =

(
3

2

) 1
6 k2

τD

[
η2

3|n|2 − 2η1η3(n′2 − n′′2)
] (

R6
0

R4

)
,

(44)

W
(R−3)
DA =

(
3

2

) 1
6 k3

τD

[
2η1η3n

′′|n|2] (
R6

0

R3

)
, (45)

W
(R−2)
DA =

(
3

2

) 1
6 k4

τD

[
η2

1|n|4] (
R6

0

R2

)
, (46)

WDA = W
(R−6)
DA + W

(R−5)
DA + W

(R−4)
DA + W

(R−3)
DA + W

(R−2)
DA .

(47)
Equations (42)–(47) will be used as the rate constants to

evolve the population dynamics, by numerical integration of
Eq. (40). The purpose of the PME simulations, is to determine
the whether direct far-zone EET will outcompete short-range
incoherent hopping in molecular aggregates. We consider en-
ergy migration along a linear chain of molecules, as has been
done in previous studies.47, 48 Three different kinds of 1D lat-
tice are considered with the TDMs arranged as shown in Fig-
ure 8. The Förster radius used in the simulations is 3.8 nm,
in-line with that for a variety of dye molecules.45 As with the
2D grid calculations, the transition dipole moments and elec-
tronic excitation energy of the constituent molecules are 10.0
D and 3 eV, respectively.

The chain comprises 201 molecules, each separated by
2.5, 5.0, or 7.5 nm. This means that the distance within which
EET can occur within the simulations far exceeds the re-
duced wavelength of the mediating virtual photon, in all cases.
The exciton population is initially localized on the central
molecule at time zero. Figs. 9–11 display the results of the
simulations. For each of the figures, panels (a), (b), and (c)
correspond to linear chains with transition dipole moments
parallel, perpendicular, and at a 45◦ angle to the displacement
vector, respectively. Fig. 9 corresponds to a 1D lattice where
the individual molecules are 2.5 nm apart, while Figs. 10 and
11 correspond to lattices with molecules separated by 5.0 and
7.5 nm, respectively. The black lines correspond to the pop-
ulation dynamics when the full coupling is calculated from
Eq. (47). The dashed blue line corresponds to the dynamics
obtained using the Förster coupling only, Eq. (41). The dy-
namics was also analysed for the individual terms, Eqs. (43)–
(46). All plots show the population decay from the initially
excited central molecular center. Note that for clarity in ob-
serving differences between Förster and full QED dynamics,
the time scales differ for different lattices.

FIG. 8. Schematic diagrams for the orientation of the transition dipole mo-
ments of the one-dimensional lattice of molecules. (a) The top lattice shows
that the TDMs are parallel to the displacement vector (i.e., lying along the
x-axis). (b) In the case of the second lattice, the TDMs are perpendicular to
the displacement vector (i.e., in the y-direction). (c) The third case is where
they are at a 45◦ angle.
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FIG. 9. Population of the central (initially fully populated) chromophore as a function of time for a one-dimensional lattice, with 2.5 nm between molecular
centers. (a) TDMs pointing in the x-direction, (b) TDMs pointing in the y-direction, (c) TDMs pointing at y = x. In legend, g6 corresponds to dynamics of

W
(R−6)
DA , etc. Panel (d) shows the population decay for each of the TDM orientations.

FIG. 10. (a)–(d) As for Figure 9, but with a distance of 5.0 nm between molecular centers on the one-dimensional lattice.
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FIG. 11. (a)–(d) As for Figure 9, but with a distance of 7.5 nm between the molecular centers on the one-dimensional lattice.

From these results, it can be seen that short range Förster
coupling generally agrees very well with the full QED derived
coupling for molecular aggregates, irrespective of the orien-
tation of the transition dipole moments. This is especially the
case for aggregates where the molecular species are close to
one another, as is the case in Fig. 9, where the molecules
are separated by 2.5 nm. This indicates that Förster coupling
should, in general, be valid for molecular aggregates, such as
H- and J-aggregates, even when exciton diffusion occurs over
long distances. However, as the distance between the individ-
ual molecules increases, the intermediate and far-zone terms
start to play a role in the dynamics. Therefore, consideration
of these terms could become important for designing meso-
scopic energy transporting and harvesting materials, such as
quantum dot arrays, where the distance between individual
quantum dot centers can exceed 5 nm.49–52

Panel (d) in Figs. 9–11 compare the population dynam-
ics, based on the rate constant derived from full QED coupling
Eq. (47), for the different orientations of the transition dipole
moments. These figures are very revealing in displaying the
importance of the relative orientations of the transition dipole
moments within molecular aggregates. It can be clearly seen
that the optimal configuration for exciton transport is that the
transition dipole moments be parallel to one another, and par-
allel to the displacement vector. Transport efficiency is also
quite good when the transition dipole moments are perpen-
dicular to the displacement vector. However, the intermediate
case, where they are at a 45◦ angle to the displacement vector
results in poor transport. This reflects what we have already
seen in the analysis of the coupling terms in Figs. 6 and 7,
where the strongest coupling for the R−6 term is exactly along

the x- and y-axes, while the diagonal, y = x, shows very poor
coupling.

Finally, EET dynamics based on the PME for the sim-
ple case of a single exciton donor and acceptor is consid-
ered. Specifically, we are interested in determining the ex-
tent to which the intermediate and far-zone terms affect the
dynamics between a single donor and a single acceptor, as a
function of distance. This is important from the point of view
of the spectroscopic ruler,45 a technique that employs FRET
(Förster resonance energy transfer) to establish distance be-
tween molecular species, by measuring the transport rate of
the exciton and assuming that the rate constant has a R−6 dis-
tance dependence between chromophores. Although this has
shown, time and time again, to be a powerful and important
technique utilised in many areas of material and biological re-
search, it has come under significant criticism because of its
departure from the R−6 trend.53–60

Here, the PME are again employed, but this time for a
two site system. If we assume that the exciton is instanta-
neously trapped on the acceptor, the PMEs can be rewritten
as

PD = exp(−kA←Dt), (48)

PA = [1 − exp(−kD←At)], (49)

where PD and PA are the populations on the donor and accep-
tor, respectively.

Figs. 12 and 13 show the time dependence of the donor
population as a function of time, for two different orienta-
tions of the transition dipole moments. The panels (a)–(d)
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FIG. 12. (a)–(d) Population decay for an exciton donor acceptor pair with TDMs parallel to the displacement vector. The separation distances are shown in the
figure.

FIG. 13. (a)–(d) Population decay for an exciton donor acceptor pair with TDMs perpendicular to the displacement vector. The separation distances are shown
in the figure.
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correspond to separations between the two chromophores of
2.5, 5.0, 10.0, and 20.0 nm. It can be clearly seen that while
the Förster coupling correctly describes the dynamics for
chromophore separations that are less than 10 nm, there is an
obvious discrepancy for chromophore separations in excess of
this distance. It is interesting to note that a R−4 dependence
on rates of EET has been seen in numerous studies, where
the chromophores are separated by distances larger than 10
nm.54, 56, 58

IV. CONCLUSIONS

The focus of this study on EET has been to investigate,
analytically and numerically, the spatial dependence of the
electromagnetic coupling tensor, Eq. (15), and the rate equa-
tion coupling, Eq. (17). These two parameters, one quadrat-
ically related to the other and derived from the theory of
quantum electrodynamics, are fundamental parameters for
correctly describing long range EET within a condensed
phase environment. The former is analogous to off-diagonal
coupling terms that appear in the usual site basis EET
Hamiltonian, while the latter is the fundamental parameter
appearing in the Fermi Golden Rule rate equation. Further,
Pauli Master Equations have been applied to model the
dynamics of EET in one-dimensional lattices, as well as
donor-acceptor pairs.

The results have demonstrated the intricate interplay of
distance and orientational factors determining the efficiency
of energy transfer. Although Förster Theory is very well
suited to many situations, often providing qualitatively and
quantitatively accurate description of the energy transfer pro-
cess, the distance dependence for EET coupling is more com-
plicated than traditional Förster Theory predicts. Further, its
influence is significantly modified by the orientational depen-
dence. The origin of these complications is deeply rooted in
the nature of the virtual photon, or polariton, mediating the
transfer process.

These factors invite reconsideration of the widely applied
assumptions in the analysis of energy transfer in molecular
aggregates, particularly since it emerges that the transfer effi-
ciency might be significantly higher than standard theory sug-
gests – especially when the host medium for the donor and
acceptor chromophores has a significant imaginary term in its
refractive index. In particular, the population dynamics simu-
lations indicate that consideration of all coupling may be es-
sential for describing spectroscopic ruler experiments which,
on numerous occasions, have been shown to violate the as-
sumed R−6 dependence of Förster Theory.

Further, when designing artificial photosynthetic sys-
tems, it may be beneficial to make use of optimal orientation
of the transition dipole moments of the chromophores com-
prising the medium. A recent review has remarked that we
can take “lessons from nature” when designing supramolecu-
lar structures for solar energy harvesting, points towards sev-
eral important physical principles, including quantum coher-
ence and photoprotection.61 It may also be important to take
into consideration the nature of individual mediating pho-
tons and polaritons when investigating EET in these types of
systems.
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APPENDIX: A MATHEMATICAL PROOF OF EQ. (26)

Here, the derivation of Eq. (26) is given. The orientational
factors are expressed in full as

η2
1 = (μ̂a · μ̂d ) + (R̂ · μ̂a)2(R̂ · μ̂d )2

− 2(μ̂a · μ̂d )(R̂ · μ̂a)(R̂ · μ̂d ), (A1)

η1η3 = (μ̂a · μ̂d ) + 3(R̂ · μ̂a)2(R̂ · μ̂d )2

− 6(μ̂a · μ̂d )(R̂ · μ̂a)(R̂ · μ̂d ), (A2)

η2
3 = (μ̂a · μ̂d ) + 9(R̂ · μ̂a)2(R̂ · μ̂d )2

− 6(μ̂a · μ̂d )(R̂ · μ̂a)(R̂ · μ̂d ). (A3)

To secure a result applicable to an entirely randomly
oriented system, the donor and acceptor transition moments
must be rotationally averaged with respect to each other, and
both of them with respect to their mutual displacement vec-
tor. As rotational averaging is a linear operation, the values
of η2

1, η1η2, and η2
3 follow from the averages of (μ̂a · μ̂d )2,

(R̂ · μ̂a)2(R̂ · μ̂d )2, and (μ̂a · μ̂d )(R̂ · μ̂a)(R̂ · μ̂d ). Denoting
components referring to the axis of a laboratory-fixed frame
by i and j, the term (μ̂a · μ̂d )2 may be rewritten as

(μ̂a · μ̂d )2 = μa
i μ

d
i μ

a
jμ

d
j , (A4)

where summation over repeated indices is assumed. Choosing
a molecular basis that is attached to the donor chromophore
(whose axes are labelled by λ and ν), a component of the
donor transition dipole moment in the laboratory-fixed frame
may be written as a sum of its components in the donor-fixed
frame, each multiplied by the cosine of the angle between the
laboratory axis and the donor-fixed axis or,〈
μa

i μ
d
i μ

a
jμ

d
j

〉 = 〈
μa

i

(
liλμ

d
λ

)
μa

j

(
ljνμ

d
ν

)〉 = μa
i μ

d
λμ

a
jμ

d
ν 〈liλljμ〉,

(A5)
where liλ denotes the cosine of the angle between axes repre-
sented by i and λ, and the angular brackets denote the rota-
tional average. Since 〈liλljν〉 = 1

3δij δλν , it follows that

〈(μ̂a · μ̂d )2〉 = μa
i μ

d
λμ

a
jμ

d
ν

(
1

3
δij δλν

)

= 1

3
μa

i μ
d
λμ

a
jμ

d
ν

= 1

3
|μ̂a|2|μ̂b|2

= 1

3
.
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Following a similar procedure for (R̂ · μ̂a)2(R̂ · μ̂d )2 and
(μ̂a · μ̂d )(R̂ · μ̂a)(R̂ · μ̂d ) allows one to derive

〈(R̂ · μ̂a)2(R̂ · μ̂d )2〉 = 1

9

and

〈(μ̂a · μ̂d )(R̂ · μ̂a)(R̂ · μ̂d )〉 = 1

9
.

Combining all of these expressions allows one to deter-
mine rotationally averaged values for the orientational factors,
namely,

〈
η2

1

〉 = 1

3
+ 1

9
− 2

9
= 1

9
,

〈η1η3〉 = 1

3
+ 1

3
− 2

3
= 0,

〈
η2

3

〉 = 1

3
+ 1 − 2

3
= 2

3
.

Consequently, the rotationally averaged coupling function,
Eq. (26) is given by

〈g(k, R)〉 = 1

|n|4
{

2

3

1

k6R6
+ 4

3

n′′

k5R5
+ 2

3

|n|2
k4R4

+ 2

9

|n|4
k2R2

}
.

1V. M. Agranovich and M. D. Galanin, Electronic Excitation Energy Trans-
fer in Condensed Matter (Elsevier, Amsterdam, The Netherlands, 1982).

2B. Wieb Van derMeer, G. Coker III, and S.-Y. Chen, Resonance Energy
Transfer: Theory and Data (VCH, New York, 1994).

3D. L. Andrews and A. A. Demidov, Resonance Energy Transfer (Wiley,
New York, 1999).

4V. May and O. Kühn, Charge and Energy Transfer in Molecular Systems
(Wiley-VCH, New York, 2011).

5D. L. Andrews and D. S. Bradshaw, “Virtual photons, dipole fields and
energy transfer: A quantum electrodynamical approach,” Eur. J. Phys. 25,
845–858 (2004).

6See, for example, S. Mukamel, Principles of Nonlinear Optical Spec-
troscopy (Oxford University Press, Oxford, 1995).

7G. Grynberg, A. Aspect, and C. Fabre, Introduction to Quantum Optics:
From the Semi-classical Approach to the Quantized Limit (Cambridge Uni-
versity Press, Cambridge, 2010).

8T. Förster, “Zwischenmolekulare Energiewanderung und Fluoreszenz,”
Ann. Phys. 437, 55–75 (1948).

9S. F. Kilin and I. M. Rozman, “Effect of reabsorption on the fluorescence
lifetimes of organic substances,” Opt. Spectrosc. 6, 40–44 (1959).

10J. S. Avery, “Resonance energy transfer and spontaneous photon emission,”
Proc. Phys. Soc. 88, 1–8 (1966).

11D. L. Andrews and B. S. Sherborne, “Resonant excitation transfer: A quan-
tum electrodynamical study,” J. Chem. Phys. 86, 4011–4017 (1987).

12D. L. Andrews, “A unified theory of radiative and radiationless molecular
energy transfer,” Chem. Phys. 135, 195–201 (1989).

13G. J. Daniels, R. D. Jenkins, D. S. Bradshaw, and D. L. Andrews, “Reso-
nance energy transfer: The unified theory revisited,” J. Chem. Phys. 119,
2264–2274 (2003).
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